WorldWideScience

Sample records for expanded plane channel

  1. Influence of the narrow {111} planes on axial and planar ion channeling.

    Science.gov (United States)

    Motapothula, M; Dang, Z Y; Venkatesan, T; Breese, M B H; Rana, M A; Osman, A

    2012-05-11

    We report channeling patterns where clearly resolved effects of the narrow {111} planes are observed in axial and planar alignments for 2 MeV protons passing through a 55 nm [001] silicon membrane. At certain axes, such as and , the offset in atomic rows forming the narrow {111} planes results in shielding from the large potential at the wide {111} planes, producing a region of shallow, asymmetric potential from which axial channeling patterns have no plane of symmetry. At small tilts from such axes, different behavior is observed from the wide and narrow {111} planes. At planar alignment, distinctive channeling effects due to the narrow planes are observed. As a consequence of the shallow potential well at the narrow planes, incident protons suffer dechanneled trajectories which are excluded from channeling within the wide planes, resulting in an anomalously large scattered beam at {111} alignment.

  2. Plane waves and structures in turbulent channel flow

    Science.gov (United States)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  3. Plane and hemispherical potential structures in magnetically expanding plasmas

    International Nuclear Information System (INIS)

    Takahashi, Kazunori; Igarashi, Yuichi; Fujiwara, Tamiya

    2010-01-01

    Two-dimensional potential structures are measured for different gas pressure in expanding argon plasma using permanent magnets, where the magnetic field is about 100 G in the source and several gauss in the diffusion chamber. The plane potential drop is observed near the source exit for 0.35 mTorr, while the potential structure becomes hemispherical when increasing up to 1 mTorr; the hemispherical structure results in the radial divergence of the ion beam. It is found that the trajectories of the accelerated ions and the electrons overcoming the potential drop are dominated by the potential structure and magnetic-field lines, respectively.

  4. Spectral distribution of radiation on plane and axial channeling of ultrarelativistic electrons

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Glebov, V.I.; Zhevago, N.K.

    1980-01-01

    The spectral angular and polarization charactristics of the radiation from channeled ultrarelativistic electrons are calculated. Analytic expressions for the spectral-angular power density of the radiation are obtained for some realistic models of the continuous potential of the crystal planes and axes. A critical analysis is also presented of some existent results of the theory of radiation on channeling

  5. Cells exposed to a huntingtin fragment containing an expanded polyglutamine tract show no sign of ion channel formation: results arguing against the ion channel hypothesis

    DEFF Research Database (Denmark)

    Nørremølle, Anne; Grunnet, Morten; Hasholt, Lis

    2003-01-01

    Ion channels formed by expanded polyglutamine tracts have been proposed to play an important role in the pathological processes leading to neurodegeneration in Huntington's disease and other CAG repeat diseases. We tested the capacity of a huntingtin fragment containing an expanded polyglutamine...... in the currents recorded in any of the two expression systems, indicating no changes in ion channel activity. The results therefore argue against the proposed hypothesis of expanded polyglutamines forming ion channels....

  6. Experimental investigation of the effects of variable expanding channel on the performance of a low-power cusped field thruster

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2018-04-01

    Full Text Available Due to a special magnetic field structure, the multi-cusped field thruster shows advantages of low wall erosion, low noise and high thrust density over a wide range of thrust. In this paper, expanding discharge channels are employed to make up for deficiencies on the range of thrust and plume divergence, which often emerges in conventional straight cylindrical channels. Three thruster geometries are fabricated with different expanding-angle channels, and a group of experiments are carried out to find out their influence on the performance and discharge characteristics of the thruster. A retarding potential analyzer and a Faraday probe are employed to analyze the structures of the plume in these three models. The results show that when the thrusters operate at low mass flow rate, the gradually-expanding channels exhibit lower propellant utilization and lower overall performance by amounts not exceeding 44.8% in ionization rate and 19.5% in anode efficiency, respectively. But the weakening of magnetic field intensity near the exit of expanding channels leads to an extended thrust throttling ability, a smaller plume divergence angle, and a relatively larger stable operating space without mode converting and the consequent performance degradation.

  7. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    Science.gov (United States)

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.

  8. Numerical simulation of turbulent liquid metal flows in plane channels and annuli

    International Nuclear Information System (INIS)

    Groetzbach, G.

    1980-06-01

    The method of direct numerical simulation is used to study heat transfer and statistical data for fully developed turbulent liquid metal flows in plane channels and annuli. Subgrid scale models using one transport equation account for the high wave-number turbulence not resolved by the finite difference grid. A special subgrid-scale heat flux model is deduced together with an approximative theory to calculate all model coefficients. This model can be applied on the total Peclet number range of technical liquid metal flows. Especially it can be used for very small Peclet numbers, where the results are independent on model parameters. A verification of the numerical results for liquid sodium and mercury flows is undertaken by the Nusselt number in plane channels and radial temperature and eddy conductivity profiles for annuli. The numerically determined Nusselt numbers for annuli indicate that many empirical correlations overestimate the influence of the ratio of radii. The numerical results for the eddy conductivity profiles may be used to remove these problems. The statistical properties of the simulated temperature fluctuations are within the wide scatter-band of experimental data. The numerical results give reasonable heat flux correlation coefficients which depend only weakly on the problem marking parameters. (orig.) [de

  9. Intrinsic Channeling of Vortices along the ab Plane in Vicinal YBa2Cu3O7-δ Films

    International Nuclear Information System (INIS)

    Berghuis, P.; Di Bartolomeo, E.; Wagner, G.A.; Evetts, J.E.

    1997-01-01

    We have measured the critical current density j c as a function of the orientation of a magnetic field in vicinal YBa 2 Cu 3 O 7-δ films. When both field and Lorentz force lie within the ab plane, we observe a minimum in j c . At high temperatures, as the c -axis coherence length approaches the ab -plane distance, the minimum in j c could not be observed, indicating that this effect is related to the breakdown of the rectilinear vortex state for fields at a small angle to the ab planes. Our results are the first demonstration of intrinsic channeling of vortex strings along the ab planes. copyright 1997 The American Physical Society

  10. Plasmatron with expanding channel of outlet electrode and its applications

    International Nuclear Information System (INIS)

    Chinnov, V.F.; Isakajev, E.Kh.; Ivanov, P.P.; Sinkevich, O.A.; Tyuftyaev, A.S.

    2000-01-01

    A serious industrial application is found for the plasmatron with expanding channel of outlet electrode - hardening and nitriding surface treatment of railway wheels. Several plasma installations are under operation at the engine houses of Moscow Railways. More than 12 000 wheel sets have been treated up to now. Results are evident: wheel life doubles due to plasma treatment. The plasmatron developed essentially in an empiric way is now under heavy investigation both theoretically and experimentally. High precision measurements of nitrogen emission spectra are expected to be used directly for accurate calculation of radiation heat loss term in a quasi-one dimensional flow code. (Authors)

  11. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    Science.gov (United States)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  12. Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.

    Directory of Open Access Journals (Sweden)

    Timothy Jegla

    Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.

  13. Gauge theory high-energy behavior from j-plane unitarity

    International Nuclear Information System (INIS)

    Coriano, C.; Florida Univ., Gainesville, FL; White, A.R.

    1996-01-01

    In a non-abelian gauge theory the t-channel multiparticle unitarity equations continued in the complex j-plane can be systematically expanded around j=1 and t=0. The combination of Ward identity constraints with unitarity is sufficient to produce directly many of the results obtained by Regge limit leading-log and next-to-leading log momentum-space calculations. The O(g 2 ) BFKL kernel is completely determined. O(g 4 ) infrared contributions to this kernel are also obtained, including the leading contribution of a new partial-wave amplitude - previously identified as a separate forward component with a holomorphically factorizable spectrum. For this amplitude the only scale ambiguity is the overall normalization and it is anticipated to be a new conformally invariant kernel. While scale-dependent non-leading reggeon interactions can not be derived by the techniques developed, it is conjectured that all conformally invariant interactions may be determined by t-channel unitarity. (orig.)

  14. Effect of settling particles on the stability of a particle-laden flow in a vertical plane channel

    Science.gov (United States)

    Boronin, S. A.; Osiptsov, A. N.

    2018-03-01

    The stability of a viscous particle-laden flow in a vertical plane channel in the presence of the gravity force is studied. The flow is described using a two-fluid "dusty-gas" model with negligibly small volume fraction of fines and two-way coupling of the phases. Two different profiles of the particle number density in the main flow are considered: homogeneous and non-homogeneous in the form of two layers symmetric about the channel axis. The novel element of the linear-stability problem formulation is a particle velocity slip in the main flow caused by the gravity-induced settling of the dispersed phase. The eigenvalue problem for a linearized system of governing equations is solved using the orthonormalization and QZ algorithms. For a uniform particle number density distribution, it is found that there exists a domain in the plane of Froude and Stokes numbers, in which the two-phase flow in a vertical channel is stable for an arbitrary Reynolds number. This stability domain corresponds to relatively small-inertia particles and large velocity-slip in the main flow. In contrast to the flow with a uniform particle number density distribution, the stratified dusty-gas flow in a vertical channel is unstable over a wide range of governing parameters. The instability at small Reynolds numbers is determined by the gravitational mode characterized by small wavenumbers (long-wave instability), while at larger Reynolds numbers the instability is dominated by the shear mode with the time-amplification factor larger than that of the gravitational mode. The results of the study can be used for optimization of a large number of technological processes, including those in riser reactors, pneumatic conveying in pipeline systems, hydraulic fracturing, and well cementing.

  15. In-plane and cross-plane thermal conductivities of molybdenum disulfide

    International Nuclear Information System (INIS)

    Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)

  16. Data acquisition system for the socal plane detector of the mass separator MASHA

    Science.gov (United States)

    Novoselov, A. S.; Rodin, A. M.; Motycak, S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yukhimchuk, S. A.; Komarov, A. B.; Kamas, D.

    2016-09-01

    The results of the development and the general information about the data acquisition system which was recently created at the MASHA setup (Flerov laboratory of nuclear reactions at Joint institute for nuclear research) are presented. The main difference from the previous system is that we use a new modern platform, National Instruments PXI with XIA multichannel high-speed digitizers (250 MHz 12 bit 16 channels). At this moment system has 448 spectrometric channels. The software and its features for the data acquisition and analysis are also described. The new DAQ system expands precision measuring capabilities of alpha decays and spontaneous fission at the focal plane position-sensitive silicon strip detector which, in turn, increases the capabilities of the setup in such a field as low-yield registration of elements.

  17. Data acquisition system for the focal-plane detector of the mass separator MASHA

    International Nuclear Information System (INIS)

    Novoselov, A.S.; Rodin, A.M.; Podshibyakin, A.V.; Belozerov, A.V.; Vedeneyev, V.Yu.; Gulyaev, A.V.; Gulyaeva, A.V.; Salamatin, V.S.; Stepantsov, S.V.; Chernysheva, E.V.; Yukhimchuk, S.A.; Komarov, A.B.; Motycak, S.; Krupa, L.; Kliman, J.; Kamas, D.

    2016-01-01

    The results of the development and the general information about the data acquisition system which was recently created at the MASHA setup (Flerov Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research) are presented. The main difference from the previous system is that we use a new modern platform, National Instruments PXI with XIA multichannel high-speed digitizers (250 MHz 12 bit 16 channels). At this moment the system has 448 spectrometric channels. The software and its features for the data acquisition and analysis are also described. The new DAQ system expands precision measuring capabilities of alpha decays and spontaneous fission at the focal-plane position-sensitive silicon strip detector which, in turn, increases the capabilities of the setup in such a field as low-yield registration of elements.

  18. The effect of drainage channels on the hydrodynamic drag of non-colloidal spheres down an inclined plane

    Science.gov (United States)

    Ryu, Brian; Dhong, Charles; Frechette, Joelle

    While it is well known that surface asperities and roughness alter the hydrodynamic drag of a non-colloidal sphere down an inclined plane, less is known about how the hydrodynamic drag is modified if the asperities and roughness are connected through a network of drainage channels, which allows the movement of fluid between asperities. We investigate the rotational and translation motion of spheres on several pairs of surfaces that have the same porosity and asperity size, but one surface has interconnected drainage channels whereas the other does not. These can have direct relevance to lubricated surfaces such as ball bearings in industrial settings, or biological relevance of leucocyte movement across rough surfaces. Provost's Undergraduate Research Awards, Office of Naval Research, National Science Foundation.

  19. The energy-release rate and “self-force” of dynamically expanding spherical and plane inclusion boundaries with dilatational eigenstrain

    Science.gov (United States)

    Markenscoff, Xanthippi; Ni, Luqun

    2010-01-01

    In the context of the linear theory of elasticity with eigenstrains, the radiated field including inertia effects of a spherical inclusion with dilatational eigenstrain radially expanding is obtained on the basis of the dynamic Green's function, and one of the half-space inclusion boundary (with dilatational eigenstrain) moving from rest in general subsonic motion is obtained by a limiting process from the spherically expanding inclusion as the radius tends to infinity while the eigenstrain remains constrained, and this is the minimum energy solution. The global energy-release rate required to move the plane inclusion boundary and to create an incremental region of eigenstrain is defined analogously to the one for moving cracks and dislocations and represents the mechanical rate of work needed to be provide for the expansion of the inclusion. The calculated value, which is the "self-force" of the expanding inclusion, has a static component plus a dynamic one depending only on the current value of the velocity, while in the case of the spherical boundary, there is an additional contribution accounting for the jump in the strain at the farthest part at the back of the inclusion having the time to reach the front boundary, thus making the dynamic "self-force" history dependent.

  20. Deflection of GeV particle beams by channeling in bent crystal planes of constant curvature

    International Nuclear Information System (INIS)

    Forster, J.S.; Hatton, H.; Toone, R.J.

    1989-01-01

    The deflection of charged particle beams moving within the (110) planes of a 43 mm long silicon crystal has been observed for momenta from 60 to 200 GeV/c. The crystal was bent by a 10.8 μm thick coating of ZnO along the central 26 mm of the crystal. Measurements were made with the crystal at room temperature, where a total deflection of 32.5 mrad was observed, and with the crystal cooled to -145 o C, where a 30.9 mrad deflection was observed. The ratio of the number of particles that dechannel upon entering the bend to the number of initially channeled particles compares well with calculations based on the continuum model. (author)

  1. Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling

    International Nuclear Information System (INIS)

    Yue Xueqing; Li Liang; Zhang Ruijun; Zhang Fucheng

    2009-01-01

    Two expanded graphites (EG), marked as EG-1 and EG-2, were prepared by rapid heating of expandable graphite to 600 and 1000 deg. C, respectively, and ball milled in a high-energy mill (planetary-type) under air atmosphere. The microstructure evolution of the ball-milled samples was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD analysis shows that the evolution degree of the average crystallite thickness along the c-axis (L c ) of EG-2 is lower than that of EG-1 during the milling process. From the HRTEM images of the samples after 100 h ball-milling, slightly curved graphene planes can be frequently observed both in the two EGs, however, EG-1 and EG-2 exhibit sharply curved graphene planes and smoothly curved graphene planes with high bending angles, respectively.

  2. Large-Eddy Simulation of Turbulent Flow and Heat Transfer in a Mildly Expanded Channel of IFMIF High Flux Test Module

    International Nuclear Information System (INIS)

    Shinji Ebara; Takehiko Yokomine; Akihiko Shimizu

    2006-01-01

    During irradiation test periods in the International Fusion Material Irradiation Facility (IFMIF), irradiated materials must be maintained at constant temperatures because irradiation characteristics of materials have a large dependency on temperature. In the high flux test module of the IFMIF, required performances for temperature control using gas-cooling and heater-heating are especially stringent because available space for temperature control is remarkably restricted due to very small irradiation volume of about 0.5 l. We proposed an alternative design of the test module with advantages of temperature monitoring and temperature uniformity in specimens. This design employs a rectangular duct as the vessel to pack capsules housing specimens compactly into the small irradiation volume. In the vessel the coolant flows between the capsules and vessel wall. In the basic design, both thickness of a vessel wall and a width of cooling channel are considered as 1.0 mm. Since inside the vessel gaseous helium of several atmospheric pressure flows as a coolant and a low vacuum environment is kept outside the vessel for safety requirements and thermal stress is foreseen to appear due to nuclear heating of the vessel itself, the vessel wall is considered to deform readily and this leads expansion of the cooling channels. It is also considered that a slight expansion of the vessel can have severe influence on the cooling performance due to the initial narrow channel width of 1.0 mm. Therefore, it is necessary to estimate cooling performances for the coolant flowing in the deformed channel. We conduct a finite element analysis of turbulent heat transfer in a mildly expanded channel using large-eddy simulation in this study. In a numerical system, fluid is enclosed by three-dimensionally expanded vessel wall and flat capsule wall, and flows into the system with a fully developed velocity profile. In this study, we focus not only on the cooling performances but also on change in

  3. Study the Z-Plane Strip Capacitance

    International Nuclear Information System (INIS)

    Parikh, H.; Swain, S.

    2005-01-01

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate (φ coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m 2 ) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints

  4. Expanded GDoF-optimality Regime of Treating Interference as Noise in the $M\\times 2$ X-Channel

    KAUST Repository

    Gherekhloo, Soheil

    2016-11-14

    Treating interference as noise (TIN) as the most appropriate approach in dealing with interference and the conditions on its optimality has attracted the interest of researchers recently. However, our knowledge on necessary and sufficient conditions of TIN is restricted to a few setups with limited number of users. In this paper, we study the optimality of TIN in terms of the generalized degrees of freedom (GDoF) for a fundamental network, namely, the M× 2 X-channel. To this end, the achievable GDoF of TIN with power allocations at the transmitters is studied. It turns out that the transmit power allocation maximizing the achievable GDOF is given by on-off signaling as long as the receivers use TIN. This leads to two variants of TIN, namely, P2P-TIN and 2-IC-TIN. While in the first variant the M× 2 X-channel is reduced to a point-to-point (P2P) channel, in the second variant, the setup is reduced to a two-user interference channel in which the receivers use TIN. The optimality of these two variants is studied separately. To this end, novel genie-aided upper bounds on the capacity of the X-channel are established. The conditions on the optimality of P2P-TIN can be summarized as follows. P2P-TIN is GDoF-optimal if there exists a dominant multiple access channel or a dominant broadcast channel embedded in the X channel. Furthermore, the necessary and sufficient conditions on the GDoF-optimality of 2-IC-TIN are presented. Interestingly, it turns out that operating the M× 2 X-channel in the 2-IC-TIN mode might be still GDOF optimal, although the conditions given by Geng et al. are violated. However, 2-IC-TIN is sub-optimal if there exists a single interferer which causes sufficiently strong interference at both receivers. The comparison of the results with the state of the art shows that the GDOF optimality of TIN is expanded significantldy.

  5. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    Science.gov (United States)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  6. Decreasing vortex flux in channels

    International Nuclear Information System (INIS)

    Migaj, V.K.; Nosova, I.S.

    1979-01-01

    A new method for reducing vortex flow losses in power plant channels is suggested. The method is based on vortex splitting in vortex flow areas with transverse barriers placed on the channel walls. The upper barrier ends are at the level of the upper boundary of the vortex area and don't protrude to the active flow beyond this boundary. The effectiveness of the method suggested is illustrated taking as an example the investigation of square and flat channels with abrupt widening in one plane, diffusers with widening in one plane, or a rectangualr bend. It is shown that splitting the vortex areas with transverse barriers in the channels results in reduction of hydraulic losses by 10-25%. The above method is characteristic of an extreme simplicity, its application doesn't require changes in the channel shape nor installation of any devices in the flow

  7. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    International Nuclear Information System (INIS)

    Wang Shuncai; Starink, Marco J.; Gao Nong; Qiao Xiaoguang; Xu Cheng; Langdon, Terence G.

    2008-01-01

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {1 1 1} and {0 0 1} shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss

  8. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  9. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons

    KAUST Repository

    Wang, Ning

    2018-02-15

    We report the direct characterization of coke information in the clearly resolved (0 1 0) and (1 0 0) planes of various anisotropic MFI zeolites using EELS techniques, in a model reaction of methanol to hydrocarbons. For the first time, we found that the main coke species varied between different planes and depended on the crystal structure. The coke species was graphite carbon and polyaromatic hydrocarbon over MFI nanosheets and MFI with b-axis length 60 nm, respectively. The diffusion of aromatics out of conventional MFI zeolites was found only through the straight channels, while small molecules randomly diffused through both channels, resulting in different coke deposition on the (0 1 0) plane and the (1 0 0) plane from different precursors. As all product molecules diffused only through the straight channels, the MFI nanosheet showed a distinct crystal-plane selective effect of coke deposition, in contrast to nearly uniform coke distribution throughout the entire external surface for conventional zeolites. This anisotropic diffusion behavior influenced the gaseous and liquid products significantly, providing deep insight into the MFI catalyst for the selective control of products via crystal structure.

  10. Bursting Events in Pressure Flushing with Expanding Bottom Outlet Channel within Dam Reservoir

    Directory of Open Access Journals (Sweden)

    soheila Tofighi

    2017-01-01

    scouring and sedimentation don’t take place there. By increasing the expansion size of the bottom outlet channel, the occurrence probability of sweep and ejections are increased and impact angle of moment force due to these events is decreased .So that at the place of the maximum depth of flushing cone, the probability of ejection in 10cm outlet channel is 0.39 and for 20 and 30cm outlet channels corresponds to 0.44 and 0.47, respectively . Conclusions: In this study, the effect of expansion of bottom outlet channel within reservoir and its statistical analysis of bursting events was investigated. Results showed that, expansion of bottom outlet channel within the reservoir has positive and tangible effects on the size of the flushing cone and quadrant analysis of bursting events showed that the occurrence probability of sweep and ejection are greater than other events in the bed of flushing cone. Also with increasing in the expanding size of outlet channel, occurrence probability of dominant events is increasing and impact angle of turbulent force is decreasing. In fact it can be said that, the factors that cause increased dimensions of the flushing cone with the expansion of the bottom outlet channel within the reservoir are the increase of the occurrence probability of sweep and ejection events and decrease of impact angle of turbulent force to these events.

  11. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Motion of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  13. A simulation study of antimatter-helium ion planar channeling in silicon

    International Nuclear Information System (INIS)

    Wijesundera, Dharshana; Jayarathna, Sandun; Bellwied, Rene; Chu, Wei-Kan

    2012-01-01

    With the physical significance arising with the reports on experimental observation of antimatter-He nuclei, we have investigated a case of 2 MeV antimatter-He ion planar channeling in Si (1 0 0) in comparison with He channeling, by simulation. For a negatively charged antimatter-He nucleus, the planar potential well is centered at the atomic plane itself as opposed to the center-channel minimum for He ions; the antimatter-He ion distribution therefore tends to concentrate toward the atomic lattice planes. The antimatter-He ion flux distribution and the resulting close encounter probability are crucial in determining the probability of close encounter events including annihilation at channeling incidence. We have therefore analyzed the variation of antimatter-He ion flux distribution within the channels with respect to the angle of incidence and have thereby derived the orientation dependence of probability of close encounter events, or an antimatter-He channeling angular scan. The angular scan is inverted with a maximum yield at the perfect beam-planar alignment. The half-angle is narrower compared to He channeling, as a consequence of the narrower planar channeling potential centered at the lattice planes. The high de-channeling rate associated with the higher antimatter-He ion concentration in the proximity of lattice planes causes the maximum yield to be less prominent and to decrease rapidly with depth. The shoulder region shows strong depth dependent reduction that can be associated to near surface depth dependent ion flux variation.

  14. Channel flow structure measurements using particle image velocimetry

    International Nuclear Information System (INIS)

    Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan

    1996-01-01

    Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory

  15. Radiation from 39 and 45 MEV electrons channeled in lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Diedrich, E.; Kufner, W.; Buschhorn, G. (Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany). Werner-Heisenberg-Inst. fuer Physik)

    1991-12-01

    Channeling radiation from 39 and 45 MeV electrons channeled along the (0001) axis, the (0110) plane and the (1210) plane of a 30 {mu}m thick LiNbO{sub 3} crystal has been measured. Calculations of the planar crystal potentials were performed by means of the many-beam formalism. Good agreement between theory and experiment is obtained for the planar channeling radiation. Associated with channeling, additional radiation lines have been observed, which may be explained by a periodic perturbation of the continuum potential. (author).

  16. Gravitational instantons and separation of an expanding Universe

    International Nuclear Information System (INIS)

    Rubakov, V.A.; Tinyakov, P.G.

    1988-01-01

    Instanton, describing the separation of closed small-size classically inflating Universe from the plane Universe, was found in the model of gravitational field, interacting with matter fields. Existence of such instantons provides the possibility of expanding Universe self-birth

  17. A finite range coupled channel Born approximation code

    International Nuclear Information System (INIS)

    Nagel, P.; Koshel, R.D.

    1978-01-01

    The computer code OUKID calculates differential cross sections for direct transfer nuclear reactions in which multistep processes, arising from strongly coupled inelastic states in both the target and residual nuclei, are possible. The code is designed for heavy ion reactions where full finite range and recoil effects are important. Distorted wave functions for the elastic and inelastic scattering are calculated by solving sets of coupled differential equations using a Matrix Numerov integration procedure. These wave functions are then expanded into bases of spherical Bessel functions by the plane-wave expansion method. This approach allows the six-dimensional integrals for the transition amplitude to be reduced to products of two one-dimensional integrals. Thus, the inelastic scattering is treated in a coupled channel formalism while the transfer process is treated in a finite range born approximation formalism. (Auth.)

  18. Procedure for the direct numerical simulation of turbulent flows in plane channels and annuli and its application in the development of turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U

    1973-10-01

    Thesis. Submitted to Technische Hochschule, Karlsruhe (West Germany). A numerical difference scheme is described to simulate threedimensional, time- dependent, turbulent flows of incompressible fluids at high Reynolds numbers in a plane channel and in concertric annuli. Starting from the results of Deardorff, the NavierStokes equations, averaged over grid volumes, are integrated. For description of the subgrid scale motion a novel model has been developed which takes into account strongly inhomogeneous turbulence and grid volumes of unequal side lengths. The premises used in the model are described and discussed. Stability criteria are established for this method and for similar difference schemes. For computation of the pressure field the appropriate Poisson's equation is solved accurately, except for rounding errors, by Fast Fourier Transform. The procedure implemented in the TURBIT-1 program is used to simulate turbulent flows in a plane channel and an annulus of 5: 1 ratio of radii. For both types of flow, different cases are realized with a maximum number of grid volumes of 65536. For rather small grid volume numbers the numerical results are in good agreement with experimental values. Especially the velocity profile and the mean velocity fluctuations are computed with significantly better accuracy than in earlier, direct simulations. The energy --length-scale model and the pressurestrain correlation are used as examples to show that the method may be used successfully to evaluate the parameters of turbulence models. Earlier results are reviewed and proposals for future research are made. (auth)

  19. Potential information and stopping power from channeling in diamond

    International Nuclear Information System (INIS)

    Edge, R.D.; Derry, J.E.; Fearick, R.W.; Sellschop, J.P.F.

    1983-01-01

    When a carefully cleaned diamond crystal was bombarded with helium nuclei parallel to a low index plane, up to seven peaks in the energy spectrum of backscattered ions were seen. These arose from particles oscillating to and fro across the channel as they progressed along it. Spectra taken with ions incident in different directions in the same plane allowed both the wavelengths of the oscillations in the channel, lambda, and the stopping power within the channel to be obtained. The character of the oscillations changed as the beam deviated from exact alignment with the channel, giving the highest maximum at an angle /psi/ /SUB m/ to the channel. Calculations based on those of Barrett employing lambda, /psi/ /SUB m/, and the stopping power showed a smoother potential for the (111) planar channel, which has a larger spacing, than (100) and (110). The energy dependence of the stopping power and oscillation wavelength was also determined from 0.2 to 1.2 MeV for the (110) planar channel

  20. Transparency in stereopsis: parallel encoding of overlapping depth planes.

    Science.gov (United States)

    Reeves, Adam; Lynch, David

    2017-08-01

    We report that after extensive training, expert adults can accurately report the number, up to six, of transparent overlapping depth planes portrayed by brief (400 ms or 200 ms) random-element stereoscopic displays, and can well discriminate six from seven planes. Naïve subjects did poorly above three planes. Displays contained seven rows of 12 randomly located ×'s or +'s; jittering the disparities and number in each row to remove spurious cues had little effect on accuracy. Removing the central 3° of the 10° display to eliminate foveal vision hardly reduced the number of reportable planes. Experts could report how many of six planes contained +'s when the remainder contained ×'s, and most learned to report up to six planes in reverse contrast (left eye white +'s; right eye black +'s). Long-term training allowed some experts to reach eight depth planes. Results suggest that adult stereoscopic vision can learn to distinguish the outputs of six or more statistically independent, contrast-insensitive, narrowly tuned, asymmetric disparity channels in parallel.

  1. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  2. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface

    International Nuclear Information System (INIS)

    Baksht, E. Kh.; Blinova, O. M.; Erofeev, M. V.; Karelin, V. I.; Ripenko, V. S.; Tarasenko, V. F.; Trenkin, A. A.; Shibitov, Yu. M.; Shulepov, M. A.

    2016-01-01

    The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure of autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.

  3. On motions of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, Grigory; Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    A mechanical system consisting of a carrier and a load is considered. The load can move respectively to the carrier according to a predetermined motion law. The carrier can move translationally along a rectilinear trajectory on a rough inclined plane. The trajectory is the line of the greatest descent. The axis of the rectilinear channel, along which the load moves, is located in a vertical plane passing through the trajectory of the carrier. The Coulomb dry friction model is applied for simulation the forces of resistance to the motion of the carrier from the side of the underlying inclined plane. The extreme value of plane inclination angle at which the carrier is at rest, when the load is stationary, is obtained by taking into account the frictional forces of sliding at rest. Differential equations of motion of a carrier with a load moving with respect to the carrier are obtained taking into account the requirement of motion of the carrier along an inclined plane without detachment. The determining relationships are given which made it possible to classify the types of carrier motion when the channel setting angle and the plane inclination angle are related by a certain inequality. The results of computational experiments are presented.

  4. Electrodisintegration of relativistic nuclei by a periodic crystal field in channeling

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Vorob'ev, S.A.

    1981-01-01

    Processes on channeled relativistic nuclei with transition into a continuous spectrum (electrodisintegration of nuclei with emission of neutron, proton, photon and etc.) are considered. A case of plane channeling is considered. The equivalent photon method is used for calculating the disintegration cross section. The beryllium disintegration cross section in the system of tungsten crystal (100) planes is calculated. At the γ=10 2 Lorentz factor the cross section value is 5.27 mb. The process considered is of interest from the viewpoint of production of monoenergy neutrons of high energies and γ quanta of excited nuclei. The channeling effect gives the possibility to study electromagnetic interactions of relativistic nuclei under suppre--ssion conditions of the nuclear interaction channel [ru

  5. Channeling experiment

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  6. Out-of-plane strain effect on silicon-based flexible FinFETs

    KAUST Repository

    Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2015-01-01

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  7. Out-of-plane strain effect on silicon-based flexible FinFETs

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-21

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  8. Pre-experiment testing of the Multi Channel Systems 16-channel preamplifier CPA16

    International Nuclear Information System (INIS)

    Patin, J B; Stoyer, M A; Moody, K J; Friensehner, A V

    2003-01-01

    The 16-channel preamplifier model CPA16 from Multi Channel Systems was studied. The CPA16 preamplifier/amplifier module is a candidate to be used as the preamplifiers and amplifiers for the focal plane detectors of the Mass Analyzer of Super Heavy Atoms (MASHA). The equipment used to test the CPA16, the results of testing the CPA16 with a pulser, a mixed 229 Th/ 148 Gd source and a 252 Cf source, and a summary of the results will be presented

  9. Channeling of molecular ions with relativistic energy

    International Nuclear Information System (INIS)

    Azuma, Toshiyuki; Muranaka, Tomoko; Kondo, Chikara; Hatakeyama, Atsushi; Komaki, Kenichiro; Yamazaki, Yasunori; Takabayashi, Yuichi; Murakami, Takeshi; Takada, Eiichi

    2003-01-01

    When energetic ions are injected into a single crystal parallel to a crystal axis or plane, they proceed in an open space guided by the crystal potential without colliding with atoms in the atomic plane or string, which is called channeling. We aimed to study dynamics of molecular ions, H 2 + , of 160 MeV/u and their fragment ions, H + ions in a Si crystal under the channeling condition. The molecular ions, H 2 + , are soon ionized, i.e. electron-stripped in the crystal, and a pair of bare nuclei, H + ions, travels in the crystal potential with mutual Coulomb repulsion. We developed a 2D position sensitive detector for the angular-distribution measurement of the H + ions transmitted through the crystal, and observed the detailed angular distribution. In addition we measured the case of H + on incidence for comparison. As a result, the channeled component and non-channeling were clearly separated. The incident angular divergence is critical to discuss the effect of Coulomb explosion of molecular H 2 + ions. (author)

  10. Near infrared focal plane for the ISOCAM camera

    International Nuclear Information System (INIS)

    Epstein, G.; Stefanovitch, D.; Tiphene, D.; Carpentier, Y.; Lorans, D.

    1988-01-01

    ISOCAM is one of the science instruments in the Infrared Space Observatory. It is a 2-channel IR Astronomical Imager intended to observe at very low flux levels, thanks to the use of a liquid helium cooled telescope. This paper describes the Focal Plane Assembly design of the short wavelength channel. The operation of a 32 x 32 InSb CID-SAT array detector has been demonstrated. The problems encountered in the design of the cooled electronics and the component selection process are discussed in the light of specific ISO constraints, such as thermal control and radiation shielding. 6 references

  11. Radiation from channeled positrons in a hypersonic wave field

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Gasparyan, R.A.; Gabrielyan, R.G.

    1987-01-01

    The radiation emitted by channeled positrons in a longitudinal or transverse standing hypersonic wave field is considered. In the case of plane channeling the spectral distribution of the radiation intensity is shown to be of a resonance nature depending on the hypersound frequency

  12. In-plane wavelength division de-multiplexing using photonic crystals

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Harpøth, Anders; Hede, K. K.

    We demonstrate a novel concept for in-plane coarse wavelength division de-multiplexing in integrated photonic circuits utilizing planar photonic crystal waveguides (PhCWs) fabricated in a silicon-on-insulator material. The filtering of wavelength channels is realized by shifting the cut......-off frequency of the fundamental photonic bandgap mode. The shift is obtained by modifying the size of the border holes in consecutive sections of the PhCW1. Simulations and experimental proof-of-principle of the four-channel de-multiplexer will be presented. 1A. Adibi et al., Electron. Lett. 36, 1376...

  13. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    International Nuclear Information System (INIS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-01-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool. (paper)

  14. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    Science.gov (United States)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  15. In-plane silicon probes for simultaneous neural recording and drug delivery

    International Nuclear Information System (INIS)

    Seidl, K; Herwik, S; Paul, O; Ruther, P; Spieth, S; Zengerle, R; Steigert, J

    2010-01-01

    This paper reports on the design, fabrication and characterization of silicon-based microprobes for simultaneous neural recording and drug delivery. The fabrication technology is based on two-stage deep reactive ion etching combined with silicon wafer bonding and grinding to realize channel structures integrated in needle-like probe shafts. Liquids can be supplied to microfluidic devices via in-plane and out-of-plane ports. The liquid is dispensed at circular out-of-plane ports with a diameter of 25 µm and rectangular in-plane ports with dimensions of 50 × 50 µm 2 . Two-shaft probes with a pitch between shafts of 1.0 and 1.5 mm were realized. The probe shafts have a length of 8 mm and rectangular cross-sections of w × h (w = 250 µm and h = 200 or 250 µm). Each shaft contains one or two fluidic channels with a cross-section of 50 × 50 µm 2 . In addition, each probe shaft comprises four recording sites with diameters of 20 µm close to the outlet ports. Mechanical and fluidic characterization demonstrated the functionality of the probes. Typical infusion rates of 1.5 µL min −1 are achieved at a differential pressure of 1 kPa. The Pt-gray electrodes have an average electrode impedance of 260 ± 59 kΩ at 1 kHz

  16. Experimental research on velocity distribution in narrow slots of plane type reactor fuel

    International Nuclear Information System (INIS)

    Qu Xinxing; Zhang Youjie; Jia Haijun; Jiang Shengyao; Bo Hanliang; Min Gang

    2003-01-01

    The experimental research on velocity distribution in multiple parallel narrow channels formed by fuel plane of assembly is carried out under various Re and the water without ions as fluid in testing loop. The experimental results show that under various Re within a channel the velocity in the middle area is high and the velocity in the edge of channel decreases rapidly to zero, and the velocity is symmetrically distributed along the central line, thus the velocity distribution within a channel is like a trapezium. While in parallel channels the velocity of the middle channel is low and the velocity of the channel close to the edge is high, it is supposed to be caused by the inlet structure of channels, this concave distribution is a disadvantage to the even distribution of reactor flux

  17. Channeling effect for low energy ion implantation in Si

    International Nuclear Information System (INIS)

    Cho, K.; Allen, W.R.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.

    1985-01-01

    Ion implantation is one of the most important processes in semiconductor device fabrication. Due to the crystalline nature of Si, channeling of implanted ions occurs during this process. Modern devices become smaller and shallower and therefore require ion implantation at lower energies. The effect of channeling on ion implantation becomes a significant problem for low energy ion implantation. The critical angle for axial and planar channeling increases with decreasing energy. This corresponds to an increased probability for channeling with lowering of ion energy. The industry approach to avoid the channeling problem is to employ a tilt angle of 7 0 between the ion implantation direction and the surface normal. We approach the problem by mapping major crystalline axes and planes near the [100] surface normal. Our analysis indicates that a 7 0 tilt is not an optimum selection in channeling reduction. Tilt angles in the range 5 0 to 6 0 combined with 7 0 +- 0.5 0 rotation from the (100) plane are better selections for the reduction of the channeling effect. The range of suitable angles is a function of the implantation energy. Implantations of boron along well specified crystallographic directions have been carried out by careful alignment and the resulting boron profiles measured by SIMS. (orig.)

  18. Painful Na-channelopathies: an expanding universe.

    Science.gov (United States)

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Channel One Online: Advertising Not Educating.

    Science.gov (United States)

    Pasnik, Shelley

    Rather than viewing Channel One's World Wide Web site as an authentic news bureau, as the organization claims, it is better understood as an advertising delivery system. The web site is an attempt to expand Channel One's reach into schools, taking advantage of unsuspecting teachers and students who might fall prey to spurious claims. This paper…

  20. Simulation of Guided Wave Interaction with In-Plane Fiber Waviness

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  1. A Single-Element Plane Grating Monochromator

    Directory of Open Access Journals (Sweden)

    Michael C. Hettrick

    2016-01-01

    Full Text Available Concerted rotations of a self-focused varied line-space diffraction grating about its groove axis and surface normal define a new geometric class of monochromator. Defocusing is canceled, while the scanned wavelength is reinforced at fixed conjugate distances and horizontal deviation angle. This enables high spectral resolution over a wide band, and is of particular advantage at grazing reflection angles. A new, rigorous light-path formulation employs non-paraxial reference points to isolate the lateral ray aberrations, with those of power-sum ≤ 3 explicitly expanded for a plane grating. Each of these 14 Fermat equations agrees precisely with the value extracted from numerical raytrace simulations. An example soft X-ray design (6° deviation angle and 2 × 4 mrad aperture attains a resolving power > 25 , 000 over a three octave scan range. The proposed rotation scheme is not limited to plane surfaces or monochromators, providing a new degree of freedom in optical design.

  2. Study on the Influence of the Refinement of a 3-D Finite Element Mesh in Springback Evaluation of Plane-Strain Channel Sections

    International Nuclear Information System (INIS)

    Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Menezes, L. F.; Alves, J. L.

    2007-01-01

    Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the 'Numisheet'05 Benchmark no. 3', which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is

  3. Open-channel effects on heavy-quarkonium spectra: a phenomenological study within a one-open-channel approximation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kato, K.; Yabusaki, N.; Hirano, M.; Nakanishi, R.; Sakai, M.

    1997-01-01

    Open-channel effects on charmonium (S- and D-waves) and bottomonium (S-wave) J P = 1 - spectra are investigated within a one-open-channel approximation. Mass shifts and decay widths of these states just above the threshold are obtained by taking into account a coupling between confined quarkonium states and decaying states of the open channel. The final-state interaction (FSI) between the decaying meson and antimeson plays a very important role in producing a reasonable magnitude of coupling; the FSI provides the open-channel poles (R 1 , R 2 ) at the appropriate positions on the complex energy plane. The result is found to be independent of the detailed form of the transition potential and the final-state interaction. (author)

  4. Gravitational Couplings for Gop-Planes and y-Op-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.

  5. Investigation of quantum states of fast electrons under planar channeling in silicon crystals

    International Nuclear Information System (INIS)

    Gridnev, V.I.; Kaplin, V.V.; Khlabutin, V.G.; Rozum, E.I.; Vorobiev, S.A.

    1987-01-01

    The angular distributions of (1.87 to 5.7) MeV electrons channeled in 2 μm Si crystals along (100), (110), and (111) atomic planes are measured. The half-width of measured angular distributions is defined by a critical Lindhard angle. A relation is obtained connecting those energies of electrons at which their angular distributions are similar for various atomic planes. The effect of a 'critical energy' under planar channeling of electrons is found and investigated. (author)

  6. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  7. Characterisation of minimal-span plane Couette turbulence with pressure gradients

    Science.gov (United States)

    Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio

    2018-04-01

    The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.

  8. Structure of conducting channel of lightning

    International Nuclear Information System (INIS)

    Alanakyan, Yu. R.

    2013-01-01

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case, the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior

  9. Dual Connectivity in LTE HetNets with Split Control- and User-Plane

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; López-Pérez, David; Kucera, Stepan

    2013-01-01

    a detailed description of our dual connectivity framework based on the latest LTE-Advanced enhancements, in which macrocellassisted (MA) small cells use different channel state informationreference signals (CSI-RS) to differentiate among each other and allow User Equipment (UE) to take adequate measurements......Recently, a new network architecture with split control-plane and user-plane has been proposed and gained a lot of momentum in the standardisation of Long Term Evolution (LTE) Release 12. In this new network architecture, the controlplane, which transmits system information and handles user...

  10. CFD thermal-hydraulic analysis of a CANDU fuel channel

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)

  11. Channel Modelling for Multiprobe Over-the-Air MIMO Testing

    Directory of Open Access Journals (Sweden)

    Pekka Kyösti

    2012-01-01

    a fading emulator, an anechoic chamber, and multiple probes. Creation of a propagation environment inside an anechoic chamber requires unconventional radio channel modelling, namely, a specific mapping of the original models onto the probe antennas. We introduce two novel methods to generate fading emulator channel coefficients; the prefaded signals synthesis and the plane wave synthesis. To verify both methods we present a set of simulation results. We also show that the geometric description is a prerequisite for the original channel model.

  12. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    International Nuclear Information System (INIS)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle–Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation

  13. Backscattering study and theoretical investigation of planar channeling processes. I. Experimental results

    International Nuclear Information System (INIS)

    Abel, F.; Amsel, G.; Bruneaux, M.; Cohen, C.; L'Hoir, A.

    1975-01-01

    Backscattering experiments in planar channeling have been performed on iron single crystals with 1.9-MeV 4 He beams; these conditions having been chosen for optimal study of the structure of the spectra. Both for the (110) and (100) planes five equally spaced yield maxima are clearly resolved, the maxima damping out at lower energies. Spectra were also registered at various angles of incidence phi 0 with respect to the planes. Yield maxima are observed up to values of phi 0 twice the half-width at half-minimum psi 1 / 2 of an angular scan across the plane psi 1 / 2 =18' for the (110) plane. Except for the first two peaks, these maxima have the same spacing as in the aligned spectrum. They appear to be due to particles belonging to a well-defined transverse energy interval. The mean stopping power for these particles is close to the random stopping power and the mean half-wavelength of their oscillating trajectories in the planar channels calculated from the results is lambda=380 A for the (110) plane and lambda=320 A for the (100) plane. For phi 0 >1.2psi 1 / 2 , the yield on the first maximum is greater than the random yield, reaching approx.1.6 times the latter for 1.4psi 1 / 2 0 1 / 2 . The shoulder effect in the angular scans, as observed for various depths, is clearly related to the yield maxima and hence depends strongly on the position and width of the depth interval chosen. The meaning and validity of the assumption of statistical equilibrium for planar channeled particles are discussed in light of the results

  14. The challenges in using UAV and plane imagery to quantify channel change in sandy braided rivers

    Science.gov (United States)

    Strick, Robert; Ashworth, Philip; Best, James; Lane, Stuart; Nicholas, Andrew; Parsons, Daniel; Sambrook Smith, Gregory; Simpson, Christopher; Unsworth, Christopher

    2017-04-01

    The development of numerical models of river morpho-dynamics is hampered by the lack of high-resolution data at multiple time and space scales for model validation. Such data are especially challenging to obtain for sand-bed braided rivers that typically have multiple channels of varying depth and contain rapidly migrating low-relief bar-lobes and dunes. This paper reports on the efforts to meet these challenges using repeat UAV surveys and plane sorties to quantify morphological change and bedform migration rates along the South Saskatchewan River, Canada. The South Saskatchewan River, near Outlook (SK Province) is 600 m wide with very well sorted medium sand (D50 = 0.3 mm) and negligible clay. The Gardiner Dam, 20 km upstream of the study reach, traps much of the very fine sediment so that the waters are clear at low flow and therefore the river bed is entirely visible. Fieldwork campaigns in 2015 and 2016 captured: (i) 1:5000 aerial colour photographs over a 17.5 km reach; (ii) high temporal frequency repeat imagery, obtained using quadcopter and fixed-wing UAV platforms for multiple 100 x 500 m sub-reaches. Plane images were processed via Structure from Motion (SfM) photogrammetric techniques using Pix4D and supporting ArcGIS and Global Mapper analysis. The resulting point cloud was corrected for tilt and filtered in MATLAB at multiple spatial scales to remove noise. Elevations in sub-aqueous zones were obtained using a statistical model, relating image brightness to water depth, developed using single beam echo-sounder data collected near to the flight time. The final DSM for the plane imagery combines these two methods and has a 0.5 m spatial resolution with vertical accuracy of 6 cm. UAV imagery is also processed using Pix4D with application of a diffraction water depth correction, required due to the lower flight height, and gives a resulting vertical accuracy of 2 cm. Initial results highlight the following issues: (i) there are a series of technical

  15. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, Gerald; Meinke, Rainer; Senti, Mark

    2018-03-06

    A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface of second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.

  16. Expanded-bed chromatography in primary protein purification.

    Science.gov (United States)

    Anspach, F B; Curbelo, D; Hartmann, R; Garke, G; Deckwer, W D

    1999-12-31

    Chromatography in stable expanded beds enables proteins to be recovered directly from cultivations of microorganisms or cells and preparations of disrupted cells, without the need for prior removal of suspended solids. The general performance of an expanded bed is comparable to a packed bed owing to reduced mixing of the adsorbent particles in the column. However, optimal operating conditions are more restricted than in a packed bed due to the dependence of bed expansion on the size and density of the adsorbent particles as well as the viscosity and density of the feedstock. The feedstock composition may become the most limiting restriction owing to interactions of adsorbent particles with cell surfaces, DNA and other substances, leading to their aggregation and consequently to bed instabilities and channeling. Despite these difficulties, expanded-bed chromatography has found widespread applications in the large scale purification of proteins from mammalian cell and microbial feedstocks in industrial bioprocessing. The basics and implementation of expanded-bed chromatography, its advantages as well as problems encountered in the use of this technique for the direct extraction of proteins from unclarified feedstocks are addressed.

  17. A channel multiplexing for the analog input channel of the advantech PCL-718 ADC-12 bit by using PCLD-889 programmable ampliplexer / multiplexer board have been done

    International Nuclear Information System (INIS)

    Sudiyanto; Aminus, S; Sujono, Djoko; Ngatinu; Sudaryanto; Wiyana, Badi

    1996-01-01

    A channel multiplexing for the analog input channels of the Advantech PCL-718 ADC-12 bit by using PCLD-889 programmable Amplifier / multiplexer board have been done. The experiments have been prepared by using Turbo-C software where every PCLD-889 board multiplexes 16 differential input channels into one analog output channel, up to 10 PCLD-889 can be cascaded to expand the analog input of PCL-718 ADC-12 bit to 8 x 16 channels

  18. Expandable antivibration bar for a steam generator

    International Nuclear Information System (INIS)

    Lagally, H.O.

    1986-01-01

    A steam generator tube support structure comprises expandable antivibration bars positioned between rows of tubes in the steam generator and attached to retaining rings surrounding the bundle of tubes. The antivibration bars have adjacent bar sections with mating surfaces formed as inclined planes which upon relative longitudinal motion between the upper and lower bars provides a means to increase the overall thickness across the structure to the required value. The bar section is retained against longitudinal movement in take-up assembly whereas the bar section is movable longitudinally by rotation of a nut. (author)

  19. CFD analyses of coolant channel flowfields

    Science.gov (United States)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  20. Reliability of twin-dependent triple junction distributions measured from a section plane

    International Nuclear Information System (INIS)

    Hardy, Graden B.; Field, David P.

    2016-01-01

    Numerous studies indicate polycrystalline triple junctions are independent microstructural features with distinct properties from their constituent grain boundaries. Despite the influence of triple junctions on material properties, it is impractical to characterize triple junctions on a large scale using current three-dimensional methods. This work demonstrates the ability to characterize twin-dependent triple junction distributions from a section plane by adopting a grain boundary plane stereology. The technique is validated through simulated distributions and simulated electron back-scatter diffraction (EBSD) data. Measures of validation and convergence are adopted to demonstrate the quantitative reliability of the technique as well as the convergence behavior of twin-dependent triple junction distributions. This technique expands the characterization power of EBSD and prepares the way for characterizing general triple junction distributions from a section plane. - Graphical abstract: The distribution of planes forming a triple junction with a given twin boundary is shown partially in the stereographic projections below from a given projection. The plot on the left shows the ideal/measured distribution and the plot on the right shows the distribution obtained from the stereological method presented here.

  1. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  2. Control of in-plane texture of body centered cubic metal thin films

    International Nuclear Information System (INIS)

    Harper, J.M.; Rodbell, K.P.; Colgan, E.G.; Hammond, R.H.

    1997-01-01

    We show that dramatically different in-plane textures can be produced in body centered cubic (bcc) metal thin films deposited on amorphous substrates under different deposition conditions. The crystallographic orientation distribution of polycrystalline bcc metal thin films on amorphous substrates often has a strong left-angle 110 right-angle fiber texture, indicating that {110} planes are parallel to the substrate plane. When deposition takes place under bombardment by energetic ions or atoms at an off-normal angle of incidence, the left-angle 110 right-angle fiber texture develops an in-plane texture, indicating nonrandom azimuthal orientations of the crystallites. Three orientations in Nb films have been observed under different deposition geometries, in which the energetic particle flux coincides with channeling directions in the bcc crystal structure. In-plane orientations in Mo films have also been obtained in magnetron sputtering systems with various configurations. These are described, and an example is given in which the in-plane orientation of Mo films deposited in two different in-line magnetron sputtering systems differs by a 90 degree rotation. In these two cases, there is a strong left-angle 110 right-angle fiber texture, but the in-plane left-angle 100 right-angle direction is oriented parallel to the scan direction in one system, and perpendicular to the scan direction in the other system. The conditions which produce such different in-plane textures in two apparently similar sputtering systems are discussed. copyright 1997 American Institute of Physics

  3. Self-expanding/shrinking structures by 4D printing

    Science.gov (United States)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2016-10-01

    The aim of this paper is to create adaptive structures capable of self-expanding and self-shrinking by means of four-dimensional printing technology. An actuator unit is designed and fabricated directly by printing fibers of shape memory polymers (SMPs) in flexible beams with different arrangements. Experiments are conducted to determine thermo-mechanical material properties of the fabricated part revealing that the printing process introduced a strong anisotropy into the printed parts. The feasibility of the actuator unit with self-expanding and self-shrinking features is demonstrated experimentally. A phenomenological constitutive model together with analytical closed-form solutions are developed to replicate thermo-mechanical behaviors of SMPs. Governing equations of equilibrium are developed for printed structures based on the non-linear Green-Lagrange strain tensor and solved implementing a finite element method along with an iterative incremental Newton-Raphson scheme. The material-structural model is then applied to digitally design and print SMP adaptive lattices in planar and tubular shapes comprising a periodic arrangement of SMP actuator units that expand and then recover their original shape automatically. Numerical and experimental results reveal that the proposed planar lattice as meta-materials can be employed for plane actuators with self-expanding/shrinking features or as structural switches providing two different dynamic characteristics. It is also shown that the proposed tubular lattice with a self-expanding/shrinking mechanism can serve as tubular stents and grippers for bio-medical or piping applications.

  4. Radiation dosimetry with plane-parallel ionization chambers: An international (IAEA) code of practice

    International Nuclear Information System (INIS)

    Andreo, P.

    1996-01-01

    Research on plane-parallel ionization chambers since the IAEA Code of Practice (TRS-277) was published in 1987 has expanded our knowledge on perturbation and other correction factors in ionization chamber dosimeter, and also constructional details of these chambers have been shown to be important. Different national organizations have published, or are in the process of publishing, recommendations on detailed procedures for the calibration and use of plane-parallel ionization chambers. An international working group was formed under the auspices of the IAEA, first to assess the status and validity of IAEA TRS-277, and second to develop an international Code of Practice for the calibration and use of plane-parallel ionization chambers in high-energy electron and photon beams. The purpose of this work is to describe the forthcoming Code of Practice. (author). 39 refs, 3 figs, 2 tabs

  5. Radiation dosimetry with plane-parallel ionization chambers: An international (IAEA) code of practice

    Energy Technology Data Exchange (ETDEWEB)

    Andreo, P [Lunds Hospital, Lund (Sweden). Radiophysics Dept.; Almond, P R [J.G. Brown Cancer Center, Univ. of Lousville, Lousville, KY (United States). Dept. of Radiation Oncology; Mattsson, O [Sahlgrenska Hospital, Gothenburg (Sweden). Dept. of Radiation Physics; Nahum, A E [Royal Marsden Hospital, Sutton (United Kingdom). Joint Dept. of Physics; Roos, M [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1996-08-01

    Research on plane-parallel ionization chambers since the IAEA Code of Practice (TRS-277) was published in 1987 has expanded our knowledge on perturbation and other correction factors in ionization chamber dosimeter, and also constructional details of these chambers have been shown to be important. Different national organizations have published, or are in the process of publishing, recommendations on detailed procedures for the calibration and use of plane-parallel ionization chambers. An international working group was formed under the auspices of the IAEA, first to assess the status and validity of IAEA TRS-277, and second to develop an international Code of Practice for the calibration and use of plane-parallel ionization chambers in high-energy electron and photon beams. The purpose of this work is to describe the forthcoming Code of Practice. (author). 39 refs, 3 figs, 2 tabs.

  6. Observation of diffraction effects in positron channeling

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Peng, J.P.; Lynn, K.G.; Wu, X.Y.; Schultz, P.J.

    1994-01-01

    An experimental investigation of positron channeling was made with a high-angular resolution apparatus, employing positrons of kinetic energy 1 MeV, derived from the Brookhaven National Laboratory Dynamitron. The pattern of transmission through a Si (100) single crystal of thickness 0.245 μm was investigated for a number of major planes. The authors have observed for the first time, in excellent detail, the fine structure of the channeling pattern expected to arise from the particle diffraction effects, theoretically explainable in terms of the quantum-mechanical many-beam calculations

  7. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  8. The Orange Juice Distribution Channel: Some Characteristics ...

    African Journals Online (AJOL)

    The fruit juice market is growing for several years, and will be continuing to expand, ... Several changes are taking place in the fruit juice distribution channels ... using the strategic SWOT (strong and weak points, opportunities and threats) ...

  9. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    Science.gov (United States)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  10. Metal-core pad-plane development for ACTAR TPC

    Science.gov (United States)

    Giovinazzo, J.; Pibernat, J.; Goigoux, T.; de Oliveira, R.; Grinyer, G. F.; Huss, C.; Mauss, B.; Pancin, J.; Pedroza, J. L.; Rebii, A.; Roger, T.; Rosier, P.; Saillant, F.; Wittwer, G.

    2018-06-01

    With the recent development of active targets and time projection chambers (ACTAR TPC) as detectors for fundamental nuclear physics experiments, the need arose for charge collection planes with a high density of readout channels. In order to fulfill the mechanical constraints for the ACTAR TPC device, we designed a pad-plane based on a metal-core circuit with an conceptually simple design and routing for signal readout, named FAKIR (in reference to a fakir bed of nails). A test circuit has been equipped with a micro mesh gaseous structure (micromegas) for signal amplification and a dedicated readout electronics. Test measurements have been performed with an 55Fe X-ray source giving an intrinsic energy resolution (FWHM) of 22 ± 1% at 5 . 9 keV, and with a 3-alpha source for which a resolution of about 130 ± 20 keV at 4 . 8 MeV has been estimated. The pad-plane has been mounted into a reduced size demonstrator version of the ACTAR TPC detector, in order to illustrate charged particle track reconstruction. The tests preformed with the X-ray and the 3-alpha sources shows that results obtained from pads signals are comparable to the intrinsic result from the micro-mesh signal. In addition, a simple alpha particle tracks analysis is performed to demonstrate that the pad plane allows a precise reconstruction of the direction and length of the trajectories.

  11. Yaw controller design of stratospheric airship based on phase plane method

    Directory of Open Access Journals (Sweden)

    Miao Jinggang

    2016-06-01

    Full Text Available Recently, stratospheric airships prefer to employ a vectored tail rotor or differential main propellers for the yaw control, rather than the control surfaces like common low-altitude airship. The load capacity of vectored mechanism and propellers are always limited by the weight and strength, which bring challenges for the attitude controller. In this paper, the yaw channel of airship dynamics is firstly rewritten as a simplified two-order dynamics equation and the dynamic characteristics is analyzed with a phase plane method. Analysis shows that when ignoring damping, the yaw control channel is available to the minimum principle of Pontryagin for optimal control, which can obtain a Bang–Bang controller. But under this controller, the control output could be bouncing around the theoretical switch curve due to the presence of disturbance and damping, which makes adverse effects for the servo structure. Considering the structure requirements of actuators, a phase plane method controller is employed, with a dead zone surrounded by several phase switch curve. Thus, the controller outputs are limited to finite values. Finally, through the numerical simulation and actual flight experiment, the method is proved to be effective.

  12. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    Science.gov (United States)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  13. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-12-01

    Full Text Available For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneous data transmission through a satellite communicationchannel from many planes was investigated.

  14. Membrane oscillations in the channel of a stationary plasma motor

    International Nuclear Information System (INIS)

    Bugrova, A.I.; Lipatov, A.S.; Morozov, A.I.; Kharchevnikov, V.K.

    1999-01-01

    Results of measuring the ion flux density in the channel of the stationary plasma drive are presented. Two plane easters move both along and transverse to the plasma flux. During the experiment, the strong low-frequency oscillations (∼ 35 kHz) are observed in the channel of the stationary plasma drive. It is found that membrane oscillations are accompanied by oscillations of the electron temperature. These membrane oscillations affect the divergence of the output plasma jet and the erosion of the output part of the channel of the stationary plasma drive [ru

  15. Resonance properties of tidal channels with multiple retention basisn: role of adjacent sea

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, H.M.

    2015-01-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea

  16. One-dimensional analysis of plane and radial thin film flows including solid-body rotation

    Science.gov (United States)

    Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

    1989-01-01

    The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.

  17. Nearaffine planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we develop a theory for nearaffine planes analogous to the theory of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a characterization of a certain class of Minkowski planes.

  18. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    T. N. Wistisen

    2016-07-01

    Full Text Available We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111 plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5, and 14.0 GeV with a crystal with bending radius of 0.15 m, corresponding to curvatures of 0.053, 0.066, 0.099, 0.16, and 0.22 times the critical curvature, respectively. Based on the parameters of fitting functions we have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission, and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  19. Slope failure of chalk channel margins

    DEFF Research Database (Denmark)

    Gale, A.; Anderskouv, Kresten; Surlyk, Finn

    2015-01-01

    provide evidence for recurring margin collapse of a long-lived Campanian channel. Compressionally deformed and thrust chalk hardgrounds are correlated to thicker, non-cemented chalk beds that form a broad, gentle anticline. These chalks represent a slump complex with a roll-over anticline of expanded, non......-cemented chalk in the head region and a culmination of condensed hardgrounds in the toe region. Observations strongly suggest that the slumping represents collapse of a channel margin. Farther northwards, the contemporaneous succession shows evidence of small-scale penecontemporaneous normal faulting towards...

  20. Identification of flow structures in fully developed canonical and wavy channels by means of modal decomposition techniques

    Science.gov (United States)

    Ghebali, Sacha; Garicano-Mena, Jesús; Ferrer, Esteban; Valero, Eusebio

    2018-04-01

    A Dynamic Mode Decomposition (DMD) of Direct Numerical Simulations (DNS) of fully developed channel flows is undertaken in order to study the main differences in flow features between a plane-channel flow and a passively “controlled” flow wherein the mean friction was reduced relative to the baseline by modifying the geometry in order to generate a streamwise-periodic spanwise pressure gradient, as is the case for an oblique wavy wall. The present analysis reports POD and DMD modes for the plane channel, jointly with the application of a sparsity-promoting method, as well as a reconstruction of the Reynolds shear stress with the dynamic modes. Additionally, a dynamic link between the streamwise velocity fluctuations and the friction on the wall is sought by means of a composite approach both in the plane and wavy cases. One of the DMD modes associated with the wavy-wall friction exhibits a meandering motion which was hardly identifiable on the instantaneous friction fluctuations.

  1. Performance of a compact detector package for the out-of-plane spectrometer system

    International Nuclear Information System (INIS)

    Zhou, Z.-L.; Sirca, S.; Boeglin, W.; Sarty, A.J.; Alarcon, R.; Beck, R.; Bernstein, A.; Bertozzi, W.; Botto, T.; Bourgeois, P.; Calarco, J.; Casagrande, F.; Chen, J.; Comfort, J.R.; Dale, D.; Distler, M.O.; Dodson, G.; Dolfini, S.; Dooley, A.; Dow, K.; Epstein, M.; Farkhondeh, M.; Georgakopoulos, S.; Gilad, S.; Hicks, R.; Holtrop, M.; Hotta, A.; Jiang, X.; Joo, K.; Jordan, D.; Kaloskamis, N.; Karabarbounis, A.; Kirkpatrick, J.; Kowalski, S.; Kunz, C.; Liyanage, N.; Mandeville, J.; Margaziotis, D.J.; McIlvain, T.; Mertz, C.; Milner, R.; Miskimen, R.; Nakagawa, I.; Papanicolas, C.N.; Pavan, M.; Peterson, G.; Ramirez, A.; Rowntree, D.; Sato, Y.; Shaw, J.; Six, E.; Sobczynski, S.; Soong, S.-B.; Sparveris, N.; Stave, S.; Stiliaris, S.; Tamae, T.; Tieger, D.; Tschalaer, C.; Tsentalovich, G.; Turchinetz, W.; Vellidis, C.; Warren, G.A.; Weinstein, L.B.; Williamson, S.E.; Young, A.; Zhao, J.; Zwart, T.

    2002-01-01

    We report on the design and performance of compact detector packages currently installed in the four magnetic out-of-plane spectrometers for electron scattering experiments at the MIT-Bates Linear Accelerator Center. The detector packages have been designed to meet the mechanical requirements arising from out-of-plane particle detection. They offer good trajectory and momentum reconstruction, particle identification and time-of-flight measurements for electrons, pions, protons, and deuterons with large momentum bites and in broad kinematical ranges and high luminosities. The detectors have so far been used with great success in out-of-plane measurements of 12 C(e→,e'p), 2 H(e→,e'p), virtual Compton scattering below pion threshold and in studies of the N→Δ transition in both exclusive reaction channels 1 H(e→,e'p)π 0 and 1 H(e→,e'π + )n

  2. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  3. Detectors and focal plane modules for weather satellites

    Science.gov (United States)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Ely, P.; Khalap, V.; Babu, S.; Smith, D. S.

    2016-05-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 μm band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (λc ~ 5 μm at 98K), MWIR (λc ~ 9 μm at 98K) and LWIRs (λc ~ 15.5 μm at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 μm to 8.6 μm and (iii) a 9.6 μm to 13.3 μm, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 μm to 0.86 μm channels. The thirteen channels above 1 μm are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 μm to 9.61 μm channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 μm to 13.3 μm channels fabricated in Double

  4. Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well

    International Nuclear Information System (INIS)

    Zhao, Chunbo; Li, Junbin; Yu, Ying; Ni, Haiqiao; Niu, Zhichuan; Zhang, Xinhui

    2014-01-01

    The electron density and temperature dependent in-plane spin-dephasing anisotropy in [111]-grown GaAs quantum well (QW) has been investigated by time-resolved magneto-Kerr rotation technique. Due to the specific symmetry of [111]-grown quantum well, the in-plane Rashba and linear Dresselhaus effective spin-orbit magnetic field is parallel to each other for electron wave vectors in all directions. However, an obvious in-plane spin-dephasing anisotropy comparing [2 ¯ 11] with [01 ¯ 1] crystalline orientations has been observed and discussed in this work. Our results demonstrate the innegligible spin dephasing channel through inhomogeneous broadening induced by the out-of-plane non-linear Dresselhaus field, which arises naturally from the C 3 symmetry of [111]-grown GaAs QW

  5. Expanding hollow metal rings

    Science.gov (United States)

    Peacock, Harold B [Evans, GA; Imrich, Kenneth J [Grovetown, GA

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  6. Some Considerations Regarding Plane to Plane Parallelism Error Effects in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2015-06-01

    Full Text Available The paper shows that by imposing the parallelism constraint between the measured plane and the reference plane, the position of the current plane is not univocal specified and is impossible to specify the way to attain the parallelism errors imposed by accuracy constrains. The parameters involved in the calculus of plane to plane parallelism error can be used to set univocal the relative position between the two planes.

  7. Positron energy distributions from a hybrid positron source based on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.; Mahdipour, A.; Dabagov, S.B.; Wagner, W.

    2013-01-01

    A hybrid positron source which is based on the generation of channeling radiation by relativistic electrons channeled along different crystallographic planes and axes of a tungsten single crystal and subsequent conversion of radiation into e + e − -pairs in an amorphous tungsten target is described. The photon spectra of channeling radiation are calculated using the Doyle–Turner approximation for the continuum potentials and classical equations of motion for channeled particles to obtain their trajectories, velocities and accelerations. The spectral-angular distributions of channeling radiation are found applying classical electrodynamics. Finally, the conversion of radiation into e + e − -pairs and the energy distributions of positrons are simulated using the GEANT4 package

  8. Characteristics of flow past a slender, emergent cylinder in shallow open channels

    Science.gov (United States)

    Heidari, Mehdi; Balachandar, Ram; Roussinova, Vesselina; Barron, Ronald M.

    2017-06-01

    The complex wake created by an emergent cylinder with a large aspect ratio in a shallow open channel flow is studied experimentally using particle image velocimetry. The unique characteristics of the bed-mounted slender cylinder wake are analysed. Velocity fields, turbulence parameters, and wake development in shallow open channel flow are studied at two different Reynolds numbers and subcritical Froude numbers by carrying out measurements in different horizontal and vertical planes. In the mid-depth plane, velocity and turbulence statistics are independent of Reynolds number, while higher turbulence intensities and Reynolds shear stresses were observed in the near-bed plane for the low Reynolds number case. The narrower wake is observed in the near-bed plane due to the effect of the bed. Combined with stronger vertical velocity and turbulence intensities noted near the bed in the vertical midplane, this suggests increased activity of the vortex structures in the low Reynolds number case. Under shallow conditions, stronger disturbances of the free surface are observed for the case of high Reynolds and Froude numbers. The study also revisits the definition of the wake stability parameter and proposes a new definition which incorporates not only the bed friction but also the drag experienced by the cylinder.

  9. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    International Nuclear Information System (INIS)

    Abu-Assy, M.K.; Soliman, M.S.

    2016-01-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  10. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Assy, M.K. [Physics Department, Faculty of Science, Suez-Canal University, Ismailia 41522 (Egypt); Soliman, M.S., E-mail: Mahmoud_einstien2@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, El-Arish (Egypt)

    2016-10-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  11. Expanded GDoF-optimality Regime of Treating Interference as Noise in the $M\\times 2$ X-Channel

    KAUST Repository

    Gherekhloo, Soheil; Chaaban, Anas; Sezgin, Aydin

    2016-01-01

    -TIN and 2-IC-TIN. While in the first variant the M× 2 X-channel is reduced to a point-to-point (P2P) channel, in the second variant, the setup is reduced to a two-user interference channel in which the receivers use TIN. The optimality of these two variants

  12. Manipulation of heat-diffusion channel in laser thermal lithography.

    Science.gov (United States)

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

  13. Direct Numerical Simulation Sediment Transport in Horizontal Channel

    International Nuclear Information System (INIS)

    Uhlmann, M.

    2006-01-01

    We numerically simulate turbulent flow in a horizontal plane channel over a bed of mobile particles. All scales of fluid motion are resolved without modeling and the phase interface is accurately represented. Our results indicate a possible scenario for the onset of erosion through collective motion induced by buffer-layer streaks. (Author) 27 refs

  14. Flow predictions for MHD channels with an approximation for three-dimensional effects

    International Nuclear Information System (INIS)

    Blottner, F.G.

    1978-01-01

    A finite-difference procedure has been formulated for predicting the flow properties across channels. A quasi-two-dimensional approach has been developed which allows the three-dimensional channel effects to be taken into account. Comparison of the numerical solutions with experimental results show that this approach is a reasonable approximation for MHD flow conditions if there is not significant merging of the wall boundary layers. The resulting code provides a technique to obtain the flow details in the symmetry plane of the channel and requires only a small amount of computer time

  15. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    Science.gov (United States)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  16. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    International Nuclear Information System (INIS)

    Preston, M.F.; Myers, L.S.; Annand, J.R.M.; Fissum, K.G.; Hansen, K.; Isaksson, L.; Jebali, R.; Lundin, M.

    2014-01-01

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system

  17. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, M.F. [Lund University, SE-221 00 Lund (Sweden); Myers, L.S. [Duke University, Durham, NC 27708 (United States); Annand, J.R.M. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Fissum, K.G., E-mail: kevin.fissum@nuclear.lu.se [Lund University, SE-221 00 Lund (Sweden); Hansen, K.; Isaksson, L. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Jebali, R. [Arktis Radiation Detectors Limited, 8045 Zürich (Switzerland); Lundin, M. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden)

    2014-04-21

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system.

  18. High precision 16K, 16 channel peak sensing CAMAC ADC

    International Nuclear Information System (INIS)

    Jain, Mamta; Subramaniam, E.T

    2013-01-01

    A high density, peak sensing, analog to digital converter (ADC) double width module with CAMAC back plane has been developed for nuclear physics experiments with a large number of detectors. This module has sixteen independent channels in plug-in daughter card mother board mode

  19. Instability of in-plane vortices in two-dimensional easy-plane ferromagnets

    International Nuclear Information System (INIS)

    Wysin, G.M.

    1994-01-01

    An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with easy-plane anisotropy λ=J z /J xy leads to a clear understanding of the instability towards transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter λ c at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy comparable to computer simulations for square, hexagonal, and triangular lattices. For λ c , the in-plane vortex is stable but exhibits a normal mode whose frequency goes to zero as ω∝(λ c -λ) 1/2 as λ approaches λ c . For λ>λ c , the static nonzero out-of-plane spin components grow as (λ-λ c ) 1/2 . The lattice dependence of λ c is determined strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and cannot be obtained in a continuum theory

  20. Electrophoresis in ice surface grooves for probing protein affinity to a specific plane of ice crystal.

    Science.gov (United States)

    Inagawa, Arinori; Okada, Yusuke; Okada, Tetsuo

    2018-06-01

    Channel-like grooves are formed on the surface of frozen aqueous sucrose. They are filled with a freeze concentrated solution (FCS) and act as an efficient size-tunable separation field for micro and nanoparticles. The width of the channel can be easily varied by changing the temperature. Because the channel width decreases with decreasing temperature, particles become immobilized due to physical interference from the ice wall when the temperature reaches a threshold point specific to the particle size. Surface modification of particles can add a factor of chemical interaction between the particles and ice walls. In this study, anti-freeze proteins (AFPs) are anchored on 1µm-polystyrene (PS) particles, and their behavior in the surface grooves on the ice is studied. The threshold temperature is an effective criterion for evaluating chemical interactions between particles and ice walls. The AFP binding on 1µm PS particles lowers the threshold temperature by 2.5°C, indicating interactions between AFPs on the PS particles and the ice wall. Because the AFPs studied here show selectivity towards the prism plane, it is critical that the prism plane of the ice crystal is in contact with the FCS in the surface grooves. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Heteroepitaxial growth of basal plane stacking fault free a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Hempel, Thomas; Noltemeyer, Martin; Witte, Hartmut; Dadgar, Armin; Blaesing, Juergen; Christen, Juergen; Krost, Alois [Otto-von-Guericke Universitaet Magdeburg, FNW/IEP, Magdeburg (Germany)

    2010-07-01

    Growth of light emitting quantum-wells based on a-plane GaN is a possibility to reduce or even to avoid polarization correlated luminescence red shift and reduction of radiative recombination efficiency. But until now heteroepitaxially grown a-plane GaN films are characterized by a poor crystalline quality expressed by a high density of basal plane stacking faults (BSF) and partial dislocations. We present Si doped a-plane GaN films grown on r-plane sapphire substrates by metal organic vapor phase epitaxy using high temperature AlGaN nucleation layers. FE-SEM images revealed three dimensionally grown GaN crystallites sized up to tenth micrometer in the basal plane and a few tenth micrometers along the c-axes. Though, the full width at half maxima of the X-ray diffraction {omega}-scans of the in-plane GaN(1 anti 100) and GaN(0002) Bragg reflections exhibited a very high crystal quality. Furthermore, luminescence spectra were dominated by near band gap emission, while there was no separated peak of the basal plane stacking fault. In summary we present heteroepitaxially grown a-plane GaN without an evidence of basal plane stacking faults in X-ray diffraction measurements and luminescence spectra.

  2. Visualization of water on through-plane direction of GDL using X-ray radiography

    International Nuclear Information System (INIS)

    Kim, Jongrok; Je, Junho; Kim, MooHwan; Kim, TaeJoo; Kaviany, Massoud; Son, Sang Young

    2010-01-01

    In this investigation, we visualized water distribution and behavior of water on through plane direction of GDL (Gas Diffusion Layer), which is one of components of PEMFC, using X-ray radiography. In order to investigate water distribution and behavior at GDL of PEMFC, the facilities was set up at the 7B2 beam line in Pohang Accelerator Laboratory. The phenomena of cathode side GDL is more important because the cathode side GDL has more water than the anode side. For this reason, the cathode side GDL was targeted and test section (Figure 1) was made to make similar boundary condition with a cathode side GDL of operating PEMFC. GDL faced two single channels. One is air channel as cathode gas channel of PEMFC and the other is liquid channel as cathode catalyst layer. Water is produced in cathode catalyst layer and almost of this water transport through cathode GDL. Because of this, liquid channel was adopted as catalyst layer. Images of water distribution were recorded per 4 second under various liquid pressure conditions. Water content was calculated from these images using mathematic process.

  3. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these

  4. Modeling the morphogenesis of brine channels in sea ice.

    Science.gov (United States)

    Kutschan, B; Morawetz, K; Gemming, S

    2010-03-01

    Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and vertical planes. We develop a suitable phenomenological model for the formation of brine channels both referring to the Ginzburg-Landau theory of phase transitions as well as to the chemical basis of morphogenesis according to Turing. It is possible to conclude from the critical wave number on the size of the structure and the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental values. The model creates channels of similar size as observed experimentally. An extension of the model toward channels with different sizes is possible. The microstructure of ice determines the albedo feedback and plays therefore an important role for large-scale global circulation models.

  5. Dual plane problems for creeping flow of power-law incompressible medium

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Petukhov

    2016-09-01

    Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.

  6. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  7. Temperature fields induced by direct contact condensation of steam in a cross-flow in a channel

    NARCIS (Netherlands)

    Clerx, N.; van Deurzen, L.G.M.; Pecenko, A.; Liew, R.; van der Geld, C.W.M.; Kuerten, Johannes G.M.

    2011-01-01

    The temperature fields in the center plane of a channel with a square cross-section have been measured. Steam injected at relatively low mass fluxes through a small hole in one of the walls of the channel condensed intermittently in a small area close to the inlet. The upstream temperature of the

  8. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  9. An ionization-chamber type of focal-plane detector for heavy ions

    International Nuclear Information System (INIS)

    Erskine, J.R.; Braid, T.H.; Stolfzfus, J.C.

    1976-01-01

    A focal-plane detector for heavy ions is described in which energy loss and total energy are measured with a gridded ionization chamber, and position along the focal plane and angle of incidence are measured with two resistive-wire proportional counters. The clean geometry of the detector makes it especially attractive for use with heavy ions of high specific ionization. Typical position resolutions of 1.0-1.5mm (fwhm) were observed over a 50 cm length of the detector in the focal plane of a split-pole magnetic spectrograph. Special tests were made which suggest that the limiting position resolution is 0.76 mm or better. The resolution of the energy-loss signal was typically 4.5% (fwhm). The resolution of the total energy signal was 1.0-1.5% (fwhm) for small entrance apertures of the spectrograph, although 0.7% resolution was observed under special circumstances. The angle of incidence was measured with an uncertainty of about 1.2% (fwhm). The availability of the many parameters needed for particle identification makes this detector especially useful for the study of weak reaction channels in heavy-ion-induced reactions. (Auth.)

  10. Open-top selective plane illumination microscope for conventionally mounted specimens.

    Science.gov (United States)

    McGorty, Ryan; Liu, Harrison; Kamiyama, Daichi; Dong, Zhiqiang; Guo, Su; Huang, Bo

    2015-06-15

    We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips.

  11. Chaotic scattering: the supersymmetry method for large number of channels

    International Nuclear Information System (INIS)

    Lehmann, N.; Saher, D.; Sokolov, V.V.; Sommers, H.J.

    1995-01-01

    We investigate a model of chaotic resonance scattering based on the random matrix approach. The hermitian part of the effective hamiltonian of resonance states is taken from the GOE whereas the amplitudes of coupling to decay channels are considered both random or fixed. A new version of the supersymmetry method is worked out to determine analytically the distribution of poles of the S-matrix in the complex energy plane as well as the mean value and two-point correlation function of its elements when the number of channels scales with the number of resonance states. Analytical formulae are compared with numerical simulations. All results obtained coincide in both models provided that the ratio m of the numbers of channels and resonances is small enough and remain qualitatively similar for larger values of m. The relation between the pole distribution and the fluctuations in scattering is discussed. It is shown in particular that the clouds of poles of the S-matrix in the complex energy plane are separated from the real axis by a finite gap Γ g which determines the correlation length in the scattering fluctuations and leads to the exponential asymptotics of the decay law of a complicated intermediate state. ((orig.))

  12. Chaotic scattering: the supersymmetry method for large number of channels

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, N. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Saher, D. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Sokolov, V.V. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik); Sommers, H.J. (Essen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik)

    1995-01-23

    We investigate a model of chaotic resonance scattering based on the random matrix approach. The hermitian part of the effective hamiltonian of resonance states is taken from the GOE whereas the amplitudes of coupling to decay channels are considered both random or fixed. A new version of the supersymmetry method is worked out to determine analytically the distribution of poles of the S-matrix in the complex energy plane as well as the mean value and two-point correlation function of its elements when the number of channels scales with the number of resonance states. Analytical formulae are compared with numerical simulations. All results obtained coincide in both models provided that the ratio m of the numbers of channels and resonances is small enough and remain qualitatively similar for larger values of m. The relation between the pole distribution and the fluctuations in scattering is discussed. It is shown in particular that the clouds of poles of the S-matrix in the complex energy plane are separated from the real axis by a finite gap [Gamma][sub g] which determines the correlation length in the scattering fluctuations and leads to the exponential asymptotics of the decay law of a complicated intermediate state. ((orig.))

  13. A magnetic focusing channel for VEC at Calcutta

    International Nuclear Information System (INIS)

    Mallik, C.

    1986-01-01

    The extent of the useful aperture of a beam handling quadrupole magnet of the variable energy cyclotron at Calcutta is about 6 cms, but the extent of the beam in radial plane near the entrance to the quadrupole is at least 10 cm i.e. it exceeds the size of the useful aperture. This creates the problem of phase space distortion decreasing the efficiency of the beam transport line and the usable beam. To correct this problem, a triplet bar has been used as a magnetic focusing channel. The magnetic field induced due to this bar in the median plane is shown in a figure and advantages of its use are described. (M.G.B.)

  14. ExpandED Options: Learning beyond High School Walls

    Science.gov (United States)

    ExpandED Schools, 2014

    2014-01-01

    Through ExpandED Options by TASC, New York City high school students get academic credit for learning career-related skills that lead to paid summer jobs. Too many high school students--including those most likely to drop out--are bored or see classroom learning as irrelevant. ExpandED Options students live the connection between mastering new…

  15. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  16. The Sentinel-4 UVN focal plane assemblies

    Science.gov (United States)

    Hinger, Jürgen; Hohn, Rüdiger; Gebhardt, Eyk; Reichardt, Jörg

    2017-09-01

    The Sentinel-4 UVN Instrument is a dispersive imaging spectrometer covering the UV-VIS and the NIR wavelength. It is developed and built under an ESA contract by an industrial consortium led by Airbus Defence and Space. It will be accommodated on board of the MTG-S (Meteosat Third Generation - Sounder) satellite that will be placed in a geostationary orbit over Europe sampling data for generating two-dimensional maps of a number of atmospheric trace gases. The incoming light is dispersed by reflective gratings and detected by the two (UVVIS and NIR) CCDs mounted inside the focal plane assemblies. Both CCD detectors acquire spectral channels and spatial sampling in two orthogonal directions and will be operated at about 215 K mainly to minimize random telegraph signal effects and to reduce dark current. Stringent detector temperature as well as alignment stability requirements of less than +/-0.1 K per day respectively of less than 2 micrometers/2 arcseconds from ground to orbit are driving the FPA thermo-mechanical design. A specific FPA design feature is the redundant LED-calibration system for bad pixel detection as well as pixel gain and linearity monitoring. This paper reports on the design and qualification of the Focal Plane Assemblies with emphasis on thermo-mechanical as well as alignment stability verification.

  17. Affine planes, ternary rings, and examples of non-Desarguesian planes

    OpenAIRE

    Ivanov, Nikolai V.

    2016-01-01

    The paper is devoted to a detailed self-contained exposition of a part of the theory of affine planes leading to a construction of affine (or, equivalently, projective) planes not satisfying the Desarques axiom. It is intended to complement the introductory expositions of the theory of affine and projective planes. A novelty of our exposition is a new notation for the ternary operation in a ternary ring, much more suggestive than the standard one.

  18. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes

    Science.gov (United States)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2017-08-01

    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  19. Accretion torques due to three-dimensional channelled flows in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1986-01-01

    Angular momentum transfer due to three-dimensional magnetically channelled accretion flows in cataclysmic binaries is considered. The white dwarf experiences a torque due to the twist in that part of its magnetic field which interacts with the accretion stream. The channelling process can also enhance angular momentum exchange between the stream and the orbit by increasing the gravitational torques. The components of the accretion torque are calculated for an arbitrary static magnetic orientation of the white dwarf, and their variation with orientation is presented. For high inclinations of the accreting pole to the orbital plane the component of the accretion torque parallel to this plane can be comparable to its perpendicular component. It is shown that the parallel component of the torque is still significant relative to the perpendicular component if material links to the white dwarf's magnetic field well away from the L 1 region. (author)

  20. Research on advancement of method for evaluating aseismatic ability of rock discontinuity plane in ground and surrounding slopes of nuclear power facilities

    International Nuclear Information System (INIS)

    Kusunose, Kinichiro; Cho, Akio; Takahashi, Manabu; Kamai, Toshitaka

    1997-01-01

    The purpose of this research is to carry out the technical development required for exploring with high accuracy the distribution and shapes of the discontinuity planes in rocks in the ground and surrounding cut-off slopes of nuclear power facilities, and to advance the techniques of interpreting and evaluating quantitatively the stability against earthquakes of the discontinuity planes. This research consists of two themes: the research on the method of investigating the three-dimensional distribution of the crevices in the ground and the research on the method of evaluating the aseismatic ability in the slopes. As for the first theme, one of the techniques for exploring underground structure with elastic waves, tomography, is explained, and the development of the 12 channel receiver and the program for the multi-channel analysis and processing of waveform are reported. As for the second theme, the stability analysis was carried out on three actual cases of landslide. The equation for stability analysis is shown, and the results are reported. The strength at the time of forming separation plane gives the most proper result. (K.I.)

  1. Planar channeling and quasichanneling oscillations in a bent crystal

    International Nuclear Information System (INIS)

    Sytov, A.I.; Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A.; Tikhomirov, V.V.

    2016-01-01

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  2. Planar channeling and quasichanneling oscillations in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy); Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Ferrara (Italy); Tikhomirov, V.V. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy)

    2016-02-15

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  3. Readout electronics for the SiPM tracking plane in the NEXT-1 prototype

    International Nuclear Information System (INIS)

    Herrero, V.; Toledo, J.; Català, J.M.; Esteve, R.; Gil, A.; Lorca, D.; Monzó, J.M.; Sanchis, F.; Verdugo, A.

    2012-01-01

    NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.

  4. Readout electronics for the SiPM tracking plane in the NEXT-1 prototype

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V. [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Toledo, J., E-mail: jtoledo@eln.upv.es [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Catala, J.M.; Esteve, R. [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Gil, A.; Lorca, D. [Instituto de Fisica Corpuscular (CSIC-Universidad de Valencia), 46980 Valencia (Spain); Monzo, J.M.; Sanchis, F. [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Verdugo, A. [CIEMAT-Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)

    2012-12-11

    NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.

  5. Monte Carlo Modeling of Crystal Channeling at High Energies

    CERN Document Server

    Schoofs, Philippe; Cerutti, Francesco

    Charged particles entering a crystal close to some preferred direction can be trapped in the electromagnetic potential well existing between consecutive planes or strings of atoms. This channeling effect can be used to extract beam particles if the crystal is bent beforehand. Crystal channeling is becoming a reliable and efficient technique for collimating beams and removing halo particles. At CERN, the installation of silicon crystals in the LHC is under scrutiny by the UA9 collaboration with the goal of investigating if they are a viable option for the collimation system upgrade. This thesis describes a new Monte Carlo model of planar channeling which has been developed from scratch in order to be implemented in the FLUKA code simulating particle transport and interactions. Crystal channels are described through the concept of continuous potential taking into account thermal motion of the lattice atoms and using Moliere screening function. The energy of the particle transverse motion determines whether or n...

  6. Presentation of the paper “Open access repositories as channel of publication scientific grey literature”

    OpenAIRE

    Ferreras Fernández, Tránsito; García-Peñalvo, Francisco José; Merlo Vega, José Antonio

    2015-01-01

    This is the presentation of the paper entitled “Open access repositories as channel of publication scientific grey literature” in the TEEM 2015 International Conference held in Porto (Portugal) in October 7-9, 2015. In this paper we describe how the open access repositories are valid channels for the publication of scientific grey literature. Technological development facilitates the communication of scientific knowledge, allowing expand distribution channels and significantly reducing tra...

  7. Finite Thin Cover on an Orthotropic Elastic Half Plane

    Directory of Open Access Journals (Sweden)

    Federico Oyedeji Falope

    2016-01-01

    Full Text Available The present work deals with the mechanical behaviour of thin films bonded to a homogeneous elastic orthotropic half plane under plain strain condition and infinitesimal strain. Both the film and semi-infinite substrate display linear elastic orthotropic behaviour. By assuming perfect adhesion between film and half plane together with membrane behaviour of the film, the compatibility condition between the coating and substrate leads to a singular integral equation with Cauchy kernel. Such an equation is straightforwardly solved by expanding the unknown interfacial stress in series of Chebyshev polynomials displaying square-root singularity at the film edges. This approach allows handling the singular behaviour of the shear stress and, in turn, reducing the problem to a linear algebraic system of infinite terms. Results are found for two loading cases, with particular reference to concentrated axial forces acting at the edges of the film. The corresponding mode II stress intensity factor has been assessed, thus providing the stress concentrations at both ends of the covering. Possible applications of the results here obtained range from MEMS, NEMS, and solar Silicon cell for energy harvesting to welded joint and building foundation.

  8. Photographic guidance for selecting flow resistance coefficients in high-gradient channels

    Science.gov (United States)

    Steven E. Yochum; Francesco Comiti; Ellen Wohl; Gabrielle C. L. David; Luca Mao

    2014-01-01

    Photographic guidance is presented to assist with the estimation of Manning’s n and Darcy-Weisbach f in high-gradient plane-bed, step-pool, and cascade channels. Reaches both with and without instream wood are included. These coefficients are necessary for the estimation of reachaverage velocity, energy loss, and...

  9. An Algorithm for constructing Hjelmslev planes

    OpenAIRE

    Hall, Joanne L.; Rao, Asha

    2013-01-01

    Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv planes can be constructed in this way. As a corollary it is shown that all 2-uniform Affine Hjelmselv planes are sub-geometries o...

  10. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study.

    Science.gov (United States)

    Schwenk, Eric S; Gandhi, Kishor; Baratta, Jaime L; Torjman, Marc; Epstein, Richard H; Chung, Jaeyoon; Vaghari, Benjamin A; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-12-01

    Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. To compare an out-of-plane interscalene catheter technique to the in-plane technique in a randomized clinical trial. Eighty-four patients undergoing open shoulder surgery were randomized to either the in-plane or out-of-plane ultrasound-guided continuous interscalene technique. The primary outcome was VAS pain rating at 24 hours. Secondary outcomes included pain ratings in the recovery room and at 48 hours, morphine consumption, the incidence of catheter dislodgments, procedure time, and block difficulty. Procedural data and all pain ratings were collected by blinded observers. There were no differences in the primary outcome of median VAS pain rating at 24 hours between the out-of-plane and in-plane groups (1.50; IQR, [0 - 4.38] vs. 1.25; IQR, [0 - 3.75]; P = 0.57). There were also no differences, respectively, between out-of-plane and in-plane median PACU pain ratings (1.0; IQR, [0 - 3.5] vs. 0.25; IQR, [0 - 2.5]; P = 0.08) and median 48-hour pain ratings (1.25; IQR, [1.25 - 2.63] vs. 0.50; IQR, [0 - 1.88]; P = 0.30). There were no differences in any other secondary endpoint. Our out-of-plane technique did not provide superior analgesia to the in-plane technique. It did not increase the number of complications. Our technique is an acceptable alternative in situations where the in-plane technique is difficult to perform.

  11. Two-Channel Metal Detector Using Two Perpendicular Antennas

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Two-channel metal detector, having two sets of perpendicularly oriented sensor antennas, is proposed to expand detectable size, ranging from mm through cm scale, of metal sensor, while conventional metal sensor is dedicated for detection only in mm or cm scale. The characteristics of the two metal detection sensor channels were investigated, respectively, and the interference effect, while in simultaneous operation, between two sensor channels was discussed. Metal detection channel, having sensitivity in mm scale, showed detectable sensitivity to moving ferrous sphere, with diameter down to 0.7 mm, at 50 kHz exciting frequency and enhanced sensitivity distribution. And metal detection channel having sensitivity in cm scale showed more uniform sensitivity distribution with the flexibility for future modular construction. The effect of interference, while in simultaneous operation of two sensors, resulted in reduced output response, but still within usable detection range. Thus it was feasible to operate two sensors, having different sensitivity range, simultaneously and to extend detection range from mm to cm scale, within practically acceptable interference.

  12. Theoretical ion implantation profiles for low energy protons under channeling conditions

    International Nuclear Information System (INIS)

    Nobel, J.A.; Sabin, J.R.; Trickey, S.B.

    1994-01-01

    The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using a force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave (FLAPW) calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the method of Echenique, Neiminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given incident position on the unit cell face and an initial velocity. The authors use CHANNEL to generate an ion (proton) implantation profile for the test case of simple cubic hydrogen with the projectile's initial velocity parallel to the (100) channel. Further preliminary results for ion implantation profiles of protons in diamond structure Si, with initial velocity along the (100) and (110) channels, are given

  13. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  14. The front-end electronics for the 1.8-kchannel SiPM tracking plane in the NEW detector

    International Nuclear Information System (INIS)

    Rodríguez, J.; Lorca, D.; Monrabal, F.; Toledo, J.; Esteve, R.

    2015-01-01

    NEW is the first phase of NEXT-100 experiment, an experiment aimed at searching for neutrinoless double-beta decay. NEXT technology combines an excellent energy resolution with tracking capabilities thanks to a combination of optical sensors, PMTs for the energy measurement and SiPMs for topology reconstruction. Those two tools result in one of the highest background rejection potentials in the field. This work describes the tracking plane that will be constructed for the NEW detector which consists of close to 1800 sensors with a 1-cm pitch arranged in twenty-eight 64-SiPM boards. Then it focuses in the development of the electronics needed to read the 1800 channels with a front-end board that includes per-channel differential transimpedance input amplifier, gated integrator, automatic offset voltage compensation and 12-bit ADC. Finally, a description of how the FPGA buffers data, carries out zero suppression and sends data to the DAQ interface using CERN RD-51 SRS's DTCC link specification complements the description of the electronics of the NEW detector tracking plane

  15. Performance of PC-based charged particle multi-channel spectrometer utilising particle identification

    International Nuclear Information System (INIS)

    Palla, G.; Sziklai, J.; Trajber, Cs.

    1993-12-01

    A collaterally expandable charged particle spectrometer based on PC control and particle identification is described. A typical system configuration consisting of two channels are used to test the system performance. (author) 7 refs.; 5 figs

  16. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-01-01

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling

  17. Statistical simulation of information transfer through non-line-of-sight atmospheric optical communication channels

    Science.gov (United States)

    Tarasenkov, M. V.; Belov, V. V.; Poznakharev, E. S.

    2017-11-01

    Impulse response of non-line-of-sight atmospheric communication channels at wavelengths of 0.3, 0.5, and 0.9 μm are compared for the case in which the optical axes of the receiver and laser radiation lie in the plane perpendicular to the Earth's surface. The most efficient communication channel depending on the base distance is determined. For a wavelength of 0.5 μm and a concrete variant of the transceiving part of the communication system, the limiting communication range and the limiting repetition frequency of pulses that can be transmitted through the communication channel are estimated.

  18. A study of Channeling, Volume Reflection and Volume Capture of 3.35 - 14.0 GeV Electrons in a bent Silicon Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wistisen, T. N. [Aarhus Univ. (Denmark); Uggerhoj, U. I. [Aarhus Univ. (Denmark); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Markiewicz, T. W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Noble, R. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Benson, B. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Smith, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bagli, E. [Univ. of Ferrara (Italy); Bandiera, L. [Univ. of Ferrara (Italy); Germogli, G. [Univ. of Ferrara (Italy); Guidi, V. [Univ. of Ferrara (Italy); Mazzolari, A. [Univ. of Ferrara (Italy); Holtzapple, R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Tucker, S. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2015-12-03

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasi-mosaic silicon crystal. Additionally, these phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5 and 14.0 GeV with a crystal with bending radius of 0.15m, corresponding to curvatures of 0.070, 0.088, 0.13, 0.22 and 0.29 times the critical curvature respectively. We have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  19. Algebraic Structures on MOD Planes

    OpenAIRE

    Kandasamy, Vasantha; Ilanthenral, K.; Smarandache, Florentin

    2015-01-01

    Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.

  20. A simulation of low energy channeling of protons in silicon

    International Nuclear Information System (INIS)

    Sabin, J.R.

    1994-01-01

    The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using the force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave FLAPW calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the local electron density, using the method of Echenique, Nieminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given initial velocity and a given incident position on the unit cell face. For each incident projectile velocity, the authors generate trajectories for incidence distributed over the channel face. The distribution of ranges generates an implantation profile. In this paper, they report ion (proton) implantation profiles for low energy protons with initial velocity along the (100) and (110) channel directions of diamond structured Silicon

  1. Phase-preserving beam expander for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-01-01

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used

  2. Comparison of direct numerical simulation databases of turbulent channel flow at Re = 180

    NARCIS (Netherlands)

    Vreman, A.W.; Kuerten, J.G.M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Re t = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2%

  3. Comparison of direct numerical simulation databases of turbulent channel flow at $Re_{\\tau}$ = 180

    NARCIS (Netherlands)

    Vreman, A.W.; Kuerten, Johannes G.M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at $Re_{\\tau}$ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations

  4. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  5. Quantum theory of scattering of channeled electrons and positrons in a crystal

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Goloviznin, V.V.

    1982-01-01

    The quantum theory of elastic scattering of electrons and positrons on plane or axial channeling in a thin crystal is developed. The role of coherent (without phonon excitation) and incoherent scattering by atoms of the plane (chain) is investigated. It is shown that incoherent scattering which leads to dechanneling cannot be reduced to scattering by an isolated atom. Allowance for ordered arrangement of the atoms in the plane (chain) of the crystal leads to suppression of the motion levels. It is also shown that on movement of a particle along the plane in directions strongly differing from those of the principal axes, the scattering is incoherent and is determined by thermal vibrations of the nuclei. As the direction of the particle momentum approaches those of the principal axes, the role of coherent scattering without recoil by the crystal lattice nuclei increases and may become dicisive. The probability of large- angle scattering increases relatively in this case. Under certain conditions coherent scattering may become resonant [ru

  6. Strategies for sustainable channel relations in mobile telecom sector

    Directory of Open Access Journals (Sweden)

    Githa Heggde

    2011-01-01

    Full Text Available The telecom sector in India largely comprises of wireless connections for phones. As of today, there are approximately 21 network providers in the country with about 7 per each circle, each offering competitive pricing to the consumers. The main objective of the study is to provide an accurate role for the company executive in developing channel relations. Further to this, the study explores the strategies which can sustain a good working relationship between the company and its channel members in the mobile telecom sector. The constructs identified for developing sustainable relationships were Setting distribution objectives, Channel design, Logistics, Image Building, Inventory management, Channel management, Payment & credit, Promotional assistance, Setting targets, Coverage frequency , Motivating channel members to perform. The sample selected contained distributors from the Mobile telecom sector and company executives/channel managers of leading telecom companies. Factor analysis and Friedman’s test was applied. The findings revealed a correlation in attitude between distributors and the executives. Motivating distributors was rated as the most important strategy by the company. The distributors felt that all channel partners needed to have positive attitude towards the channel while company executives felt that aggression made channel members perform effectively. Such findings will be of use to mobile telecom companies who are new entrants to the Indian market and to existing companies who plan to expand their coverage.

  7. CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)

  8. The Kinetics and the Permeation Properties of Piezo Channels.

    Science.gov (United States)

    Gnanasambandam, R; Gottlieb, P A; Sachs, F

    2017-01-01

    Piezo channels are eukaryotic, cation-selective mechanosensitive channels (MSCs), which show rapid activation and voltage-dependent inactivation. The kinetics of these channels are largely consistent across multiple cell types and different stimulation paradigms with some minor variability. No accessory subunits that associate with Piezo channels have been reported. They are homotrimers and each ∼300kD monomer has an N-terminal propeller blade-like mechanosensing module, which can confer mechanosensing capabilities on ASIC-1 (the trimeric non-MSC, acid-sensing ion channel-1) and a C-terminal pore module, which influences conductance, selectivity, and channel inactivation. Repeated stimulation can cause domain fracture and diffusion of these channels leading to synchronous loss of inactivation. The reconstituted channels spontaneously open only in asymmetric bilayers but lack inactivation. Mutations that cause hereditary xerocytosis alter PIEZO1 kinetics. The kinetics of the wild-type PIEZO1 and alterations thereof in mutants (M2225R, R2456K, and DhPIEZO1) are summarized in the form of a quantitative model and hosted online. The pore is permeable to alkali ions although Li + permeates poorly. Divalent cations, notably Ca 2+ , traverse the channel and inhibit the flux of monovalents. The large monovalent organic cations such as tetramethyl ammonium and tetraethyl ammonium can traverse the channel, but slowly, suggesting a pore diameter of ∼8Å, and the estimated in-plane area change upon opening is around 6-20nm 2 . Ruthenium red can enter the channel only from the extracellular side and seems to bind in a pocket close to residue 2496. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.

    Science.gov (United States)

    Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi

    2011-11-09

    With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.

  10. Experimental Investigation on Zonal Structure in Drag-Reducing Channel Flow with Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Masaaki Motozawa

    2011-01-01

    Full Text Available The spatial structure of a drag-reducing channel flow with surfactant additives in a two-dimensional channel was investigated experimentally. We carried out detailed measurements of the instantaneous velocity in the streamwise wall-normal plane and streamwise spanwise plane by using particle image velocimetry (PIV. The surfactant used in this experiment is a kind of cationic surfactant CTAC. The weight concentrations of the CTAC solution were 25 and 40 ppm on the flow. We considered the effects of Reynolds number ranging from 10000 to 25000 and the weight concentration of CTAC. The results of this paper showed that in the drag-reducing flow, there appeared an area where the root mean square of streamwise velocity fluctuation and the vorticity fluctuation sharply decreased. This indicated that two layers with different turbulent structure coexisted on the boundary of this area. Moreover, these layers had characteristic flow structures, as confirmed by observation of the instantaneous vorticity fluctuation map.

  11. Statistical Modeling, Simulation, and Experimental Verification of Wideband Indoor Mobile Radio Channels

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2018-01-01

    Full Text Available This paper focuses on the modeling, simulation, and experimental verification of wideband single-input single-output (SISO mobile fading channels for indoor propagation environments. The indoor reference channel model is derived from a geometrical rectangle scattering model, which consists of an infinite number of scatterers. It is assumed that the scatterers are exponentially distributed over the two-dimensional (2D horizontal plane of a rectangular room. Analytical expressions are derived for the probability density function (PDF of the angle of arrival (AOA, the PDF of the propagation path length, the power delay profile (PDP, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOC channel simulator is derived from the nonrealizable reference model by employing the SOC principle. It is shown that the SOC channel simulator approximates closely the reference model with respect to the FCF. The SOC channel simulator enables the performance evaluation of wideband indoor wireless communication systems with reduced realization expenditure. Moreover, the rationality and usefulness of the derived indoor channel model is confirmed by various measurements at 2.4, 5, and 60 GHz.

  12. A review on the analysis and experiment of fluid flow and mixing in micro-channels

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Suh, Yong Kweon; Jayaraj, Simon

    2007-01-01

    The studies with respect to micro-channels and micro-mixers are expanding in many dimensions. Most significant area of micro-mixer study is the flow analysis in various micro-channel configurations. The flow phenomena in microchannel devices are quite different from that of the macro-scale devices. An attempt is made here to review the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flow in micro-channels and integrated simulation of the micro-channel flow. Also, the flow control models and electro-kinetically driven micro-channel flows are dealt in detail. A survey of important numerical methods, which are currently popular for micro-channel flow analysis, is carried out. Different options for mixing in microchannels are provided, in sufficient detail

  13. Tissue expander infections in children: look beyond the expander pocket.

    Science.gov (United States)

    Mason, A C; Davison, S P; Manders, E K

    1999-11-01

    Infection of the expander pocket is the most common complication encountered with soft-tissue expansion. It is usually due to direct inoculation with skin flora either at the time of expander insertion or from extrusion of the device. The authors report two cases of infection of tissue expanders in which the children had concomitant infected sites distant from the prosthesis. Etiological bacteria of common pediatric infections like otitis media and pharyngitis were cultured from the infected expander pocket, raising suspicion that translocation of the organism to the expander had occurred. Aggressive antibiotic treatment, removal of the prosthesis, and flap advancement is advocated.

  14. Comparison of Expandable and Fixed Interbody Cages in a Human Cadaver Corpectomy Model: Fatigue Characteristics.

    Science.gov (United States)

    Pekmezci, Murat; Tang, Jessica A; Cheng, Liu; Modak, Ashin; McClellan, Robert T; Buckley, Jenni M; Ames, Christopher P

    2016-11-01

    In vitro cadaver biomechanics study. The goal of this study is to compare the in situ fatigue life of expandable versus fixed interbody cage designs. Expandable cages are becoming more popular, in large part, due to their versatility; however, subsidence and catastrophic failure remain a concern. This in vitro analysis investigates the fatigue life of expandable and fixed interbody cages in a single level human cadaver corpectomy model by evaluating modes of subsidence of expandable and fixed cages as well as change in stiffness of the constructs with cyclic loading. Nineteen specimens from 10 human thoracolumbar spines (T10-L2, L3-L5) were biomechanically evaluated after a single level corpectomy that was reconstructed with an expandable or fixed cage and anterior dual rod instrumentation. All specimens underwent 98 K cycles to simulate 3 months of postoperative weight bearing. In addition, a third group with hyperlordotic cages was used to simulate catastrophic failure that is observed in clinical practice. Three fixed and 2 expandable cages withstood the cyclic loading despite perfect sagittal and coronal plane fitting of the endcaps. The majority of the constructs settled in after initial subsidence. The catastrophic failures that were observed in clinical practice could not be reproduced with hyperlordotic cages. However, all cages in this group subsided, and 60% resulted in endplate fractures during deployment of the cage. Despite greater surface contact area, expandable cages have a trend for higher subsidence rates when compared with fixed cages. When there is edge loading as in the hyperlordotic cage scenario, there is a higher risk of subsidence and intraoperative fracture during deployment of expandable cages.

  15. In-plane and out-of-plane emission of nuclear matter in Au+Au collisions

    International Nuclear Information System (INIS)

    Bastid, N.; Dupieux, P.; Ramillien, V.; Alard, J.P.; Amouroux, V.; Berger, L.; Boussange, S.; Fraysse, L.; Ibnouzahir, M.; Montarou, G.

    1995-01-01

    Collective flow effects in Au (E/A = 150 to 800 MeV) on Au collisions measured with the phase I setup of the FOPI detector at GSI - Darmstadt are presented. Directed side ward flow is studied, by the mean transverse momentum in the reaction plane x (y)>, without reaction plane reconstruction. A more quantitative measurement of the global amount of directed side ward flow is also made and some comparisons with the predictions of different QMD versions are given. Experimental results concerning the preferential emission of particles in a direction perpendicular to the reaction plane are also presented. Azimuthal distributions of fragments around the beam axis, with respect to the reaction plane are studied in the mid-rapidity region and the associated R N (out-of-plane/in-plane ratios) are extracted. The dependence of R N upon transverse momentum, centrality, fragment charge and bombarding energy is studied. (authors). 24 refs., 10 figs., 1 tab

  16. A Tiered Control Plane Model for Service Function Chaining Isolation

    Directory of Open Access Journals (Sweden)

    Håkon Gunleifsen

    2018-06-01

    Full Text Available This article presents an architecture for encryption automation in interconnected Network Function Virtualization (NFV domains. Current NFV implementations are designed for deployment within trusted domains, where overlay networks with static trusted links are utilized for enabling network security. Nevertheless, within a Service Function Chain (SFC, Virtual Network Function (VNF flows cannot be isolated and end-to-end encrypted because each VNF requires direct access to the overall SFC data-flow. This restricts both end-users and Service Providers from enabling end-to-end security, and in extended VNF isolation within the SFC data traffic. Encrypting data flows on a per-flow basis results in an extensive amount of secure tunnels, which cannot scale efficiently in manual configurations. Additionally, creating secure data plane tunnels between NFV providers requires secure exchange of key parameters, and the establishment of an east–west control plane protocol. In this article, we present an architecture focusing on these two problems, investigating how overlay networks can be created, isolated, and secured dynamically. Accordingly, we propose an architecture for automated establishment of encrypted tunnels in NFV, which introduces a novel, tiered east–west communication channel between network controllers in a multi-domain environment.

  17. Four-channel high speed synchronized acquisition multiple trigger storage measurement system

    International Nuclear Information System (INIS)

    Guo Jian; Wang Wenlian; Zhang Zhijie

    2010-01-01

    A new storage measurement system based on the CPLD, MCU and FLASH (large-capacity flash memory) is proposed. The large capacity storage characteristic of the FLASH MEMORY is used to realize multi channel synchronized acquisition and the function of multiple records and read once. The function of multi channel synchronization, high speed data acquisition, the triggering several times, and the adjustability of working parameters expands the application of storage measurement system. The storage measurement system can be used in a variety of pressure and temperature test in explosion field. (authors)

  18. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  19. 3D tomography of cells in micro-channels

    Science.gov (United States)

    Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.

    2017-09-01

    We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.

  20. The impact of the multi-channel retail mix on online store choice: Does online experience matter?

    OpenAIRE

    Melis, Kristina; Campo, Katia; Breugelmans, Els; Lamey, Lien

    2015-01-01

    More and more grocery retailers are becoming multi-channel retailers, as they are opening an online alternative next to their traditional offline supermarkets. While the number of multi-channel grocery shoppers is also expanding at a fast growth rate, there are still large differences in online shopping frequency, and as a result, in the levels of experience with buying in the online grocery channel. This study wants to (i) identify the underlying drivers of online store choice and (ii) explo...

  1. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  2. Monte Carlo simulation of channeled and random profiles of heavy ions implanted in silicon at high energy (1.2 MeV)

    International Nuclear Information System (INIS)

    Mazzone, A.M.

    1987-01-01

    In order to study channeling effects and implants of heavy ions with energy of few MeV in silicon, ion distributions are calculated with a Monte Carlo method for axial [(001) axis], planar, and nominally random directions for As + and P + ions implanted into silicon with energies in the range 100 keV to 2 MeV. The calculation indicates an appreciable channeling at the higher energy only for the (001) axis and the (110) planes. For heavy ions with energy in the MeV range the subsidence of channeling into major channels and the disappearance of minor channels are shown

  3. Influence of mandibular fixation method on stability of the maxillary occlusal plane after occlusal plane alteration.

    Science.gov (United States)

    Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko

    2009-05-01

    In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.

  4. Existence of Projective Planes

    OpenAIRE

    Perrott, Xander

    2016-01-01

    This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.

  5. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    Science.gov (United States)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  6. Gravitational Couplings for Generalized Orientifold Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino action for generalized orientifold planes (GOp-planes) is presented and a series power expantion is realized from which processes that involves GOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes are showed.

  7. Non-intrusive investigation of flow and heat transfer characteristics of a channel with a built-in circular cylinder

    Science.gov (United States)

    Vyas, Apoorv; Mishra, Biswajit; Agrawal, Atul; Srivastava, Atul

    2018-03-01

    Interferometry-based experimental investigation of heat transfer phenomena associated with a channel fitted with a circular cylinder has been reported. Experiments have been performed with water as the working fluid, and the range of Reynolds number considered is 75 ≤ Re ≤ 165. The circular cylinder, placed at the inlet section of the channel, provides a blockage ratio of 0.5. The experimental methodology has been benchmarked against the results of transient numerical simulations. In order to assess the performance of the channel fitted with a circular cylinder for possible heat transfer enhancement from the channel wall(s), experiments have also been performed on a plane channel (without a cylinder). The interferometry-based experiments clearly highlighted the influence of the built-in cylinder in generating the flow instabilities and alterations in the thermal boundary layer profile along the heated wall of the channel. The phenomenon of vortex shedding behind the cylinder was successfully captured. A gradual increase in the vortex shedding frequency was observed with increasing Reynolds number. Quantitative data in the form of two-dimensional temperature distributions revealed an increase in the strength of wall thermal gradients in the wake region of the cylinder due to the periodic shedding of the vortices. In turn, a clear enhancement in the wall heat transfer rates was observed for the case of the channel fitted with a cylinder vis-à-vis the plane channel. To the best of the knowledge of the authors, the work reported is one of the first attempts to provide the planar field experimental data for a channel configuration with a built-in circular cylinder using non-intrusive imaging techniques and has the potential to serve as one of the benchmark studies for validating the existing as well as future numerical studies in the related area.

  8. ab-Plane Anisotropy of Transport Properties in Unidirectionally Twinned YBa2Cu3O7-δ Films

    International Nuclear Information System (INIS)

    Villard, C.; Chateignier, D.; Thrane, B.; Koren, G.; Cohen, D.; Polturak, E.

    1996-01-01

    A unidirectionally twinned, c oriented YBa 2 Cu 3 O 7-δ film was prepared on a (001) NdGaO 3 substrate. In the normal state between 100 and 300K, the unidirectional twin plane lattice induces a strong anisotropy of ρ ab , leading to a temperature independent ratio of 6 between the resisitivities across and along the twin boundaries. At 77K, the self-field critical current parallel to twin planes is 1.2x10 6 A/cm 2 , a value which is 25 times higher than along the perpendicular direction. This shows that, at this temperature, twin boundaries control the critical current values in YBCO films by either channeling or pinning effects. copyright 1996 The American Physical Society

  9. Observation and comparative analysis of proton beam extraction or collimation by different planar channels of a bent crystal

    Directory of Open Access Journals (Sweden)

    A. G. Afonin

    2012-08-01

    Full Text Available In the experiment the efficiency of the 50 GeV proton beam extraction from accelerator by means of a bent crystal as a function of crystal orientation was measured. This allowed one to make a comparative analysis of efficiencies of high-energy protons deflection by different crystal atomic planes with different values of the electrostatic field. The results of simulation of high-energy protons deflection by means of crystal atomic planes and crystal atomic strings are also presented in the article. In the case of planar channeling the simulation shows a good agreement with experimental data. In the case of proton motion in the regime of stochastic scattering by bent atomic strings the simulation shows that angles of particle deflection are much greater than the critical channeling angle.

  10. Gravitational Couplings for y-Gop-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino action for y deformed and generalized orientifold planes (yGOp-planes) is presented and one power expantion is realized from which processes that involves yGOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard yGOp-planes are showed.

  11. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  12. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  13. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  14. CHANGE: A numerical model for three-dimensional modelling of channelized flow in rock: Theory and design

    International Nuclear Information System (INIS)

    Billaux, D.; Long, J.C.S.; Peterson, J.E. Jr.

    1990-03-01

    A model for channelized flow in three-dimensional, random networks of fractures has been developed. In this model, the fractures are disc-shaped discontinuities in an impermeable matrix. Within each fracture, flow occurs only in a network of random channels. The channels in each fracture can be generated independently with random distributions of length, conductivity, and orientation in the fracture plane. Boundary conditions are specified on the sides of a ''flow region,'' and at the intersections of the channels with interior ''holes'' specified by the user to simulate boreholes or drifts. This code is part of a set of programs used to generate two-dimensional or three-dimensional random fracture networks, plot them, compute flow through them and analyze the results. 8 refs., 13 figs

  15. "A Tale of Two Planes": Deep Versus Superficial Serratus Plane Block for Postmastectomy Pain Syndrome.

    Science.gov (United States)

    Piracha, Mohammad M; Thorp, Stephen L; Puttanniah, Vinay; Gulati, Amitabh

    Postmastectomy pain syndrome (PMPS) is a significant burden for breast cancer survivors. Although multiple therapies have been described, an evolving field of serratus anterior plane blocks has been described in this population. We describe the addition of the deep serratus anterior plane block (DSPB) for PMPS. Four patients with history of PMPS underwent DSPB for anterior chest wall pain. A retrospective review of these patients' outcomes was obtained through postprocedure interviews. Three of the patients previously had a superficial serratus anterior plane block, which was not as efficacious as the DSPB. The fourth patient had a superficial serratus anterior plane that was difficult to separate with hydrodissection but had improved pain control with a DSPB. We illustrate 4 patients who have benefitted from a DSPB and describe indications that this block may be more efficacious than a superficial serratus plane block. Further study is recommended to understand the intercostal nerve branches within the lateral and anterior muscular chest wall planes.

  16. High accurate volume holographic correlator with 4000 parallel correlation channels

    Science.gov (United States)

    Ni, Kai; Qu, Zongyao; Cao, Liangcai; Su, Ping; He, Qingsheng; Jin, Guofan

    2008-03-01

    Volume holographic correlator allows simultaneously calculate the two-dimensional inner product between the input image and each stored image. We have recently experimentally implemented in VHC 4000 parallel correlation channels with better than 98% output accuracy in a single location in a crystal. The speckle modulation is used to suppress the sidelobes of the correlation patterns, allowing more correlation spots to be contained in the output plane. A modified exposure schedule is designed to ensure the hologram in each channel with unity diffraction efficiency. In this schedule, a restricted coefficient was introduced into the original exposure schedule to solve the problem that the sensitivity and time constant of the crystal will change as a time function when in high-capacity storage. An interleaving method is proposed to improve the output accuracy. By unifying the distribution of the input and stored image patterns without changing the inner products between them, this method could eliminate the impact of correlation pattern variety on calculated inner product values. Moreover, by using this method, the maximum correlation spot size is reduced, which decreases the required minimum safe clearance between neighboring spots in the output plane, allowing more spots to be parallely detected without crosstalk. The experimental results are given and analyzed.

  17. Comparing non-invasive scapular tracking methods across elevation angles, planes of elevation and humeral axial rotations.

    Science.gov (United States)

    Grewal, T-J; Cudlip, A C; Dickerson, C R

    2017-12-01

    Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Coordinating Multi-Channel Pricing of Seasonal Goods

    OpenAIRE

    Preetam Basu

    2012-01-01

    Advancement in information technology has opened new avenues for traditional retailers to expand their operations. Pricing, which has been a critical issue, is more important than ever before as traditional retailers pursue multi-channel sales. In this paper the author studies the pricing problem of a retailer selling a seasonal product simultaneously in a ‘brick and mortar’ store as well as online. Optimal prices are derived and different product-market conditions are determined under wh...

  19. An introduction to finite projective planes

    CERN Document Server

    Albert, Abraham Adrian

    2015-01-01

    Geared toward both beginning and advanced undergraduate and graduate students, this self-contained treatment offers an elementary approach to finite projective planes. Following a review of the basics of projective geometry, the text examines finite planes, field planes, and coordinates in an arbitrary plane. Additional topics include central collineations and the little Desargues' property, the fundamental theorem, and examples of finite non-Desarguesian planes.Virtually no knowledge or sophistication on the part of the student is assumed, and every algebraic system that arises is defined and

  20. Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2015-02-01

    The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.

  1. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem

    2016-09-19

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.

  2. Expandable stents.

    Science.gov (United States)

    Nesbitt, J C; Carrasco, H

    1996-05-01

    Expandable metallic stents are effective in selected patients with malignant or benign airway stenoses. When used for malignant lesions, the primary purpose of the stent is to improve the quality of life; stents are usually chosen for palliation of symptoms in recognition of the low likelihood of success for other therapy. For patients with benign stenoses, the stents provide a permanent source of structural support to alleviate the narrowed segment. The advantages of the expandable metallic stents are as follows: (1) they can be inserted through an endotracheal tube or under local anesthesia with relative simplicity under fluoroscopic guidance; (2) they do not impair the drainage of sputum because ciliary movement is not interrupted; (3) over a period of a few weeks, the meshwork is gradually covered with mucosa as the stent becomes incorporated into the airway wall; (4) ventilation usually is not impaired if the metallic mesh stent covers another nonstenosed bronchus, because the interstices of the stent are nonobstructive; and (5) they are dynamic and continue to expand over time, particularly if concurrent treatment achieves an effect on the lesion that caused stenosis. Disadvantages of the expandable stent include (1) they often are only temporarily effective for tracheobronchial stenosis due to intraluminal tumor or granulation tissue, both of which can grow between the wires; (2) they are considered permanent stents because removal is difficult; and (3) they can be poorly positioned during placement or can become displaced by progressive migration after placement, and they cannot be repositioned. A relative contraindication to insertion is an inflammatory process or infection that can predispose to granulation formation, particularly at the points of maximal contact pressure of the stent to the airway mucosa. In the presence of inflammation, it may be better to use a silicone prosthesis until the inflammatory process subsides and fibrosis occurs. Granulation

  3. Infrared detectors, focal plane arrays, and imaging sensors; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert T.

    1989-10-01

    The present conference on advancements in IR detectors, Schottky-barrier focal plane arrays, CCD image analysis, and HgCdTe materials gives attention to a 256 x 256 PtSi array for IR astronomy, proposals for a second-generation meteosat's advanced optical payload, cryogenic bipolar technology for on-focal-plane signal processing, a parallel cellular processing system for fast generation of perspective plots, and ultrahigh-speed CCD image sensors for scanning applications. Also discussed are MBE GaAs rib waveguide experiments at 10.6 microns, an interferometric thermal detector, the development status of superconducting IR detector research, the absorption coefficients of n-type Hg(1-x)Cd(x)Te samples, and the influence of the surface channel on crosstalk in HgCdTe photovoltaic arrays.

  4. Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys

    Science.gov (United States)

    Pakkanen, Jukka; Calignano, Flaviana; Trevisan, Francesco; Lorusso, Massimo; Ambrosio, Elisa Paola; Manfredi, Diego; Fino, Paolo

    2016-08-01

    Interest in additive manufacturing (AM) has gained considerable impetus over the past decade. One of the driving factors for AM success is the ability to create unique designs with intrinsic characteristics as, e.g., internal channels used for hydraulic components, cooling channels, and heat exchangers. However, a couple of the main problems in internal channels manufactured by AM technologies are the high surface roughness obtained and the distortion of the channel shape. There is still much to understand in these design aspects. In this study, a cylindrical geometry for internal channels to be built with different angles with respect to the building plane in AlSi10Mg and Ti6Al4V alloys by selective laser melting was considered. The internal surfaces of the channels produced in both materials were analyzed by means of a surface roughness tester and by optical and electron microscopy to evaluate the effects of the material and design choices.

  5. Total spectrum of photon emission by an ultra-relativistic positron channelling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Department of Physics, St Petersburg State Maritime Technical University, Leninskii prospect 101, St Petersburg 198262; Solov'yov, A.V.; AF Ioffe Physical-Technical Institute of the Academy of Sciences of Russia, Polytechnicheskaya 26, St Petersburg 194021; Greiner, W.

    2000-01-01

    We present the results of numerical calculations of the channelling and undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due to either the propagation of a transverse acoustic wave through the crystal, or the static strain as it occurs in superlattices. The periodically bent crystal serves as an undulator. We investigate the dependence of the intensities of both the ordinary channelling and the undulator radiations on the parameters of the periodically bent channel with simultaneous account for the de-channelling effect of the positrons. We demonstrate that there is a range of parameters in which the undulator radiation dominates over the channelling one and the characteristic frequencies of both types of radiation are well separated. This result is important, because the undulator radiation can be used to create a tunable source of x-ray and γ-radiation. (author). Letter-to-the-editor

  6. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study

    OpenAIRE

    Schwenk, Eric S.; Gandhi, Kishor; Baratta, Jaime L.; Torjman, Marc; Epstein, Richard H.; Chung, Jaeyoon; Vaghari, Benjamin A.; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-01-01

    Background: Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. Objectives: To compare an out-...

  7. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  8. Experimental evidence of independence of nuclear de-channeling length on the particle charge sign

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Guidi, V.; Mazzolari, A.; Bandiera, L.; Germogli, G.; Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra (Italy); INFN Sezione di Ferrara (Italy); De Salvador, D. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN Laboratori Nazionali di Legnaro (Italy); Berra, A.; Prest, M. [Universita dell' Insubria, Como (Italy); INFN Sezione di Milano Bicocca, Milan (Italy); Vallazza, E. [INFN Sezione di Trieste (Italy)

    2017-02-15

    Under coherent interactions, particles undergo correlated collisions with the crystal lattice and their motion result in confinement in the fields of atomic planes, i.e. particle channeling. Other than coherently interacting with the lattice, particles also suffer incoherent interactions with individual nuclei and may leave their bounded motion, i.e., they de-channel. The latter is the main limiting factor for applications of coherent interactions in crystal-assisted particle steering. We experimentally investigated the nature of de-channeling of 120 GeV/c e{sup -} and e{sup +} in a bent silicon crystal at H4-SPS external line at CERN. We found that while channeling efficiency differs significantly for e{sup -} (2 ± 2%) and e{sup +} (54 ± 2%), their nuclear de-channeling length is comparable, (0.6 ± 0.1) mm for e{sup -} and (0.7 ± 0.3) mm for e{sup +}. The experimental proof of the equality of the nuclear de-channeling length for positrons and electrons is interpreted in terms of similar dynamics undergone by the channeled particles in the field of nuclei irrespective of their charge. (orig.)

  9. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  10. Resonant charging and stopping power of slow channelling atoms in a crystalline metal

    International Nuclear Information System (INIS)

    Mason, D R; Race, C P; Foo, M H F; Horsfield, A P; Foulkes, W M C; Sutton, A P

    2012-01-01

    Fast moving ions travel great distances along channels between low-index crystallographic planes, slowing through collisions with electrons, until finally they hit a host atom initiating a cascade of atomic displacements. Statistical penetration ranges of incident particles are reliably used in ion-implantation technologies, but a full, necessarily quantum-mechanical, description of the stopping of slow, heavy ions is challenging and the results of experimental investigations are not fully understood. Using a self-consistent model of the electronic structure of a metal, and explicit treatment of atomic structure, we find by direct simulation a resonant accumulation of charge on a channelling ion analogous to the Okorokov effect but originating in electronic excitation between delocalized and localized valence states on the channelling ion and its transient host neighbours, stimulated by the time-periodic potential experienced by the channelling ion. The charge resonance reduces the electronic stopping power on the channelling ion. These are surprising and interesting new chemical aspects of channelling, which cannot be predicted within the standard framework of ions travelling through homogeneous electron gases or by considering either ion or target in isolation. (paper)

  11. Systems considerations in mosaic focal planes

    Science.gov (United States)

    White, K. P., III

    1983-08-01

    Two key reasons for pursuing the development of mosaic focal planes are reviewed and it is shown that rapid frame repetition rate is the only requirement that can be solved no other way than through mosaic focal planes. With the view that spaceborne mosaic focal plane sensors are necessarily 'smart sensors' requiring a lot of onboard processing just to function, it is pointed out that various artificial intelligence techniques may be the most appropriate to incorporate in the data processing. Finally, a novel mosaic focal plane design is proposed, termed a virtual mosaic focal plane, in response to other system constraints.

  12. What Expands in an Expanding Universe?

    Science.gov (United States)

    Pacheco, José A De Freitas

    2015-01-01

    In the present investigation, the possible effects of the expansion of the Universe on systems bonded either by gravitational or electromagnetic forces, are reconsidered. It will be shown that the acceleration (positive or negative) of the expanding background, is the determinant factor affecting planetary orbits and atomic sizes. In the presently accepted cosmology (ΛCDM) all bonded systems are expanding at a decreasing rate that tends to be zero as the universe enters in a de Sitter phase. It is worth mentioning that the estimated expansion rates are rather small and they can be neglected for all practical purposes.

  13. What Expands in an Expanding Universe?

    Directory of Open Access Journals (Sweden)

    JOSÉ A. DE FREITAS PACHECO

    2015-12-01

    Full Text Available ABSTRACT In the present investigation, the possible effects of the expansion of the Universe on systems bonded either by gravitational or electromagnetic forces, are reconsidered. It will be shown that the acceleration (positive or negative of the expanding background, is the determinant factor affecting planetary orbits and atomic sizes. In the presently accepted cosmology (ΛCDM all bonded systems are expanding at a decreasing rate that tends to be zero as the universe enters in a de Sitter phase. It is worth mentioning that the estimated expansion rates are rather small and they can be neglected for all practical purposes.

  14. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    Science.gov (United States)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  15. Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2008-01-01

    This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment

  16. NUMERICAL DERIVATIONS OF A MACROSCOPIC MODEL FOR REINFORCED CONCRETE WALLS CONSIDERING IN-PLANE AND OUT-OF-PLANE BEHAVIOR

    OpenAIRE

    LATCHAROTE; Panon KAI, Yoshiro

    2015-01-01

    A macroscopic model, macro plate model, was proposed to represent a wall member of RC walls. Both in-plane and out-of-plane behavior were considered for numerical derivations of macro plate model. For out-of-plane behavior, bending deformation was incorporated with shear deformation to consider out-of-plane deformation as same as in-plane behavior. The hysteretic behavior of macro plate model can be directly expressed by stress-strain relationships in any conventional hysteretic rules, which ...

  17. Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications

    Directory of Open Access Journals (Sweden)

    Carlos A. Gutiérrez

    2017-01-01

    Full Text Available This paper deals with the modeling of nonstationary time-frequency (TF dispersive multipath fading channels for vehicle-to-vehicle (V2V communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D TF correlation function (TF-CF, and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.

  18. Efficient Closed Form Cut-Off Planes and Propagation Planes Characteristics for Dielectric Slab Loaded Boundary Value Problems

    OpenAIRE

    Zafar, Junaid

    2012-01-01

    The geometrical relationship between the cut-off and propagating planes of any waveguide system is a prerequisite for any design process. The characterization of cut-off planes and optimisation are challenging for numerical methods, closed-form solutions are always preferred. In this paper Maxwells coupled field equations are used to characterise twin E-plane and H-plane slab loaded boundary value problems. The single mode bandwidths and dispersion characteristics of these structures are pres...

  19. Out-of-Plane Strain Effects on Physically Flexible FinFET CMOS

    KAUST Repository

    Ghoneim, Mohamed T.

    2016-05-18

    We present a comprehensive electrical performance assessment of hafnium silicate (HfSiOₓ) high-κ dielectric and titanium-nitride (TiN) metal-gate-integrated FinFET-based complementary-metal-oxide-semiconductor (CMOS) on flexible silicon on insulator. The devices were fabricated using the state-of-the-art CMOS technology and then transformed into flexible form by using a CMOS-compatible maskless deep reactive-ion etching technique. Mechanical out-of-plane stresses (compressive and tensile) were applied along and across the transistor channel lengths through a bending range of 0.5-5 cm radii for n-type and p-type FinFETs. Electrical measurements were carried out before and after bending, and all the bending measurements were taken in the actual flexed (bent) state to avoid relaxation and stress recovery. Global stress from substrate bending affects the devices in different ways compared with the well-studied uniaxial/biaxial localized strain. The global stress is dependent on the type of channel charge carriers, the orientation of the bending axis, and the physical gate length of the device. We, therefore, outline useful insights on the design strategies of flexible FinFETs in future free-form electronic applications.

  20. Heat transfer in initial region of a plane channel at different turbulence levels of inlet flow

    International Nuclear Information System (INIS)

    Sukomel, A.S.; Gutsev, D.F.; Velichko, V.I.

    1976-01-01

    Local heat transfer has been experimentally studied on the initial portion of the flat channel in the turbulent air flow. The channel measures 37.5 mm in height and 212.5 mm in width. The heat transfer measurements have been taken at inlet flow turbulence of epsilon 0 =0.7-0.8%. The charts are plotted showing variation of trannser with inlet and additional agitation of the flow. Critical values are found of the Reynolds number which are characteristic of the zones with various types of flow (laminar, transient and turbulent) at epsilon 0 =0.7-0.8%: Resub(crit 1) = 9.3x10sup(4), Resub(crit 2) = 2.9x10sup(5). With the increase of epsilon 0 up to 5% and above, the flow in the boundary layer becomes turbulent practically from the very beginning of the experimental portion. Considerable increase has been revealed of the heat transfer in this group of the experiments. At epsilon (>=) 5% the heat transfer grows up regularly

  1. Design of the injection channel magnets for the K1200 cyclotron

    International Nuclear Information System (INIS)

    Wu, X.Y.; Lawton, D.; Marti, F.; Zeller, A.F.

    2001-01-01

    The beam from the K500 cyclotron is injected radially into the median plane of the K1200 cyclotron where it is stripped inside a dee. Along the injection path, the injected beam traverses large magnetic gradients under the K1200 superconducting coil and on the edge of the hill. To match the injected beam to the eigen-ellipse for the accelerated beam, two magnetic elements are included in the injection channel in the yoke of the K1200 cyclotron. One of them is an active element and the other a conical focusing passive element. This last element must move in the horizontal plane to match the different beam paths. We describe in the paper the beam dynamics calculations as well as the mechanical design and construction of these magnets

  2. Three-channel K-matrix analysis of dibaryons in JP = 2± and 3- states

    International Nuclear Information System (INIS)

    Hiroshige, Noboru

    1986-01-01

    We have investigated the dibaryon resonances with the quamtum numbers J P = 2 + , 2 - and 3 - in terms of a three-channel K-matrix method using the pp-pp, pp-πd and πd-πd amplitudes obtained by the partial-wave analysis as the input data. We have found many good solutions in each case and all of the solutions have a nearby pole in the lower-half complex energy plane. The obtained resonance masses cluster in the region 2.15 - 2.16 GeV. A remarkable finding of our three-channel analysis is that the dibaryon resonances have very weak coupling to the pp channel. To get more difinite conclusion we need the pp-NΔ and πd-NΔ amplitude as well as a better πd-πd one. (author)

  3. Microeconomics of Agricultural Grading: Impacts on the Marketing Channel

    OpenAIRE

    David A. Hennessy

    1995-01-01

    In this paper I focus on how grade prices affect the provision of product transformation skills in the food marketing system. A self-protection model is used to show how resources are allocated to protect the potential value of commodities in the marketing channel. Resource allocations may be complementary, and complementarity may be exploited to expand an industry. Further, uncertainty concerning skill levels may inhibit expansion. Because two primary objectives of agricultural extension inv...

  4. Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension

    KAUST Repository

    Yudhanto, Arief

    2015-04-01

    Three-dimensional (3D) reinforcement by stitching is effective in improving the impact resistance of composites. Stitching, however, adversely affects the composite\\'s in-plane mechanical responses, and alters its damage mechanisms due to stitch-induced irregularities. We experimentally investigate the effect of two important stitch parameters, stitch density and thread diameter, on the damage characteristics of 3D stitched multidirectional composites under in-plane tension using X-ray radiography, X-ray micro-computed tomography and digital image correlation (DIC). Our study shows that composites stitched with thicker thread exhibit improved tensile strength due to effective hindrance of edge-delamination. We also found that stitch thread affects damage behaviors. A higher number of transverse cracks develops in the middle portion of thin 90° fiber tows; the inter-crack distance is reduced by dense stitching. DIC is able to identify the cracks that appear in resin-rich channels and distinguish strain fields due to different stitch densities.

  5. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  6. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

    DEFF Research Database (Denmark)

    Peters, C; Bayer, M J; Bühler, S

    2001-01-01

    -complex formation occurs downstream from trans-SNARE pairing, and depends on both the Rab-GTPase Ypt7 and calmodulin. The maintenance of existing complexes and completion of fusion are independent of trans-SNARE pairs. Reconstituted proteolipids form sealed channels, which can expand to form aqueous pores in a Ca2...

  7. Semantic Versus Syntactic Cutting Planes

    OpenAIRE

    Filmus, Yuval; Hrubeš, Pavel; Lauria, Massimo

    2016-01-01

    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of Pudlák applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for whic...

  8. Improving B2B communication by utilizing digital marketing channels : a case study of REALPAD

    OpenAIRE

    Vuong Yen, Trang; Do, Thu

    2016-01-01

    REALPAD is a fast developing company that offers CRM software for residential real estate developers. The company is planning to expand its sales to new parts of the world and therefore has a need for more effective communication channels for the company to reach more prospects in the international market. The main objective of this thesis project was to find out how to improve REALPAD’s communication with potential and existing customers by using various digital marketing channels. In or...

  9. Evaluation of uterine peristalsis using cine MRI on the coronal plane in comparison with the sagittal plane.

    Science.gov (United States)

    Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori

    2016-01-01

    Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.

  10. Channel correlation of free space optical communication systems with receiver diversity in non-Kolmogorov atmospheric turbulence

    Science.gov (United States)

    Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong

    2018-05-01

    Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.

  11. On the determination of general plane stress states in orthotropic materials from ultrasonic velocity data in non symmetry planes

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando J.A.

    2015-01-01

    This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)

  12. Lower incisor inclination regarding different reference planes.

    Science.gov (United States)

    Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen

    2016-09-01

    The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination. Sociedad Argentina de Investigación Odontológica.

  13. Fourier descriptor classification of differential eddy current probe impedance plane trajectories

    International Nuclear Information System (INIS)

    Lord, W.; Satish, S.R.

    1984-01-01

    This chapter describes the use of a parametric model for representing the two-dimensional eddy current impedance plane trajectory. The main advantage of this approach is the ability to reconstruct the trajectory from the model coefficients. Fourier descriptors are used to facilitate defect classification. The Fourier descriptors are obtained by expanding the complex contour function in a Fourier series. Functions of Fourier coefficients which are invariant under transformation of the trajectory are derived and incorporated into a feature vector. Defect classification is obtained by using the K-Means algorithm to cluster the feature vectors. It is demonstrated that the Fourier descriptor approach represents a powerful tool which have several advantages over nonparametric approaches including its insensitivity to drift in the eddy current instrument as well as variations in the probe speed

  14. The position of the occlusal plane in natural and artificial dentitions as related to other craniofacial planes.

    Science.gov (United States)

    Al Quran, Firas A M; Hazza'a, Abdalla; Al Nahass, Nabeel

    2010-12-01

    This study aimed at determining the most reliable ala-tragus line as a guide for the orientation of the occlusal plane in complete denture patients by use of cephalometric landmarks on dentate volunteers. Analysis was made for prosthodontically related craniofacial reference lines and angles of lateral cephalometric radiographs taken for 47 dentate adults. Variables were determined and data were analyzed using SPSS (SPSS, Inc., Chicago, IL). Occlusal plane angle formed between the occlusal plane and Camper's plane had the lowest mean value in the angle formed with Camper's I, which represents the measure taken from the superior border of the tragus of the ear with a score of 2.1°. The highest was measured in the angle formed with Camper's III with a score of 6.1°, while the angle formed with Camper's II was 3.2°. The differences between the three planes in relation to the occlusal plane was significant (p < 0.001). The superior border of the tragus with the inferior border of the ala of the nose was most accurate in orienting the occlusal plane. © 2010 by The American College of Prosthodontists.

  15. Expanding subjectivities

    DEFF Research Database (Denmark)

    Lundgaard Andersen, Linda; Soldz, Stephen

    2012-01-01

    A major theme in recent psychoanalytic thinking concerns the use of therapist subjectivity, especially “countertransference,” in understanding patients. This thinking converges with and expands developments in qualitative research regarding the use of researcher subjectivity as a tool......-Saxon and continental traditions, this special issue provides examples of the use of researcher subjectivity, informed by psychoanalytic thinking, in expanding research understanding....

  16. Resonance properties of tidal channels with multiple retention basins: role of adjacent sea

    Science.gov (United States)

    Roos, Pieter C.; Schuttelaars, Henk M.

    2015-03-01

    We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea geometry controls the extent to which radiative damping takes place and hence the type of conditions that effectively apply at the channel mouth. These conditions range between the two extremes of prescribing elevation (deep sea limit) and prescribing the incoming wave (sea as channel extension of the same depth, as done in an earlier study). The closer to this first extreme, the stronger the oscillations in the secondary basins may feed back onto the channel mouth and thus produce an amplified or weakened response in the system as a whole. The possibly resonant response is explained by analysing the additional waves that emerge on either side of the entrance of the secondary basin. Finally, we show that the simultaneous presence of two secondary basins may amplify or weaken the accumulated responses to these basins individually.

  17. Four Channel Mini Wire Chamber to Study Cosmic Rays

    Science.gov (United States)

    Felix, J.; Rodriguez, G. J.

    2018-01-01

    Multiwire proportional chamber is a conventional technique to study radiation in general, and cosmic rays in particular. To study cosmic rays, it was planned, designed, constructed, characterized, and tested a four channel mini wire chamber, based on two 3 cm × 3 cm × 0.6 cm Aluminum frames, two 3 cm × 3 cm × 0.6 cm plastic frames, two 3 cm × 3 cm × 0.3 cm Aluminum frames, two electronic planes each with two Tungsten Gold plated 1 mil diameter wires, parallel and 1 cm apart each other at 25 g stretched-each plane was 90° rotated each other in the final assemble- and two Aluminum foil window to define the gas volume; it was operated with Argon 90%-CH4 10% gas mixture at 1 atmosphere and ambient temperature (20°C in the average). It is presented technical details, results on characterization, and preliminary results on cosmic rays detection.

  18. Radiation emission at channeling of electrons in a strained layer Si1-xGex undulator crystal

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    ML source. Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation...

  19. Shear bands and anisotropy of the mechanical properties of an MA2-1pch magnesium alloy after equal-channel angular pressing

    Science.gov (United States)

    Serebryany, V. N.; Khar'kova, M. A.; D'yakonov, G. S.; Kopylov, V. I.; Dobatkin, S. V.

    2017-10-01

    Effect of structure and texture on the anisotropy of the mechanical properties of the MA2-1pch magnesium alloy subjected to equal-channel angular pressing and subsequent annealing has been studied in two mutually perpendicular planes Y and X (along and across the pressing direction). The anisotropy of the mechanical properties is shown to be due to various orientations of shear bands and various types of texture inside the bands and outside them in planes X and Y.

  20. Compounded natural convection enhancement in a vertical parallel-plate channel

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Assunta [Dipartimento di Energetica, Termofluidodinamica Applicata e Condizionamenti Ambientali, Universita degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Campo, Antonio [Department of Mechanical Engineering, The University of Vermont, 33 Colchester Ave., Burlington, VT 05405 (United States); Manca, Oronzio [Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Universita degli Studi di Napoli, via Roma 29, Aversa (CE) 81031 (Italy)

    2008-06-15

    This paper addresses the natural convection behavior of air when heated in single vertical, parallel-plate channels. To enhance the heat transfer two passive schemes are combined: (1) an equidistant short plate is inserted at the inlet and (2) two parallel, colinear insulated plates are appended at the exit. The channel plates are symmetrically heated with a uniform heat flux. The computational procedure is made by solving the full elliptic Navier-Stokes and energy equations with the finite-volume methodology in an I-type computational domain that is much larger than the physical domain. Within the framework of a ''proof-of-concept'' the controlling Grashof number based on the heated plate height ranges between 10{sup 3} and 10{sup 6}. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, the pressure at the channel mid-plane and the temperature along the plates. In addition, the Nusselt number and the average Nusselt number, both based on the heated plate height, are presented in graphical form. At the end, optimal channel configurations expressed in terms of the highest average Nusselt number are obtained for the pair of pre-assigned Grashof numbers. (author)

  1. Coherent field propagation between tilted planes.

    Science.gov (United States)

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  2. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  3. Spatial distribution of spin polarization in a channel on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Zhou Xiaoying; Shao Huaihua; Liu Yiman; Tang Dongsheng; Zhou Guanghui

    2012-01-01

    We study the spatial distribution of electron spin polarization for a gate-controlled T-shaped channel on the surface of a three-dimensional topological insulator (3D TI). We demonstrate that an energy gap depending on channel geometry parameters is definitely opened due to the spatial confinement. Spin surface locking in momentum space for a uniform wide channel with Hamiltonian linearity in the wavevector is still kept, but it is broken with Hamiltonian nonlinearity in the wavevector, like that for two-dimensional surface states widely studied in the literature. However, the spin surface locking for a T-shaped channel is broken even with Hamiltonian linearity in the wavevector. Interestingly, the magnitude and direction of the in-plane spin polarization are spatially dependent in all regions due to the breaking of translational symmetry of the T-shaped channel system. These interesting findings for an electrically controlled nanostructure based on the 3D TI surface may be testable with the present experimental technique, and may provide further understanding the nature of 3D TI surface states. (paper)

  4. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  5. Channeling crystals for positron production

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    Particles traversing at small angles along a single crystal axis experience a collective scattering force of many crystal atoms. The enormous fields can trap the particles along an axis or plane, called channeling. High energy electrons are attracted by the positive nuclei and therefore produce strongly enhanced so called coherent bremsstrahlung and pair production. These effects could be used in a positron production target: A single tungsten crystal is oriented to the incident electron beam within 1 mrad. At 28 GeV/c the effective radiation length is with 0.9 mm about one quarter of the amorphous material. So the target length can be shorter, which yields a higher conversion coefficient and a lower emittance of the positron beam. This makes single crystals very interesting for positron production targets. 18 refs., 2 figs

  6. Materials, devices, techniques, and applications for Z-plane focal plane array technology; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Carson, John C.

    1989-09-01

    The papers contained in this volume focus on the implementation and application of Z-plane focal array technology. Topics discussed include civil and military applications of Z-plane technology, electronic design and technology for on-scale plane signal processing, detector development and fabrication technology, and Z-plane module development and producibility. Papers are presented on future capabilities of Z-plane technology, comparison of planar and Z-plane focal plane technologies for dim target detection, Z-plane modules as target extraction engines, and high complexity tape automated bonding application for space hardware.

  7. On the necessity of connection between plane and curve space metrics in gravity theory on a plane background

    International Nuclear Information System (INIS)

    Vlasov, A.A.

    1988-01-01

    The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''

  8. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  9. Design and Performance Analysis of MISO-ORM-DCSK System over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2016-01-01

    Full Text Available A novel chaotic communication system, named Orthogonality-based Reference Modulated-Differential Chaos Shift Keying (ORM-DCSK, is proposed to enhance the performance of RM-DCSK. By designing an orthogonal chaotic generator (OCG, the intrasignal interference components in RM-DCSK are eliminated. Also, the signal frame format is expanded so the average bit energy is reduced. As a result, the proposed system has less interference in decision variables. Furthermore, to investigate the bit error rate (BER performance over Rayleigh fading channels, the MISO-ORM-DCSK is studied. The BER expressions of the new system are derived and analyzed over AWGN channel and multipath Rayleigh fading channel. All simulation results not only show that the proposed system can obtain significant improvement but also verify the analysis in theory.

  10. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    Science.gov (United States)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  11. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  12. Open Cluster Dynamics via Fundamental Plane

    Science.gov (United States)

    Lin, Chien-Cheng; Pang, Xiao-Ying

    2018-04-01

    Open clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.

  13. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  14. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.

    2003-01-01

    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  15. ‘More Than a Television Channel’: Channel 4, FilmFour and a Failed Convergence Strategy

    Directory of Open Access Journals (Sweden)

    Hannah Andrews

    2014-12-01

    Full Text Available Obliged by act of Parliament to ‘innovate and experiment’, Channel 4 has, since its birth in 1982, been the UK’s most pioneering commercial television broadcaster. Its arrival broadened the meaning, function and operations of public service broadcasting in the UK, with a particular focus on minorities and pushing boundaries, political and creative. In the late 1990s, though, it was under increasing threat from specialist pay-TV services that could more accurately target its audiences. As a commercially funded channel with public service responsibilities, Channel 4 was under increasing pressure to be financially independent and fulfil a challenging remit. Its response to a threatened income and increasing competition was to diversify its portfolio into various media related businesses, particularly taking advantage of the arrival of digital television to expand its offer. The subtitle of the Corporation’s 2000 Annual report, ‘More than a Television Channel’ indicates the confidence, optimism and boldness with which this expansion was approached. The rapid expansion of the channel’s portfolio in a time of relative confidence in the commercial viability of the television industry was to be reversed only a few years later, when, after it failed to produce the returns it was designed for, 4Ventures was drastically scaled back, and Channel 4 refocused its efforts on the core broadcast channel. Channel 4 therefore offers a test case in the limits of convergence as a strategy for survival for British broadcasters at the arrival of digital television. This paper focuses specifically on the areas of Channel 4’s strategy that pertained to one of the broadcaster’s particular strengths: film culture. It explores one of the film offshoots of 4Ventures: FilmFour Ltd, the film finance, production, sales and distribution company and how its failure to find a commercial hit mirrors the general problems for a commercial public service broadcaster

  16. Venom-derived peptides inhibiting Kir channels: Past, present, and future.

    Science.gov (United States)

    Doupnik, Craig A

    2017-12-01

    Inwardly rectifying K + (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K + ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K + -selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca 2+ -activated and voltage-gated K + channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  18. Flow behaviour in a CANDU horizontal fuel channel from stagnant subcooled initial conditions

    International Nuclear Information System (INIS)

    Caplan, M.Z.; Gulshani, P.; Holmes, R.W.; Wright, A.C.D.

    1984-01-01

    The flow behaviour in a CANDU primary system with horizontal fuel channels is described following a small inlet header break. With the primary pumps running, emergency coolant injection is in the forward direction so that the channel outlet feeders remain warmer than the inlet thereby promoting forward natural circulation. However, the break force opposes the forward driving force. Should the primary pumps run down after the circuit has refilled, there is a break size for which the natural circulation force is balanced by the break force and channels could, theoretically, stagnate. Result of visualization and of full-size channel tests on channel flow behaviour from an initially stagnant channel condition are discussed. After a channel stagnation, the decay power heats the coolant to saturation. Steam is then formed and the coolant stratifies. The steam expands into the subcooled water in the end fitting in a chugging type of flow regime due to steam condensation. After the end fitting reaches the saturation temperature, steam is able to penetrate into the vertical feeder thereby initiating a large buoyancy induced flow which refills the channel. The duration of stagnation is shown to be sensitive to small asymmetries in the initial conditions. A small initial flow can significantly shorten the occurrence and/or duration of boiling as has been confirmed by reactor experience. (author)

  19. Expanding Thurston maps

    CERN Document Server

    Bonk, Mario

    2017-01-01

    This monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. Many dynamical properties of the map are encoded in the geometry of this visual sphere. For example, an expanding Thurston map is topologically conjugate to a rational map if and only if its visual sphere is quasisymmetrically equivalent to the Riemann sphere. This relation between dynamics and fractal geometry is the main focus for the investigations in this work.

  20. Channel evolution under changing hydrological regimes in anabranching reaches downstream of the Three Gorges Dam

    Science.gov (United States)

    Han, Jianqiao; Zhang, Wei; Yuan, Jing; Fan, Yongyang

    2018-03-01

    Elucidating the influence of dams on fluvial processes can benefit river protection and basin management. Based on hydrological and topographical data, we analyzed channel evolution in anabranching reaches under changing hydrological regimes influenced by the Three Gorges Dam. The main conclusions are as follows: 1) the channels of specific anabranching reaches were defined as flood trend channels or low-flow trend channels according to the distribution of their flow characteristics. The anabranching reaches were classified as T1 or T2. The former is characterized by the correspondence between the flood trend and branch channels, and the latter is characterized by the correspondence between the flood trend and main channels; 2) on the basis of the new classification, the discrepant patterns of channel evolution seen in anabranching reaches were unified into a pattern that showed flood trend channels shrinking and low-flow trend channels expanding; 3) flood abatement and the increased duration of moderate flow discharges are the main factors that affect channel adjustments in anabranching reaches after dam construction; and 4) in the next few decades, the pattern of channel evolution will remain the same as that of the Three Gorges Dam operation. That is, the morphology will fully adapt to a flow with a low coefficient of variation. Our results are of interest in the management of the Yangtze River and other rivers influenced by dams.

  1. Evaluation of planar 3D electrical capacitance tomography: from single-plane to dual-plane configuration

    International Nuclear Information System (INIS)

    Wei, Hsin-Yu; Qiu, Chang-Hua; Soleimani, Manuchehr

    2015-01-01

    Electrical capacitance tomography (ECT) is a non-invasive imaging technique that is sensitive to the dielectric permittivity property of an object. Conventional ECT systems have a circular/cylindrical or rectangular geometry, in which the electrode plates are usually spaced equally around the tank. It is the most common configuration as it can be easily applied to industrial pipelines. However, under some circumstances, the full access to the imaging geometry may not be applicable due to the limitation of the process area. In those cases, and with limited access, planar ECT sensors can fit the process structure if access to only one side is possible. A single-plane ECT configuration has been proposed for such applications. However, the planar array often suffers from a lack of sensitivity and difficulty with depth detection. To better understand these limitations we investigate the imaging performance from the single-plane ECT to dual-plane ECT structure. The limitations and constraints of the planar configuration will also be discussed. Several experiments were conducted using both single-plane and dual-plane configurations to evaluate the potential applications. The initial results are promising, and the quality of the reconstructed images are compared with the real condition for process validation. (paper)

  2. Guide-Plane Retention in Designing Removable Partial Dentures.

    Science.gov (United States)

    Mothopi-Peri, Matshediso; Owen, C Peter

    To compare the influence of abutment teeth guide planes and guiding surfaces on retention of a removable partial denture (RPD). Extracted teeth embedded into a maxillary cast in the first premolar and second molar positions simulated two bounded saddles. Acrylic resin RPDs were made with no guide planes, then with guide planes, then with guiding surfaces added to directly contact the guide planes. The maximum loads on removal from the cast were recorded. There was a significant increase in retention force of 1.6 times when only guide planes were present and of 10.2 times when guiding surfaces intimately contacted the guide planes. The retention of acrylic resin RPDs can be substantially increased by making their guiding surfaces intimately contact the guide planes of the teeth.

  3. A Collaborative Knowledge Plane for Autonomic Networks

    Science.gov (United States)

    Mbaye, Maïssa; Krief, Francine

    Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.

  4. Frequency selective tunable spin wave channeling in the magnonic network

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Odincov, S. A.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Stognij, A. I. [Scientific-Practical Materials Research Center, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)

    2016-04-25

    Using the space-resolved Brillouin light scattering spectroscopy, we study the frequency and wavenumber selective spin-wave channeling. We demonstrate the frequency selective collimation of spin-wave in an array of magnonic waveguides, formed between the adjacent magnonic crystals on the surface of yttrium iron garnet film. We show the control over spin-wave propagation length by the orientation of an in-plane bias magnetic field. Fabricated array of magnonic crystal can be used as a magnonic platform for multidirectional frequency selective signal processing applications in magnonic networks.

  5. Water experiment of high-speed, free-surface, plane jet along concave wall

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Ida, Mizuho; Kato, Yoshio; Maekawa, Hiroshi; Itoh, Kazuhiro; Kukita, Yutaka

    1997-01-01

    In the International Fusion Materials Irradiation Facility (IFMIF), an intense 14 MeV neutron beam will be generated in the high-speed liquid lithium (Li) plane jet target flowing along concave wall in vacuum. As part of the conceptual design activity (CDA) of the IFMIF, the stability of the plane liquid jet flow was studied experimentally with water in a well-defined channel geometry for non-heating condition. A two-dimensional double-reducer nozzle being newly proposed for the IFMIF target successfully provided a high-speed (≤ 17 m/s) stable water jet with uniform velocity distribution at the nozzle exit without flow separation in the nozzle. The free surface of the jet was covered by two-dimensional and/or three-dimensional waves, the size of which did not change much over the tested jet length of ∼130 mm. The jet velocity profile changed around the nozzle exit from uniform to that of free-vortex flow where the product of the radius of stream line and local velocity is constant in the jet thickness. The jet thickness increased immediately after exiting the nozzle because of the velocity profile change. The predicted jet thickness by a modified one-dimensional momentum model agreed with the data well. (author)

  6. Low-Rynolds number k-ε turbulence model for calculation of fast-reactor-channel flows

    International Nuclear Information System (INIS)

    Mikhin, V.I.

    2000-01-01

    For calculating the turbulent flows in the complex geometry channels typical for the nuclear reactor installation elements the low-Reynolds-number k-ε turbulence model with the model functions not containing the spatial coordinate like y + is proposed. Such spatial coordinate is usually used for modeling the turbulence near the wall correctly. The model completed on the developed flow of the non-viscous incompressible liquid in the plane channel correctly describes the transition from the laminar regime to the turbulent one. The calculated skin friction coefficients obey the well-known Dean and Zarbi - Reynolds laws. The mean velocity distributions are close to that obtained from the empirical three-layer Karman model. (author)

  7. Conceptual Design of Wave Plane

    DEFF Research Database (Denmark)

    Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter

    The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...

  8. Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity

    International Nuclear Information System (INIS)

    Levin, G.A.; Quader, K.F.

    1992-01-01

    The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab

  9. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    regime by a buried oxide layer / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- A positron source using channeling in crystals for linear colliders / X. Artru ... [et al.] -- Parametric channeling and collapse of charged particles beams in crystals / M. Vysotskyy and V. Vysotskii.The formation and usage of coherent correlated charged particles states in the physics of channeling in crystals / S. V. Adamenko, V. I. Vysotskii and M. V. Vysotskyy -- Surface channeling of magnetic-charged particles on multilayer surface / S. V. Adamenko and V. I. Vysotskii -- Coherent creation of anti-hydrogen atoms in a crystal by relativistic antiproton / Yu. P. Kunashenko -- Thermal equilibrium of light ions in heavy crystals / E. Tsyganov -- Photon emission of electrons in a crystalline undulator / H. Backe ... [et al.] -- Channeling radiation from relativistic electrons in a crystal target as complementary x-ray and gamma ray source at synchrotron light facilities / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Diffracted channeling radiation and other compound radiation processes / H. Nitta -- Collective scattering on the atom planes under the condition of full transition / A. R. Mkrtchyan ... [et al.] -- The proposal of the experiment on the research of the diffracted channeling radiation / D. A. Baklanov ... [et al.] -- Positron channeling at the DaOne BTF Facility: the cup experiment / L. Quintieri ... [et al.] -- Radiation spectra of 200 MeV electrons in diamond and silicon crystals at axial and planar orientations / K. Fissum ... [et al.] -- Channeling experiments with electrons at the Mainz Microtron Mami / W. Lauth ... [et al.] -- Dechanneling of positrons by dislocations: effects of anharmonic interactions / J. George and A. P. Pathak -- Diffracted channeling radiation from axially channeled relativistic electrons / K. B. Korotchenko ... [et al.] -- Intensive quasi-monochromatic, directed x-ray radiation of planar channeled positron bunch / L. Gevorgian

  10. Ultraviolet-enhanced photodetection in a graphene/SiO2/Si capacitor structure with a vacuum channel

    International Nuclear Information System (INIS)

    Kim, Myungji; Kim, Hong Koo

    2015-01-01

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO 2 /Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO 2 and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstrating a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO 2 /Si structure are proposed

  11. Work Planing Automation at Mechanical Subdivision

    OpenAIRE

    Dzindzelėta, Vytautas

    2005-01-01

    Work planing automation, installation possibilities and future outlook at mechanical subdivision. To study how the work planing has changed before and after automation process and to analyse automation process methodology.

  12. Dynamic tracking of prosthetic valve motion and deformation from bi-plane x-ray views: feasibility study

    Science.gov (United States)

    Hatt, Charles R.; Wagner, Martin; Raval, Amish N.; Speidel, Michael A.

    2016-03-01

    Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 +/- 2.6 mm (mean +/- S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm +/- 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 +/- 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.

  13. Comparison of self-expandable and balloon-expanding stents for hybrid ductal stenting in hypoplastic left heart complex.

    Science.gov (United States)

    Goreczny, Sebastian; Qureshi, Shakeel A; Rosenthal, Eric; Krasemann, Thomas; Nassar, Mohamed S; Anderson, David R; Morgan, Gareth J

    2017-07-01

    We aimed to compare the procedural and mid-term performance of a specifically designed self-expanding stent with balloon-expandable stents in patients undergoing hybrid palliation for hypoplastic left heart syndrome and its variants. The lack of specifically designed stents has led to off-label use of coronary, biliary, or peripheral stents in the neonatal ductus arteriosus. Recently, a self-expanding stent, specifically designed for use in hypoplastic left heart syndrome, has become available. We carried out a retrospective cohort comparison of 69 neonates who underwent hybrid ductal stenting with balloon-expandable and self-expanding stents from December, 2005 to July, 2014. In total, 43 balloon-expandable stents were implanted in 41 neonates and more recently 47 self-expanding stents in 28 neonates. In the balloon-expandable stents group, stent-related complications occurred in nine patients (22%), compared with one patient in the self-expanding stent group (4%). During follow-up, percutaneous re-intervention related to the ductal stent was performed in five patients (17%) in the balloon-expandable stent group and seven patients (28%) in self-expanding stents group. Hybrid ductal stenting with self-expanding stents produced favourable results when compared with the results obtained with balloon-expandable stents. Immediate additional interventions and follow-up re-interventions were similar in both groups with complications more common in those with balloon-expandable stents.

  14. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  15. In-plane and out-of-plane nonlinear dynamics of an axially moving beam

    International Nuclear Information System (INIS)

    Farokhi, Hamed; Ghayesh, Mergen H.; Amabili, Marco

    2013-01-01

    In the present study, the nonlinear forced dynamics of an axially moving beam is investigated numerically taking into account the in-plane and out-of-plane motions. The nonlinear partial differential equations governing the motion of the system are derived via Hamilton’s principle. The Galerkin scheme is then introduced to these partial differential equations yielding a set of second-order nonlinear ordinary differential equations with coupled terms. This set is transformed into a new set of first-order nonlinear ordinary differential equations by means of a change of variables. A direct time integration technique is conducted upon the new set of equations resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are investigated for different system parameters and presented through use of time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms

  16. The horizontal plane appearances of scoliosis

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2017-01-01

    Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two-/three-dimen......Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two...... cases of a normal spine and a thoracic scoliosis are presented. Results: For a normal spine, vector projections in the transverse plane are aligned with the posterior-anterior anatomical axis. For a scoliotic spine, vector projections in the horizontal plane provide information on the lateral...... decompensation of the spine and the lateral displacement of vertebrae. In the horizontal plane view, vertebral rotation and projections of the sagittal curves can also be analyzed simultaneously. Conclusions: The use of posterior-anterior vertebral vector facilitates the understanding of the 3D nature...

  17. Advective and diapycnal diffusive oceanic flux in Tenerife - La Gomera Channel

    Science.gov (United States)

    Marrero-Díaz, A.; Rodriguez-Santana, A.; Hernández-Arencibia, M.; Machín, F.; García-Weil, L.

    2012-04-01

    During the year 2008, using the commercial passenger ship Volcán de Tauce of the Naviera Armas company several months, it was possible to obtain vertical profiles of temperature from expandable bathythermograph probes in eight stations across the Tenerife - La Gomera channel. With these data of temperature we have been estimated vertical sections of potential density and geostrophic transport with high spatial and temporal resolution (5 nm between stations, and one- two months between cruises). The seasonal variability obtained for the geostrophic transport in this channel shows important differences with others Canary Islands channels. From potential density and geostrophic velocity data we estimated the vertical diffusion coefficients and diapycnal diffusive fluxes, using a parameterization that depends of Richardson gradient number. In the center of the channel and close to La Gomera Island, we found higher values for these diffusive fluxes. Convergence and divergence of these fluxes requires further study so that we can draw conclusions about its impact on the distribution of nutrients in the study area and its impact in marine ecosystems. This work is being used in research projects TRAMIC and PROMECA.

  18. Electrohydrodynamic channeling effects in narrow fractures and pores

    Science.gov (United States)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  19. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    Science.gov (United States)

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  20. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie; Hu, Weijin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.; Wu, Tao; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-01-01

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  1. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie

    2018-01-30

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  2. Causal inheritance in plane wave quotients

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality

  3. Causal inheritance in plane wave quotients

    Science.gov (United States)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2004-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.

  4. Two Types of Expanding Lie Algebra and New Expanding Integrable Systems

    International Nuclear Information System (INIS)

    Dong Huanhe; Yang Jiming; Wang Hui

    2010-01-01

    From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebras are obtained. Two expanding integrable systems are produced with the help of the generalized zero curvature equation. One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM). (general)

  5. Ultrasound Guided Transversus Thoracic Plane block, Parasternal block and fascial planes hydrodissection for internal mammary post thoracotomy pain syndrome.

    Science.gov (United States)

    Piraccini, E; Biondi, G; Byrne, H; Calli, M; Bellantonio, D; Musetti, G; Maitan, S

    2018-05-16

    Pectoral Nerves Block (PECS) and Serratus Plane Block (SPB) have been used to treat persistent post-surgical pain after breast and thoracic surgery; however, they cannot block the internal mammary region, so a residual pain may occur in that region. Parasternal block (PSB) and Thoracic Transversus Plane Block (TTP) anaesthetize the anterior branches of T2-6 intercostal nerves thus they can provide analgesia to the internal mammary region. We describe a 60-year-old man suffering from right post-thoracotomy pain syndrome with residual pain located in the internal mammary region after a successful treatment with PECS and SPB. We performed a PSB and TTP and hydrodissection of fascial planes with triamcinolone and Ropivacaine. Pain disappeared and the result was maintained 3 months later. This report suggests that PSB and TTP with local anaesthetic and corticosteroid with hydrodissection of fascial planes might be useful to treat a post thoracotomy pain syndrome located in the internal mammary region. The use of Transversus Thoracic Plane and Parasternal Blocks and fascial planes hydrodissection as a novel therapeutic approach to treat a residual post thoracotomy pain syndrome even when already treated with Pectoral Nerves Block and Serratus Plane Block. © 2018 European Pain Federation - EFIC®.

  6. High-efficiency deflection of high energy protons due to channeling along the 〈110〉 axis of a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2016-09-01

    Full Text Available A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the 〈110〉 axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the 〈111〉 axis. The measured probability of inelastic nuclear interactions of protons in channeling along the 〈110〉 axis is only about 10% of its amorphous level whereas in channeling along the (110 planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  7. Monte Carlo calculations of channeling radiation

    International Nuclear Information System (INIS)

    Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.

    1981-01-01

    Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of γ 1 5 , γ 1 7 , and γ 2 5 respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on γ does not yet exist

  8. Multiple-photon disambiguation on stripline-anode Micro-Channel Plates

    Energy Technology Data Exchange (ETDEWEB)

    Jocher, Glenn R., E-mail: glenn.jocher@ultralytics.com [Ultralytics LLC, Arlington, VA 22203 (United States); Wetstein, Matthew J., E-mail: mwetstein@uchicago.edu [Iowa State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, IA 50011 (United States); Adams, Bernhard, E-mail: badams@incomusa.com [Incom, Inc., 294 Southbridge Road, Charlton, MA 01507 (United States); Nishimura, Kurtis, E-mail: kurtis.nishimura@ultralytics.com [Ultralytics LLC, Arlington, VA 22203 (United States); Usman, Shawn M., E-mail: shawn.usman@nga.mil [Research Directorate, National Geospatial-Intelligence Agency, 7500 GEOINT Dr., Springfield, VA 22150 (United States); Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA 22030 (United States)

    2016-06-21

    Large-Area Picosecond Photo-Detectors (LAPPDs) show great potential for expanding the performance envelope of Micro-Channel Plates (MCPs) to areas of up to 20×20 cm and larger. Such scaling introduces new challenges, including how to meet the electronics readout burden of ever larger area MCPs. One solution is to replace the traditional grid anode used for readout with a microwave stripline anode, thus allowing the channel count to scale with MCP width rather than area. However, stripline anodes introduce new issues not commonly dealt with in grid-anodes, especially as their length increases. One of these issues is the near simultaneous arrival of multiple photons on the detector, creating possible confusion about how to reconstruct their arrival times and positions. We propose a maximum a posteriori solution to the problem and verify its performance in simulated scintillator and water-Cherenkov detectors.

  9. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3.

    Science.gov (United States)

    Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-02-14

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  10. Structural properties of as-grown and reduced Pr2CuO4 single crystals investigated by ion channeling

    International Nuclear Information System (INIS)

    Haga, T.; Abe, Y.

    1996-01-01

    Ion channeling is very sensitive to atomic arrangements and small atomic displacements in real space. Thus, in order to clarify a role of reduction for Pr 2 CuO 4 , ion channeling properties for the materials have been measured in detail. Anomalous increases of dechanneling fractions of Cu and O atoms in the reduced samples have been found. These results could not be explained by the apical oxygen model but probably suggest that O atoms in Cu-O planes are removed by reduction. Taking these results into account, correlation between lattice instability and superconductivity in the material will be discussed. (orig.)

  11. Ultraviolet-enhanced photodetection in a graphene/SiO{sub 2}/Si capacitor structure with a vacuum channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myungji; Kim, Hong Koo, E-mail: hkk@pitt.edu [Department of Electrical and Computer Engineering and Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2015-09-14

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO{sub 2}/Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO{sub 2} and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstrating a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO{sub 2}/Si structure are proposed.

  12. Development of a raster electronics system for expanding the APT proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Chapelle, S.; Hubbard, E.L.; Smith, T.L. [General Atomics, San Diego, CA (United States); Schulze, M.E.; Shafer, R.E. [General Atomics, Los Alamos, NM (United States)

    1998-12-31

    A 1700 MeV, 100 mA proton linear accelerator is being designed for Accelerator Production of Tritium (APT). A beam expansion system is required to uniformly irradiate a 19 x 190 cm tritium production target. This paper describes a beam expansion system consisting of eight ferrite dipole magnets to raster the beam in the x- and y-planes and also describes the salient features of the design of the electronics that are unique to the expander. Eight Insulated Gate Bipolar Transistor (IGBT)-based modulators drive the raster magnets with triangular current waveforms that are synchronized using phase-locked loops (PLLs) and voltage controlled crystal oscillators (VCXOs). Fault detection circuitry shuts down the beam before the target can be damaged by a failure of the raster system. Test data are presented for the prototype system.

  13. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  14. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  15. Multidimensional models for contaminants dispersion in rivers and channels: hybrid solutions via integral transforms

    International Nuclear Information System (INIS)

    Barros, Felipe Pereira Jorge de

    2004-05-01

    The aims of the present work were to use the Generalized Integral Transform Technique (GITT) to solve steady state multidimensional models for contaminants dispersion in rivers and channels, as well as to analyze the reduction of computational costs associated with convection-diffusion models that contains more than one space variable. The main focus of this work is the development of models that include variable coefficients such as variable velocity fields along and across the channel. The mathematical formulations also allow the use of different inlet conditions such as point sources, linear sources and plane sources. Several test cases were simulated and the models were validated numerically and with experimental data taken from the literature. The models were implemented in the symbolic computation platform, Mathematica 4.2. (author)

  16. Expander for Thin-Wall Tubing

    Science.gov (United States)

    Pessin, R.

    1983-01-01

    Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.

  17. In Vitro Comparison of Self-Expanding Versus Balloon-Expandable Stents in a Human Ex Vivo Model

    International Nuclear Information System (INIS)

    Grenacher, Lars; Rohde, Stefan; Gaenger, Ellen; Deutsch, Jochen; Kauffmann, Guenter W.; Richter, Goetz M.

    2006-01-01

    The objective was to compare the radial strength and expansile precision of self-expanding stents and balloon-expandable stents in a human cadaver bifurcation model. Seven different self-expanding (LUMINEXX, JOSTENT SelfX, JOSTENT SelfX hrf, Sinus-Repo, Sinus SuperFlex, Easy Wallstent, SMART) and four different balloon-expandable stent models (Palmaz, Sinus Stent, SAXX Medium, JOSTENT peripheral), each type 10 stents (total n = 110 stents) were implanted into the common iliac arteries of human cadaver corpses. The maximum stent diameter was 10 mm for all models. After stent implantation, the specimens were filled with silicone caoutchouc. After 24 h, the vascular walls including the stents were removed from the hardened casts. Diameters were taken and the weight of the cast cylinders was measured in air and in purified water to calculate the volume of the bodies (according to Archimedes Law) as a relative but precise degree for the radial strength of the implanted stents. The cylindrical casts of the self-expanding stents showed lower mean diameters (8.2 ± 1.0 mm) and mean volumes (0.60 ± 0.14 ml/cm) than in the balloon-expandable stent group (10.1 ± 0.3 mm and 0.71 ± 0.04 ml/cm, respectively; p < 0.01). The nominal maximum diameter of 10 mm was not achieved in any of the self-expanding stents, but this was achieved in more than 70% (29/40) of the balloon-expandable stent specimens (p < 0.05). The variation between achieved volumes was significantly larger in self-expanding (range: 0.23-0.78 ml/cm) than in balloon-expandable stents (range: 0.66-0.81 ml/cm; p < 0.05). Self-expanding stents presented considerably lower radial expansion force and lower degree of precision than balloon-expandable stents

  18. Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the ...

  19. Nanostructured carbon films with oriented graphitic planes

    International Nuclear Information System (INIS)

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-01-01

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  20. Compact planes, mostly 8-dimensional. A retrospect

    OpenAIRE

    Salzmann, Helmut R.

    2014-01-01

    Results on $8$-dimensional topological planes are scattered in the literature. It is the aim of the present paper to give a survey of these geometries, in particular of information obtained after the appearance of the treatise Compact Projective Planes or not included in this book. For some theorems new proofs are given and a few related results concerning planes of other dimensions are presented.

  1. Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy

    International Nuclear Information System (INIS)

    Inamura, T.; Kim, H.Y.; Hosoda, H.; Miyazaki, S.

    2013-01-01

    Highlights: ► Kinematic compatibility (KC) among martensite variants in Ti-Nb-Al is evaluated. ► Rotation Q is necessary to keep KC at any junction plane (JP). ► The rotation Q is equivalent to the rotation to form the exact twin-relationship. ► The JP preferentially observed in experiment is the JP with the smaller Q. ► We propose two preferential JPs with {1 1 1} type I and 〈2 1 1〉 type II twin in Ti-Nb-Al. -- Abstract: The invariant plane (IP) condition at a habit plane (HP) and the kinematic compatibility (KC) condition at a junction plane (JP) are quantitatively evaluated by the geometrically nonlinear theory of martensite and the origin of the twin orientation relationship (OR) at a JP is revealed in a β titanium shape memory alloy. Exact twin OR at a JP is impossible among the habit plane variants (HPVs). A nonzero rotation is necessary to maintain the compatibility at a JP between the HPVs. The fully compatible HPV cluster in which IP at a HP and KC at a JP are maintained simultaneously is impossible in this alloy. However, it was found that twin OR and KC can be maintained simultaneously. The preferentially observed HPV clusters in transmission electron microscopy are the clusters with a smaller rotation to maintain KC at a JP

  2. Experimental investigation on flow patterns of gas-liquid two-phase upward flow through packed channel with spheres

    International Nuclear Information System (INIS)

    Zhang Nan; Sun Zhongning; Zhao Zhongnan

    2011-01-01

    Experiments of visualized two-phase upward flow were conducted in the packed channel, which filled with 3, 5, 8 mm in diameter of glass sphere respectively. The gas superficial velocity ranges from 0.005 to 1.172 m/s. The liquid superficial velocity ranges from 0.004 to 0.093 m/s. Four representative flow patterns were observed as bubbly flow, cluster flow, liquid-pulse flow and churn-pulse flow, and corresponding flow pattern maps were also presented. It is found that the pulse flow region is dominant. The comparisons of flow pattern map between packed channel and non-packed channel show that the bubbly flow region in packed channel is narrower than that of non-packed channel due to the packing. The comparisons of flow pattern maps for three different packing sizes show that the cluster flow region expands with the increase of the packing diameter. In the low liquid superficial velocity, the cluster flow directly changes to churn-pulse flow in the packed channel with 8 mm packing. (authors)

  3. Asymptotic analysis of the average, steady, isotherml flow in coupled, parallel channels

    International Nuclear Information System (INIS)

    Lund, K.O.

    1976-01-01

    The conservation equations of mass and momentum are derived for the average flow of gases in coupled, parallel channels, or rod bundles. In the case of gas-cooled rod bundles the pitch of the rods is relatively large so the flows in the channels are strongly coupled. From this observation a perturbation parameter is derived and the descriptive equations are scaled using this parameter, which represents the ratio of the axial flow area to the transverse flow area, and which is of the order of 10 -3 in current gas-cooled fast breeder reactor designs. By expanding the velocities into perturbation series the equations for two channels are solved as an initial value problem, and the results compared to a finite difference solution of the same problem. The N-channel problem is solved to the lowest order as a two-point boundary value problem with the pressures specified at the inlet and the outlet. It is concluded from the study that asymptotic methods are effective in solving the flow problems of rod bundles; however, further work is required to evaluate the possible computational advantages of the methods

  4. Nonpolar a-plane GaN grown on r-plane sapphire using multilayer AlN buffer by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chiang, C.H.; Chen, K.M.; Wu, Y.H.; Yeh, Y.S.; Lee, W.I.; Chen, J.F.; Lin, K.L.; Hsiao, Y.L.; Huang, W.C.; Chang, E.Y.

    2011-01-01

    Mirror-like and pit-free non-polar a-plane (1 1 -2 0) GaN films are grown on r-plane (1 -1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.

  5. Computed tomography of peripancreatic fat planes

    International Nuclear Information System (INIS)

    Wittich, G.R.; Van Sonnenberg, E.; Willson, S.A.; Tobin, R.S.; Cubberley, D.A.; Marx, M.Q.

    1987-01-01

    Obliteration of peripancreatic fat planes usually is considered an indicator of peripancreatic tumour infiltration in the presence of a malignant mass, or of inflammation of peripancreatic tissues in patients with pancreatitis. However, absence of peripancreatic fat planes also may be found in patients without evidence of pancreatic disease. Hence, CT scans of 125 patients without clinical or computed tomographic evidence of pancreatic disease were evaluated to assess normal variations in the anatomy of the pancreas and its relation to surrounding vessels and bowel loops. The fat plane separating the superior mesenteric artery from the pancreas was preserved in 100% of patients. Conversely, fat planes between the pancreas and the superior mesenteric vein, inferior vena cava, and adjacent bowel loops were partially or totally obliterated in 13% to 50% of patients. It is concluded that the absence of fat around the superior mesenteric artery is highly suggestive of pathologic changes of the pancreas, while the lack of fat planes between the pancreas and other splanchnic vessels or bowel loops frequently is normal, and therefore, is an unreliable sign of pancreatic disease. The applications of these findings to the assessment of tumour resectability by CT, and to CT scanning techniques, are discussed. (orig.)

  6. Slipping and rolling on an inclined plane

    International Nuclear Information System (INIS)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient (μ). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 μ. If μ > 2/7 tan θ, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  7. Deflection of electron beams by ground planes

    International Nuclear Information System (INIS)

    Fernsler, R.F.; Lampe, M.

    1991-01-01

    Analytic methods are used to determine the effect of a nearby ground plane on the trajectory of a relativistic electron beam passing through dense gas. The beam is shown to respond to the ground plane in one of two distinct modes, determined by beam current and energy. Low-power beams deflect from the ground plane and tear longitudinally. High-power beams do not deflect or tear but tilt, i.e., the beam axis is no longer parallel to the direction of propagation. This conclusion is reached by computing the net beam force as a superposition of the ''bare'' ground-plane forces, the shielding forces from the beam-generated plasma, the body coupling forces induced by beam tilt, and the force that arises as the beam separates from the plasma. Effects from electromagnetic retardation and ground resistivity are shown to be negligible in typical cases of interest, and the interaction between ground planes and other external forces is discussed as well

  8. Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers

    Science.gov (United States)

    Gruneisen, Mark T.; Flanagan, Michael B.; Sickmiller, Brett A.

    2017-12-01

    The efficient coupling of photons from a free-space quantum channel into a single-mode optical fiber (SMF) has important implications for quantum network concepts involving SMF interfaces to quantum detectors, atomic systems, integrated photonics, and direct coupling to a fiber network. Propagation through atmospheric turbulence, however, leads to wavefront errors that degrade mode matching with SMFs. In a free-space quantum channel, this leads to photon losses in proportion to the severity of the aberration. This is particularly problematic for satellite-Earth quantum channels, where atmospheric turbulence can lead to significant wavefront errors. This report considers propagation from low-Earth orbit to a terrestrial ground station and evaluates the efficiency with which photons couple either through a circular field stop or into an SMF situated in the focal plane of the optical receiver. The effects of atmospheric turbulence on the quantum channel are calculated numerically and quantified through the quantum bit error rate and secure key generation rates in a decoy-state BB84 protocol. Numerical simulations include the statistical nature of Kolmogorov turbulence, sky radiance, and an adaptive-optics system under closed-loop control.

  9. Dynamic Interaction of Interfacial Point Source Loading and Cylinder in an Elastic Quarter with Anti-plane Shear

    Science.gov (United States)

    Chun, Gao; Hui, Qi; Nan, Pan Xiang; Bo, Zhao Yuan

    2017-07-01

    Theoretical steady state solution of a semi-circular cylinder impacted by an anti-plane point loading in a vertical bound of an elastic quarter is formulated in this paper through using image method and wave function expansion series. The elastic quarter is extended as a half space, and the semi-circular interfacial cylinder is extended as a circular cylinder. Displacement field is constructed as series of Fourier-Hankel and Fourier-Bessel wave functions. At last, circular boundary is expanded as Fourier series to determine coefficients of wave function. Numerical results show that material parameters have two widely divergent effects on the radial and circumferential dynamic stress distribution.

  10. Quantum Mechanics on the h-deformed Quantum Plane

    OpenAIRE

    Cho, Sunggoo

    1998-01-01

    We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended $h$-deformed quantum plane and solve the Schr\\"odinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincar\\'e half-plane, a surface of constant negative Gaussian curvature. We show the bound state energy spectra for particles under specific poten...

  11. Anatomical planes: are we teaching accurate surface anatomy?

    Science.gov (United States)

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  12. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2013-09-22

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.

  13. Burnout in a high heat flux boiling system with forced supply of liquid through a plane jet

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Ishii, Kazunori.

    1978-01-01

    As for pool boiling, the non-dimensional formula for the burnout heat flux of a simple, basic boiling system has been obtained. On the other hand, in forced convection boiling, the studies on the burnout in forced flow boiling in a channel have been continued, but the derivation of a non-dimensional formula applicable generally is far away from the realization because the phenomena are too complex. Accordingly, in this study, the result of the experiment on the burnout of a boiling system to which liquid is supplied by the plane jet flowing out of a thin rectangular nozzle installed near the front edge of a rectangular heating surface is reported. The experimental apparatus is described, and the experiment was carried out in the ranges of two jet thicknesses at the nozzle outlet, two incident angles of jet and from 1.5 to 15 m/s of jet velocity. Burnout occurs under the situation of sufficiently developed nuclear boiling. A part of the liquid supplied from a plane jet is blown apart by the vapor blowing out of the nuclear boiling liquid layer covering the heating surface in the nuclear boiling with sufficiently developed high heat flux. However, the nuclear boiling liquid layer itself continues to exist on the heating surface till burnout occurs. Only the entering velocity of the plane jet affects burnout heat flux. (Kako, I.)

  14. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  15. Study of combined cycle engine for aerospace plane

    OpenAIRE

    苅田, 丈士; KANDA, Takeshi; 工藤, 賢司; KUDO, Kenji

    2002-01-01

    At the Ramjet Propulsion Research Center, the scramjet engine for an aerospace plane has been studied. Other engines are required for the plane to go into orbit. Recently, a combined cycle engine including scramjet mode has been also studied to complete the engine system for the plane. The scramjet and the combined cycle engine are most effective with application to the Single-Stage-to-Orbit (SSTO) aerospace plane, as shown in Figure 1. Recent activity on the combined cycle engine and the SST...

  16. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    Science.gov (United States)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  17. Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering

    Science.gov (United States)

    Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.

    1993-08-01

    An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.

  18. Streptococcus anginosus infections: crossing tissue planes.

    Science.gov (United States)

    Sunwoo, Bernie Y; Miller, Wallace T

    2014-10-01

    Streptococcus anginosus has long been recognized to cause invasive pyogenic infections. This holds true for thoracic infections where S. anginosus has a propensity for abscess and empyema formation. Early diagnosis is important given the significant morbidity and mortality associated with thoracic S. anginosus infections. Yet, distinguishing thoracic S. anginosus clinically is difficult. We present three cases of thoracic S. anginosus that demonstrated radiographic extension across tissue planes, including the interlobar fissure, diaphragm, and chest wall. Few infectious etiologies are known to cross tissue planes. Accordingly, we propose S. anginosus be considered among the differential diagnosis of potential infectious etiologies causing radiographic extension across tissue planes.

  19. Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab

    International Nuclear Information System (INIS)

    Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.

    2010-01-01

    The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth δ a when δ a a >>L, the heating is shown to decay with 1/δ a 3 . The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.

  20. Microbial Biofilms and Breast Tissue Expanders

    Directory of Open Access Journals (Sweden)

    Melissa J. Karau

    2013-01-01

    Full Text Available We previously developed and validated a vortexing-sonication technique for detection of biofilm bacteria on the surface of explanted prosthetic joints. Herein, we evaluated this technique for diagnosis of infected breast tissue expanders and used it to assess colonization of breast tissue expanders. From April 2008 to December 2011, we studied 328 breast tissue expanders at Mayo Clinic, Rochester, MN, USA. Of seven clinically infected breast tissue expanders, six (85.7% had positive cultures, one of which grew Propionibacterium species. Fifty-two of 321 breast tissue expanders (16.2%, 95% CI, 12.3–20.7% without clinical evidence of infection also had positive cultures, 45 growing Propionibacterium species and ten coagulase-negative staphylococci. While vortexing-sonication can detect clinically infected breast tissue expanders, 16 percent of breast tissue expanders appear to be asymptomatically colonized with normal skin flora, most commonly, Propionibacterium species.

  1. Effect of twinning plane on superconductor magnetic properties

    International Nuclear Information System (INIS)

    Buzdin, A.I.; Kuptsov, D.A.

    1989-01-01

    Effect of twinning planes on pinning of the Abrikosov vortices in superconductors of the second order with the Ginsburg-Landau parameter, κ >> 1, is considered. The modified Ginsburg-Landau functional, where the effect of superconducting properties improvement near the twinning plane is taken into account by adding the additional δ-function component, is used to descibe superconductivity of twinning plane. Force of interaction of a vortex filament and the twinning plane is calculated. It is shown that in case of the twinning plane opaque to electrons, additional attractive force, being analogous to that occurring in the problem on the surface Been-Livingston barrier, affects the vortex filament. The results can explain anisotropy of vortex pinning observed in the periodic twinning structure in high-temperature superconductors

  2. Sub-micron resolution selected area electron channeling patterns.

    Science.gov (United States)

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rapid anatomical brain imaging using spiral acquisition and an expanded signal model.

    Science.gov (United States)

    Kasper, Lars; Engel, Maria; Barmet, Christoph; Haeberlin, Maximilian; Wilm, Bertram J; Dietrich, Benjamin E; Schmid, Thomas; Gross, Simon; Brunner, David O; Stephan, Klaas E; Pruessmann, Klaas P

    2018-03-01

    We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B 0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T 2 * contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparison of Skeletal and Dental Reference Planes with the Hamulus-Incisive-Papilla Plane: A Pilot Study on 3D Reconstructed Tomographies of the Skull.

    Science.gov (United States)

    Pittschieler, Elisabeth; Foltin, Andrea; Falkensammer, Frank; Figl, Michael; Birkfellner, Wolfgang; Jonke, Erwin; Bantleon, Hans-Peter

    2016-01-01

    The aim of this study was to investigate the hamulus-incisive-papilla (HIP) plane as an alternative for transferring the three-dimensional position of a patient's maxilla to an articulator. Camper, Frankfurt horizontal, occlusal, and HIP planes were evaluated in 21 patients' computed tomography scans and compared to one another. Analysis of variance showed significant differences between all planes, with the HIP plane being closest to the occlusal plane (HIP-OP: 0.6 ± 4.0 degrees). Frankfurt and Camper planes, being more peripheral, showed higher geometric asymmetries. The HIP plane, when used for articulator mounting, results in a closer and more technically reliable patient relationship in a clinical and laboratory context.

  5. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  6. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  7. An investigation of 'sparse channel networks'. Characteristic behaviours and their causes

    International Nuclear Information System (INIS)

    Black, J.H.; Barker, J.A.; Woodman, N.D.

    2007-09-01

    This report represents a third study in a series concerned with groundwater flow in poorly permeable fractured crystalline rocks. The study has brought together three linked, but distinct, elements; a mathematical analysis of the intersection of ellipses, a review of field measurements associated with nuclear waste repository investigations and probabilistic simulations using a lattice network numerical model. We conclude that the model of channels that traverse fracture intersections without necessarily branching is a very likely representation of reality. More generally, assembling all the lines of evidence, it is suggested that groundwater flow systems in fractured crystalline rocks in the environs of underground laboratories have the following characteristics: Groundwater flows within a sparse network of channels just above the percolation limit. The frequency of intersections is low in that individual channels extend considerable distances between significant junctions. Individual channels often extend over many fracture surfaces and the resulting flow system is only weakly related to the density or size of mappable fractures. The sparseness of systems compared to the size of drifts and tunnels means that only a very few flow channels are intersected by drifts and tunnels. Highly convergent flow is required to connect to the rest of the network and this is misinterpreted as a skin of low hydraulic conductivity. Systems are so sparse that they are controlled by a few 'chokes' that give rise to compartments of head, and probably, of groundwater chemistry. Channels occur on all fracture planes, including those within fracture zones, and although the characteristics of the fracture zone channel networks may differ from those in surrounding rocks, they are nonetheless still channel networks. The actively flowing sparse channel network, occurring within any particular rock, is a naturally selected, small sub-set of the available channels. Hence, there are many

  8. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.

    2015-10-23

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  9. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.; Mitsudharmadi, Hatsari; Bouremel, Y.; Winoto, S.H.; Low, H.T.

    2015-01-01

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  10. Plane-Casting: 3D Cursor Control with a SmartPhone

    OpenAIRE

    Katzakis, Nicholas; Kiyokawa, Kiyoshi; Hori, Masahiro; Takemura, Haruo

    2018-01-01

    We present Plane-Casting, a novel technique for 3D object manipulation from a distance that is especially suitable for smartphones. We describe two variations of Plane-Casting, Pivot and Free Plane-Casting, and present results from a pilot study. Results suggest that Pivot Plane-Casting is more suitable for quick, coarse movements whereas Free Plane-Casting is more suited to slower, precise motion. In a 3D movement task, Pivot Plane-Casting performed better quantitatively, but subjects prefer...

  11. Intensification process of air-hydrogen mixture burning in the variable cross section channel by means of the air jet

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2018-03-01

    The paper presents the results of numerical modeling of a transonic region formation in the flat channel. Hydrogen flows into the channel through the holes in the wall. The jet of compressed air is localized downstream the holes. The transonic region formation is formed by the burning of heterogeneous hydrogen-air mixture. It was considered in the framework of the simplified chemical kinetics. The interesting feature of the regime obtained is the following: the distribution of the Mach numbers is qualitatively similar to the case of pulse-periodic energy sources. This mode is a favorable prerequisite for the effective fuel combustion in the expanding part of the channel when injecting fuel into this part.

  12. Moving vertices to make drawings plane

    NARCIS (Netherlands)

    Goaoc, X.; Kratochvil, J.; Okamoto, Y.; Shin, C.S.; Wolff, A.; Hong, S.K.; Nishizeki, T.; Quan, W.

    2008-01-01

    In John Tantalo’s on-line game Planarity the player is given a non-plane straight-line drawing of a planar graph. The aim is to make the drawing plane as quickly as possible by moving vertices. In this paper we investigate the related problem MinMovedVertices which asks for the minimum number of

  13. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    Science.gov (United States)

    Swimm, R.; Garrett, H. B.; Jun, I.; Evans, R. W.

    2004-12-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances from the planet Jupiter from 8 to 28 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron radiation with longitude. We also develop a model of the electron flux with respect to distance normal to the magnetic equatorial plane as a function of the distance from Jupiter.

  14. Effects of flow depth and wall roughness on turbulence in compound channels

    International Nuclear Information System (INIS)

    Prinos, P.; Townsend, R.; Tavoularis, S.

    1985-01-01

    Current methods for estimating discharge in compound channels often lead to large errors. The error is largely due to momentum transfer mechanism (MTM) generated in the junction regions of the flow field (between adjacent deep and shallow zones). The MTM adversely affects system conveyance, particularly when the velocity differential between the deep and shallow zones is large. Improved prediction methods, therefore, will necessarily reflect the MTM's presence and its effect on the compound flow field. The mechanism's influence on system hydraulics is best examined by analysing the related turbulence characteristics in the junction zones of the compound section. Townsend reported increased turbulence levels in the junction region between a main channel and its shallower flood plain zone and Elsawy, McKee and McKeogh found that observed normal turbulent stresses in a similar region were of the same order of magnitude as the apparent shear stress on the junction's vertical interface plane. The objective of the present study is to measure turbulent stresses in the junction region of a symmetrical compound open channel and examine their dependence on relative depth and relative boundary roughness. Further details of this phase of the larger study are presented elsewhere. (author)

  15. Characterizing New Channels of Communication: A Case Study of Municipal 311 Requests in Edmonton, Canada

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2016-06-01

    Full Text Available City governments around the world are developing and expanding how they connect to citizens. Technologies play an important role in making this connection, and one frequent way that cities connect with citizens is through 311-style request systems. 311 is a non-emergency municipal notification system that uses telephone, email, web forms, and increasingly, mobile applications to allow citizens to notify government of infrastructure issues and make requests for municipal services. In many ways, this process of citizen contribution mirrors the provision of volunteered geographic information, that is spatially-referenced user generated content. This research presents a case study of the city of Edmonton, Canada, an early adopter of multi-channel 311 service request systems, including telephone, email, web form, and mobile app 311 request channels. Three methods of analysis are used to characterize and compare these different channels over three years of request data; a comparison of relative request share for each channel, a spatial hot spot analysis, and regression models to compare channel usage with sociodemographic variables. The results of this study indicate a shift in channel usage from traditional to Internet-enabled, that this shift is mirrored in the hotspots of request activity, and that specific digital inequalities exist that reinforce this distinction between traditional and Internet-enabled reporting channels.

  16. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2014-08-05

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.

  17. The in-focus variable line spacing plane grating monochromator

    International Nuclear Information System (INIS)

    Reininger, R.

    2011-01-01

    The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.

  18. Motion of channeling particles in a bent crystal

    International Nuclear Information System (INIS)

    Avakian, A.R.; Harutyunian, A.S.; Hovanessian, A.G.; Shahinian, S.M.; Yang, C.

    1990-01-01

    The motion of high-energy charged particles in a bent crystal is investigated in the approximation of the model of continuous potential of crystallographic planes and with account of incoherent scattering on the atoms of media. Angular distribution of charged particle beams is investigated at the exit of the bent region of the crystal in dependence with the maximum deflection angle and energy of particles. The dependence of the fraction of channeling particles on crystal thickness, crystal curvature and particle energy is found in a simple model approximation. The influence of crystal curvature on incoherent scattering of particles in the crystal is analyzed. The concept of an optimal thickness for the maximum number of particles deflected at a given angle is considered. 8 refs.; 8 figs

  19. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  20. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  1. Comparison of swirling strengths derived from two- and three-dimensional velocity fields in channel flow

    Science.gov (United States)

    Chen, Huai; Li, Danxun; Bai, Ruonan; Wang, Xingkui

    2018-05-01

    Swirling strength is an effective vortex indicator in wall turbulence, and it can be determined based on either two-dimensional (2D) or three-dimensional (3D) velocity fields, written as λci2D and λci3D, respectively. A comparison between λci2D and λci3D has been made in this paper in sliced XY, YZ, and XZ planes by using 3D DNS data of channel flow. The magnitude of λci2D in three orthogonal planes differs in the inner region, but the difference tends to diminish in the outer flow. The magnitude of λci3D exceeds each λci2D, and the square of λci3D is greater than the summation of squares of three λci2D. Extraction with λci2D in XY, YZ, and XZ planes yields different population densities and vortex sizes, i.e., in XZ plane, the vortices display the largest population density and the smallest size, and in XY and YZ planes the vortices are similar in size but fewer vortices are extracted in the XY plane in the inner layer. Vortex size increases inversely with the threshold used for growing the vortex region from background turbulence. When identical thresholds are used, the λci3D approach leads to a slightly smaller population density and a greater vortex radius than the λci2D approach. A threshold of 0.8 for the λci3D approach is approximately equivalent to a threshold of 1.5 for the λci2D approach.

  2. Applications of Classical and Quantum Mechanical Channeling in Condensed Matter Physics

    Science.gov (United States)

    Haakenaasen, Randi

    1995-01-01

    The first part of this work involves ion channeling measurements on the high temperature superconductor rm YBa_{2}Cu_{3}O _{7-delta}(YBCO). The experiments were motivated by several previous reports of anomalous behavior in the displacements of the Cu and O atoms in the vicinity of the critical temperature rm(T _{c}) in several high temperature superconductors. Our measurements were complimentary to previous experiments in that we used thin film YBCO (as opposed to bulk single crystals) and focused on a small region around rm T_{c}. We mapped out the channeling parameters chi _{min} and Psi_ {1/2} in a 30 K region around rm T_{c} in 1-2 K steps in thin film YBCO(001) on MgO. Neither of our measurements showed any discontinuities in chi _{min} or Psi_ {1/2} near the superconducting phase transition, and we therefore have no reason to expect anything but a smooth increase in atomic vibrations in this region. We conclude that any anomalous behavior in atomic displacements deduced from previous channeling experiments is not essential to superconductivity. In the second part of the work positrons were used to study quantum mechanical channeling effects. We clearly observed and quantitatively accounted for quantum interference effects, including Bragg diffraction, in the forward transmission of channeled MeV positrons through a single crystal. Experimental scans across the (100), (110), and (111) planes in Si showed excellent agreement with theoretical dynamical diffraction calculations, giving us confidence that we can accurately predict the spatial and momentum distributions of channeled positrons. New experiments are envisioned in which the channeling effect is combined with 2 quantum annihilation in flight measurements to determine valence electron and magnetic spin distributions in a crystal. Since the channeling effect focuses the positrons to the interstices of the crystal, the annihilation rate will reflect the valence electron density. Furthermore, the

  3. Characterizing Social Networks and Communication Channels in a Web-Based Peer Support Intervention.

    Science.gov (United States)

    Owen, Jason E; Curran, Michaela; Bantum, Erin O'Carroll; Hanneman, Robert

    2016-06-01

    Web and mobile (mHealth) interventions have promise for improving health outcomes, but engagement and attrition may be reducing effect sizes. Because social networks can improve engagement, which is a key mechanism of action, understanding the structure and potential impact of social networks could be key to improving mHealth effects. This study (a) evaluates social network characteristics of four distinct communication channels (discussion board, chat, e-mail, and blog) in a large social networking intervention, (b) predicts membership in online communities, and (c) evaluates whether community membership impacts engagement. Participants were 299 cancer survivors with significant distress using the 12-week health-space.net intervention. Social networking attributes (e.g., density and clustering) were identified separately for each type of network communication (i.e., discussion board, blog, web mail, and chat). Each channel demonstrated high levels of clustering, and being a community member in one communication channel was associated with being in the same community in each of the other channels (φ = 0.56-0.89, ps < 0.05). Predictors of community membership differed across communication channels, suggesting that each channel reached distinct types of users. Finally, membership in a discussion board, chat, or blog community was strongly associated with time spent engaging with coping skills exercises (Ds = 1.08-1.84, ps < 0.001) and total time of intervention (Ds = 1.13-1.80, ps < 0.001). mHealth interventions that offer multiple channels for communication allow participants to expand the number of individuals with whom they are communicating, create opportunities for communicating with different individuals in distinct channels, and likely enhance overall engagement.

  4. Characterizing Social Networks and Communication Channels in a Web-Based Peer Support Intervention

    Science.gov (United States)

    Curran, Michaela; Bantum, Erin O'Carroll; Hanneman, Robert

    2016-01-01

    Abstract Web and mobile (mHealth) interventions have promise for improving health outcomes, but engagement and attrition may be reducing effect sizes. Because social networks can improve engagement, which is a key mechanism of action, understanding the structure and potential impact of social networks could be key to improving mHealth effects. This study (a) evaluates social network characteristics of four distinct communication channels (discussion board, chat, e-mail, and blog) in a large social networking intervention, (b) predicts membership in online communities, and (c) evaluates whether community membership impacts engagement. Participants were 299 cancer survivors with significant distress using the 12-week health-space.net intervention. Social networking attributes (e.g., density and clustering) were identified separately for each type of network communication (i.e., discussion board, blog, web mail, and chat). Each channel demonstrated high levels of clustering, and being a community member in one communication channel was associated with being in the same community in each of the other channels (φ = 0.56–0.89, ps < 0.05). Predictors of community membership differed across communication channels, suggesting that each channel reached distinct types of users. Finally, membership in a discussion board, chat, or blog community was strongly associated with time spent engaging with coping skills exercises (Ds = 1.08–1.84, ps < 0.001) and total time of intervention (Ds = 1.13–1.80, ps < 0.001). mHealth interventions that offer multiple channels for communication allow participants to expand the number of individuals with whom they are communicating, create opportunities for communicating with different individuals in distinct channels, and likely enhance overall engagement. PMID:27327066

  5. A Viewpoint on the Quantity "Plane Angle"

    Science.gov (United States)

    Eder, W. E.

    1982-01-01

    Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.

  6. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.

    2007-01-01

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 μm. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 μm thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 μm thick

  7. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Azadegan, B.

    2007-11-15

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 {mu}m. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 {mu}m thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 {mu}m thick

  8. Molecular cloning of plane pollen allergen Pla a 3 and its utility as diagnostic marker for peach associated plane pollen allergy.

    Science.gov (United States)

    Wangorsch, A; Larsson, H; Messmer, M; García-Moral, A; Lauer, I; Wolfheimer, S; Schülke, S; Bartra, J; Vieths, S; Lidholm, J; Scheurer, S

    2016-05-01

    Non-specific lipid transfer proteins (nsLTP) are considered to provoke allergic symptoms to plane tree pollen, which are frequently associated with peach allergy. The objective was to clone the cDNA of plane pollen nsLTP Pla a 3, to characterize IgE-binding and allergenic potency of recombinant Pla a 3 in comparison to its natural counterpart and peach nsLTP Pru p 3. Natural Pla a 3 was purified from plane pollen and analysed by mass spectrometry (MS). Recombinant Pla a 3 was characterized by SDS-PAGE and CD spectroscopy. Specific IgE to extract, components of plane pollen and Pru p 3 was measured by ImmunoCAP in sera of patients allergic to either plane pollen (n = 10), peach (n = 15) or both (n = 15). Biological potency of the proteins was investigated by in vitro mediator release assays and IgE cross-reactivity by competitive ELISA. Two Pla a 3 isoforms were identified. Recombinant Pla a 3 showed high purity, structural integrity, IgE-binding capacity comparable to nPla a 3 and biological potency. Sensitization to plane pollen extract was confirmed in 24/25 plane pollen allergics. The frequency of sensitization to Pla a 3 was 53% among patients allergic to both plane pollen and peach and 10% among plane pollen allergics tolerating peach where most patients were sensitized to Pla a 1. Pla a 3 and Pru p 3 showed strong bi-directional IgE cross-reactivity in patients allergic to peach and plane pollen, but not in peach allergics tolerating plane pollen. Levels of IgE-binding were generally higher to Pru p 3 than to Pla a 3. Sensitization to Pla a 3 is relevant in a subgroup of plane pollen allergics with concomitant peach allergy. IgE testing with Pla a 3 may serve as a marker to identify plane pollen allergic patients at risk of LTP-mediated food reactions and thereby improve in vitro diagnostic procedures. © 2016 John Wiley & Sons Ltd.

  9. Dose distributions of pendulum fields in the field border plane

    International Nuclear Information System (INIS)

    Schrader, R.

    1986-01-01

    Calculations (program SIDOS-U2) and LiF measurements taken in a cylindric water phantom are used to investigate the isodose distributions of different pendulum irradiation methods (Co-60) in a plane which is parallel to the central ray plane and crosses the field borders at the depth of the axis. The dose values compared to the maximum values of the central ray plane are completely different for each pendulum method. In case of monoaxial pendulum methods around small angles, the maximum dose value found in the border plane is less than 50% of the dose in the central ray plane. The relative maximum of the border plane moves to tissues laying in a greater depth. In case of bi-axial methods, the maximum value of the border plane can be much more than 50% of the maximum dose measured in the central ray plane. (orig.) [de

  10. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    . The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase

  11. A zonal wavefront sensor with multiple detector planes

    Science.gov (United States)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  12. Three-dimensional Frankfort horizontal plane for 3D cephalometry: a comparative assessment of conventional versus novel landmarks and horizontal planes.

    Science.gov (United States)

    Pittayapat, Pisha; Jacobs, Reinhilde; Bornstein, Michael M; Odri, Guillaume A; Lambrichts, Ivo; Willems, Guy; Politis, Constantinus; Olszewski, Raphael

    2018-05-25

    To assess the reproducibility of landmarks in three dimensions that determine the Frankfort horizontal plane (FH) as well as two new landmarks, and to evaluate the angular differences of newly introduced planes to the FH. Three-dimensional (3D) surface models were created from CBCT scans of 26 dry human skulls. Porion (Po), orbitale (Or), internal acoustic foramen (IAF), and zygomatico-maxillary suture (ZyMS) were indicated in the software by three observers twice with a 4-week interval. Angles between two FHs (FH 1: Or-R, Or-L, mid-Po; FH 2: Po-R, Po-L, mid-Or) and between FHs and new planes (Plane 1-6) were measured. Coordinates were exported to a spreadsheet. A statistical analysis was performed to define the landmark reproducibility and 3D angles. Intra- and inter-observer landmark reproducibility showed mean difference more than 1 mm for x-coordinates of all landmarks except IAF. IAF showed significantly better reproducibility than other landmarks (P Plane 3, connecting Or-R, Or-L and mid-IAF, and Plane 4, connecting Po-R, Po-L and mid-ZyMS, both showed an angular difference of less than 1 degree when compared to FHs. This study revealed poor reproducibility of the traditional FH landmarks on the x-axis and good reproducibility of a new landmark tested to replace Po, the IAF. Yet, Or showed superior results compared to ZyMS. The potential of using new horizontal planes was demonstrated. Future studies should focus on identification of a valid alternative for Or and ZyMS and on clinical implementation of the findings.

  13. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  14. Bigelow Expandable Activity Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Bigelow Expandable Activity Module (BEAM) project is a NASA-industry partnership with Bigelow Aerospace (BA) that has developing the first human-rated expandable...

  15. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    International Nuclear Information System (INIS)

    Liu, H F; Chi, D Z; Liu, W; Guo, S

    2016-01-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal–organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [–4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al 2 O 3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings. (paper)

  16. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    Science.gov (United States)

    Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.

    2016-03-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.

  17. Robust micromachining of compliant mechanisms for out-of-plane microsensors

    OpenAIRE

    Khosraviani, Kourosh

    2013-01-01

    Micro-Electro-Mechanical-Systems (MEMS) take advantage of a wide range of very reliable, and well established existing microelectronics fabrication techniques. Due to the planar nature of these techniques, out-of-plane MEMS devices must be fabricated in-plane and assembled afterwards in order to create out-of-plane three-dimensional structures. Out-of-plane microstructures extend the design space of the MEMS based devices and overcome many limitations of the in-plane processing. Nevertheless,...

  18. In-plane and out-of-plane bending tests on carbon steel pipe bends

    International Nuclear Information System (INIS)

    Brouard, D.; Tremblais, A.; Vrillon, B.

    1979-01-01

    The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)

  19. Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes

    International Nuclear Information System (INIS)

    Hyakutake, Y.; Imamura, Y.; Sugimoto, S.

    2000-01-01

    There is a longstanding puzzle concerned with the existence of Op-planes with p≥6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6-planes are possible in massive IIA theory with odd cosmological constant, while O7-planes and O8-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addressed. (author)

  20. Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes

    OpenAIRE

    Hyakutake, Yoshifumi; Imamura, Yosuke; Sugimoto, Shigeki

    2000-01-01

    There is a longstanding puzzle concerned with the existence of Op~-planes with p>=6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6~-planes are possible in massive IIA theory with odd cosmological constant, while O7~-planes and O8~-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addr...

  1. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  2. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting

    Science.gov (United States)

    van Maanen, B.; Coco, G.; Bryan, K. R.

    2015-01-01

    An ecomorphodynamic model was developed to study how Avicennia marina mangroves influence channel network evolution in sandy tidal embayments. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. The presence of mangroves was found to enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The enhanced branching of channels is also the result of a vegetation-induced increase in erosion threshold. On the other hand, this reduction in bed erodibility, together with the soil expansion driven by organic matter production, reduces the landward expansion of channels. The ongoing accretion in mangrove forests ultimately drives a reduction in tidal prism and an overall retreat of the channel network. During sea-level rise, mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone, while hindering both the branching and headward erosion of the landward expanding channels. The modelling results presented here indicate the critical control exerted by ecogeomorphological interactions in driving landscape evolution. PMID:26339195

  3. Constructive curves in non-Euclidean planes

    OpenAIRE

    Horváth, Ákos G.

    2016-01-01

    In this paper we overview the theory of conics and roulettes in four non-Euclidean planes. We collect the literature about these classical concepts, from the eighteenth century to the present, including papers available only on arXiv. The comparison of the four non-Euclidean planes, in terms of the known results on conics and roulettes, reflects only the very subjective view of the author.

  4. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  5. Energy loss distributions of 7 TeV protons channeled in a bent silicon crystals

    Directory of Open Access Journals (Sweden)

    Stojanov Nace

    2013-01-01

    Full Text Available The energy loss distributions of relativistic protons axially channeled through the bent Si crystals, with the constant curvature radius, R = 50 m, are studied here. The proton energy is 7 TeV and the thickness of the crystal is varied from 1 mm to 5 mm, which corresponds to the reduced crystal thickness, L, from 2.1 to 10.6, respectively. The proton energy was chosen in accordance with the large hadron collider project, at the European Organization for Nuclear Research, in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Dispersion of the proton scattering angle caused by its collisions with the crystal’s electrons was taken into account. [Projekat Ministarstva nauke Republike Srbije, br. III 45006

  6. A Study of the Gamma-Ray Burst Fundamental Plane

    International Nuclear Information System (INIS)

    Dainotti, M. G.; Hernandez, X.; Postnikov, S.; Nagataki, S.; O’brien, P.; Willingale, R.; Striegel, S.

    2017-01-01

    Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T a , its corresponding X-ray luminosity, L a , and the peak luminosity in the prompt emission, L peak . This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T a as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.

  7. Time-domain analytic Solutions of two-wire transmission line excited by a plane-wave field

    Institute of Scientific and Technical Information of China (English)

    Ni Gu-Yan; Yan Li; Yuan Nai-Chang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain.By the frequency-domain Baum-Liu-Tesche(BLT)equation,the time-domain analytic solutions are obtained and expressed in an infinite geometric series.Moreover,it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval.In other word.the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval.The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform,and the agreement is excellent.

  8. ON THE RELATIONSHIP BETWEEN A HOT-CHANNEL-LIKE SOLAR MAGNETIC FLUX ROPE AND ITS EMBEDDED PROMINENCE

    International Nuclear Information System (INIS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Chen, P. F.; Sun, J. Q.; Srivastava, A. K.

    2014-01-01

    A magnetic flux rope (MFR) is a coherent and helical magnetic field structure that has recently been found likely to appear as an elongated hot channel prior to a solar eruption. In this Letter, we investigate the relationship between the hot channel and the associated prominence through analysis of a limb event on 2011 September 12. In the early rise phase, the hot channel was initially cospatial with the prominence. It then quickly expanded, resulting in a separation of the top of the hot channel from that of the prominence. Meanwhile, they both experienced an instantaneous morphology transformation from a Λ shape to a reversed-Y shape and the top of these two structures showed an exponential increase in height. These features are a good indication of the occurrence of kink instability. Moreover, the onset of kink instability is found to coincide in time with the impulsive enhancement of flare emission underneath the hot channel, suggesting that ideal kink instability likely also plays an important role in triggering fast flare reconnection besides initiating the impulsive acceleration of the hot channel and distorting its morphology. We conclude that the hot channel is most likely the MFR system and the prominence only corresponds to the cool materials that are collected in the bottom of the helical field lines of the MFR against gravity

  9. Phase Plane Analysis Method of Nonlinear Traffic Phenomena

    Directory of Open Access Journals (Sweden)

    Wenhuan Ai

    2015-01-01

    Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.

  10. Plane wave limits and T-duality

    International Nuclear Information System (INIS)

    Guven, R.

    2000-04-01

    The Penrose limit is generalized to show that, any leading order solution of the low-energy field equations in any one of the five string theories has a plane wave solution as a limit. This limiting procedure takes into account all the massless fields that may arise and commutes with the T-duality so that any dual solution has again a plane wave limit. The scaling rules used in the limit are unique and stem from the scaling property of the D = 11 supergravity action. Although the leading order dual solutions need not be exact or supersymmetric, their plane wave limits always preserve some portion of the Poincare supersymmetry and solve the relevant field equations in all powers of the string tension parameter. Further properties of the limiting procedure are discussed. (author)

  11. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  12. Occlusal plane location in edentulous patients: a review.

    Science.gov (United States)

    Shetty, Sanath; Zargar, Nazia Majeed; Shenoy, Kamalakanth; Rekha, V

    2013-09-01

    Occlusal plane orientation is an important factor in the construction of a complete denture. Occlusal plane could be oriented using landmarks in the mandibular arch as well as in the maxillary arch. In the mandibular arch there are few landmarks which could be used to orient the occlusal plane like the retromolar pad, corner of the lips (lower lip length) whereas the maxillary arch has a number of landmarks, of which the ala-tragal line is the most commonly used and the same being the most controversial. In the following article different landmarks and its accuracy for orientating the occlusal plane in an edentulous subject as studied by various authors has been discussed.

  13. 16-dimensional smooth projective planes with large collineation groups

    OpenAIRE

    Bödi, Richard

    1998-01-01

    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch) Smooth projective planes are projective planes defined on smooth manifolds (i.e. the set of points and the set of lines are smooth manifolds) such that the geometric operations of join and intersection are smooth. A systematic study of such planes and of their collineation groups can be found in previous works of the author. We prove in this paper that a 16-dimensional smooth projective plane which admits a ...

  14. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  15. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  16. A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.D., E-mail: syu@ryerson.ca; Fadaee, M.

    2016-08-01

    Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.

  17. An Effective Channel Allocation Scheme to Reduce Co-Channel and Adjacent Channel Interference for WMN Backhaul

    International Nuclear Information System (INIS)

    Abbasi, S.; Ismaili, I.A.; Khuhawar, F.Y.

    2016-01-01

    Two folded work presents channel allocation scheme sustaining channel orthogonality and channel spacing to reduce CCI (Co-Channel Interference) and ACI (Adjacent Channel Interference) for inter flow of an intra-flow link. Proposed scheme as a part of radio resource allocation is applied on infrastructure based backhaul of wireless mesh network using directional antennas. The proposed approach is applied separately on 2.4 and 5GHz bands. Interference of connectivity graph is modelled by strongly connected directed graph and greedy algorithms are used for channel allocation. We have used OPNET Modeller suite to simulate network models for this research. The proposed arrangement reduces the channel interference and increases system throughput. In this research, the influence of channel is computed in terms of network throughput and delay. (author)

  18. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Zhu, Chengling; Chen, Zhixin; Lu, Tao; Xu, Da; Li, Yao; Zhu, Shenmin

    2018-06-21

    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m -1 K -1 ) and through-plane (4.596 W m -1 K -1 ) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm -1 . The strategy reported here may open a new avenue to the development of high-performance thermal management films.

  19. Data-plane Defenses against Routing Attacks on Tor

    Directory of Open Access Journals (Sweden)

    Tan Henry

    2016-10-01

    Full Text Available Tor is susceptible to traffic correlation attacks in which an adversary who observes flows entering and leaving the anonymity network can apply statistical techniques to correlate flows and de-anonymize their endpoints. While an adversary may not be naturally positioned to conduct such attacks, a recent study shows that the Internet’s control-plane can be manipulated to increase an adversary’s view of the network, and consequently, improve its ability to perform traffic correlation. This paper explores, in-depth, the effects of control-plane attacks on the security of the Tor network. Using accurate models of the live Tor network, we quantify Tor’s susceptibility to these attacks by measuring the fraction of the Tor network that is vulnerable and the advantage to the adversary of performing the attacks. We further propose defense mechanisms that protect Tor users from manipulations at the control-plane. Perhaps surprisingly, we show that by leveraging existing trust anchors in Tor, defenses deployed only in the data-plane are sufficient to detect most control-plane attacks. Our defenses do not assume the active participation of Internet Service Providers, and require only very small changes to Tor. We show that our defenses result in a more than tenfold decrease in the effectiveness of certain control-plane attacks.

  20. Positivity properties of phase-plane distribution functions

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1984-01-01

    The aim of this paper is to compare the members of Cohen's class of phase-plane distributions with respect to positivity properties. It is known that certain averages (which are in a sense compatible with Heisenberg's uncertainty principle) of the Wigner distribution over the phase-plane yield

  1. Bilinear phase-plane distribution functions and positivity

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1985-01-01

    There is a theorem of Wigner that states that phase-plane distribution functions involving the state bilinearly and having correct marginals must take negative values for certain states. The purpose of this paper is to support the statement that these phase-plane distribution functions are for

  2. Simultaneous orthogonal plane imaging.

    Science.gov (United States)

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Study on the unified constraint parameter for characterizing in-plane and out-of-plane constraint based on the equivalent plastic strain

    International Nuclear Information System (INIS)

    Yang Jie; Wang Guozhen; Xuan Fuzhen; Tu Shandong

    2013-01-01

    Background: Constraint can significantly alter the material's fracture toughness. Purpose: In order to increase accuracy of the structural integrity assessment. It needs to consider the effect of constraint on the fracture toughness of nuclear power materials and structures. A unified measure which can reflect both in-plane and out-of-plane constraint is needed. Methods: In this paper, the finite element numerical simulation method was used, a unified measure and characterization parameter of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain have been investigated. Results: The results show that the area surrounded by ε p isoline has a good relevance with the material's fracture toughness on different constraint conditions, so it may be a suitable parameter. Based on the area A PEEQ , a unified constraint characterization parameter √A p is defined. It was found that there exists a sole linear relation between the normalized fracture toughness J IC /J re f and √A p regardless of the in-plane, out-of-plane constraint and the selection of the p isolines. The sole J IC /J re f-√A p line exists for a certain material. For different materials, the slope of J IC /J re f-√A p reference line is different. The material whose slope is larger has a higher J IC /J re f and is more sensitive to constraint at the same magnitude of normalized unified parameter. Conclusions: The unified J IC /J re f -√A p reference line may be used to assess the safety of a cracked component with any constraint levels regardless of in-plane or out-of-plane constraint or both. (authors)

  4. The Curious Out-of-Plane Conductivity of PEDOT : PSS

    NARCIS (Netherlands)

    van de Ruit, Kevin; Katsouras, Ilias; Bollen, Dirk; van Mol, Ton; Janssen, Rene A. J.; de Leeuw, Dago M.; Kemerink, Martijn

    2013-01-01

    For its application as transparent conductor in light-emitting diodes and photovoltaic cells, both the in-plane and out-of-plane conductivity of PEDOT:PSS are important. However, studies into the conductivity of PEDOT:PSS rarely address the out-of-plane conductivity and those that do, report widely

  5. A Study of the Gamma-Ray Burst Fundamental Plane

    Energy Technology Data Exchange (ETDEWEB)

    Dainotti, M. G. [Department of Physics and Astronomy, Stanford University, Via Pueblo Mall 382, Stanford, CA 94305-4060 (United States); Hernandez, X. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México 04510, México (Mexico); Postnikov, S. [The Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47405 (United States); Nagataki, S. [RIKEN, Hirosawa, Wako Saitama (Japan); O’brien, P.; Willingale, R. [Department of Physics and Astronomy, University of Leicester, Road Leicester LE1 7RH (United Kingdom); Striegel, S., E-mail: mdainott@stanford.edu, E-mail: dainotti@oa.uj.edu.pl, E-mail: mariagiovannadainotti@yahoo.it, E-mail: xavier@astro.unam.mx, E-mail: postsergey@gmail.com, E-mail: shigehiro.nagataki@riken.jp, E-mail: zrw@le.ac.uk, E-mail: stephanie.striegel@sjsu.edu [Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA 95192 (United States)

    2017-10-20

    Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T {sub a} , its corresponding X-ray luminosity, L {sub a} , and the peak luminosity in the prompt emission, L {sub peak}. This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T {sub a} as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.

  6. Effects of river restoration on riparian biodiversity in secondary channels of the Pite River, Sweden.

    Science.gov (United States)

    Helfield, James M; Engström, Johanna; Michel, James T; Nilsson, Christer; Jansson, Roland

    2012-01-01

    Between 1850 and 1970, rivers throughout Sweden were channelized to facilitate timber floating. Floatway structures were installed to streamline banks and disconnect flow to secondary channels, resulting in simplified channel morphologies and more homogenous flow regimes. In recent years, local authorities have begun to restore channelized rivers. In this study, we examined the effects of restoration on riparian plant communities at previously disconnected secondary channels of the Pite River. We detected no increase in riparian diversity at restored sites relative to unrestored (i.e., disconnected) sites, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites featured greater zonation, with mesic-hydric floodplain species represented in plots closest to the stream and mesic-xeric upland species represented in plots farthest from the stream. In contrast, restored sites were most strongly represented by upland species at all distances relative to the stream. These patterns likely result from the increased water levels in reconnected channels where, prior to restoration, upland plants had expanded toward the stream. Nonetheless, the restored fluvial regime has not brought about the development of characteristic flood-adapted plant communities, probably due to the short time interval (ca. 5 years) since restoration. Previous studies have demonstrated relatively quick responses to similar restoration in single-channel tributaries, but secondary channels may respond differently due to the more buffered hydrologic regimes typically seen in anabranching systems. These findings illustrate how restoration outcomes can vary according to hydrologic, climatic and ecological factors, reinforcing the need for site-specific restoration strategies.

  7. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  8. Radio Channel Sounding Using a Circular Horn Antenna Array in the Horizontal Plane in the 2.3 GHz Band

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Sakata, Tsutomu; Ogawa, Koichi

    2012-01-01

    This paper presents results from an outdoor radio propagation experiment at 2.35 GHz using a channel sounder and a spherical horn antenna array. The propagation test was performed in Aalborg city in Denmark. Comparing the ray-tracing results and the results obtained with the proposed method...... on the measured data shows a good match in both the spatial and time domains....

  9. Experimental investigation on in-plane/out-of-plane vortex-induced vibrations of curved cylinder in parallel and perpendicular flows

    Science.gov (United States)

    Srinil, Narakorn; Ma, Bowen; Zhang, Licong

    2018-05-01

    This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously

  10. Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based x-ray diffraction

    Science.gov (United States)

    Cheng, Zongzhe; Hanke, Michael; Vogt, Patrick; Bierwagen, Oliver; Trampert, Achim

    2017-10-01

    Heteroepitaxial Ga2O3 was deposited on c-plane and a-plane oriented sapphire by plasma-assisted molecular beam epitaxy and probed by ex-situ and in-situ synchrotron-based x-ray diffraction. The investigation on c-plane sapphire determined a critical thickness of around 33 Å, at which the monoclinic β-phase forms on top of the hexagonal α-phase. A 143 Å thick single phase α-Ga2O3 was observed on a-plane sapphire, much thicker than the α-Ga2O3 on c-plane sapphire. The α-Ga2O3 relaxed very fast in the first 30 Å in both out-of-plane and in-plane directions as measured by the in-situ study.

  11. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard

    2015-09-25

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.

  12. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.

    Science.gov (United States)

    Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2015-12-15

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. On Finite Hjelmslev Planes of Parameters (pk−1, p)

    OpenAIRE

    Atilla Akpinar

    2010-01-01

    In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.

  14. Modeling of Particle Transport on Channels and Gaps Exposed to Plasma Fluxes

    International Nuclear Information System (INIS)

    Nieto-Perez, Martin

    2008-01-01

    Many problems in particle transport in fusion devices involve the transport of plasma or eroded particles through channels or gaps, such as in the case of trying to assess damage to delicate optical diagnostics collecting light through a slit or determining the deposition and codeposition on the gaps between tiles of plasma-facing components. A dynamic-composition Monte Carlo code in the spirit of TRIDYN, previously developed to study composition changes on optical mirrors subject to ion bombardment, has been upgraded to include motion of particles through a volume defined by sets of plane surfaces. Particles sputtered or reflected from the walls of the channel/gap can be tracked as well, allowing the calculation of wall impurity transport, either back to the plasma (for the case of a gap) or to components separated from the plasma by a channel/slit (for the case of optical diagnostics). Two examples of the code application to particle transport in fusion devices will be presented in this work: one will evaluate the erosion/impurity deposition rate on a mirror separated from a plasma source by a slit; the other case will look at the enhanced emission of tile material in the region of the gap between two tiles

  15. Two-transitive MInkowski planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we determine all finite Minkowski planes with an automorphism group which satisfies the following transitivity property: any ordered pair of nonparallel points can be mapped onto any other ordered pair of nonparallel points.

  16. Construction Management South-Ukrainian and North-Crimean channels in 1950−1953

    Directory of Open Access Journals (Sweden)

    Satskyi, P. V.

    2017-08-01

    Full Text Available In the current article the analysis of the mechanisms of the providing of management of the building process of the Southern-Ukrainian and Northern-Crimean channels in the command-administrative system of USSR during the late Stalinist period has been made. The building of Southern-Ukrainian and Northern-Crimea channels had a particular political value for USSR in the beginning of 1950s, while the realization of this project was supposed to create the prerequisites for the economic development of the Southern regions of Ukraine (until 1954 and the Northern regions of the Crimea. The General Directorate 'Ukrvodstroy" of the Ministry of Cotton of USSR was supposed to be responsible for the building of the Southern-Ukrainian and Northern-Crimean channels. However, the Ministry of Cotton as well as other union ministries turned out to be ineffective in the process of administering of "communism construction". On the other hand, the Council of Ministers of Ukrainian SSR and the Communist Party of the Soviet Union were very effective in providing of the building of the Southern-Ukrainian and Northern-Crimean channels. Due to the effective activity of the leadership of Ukrainian SSR related to the providing of the building of Southern-Ukrainian and Northern-Crimean channels, the revival of the social-economic development of the Crimea took place, particularly in the far end regions of the Crimea it happened due to the development of capital investments required for the program of channels building. Thus, the Council of Ministers of Ukrainian Soviet Socialist Republic and the Central Committee of Communist Party (Bolsheviks of Ukraine was actively expanding its territory competence on the territory of the Crimea.

  17. Two-plane symmetry in the structural organization of man.

    Science.gov (United States)

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  18. The Effect of Inclination Angle on Critical Heat Flux in a Locally Heated Liquid Film Moving Under the Action of Gas Flow in a Mini-Channel

    Directory of Open Access Journals (Sweden)

    Tkachenko Egor M.

    2016-01-01

    Full Text Available Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes.

  19. ARC Code TI: X-Plane Communications Toolbox (XPC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The X-Plane Communications Toolbox (XPC) is an open source research tool used to interact with the commercial flight simulator software X-Plane. XPC allows users to...

  20. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea

    Science.gov (United States)

    Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda

    2017-12-01

    The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta

  1. A study of ion channeling patterns at minor axes in silicon

    International Nuclear Information System (INIS)

    Motapothula, M.; Dang, Z.Y.; Venkatesan, T.; Breese, M.B.H.

    2014-01-01

    We present a comprehensive study of channeling patterns showing the angular distributions of 2 MeV protons which are transmitted through a 55 nm thick [0 0 1] silicon membrane along, and close to major and minor axes. The use of such ultra-thin membranes allows the relationship between aligned and tilted patterns to be clearly observed and a correlation made between lattice geometry and pattern distribution across many axes. We study the effect of minor planes {1 1 n} (n odd) at axes which they intersect, where their changing lattice geometry results in a variety of effects. The origin of these patterns is studied with Monte Carlo simulations and we show how one may interpret aspects of the observed patterns to determine the corresponding lattice arrangement. At axes which have a single spacing between atom rows produce the well-known ‘doughnut’ distribution at small axial tilts. In comparison, axes which incorporate atom rows with a different spacing or geometry produce more complex channeling patterns which exhibit a secondary, inner feature produced by beam incident on these rows

  2. Instabilities of Kirkendall planes

    NARCIS (Netherlands)

    Dal, van M.J.H.; Gusak, A.M.; Cserhati, C.; Kodentsov, A.; Loo, van F.J.J.

    2001-01-01

    Reconsideration of the Kirkendall effect is presented. It is demonstrated (experimentally as well as theoretically) that Kirkendall planes can be multiple, stable or unstable within a single-phase reaction zone. A general criterion of instabilty is given.

  3. In-plane fluidelastic instability analysis for large steam generators

    International Nuclear Information System (INIS)

    Mureithi, Njuki; Olala, Stephen; Hadji, Abdallah

    2015-01-01

    Fluidelastic instability remains the most important vibration excitation mechanism in nuclear steam generators (SGs). Design guidelines, aimed at eliminating the possibility of fluidelastic instability, have been developed over the past 40 years. The design guidelines, based on the Connors equation, depend on a large database on cross-flow fluidelastic instability i.e. instability in the direction transverse to the flow. Past experience had shown that for an axi-symmetrically flexible tube, instability generally occurred in the transverse direction, at least at first. Although often not explicitly stated, there has been an implicit assumption that the in-plane direction was either stable, or would only suffer instability at velocities significantly higher than the transverse direction. This explains why SGs are fitted with anti-vibrations bars (AVBs) to mitigate transverse (out-of-plane) vibrations with no equivalent consideration for potential in-plane instability. This 'oversight' recently came to a head when SG at the San-Onofre NPP suffered in-plane fluidelastic instability. The present paper addresses the question of in-plane fluidelastic instability in large SGs. A historical review is presented to explain why this potential problem was left unresolved (or ignored) over the past 40+ years, and why engineers got away with it - at least until recently. Following the review, some recent work on in-plane fluidelastic instability modeling, using the quasi-steady model is presented. It is shown that in-plane fluidelastic instability can be fully modelled using this approach. The model results are used to propose some changes to existing design guidelines to cover the case of in-plane fluidelastic instability. (author)

  4. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  5. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  6. Plane waves and spacelike infinity

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simon F

    2003-01-01

    In an earlier paper, we showed that the causal boundary of any homogeneous plane wave satisfying the null convergence condition consists of a single null curve. In Einstein-Hilbert gravity, this would include any homogeneous plane wave satisfying the weak null energy condition. For conformally flat plane waves such as the Penrose limit of AdS 5 x S 5 , all spacelike curves that reach infinity also end on this boundary and the completion is Hausdorff. However, the more generic case (including, e.g., the Penrose limits of AdS 4 x S 7 and AdS 7 x S 4 ) is more complicated. In one natural topology, not all spacelike curves have limit points in the causal completion, indicating the need to introduce additional points at 'spacelike infinity' - the endpoints of spacelike curves. We classify the distinct ways in which spacelike curves can approach infinity, finding a two-dimensional set of distinct limits. The dimensionality of the set of points at spacelike infinity is not, however, fixed from this argument. In an alternative topology, the causal completion is already compact, but the completion is non-Hausdorff

  7. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides

    International Nuclear Information System (INIS)

    Li Zhiyuan; Ho Kaiming

    2003-01-01

    The plane-wave-based transfer-matrix method (TMM) exhibits a peculiar advantage of being capable of solving eigenmodes involved in an infinite photonic crystal and electromagnetic (EM) wave propagation in finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical framework. In addition, this theoretical approach can achieve much improved numerical convergency in solution of photonic band structures than the conventional plane-wave expansion method. In this paper we employ this TMM in combination with a supercell technique to handle two important kinds of three-dimensional (3D) photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed to investigate structures with or without complete 3D optical confinement. The fact that the EM field components investigated in the TMM are collinear with the symmetric axes of the waveguide brings great convenience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The classification of symmetry involved in the guided modes can help people to better understand the coupling of the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides

  8. Angle measures, general rotations, and roulettes in normed planes

    Science.gov (United States)

    Balestro, Vitor; Horváth, Ákos G.; Martini, Horst

    2017-12-01

    In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.

  9. Expander Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.

  10. An investigation of 'sparse channel networks'. Characteristic behaviours and their causes

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.H. (In Situ Solutions, East Bridgford (GB)); Barker, J.A.; Woodman, N.D. (Univ. of Southampton (GB))

    2007-09-15

    This report represents a third study in a series concerned with groundwater flow in poorly permeable fractured crystalline rocks. The study has brought together three linked, but distinct, elements; a mathematical analysis of the intersection of ellipses, a review of field measurements associated with nuclear waste repository investigations and probabilistic simulations using a lattice network numerical model. We conclude that the model of channels that traverse fracture intersections without necessarily branching is a very likely representation of reality. More generally, assembling all the lines of evidence, it is suggested that groundwater flow systems in fractured crystalline rocks in the environs of underground laboratories have the following characteristics: Groundwater flows within a sparse network of channels just above the percolation limit. The frequency of intersections is low in that individual channels extend considerable distances between significant junctions. Individual channels often extend over many fracture surfaces and the resulting flow system is only weakly related to the density or size of mappable fractures. The sparseness of systems compared to the size of drifts and tunnels means that only a very few flow channels are intersected by drifts and tunnels. Highly convergent flow is required to connect to the rest of the network and this is misinterpreted as a skin of low hydraulic conductivity. Systems are so sparse that they are controlled by a few 'chokes' that give rise to compartments of head, and probably, of groundwater chemistry. Channels occur on all fracture planes, including those within fracture zones, and although the characteristics of the fracture zone channel networks may differ from those in surrounding rocks, they are nonetheless still channel networks. The actively flowing sparse channel network, occurring within any particular rock, is a naturally selected, small sub-set of the available channels. Hence, there are

  11. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.

  12. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  13. Entropy generation in natural convection in a symmetrically and uniformly heated vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Assunta [Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Universita degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Auletta, Antonio [CIRA - Centro Italiano Ricerche Aerospaziali, Via Maiorise 1, 81043 Capua (CE) (Italy); Manca, Oronzio [Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Universita degli Studi di Napoli, Real Casa dell' Annunziata, Via Roma 29, 81031 Aversa (CE) (Italy)

    2006-08-15

    In this study numerical predictions of local and global entropy generation rates in natural convection in air in a vertical channel symmetrically heated at uniform heat flux are reported. Results of entropy generation analysis are obtained by solving the entropy generation equation based on the velocity and temperature data. The analyzed regime is two-dimensional, laminar and steady state. The numerical procedure expands an existing computer code on natural convection in vertical channels. Results in terms of fields and profiles of local entropy generation, for various Rayleigh number, Ra, and aspect ratio values, L/b, are given. The distributions of local values show different behaviours for the different Ra values. A correlation between global entropy generation rates, Rayleigh number and aspect ratio is proposed in the ranges 10{sup 3}=

  14. The expanding universe: an introduction

    OpenAIRE

    Pössel, Markus

    2017-01-01

    An introduction to the physics and mathematics of the expanding universe, using no more than high-school level / undergraduate mathematics. Covered are the basics of scale factor expansion, the dynamics of the expanding universe, various distance concepts and the generalized redshift-luminosity relation, among other topics.

  15. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    Science.gov (United States)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  16. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  17. Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field

    International Nuclear Information System (INIS)

    Ni Guyan; Yan Li; Yuan Naichang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum–Liu–Tesche (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent. (the physics of elementary particles and fields)

  18. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  19. Generalized HARQ Protocols with Delayed Channel State Information and Average Latency Constraints

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Popovski, Petar

    2018-01-01

    In many practical wireless systems, the signal-to-interference-and-noise ratio (SINR) that is applicable to a certain transmission, referred to as channel state information (CSI), can only be learned after the transmission has taken place and is thereby delayed (outdated). In such systems, hybrid...... automatic repeat request (HARQ) protocols are often used to achieve high throughput with low latency. This paper put forth the family of expandable message space (EMS) protocols that generalize the HARQ protocol and allow for rate adaptation based on delayed CSI at the transmitter (CSIT). Assuming a block...

  20. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  1. Effects of disorder on the out-of-plane magnetoresistance in the high-Tc BISCCO compound

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1997-01-01

    An explanation is proposed to account for the observed anisotropic out-of-plane magnetoresistivity of the single crystal high temperature superconductor BISCCO compound. The explanation is based on a dynamic scaling model for conductivity fluctuations in the superconducting matrix. In this model, it is assumed that the c-axis conduction in an applied field parallel to the c-direction occurs through defect-mediated interplanar ''weak links'' which behave as an array of parallel, independently fluctuating, superconducting channels. The model also takes into account the possibility of thermally induced dimensional crossover above which the superconducting layers are effectively decoupled and behave as a quasi two-dimensional system. The predictions of the model are consistent with the magnetoresistance measurements reported for two separate experiments on Bi 2 Sr 2 CaCu 2 O 8 single crystals. (orig.)

  2. Quantitative compositional analysis and field-evaporation behavior of ordered Ni4Mo on an atomic plane-by-plane basis: an atom-probe field-ion microscope study. MSC report No. 4802

    International Nuclear Information System (INIS)

    Yamamoto, M.; Seidman, D.N.

    1982-10-01

    The (211) fundamental and (101) superlattice planes, of the bct lattice, were analysed chemically on an atomic plane-by-plane basis. It was demonstrated that the composition of each individual plane can be determined as a function of depth without any ambiguity. The overall average Mo concentration was measured to be 17.1 at. % for the (211) fundamental plane. Details of the field evaporation behavior of the (211) fundamental and (101) superlattice planes were studied. The field-evaporation behavior is described in terms of the field-evaporation rate, the order of the field evaporated ions, etc. Each individual atomic plane field evaporated on an atomic plane-by-plane basis for the (211) fundamental plane. While for (101) superlattice plane a group of planes consisting of one plane of Mo atoms and four planes of Ni atoms field-evaporated as a unit. An abnormal increase in the number of Mo atoms was found in the central portion of the (211) fundamental plane. Possible mechanisms for the abnormal field evaporation rate are discussed. It is concluded that the atom probe technique can be used to follow the physics and chemistry of the field-evaporation process and the chemistry of the alloy as a function of position, on a subnanometer scale, throughout the specimen. 13 figures

  3. Three dimensional numerical investigation of flow mixing in curved tubes and mass transfer in T-channel junction

    International Nuclear Information System (INIS)

    Pandey, Pradeep; Nayak, A.K.; Vijayan, P.K.

    2014-01-01

    Three dimensional flow patterns appearing in geometries such as curved pipes and T-channel junctions have important applications and are attractive for research. Unlike the flow in a straight tube, fluid motion in a curved tube is not parallel to the axis of bend, owing to the presence of centrifugal effects. It is characterized by a secondary flow in a cross-sectional plane normal to the main flow. Consequently, secondary flow separation near the inner wall is observed in the developing region. The strength of the secondary flow is greatly influenced by the curvature ratio and in turn, a non-dimensional parameter called the Dean Number. Secondary flow increases flow resistance, resulting in a larger pressure drop along the bend. The location of the maximum axial velocity gets shifted towards the outer wall. Flow in a T-channel junction is also a configuration of great significance. The simulations of the present work show that flow at low Reynolds numbers (Re ≤ 115) is steady and symmetric. For low Reynolds numbers, flow in the downstream channel remains highly segregated about the centerline. The appearance of vortices in the T-channel junction does little to redistribute concentration when flow remains symmetric. With increasing Reynolds number, transition takes place towards asymmetric flow. The incoming flow field gets redistributed at the center-plane and the dividing streamline becomes increasingly distorted. The flow field is characterized by thin elongated fluid interfaces across which momentum diffusion takes place. Flow at higher Reynolds numbers (Re ≥ 250) becomes unsteady in which unstable stagnation stream traces move periodically leftward and rightward at top and bottom walls. Trajectories of mass-less particles show greater dwelling in the junction as compared to those of finite mass particle. The numerical simulation is carried out in the present work using ANUPRAVAHA, a general purpose CFD solver developed at IIT Kanpur in collaboration with

  4. Chaotic mixing in a planar, curved channel using periodic slip

    International Nuclear Information System (INIS)

    Garg, P.; Picardo, J. R.; Pushpavanam, S.

    2015-01-01

    We propose a novel strategy for designing chaotic micromixers using curved channels confined between two flat planes. The location of the separatrix between the Dean vortices, induced by centrifugal forces, is dependent on the location of the maxima of axial velocity. An asymmetry in the axial velocity profile can change the location of the separatrix. This is achieved physically by introducing slip alternatingly at the top and bottom walls. This leads to streamline crossing and Lagrangian chaos. An approximate analytical solution of the velocity field is obtained using perturbation theory. This is used to find the Lagrangian trajectories of fluid particles. Poincare sections taken at periodic locations in the axial direction are used to study the extent of chaos. We study two microchannel designs, called circlet and serpentine, in which the Dean vortices in adjacent half cells are co-rotating and counter-rotating, respectively. The extent of mixing, at low Re and low slip length, is shown to be greater in the serpentine case. Wide channels are observed to have much better mixing than tall channels; an important observation not made for separatrix flows till now. Eulerian indicators are used to gauge the extent of mixing, with varying slip length, and it is shown that an optimum slip length exists which maximizes the mixing in a particular geometry. Once the parameter space of relatively high mixing is identified, detailed variance computations are carried out to identify the detailed features

  5. Chaotic mixing in a planar, curved channel using periodic slip

    Science.gov (United States)

    Garg, P.; Picardo, J. R.; Pushpavanam, S.

    2015-03-01

    We propose a novel strategy for designing chaotic micromixers using curved channels confined between two flat planes. The location of the separatrix between the Dean vortices, induced by centrifugal forces, is dependent on the location of the maxima of axial velocity. An asymmetry in the axial velocity profile can change the location of the separatrix. This is achieved physically by introducing slip alternatingly at the top and bottom walls. This leads to streamline crossing and Lagrangian chaos. An approximate analytical solution of the velocity field is obtained using perturbation theory. This is used to find the Lagrangian trajectories of fluid particles. Poincare sections taken at periodic locations in the axial direction are used to study the extent of chaos. We study two microchannel designs, called circlet and serpentine, in which the Dean vortices in adjacent half cells are co-rotating and counter-rotating, respectively. The extent of mixing, at low Re and low slip length, is shown to be greater in the serpentine case. Wide channels are observed to have much better mixing than tall channels; an important observation not made for separatrix flows till now. Eulerian indicators are used to gauge the extent of mixing, with varying slip length, and it is shown that an optimum slip length exists which maximizes the mixing in a particular geometry. Once the parameter space of relatively high mixing is identified, detailed variance computations are carried out to identify the detailed features.

  6. Identification of Critical Transmission Limits in Injection Impedance Plane

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde

    2012-01-01

    In this paper, equations are derived that describe the mapping of critical boundaries and characteristic lines from the three dimensionalPQV-surface into the two-dimensional injection impedance plane (load impedance plane for both positive and negativeresistance). The expressions derived....... The situational awareness method will bedescribed in a later paper, where this paper focuses on the derivations of some system characteristics in the injection (or load)impedance plane. The critical lines from the PQV-surface that are mapped into the impedance plane are the ones representing theconditions where...... the partial derivatives of the variables P,Q and V in respect to each other become zero. In addition to the mappingof the critical lines, some characteristic lines are mapped as well. These include the mapping of the lines of constant P,Q,Vand d from the PQV-surface into the impedance plane. All of the mapped...

  7. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager

    OpenAIRE

    Langille, Megan M.; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum ...

  8. On spin and matrix models in the complex plane

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1993-01-01

    We describe various aspects of statistical mechanics defined in the complex temperature or coupling-constant plane. Using exactly solvable models, we analyse such aspects as renormalization group flows in the complex plane, the distribution of partition function zeros, and the question of new coupling-constant symmetries of complex-plane spin models. The double-scaling form of matrix models is shown to be exactly equivalent to finite-size scaling of two-dimensional spin systems. This is used to show that the string susceptibility exponents derived from matrix models can be obtained numerically with very high accuracy from the scaling of finite-N partition function zeros in the complex plane. (orig.)

  9. Basic examination of in-plane spatial resolution in multi-slice CT

    International Nuclear Information System (INIS)

    Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi

    2002-01-01

    In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)

  10. A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab

    Science.gov (United States)

    Eckel, S.; Kumar, A.; Jacobson, T.; Spielman, I. B.; Campbell, G. K.

    2018-04-01

    We study the dynamics of a supersonically expanding, ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations—solitons and vortices—driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are reminiscent of a type of "preheating" that may have taken place at the end of inflation.

  11. Combined use of a two-channel endoscope and a flexible tip catheter for difficult biliary cannulation

    Directory of Open Access Journals (Sweden)

    Masaki Kuwatani

    2018-04-01

    Full Text Available A 69-year-old woman with jaundice was referred to our hospital. After a final diagnosis of pancreatic cancer with liver metastasis, we performed transpapillary biliary drainage with a covered self-expandable metal stent (SEMS. Three months later, we also placed an uncovered duodenal stent for duodenal stricture in a side-to-end fashion. Another month later, for biliary SEMS obstruction, we attempted a transpapillary approach. A duodenoscope was advanced and a guidewire was passed through the mesh of the duodenal stent into the bile duct with a flexible tip catheter, but the catheter was not. Thus, we exchanged the duodenoscope for a forward-viewing two-channel endoscope and used the left working channel with a flexible tip catheter. By adjusting the axis, we finally succeeded biliary cannulation and accomplished balloon cleaning for recanalization of the SEMS. This is the first case with successful biliary cannulation by combined use of a two-channel endoscope and a flexible tip catheter.

  12. Discretization of superintegrable systems on a plane

    Science.gov (United States)

    Kabát, Z.

    2012-02-01

    We construct difference analogues of so called Smorodinsky-Winternitz superintegrable systems in the Euclidean plane. Using methods of umbral calculus, we obtain difference equations for generalized isotropic harmonic oscillator on the uniform lattice, and also its solution in terms of power series. In the case of gauge-rotated Hamiltonian, the solution is a polynomial, well-defined in the whole plane.

  13. Slipping and Rolling on an Inclined Plane

    Science.gov (United States)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  14. Multispectral linear array (MLA) focal plane mechanical and thermal design

    Science.gov (United States)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  15. Peptidoglycan architecture can specify division planes in Staphylococcus aureus.

    Science.gov (United States)

    Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J

    2010-06-15

    Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.

  16. Multiple fracture planes in deuteron irradiated metals

    International Nuclear Information System (INIS)

    Jones, W.R.; Johnson, P.B.

    1987-01-01

    Evidence has been found of multiple fracture planes in the blistering and flaking of metals observed at room temperature following irradiation at 120 K with 200 keV deuterons. In particular, two fracture planes are identified in copper, gold and stainless steel and three in aluminium. In nickel only one fracture plane is found. Qualitative models are proposed which explain the different fracture planes that are observed. In these models it is proposed that several mechanisms are important. (i) High levels of compressional stress in the implanted layer inhibits bubble nucleation and bubble growth in the depth region near the maxima in the damage and gas deposition profiles. (ii) The lateral stress varies from compression in the implant region to tension in the material below. In the region of tension bubble growth is enhanced. The vertical gradient in the lateral stress may also assist gas to move deeper into the target to further enhance bubble growth in this region. (iii) Shear resulting from differential expansion due to a combination of radiation induced swelling and localised heating is an important mechanism leading to fracture. (orig.)

  17. Hand-Eye LRF-Based Iterative Plane Detection Method for Autonomous Robotic Welding

    Directory of Open Access Journals (Sweden)

    Sungmin Lee

    2015-12-01

    Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist's rotation to minimize a mechanical error caused by the manipulator's motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist's angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator's alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist's joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time's points of view.

  18. Channel Analysis for a 6.4 Gb s-1 DDR5 Data Buffer Receiver Front-End

    Science.gov (United States)

    Lehmann, Stefanie; Gerfers, Friedel

    2017-09-01

    In this contribution, the channel characteristic of the next generation DDR5-SDRAM architecture and possible approaches to overcome channel impairments are analysed. Because modern enterprise server applications and networks demand higher memory bandwidth, throughput and capacity, the DDR5-SDRAM specification is currently under development as a follow-up of DDR4-SDRAM technology. In this specification, the data rate is doubled to DDR5-6400 per IO as compared to the former DDR4-3200 architecture, resulting in a total per DIMM data rate of up to 409.6 Gb s-1. The single-ended multi-point-to-point CPU channel architecture in DDRX technology remains the same for DDR5 systems. At the specified target data rate, insertion loss, reflections, cross-talk as well as power supply noise become more severe and have to be considered. Using the data buffer receiver front-end of a load-reduced memory module, sophisticated equalisation techniques can be applied to ensure target BER at the increased data rate. In this work, the worst case CPU back-plane channel is analysed to derive requirements for receiver-side equalisation from the channel response characteristics. First, channel impairments such as inter-symbol-interference, reflections from the multi-point channel structure, and crosstalk from neighboring lines are analysed in detail. Based on these results, different correction methods for DDR5 data buffer front-ends are discussed. An architecture with 1-tap FFE in combination with a multi-tap DFE is proposed. Simulation of the architecture using a random input data stream is used to reveal the required DFE tap filter depth to effectively eliminate the dominant ISI and reflection based error components.

  19. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  20. Towards the design of a RF-harvesting EBG ground plane

    NARCIS (Netherlands)

    Visser, H.J.; Keyrouz, S.

    2015-01-01

    Electromagnetic Band Gap (EBG) structures may be used to create magnetic conductors that can be used as ground planes for dipole and loop-like antennas without annihilating the radiation as electrically conducting ground planes would do. An EBG ground plane may be created by placing a Frequency

  1. 47 CFR 73.160 - Vertical plane radiation characteristics, f(θ).

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Vertical plane radiation characteristics, f(Î... SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.160 Vertical plane radiation characteristics, f(θ). (a) The vertical plane radiation characteristics show the relative field being radiated at a...

  2. Laplace plane modifications arising from solar radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, Aaron J.; Scheeres, Daniel J., E-mail: aaron.rosengren@colorado.edu [ADepartment of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States)

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  3. BKP plane partitions

    International Nuclear Information System (INIS)

    Foda, Omar; Wheeler, Michael

    2007-01-01

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another

  4. BKP plane partitions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2007-01-15

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  5. Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates

    Science.gov (United States)

    Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar

    2017-05-01

    We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.

  6. On the solution of fluid flow and heat transfer problem in a 2D channel with backward-facing step

    Directory of Open Access Journals (Sweden)

    Alexander A. Fomin

    2017-06-01

    Full Text Available The stable stationary solutions of the test problem of hydrodynamics and heat transfer in a plane channel with the backward-facing step have been considered in the work for extremely high Reynolds numbers and expansion ratio of the stream $ER$. The problem has been solved by numerical integration of the 2D Navier–Stokes equations in ‘velocity-pressure’ formulation and the heat equation in the range of Reynolds number $500 \\leqslant \\mathrm{ Re} \\leqslant 3000$ and expansion ratio $1.43 \\leqslant ER \\leqslant 10$ for Prandtl number $\\mathrm{ Pr} = 0.71$. Validity of the results has been confirmed by comparing them with literature data. Detailed flow patterns, fields of stream overheating, and profiles of horizontal component of velocity and relative overheating of flow in the cross section of the channel have been presented. Complex behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number along the channel depending on the problem parameters have been analyzed.

  7. Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates

    International Nuclear Information System (INIS)

    Cannon, Donald M. Jr.; Flachsbart, Bruce R.; Shannon, Mark A.; Sweedler, Jonathan V.; Bohn, Paul W.

    2004-01-01

    Focused-ion beam (FIB) milling provides rapid fabrication of individual cylindrical submicrometer channels with reproducible dimensions (±5% diameters) through 8-μm thick poly(methylmethacrylate) (PMMA) films. PMMA films are spincast on sacrificial Si carriers and sputter-coated with Au before the 30-kV gallium FIB milling process. By adding a trace amount of poly(ethyleneoxide) and poly(dimethylsiloxane) to the PMMA solution before casting, the films can be released for subsequent mounting in microfluidic devices to create hybrid microfluidic-nanofluidic multilevel architectures. In situ FIB sectioning demonstrates the smooth cylindrical surface within the pore. Placing a milled film in contact with an aqueous fluorescein solution fills the channel by capillary action, as verified by confocal fluorescence microscopy. Confocal fluorescence of dyed films reveals that the pores span the thickness of the PMMA film. Small arrays of channels with a defined number and density and arbitrary in-plane spatial arrangement are fabricated with this process, allowing a unique testbed for high aspect ratio nanofluidic devices

  8. Proof of Polyakov conjecture on supercomplex plane

    International Nuclear Information System (INIS)

    Kachkachi, M.; Kouadik, S.

    1994-10-01

    Using Neumann series, we solve iteratively SBE to arbitrary order. Then applying this, we compute the energy momentum tensor and n points functions for generic n starting from WZP action on the supercomplex plane. We solve the superconformal Ward identity and we show that the iterative solution to arbitrary order is resumed by WZP action. This proves the Polyakov conjecture on supercomplex plane. (author). 8 refs

  9. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  10. Long-range current flow and percolation in Rabbits-type conductors and the relative importance of out-of-plane and in-plane mis orientations in determining J {sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States)]. E-mail: goyala@ornl.gov; Rutter, N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States); University of Cambridge, Pembroke St., Cambridge CB2 3QZ (United Kingdom); Cantoni, C. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States); Lee, D.F. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States)

    2005-10-01

    Calculations of long-range current flow using an advanced percolation model show that with the presently observed texture in RABiTS substrates, the dependence of J {sub c} on length as a function of width is greatly reduced. Furthermore, this dependence becomes almost negligible in applied fields. These results suggest that sub-division of a wide conductor into narrow filaments should be possible without loss in J {sub c}. The relative importance of the out-of-plane texture in affecting intergranular J {sub c} was also explored by fabricating RABiTS substrates with different out-of-plane textures but approximately the same in-plane texture. This was accomplished by using TiN as a seed layer for which significant sharpening of the out-of-plane texture is observed. Similar J {sub c} was found for samples with differing out-of-plane texture but almost the same in-plane texture. Finally, separation of the total misorientation in GB networks into in-plane and out-of-plane misorientations using manipulations in Rodrigues space shows that J {sub c} correlates best with in-plane texture.

  11. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes

    Science.gov (United States)

    Wang, Huanjing; Sun, Xiuxia; Liu, Zonghuai; Lei, Zhibin

    2014-05-01

    Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time constant were achieved when compared with those of nonporous and stacked graphene electrodes. The method demonstrated herein would open up an opportunity to prepare porous graphene for a wide applications in energy storage, biosensors, nanoelectronics and catalysis.Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time

  12. Out-of-plane coercive field of Ni80Fe20 antidot arrays

    International Nuclear Information System (INIS)

    Gao Chunhong; Chen Ke; Lue Ling; Zhao Jianwei; Chen Peng

    2010-01-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80 Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80 Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80 Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  13. Out-of-plane coercive field of Ni 80Fe 20 antidot arrays

    Science.gov (United States)

    Gao, Chunhong; Chen, Ke; Lü, Ling; Zhao, Jianwei; Chen, Peng

    2010-11-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  14. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9.

    Science.gov (United States)

    Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C

    2014-11-12

    The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.

  15. A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab

    Directory of Open Access Journals (Sweden)

    S. Eckel

    2018-04-01

    Full Text Available We study the dynamics of a supersonically expanding, ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations—solitons and vortices—driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are reminiscent of a type of “preheating” that may have taken place at the end of inflation.

  16. Surface anatomy and anatomical planes in the adult turkish population.

    Science.gov (United States)

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  17. Flow Boiling on a Downward-Facing Inclined Plane Wall of Core Catcher

    International Nuclear Information System (INIS)

    Kim, Hyoung Tak; Bang, Kwang Hyun; Suh, Jung Soo

    2013-01-01

    In order to investigate boiling behavior on downward-facing inclined heated wall prior to the CHF condition, an experiment was carried out with 1.2 m long rectangular channel, inclined by 10 .deg. from the horizontal plane. High speed video images showed that the bubbles were sliding along the heated wall, continuing to grow and combining with the bubbles growing at their nucleation sites in the downstream. These large bubbles continued to slide along the heated wall and formed elongated slug bubbles. Under this slug bubble thin liquid film layer on the heated wall was observed and this liquid film prevents the wall from dryout. The length, velocity and frequency of slug bubbles sliding on the heated wall were measured as a function of wall heat flux and these parameters were used to develop wall boiling model for inclined, downward-facing heated wall. One approach to achieve coolable state of molten core in a PWR-like reactor cavity during a severe accident is to retain the core melt on a so-called core catcher residing on the reactor cavity floor after its relocation from the reactor pressure vessel. The core melt retained in the core catcher is cooled by water coolant flowing in an inclined cooling channel underneath as well as the water pool overlaid on the melt layer. Two-phase flow boiling with downward-facing heated wall such as this core catcher cooling channel has drawn a special attention because this orientation of heated wall may reach boiling crisis at lower heat flux than that of a vertical or upward-facing heated wall. Nishikawa and Fujita, Howard and Mudawar, Qiu and Dhir have conducted experiments to study the effect of heater orientation on boiling heat transfer and CHF. SULTAN experiment was conducted to study inclined large-scale structure coolability by water in boiling natural convection. In this paper, high-speed visualization of boiling behavior on downward-facing heated wall inclined by 10 .deg. is presented and wall boiling model for the

  18. The contribution of riparian vegetation to the stability of agricultural channels banks in the Lombardy plane

    Science.gov (United States)

    Spelta, E.; Chiaradia, E. A.; Bischetti, G. B.

    2009-04-01

    limitations, we have modified the model to account for the distribution of root cohesion (cR) within the soil and the non-simultaneous root breaking: ‘N cR = k′k′′ (Trar)i i=1 where Tr is the tensile strength and ar is the Root Area Ratio (RAR) for roots belonging to diameter class i, N is the number of classes considered, k′ is the factor accounting for the decomposition of root tensile strength and k′′ is a factor accounting for the non-simultaneous breaking of roots. In the present work the modified W&W model has been adopted to estimate the root cohesion due to the riparian vegetation, and the bank stability, for six study sites belonging to two small agricultural channel of the Lombardy plane. The study sites consist of very steep banks (45-50˚ ) with the following riparian vegetation, typical of the considered landscape: Sambucus nigra, Acer campestre, Rubus spp., Populus Canadensis. Several samples of roots have been taken at each site, in order to carry out laboratory tensile strength tests and to develop the strength-diameter relationships, which are requested to estimate the tensile strength of the roots of the different size according to their species. Trenches have been excavated into the bank at each site in order to identify all the roots of different size present at each depth, and to estimate RAR distribution with depth. Estimated root cohesion values for each site have been then used into a bank stability model to evaluate the current Factor of Safety values, that have been compared with those resulting from banks without vegetation. Results show that in the selected cases, riparian vegetation is crucial in determining the stability of the banks. Neglecting the estimated values of cohesion, in fact, banks result extremely unstable, according to their soil properties and their steepness.

  19. Comparing trapezius muscle activity in the different planes of shoulder elevation.

    Science.gov (United States)

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-05-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles' activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation.

  20. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager.

    Science.gov (United States)

    Langille, Megan M; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  1. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  2. Analysis of Relative Parallelism Between Hamular-Incisive-Papilla Plane and Campers Plane in Edentulous Subjects: A Comparative Study.

    Science.gov (United States)

    Tambake, Deepti; Shetty, Shilpa; Satish Babu, C L; Fulari, Sangamesh G

    2014-12-01

    The study was undertaken to evaluate the parallelism between hamular-incisive-papilla plane (HIP) and the Campers plane. And to determine which part of the posterior reference of the tragus i.e., the superior, middle or the inferior of the Camper's plane is parallel to HIP using digital lateral cephalograms. Fifty edentulous subjects with well formed ridges were selected for the study. The master casts were obtained using the standard selective pressure impression procedure. On the deepest point of the hamular notches and the centre of the incisive papilla stainless steel spherical bearings were glued to the cast at the marked points. The study templates were fabricated with autopolymerizing acrylic resin. The subjects were prepared for the lateral cephalograms. Stainless steel spherical bearings were adhered to the superior, middle, inferior points of the tragus of the ear and inferior border of the ala of the nose using surgical adhesive tape. The subjects with study templates were subjected to lateral cephalograms. Cephalometric tracings were done using Autocad 2010 software. Lines were drawn connecting the incisive papilla and hamular notch and the stainless steel spherical bearings placed on the superior, middle and inferior points on the tragus and the ala of the nose i.e., the Campers line S, Campers line M, Campers line I. The angles between the three Camper's line and the HIP were measured and recorded. Higher mean angulation was recorded in Campers line S -HIP (8.03) followed by Campers line M-HIP (4.60). Campers line I-HIP recorded the least angulation (3.80). The HIP is parallel to the Camper's plane. The Camper's plane formed with the posterior reference point as inferior point of the tragus is relatively parallel to the HIP.

  3. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  4. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  5. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  6. Channel characteristics and coordination in three-echelon dual-channel supply chain

    Science.gov (United States)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  7. Pulmonary intersegmental planes: imaging appearance and possible reasons leading to their visualization.

    Science.gov (United States)

    Zuo, Yi-Zhi; Liu, Chao; Liu, Shu-Wei

    2013-04-01

    To describe the normal imaging appearance of pulmonary intersegmental planes on thoracic computed tomographic (CT) scans and determine the possible reasons related to their visualization in terms of aging and anatomy. The study was approved by the internal ethics review board. Informed consent was obtained. A retrospective review was undertaken of 104 thoracic multidetector CT scans of an older group (>65 years) and younger group (planes were assessed. Group comparisons were made, and linear regression analysis was used to assess relationships between age and visualization of intersegmental planes. Thirty lung samples (10 × 10 × 10 mm(3)) from autopsy were scanned by using micro-CT. Thicknesses of intersegmental planes were measured. Significant differences of the thickness between visible and invisible intersegmental planes were assessed with the independent t test. In five fetal specimens (17-21 weeks in gestational age), 7.0-T magnetic resonance (MR) imaging was performed to determine the congenital difference of thickness of intersegmental planes. Within the right lung, appearance rates of visible intersegmental planes were 71.2% at S1-S3, 54.8% at S4-S5, and 70.2% at S7-S10. Within the left lung, appearance rates of visible intersegmental planes were 39.4% at S1+2 to S3, 64.4% at S4-S5, 18.3% at S7-S8, and 89.4% at S7-S10. Appearance rates of visible intersegmental planes on thoracic CT scans were not significantly different (P ≥ .38) between younger and older groups. Mean thicknesses of visible and invisible intersegmental planes were 681.3 μm ± 75.3 (standard deviation) and 221.7 μm ± 54.1, respectively. Visible intersegmental planes were significantly thicker than invisible intersegmental planes (P planes were also seen on fetal lung 7.0-T MR images. The thickness of pulmonary intersegmental planes and variation of intersegmental veins were closely related to visualization of intersegmental planes on thoracic CT scans. Aging was excluded as the

  8. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  9. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  10. The OBS control plane

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Ruepp, Sarah Renée

    2010-01-01

    . The applicability analysis carried out here focuses on the actual feasibility of the integration and the potential trade-offs which appear when two contradicting principles are combined. Taking advantage of the flexibility of the GMPLS control plane does not seem to be as easy and as straightforward as expected...

  11. Quantitative Microstructural Characterization of Thick Aluminum Plates Heavily Deformed Using Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Mishin, Oleg; Segal, V.M.; Ferrasse, S.

    2012-01-01

    A detailed quantitative analysis of the microstructure has been performed in three orthogonal planes of 15-mm-thick aluminum plates heavily deformed via two equal channel angular extrusion (ECAE) routes. One route was a conventional route A with no rotation between passes. Another route involved...... sequential 90 deg rotations about the normal direction (ND) between passes. The microstructure in the center of these plates, and especially the extent of microstructural heterogeneity, has been characterized quantitatively and compared with that in bar samples extruded via either route A or route Bc with 90...... Bc. © The Minerals, Metals & Materials Society and ASM International 2012...

  12. The Expanding Universe: Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, Don [Fermilab; Nord, Brian [Fermilab

    2014-09-01

    In 1998, observations of distant supernovae led physicists that not only was the universe expanding, but the expansion was speeding up. In this article, we describe the evidence for an expanding universe and describe what physicists and cosmologists have learned in the intervening years. The target audience for this article is high school physics teachers and college physics professors at teaching institutions.

  13. Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing.

    Science.gov (United States)

    Andrade, Arturo; Denome, Sylvia; Jiang, Yu-Qiu; Marangoudakis, Spiro; Lipscombe, Diane

    2010-10-01

    Alternative pre-mRNA splicing occurs extensively in the nervous systems of complex organisms, including humans, considerably expanding the potential size of the proteome. Cell-specific alternative pre-mRNA splicing is thought to optimize protein function for specialized cellular tasks, but direct evidence for this is limited. Transmission of noxious thermal stimuli relies on the activity of N-type Ca(V)2.2 calcium channels in nociceptors. Using an exon-replacement strategy in mice, we show that mutually exclusive splicing patterns in the Ca(V)2.2 gene modulate N-type channel function in nociceptors, leading to a change in morphine analgesia. Exon 37a (e37a) enhances μ-opioid receptor-mediated inhibition of N-type calcium channels by promoting activity-independent inhibition. In the absence of e37a, spinal morphine analgesia is weakened in vivo but the basal response to noxious thermal stimuli is not altered. Our data suggest that highly specialized, discrete cellular responsiveness in vivo can be attributed to alternative splicing events regulated at the level of individual neurons.

  14. Projecting non-diffracting waves with intermediate-plane holography.

    Science.gov (United States)

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  15. Origin of the Local Group satellite planes

    Science.gov (United States)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  16. Seasonal variability of the diapycnal mixing in the Canary Islands channels

    Science.gov (United States)

    Rodríguez-Santana, Angel; Marrero-Díaz, Angeles; Machín, Francisco Jose; García-Weil, Luis; Sangrà, Pablo; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio; Estrada-Allis, Sheila

    2014-05-01

    Trimonthly surveys of XBT and XCTD (Expandable Bathytermograph and Conductivity-Temperature-Depth) crossing the whole Canary Islands channels were carried out (projects TRAMIC and PROMECA) from November 2012 until September 2013 using opportunity ships (Naviera Armas Ferries). With this data set and using salinity analytical relationships (Machín et al, 2010), vertical sections of temperature and potential density were obtained for each channel and season. In order to estimate the intensity of the diapycnal mixing in the first 500 m of the pycnocline, vertical sections of Thorpe length scale, Turner angle and gradient Richardson number (from the geostrophic vertical shear) were calculated for all the cases. The first results show how the diapycnal mixing due to the vertical shear instabilities is more intense close to the islands and in summer when the seasonal pycnocline is present. Mixing due to double diffusion processes (salt fingers) was found without sizable changes in the permanent pycnocline. Net turbulence diffusivities and diapycnal diffusive fluxes with their variability spatial and temporal will be estimate for each channel taking into account that processes of double diffusion and turbulence induced by vertical shear are present at the same time. Additionally the results obtained from hydrographic data from the cruise RAPROCAN-2013 (IEO) (October 2013) around Canary Islands will be used to compare them with the channels results. This work was co-funded by Canary Government (TRAMIC project: PROID20100092), European Union (FEDER) and Spanish Government (PROMECA: CTM2008-04057/MAR and CTM2009-06993-E/MAR)

  17. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  18. Crack initiation under generalized plane strain conditions

    International Nuclear Information System (INIS)

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab

  19. Thermomechanical architecture of the VIS focal plane for Euclid

    International Nuclear Information System (INIS)

    Martignac, Jerome; Carty, Michael; Tourette, Thierry; Bachet, Damien; Berthe, Michel; Augueres, Jean-Louis; Amiaux, Jerome; Fontignie, Jean; Horeau, Benoit; Renaud, Diana

    2014-01-01

    One of the main challenges for current and near future space experiments is the increase of focal plane complexity in terms of amount of pixels. In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. CEA has developed the thermomechanical architecture of that Focal Plane taking into account all the very stringent performance and mission related requirements. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150 K) connected to their front end electronics (operated at 280 K) as to obtain one of the largest focal plane (0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the e2v company under ESA contract, front end electronics is studied and provided by MSSL. In this paper we first recall the specific requirements that have driven the overall architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally. The mechanical structure based on SiC material used for the cold sub assembly supporting the CCDs is detailed. We describe also the modular architecture concept that we have selected taking into account AIT-AIV and programmatic constraints. (authors)

  20. On the theory of twinning plane superconductivity

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1988-01-01

    The thermodynamic potential of the superconducting layer in the twinning plane (TP) vicinity for the type I superconductors is found. The corrections to the surface tension in powers of the Ginsburg-Landau parameter κ are obtained. The corresponding states law for the supercooling field for the type I twinning plane superconductivity (TPS) is obtained, as well as the critical field law for the type II TPS. A review of experimental and theoretical works on TPS and some similar systems is given. The conditions for the Berezinski-Kosterlitz-Thouless transition for the proximity effect are discussed, as well as the possible mechanisms for the conducting phase transition TPS in Nb and the pinning forces close to the twinning plane. The obtained order parameter distribution can be used for description of the superlattices from normal and superconducting metals as well. 6 figs., 44 refs

  1. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery.

    Science.gov (United States)

    Li, Jili; Yao, Ruimin; Cao, Chuanbao

    2014-04-09

    As we know, Li(+)-ion transport in layered LiNi1/3Co1/3Mn1/3O2 (NCM) is through two-dimensional channels parallel to the Li(+)-ion layers that are indexed as {010} active planes. In this paper, NCM nanoplates with exposed {010} active facets are synthesized in a polyol medium (ethylene glycol) and characterized by XRD, XPS, SEM, and HR-TEM. In addition, the effects of reaction conditions on the morphologies, structures and electrochemical performances are also evaluated. The results show that more {010} facets can be exposed with the thickness of NCM nanoplates increasing which can lead to more channels for Li(+)-ion migration. However, when the annealing temperatures exceed 900 °C, many new crystal planes grow along the thickness direction covering the {010} facets. In all of the NCM nanoplates obtained at different conditions, the NCM nanoplates calcined at 850 °C for 12 h (NCM-850-12H) display a high initial discharge capacity of 207.6 mAh g(-1) at 0.1 C (1 C = 200 mA g(-1)) between 2.5 and 4.5 V higher than most of NCM materials as cathodes for lithium ion batteries. The discharge capacities of NCM-850-12H are 169.8, 160.5, and 149.3 mAh g(-1) at 2, 5, and 7 C, respectively, illustrating the excellent rate capability. The superior electrochemical performance of NCM-850-12H cathode can be attributed to more {010} active planes exposure.

  2. Travelling waves in expanding spatially homogeneous space–times

    International Nuclear Information System (INIS)

    Alekseev, George

    2015-01-01

    Some classes of the so-called ‘travelling wave’ solutions of Einstein and Einstein–Maxwell equations in general relativity and of dynamical equations for massless bosonic fields in string gravity in four and higher dimensions are presented. Similarly to the well known plane-fronted waves with parallel rays (pp-waves), these travelling wave solutions may depend on arbitrary functions of a null coordinate which determine the arbitrary profiles and polarizations of the waves. However, in contrast with pp-waves, these waves do not admit the null Killing vector fields and can exist in some curved (expanding and spatially homogeneous) background space–times, where these waves propagate in certain directions without any scattering. Mathematically, some of these classes of solutions arise as the fixed points of Kramer–Neugebauer transformations for hyperbolic integrable reductions of the above mentioned field equations or, in other cases, after imposing the ansatz that these waves do not change the part of the spatial metric transverse to the direction of wave propagation. It is worth noting that the strikingly simple forms of all the solutions presented prospectively make possible the consideration of the nonlinear interaction of these waves with the background curvature and singularities, as well as the collision of such wave pulses with solitons or with each other in the backgrounds where such travelling waves may exist. (paper)

  3. MONETARY TRANSMISSION CHANNELS IN ROMANIA – THE CREDIT CHANNEL

    Directory of Open Access Journals (Sweden)

    Magdalena RĂDULESCU

    2009-12-01

    Full Text Available The theoretical – intuitive analysis applied to the segment of monetary transmission evidences the fact that forming the traditional monetary impulses transmission channels are in a starting phase due to the long financial non – intermediary process which Romanian economy had known. In these conditions, the exchange rate channel, and also NBR currency purchases was, for a long time, an important way through which monetary authorities actions influenced macro economical behaviors. But starting with 2000, it is observed a credit channel reactivation and, especially, interest rate channel. Anyhow, the credit channel continues to be undermined by the existence of liquidity surplus within the system, by the phenomena of substitution of national currency credit with currency credits, and also moral hazardous displays. Albeit some of these phenomena also affect the interest rate channel, its role in sending monetary policy impulses is in a continuous progress. Apparently, it acts by way of nominal interest rates, their real level seeming less relevant. Once with remaking the two traditional channels, the companies and households balance is configured and consolidated, which shall potentate in the future the efficiency of the monetary policy. This paper analyses the credit channel in Romania, through an unrestricted VAR analysis.. It shows the responses of exchange rate, inflation rate, GDP, interest rate, imports and exports to a shock on non-governmental credit

  4. The scintillating fiber focal plane detector for the use of Kaos as a double arm spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayerbe Gayoso, Carlos Antonio

    2012-05-25

    The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5 GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them. For studying hypernuclear production in the {sup A}Z(e,e'K{sup +}){sup A}{sub {lambda}}(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector. The hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60 slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes. Two fiber modules were tested with a carbon beam at GSI, showing a time resolution of {proportional_to}220 ps (FWHM) and a position resolution of {proportional_to}270 {mu}m (FWHM) with a detection efficiency {epsilon}>99%. The characterization of the spectrometer arm has been achieved through simulations

  5. The scintillating fiber focal plane detector for the use of Kaos as a double arm spectrometer

    International Nuclear Information System (INIS)

    Ayerbe Gayoso, Carlos Antonio

    2012-01-01

    The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5 GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them. For studying hypernuclear production in the A Z(e,e'K + ) A Λ (Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector. The hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60 slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes. Two fiber modules were tested with a carbon beam at GSI, showing a time resolution of ∝220 ps (FWHM) and a position resolution of ∝270 μm (FWHM) with a detection efficiency ε>99%. The characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber

  6. A study of parallelism of the occlusal plane and ala-tragus line.

    Science.gov (United States)

    Sadr, Katayoun; Sadr, Makan

    2009-01-01

    Orientation of the occlusal plane is one of the most important clinical procedures in prostho-dontic rehabilitation of edentulous patients. The aim of this study was to define the best posterior reference point of ala-tragus line for orientation of occlusal plane for complete denture fabrication. Fifty-three dental students (27 females and 26 males) with complete natural dentition and Angel's Class I occlusal relationship were selected. The subjects were photographed in natural head position while clenching on a Fox plane. After tracing the photographs, the angles between the following lines were measured: the occlusal plane (Fox plane) and the superior border of ala-tragus, the occlusal plane (Fox plane) and the middle of ala-tragus as well as the occlusal plane (Fox plane) and the inferior border of ala-tragus. Descriptive statistics, one sample t-test and independent t-test were used. P value less than 0.05 was considered significant. There was no parallelism between the occlusal plane and ala-tragus line with three different posterior ends and one sample t-test showed that the angles between them were significantly different from zero (pplane. The superior border of the tragus is suggested as the posterior reference for ala-tragus line.

  7. ZnO-channel thin-film transistors: Channel mobility

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    2004-01-01

    ZnO-channel thin-film transistor (TFT) test structures are fabricated using a bottom-gate structure on thermally oxidized Si; ZnO is deposited via RF sputtering from an oxide target, with an unheated substrate. Electrical characteristics are evaluated, with particular attention given to the extraction and interpretation of transistor channel mobility. ZnO-channel TFT mobility exhibits severe deviation from that assumed by ideal TFT models; mobility extraction methodology must accordingly be recast so as to provide useful insight into device operation. Two mobility metrics, μ avg and μ inc , are developed and proposed as relevant tools in the characterization of nonideal TFTs. These mobility metrics are employed to characterize the ZnO-channel TFTs reported herein; values for μ inc as high as 25 cm2/V s are measured, comprising a substantial increase in ZnO-channel TFT mobility as compared to previously reported performance for such devices

  8. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  9. Plane Transformations in a Complex Setting III: Similarities

    Science.gov (United States)

    Dana-Picard, Thierry

    2009-01-01

    This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…

  10. Disguising quantum channels by mixing and channel distance trade-off

    International Nuclear Information System (INIS)

    Fung, Chi-Hang Fred; Chau, H F

    2014-01-01

    We consider the reverse problem of the distinguishability of two quantum channels, which we call the disguising problem. Given two quantum channels, the goal here is to make the two channels identical by mixing with some other channels with minimal mixing probabilities. This quantifies how much one channel can disguise as the other. In addition, the possibility to trade-off between the two mixing probabilities allows one channel to be more preserved (less mixed) at the expense of the other. We derive lower- and upper-bounds of the trade-off curve and apply them to a few example channels. Optimal trade-off is obtained in one example. We relate the disguising problem and the distinguishability problem by showing that the former can lower and upper bound the diamond norm. We also show that the disguising problem gives an upper-bound on the key generation rate in quantum cryptography. (paper)

  11. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  12. Analysis of IFR driver fuel hot channel factors

    International Nuclear Information System (INIS)

    Ku, J.Y.; Chang, L.K.; Mohr, D.

    1994-01-01

    Thermal-hydraulic uncertainty factors for Integral Fast Reactor (IFR) driver fuels have been determined based primarily on the database obtained from the predecessor fuels used in the IFR prototype, Experimental Breeder Reactor II. The uncertainty factors were applied to the channel factors (HCFs) analyses to obtain separate overall HCFs for fuel and cladding for steady-state analyses. A ''semistatistical horizontal method'' was used in the HCFs analyses. The uncertainty factor of the fuel thermal conductivity dominates the effects considered in the HCFs analysis; the uncertainty in fuel thermal conductivity will be reduced as more data are obtained to expand the currently limited database for the IFR ternary metal fuel (U-20Pu-10Zr). A set of uncertainty factors to be used for transient analyses has also been derived

  13. Analysis of IFR driver fuel hot channel factors

    International Nuclear Information System (INIS)

    Ku, J.Y.; Chang, L.K.; Mohr, D.

    2004-01-01

    Thermal-hydraulic uncertainty factors for Integral Fast Reactor (IFR) driver fuels have been determined based primarily on the database obtained from the predecessor fuels used in the IFR prototype. Experimental Breeder Reactor II. The uncertainty factors were applied to the hot channel factors (HCFs) analyses to obtain separate overall HCFs for fuel and cladding for steady-state analyses. A 'semistatistical horizontal method' was used in the HCFs analyses. The uncertainty factor of the fuel thermal conductivity dominates the effects considered in the HCFs analysis; the uncertainty in fuel thermal conductivity will be reduced as more data are obtained to expand the currently limited database for the IFR ternary metal fuel (U-20Pu-10Zr). A set of uncertainty factors to be used for transient analyses has also been derived. (author)

  14. C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-09-03

    This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.

  15. Mechanical design aspects of a soft X-ray plane grating monochromator

    CERN Document Server

    Vasina, R; Dolezel, P; Mynar, M; Vondracek, M; Chab, V; Slezak, J A; Comicioli, C; Prince, K C

    2001-01-01

    A plane grating monochromator based on the SX-700 concept has been constructed for the Materials Science Beamline, Elettra, which is attached to a bending magnet. The tuning range is from 35 to 800 eV with calculated spectral resolving power epsilon/DELTA epsilon better than 4000 in the whole range. The optical elements consist of a toroidal prefocusing mirror, polarization aperture, entrance slit, plane pre-mirror, single plane grating (blazed), spherical mirror, exit slit and toroidal refocusing mirror. The plane grating is operated in the fixed focus mode with C sub f sub f =2.4. Energy scanning is performed by rotation of the plane grating and simultaneous translation and rotation of the plane pre-mirror. A novel solution is applied for the motion of the plane pre-mirror, namely by a translation and mechanically coupling the rotation by a cam. The slits have no moving parts in vacuum to reduce cost and increase ruggedness, and can be fully closed without risk of damage. In the first tests, a resolving pow...

  16. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  17. A study on the central plane of image layer in panoramic radiograph

    International Nuclear Information System (INIS)

    Lee, Moon Bai; Park, Chang Seo

    1986-01-01

    The purpose of this investigation was to locate the plane of the image layer on the panoramic machine relative to a specific point on the machine. In the study of the central plane of the image layer of panoramic radiograph, using the Morrita Company PANEX-EC a series of 33 exposures were taken with the 4-5 experimental pins placed in the holes of the plastic model plate, then evaluated by human eye. The author analyzed the central plane of the image layer by Mitutoy-A-221 and calculated horizontal and vertical magnification ratio in central plane of the image layer determined experimentally. The results were as follows: 1. The location of the central plane of the image layer determined experimentally was to lateral compared with manufactural central plane. 2. Horizontal magnification ratio in the central plane of image layer determined experimentally was 9.25%. 3. Vertical magnification ratio in the central plane of the image layer determined experimentally was 9.17%.

  18. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  19. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  20. Resource Allocation for the Multiband Relay Channel: A Building Block for Hybrid Wireless Networks

    Directory of Open Access Journals (Sweden)

    Kyounghwan Lee

    2010-01-01

    Full Text Available We investigate optimal resource allocation for the multiband relay channel. We find the optimal power and bandwidth allocation strategies that maximize the bounds on the capacity, by solving the corresponding max-min optimization problem. We provide sufficient conditions under which the associated max-min problem is equivalent to a supporting plane problem, which renders the solution for an arbitrary number of bands tractable. In addition, the sufficient conditions derived are general enough so that a class of utility functions can be accommodated with this formulation. As an example, we concentrate on the case where the source has two bands and the relay has a single band available and find the optimal resource allocation. We observe that joint power and bandwidth optimization always yields higher achievable rates than power optimization alone, establishing the merit of bandwidth sharing. Motivated by our analytical results, we examine a simple scenario where new channels become available for a transmitter to communicate; that is, new source to relay bands are added to a frequency division relay network. Given the channel conditions of the network, we establish the guidelines on how to allocate resources in order to achieve higher rates, depending on the relative quality of the available links.