WorldWideScience

Sample records for exotoxins

  1. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    Science.gov (United States)

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  2. Pseudomonas Exotoxin A: optimized by evolution for effective killing

    Directory of Open Access Journals (Sweden)

    Marta eMichalska

    2015-09-01

    Full Text Available Pseudomonas Exotoxin A (PE is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.

  3. Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in dynamics: an animal model in white mice

    National Research Council Canada - National Science Library

    Morrison A.V; Popovich V.I; Morrison V.V

    2015-01-01

    .... Material and Methods. The experiments were carried out on white mice in dynamics development of pseudomonas aeruginosa caused by intraperitoneal injection of various dosage of exotoxin A. Results...

  4. Influences of Linezolid, Penicillin, and Clindamycin, Alone and in Combination, on Streptococcal Pyrogenic Exotoxin A Release

    Science.gov (United States)

    Coyle, Elizabeth A.; Cha, Raymond; Rybak, Michael J.

    2003-01-01

    An in vitro model was used to compare the effects of linezolid, clindamycin, and penicillin, alone and in combination, on streptococcal pyrogenic exotoxin A (SPE A) release against virulent group A streptococci (GAS). All regimens exhibited lower (P < 0.05) SPE A release at 1 h than those with penicillin alone. Linezolid and clindamycin, alone or in combination with penicillin, may optimize the treatment of GAS infections by reducing bacterial burden and exotoxin release. PMID:12709354

  5. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis.

    Science.gov (United States)

    Caldwell, Charles C; Chen, Yi; Goetzmann, Holly S; Hao, Yonghua; Borchers, Michael T; Hassett, Daniel J; Young, Lisa R; Mavrodi, Dmitri; Thomashow, Linda; Lau, Gee W

    2009-12-01

    The cystic fibrosis (CF) airway bacterial pathogen Pseudomonas aeruginosa secretes multiple virulence factors. Among these, the redox active exotoxin pyocyanin (PCN) is produced in concentrations up to 100 mumol/L during infection of CF and other bronchiectatic airways. However, the contributions of PCN during infection of bronchiectatic airways are not appreciated. In this study, we demonstrate that PCN is critical for chronic infection in mouse airways and orchestrates adaptive immune responses that mediate lung damage. Wild-type FVBN mice chronically exposed to PCN developed goblet cell hyperplasia and metaplasia, airway fibrosis, and alveolar airspace destruction. Furthermore, after 12 weeks of exposure to PCN, mouse lungs down-regulated the expression of T helper (Th) type 1 cytokines and polarized toward a Th2 response. Cellular analyses indicated that chronic exposure to PCN profoundly increased the lung population of recruited macrophages, CD4(+) T cells, and neutrophils responsible for the secretion of these cytokines. PCN-mediated goblet cell hyperplasia and metaplasia required Th2 cytokine signaling through the Stat6 pathway. In summary, this study establishes that PCN is an important P. aeruginosa virulence factor capable of directly inducing pulmonary pathophysiology in mice, consistent with changes observed in CF and other bronchiectasis lungs.

  6. Inhibition of streptococcal pyrogenic exotoxin B using allicin from garlic.

    Science.gov (United States)

    Arzanlou, Mohsen

    2016-04-01

    Streptococcal pyrogenic exotoxin B (SpeB) is an important virulence factor of group A streptococci (GAS) and inactivation of SpeB results in the significantly decreased virulence of the bacterium. The protein is secreted as an inactive zymogen of 40 KDa (SpeBz) and undergoes proteolytic truncation to result in a 28 KDa mature active protease (SpeBm). In this study the effect of allicin on the proteolytic activity of SpeBm was evaluated using azocasein assay. Allicin neutralized the SpeBm proteolytic activity in a concentration dependent manner (IC50 = 15.71 ± 0.45 μg/ml). The loss of activity was completely reversed by subsequent treatment with a reducing agent, dithiothreitol (DTT; 10 mM final concentration), suggesting that allicin likely inhibits the SpeBm by forming a disulfide linkage with an active thiol group in its active site. This mechanism of action was further confirmed with the fact that DTT did not reverse the SpeBm activity in the presence of E-64, a cysteine protease-specific inhibitor, which works specially by forming a thioether linkage with free sulfhydryl groups in enzymes active site. The MIC of allicin against GAS was found to be 32 μg/ml. Exposure of GAS culture to allicin (25 μg/ml) inhibited maturation of SpeBz to the SpeBm. In conclusion, the results of this study suggest that allicin inhibits the maturation of SpeBz and proteolytic activity of SpeBm and could be a potential therapeutic agent for the treatment of GAS infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The effect of pseudomonas exotoxin A on cytokine production in whole blood exposed to Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Schultz, M. J.; Speelman, P.; Zaat, S. A.; Hack, C. E.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    To determine the effect of Pseudomonas aeruginosa exotoxin A (P-ExA) on cytokine production, we studied cytokine release induced by heat-killed P. aeruginosa (HKPA) in human whole blood in the presence or absence of P-ExA. P-ExA (0.01-1 microgram ml(-1)) caused a dose-dependent decrease in

  8. Detection of β-exotoxin synthesis in Bacillus thuringiensis using an easy bioassay with the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Sánchez-Soto, A I; Saavedra-González, G I; Ibarra, J E; Salcedo-Hernández, R; Barboza-Corona, J E; Del Rincón-Castro, M C

    2015-12-01

    The insecticidal activity of Bacillus thuringiensis is owing to the action of Cry and Cyt proteins. In addition to the synthesis of insecticidal proteins, some strains are able to synthesize β-exotoxin, which is highly toxic to humans. In this regard, it is very important to have a simple method to detect β-exotoxin to avoid the commercial production of this type of strains. In this work, we developed a simple and fast method, using the nematode Caenorhabditis elegans to detect indirectly the synthesis of β-exotoxin by B. thuringiensis strain. Using this assay, we detected that ~60% of Mexican native strains (i.e. LBIT-471, 491, 492, 497, 507, 511, 515, 536 and 537) were toxic to the nematode (44-97% mortalities) and their β-exotoxin (βEx(+) ) production, including a positive control (NRD-12), was confirmed by HPLC. In addition, the negative controls (βEx(-) ) LBIT-436 (HD-1) and LBIT-438 and also the native strains LBIT-499, 500, 521, 522, 533 and 542, did not show a detrimental effect against nematodes larvae, neither the synthesis of β-exotoxin as determined by HPLC. Finally, we did not find a correlation between B. thuringiensis strains with similar plasmid patterns and the β-exotoxin production. In this work, we implemented a qualitative and fast bioassay using the nematode Caenorhabditis elegans to detect the production of β-exotoxin in different strains of Bacillus thuringiensis. We show that this assay is useful to detect β-exotoxin in B. thuringiensis with high reliability, helping to discriminate strains that could not be used as bioinsecticides because of their putative risk to humans. Data show that qualitative bioassay with nematodes is a potential alternative to fly larvae bioassays, and correlated with the determination of β-exotoxin by HPLC. © 2015 The Society for Applied Microbiology.

  9. Hybrid proteins between Pseudomonas exotoxin A and poliovirus protease 2Apro.

    Science.gov (United States)

    Novoa, I; Feduchi, E; Carrasco, L

    1994-11-21

    Two hybrid proteins between Pseudomonas aeruginosa exotoxin A (PE) and poliovirus protease 2Apro have been generated. One hybrid protein contains the poliovirus 2Apro sequence replacing the region of PE corresponding to amino acids 413-607. The other hybrid contains in addition the transforming growth factor sequence. The two hybrid proteins were efficiently synthesized in E. coli cells using the inducible pET vectors. Both hybrid toxins cleaved p220 (eIF-4 gamma) when the recombinant plasmids were transfected in COS cells infected with recombinant vaccinia virus bearing the T7 RNA polymerase gene.

  10. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs.

    Science.gov (United States)

    Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F

    1997-09-01

    Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.

  11. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins.

    Directory of Open Access Journals (Sweden)

    Toshio Shibata

    2015-10-01

    Full Text Available Transglutaminase (TG catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes.

  12. Inhibitory effect of totarol on exotoxin proteins hemolysin and enterotoxins secreted by Staphylococcus aureus.

    Science.gov (United States)

    Shi, Ce; Zhao, Xingchen; Li, Wenli; Meng, Rizeng; Liu, Zonghui; Liu, Mingyuan; Guo, Na; Yu, Lu

    2015-10-01

    Staphylococcus aureus (S. aureus) causes a wide variety of infections, which are of major concern worldwide. S. aureus produces multiple virulence factors, resulting in food infection and poisoning. These virulence factors include hyaluronidases, proteases, coagulases, lipases, deoxyribonucleases and enterotoxins. Among the extracellular proteins produced by S. aureus that contribute to pathogenicity, the exotoxins α-hemolysin, staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) are thought to be of major significance. Totarol, a plant extract, has been revealed to inhibit the proliferation of several pathogens effectively. However, there are no reports on the effects of totarol on the production of α-hemolysin, SEA or SEB secreted by S. aureus. The aim of this study was to evaluate the effects of totarol on these three exotoxins. Hemolysis assay, western blotting and real-time reverse transcriptase-PCR assay were performed to identify the influence of graded subinhibitory concentrations of totarol on the production of α-hemolysin and the two major enterotoxins, SEA and SEB, by S. aureus in a dose-dependent manner. Moreover, an enzyme linked immunosorbent assay showed that the TNF-α production of RAW264.7 cells stimulated by S. aureus supernatants was inhibited by subinhibitory concentrations of totarol. Form the data, we propose that totarol could potentially be used as a promising natural compound in the food and pharmaceutical industries.

  13. Streptococcal pyogenic exotoxin B (SpeB) boosts the contact system via binding of a-1 antitrypsin

    DEFF Research Database (Denmark)

    Meinert Niclasen, Louise; Olsen, Johan G; Dagil, Robert

    2011-01-01

    The Streptococcus pyogenes cysteine protease SpeB (streptococcal pyrogenic exotoxin B) is important for the invasive potential of the bacteria, but its production is down-regulated following systemic infection. This prompted us to investigate if SpeB potentiated the host immune response after sys...

  14. Invasive group A streptococcal disease in The Netherlands : Evidence for a protective role of anti-exotoxin A antibodies

    NARCIS (Netherlands)

    Mascini, EM; Jansze, M; Schellekens, JFP; Musser, JM; Faber, JAJ; Verhoef-Verhage, LAE; Schouls, L; van Leeuwen, WJ; Verhoef, J; van Dijk, H

    As part of a nationwide surveillance in The Netherlands during 1994-1997, 53 patients with invasive group A streptococcal (GAS) infections were evaluated for medical history, symptoms, and outcome. Patients' isolates were tested for the production of pyrogenic exotoxins A (SPE-A) and B (SPE-B).

  15. Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form

    DEFF Research Database (Denmark)

    Olsen, Johan G; Dagil, Robert; Niclasen, Louise Meinert

    2009-01-01

    Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 A, disclosing...

  16. Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Dangy

    2016-06-01

    Full Text Available Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone.Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone.The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target.

  17. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans.

    Science.gov (United States)

    McEwan, Deborah L; Kirienko, Natalia V; Ausubel, Frederick M

    2012-04-19

    Intestinal epithelial cells are exposed to both innocuous and pathogenic microbes, which need to be distinguished to mount an effective immune response. To understand the mechanisms underlying pathogen recognition, we investigated how Pseudomonas aeruginosa triggers intestinal innate immunity in Caenorhabditis elegans, a process independent of Toll-like pattern recognition receptors. We show that the P. aeruginosa translational inhibitor Exotoxin A (ToxA), which ribosylates elongation factor 2 (EF2), upregulates a significant subset of genes normally induced by P. aeruginosa. Moreover, immune pathways involving the ATF-7 and ZIP-2 transcription factors, which protect C. elegans from P. aeruginosa, are required for preventing ToxA-mediated lethality. ToxA-responsive genes are not induced by enzymatically inactive ToxA protein but can be upregulated independently of ToxA by disruption of host protein translation. Thus, C. elegans has a surveillance mechanism to recognize ToxA through its effect on protein translation rather than by direct recognition of either ToxA or ribosylated EF2. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Different sensitivity of Pseudomonas aeruginosa exotoxin A and diphtheria toxin to enzymes from polymorphonuclear leukocytes.

    Science.gov (United States)

    Döring, G; Müller, E

    1989-04-01

    We demonstrate that exotoxin A (ExoA) of Pseudomonas aeruginosa is one to two orders of magnitude more sensitive than diphtheria toxin (DT) of Corynebacterium diphtheriae to lysosomal enzymes from polymorphonuclear leukocytes (PMN). It is especially sensitive to PMN elastase which inactivates its cell free enzymatic activity and its cytotoxicity as measured with the Chinese hamster ovary cell assay and the rabbit skin test. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed a rapid fragmentation of ExoA into small peptides at low PMN elastase concentrations, whereas DT remained largely uncleaved at PMN elastase concentrations 10 times higher. PMN elastase also removed the cell surface receptors for ExoA and DT on Chinese hamster ovary cells, suggesting that both toxins may be ineffective at local sites of severe inflammation. A comparison of fibroblasts from cystic fibrosis patients and normal healthy individuals revealed no differences in susceptibility to either DT or ExoA; this tends to exclude a genetic defect as an explanation for the absence of ExoA effects in cystic fibrosis patients.

  19. Evidence of exotoxin secretion of Piscirickettsia salmonis, the causative agent of piscirickettsiosis.

    Science.gov (United States)

    Rojas, M E; Galleguillos, M; Díaz, S; Machuca, A; Carbonero, A; Smith, P A

    2013-08-01

    Piscirickettsia salmonis is the aetiological agent of piscirickettsiosis, a disease which affects a variety of teleost species and that is particularly severe in salmonid fish. Bacterial-free supernatants, obtained from cultures of three isolates of Piscirickettsia salmonis, were inoculated in Atlantic salmon, Salmo salar L., and in three continuous cell lines in an effort to determine the presence of secretion of extracellular products (ECPs) by this microorganism. Although steatosis was found in some liver samples, no mortalities or clinical signs occurred in the inoculated fish. Clear cytotoxicity was observed after inoculation in the cell lines CHSE-214 and ASK, derived from salmonid tissues, but not in MDBK, which is of mammalian origin. The degree of cytotoxicity of the ECPs was different among the P. salmonis isolates tested. The isolate that evidenced the highest cytotoxicity in its ECPs exhibited only an intermediate virulence level after challenging fish with bacterial suspensions of the three P. salmonis isolates. Almost complete inhibition of the cytotoxic activity of ECPs was seen after proteinase K treatment, indicating their peptidic nature, and a total preclusion of the cytotoxicity was shown after their incubation at 50 °C for 30 min. Results show that P. salmonis can produce ECPs and at least some of them are thermolabile exotoxins that probably play a role in the pathogenesis of piscirickettsiosis. © 2013 Blackwell Publishing Ltd.

  20. Structure-activity relationship studies on the macrolide exotoxin mycolactone of Mycobacterium ulcerans.

    Directory of Open Access Journals (Sweden)

    Nicole Scherr

    Full Text Available BACKGROUND: Mycolactones are a family of polyketide-derived macrolide exotoxins produced by Mycobacterium ulcerans, the causative agent of the chronic necrotizing skin disease Buruli ulcer. The toxin is synthesized by polyketide synthases encoded by the virulence plasmid pMUM. The apoptotic, necrotic and immunosuppressive properties of mycolactones play a central role in the pathogenesis of M. ulcerans. METHODOLOGY/PRINCIPAL FINDINGS: We have synthesized and tested a series of mycolactone derivatives to conduct structure-activity relationship studies. Flow cytometry, fluorescence microscopy and Alamar Blue-based metabolic assays were used to assess activities of mycolactones on the murine L929 fibroblast cell line. Modifications of the C-linked upper side chain (comprising C12-C20 caused less pronounced changes in cytotoxicity than modifications in the lower C5-O-linked polyunsaturated acyl side chain. A derivative with a truncated lower side chain was unique in having strong inhibitory effects on fibroblast metabolism and cell proliferation at non-cytotoxic concentrations. We also tested whether mycolactones have antimicrobial activity and found no activity against representatives of Gram-positive (Streptococcus pneumoniae or Gram-negative bacteria (Neisseria meningitis and Escherichia coli, the fungus Saccharomyces cerevisae or the amoeba Dictyostelium discoideum. CONCLUSION: Highly defined synthetic compounds allowed to unambiguously compare biological activities of mycolactones expressed by different M. ulcerans lineages and may help identifying target structures and triggering pathways.

  1. Comparison of Neutrophil Apoptosis by the Pseudomonas Aeruginosa Exotoxins between Healthy Individuals and Term Infants

    Directory of Open Access Journals (Sweden)

    Soheila Khazaei

    2013-04-01

    Full Text Available Background: Pseudomonas aeruginosa may be colonized in different human tissues and result in some infections potentially. Thus, considering that these bacteria are resistance to most of the current antibiotics, an examination on pathogenesis mechanisms of such bacteria can be effective in controlling the infections developed by it.Materials and Methods: In this project, among 40 blood samples (20 healthy persons, 20 infants, an amount of 5 ml (2 ml in the infants heparinized blood was collected form each and then neutrophils were isolated by a standard method and were counted by neubauer lam. After culturing Pseudomonas bacteria in broth medium, some tubes with densities of 1, 2, 3 and 4 McFarland were prepared and the bacteria were isolated by centrifuge method with 3000rpm for 10 minutes and then its exotoxin were exposed to neutrophils of the groups under study. The effect of time and the bacteria count on the amount of the secreted toxin and in adjacency to neutrophils was measured.Results: There were 11 men and 9 women in the health group and the infants group consisted of 12 boys and 8 girls. Death cell percentage of neutrophils was 100% in the health group and 8.90% in the infants group. Percentage of bacterial growth in the medium 1 and 2 McFarland was zero; in the medium 3 McFarland, it was 12.5% in the healthy group and 1% in the infants group (p<0.10. The average rate of cell death in the minute 15th was different in two groups (68.5% in health group vs. 92.5% in the infants (p<0.0005. Conclusion: This study showed the effect of Pseudomonas bacteria on the development of early cell death in the infants very well. As it was shown, this effect is time-dependent and this cell death (apoptosis is occurred in the infants earlier than health people.

  2. Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor.

    OpenAIRE

    Hauser, A R; Schlievert, P M

    1990-01-01

    The streptococcal pyrogenic exotoxin (SPE) type B-encoding structural gene, speB, was subcloned from a 4.5-kilobase streptococcal DNA insert onto a 2.4-kilobase insert, which was then sequenced. Studies indicated that a 1,194-base-pair open reading frame encoded a 398-amino-acid protein. Removal of the putative signal peptide resulted in a mature protein with 371 residues (molecular weight, 40,314), which was subsequently proteolyzed to yield a 253-residue breakdown product (molecular weight,...

  3. Geographical variation in the presence of genes encoding superantigenic exotoxins and beta-hemolysin among Staphylococcus aureus isolated from bovine mastitis in Europe and USA

    DEFF Research Database (Denmark)

    Larsen, H. D.; Aarestrup, Frank Møller; Jensen, N. E.

    2002-01-01

    The object was to examine the geographical variation in the presence of superantigenic exotoxins and beta-hemolysin among epidemiologically independent Staphyirrcoccus aureus isolates from bovine mastitis. A total of 462 S. aureus isolates from nine European countries and USA were examined...... for the presence of genes encoding staphylococcal enterotoxins A-E, and H, toxic shock toxin-1 (TSST-1), and beta-hemolysin, and 128 of these were examined for exfoliative toxins A and B. The detection was done by PCR. Phenotypic methods were used to confirm the PCR-results. None of the 128 isolates carried...... for the individual exotoxins. The genes encoding enterotoxin C, TSST-1, and enterotoxin D were the most common superantigens. The present and earlier studies demonstrate that the superantigenic exotoxins that were investigated in this study, do not play a role in the pathogenesis of bovine S. aureus mastitis...

  4. A Selective Irreversible Inhibitor of Furin Does Not Prevent Pseudomonas Aeruginosa Exotoxin A-Induced Airway Epithelial Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Timothy E G Ferguson

    Full Text Available Many bacterial and viral pathogens (or their toxins, including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause disease. We report the development of a novel irreversible inhibitor of furin (QUB-F1 consisting of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR, that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar compound (furin I which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase, factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aeruginosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.

  5. Molecular analysis of exotoxin A associated with antimicrobial resistance of Pseudomonas aeruginosa strains isolated from patients in Tehran hospitals

    Directory of Open Access Journals (Sweden)

    Nour Amirmozafari

    2014-12-01

    Full Text Available Background and Aim:  Pseudomonas aeruginosa is a unique bacteria that in order to survive in different environments by complex adaptation process can make changes in his virulence genes expression and drug resistance. The aim of this research is the investigation of existence of a logical association between toxA gene and antibiotic resistance in strains possess the gene. Materials and Methods: Antibiogram test by disk diffusion method (Kirby Bauer was performed according to CLSI protocols. In this study, the existence of toxA gene with the help of polymerase chain reaction (PCR in 102 clinical isolates from blood samples, wound, urine and trachea was examined. Chi-square test was used to investigate the relationship between exotoxin A and antibiotic resistance. Results: The 81 strains (79.4% had toxA gene. Frequency of toxA genes in isolated strains from different infections were wound (91.4%, blood (85.7%, trachea (72.7%, and urine (42.1%. Multiple resistance index in strains possess the toxA gene was calculated 75%. Chi 2 test to determine the relationship between drug resistance and gene toxA was significant (P<0.05. Conclusions: The significant chi-square test and an increase in multi-resistant strains possessing the toxA gene, can represent a considerable genetic switch between exotoxin A activity and resistance to antibiotics in the blood, urine, tracheal, wound infections Respectively, which lead to turn genes on of drug resistance regulating in bacteria. The results of this study will be verified by southern blot, analysis of the expression of toxA gene and determine the mechanism of resistance in resistant strains Methods.

  6. Scarlet fever is caused by a limited number of Streptococcus pyogenes lineages and is associated with the exotoxin genes ssa, speA and speC.

    Science.gov (United States)

    Silva-Costa, Catarina; Carriço, Joao A; Ramirez, Mario; Melo-Cristino, Jose

    2014-03-01

    Several outbreaks of scarlet fever caused by Streptococcus pyogenes were recently reported. Scarlet fever is historically considered a toxin-mediated disease, dependent on the production of the exotoxins SpeA and SpeC, but a strict association between scarlet fever and these exotoxins is not always detected. The aims of this study were to characterize the scarlet fever bacterial isolates recovered from patients in a Lisbon hospital and to identify any distinctive characteristics of such isolates. We characterized a collection of 303 pharyngeal S. pyogenes collected between 2002 and 2008. One-hundred and one were isolated from scarlet fever patients and 202 were associated to a diagnosis of tonsillo-pharyngitis. Isolates were characterized by T and emm typing, pulsed field gel electrophoresis profiling and superantigen gene profiling. The diversity of the scarlet fever isolates was lower than that of the pharyngitis isolates. Specific lineages of emm87, emm4 and emm3 were overrepresented in scarlet fever isolates but only 1 pulsed field gel electrophoresis major lineage was significantly associated with scarlet fever. Multivariate analysis indicated associations of ssa, speA and speC with scarlet fever. In nonoutbreak conditions, scarlet fever is caused by a number of distinct genetic lineages. The lower diversity of these isolates and the association with specific exotoxin genes indicates that some lineages are more prone to cause this presentation than others even in nonoutbreak conditions.

  7. Dissemination of streptococcal pyrogenic exotoxin G (spegg) with an IS-like element in fish isolates of Streptococcus dysgalactiae.

    Science.gov (United States)

    Abdelsalam, Mohamed; Chen, Shih-Chu; Yoshida, Terutoyo

    2010-08-01

    The Lancefield group C alpha-hemolytic Streptococcus dysgalactiae ssp. dysgalactiae (GCSD) causes systemic granulomatous inflammatory disease and high mortality rates in infected fish. Superantigen and streptolysin S genes are the most important virulence factors contributing to an invasive streptococcal infection. PCR amplification revealed that all strains isolated from moribund fish harbored the streptolysin S structural gene (sagA). GCSD fish isolates were PCR negative for emm, speA, speB, speC, speM, smeZ, and ssa. However, the size of the streptococcal pyrogenic exotoxin G (spegg) locus, a superantigen, in positive S. dysgalactiae fish and pig strains was variable. The ORF of the spegg locus of 26 GCSD fish strains and one GCSD pig strain was inserted with IS981SC. Interestingly, the ORF of the spegg locus of two fish strains of GCSD collected in Malaysia was inserted with an IS981SC-IS1161 hybrid IS element. The hybrid IS element was found in all of the GCSD fish isolates and one GCSD pig through PCR screening. Although no insertion sequence (IS) was detected in the spegg locus of S. dysgalactiae ssp. equisimilis (GCSE) strains, a five-nucleotide deletion mutation was detected in the ORF of the spegg locus of one GCSE strain at the supposed site of IS981SC insertion, resulting in a frameshift mutation.

  8. Assessment of blood changes post-challenge with Corynebacterium pseudotuberculosis and its exotoxin (phospholipase D): A comprehensive study in goat.

    Science.gov (United States)

    Mahmood, Z K H; Jesse, F F; Saharee, A A; Jasni, S; Yusoff, R; Wahid, H

    2015-09-01

    There is very little information regarding blood changes during the challenge of phospholipase D (PLD) in goats. Therefore, this experiment was conducted to study the changes in blood after the challenge with Corynebacterium pseudotuberculosis and its exotoxin, PLD to fill in the gap of caseous lymphadenitis (CLA) research. Twenty-six crossbred Boer goats aged 12-14 months were divided into 3 groups; the first group n=6 was inoculated with 1 ml phosphate buffered solution s.c. as the control. The second group n=10 was inoculated with C. pseudotuberculosis 1 × 10(9) cfu s.c. The third group n=10 was intravenous injected with PLD 1 ml/20 kg body weight. Serial blood collections were done at 1 h, 3 h, 5 h, 8 h, and 12 h then every 24 h post-inoculation for the first 30 days of the experiment. Subsequently, the blood collection continued twice a week till the end of the experiment (90 days post-challenge). Both C. pseudotuberculosis and PLD treated groups showed significant changes (pleukogram, and the blood chemistry.

  9. Inhibition effect of tea tree oil on Listeria monocytogenes growth and exotoxin proteins listeriolysin O and p60 secretion.

    Science.gov (United States)

    Liu, Z; Meng, R; Zhao, X; Shi, C; Zhang, X; Zhang, Y; Guo, N

    2016-12-01

    Listeria monocytogenes (L. monocytogenes) is a Gram-positive bacterium that causes infections in humans. In this study, the effects of tea tree oil (TTO) at subinhibitory concentrations on L. monocytogenes growth and two important exotoxin proteins secreted by L. monocytogenes were researched. Treatment with half of minimal inhibitory concentration of TTO demonstrated very little or no reduction in numbers of viable ATCC 19115 cells. Listeriolysin O (LLO) and p60, were investigated. A listeriolysin assay was used to investigate the hemolytic activities of L. monocytogenes exposed to TTO, and the secretion of LLO and p60 was detected by immunoblot analysis. Additionally, real-time RT-PCR was used to analyse the influence of TTO on the transcription of LLO and p60 encoded genes hly and iap respectively. According to our experimental results, we propose that TTO could be used as a promising natural compound against L. monocytogenes and its virulence factors. This is the first report on the influence of subinhibitory concentrations of tea tree oil (TTO) on the secretion of listeriolysin O (LLO) and p60, the critical virulence factors involved in Listeria pathogenesis. The results showed that TTO at 0·25 mg ml-1 reduced the secretion of LLO and p60 to 10 and 34·9% respectively, in addtion, the transcription of hly and iap was reduced to 10 and 4·3% at 0·5 mg ml-1 respectively. We propose that TTO could be used as a promising antimicrobial compound and virulence inhibitor against L. monocytogenes. © 2016 The Society for Applied Microbiology.

  10. Assessment of blood changes post-challenge with Corynebacterium pseudotuberculosis and its exotoxin (phospholipase D: A comprehensive study in goat

    Directory of Open Access Journals (Sweden)

    Z. K. H. Mahmood

    2015-09-01

    Full Text Available Aim: There is very little information regarding blood changes during the challenge of phospholipase D (PLD in goats. Therefore, this experiment was conducted to study the changes in blood after the challenge with Corynebacterium pseudotuberculosis and its exotoxin, PLD to fill in the gap of caseous lymphadenitis (CLA research. Materials and Methods: Twenty-six crossbred Boer goats aged 12-14 months were divided into 3 groups; the first group n=6 was inoculated with 1 ml phosphate buffered solution s.c. as the control. The second group n=10 was inoculated with C. pseudotuberculosis 1 × 109 cfu s.c. The third group n=10 was intravenous injected with PLD 1 ml/20 kg body weight. Serial blood collections were done at 1 h, 3 h, 5 h, 8 h, and 12 h then every 24 h post-inoculation for the first 30 days of the experiment. Subsequently, the blood collection continued twice a week till the end of the experiment (90 days post-challenge. Results: Both C. pseudotuberculosis and PLD treated groups showed significant changes (p<0.05 in red blood cell count, hemoglobin (Hb, packed cell volume, mean corpuscular volume, mean corpuscular Hb concentration, white blood cell count, neutrophils, lymphocytes, monocytes, eosinophils, basophils, globulin, and total plasma proteins. Similarly, both treated groups showed significant changes (p<0.05 in alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin, calcium concentration, creatine phosphokinase, creatinine, gamma-glutamyl transpeptidase, urea concentration, lactate dehydrogenase, prothrombin time, and activated partial thromboplastin time. Conclusion: It concluded that C. pseudotuberculosis and PLD have a negative impact on the goat’s health in general reflected by all those changes recorded in the hemogram, leukogram, and the blood chemistry.

  11. Convection-enhanced drug delivery of interleukin-4 Pseudomonas exotoxin (PRX321): increased distribution and magnetic resonance monitoring.

    Science.gov (United States)

    Mardor, Y; Last, D; Daniels, D; Shneor, R; Maier, S E; Nass, D; Ram, Z

    2009-08-01

    Convection-enhanced drug delivery (CED) enables achieving a drug concentration within brain tissue and brain tumors that is orders of magnitude higher than by systemic administration. Previous phase I/II clinical trials using intratumoral convection of interleukin-4 Pseudomonas exotoxin (PRX321) have demonstrated an acceptable safety and toxicity profile with promising signs of therapeutic activity. The present study was designed to assess the distribution efficiency and toxicity of this PRX321 using magnetic resonance imaging (MRI) and to test whether reformulation with increased viscosity could enhance drug distribution. Convection of low- [0.02% human serum albumin (HSA)] and high-viscosity (3% HSA) infusates mixed with gadolinium-diethylenetriamine pentaacetic acid and PRX321 were compared with low- and high-viscosity infusates without the drug, in normal rat brains. MRI was used for assessment of drug distribution and detection of early and late toxicity. Representative brain samples were subjected to histological examination. Distribution volumes calculated from the magnetic resonance images showed that the average distribution of 0.02% HSA was larger than that of 0.02% HSA with PRX321 by a factor of 1.98 (p convection of the PRX321 infusate used in previous clinical trials can be reversed by increasing infusate viscosity and lead to tripling of the volume of distribution. This effect was not associated with any detectable toxicity. A similar capability to reverse impeded convection was also demonstrated in a CED model using acetic acid. These results will be implemented in an upcoming phase IIb PRX321 CED trial with a high-viscosity infusate.

  12. Streptococcal pyrogenic exotoxin G gene in blood and pharyngeal isolates of Streptococcus dysgalactiae subspecies equisimilis has a limited role in pathogenesis.

    Science.gov (United States)

    Korem, Maya; Hidalgo-Grass, Carlos; Michael-Gayego, Ayelet; Nir-Paz, Ran; Salameh, Shaden; Moses, Allon E

    2014-08-01

    Streptococcus dysgalactiae subspecies equisimilis (SE) causes human infections that clinically resemble infections due to Streptococcus pyogenes (SP). SE expresses several virulence determinants initially identified in SP, including genes encoding streptococcal pyrogenic exotoxins. SE isolates from patients with toxic shock syndrome were found to harbor a gene designated spegg, which is similar to the SP pyrogenic exotoxin-G gene, termed speG. Other streptococcal pyrogenic exotoxins known to exist in SP were not detected. To determine the prevalence of the superantigen gene, spegg, we examined 65 invasive SE from patients presenting from 1989 to 2008 with bacteremia secondary to a variety of illnesses including two patients who fulfilled the criteria for toxic shock syndrome, in comparison with 46 noninvasive pharyngeal isolates. All isolates were tested for the presence of spegg by polymerase chain reaction. Forty-four of the 65 blood isolates were also characterized by emm typing. spegg was identified in 49.2% and 69.5% of the blood and pharyngeal isolates, respectively. emm typing revealed the presence of 13 distinct types. There was no association between clinical presentation and the presence of spegg. We found an association between the presence of spegg and the emm type (p < 0.001). The emm types stG485 and stG840 were more frequent among spegg positive isolates, and stG4222, stG6, and stG166b were associated with spegg negative isolates. We found a high prevalence of spegg in invasive and noninvasive SE isolates, associated with specific emm types. Our finding suggests that this gene does not have a role in the pathogenesis of bacteremia. Copyright © 2012. Published by Elsevier B.V.

  13. Therapeutic efficacy of Cintredekin Besudotox (IL13-PE38QQR in murine lung fibrosis is unaffected by immunity to Pseudomonas aeruginosa exotoxin A.

    Directory of Open Access Journals (Sweden)

    Rogério S Rosada

    2010-01-01

    Full Text Available We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13 during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of Pseudomonas aeruginosa exotoxin A (IL13-PE and observed that the intranasal delivery of IL13-PE reduced bleomycin-induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE would diminish the anti-fibrotic properties of IL13-PE.Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28 after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE. Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice.Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic

  14. An anti-amoebic vaccine: generation of the recombinant antigen LC3 from Entamoeba histolytica linked to mutated exotoxin A (PEΔIII) via the Pichia pastoris system.

    Science.gov (United States)

    Martínez-Hernández, Sandra Luz; Cervantes-García, Daniel; Muñoz-Ortega, Martín; Aldaba-Muruato, Liseth R; Loera-Muro, Victor M; Ascacio-Martínez, Jorge A; de Jesús Loera-Arias, María; de Oca-Luna, Roberto Montes; Ventura-Juárez, Javier

    2017-08-01

    To generate an immunogenic chimeric protein containing the Entamoeba histolytica LC3 fragment fused to the retrograde delivery domains of exotoxin A of Pseudomonas aeruginosa and KDEL3 for use as an effective vaccine. A codon-optimized synthetic gene encoding the PEΔIII-LC3-KDEL3 fusion construct was designed for expression in Pichia pastoris. This transgene was subcloned into the plasmid pPIC9 for methanol-inducible expression. After transformation and selection of positive-transformed clones by PCR, the expression of the recombinant protein PEΔIII-LC3-KDEL3 was elicited. SDS-PAGE, protein glycosylation staining and western blot assays demonstrated a 67 kDa protein in the medium culture supernatant. The recombinant protein was detected with a polyclonal anti-6X His tag antibody and a polyclonal E. histolytica-specific antibody. A specific antibody response was induced in hamsters after immunization with this protein. We report for the first time the design and expression of the recombinant E. histolytica LC3 protein fused to PEΔIII and KDEL3, with potential application as an immunogen.

  15. Cloning, expression and characterization of recombinant exotoxin A-flagellin fusion protein as a new vaccine candidate against Pseudomonas aeruginosa infections.

    Science.gov (United States)

    Tanomand, Asghar; Farajnia, Safar; Najar Peerayeh, Shahin; Majidi, Jafar

    2013-01-01

    Infections due to Pseudomonas aeruginosa are among the leading causes of morbidity and mortality in patients who suffer from impaired immune responses and chronic diseases such as cystic fibrosis. At present, aggressive antibiotic therapy is the only choice for management of P. aeruginosa infections, but emergence of highly resistant strains necessitated the development of novel alternative therapeutics including an effective vaccine. Several P. aeruginosa antigens have been tested for vaccine development, including lipopolysaccharide alone, polysaccharides alginate, extracellular proteins, exotoxin A (exo A) and killed whole cell. However, none of them are currently available clinically. In this research, recombinant exoA-flagellin (fliC) fusion protein as a cocktail antigen was expressed and purified and its antigenic characteristics were evaluated. Expression of recombinant fusion protein by E. coli using pET22b vector resulted in production of exoA-fliC fusion protein in high concentration. Based on Western-blotting results, recombinant fusion protein showed a good antigenic interaction with sera from patients with various P. aeruginosa infections. These results suggested that recombinant exoA-fliC fusion protein can be produced in the laboratory, and tested as a candidate vaccine in P. aeruginosa infections.

  16. Systematic comparison of single-chain Fv antibody-fusion toxin constructs containing Pseudomonas Exotoxin A or saporin produced in different microbial expression systems.

    Science.gov (United States)

    Della Cristina, Pietro; Castagna, Monica; Lombardi, Alessio; Barison, Erika; Tagliabue, Giovanni; Ceriotti, Aldo; Koutris, Ilias; Di Leandro, Luana; Giansanti, Francesco; Vago, Riccardo; Ippoliti, Rodolfo; Flavell, Sopsamorn U; Flavell, David J; Colombatti, Marco; Fabbrini, Maria Serena

    2015-02-13

    Antibodies raised against selected antigens over-expressed at the cell surface of malignant cells have been chemically conjugated to protein toxin domains to obtain immunotoxins (ITs) able to selectively kill cancer cells. Since latest generation immunotoxins are composed of a toxic domain genetically fused to antibody fragment(s) which confer on the IT target selective specificity, we rescued from the hydridoma 4KB128, a recombinant single-chain variable fragment (scFv) targeting CD22, a marker antigen expressed by B-lineage leukaemias and lymphomas. We constructed several ITs using two enzymatic toxins both able to block protein translation, one of bacterial origin (a truncated version of Pseudomonas exotoxin A, PE40) endowed with EF-2 ADP-ribosylation activity, the other being the plant ribosome-inactivating protein saporin, able to specifically depurinate 23/26/28S ribosomal RNA. PE40 was selected because it has been widely used for the construction of recombinant ITs that have already undergone evaluation in clinical trials. Saporin has also been evaluated clinically and has recently been expressed successfully at high levels in a Pichia pastoris expression system. The aim of the present study was to evaluate optimal microbial expression of various IT formats. An anti-CD22 scFv termed 4KB was obtained which showed the expected binding activity which was also internalized by CD22+ target cells and was also competed for by the parental monoclonal CD22 antibody. Several fusion constructs were designed and expressed either in E. coli or in Pichia pastoris and the resulting fusion proteins affinity-purified. Protein synthesis inhibition assays were performed on CD22+ human Daudi cells and showed that the selected ITs were active, having IC50 values (concentration inhibiting protein synthesis by 50% relative to controls) in the nanomolar range. We undertook a systematic comparison between the performance of the different fusion constructs, with respect to yields in

  17. Staphylococcal and Streptococcal Superantigen Exotoxins

    Science.gov (United States)

    Spaulding, Adam R.; Salgado-Pabón, Wilmara; Kohler, Petra L.; Horswill, Alexander R.; Leung, Donald Y. M.

    2013-01-01

    SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies. PMID:23824366

  18. Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments.

    Science.gov (United States)

    Barton, H A; Johnson, Z; Cox, C D; Vasil, A I; Vasil, M L

    1996-09-01

    Because the ferric uptake regulator (fur) appears to be an essential gene in Pseudomonas aeruginosa, resistance to manganese was used as an enrichment to isolate strains carrying point mutations in the fur gene in order to assess its role in the co-ordinate expression of siderophores and exotoxin A (ETA). This report describes a detailed molecular and phenotypic characterization of four mutants and one revertant, which carry point mutations in the fur gene. Two parental strains were used in this study. Three mutants were isolated from the widely used strain, PAO1. One of these, CS (cold sensitive), has a mutation in the 5' non-coding region of the fur gene while the two other mutants derived from this parent have mutations resulting in the following deduced changes in Fur: mutant A2, H86-->R; mutant A4, H86-->Y. The other mutant (C6) and its revertant (C6Rv) were derived from PAO6261, a mutant of PAO1 with a deletion in the anr gene (anaerobic regulation of arginine deiminase and nitrate reduction) that controls anaerobic respiration in P. aeruginosa. Fur from the C6 mutant has an A10-->G mutation while in the C6Rv spontaneous revertant the mutant Gly residue has been changed to Ser at this position. All mutants were examined for alterations in the iron-regulated expression of siderophores and ETA. The A2 and A4 mutants expressed higher levels of siderophores in iron-deficient media and in iron-replete media. The CS mutant constitutively expressed siderophores at 25 degrees C. At 42 degrees C siderophore biosynthesis was iron repressed as in the parental strain PAO1. The deletion of anr in PAO6261 had no apparent effect on the iron-mediated regulation of siderophore synthesis, but the C6 mutant derived from this strain produces siderophores constitutively. The iron-regulated production of siderophores by C6Rv was similar to the parental strain PAO6261 and PAO1. Because one of the parental strains used in this study is an Anr mutant, regulation of ETA production was

  19. Antibiotic susceptibilities, streptococcal pyrogenic exotoxin gene profiles among clinical isolates of group C or G Streptococcus dysgalactiae subsp. equisimilis & of group G S. anginosus group at a tertiary care centre.

    Science.gov (United States)

    Behera, Bijayini; Mathur, Purva; Bhardwaj, Nidhi; Jain, Neetu; Misra, M C; Kapil, Arti; Singh, Sarman

    2014-03-01

    Group C and group G streptococci (together GCGS) are often regarded as commensal bacteria and their role in streptococcal disease burden is under-recognized. While reports of recovery of GCGS from normally sterile body sites are increasing, their resistance to macrolides, fluoroquinolone further warrants all invasive β haemolytic streptococci to be identified to the species level and accurately tested for antimicrobial susceptibility. This study was aimed to determine the prevalence, clinical profile, antimicrobial susceptibility and streptococcal pyrogenic exotoxin gene profile (speA, speB, speC, speF, smeZ, speI, speM, speG, speH and ssa) of GCGS obtained over a period of two years at a tertiary care centre from north India. The clinical samples were processed as per standard microbiological techniques. β-haemolytic streptococci (BHS) were characterized and grouped. Antimicrobial susceptibility of GCGS was performed using disk diffusion method. All GCGS were characterized for the presence of streptococcal pyrogenic exotoxins (spe) and spe genes were amplified by PCR method. GCGS (23 GGS, 2GCS) comprised 16 per cent of β haemolytic streptococci (25/142 βHS, 16%) isolated over the study period. Of the 25 GCGS, 22 (88%) were recovered from pus, two (8%) from respiratory tract, whereas one isolate was recovered from blood of a fatal case of septicaemia. Of the total 23 GGS isolates, 18 (78%) were identified as Streptococcus dysgalactiae subsp equisimilis (SDSE, large-colony phenotype), five (21%) were Streptococcus anginosus group (SAG, small-colony phenotype). The two GCS were identified as SDSE. All GCGS isolates were susceptible to penicillin, vancomycin, and linezolid. Tetracycline resistance was noted in 50 per cent of SDSE isolates. The rates of macrolide and fluoroquinolone resistance in SDSE were low. Twelve of the 20 SDSE isolates were positive for one or more spe genes, with five of the SDSE isolates simultaneously carrying speA+ speB+ smeZ+ speF or spe

  20. Effect of honokiol on exotoxin proteins listeriolysin O and p60 secreted by Listeria monocytogenes.

    Science.gov (United States)

    Meng, Rizeng; Zhao, Ziwen; Guo, Na; Liu, Zonghui; Zhao, Xingchen; Li, Wenli; Li, Xiaoxu; Shi, Ce; Nie, Dandan; Wang, Weilin; Liu, Tao; Ma, Wenchen; Yu, Lu; Li, Juan

    2015-12-01

    Listeria monocytogenes is considered one of the most important foodborne pathogens. The virulence-related proteins listeriolysin O (LLO) and p60 are critical factors involved in Listeria pathogenesis. In the present study, we investigated the effect of honokiol on LLO and p60 secreted from L. monocytogenes. A listeriolysin assay was used to investigate the haemolytic activities of L. monocytogenes exposed to honokiol, and the secretion of LLO and p60 was detected by immunoblot analysis. Additionally, the influence of honokiol on the transcription of LLO and p60 genes (hly and iap, respectively) was analysed by real-time reverse transcription PCR. TNF-α release assays were performed to elucidate the biological relevance of changes in LLO and p60 secretion induced by honokiol. According to the data, honokiol showed good anti-L. monocytogenes activity, with MICs of 8-16 μg ml(-1), and the secretion of LLO and p60 was decreased by honokiol. In addition, the transcription of hly and iap was inhibited by honokiol. Our results indicate that TNF-α production by RAW264.7 cells stimulated with L. monocytogenes supernatants was inhibited by honokiol. Based on these data, we propose that honokiol could be used as a promising natural compound against L. monocytogenes and its virulence factors.

  1. Expression, purification and characterization of recombinant toxins consisting of truncated gastrin 17 and pseudomonas exotoxin.

    Science.gov (United States)

    Feng, Xiao-Li; Liu, Xi-Lin; Lu, Shi-Ying; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Wang, Quan; Tong, Weihua; Yan, Dong-Ming; Zhou, Yu; Zhang, Song; Jin, Wen; Liu, Zeng-Shan

    2015-01-01

    Gastric cancer is a major cause of mortality and morbidity around world. However the effectiveness of the current approaches to the diagnosis and treatment of gastric cancer is limited. Recombinant targeted toxins may represent a novel direction of cancer therapy. In this study, we aimed to explore whether recombinant toxins fused with the truncated forms of G17 could target to kill cancer cells by recognizing CCK2R. Four recombinant Pseudomonas toxins PE38 fused with the forward or reverse truncated forms of G17 (G14 and G13) were successfully constructed, expressed, and purified. Their characteristics were further analyzed by SDS-PAGE, western blot and indirect immunofluorescence assay. The cytotoxicity assay demonstrated that only reversely fused recombinant toxins rG14PE38 and rG13PE38 exhibited certain toxicity on several cancer cell lines, and a competition assay indicated that the binding of the reverse gastrin-endotoxin to CCK2R (+) cells may be mediated by interaction between gastrin/gastrin-like and CCK2R.

  2. The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections

    Science.gov (United States)

    1979-08-01

    sacrificed by cervic SPurified toxin A wee used to immuniss rabbits and a dislocation and blood was obtained by cardiac punc. sheop as previously described...net ADP-ribosylation of elongation factor 2 (7, 8/). This mechanism rate of Na reabsorption (18). The composition of the serosal is similar to~ that...of the I. has been shown to The mucosal addition of diphtheria toxin to bladders in approximate the .na of the net C1 and HCO3 reabsorption (17, Na

  3. Prymnesium parvum exotoxins affect the grazing and viability of the calanoid copepod Eurytemora affinis

    DEFF Research Database (Denmark)

    Sopanen, S.; Koski, Marja; Uronen, P.

    2008-01-01

    The calanoid copepod Eurytemora affinis from the northern Baltic Sea was exposed to cell-free filtrates of the toxic haptophyte Prymnesium parvum as well as to cell mixtures of P. parvum and Rhodomonas salina. To test the effects of P. parvum exudates and allelopathy on selective grazers, copepods...

  4. Effect of Environmental Conditions on Group a Streptococcal Pyrogenic Exotoxin Production

    Science.gov (United States)

    1992-10-06

    Characteristics of SPEs The SPEs were first characterized by the Dicks in 1924 in group A streptococcal filtrates , which when applied to human skin...speA was also cloned in both Bacillus subrilis (62). and Streptococcus sanguis (112) and the resultant toxin was also demonstrated to be similar

  5. The Staphylococcus aureus Exotoxin Recognition Using a Sensor Designed by Nanosilica and SEA genotyping by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    H. Ahari

    2014-09-01

    Full Text Available Considering the ever increasing population and industrialization of the developmental trend of human life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective, and even in most of the cases, the precision of practical techniques like bacterial cultivation and other techniques suffers from operator errors, or the errors of the mixtures used. Hence, with the advent of nanotechnology, the design of selective and smart sensors has turned into one of the greatest industrial revelations of the quality control of food products that, in few minutes time and with a very high precision, can identify the volume and toxicity of the bacteria. In this research, based on the bacterial antibody's connection to nanoparticles, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nm in the form of solid powder were utilized with Notrino brand. Then the suspension produced from the agent-linked nanosilica, which was connected to the bacterial antibody, was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of  10-3 molar, so that in case any toxin exists in the sample, a connection between the toxin antigen and the antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle-attached antibody was measured using spectrophotometry. The 23S rRNA gene that is conserved in all Staphylococcus spp. was used as the control. The accuracy of the test was monitored by using the serial dilution (l0-6 of overnight cell culture of Staphylococcus spp. bacteria (OD600: 0.02 = 107 cell. It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. The results indicated that the sensor detects up to 10-4molar density. Additionally, the sensitivity of the sensor was examined after 60 days; by the 56 day, it had confirmatory results, which started to decrease after this time. Comparison of practical nanobiosensory method with the conventional methods including culture and bio-technology methods (such as polymerase chain reaction confirmed its accuracy, sensitiveness and uniqueness.  It also reduces the time from hours to 30 minutes.

  6. Staphylococcal Enterotoxins, Toxic Shock Syndrome Toxin-I, and Streptococcal Pyrogenic Exotoxins: Some Basic Biology of Bacterial Superantigens

    National Research Council Canada - National Science Library

    Krakauer, Teresa

    2003-01-01

    Staphylococcus aureus and Streptococcus pyogenes are facultative gram-positive cocci that play an important role in a myriad of human illnesses, including food poisoning, skin infections, pharyngitis...

  7. Invasive group A streptococcal diseases and pyrogenic exotoxins A and B : an update on pathogenesis and management

    NARCIS (Netherlands)

    Mascini, EM; Verhoef-Verhage, EAE; van Dijk, H

    Since the mid-1980s, there have been increasing numbers of reports on the resurgence of severe invasive group A streptococcal infections world-wide. Despite prompt therapy with penicillin and/or clindamycin, the mortality rates of these infections, including streptococcal toxic shock-like syndrome,

  8. [Detection of the functionally active domains in the molecule of the lethal factor of the anthrax exotoxin].

    Science.gov (United States)

    Noskov, A N; Kravchenko, T B; Noskova, V P

    1996-01-01

    Three functional domains were revealed in the molecule of the lethal factor of B. anthracis. They are located in the linear structure of the molecula as follows: the associative domain occupies the area from Lys39 to Met242, the stabilizing domain from Leu517 to Lys614, and the effector domain still further to the COOH-terminal Lys mino acid.

  9. Panton-Valentine leukocidin and some exotoxins of Staphylococcus aureus and antimicrobial susceptibility profiles of staphylococci isolated from milks of small ruminants.

    Science.gov (United States)

    Ünal, Nilgün; Askar, Şinasi; Macun, Hasan Ceyhun; Sakarya, Fatma; Altun, Belgin; Yıldırım, Murat

    2012-03-01

    The aims of this study were to determine the existence of pvl gene, some toxin genes, and mecA gene in Staphylococcus aureus strains isolated from sheep milk and to examine antimicrobial resistance profiles in staphylococci from sheep and goats' milk. The milk samples were collected from 13 different small ruminant farms in Kirikkale province from February to August 2009. A total of 1,604 half-udder milk samples from 857 ewes and 66 half-udder milk samples from 33 goats were collected. Staphylococcus spp. were isolated and identified from the samples. Toxin genes and mecA gene among S. aureus strains were determined by PCR. Antimicrobial susceptibility of staphylococci was examined by the disk diffusion method on Mueller-Hinton agar, and interpreted according to the Clinical Laboratory Standards Institute (CLSI) guidelines. The prevalence of subclinical intramammary infection in both ewes and goats was 5.2%. The most prevalent subclinical mastitis agents were coagulase-negative staphylococci and S. aureus with prevalences 2.8% (n:46) and 1.3% (n = 21), respectively. The prevalence of resistances in isolated Staphylococcus spp. to penicilin G, tetracycline, erythromycin, gentamicin, and enrofloxacin were found as 26.9% (18), 7.5% (5), 6.0% (4), 3.0% (2), and 1.5% (1), respectively. Only 3 of the 21 S. aureus ewe isolates (13.4%) were shown to harbor enterotoxin genes being either seh, sej or sec. However, fourteen (66.6%) of the 21 S. aureus isolates had pvl gene while none of the isolates harbored mecA gene. In conclusion, Staphylococci were shown to be the most prevalent bacteria isolated from subclinical mastitis of ewes and goats and these isolates were susceptible to most of the antibiotics. In addition, S. aureus strains isolated from ewes were harboring few staphylococcal enterotoxin genes. However, Panton-Valentine leukocidin produced by S. aureus could be an important virulence factor and contribute to subclinical mastitis pathogenicity.

  10. Impact of Antibiotics on Expression of Virulence-Associated Exotoxin Genes in Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus

    National Research Council Canada - National Science Library

    Dennis L. Stevens; Yongsheng Ma; Daniel B. Salmi; Eric McIndoo; Randi J. Wallace; Amy E. Bryant

    2007-01-01

    .... The present study investigated the effects that cell-wall active antibiotics and protein-synthesis inhibitors have on transcription and translation of genes for Panton-Valentine leukocidin, alpha...

  11. Effect of early natal supplementation of paracetamol on attenuation of exotoxin/endotoxin induced pyrexia and precipitation of autistic like features in albino rats.

    Science.gov (United States)

    Saeedan, Abdulaziz S; Singh, Indu; Ansari, Mohd Nazam; Singh, Manjari; Rawat, Jitendra K; Devi, Uma; Gautam, Swetlana; Yadav, Rajnish K; Kaithwas, Gaurav

    2018-01-11

    The present study was aimed to test the hypothesis that paracetamol (PCM) can precipitate autistic like features when used to counteract vaccine-induced fever using experimental rat pups. The pups were treated with measles mumps rubella (MMR) vaccine, diphtheria tetanus and pertussis (DPT) vaccines and lipopolysaccharide (LPS) with subsequent PCM treatment. The pups were evaluated for postnatal growth (weight gain, eye opening) and behavior alterations (swimming performance, olfactory discrimination, negative geotaxis, nociception, and locomotor activity) by performing battery of neurobehavioral test. Significant correlation was observed between social behavioral domains (nociception, anxiety and motor coordination) and pro-inflammatory load in the pups when treated with MMR/LPS along with PCM. A significant change in pro and anti-inflammatory (IL-4, IL-6, IL-10) markers were observed in rats treated with PCM, MMR, LPS, DPS alone or in combination with MMR, LPS and DPT (5128.6 ± 0.000, 15,488 ± 0.000 *** , 9661.1 ± 157.29 ***a , 15,312 ± 249.29 *** , 10,471 ± 0.00 ***a , 16,789 ± 273.34 *** and 12,882 ± 0.00 ***a ). Pups were also scrutinized for the markers of oxidative stress, inflammation and histopathologically. All the treatment groups showed significant alteration in the behavioral changes, oxidative markers (TBARS-in control-4.33 ± 0.02, PCM-9.42 ± 0.18 *** , MMR-5.27 ± 0.15 *** , MMR + PCM-8.57 ± 0.18 *** a , LPS-6.84 ± 0.10 *** , LPS + PCM-4.51 ± 0.30 ***a , DPT-5.68 ± 0.12 *** , DPT + PCM-7.26 ± 0.18 ***a ) and inflammatory markers without following any specific treatment. These observation could be accorded to variable phenotypes of autistic spectrum disorders (ASDs).

  12. Evaluation of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to the Apx toxins of Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Nielsen, Ragnhild; van den Bosch, Johannes F.; Plambeck, Tamara

    2000-01-01

    The reference strains of the 12 serotypes of Actinobacillus pleuropneumoniae express one or two of three different RTX exotoxins designated Apr I, Apr II and Apr III. The toxins are important virulence factors. In the present study, ELISAs with purified Apr I, Apr II and Apr III, respectively, as...... of exotoxin is not revealed serologically in the ELISA test.......The reference strains of the 12 serotypes of Actinobacillus pleuropneumoniae express one or two of three different RTX exotoxins designated Apr I, Apr II and Apr III. The toxins are important virulence factors. In the present study, ELISAs with purified Apr I, Apr II and Apr III, respectively...

  13. Pharmaceutical proteins produced in plant bioreactor in recent years

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    2007). Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep. 26(7): 961-. 968. Stoger E, Vaquero C, Torres E, ...

  14. An evidence-based review of botulinum toxin (Botox) applications in non-cosmetic head and neck conditions

    National Research Council Canada - National Science Library

    Persaud, Ricardo; Garas, George; Silva, Sanjeev; Stamatoglou, Constantine; Chatrath, Paul; Patel, Kalpesh

    2013-01-01

    Botulinum toxin (Botox) is an exotoxin produced from Clostridium botulinum. It works by blocking the release of acetylcholine from the cholinergic nerve end plates leading to inactivity of the muscles or glands innervated...

  15. The therapeutic usage of botulinum toxin (Botox) in non-cosmetic head and neck conditions – An evidence based review

    National Research Council Canada - National Science Library

    Awan, Kamran Habib

    2017-01-01

    Botulinum toxin (Botox) is an exotoxin produced from Clostridium botulinum. It blocks the release of acetylcholine from the cholinergic nerve end plates resulting in inactivity of the muscles or glands innervated...

  16. Tetanus (Lockjaw) Photos

    Science.gov (United States)

    ... the Disease This micrograph depicts a group of Clostridium tetani bacteria This neonate is displaying a bodily rigidity produced by Clostridium tetani exotoxin, called "neonatal tetanus" This patient presented ...

  17. The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators.

    Science.gov (United States)

    Arnold, Jason W; Koudelka, Gerald B

    2014-02-01

    Phage-encoded Shiga toxin (Stx) acts as a bacterial defence against the eukaryotic predator Tetrahymena. To function as an effective bacterial anti-predator defence, Stx must kill a broad spectrum of predators. Consistent with that assertion, we show here that bacterially encoded Stx efficiently kills the bacteriovore Acanthamoeba castellanii in co-culture. We also show that, in addition to Stx, the phage-encoded exotoxin, diphtheria toxin (Dtx) expressed by Corynebacterium diphtheriae also can function as part of an anti-predator strategy; it kills Acanthamoeba in co-culture. Interestingly, only exotoxins produced by bacteria internalized by the Acanthamoeba predator are cytolethal; the presence of purified Dtx or Stx in culture medium has no effect on predator viability. This finding is consistent with our results indicating that intoxication of Acanthamoeba by these exotoxins does not require a receptor. Thus bacteria, in the disguise of a food source, function as a 'Trojan Horse', carrying genes encoding an exotoxin into target organisms. This 'Trojan Horse' mechanism of exotoxin delivery into predator cells allows intoxication of predators that lack a cell surface receptor for the particular toxin, allowing bacteria-bearing exotoxins to kill a broader spectrum of predators, increasing the fitness of the otherwise 'defenceless' prey bacteria. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Induction of Immunity to Toxins with Anti-Idiotypic Antibody

    Science.gov (United States)

    1984-10-01

    establish dose response curves, kinetics of response, and mouse strain variations in the in vivo response to ET as described below. The proposed goal of the...Table 2 Studies on Protection In Vivo with Monoclonal Anti-Exotoxin Antibodies (pg) (1 pg) No. Mice Group Hybridoma Dose Exotoxin Live/Total Exp. 2: la TC...Ouchterlony Analysis of Mouse Anti- sere for Anti-idlotype Allotype Imenogen H-2 IgM IgA TC-9 TC-13 TC-15 TC-31 A/J a • d Id+ Ig+ - AKR/J k - d -- Id

  19. FATAL GROUP A STREPTOCOCCAL TOXIC SHOCK-LIKE SYNDROME IN A CHILD WITH VARICELLA: REPORT OF THE FIRST WELL DOCUMENTED CASE WITH DETECTION OF THE GENETIC SEQUENCES THAT CODE FOR EXOTOXINS SPE A AND B, IN SÃO PAULO, BRAZIL Síndrome do choque tóxico por estreptococo do grupo A em uma criança com varicela: relato do primeiro caso bem documentado com a identificação dos genes codificadores da produção de SPE A e SPE B em São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Jaques SZTAJNBOK

    1999-01-01

    Full Text Available A previously healthy seven-year-old boy was admitted to the intensive care unit because of toxaemia associated with varicella. He rapidly developed shock and multisystem organ failure associated with the appearance of a deep-seated soft tissue infection and, despite aggressive treatment, died on hospital day 4. An M-non-typable, spe A and spe B positive Group A Streptococcus was cultured from a deep soft tissue aspirate. The criteria for defining Streptococcal toxic shock-like syndrome were fulfilled. The authors discuss the clinical and pathophysiological aspects of this disease as well as some unusual clinical findings related to this case.Criança de sete anos, previamente hígida, foi admitida na unidade de terapia intensiva por quadro de toxemia associado à varicela. Evoluiu rapidamente para choque e insuficiência de multiplos órgãos e sistemas e, apesar do tratamento intensivo, morreu no 4o dia após a admissão. A cultura de secreção colhida por punção profunda de partes moles em região torácica foi positiva para Streptococcus pyogenes, proteina-M não tipável e carreador dos genes codificadores da produção de exotoxinas pirogênicas estreptocócicas A e B, preenchendo os critérios para definição de Síndrome do choque tóxico estreptocócico. Os autores discutem aspectos clínicos e fisiopatológicos desta síndrome, bem como alguns aspectos incomuns relacionados a este caso.

  20. Clinical profile and outcome of pediatrics tetanus: the experience of ...

    African Journals Online (AJOL)

    Background: Tetanus is an acute vaccine preventable illness manifested by neuromuscular dysfunction due to a potent exotoxin, tetanospasmin produced by Clostridium tetani. It is a common health problem in developing countries like Ethiopia. The aim of this study was to assess clinical profile and outcome of Pediatrics ...

  1. Download this PDF file

    African Journals Online (AJOL)

    GB

    2017-09-01

    Sep 1, 2017 ... ABSTRACT. BACKGROUND: Tetanus is an acute vaccine preventable illness manifested by neuromuscular dysfunction due to a potent exotoxin, tetanospasmin produced by Clostridium tetani. It is a common health problem in developing countries like Ethiopia. The aim of this study was to assess clinical ...

  2. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin

    DEFF Research Database (Denmark)

    Yahiro, Kinnosuke; Wada, Akihiro; Yamasaki, Eiki

    2004-01-01

    Helicobacter pylori produces a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Although VacA was able to interact with two receptor-like protein tyrosine phosphatases, RPTPbeta and RPTPalpha, RPTPbeta was found to be responsible for gastric damage caused...

  3. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis

    Science.gov (United States)

    Shiga toxin 1, exotoxin A, diphtheria toxin and ricin are all AB-type protein toxins that act within the host cytosol to kill the host cell through a pathway involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. In...

  4. Stealth and mimicry by deadly bacterial toxins

    DEFF Research Database (Denmark)

    Yates, S.P.; Jørgensen, Rene; Andersen, Gregers Rom

    2006-01-01

    Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that serve as virulence factors in the pathogenic bacteria, Corynebacterium diphtheriae and Pseudomonas aeruginosa.  New high-resolution structural data of the Michaelis complex of the Pseudo...

  5. The cagE gene sequence as a diagnostic marker to identify JP2 and non-JP2 highly leukotoxic Aggregatibacter actinomycetemcomitans serotype b strains

    DEFF Research Database (Denmark)

    Johansson, Anders; Claesson, Rolf; Åberg, Carola Høglund

    2017-01-01

    Aggregatibacter actinomycetemcomitans is associated with aggressive forms of periodontitis, and with systemic infections such as endocarditis. The cagE gene encodes a ≈39-kDa putative exotoxin expressed by A. actinomycetemcomitans. The prevalence of cagE, and its significance in periodontal disease...... in the risk assessment of the development of periodontal attachment loss in young individuals....

  6. Synthetic biology's tall order: Reconstruction of 3D, super resolution images of single molecules in real-time

    CSIR Research Space (South Africa)

    Henriques, R

    2010-08-31

    Full Text Available inhibition of RhoA by ADP- ribosylation with the exotoxin EDIN of Staphylococcus aureus disrupted the actin cables produced by LT (Fig. 4E) (Wilde et al., 2003). Actin cables were also dis- rupted by inhibition of the RhoA effector kinase ROCK using Y...

  7. Antimicrobial resistant coagulase positive Staphylococcus aureus ...

    African Journals Online (AJOL)

    Staphylococcus aureus is an Important agent of food poisoning. In many countries, it is the main bacterial organism responsible for diseases caused by exotoxin production and direct invasion with systemic dissemination. In poultry, S. aureus is associated with many clinical syndromes including tenosynovitis, omphalitis, ...

  8. Ceratitis capitata (Wied.)

    African Journals Online (AJOL)

    endotoxines et β -exotoxines) extraites à partir d'une souche de Bacillus thuringiensis (Bt A9) isolée d'un sol au Maroc sur la mouche Ceratitis capitata Wied (Diptera ; Tephritidae). les endotoxines de Bt A9 agissent sur la mortalité des larves et la ...

  9. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2017-01-01

    of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin...

  10. Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins

    NARCIS (Netherlands)

    Bestebroer, Jovanka; van Kessel, Kok P. M.; Azouagh, Hafida; Walenkamp, Annemiek M.; Boer, Ingrid G. J.; Romijn, Roland A.; van Strijp, Jos A. G.; de Haas, Carla J. C.

    2009-01-01

    Staphylococcus aureus secretes several virulence factors modulating immune responses. Staphylococcal superantigen-like (SSL) proteins are a family of 14 exotoxins with homology to superantigens, but with generally unknown function. Recently, we showed that SSL5 binds to P-selectin glycoprotein

  11. When No Response Is a Good Thing | Center for Cancer Research

    Science.gov (United States)

    Custom-designed therapies that target cell-surface antigens or receptors represent a promising immunological approach in cancer therapy. Antibodies that bind these targets are the starting point.  Potent toxins can then be added to them by fusing antibody fragments to powerful bacterial toxins such as Pseudomonas exotoxin (PE). This recombinant immunotoxin combines antibody selectivity with toxin cell-killing potency.

  12. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L. Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (TSST-1 in both methicillin-sensitive S. aureus (MSSA and methicillin-resistant S. aureus (MRSA. CONCLUSIONS/SIGNIFICANCE: The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.

  13. Vaccine Biotechnology by Accelerated Electron Beam and Microwave Irradiation

    Science.gov (United States)

    Craciun, Gabriela D.; Togoe, Iulian I.; Tudor, Laurentiu M.; Martin, Diana I.; Manaila, Elena N.; Ighigeanu, Daniel I.; Iacob, Nicusor I.; Oproiu, Constantin V.

    2007-04-01

    A new biotechnology for obtaining a commercial vaccine that contains either Fusobacterium necrophorum (F.n.) exotoxins inactivated by accelerated electron beam (EB) and microwave (MW) irradiation, or exotoxins isolated from F.n. cultures irradiated with EB+MW, is presented. This vaccine is designed for prophylaxis of ruminant infectious pododermatitis (IP) produced by F.n. Also, the research results concerning the effects of combined chemical adjuvant and EB+MW irradiation on F.n. immune capacity are discussed. The vaccine's efficacy will be tested in ruminant farms in which IP evolves. It is expected that this new vaccine to offer a better protection, more than 60%, which is the best presently obtained result in ruminant farms.

  14. Streptococcus sp. and Staphylococcus aureus isolates from patients with psoriasis possess genes that code for toxins (superantigens): clinical and therapeutic implications.

    Science.gov (United States)

    El Ferezli, Jessica; Jenbazian, Lori; Rubeiz, Nelly; Kibbi, Abdul-Ghani; Zaynoun, Shukrallah; Abdelnoor, Alexander M

    2008-01-01

    Superantigens are powerful T lymphocyte-stimulating agents that are believed to contribute to the pathogenesis of certain diseases such as psoriasis. Toxins produced by Streptococcus pyogenes and Staphylococcus aureus are superantigens. The aim of this study was to detect genes that code for superantigens in Streptococcus and Staphylococcus aureus isolates from psoriatic patients. Primers to amplify streptococcal pyrogenic exotoxin A, B, and C and streptolysin O genes and staphylococcal enterotoxin A, B, C, and D genes were used. Streptococcal exotoxin B was detected in five streptococcal isolates. Staphyloccocus aureus enterotoxin A and/or C genes were detected in nine S. aureus isolates. Isolates from 13 of 22 patients possesed gene(s) that code for toxin(s) (superantigens). These results might support the role of superantigens in the exacerbation of psoriasis.

  15. Use of in-vivo induced antigen technology to identify bacterial genes expressed during Solea senegalensis infection with Photobacterium damselae subsp. piscicida

    OpenAIRE

    Núñez-Díaz, José Alberto; Fumanal, Milena; García de la Banda, Inés; Moriñigo, Miguel Ángel; Balebona-Accino, Maria del Carmen

    2016-01-01

    The marine fish pathogen Photobacterium damselae subsp. piscicida (Phdp) is responsible for important disease outbreaks affecting several fish species including flatfish Solea senegalensis (Kaup). Phdp is able to avoid host defences by invasion and intracellular survival in non-phagocytic cells, mainly epithelial cells. Virulence factors reported in Phdp include restricting complement-mediated activity, apoptosis of phagocytes caused by exotoxins secretion, iron acquisition mechan...

  16. Immunogenetic determinants of susceptibility/resistance to Mycobacterium ulcerans infection: a population based study – Benin biological bank on Buruli ulcer

    OpenAIRE

    Capela, Carlos Alberto Pereira

    2016-01-01

    Tese de Doutoramento - Doutoramento em Medicina Buruli ulcer (BU) is an infectious disease found in tropical regions of Africa, America, Asia, and Australia. Most of the cases are reported in West Africa and BU is considered a neglected tropical disease by the World Health Organization (WHO). This necrotising skin infection is caused by Mycobacterium ulcerans that secretes the exotoxin mycolactone as its main virulence factor. There is emerging evidence for a major role of g...

  17. Necroinflammation in Kidney Disease

    OpenAIRE

    Mulay, Shrikant R.; Linkermann, Andreas; Anders, Hans-Joachim

    2015-01-01

    The bidirectional causality between kidney injury and inflammation remains an area of unexpected discoveries. The last decade unraveled the molecular mechanisms of sterile inflammation, which established danger signaling via pattern recognition receptors as a new concept of kidney injury–related inflammation. In contrast, renal cell necrosis remained considered a passive process executed either by the complement-related membrane attack complex, exotoxins, or cytotoxic T cells. Accumulating da...

  18. The life and death of translation elongation factor 2

    DEFF Research Database (Denmark)

    Jørgensen, Rene; Merrill, A.R.; Andersen, Gregers Rom

    2006-01-01

    The eukaryotic elongation factor 2 (eEF2) occupies an essential role in protein synthesis where it catalyses the translocation of the two tRNAs and the mRNA after peptidyl transfer on the 80S ribosome. Recent crystal structures of eEF2 and the cryo-EM reconstruction of its 80S complex now provide...... diphthamide residue, which is ADP-ribosylated by diphtheria toxin from Corynebacterium diphtheriae and exotoxin A from Pseudomonas aeruginosa....

  19. Rho is Required for the Initiation of Calcium Signaling and Phagocytosis by Fcγ Receptors in Macrophages

    Science.gov (United States)

    Hackam, David J.; Rotstein, Ori D.; Schreiber, Alan; Zhang, Wei-jian; Grinstein, Sergio

    1997-01-01

    Phagocytosis of bacteria by macrophages and neutrophils is an essential component of host defense against infection. The mechanism whereby the interaction of opsonized particles with Fcγ receptors triggers the engulfment of opsonized particles remains incompletely understood, although activation of tyrosine kinases has been recognized as an early step. Recent studies in other systems have demonstrated that tyrosine kinases can in turn signal the activation of small GTPases of the ras superfamily. We therefore investigated the possible role of Rho in Fc receptor–mediated phagocytosis. To this end we microinjected J774 macrophages with C3 exotoxin from Clostridium botulinum, which ADP-ribosylates and inactivates Rho. C3 exotoxin induced the retraction of filopodia, the disappearance of focal complexes, and a global decrease in the F-actin content of J774 cells. In addition, these cells exhibited increased spreading and the formation of vacuolar structures. Importantly, inactivation of Rho resulted in the complete abrogation of phagocytosis. Inhibition of Fcγ receptor–mediated phagocytosis by C3 exotoxin was confirmed in COS cells, which become phagocytic upon transfection of the FcγRIIA receptor. Rho was found to be essential for the accumulation of phosphotyrosine and of F-actin around phagocytic cups and for Fcγ receptor–mediated Ca2+ signaling. The clustering of receptors in response to opsonin, an essential step in Fcγ-induced signaling, was the earliest event shown to be inhibited by C3 exotoxin. The effect of the toxin was specific, since clustering and internalization of transferrin receptors were unaffected by microinjection of C3. These data identify a role for small GTPases in Fcγ receptor–mediated phagocytosis by leukocytes. PMID:9294149

  20. [Pharyngo-tonsillitis and necrosing submaxillary adenitis caused by Streptococcus pyogenes associated with toxic shock syndrome in children from Mexico City].

    Science.gov (United States)

    Maulén de Vázquez, I; González-Galnares, M; Ridaura-Sanz, C; Saucedo-Sánchez, A; Osnaya-Martínez, H

    1993-08-01

    We report on six previously healthy children between nine months and nine years old, who suffered streptococcal faringoamigdalitis and cervical adenitis with scarlet fever and toxic shock syndrome; four of them died in a fulminant course and two survived. These patients behave similarly to others reported from United States of America, England and Australia, and in similar way these clinical entity could be due to bacterial pyrogenic exotoxins according to the clinical fulminant course.

  1. Immunity to Staphylococcus aureus Secreted Proteins Protects Rabbits from Serious Illnesses

    Science.gov (United States)

    Spaulding, Adam. R.; Lin, Ying-Chi; Merriman, Joseph A.; Brosnahan, Amanda J.; Peterson, Marnie L.; Schlievert, Patrick M.

    2012-01-01

    Staphylococcus aureus causes significant illnesses throughout the world, including toxic shock syndrome (TSS), pneumonia, and infective endocarditis. Major contributors to S. aureus illnesses are secreted virulence factors it produces, including superantigens and cytolysins. This study investigates the use of superantigens and cytolysins as staphylococcal vaccine candidates. Importantly, 20% of humans and 50% of rabbits in our TSS model cannot generate antibody responses to native superantigens. We generated three TSST-1 mutants; G31S/S32P, H135A, and Q136A. All rabbits administered these TSST-1 toxoids generated strong antibody responses (titers>10,000) that neutralized native TSST-1 in TSS models, both in vitro and in vivo. These TSST-1 mutants lacked detectable residual toxicity. Additionally, the TSST-1 mutants exhibited intrinsic adjuvant activity, increasing antibody responses to a second staphylococcal antigen (β-toxin). This effect may be due to TSST-1 mutants binding to the immune co-stimulatory molecule CD40. The superantigens TSST-1 and SEC and the cytolysin α-toxin are known to contribute to staphylococcal pneumonia. Immunization of rabbits against these secreted toxins provided complete protection from highly lethal challenge with a USA200 S. aureus strain producing all three exotoxins; USA200 strains are common causes of staphylococcal infections. The same three exotoxins plus the cytolysins β-toxin and γ-toxin contribute to infective endocarditis and sepsis caused by USA200 strains. Immunization against these five exotoxins protected rabbits from infective endocarditis and lethal sepsis. These data suggest that immunization against toxoid proteins of S. aureus exotoxins protects from serious illnesses, and concurrently superantigen toxoid mutants provide endogenous adjuvant activity. PMID:22691432

  2. Anticancer peptides from bacteria

    OpenAIRE

    Karpiński, Tomasz M.; Anna K. Szkaradkiewicz

    2013-01-01

    Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data ...

  3. Identification of Distinct Bacillus thuringiensis 4A4 Nematicidal Factors Using the Model Nematodes Pristionchus pacificus and Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Igor Iatsenko

    2014-07-01

    Full Text Available Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thuringiensis 4A4 identified Cry21Ha, Cry1Ba, Vip1/Vip2 and β-exotoxin as potential nematicidal factors. Only Cry21Ha showed toxicity to C. elegans, while neither Cry nor Vip toxins were active against P. pacificus, when expressed in E. coli. Purified crystals also failed to intoxicate P. pacificus, while autoclaved spore-crystal mixture of B. thuringiensis 4A4 retained toxicity, suggesting that primary β-exotoxin is responsible for P. pacificus killing. In support of this, we found that a β-exotoxin-deficient variant of B. thuringiensis 4A4, generated by plasmid curing lost virulence to the nematodes. Thus, using two model nematodes we revealed virulence factors of the nematicidal strain B. thuringiensis 4A4 and showed the multifactorial nature of its virulence.

  4. Identification of distinct Bacillus thuringiensis 4A4 nematicidal factors using the model nematodes Pristionchus pacificus and Caenorhabditis elegans.

    Science.gov (United States)

    Iatsenko, Igor; Nikolov, Angel; Sommer, Ralf J

    2014-07-14

    Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thuringiensis 4A4 identified Cry21Ha, Cry1Ba, Vip1/Vip2 and β-exotoxin as potential nematicidal factors. Only Cry21Ha showed toxicity to C. elegans, while neither Cry nor Vip toxins were active against P. pacificus, when expressed in E. coli. Purified crystals also failed to intoxicate P. pacificus, while autoclaved spore-crystal mixture of B. thuringiensis 4A4 retained toxicity, suggesting that primary β-exotoxin is responsible for P. pacificus killing. In support of this, we found that a β-exotoxin-deficient variant of B. thuringiensis 4A4, generated by plasmid curing lost virulence to the nematodes. Thus, using two model nematodes we revealed virulence factors of the nematicidal strain B. thuringiensis 4A4 and showed the multifactorial nature of its virulence.

  5. A mixture of functionally oligoclonal humanized monoclonal antibodies that neutralize Clostridium difficile TcdA and TcdB with high levels of in vitro potency shows in vivo protection in a hamster infection model.

    Science.gov (United States)

    Davies, Nicola L; Compson, Joanne E; Mackenzie, Brendon; O'Dowd, Victoria L; Oxbrow, Amanda K F; Heads, James T; Turner, Alison; Sarkar, Kaushik; Dugdale, Sarah L; Jairaj, Mark; Christodoulou, Louis; Knight, David E O; Cross, Amanda S; Hervé, Karine J M; Tyson, Kerry L; Hailu, Hanna; Doyle, Carl B; Ellis, Mark; Kriek, Marco; Cox, Matthew; Page, Matthew J T; Moore, Adrian R; Lightwood, Daniel J; Humphreys, David P

    2013-03-01

    Clostridium difficile infections are a major cause of antibiotic-associated diarrhea in hospital and care facility patients. In spite of the availability of effective antibiotic treatments, C. difficile infection (CDI) is still a major cause of patient suffering, death, and substantial health care costs. Clostridium difficile exerts its major pathological effects through the actions of two protein exotoxins, TcdA and TcdB, which bind to and disrupt gut tissue. Antibiotics target the infecting bacteria but not the exotoxins. Administering neutralizing antibodies against TcdA and TcdB to patients receiving antibiotic treatment might modulate the effects of the exotoxins directly. We have developed a mixture of three humanized IgG1 monoclonal antibodies (MAbs) which neutralize TcdA and TcdB to address three clinical needs: reduction of the severity and duration of diarrhea, reduction of death rates, and reduction of the rate of recurrence. The UCB MAb mixture showed higher potency in a variety of in vitro binding and neutralization assays (∼10-fold improvements), higher levels of protection in a hamster model of CDI (82% versus 18% at 28 days), and higher valencies of toxin binding (12 versus 2 for TcdA and 3 versus 2 for TcdB) than other agents in clinical development. Comparisons of the MAb properties also offered some insight into the potential relative importance of TcdA and TcdB in the disease process.

  6. Identification of Distinct Bacillus thuringiensis 4A4 Nematicidal Factors Using the Model Nematodes Pristionchus pacificus and Caenorhabditis elegans

    Science.gov (United States)

    Iatsenko, Igor; Nikolov, Angel; Sommer, Ralf J.

    2014-01-01

    Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thuringiensis 4A4 identified Cry21Ha, Cry1Ba, Vip1/Vip2 and β-exotoxin as potential nematicidal factors. Only Cry21Ha showed toxicity to C. elegans, while neither Cry nor Vip toxins were active against P. pacificus, when expressed in E. coli. Purified crystals also failed to intoxicate P. pacificus, while autoclaved spore-crystal mixture of B. thuringiensis 4A4 retained toxicity, suggesting that primary β-exotoxin is responsible for P. pacificus killing. In support of this, we found that a β-exotoxin-deficient variant of B. thuringiensis 4A4, generated by plasmid curing lost virulence to the nematodes. Thus, using two model nematodes we revealed virulence factors of the nematicidal strain B. thuringiensis 4A4 and showed the multifactorial nature of its virulence. PMID:25025708

  7. Staphylococcus aureus α-hemolysin promotes platelet-neutrophil aggregate formation.

    Science.gov (United States)

    Parimon, Tanyalak; Li, Zhi; Bolz, Devin D; McIndoo, Eric R; Bayer, Clifford R; Stevens, Dennis L; Bryant, Amy E

    2013-09-01

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe hemorrhagic necrotizing pneumonia associated with high mortality. Exotoxins have been implicated in the pathogenesis of this infection; however, the cellular mechanisms responsible remain largely undefined. Because platelet-neutrophil aggregates (PNAs) can dysregulate inflammatory responses and contribute to tissue destruction, we investigated whether exotoxins from MRSA could stimulate formation of PNAs in human whole blood. Strong PNA formation was stimulated by toxins from stationary phase but not log phase CA-MRSA, and α-hemolysin was singularly identified as the mediator of this activity. MRSA exotoxins also caused neutrophil (polymorphonuclear leukocyte) activation, as measured by increased CD11b expression, although platelet binding was not driven by this mechanism; rather, α-hemolysin-induced PNA formation was solely platelet P-selectin dependent. These findings suggest a role for S. aureus α-hemolysin-induced PNA formation in alveolar capillary destruction in hemorrhagic/necrotizing pneumonia caused by CA-MRSA and offer novel targets for intervention.

  8. Eugenol Reduces the Expression of Virulence-Related Exoproteins in Staphylococcus aureus▿

    Science.gov (United States)

    Qiu, Jiazhang; Feng, Haihua; Lu, Jing; Xiang, Hua; Wang, Dacheng; Dong, Jing; Wang, Jianfeng; Wang, Xiaoliang; Liu, Juxiong; Deng, Xuming

    2010-01-01

    Eugenol, an essential oil component in plants, has been demonstrated to possess activity against both Gram-positive and Gram-negative bacteria. This study examined the influence that subinhibitory concentrations of eugenol may have on the expression of the major exotoxins produced by Staphylococcus aureus. The results from a tumor necrosis factor (TNF) release assay and a hemolysin assay indicated that S. aureus cultured with graded subinhibitory concentrations of eugenol (16 to 128 μg/ml) dose dependently decreased the TNF-inducing and hemolytic activities of culture supernatants. Western blot analysis showed that eugenol significantly reduced the production of staphylococcal enterotoxin A (SEA), SEB, and toxic shock syndrome toxin 1 (the key exotoxins to induce TNF release), as well as the expression of α-hemolysin (the major hemolysin to cause hemolysis). In addition, this suppression was also evaluated at the transcriptional level via real-time reverse transcription (RT)-PCR analysis. The transcriptional analysis indicated that 128 μg/ml of eugenol remarkably repressed the transcription of the S. aureus sea, seb, tst, and hla genes. According to these results, eugenol has the potential to be rationally applied on food products as a novel food antimicrobial agent both to inhibit the growth of bacteria and to suppress the production of exotoxins by S. aureus. PMID:20639367

  9. Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Chua, Kyra Y L; Monk, Ian R; Lin, Ya-Hsun; Seemann, Torsten; Tuck, Kellie L; Porter, Jessica L; Stepnell, Justin; Coombs, Geoffrey W; Davies, John K; Stinear, Timothy P; Howden, Benjamin P

    2014-02-10

    The community-associated methicillin-resistant S. aureus (CA-MRSA) ST93 clone is becoming dominant in Australia and is clinically highly virulent. In addition, sepsis and skin infection models demonstrate that ST93 CA-MRSA is the most virulent global clone of S. aureus tested to date. While the determinants of virulence have been studied in other clones of CA-MRSA, the basis for hypervirulence in ST93 CA-MRSA has not been defined. Here, using a geographically and temporally dispersed collection of ST93 isolates we demonstrate that the ST93 population hyperexpresses key CA-MRSA exotoxins, in particular α-hemolysin, in comparison to other global clones. Gene deletion and complementation studies, and virulence comparisons in a murine skin infection model, showed unequivocally that increased expression of α-hemolysin is the key staphylococcal virulence determinant for this clone. Genome sequencing and comparative genomics of strains with divergent exotoxin profiles demonstrated that, like other S. aureus clones, the quorum sensing agr system is the master regulator of toxin expression and virulence in ST93 CA-MRSA. However, we also identified a previously uncharacterized AraC/XylS family regulator (AryK) that potentiates toxin expression and virulence in S. aureus. These data demonstrate that hyperexpression of α-hemolysin mediates enhanced virulence in ST93 CA-MRSA, and additional control of exotoxin production, in particular α-hemolysin, mediated by regulatory systems other than agr have the potential to fine-tune virulence in CA-MRSA.

  10. Glycerol monolaurate and dodecylglycerol effects on Staphylococcus aureus and toxic shock syndrome toxin-1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ying-Chi Lin

    Full Text Available Glycerol monolaurate (GML, a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG, a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability.Antimicrobial effects of GML and DDG (0 to 500 microg/ml on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day effects on S. aureus (MN8 growth (inoculum 3x10(8 CFU/ml, toxic shock syndrome toxin-1 (TSST-1 production, tumor necrosis factor-alpha (TNF-alpha concentrations and mortality over 7 days. DDG (50 and 100 microg/ml inhibited S. aureus growth in vitro more effectively than GML (p<0.01 and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80% and DDG-treated rabbits (2 of 5; 40% survived after 7 days. Control rabbits (5 of 5; 100% succumbed by day 4. GML suppressed TNF-alpha at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively.These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-alpha, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase.

  11. Quantitative high-throughput screening identifies inhibitors of anthrax-induced cell death.

    Science.gov (United States)

    Zhu, Ping Jun; Hobson, John P; Southall, Noel; Qiu, Cunping; Thomas, Craig J; Lu, Jiamo; Inglese, James; Zheng, Wei; Leppla, Stephen H; Bugge, Thomas H; Austin, Christopher P; Liu, Shihui

    2009-07-15

    Here, we report the results of a quantitative high-throughput screen (qHTS) measuring the endocytosis and translocation of a beta-lactamase-fused-lethal factor and the identification of small molecules capable of obstructing the process of anthrax toxin internalization. Several small molecules protect RAW264.7 macrophages and CHO cells from anthrax lethal toxin and protected cells from an LF-Pseudomonas exotoxin fusion protein and diphtheria toxin. Further efforts demonstrated that these compounds impaired the PA heptamer pre-pore to pore conversion in cells expressing the CMG2 receptor, but not the related TEM8 receptor, indicating that these compounds likely interfere with toxin internalization.

  12. Physiologic mastectomy via flank laparotomy.

    Science.gov (United States)

    Allen, Andrew J; Barrington, George M; Parish, Steve M

    2008-11-01

    Physiologic mastectomy can be used as a salvage procedure in cases of chronic suppurative mastitis, gangrenous mastitis, or chronic, severe mastitis associated with organisms liberating endotoxin or exotoxin. The surgical technique involves ligation of the major arterial blood supply (external pudendal artery) to the corresponding half of the mammary gland, which results in decreased systemic absorption of toxins and gland atrophy. The technique is performed with the cow standing, and it is relatively atraumatic. This procedure is a simple, yet effective alternative to radical mastectomy for unresponsive mastitis cases in genetically or otherwise valuable cattle.

  13. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    Energy Technology Data Exchange (ETDEWEB)

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C. (UMM)

    2016-07-05

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  14. Depletion of autoreactive B-lymphocytes by a recombinant myelin oligodendrocyte glycoprotein-based immunotoxin.

    Science.gov (United States)

    Nachreiner, Thomas; Kampmeier, Florian; Thepen, Theo; Fischer, Rainer; Barth, Stefan; Stöcker, Michael

    2008-03-01

    We report the construction of a fusion protein comprising the extracellular domain of myelin oligodendrocyte glycoprotein (MOG) and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA'). The chimeric immunotoxin targeted MOG-reactive B-lymphocytes by binding selectively to the appropriate receptors, leading to internalization and apoptosis of the target cells. The functionality of the immunotoxin was tested on a MOG-sensitive murine hybridoma cell line and ex vivo on freshly isolated splenocytes from transgenic IgH(MOG) mice. These data demonstrate, for the first time, the specific cytotoxicity of a MOG-containing recombinant immunotoxin expressed in bacteria towards MOG-reactive B-lymphocytes.

  15. Genes associados à virulência e multirresistência de antimicrobianos em linhagens Trueperella Pyogenes isoladas de mastite e outras afecções em animais domésticos

    OpenAIRE

    RISSETI, Rafaela Mastrangelo

    2015-01-01

    Trueperella pyogenes are opportunistic bacterium characterized by suppurative infections in domestic animals, commonly refractory to conventional therapy. Recently, genes which encode exotoxin pyolysin (plo), and factors that promote adhesion of T. pyogenes to host cells, such as fimbriae (fimA, fimC, fimE, fimG), neuraminidases (nanH, nanP), and collagen-binding protein (cbpA) have been associated to virulence of pathogen. The aim of present study was investigate occurrence of multi-drug res...

  16. Peppermint Oil Decreases the Production of Virulence-Associated Exoproteins by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xu-Ming Deng

    2011-02-01

    Full Text Available The present study aimed to evaluate the antimicrobial activity of peppermint oil against Staphylococcus aureus, and further investigate the influence of peppermint oil on S. aureus virulence-related exoprotein production. The data show that peppermint oil, which contained high contents of menthone, isomenthone, neomenthol, menthol, and menthyl acetate, was active against S. aureus with minimal inhibitory concentrations (MICs ranging from 64-256 µg/mL, and the production of S. aureus exotoxins was decreased by subinhibitory concentrations of peppermint oil in a dose-dependent manner. The findings suggest that peppermint oil may potentially be used to aid in the treatment of S. aureus infections.

  17. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  18. Serratia marcescens Bullous Cellulitis in a Splenectomized Patient: A Case Report and Review of the Literature.

    Science.gov (United States)

    Fournier, John B; Dabiri, Ganary; Thomas, Vinod; Skowron, Gail; Carson, Polly; Falanga, Vincent

    2016-06-01

    Serratia marcescens is a Gram-negative bacillus belonging to the Enterobacteriaceae family. Cutaneous infection with Serratia is rare, and usually occurs in immunocompromised individuals. Primary cutaneous infections are uncommon, but they are typically severe and are associated with significant morbidity and mortality. The pathogenetic factors leading to S. marcescens infection are not fully understood, but contributing virulence factors include proteases, secreted exotoxins, and the formation of biofilm. We report a case of cellulitis occurring in a splenectomized patient, which led to multiple wound debridements and a transmetatarsal amputation. This dramatic case led us to review the published literature on soft tissue infections caused by S. marcescens. © The Author(s) 2016.

  19. Mini-Osmotic Pump Infusion Model to Investigate the Systemic Effects of Chronic Continuous Exposure to Staphylococcal Superantigen in Mice.

    Science.gov (United States)

    Krogman, Ashton L; Chowdhary, Vaidehi; Rajagopalan, Govindarajan

    2016-01-01

    Staphylococcus aureus can exist as a colonizer or can cause a spectrum of diseases. S. aureus elaborates several exotoxins and the superantigens are one among them. Staphylococcal superantigens (SSAg) cause robust activation of the immune system and acute exposure to significant amounts of SSAg can be potentially lethal. However, chronic exposure to SSAg is also possible. Administering SSAg using mini-osmotic pumps may mimic chronic recurrent exposure to SSAg. This is a relatively simple and safe way to administer purified SSAg or any other toxin/agent. In this chapter, we describe the mini-osmotic pump-mediated delivery of SSAg.

  20. Expression, crystallization and preliminary X-ray diffraction studies of recombinant Clostridium perfringens β2-toxin

    Energy Technology Data Exchange (ETDEWEB)

    Gurjar, Abhijit A. [Department of Veterinary and Biomedical Science, The Pennsylvania State University (United States); Yennawar, Neela H.; Yennawar, Hemant P. [Macromolecular X-ray Crystallography Facility, The Pennsylvania State University (United States); Rajashankar, Kanagalaghatta R. [Argonne National Laboratory (United States); Hegde, Narasimha V.; Jayarao, Bhushan M., E-mail: bmj3@psu.edu [Department of Veterinary and Biomedical Science, The Pennsylvania State University (United States)

    2007-06-01

    The cloning, expression, purification and crystallization of recombinant Clostridium perfringens β2-toxin is described. The crystals diffracted to 2.9 Å resolution. Clostridium perfringens is a Gram-positive sporulating anaerobic bacterium that is responsible for a wide spectrum of diseases in animals, birds and humans. The virulence of C. perfringens is associated with the production of several enterotoxins and exotoxins. β2-toxin is a 28 kDa exotoxin produced by C. perfringens. It is implicated in necrotic enteritis in animals and humans, a disease characterized by a sudden acute onset with lethal hemorrhagic mucosal ulceration. The recombinant expression, purification and crystallization of β2-toxin using the batch-under-oil technique are reported here. Native X-ray diffraction data were obtained to 2.9 Å resolution on a synchrotron beamline at the F2 station at Cornell High Energy Synchrotron Source (CHESS) using an ADSC Quantum-210 CCD detector. The crystals belong to space group R3, with a dimer in the asymmetric unit; the unit-cell parameters are a = b = 103.71, c = 193.48 Å, α = β = 90, γ = 120° using the hexagonal axis setting. A self-rotation function shows that the two molecules are related by a noncrystallographic twofold axis with polar angles ω = 90.0, ϕ = 210.3°.

  1. Increased Extracellular ATP: An Omen of Bacterial RTX Toxin-Induced Hemolysis?

    Directory of Open Access Journals (Sweden)

    Yifei Wang

    2014-08-01

    Full Text Available Bacterial infection is a major threat to human health. Although pathogenic bacteria vary in their virulence, it has been recognized that many pathogenic bacteria share common mechanisms when attacking host cells and tissues. Some pathogenic bacteria synthesize and secrete polysaccharides to form an extracellular capsule. Capsules serve as virulence determinants by multiple mechanisms including facilitation of bacterial adherence, evasion of the immune response, and antibiotic resistance [1]. Moreover, to the exterior of bacterial plasma membranes are certain toxic components (e.g., lipopolysaccharide (LPS in Gram-negative bacteria, and peptidoglycan fragments and teichoic acids in Gram-positive bacteria that play key roles in causing bacterial septic shock or multiple organ dysfunction [2]. Significantly, bacteria may secrete proteinaceous or non-proteinaceous molecules, namely exotoxins, capable of directly destroying host cells. The Repeat-in-Toxin (RTX family is a group of virulence-associated exotoxins that are generated by Gram-negative bacteria and are noted for their ability to form pores on the membrane of host cells including leukocytes [3]. Despite the intense effort that has been input into investigating the interaction between RTX toxins and host cells during bacterial infection, our understanding of how RTX toxins insert into host cell membranes, and in turn, how host cells respond to the challenge of these toxins remains very limited. [...

  2. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Directory of Open Access Journals (Sweden)

    Kellie Burnside

    2010-06-01

    Full Text Available Exotoxins, including the hemolysins known as the alpha (alpha and beta (beta toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1 were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1 increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU, serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE and a hypothetical protein (NWMN_1123 were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  3. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Science.gov (United States)

    Burnside, Kellie; Lembo, Annalisa; de Los Reyes, Melissa; Iliuk, Anton; Binhtran, Nguyen-Thao; Connelly, James E; Lin, Wan-Jung; Schmidt, Byron Z; Richardson, Anthony R; Fang, Ferric C; Tao, Weiguo Andy; Rajagopal, Lakshmi

    2010-06-11

    Exotoxins, including the hemolysins known as the alpha (alpha) and beta (beta) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  4. Subinhibitory concentrations of punicalagin reduces expression of virulence-related exoproteins by Staphylococcus aureus.

    Science.gov (United States)

    Mun, Su-Hyun; Kong, Ryong; Seo, Yun-Soo; Zhou, Tian; Kang, Ok-Hwa; Shin, Dong-Won; Kwon, Dong-Yeul

    2016-11-01

    Staphylococcus aureus produces a number of virulence factors. The major virulence factors exhibited by S aureus include various antigens, enzymes, cytotoxins and exotoxins (e.g. hemolysins, enterotoxins and toxic shock syndrome toxin). In this report, we show the influence of punicalagin on the secretion of exoprotein from S aureus by western blotting, tumor necrosis factor (TNF) release assay and quantitative RT-PCR. When added to S aureus cultures at an OD600 of 0.9, graded subinhibitory concentrations of punicalagin reduced the production of α-toxin, SEA and SEB in methicillin-resistant Staphylococcus aureus in a dose-dependent manner. Consistently, punicalagin reduced TNF-inducing activity by S aureus culture supernatants. Here, the transcriptional level of agr (accessory gene regulator) in S aureus was inhibited by punicalagin, suggesting that the reduced transcription may affect the secretion of exotoxins. These findings suggest that the expression of α-toxin and enterotoxins in S aureus is sensitive to the action of punicalagin, which may be an advantageous candidate in the treatment of toxigenic staphylococcal disease. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Description of the Pathogenic Features of Streptococcus pyogenes Isolates from Invasive and Non-Invasive Diseases in Aichi, Japan.

    Science.gov (United States)

    Matsumoto, Masakado; Yamada, Kazuhiro; Suzuki, Masahiro; Adachi, Hirokazu; Kobayashi, Shinichi; Yamashita, Teruo; Minagawa, Hiroko; Tatsuno, Ichiro; Hasegawa, Tadao

    2016-07-22

    We identified hypervirulent Streptococcus pyogenes in 27 and 420 isolates from patients with invasive and non-invasive diseases, respectively, in Aichi Prefecture, Japan, between 2003 and 2012, in an attempt to understand why the prevalence of streptococcal toxic shock syndrome (STSS) suddenly increased in this location during 2011. Hypervirulent strains belong to the emm1 genotype, with a mutation in the covR/S genes that regulate many other genes, encoding virulence determinants and resulting in the absence of the proteinase streptococcal exotoxin B and the production of virulence factors such as the superantigen streptococcal exotoxin A, the nuclease streptococcal DNase, the cytotoxin NAD-glycohydrolase, and the hemolysin streptolysin O. We found 1 strain from invasive disease and 1 from non-invasive disease with traits similar to those of hypervirulent strains, except that the sda1 gene was absent. We also found 1 non-emm1 strain with phenotypic and genetic traits identical to those of the emm1 hypervirulent strains except that it did not belong to emm1 genotype, from non-invasive diseases cases in 2011. These findings suggested that hypervirulent and hypervirulent-like strains from invasive and non-invasive disease cases could have at least partially contributed to the sudden increase in the number of patients with STSS in Aichi during 2011.

  6. Efficacy of vaccines against bacterial diseases in swine: what can we expect?

    Science.gov (United States)

    Haesebrouck, Freddy; Pasmans, Frank; Chiers, Koen; Maes, Dominiek; Ducatelle, Richard; Decostere, Annemie

    2004-06-03

    This paper discusses what can be expected with regard to efficacy of antibacterial vaccines used in swine, based on the present knowledge of pathogen-host interactions. First, vaccination against bacteria that mainly cause disease by production of exotoxins is considered. Vaccines containing the inactivated toxin or a non-toxic but antigenic recombinant protein derived from the exotoxin can be expected to provide protection against disease. The degree of protection induced by such vaccines varies, however, depending amongst other things on the pathogenesis of the disease. Vaccination against clostridial infections, Actinobacillus pleuropneumoniae infections, progressive atrophic rhinitis and enterotoxigenic Escherichia coli, is considered. The second part of the article deals with vaccination against extracellular bacteria. Protection against these bacteria is generally mediated by antibodies against their surface antigens and certain secreted antigens, but cellular immunity may also play a role. Efficacy of vaccines against swine erysipelas, Streptococcus suis infections, Mycoplasma hyopneumoniae infections and swine dysentery is discussed. Finally, vaccination against facultatively intracellular bacteria is considered. For protection against these bacteria cell-mediated immunity plays an important role, but antibodies may also be involved. It is generally accepted that live-attenuated vaccines are more suitable for induction of cell-mediated immunity than inactivated vaccines, although this also depends on the adjuvant used in the vaccine. As an example, vaccination against Salmonella enterica serotype Typhimurium is discussed.

  7. Exfoliative Toxins of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michal Bukowski

    2010-05-01

    Full Text Available Staphylococcus aureus is an important pathogen of humans and livestock. It causes a diverse array of diseases, ranging from relatively harmless localized skin infections to life-threatening systemic conditions. Among multiple virulence factors, staphylococci secrete several exotoxins directly associated with particular disease symptoms. These include toxic shock syndrome toxin 1 (TSST-1, enterotoxins, and exfoliative toxins (ETs. The latter are particularly interesting as the sole agents responsible for staphylococcal scalded skin syndrome (SSSS, a disease predominantly affecting infants and characterized by the loss of superficial skin layers, dehydration, and secondary infections. The molecular basis of the clinical symptoms of SSSS is well understood. ETs are serine proteases with high substrate specificity, which selectively recognize and hydrolyze desmosomal proteins in the skin. The fascinating road leading to the discovery of ETs as the agents responsible for SSSS and the characterization of the molecular mechanism of their action, including recent advances in the field, are reviewed in this article.

  8. Emergence of invasive group A streptococcal disease among young children.

    Science.gov (United States)

    Novotny, W; Faden, H; Mosovich, L

    1992-10-01

    Eight cases of invasive group A streptococcal disease in young children were reported over a three-month period, February to April 1990. The spectrum of clinical disease included: pneumonia with bacteremia (two patients), osteomyelitis/septic arthritis (three patients), epiglottitis/supraglottitis (two patients), and sepsis without a focus (one patient). Three cases followed chicken pox. Three children were in shock at the time of presentation, including one child who had a toxic shock-like appearance. Only four children had pharyngitis. Bacteremia was confirmed in three children and presumed in another three. All the subjects survived. Four isolates of group A streptococci were tested for exotoxin A, B, and C (A-0, B-4, C-1) production. These data confirm the reappearance of a highly invasive strain of group A streptococci capable of producing a variety of clinical diseases, including bacteremia and shock, in a significant proportion of victims.

  9. Bacteriocins and their position in the next wave of conventional antibiotics.

    Science.gov (United States)

    Cavera, Veronica L; Arthur, Timothy D; Kashtanov, Dimitri; Chikindas, Michael L

    2015-11-01

    Micro-organisms are capable of producing a range of defence mechanisms, including antibiotics, bacteriocins, lytic agents, protein exotoxins, etc. Such mechanisms have been identified in nearly 99% of studied bacteria. The multiplicity and diversity of bacteriocins and the resultant effects of their interactions with targeted bacteria on microbial ecology has been thoroughly studied and remains an area of investigation attracting many researchers. However, the incorporation of bacteriocins into drug delivery systems used in conjunction with, or as potential alternatives to, conventional antibiotics is only a recent, although rapidly expanding, field. The extensive array of bacteriocins positions them as one of the most promising options in the next wave of antibiotics. The goal of this review was to explore bacteriocins as novel antimicrobials, alone and in combination with established antibiotics, and thus position them as a potential tool for addressing the current antibiotic crisis. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Cytoskeleton as an Emerging Target of Anthrax Toxins

    Science.gov (United States)

    Trescos, Yannick; Tournier, Jean-Nicolas

    2012-01-01

    Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT) and edema toxin (ET). So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity. PMID:22474568

  11. Antigens onto bare skin: a 'painless' paradigm shift in vaccine delivery.

    Science.gov (United States)

    Partidos, Charalambos D

    2003-09-01

    The skin is an attractive route for delivery of vaccines because it is accessible and contains immunocompetent cells. This opens up the possibility that, in the future, vaccines could be administered in a simple, safe and practical way without requiring the use of needles and syringes. This review focuses on the methods developed to deliver vaccines via the intact skin. Candidate vaccine antigens can be delivered topically using particulate delivery systems and patch formulations containing the antigen with an ADP-ribosylating exotoxin as an adjuvant. The duration and type of elicited immune responses depend on the antigen, the adjuvant and the method of delivery. Already, the first clinical trial of transcutaneous delivery of vaccines has demonstrated the proof of the principle. However, despite these successes, there are several challenges ahead to be addressed before vaccines administered with a patch will be available over the counter.

  12. Cytoskeleton as an Emerging Target of Anthrax Toxins

    Directory of Open Access Journals (Sweden)

    Jean-Nicolas Tournier

    2012-02-01

    Full Text Available Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT and edema toxin (ET. So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.

  13. [Postvaccinal fatal Streptococcus zooepidemicus necrotizing fasciitis in a young dog: a case report].

    Science.gov (United States)

    Greijdanus-Van Der Putten, S W M; Vos, J H; Duvekot, J R V; Paillot, R; McLean, R; Brokers, H J; Heuvelink, A E; Meertens, N M; Waller, A S

    2014-09-01

    A 2.5-years-old female mongrel dog was routinely subcutaneously vaccinated. A few hours later mental dullness was noticed by the owner progressing into stupor the next day and resulting in a comatose state and death within 48 hours after vaccination. At post mortem examination, which was extended with histology and bacteriology, a necrotizing fasciitis and bacteremia caused by Streptococcus equi subsp. zooepidemicus were established. In the isolated Streptococcus strain four different superantigens were demonstrated that appeared to be able to produce exotoxins in vitro. Therefore, it is concluded that the minor skin trauma caused by vaccination enabled this strain to gain access to the subcutaneous tissue and to induce a necrotizing fasciitis. This process was complicated with a bacterial septicemia leading to death of the dog within 48 hours.

  14. TREATMENT OF CLOSTRIDIUM DIFFICILE- ASSOCIATED DISEASE

    Directory of Open Access Journals (Sweden)

    Snezana Antic-Mladenovic

    2007-04-01

    Full Text Available Clostridium difficile is a Gram-positive, spore-forming, anaerobic bacillus that is widely distributed in the environment, but is found as a part of a normal large bowel flora in approximately 3% of normal adults. C. difficile produces two protein exotoxins: toxin A and toxin B. Both toxins are responsible for causing the sings and symptoms of disease.C. difficile is now thought to be responsible for a spectrum of diseases, ranging from asymptomatic colonization to diarrhea of varying severity, life-threatening colitis, often as a consequence of long-term antibiotic exposure. This spectrum has become known as C. difficile-associated disease (CDAD.Treatment of Clostridium difficile-associated disease demand administration of effi-cient antibiotics (vancomycin, metronidazole, anion exchange resins and probiotics (Lactobacillus spp., Saccharomyces boulardii.

  15. Retrograde transport pathways utilised by viruses and protein toxins

    Directory of Open Access Journals (Sweden)

    Roberts Lynne M

    2006-04-01

    Full Text Available Abstract A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised.

  16. Role of pore-forming toxins in neonatal sepsis.

    Science.gov (United States)

    Sonnen, Andreas F-P; Henneke, Philipp

    2013-01-01

    Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.

  17. Staphylococcus aureus and hand eczema severity

    DEFF Research Database (Denmark)

    Haslund, P; Bangsgaard, N; Jarløv, J O

    2009-01-01

    BACKGROUND: The role of bacterial infections in hand eczema (HE) remains to be assessed. OBJECTIVES: To determine the prevalence of Staphylococcus aureus in patients with HE compared with controls, and to relate presence of S. aureus, subtypes and toxin production to severity of HE. METHODS......: Bacterial swabs were taken at three different visits from the hand and nose in 50 patients with HE and 50 controls. Staphylococcus aureus was subtyped by spa typing and assigned to clonal complexes (CCs), and isolates were tested for exotoxin-producing S. aureus strains. The Hand Eczema Severity Index...... was used for severity assessment. RESULTS: Staphylococcus aureus was found on the hands in 24 patients with HE and four controls (P

  18. Puerperal Fever and Neonatal Pleural Empyema and Bacteremia Caused by Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Laurance Lequier

    1998-01-01

    Full Text Available A term neonate developed early onset of sepsis and pleural empyema with group A streptococcus. Her mother also became septic with group A streptococcus in the early postpartum period. The infant required initial chest tube drainage. After reaccumulation of pleural fluid after removal of the chest tube, a thoracotomy with decortication was performed. The isolates of group A streptococcus were analyzed and found to be identical serotypes of the same bacterium. The serotyping revealed both to be M type 1, T pattern 1. Polymerase chain reaction detected the genomic sequence for streptococcal pyrogenic exotoxin A and B in both isolates. With the increase in invasive streptococcal infections in the community, serious perinatal infections may become more frequent.

  19. Studying aerococci impact on colonization of intestinal mucous membrane with vibrions and ability to destroy staphilococus toxin

    Directory of Open Access Journals (Sweden)

    Stepanskyi D.О.

    2015-11-01

    Full Text Available One of the promising methods of prevention and treatment of intestinal infections is the use of probiotics. A series of experiments was carried out to study the protective effect of A. viridans vibrio in experimental vibroinfection and the introduction of staphylococcus toxin. In the intestine of animals receiving aerococcus competitive colonization takes place. Results of experiments on colonization in experimental animals which survived without signs of NAG infection showed that vibrios in the intestinal wall were almost absent, but a large number of aerococcus was found (2,5±0,2 *105. In cases of infectious process development, but in a mild form, aerococci prevailed over vibrios: (2,7±0,6 *104, and (2,0±0.2 *103 respectively. Aerococci injected subcutaneously can maintain livelihoods for several hours, destroying totally or partially introduced staphylococcus exotoxin, reducing the strength of its lethal activity

  20. Liquiritigenin prevents Staphylococcus aureus-mediated lung cell injury via inhibiting the production of α-hemolysin.

    Science.gov (United States)

    Dai, Xiao-Han; Li, Hong-En; Lu, Chong-Jian; Wang, Jiang-Feng; Dong, Jing; Wei, Jing-Yuan; Zhang, Yu; Wang, Xin; Tan, Wei; Deng, Xu-Ming; Zhao, Shu-Hua; Zhang, Ming-Jun

    2013-01-01

    Staphylococcus aureus is a significant Gram-positive bacterium that is associated with a broad spectrum of diseases ranging from minor skin infections to lethal pneumonia, endocarditis, and toxinoses. α-Hemolysin is one of the most important exotoxins that contribute to the pathogenesis of S. aureus infections. Liquiritigenin is one of the most significant active components in licorice. In this study, hemolysis, western blot, and real-time reverse transcription-PCR assays were performed to investigate the impact of liquiritigenin on the production of S. aureus α-hemolysin. The results showed that low concentrations of liquiritigenin remarkably decreased S. aureus α-hemolysin production in a dose-dependent manner. Using live/dead cell staining and lactate dehydrogenase assays, we found that liquiritigenin could protect human lung cells (A549) from α-hemolysin-mediated injury. The data indicated that this compound could potentially be useful in developing drugs aiming at staphylococcal α-hemolysin.

  1. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2013-04-01

    Full Text Available Enterococcus faecalis is a Gram-positive commensal member of the gut microbiota of a wide range of organisms. With the advent of antibiotic therapy, it has emerged as a multidrug resistant, hospital-acquired pathogen. Highly virulent strains of E. faecalis express a pore-forming exotoxin, called cytolysin, which lyses both bacterial and eukaryotic cells in response to quorum signals. Originally described in the 1930s, the cytolysin is a member of a large class of lanthionine-containing bacteriocins produced by Gram-positive bacteria. While the cytolysin shares some core features with other lantibiotics, it possesses unique characteristics as well. The current understanding of cytolysin biosynthesis, structure/function relationships, and contribution to the biology of E. faecalis are reviewed, and opportunities for using emerging technologies to advance this understanding are discussed.

  2. Possible Role of Staphylococcal Enterotoxin B in the Pathogenesis of Autoimmune Diseases.

    Science.gov (United States)

    Li, Jing; Yang, Jie; Lu, Yu-wei; Wu, Song; Wang, Ming-rui; Zhu, Ji-min

    2015-09-01

    As a member of superantigens (SAgs) produced by Staphylococcus aureus, staphylococcal enterotoxin B (SEB) is a exotoxin superantigen that can regulate the activity of immunomodulatory and pro-inflammatory cell types. In addition, SEB plays a critical role in the pathogenesis of autoimmune disorders either by initiating the autoimmune process or by inducing a relapse in an individual in clinical remission from an autoimmune disorder. SEB can directly activate T lymphocytes, leading to the release of cytokines, superoxides, or other mediators of inflammation either directly or indirectly, because of its unique ability to cross-link human major histocompatibility complex (MHC) class II and T cell receptors (TCR), forming a trimolecular complex. This review discusses the potential effects of SEB in the pathogenesis of autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis, and explores some updated therapeutic medications to neutralize SEB.

  3. Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection

    Directory of Open Access Journals (Sweden)

    Tomoko Sumitomo

    2018-01-01

    Full Text Available Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB as a proteolytic factor that cleaves the extracellular domains of desmoglein 1 and 3. In an epicutaneous infection model, lesional skin infected with an speB deletion mutant were significantly smaller as compared to those caused by the wild-type strain. Furthermore, immunohistological analysis indicated cleavage of desmogleins that developed around the invasion site of the wild-type strain. In contrast, the speB mutant was preferentially found on the epidermis surface layer. Taken together, our findings provide evidence that SpeB-mediated degradation of desmosomes has a pathogenic role in development of S. pyogenes cutaneous infection.

  4. Invasive Group C Streptococcus infection associated with rhabdomyolysis and disseminated intravascular coagulation in a previously healthy adult.

    Science.gov (United States)

    Ojukwu, I C; Newton, D W; Luque, A E; Kotb, M Y; Menegus, M

    2001-01-01

    Infections with Group C Streptococci can lead to severe disease, particularly in individuals with underlying illnesses such as cardiovascular disease, malignancy or immunosuppression. We report the first case of rhabdomyolysis and disseminated intravascular coagulation secondary to Group C Streptococcus in a previous healthy male. A toxic shock-like syndrome associated with Group C and Group G Streptococci has been reported. However, unlike with Group A Streptococci, production of endotoxins by these organisms is less well defined. We tested the patient's isolate for its ability to produce superantigenic toxins and to induce a mitogenic response. Although it is not known whether Group C Streptococci require special growth conditions for the production of superantigens, we could not demonstrate either the production of exotoxins or the induction of a mitogenic response.

  5. Purification of alpha-toxin from Staphylococcus aureus and application to cell permeabilization

    Energy Technology Data Exchange (ETDEWEB)

    Lind, I.; Ahnert-Hilger, G.; Fuchs, G.; Gratzl, M.

    1987-07-01

    Crude alpha-toxin was produced by Staphylococcus aureus, strain Wood 46. The amount of exotoxin was monitored during growth and all subsequent purification steps by determination of its hemolytic activity against rabbit erythrocytes. The culture supernatant was treated with ammonium sulfate (75% saturation). The resulting precipitate was dialyzed and subjected to cation-exchange chromatography. The fractions containing the hemolytic activity were further purified by gel chromatography. The final product was enriched by a factor of 8.5 compared to the crude toxin. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified toxin exhibited one major band. It caused the release of /sup 86/Rb+ and ATP from rat insulinoma (RIN A2) as well as pheochromocytoma cells (PC12) in culture, indicating efficient permeabilization of their plasma membranes for small molecules.

  6. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Brogaard, Louise; Schou, Kirstine Klitgaard; Heegaard, Peter M. H.

    2015-01-01

    4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism......, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings...... mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Results: Host and pathogen responses...

  7. Retrograde trafficking of AB₅ toxins: mechanisms to therapeutics.

    Science.gov (United States)

    Mukhopadhyay, Somshuvra; Linstedt, Adam D

    2013-10-01

    Bacterial AB5 toxins are a clinically relevant class of exotoxins that include several well-known members such as Shiga, cholera, and pertussis toxins. Infections with toxin-producing bacteria cause devastating human diseases that affect millions of individuals each year and have no definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport pathway that avoids degradative late endosomes and lysosomes. Focusing on Shiga toxin as the archetype member, we review recent advances in understanding the molecular mechanisms involved in the retrograde trafficking of AB5 toxins and highlight how these basic science advances are leading to the development of a promising new therapeutic approach based on inhibiting toxin transport.

  8. Assessment of the toxic effect exerted by fluorescent pseudomonads on embryos and larvae of the sea urchin Strongylocentrotus nudus.

    Science.gov (United States)

    Beleneva, I A; Shamshurina, E V; Eliseikina, M G

    2015-05-01

    Strains of bacteria capable of growing on artificial culture media were isolated from the fouling of brass plates submerged in Nha Trang Bay, South China Sea, and from tissues of the seastar Distolasterias nipon, caught in Peter the Great Bay, Sea of Japan. According to the complex of data of genetic and physiological/biochemical analyzes, two strains of cultivated bacteria were identified by us as the species Pseudomonas aeruginosa, two strains as Pseudomonas fluorescens, and one strain as Ruegeria sp. It was shown that the cultivated strains of P. aeruginosa released exotoxins, particularly phenazine pigments, into the environment. Production of the toxins did not depend on presence of a target organism in the system and was aimed at regulation of interactions in the microbial community. The toxicity of the studied natural isolates of fluorescent pseudomonads was analyzed by using embryos and larvae of the sea urchin Strongylocentrotus nudus, which are the sensitive and dynamic toxicological sea-urchin embryo test (SET) system. As was established, exotoxins produced by the strains of P. aeruginosa inhibit activity of cilia in sea urchin larvae, as well as disturb processes of cell differentiation in embryos and larvae. Their toxic influence is accompanied by disturbances of protein synthesis and the disruptions of cytoskeleton in the course of zygote cleavage and larval development. Unlike P. aeruginosa, the strains of P. fluorescens and Ruegeria sp. did not exert the toxic effect on SET. The obtained data allow considering objects of the environment as the natural reservoir of opportunistic microorganisms posing a potential threat to human, whereas the use of SET for determination of toxicity of isolated bacteria provides an opportunity to study the mechanisms of their interactions with organisms in marine ecosystems. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [Drug susceptibility and analysis using pulsed-field gel electrophoresis of Streptococcus pyogenes strains isolated from the patients with streptococcal toxic shock syndrome (STSS) in Japan].

    Science.gov (United States)

    Okuno, Rumi; Endoh, Miyoko; Shimojima, Yukako; Yanagawa, Yoshitoki; Morozumi, Satoshi; Oonaka, Kenji; Furuhata, Katsunori; Fukuyama, Masafumi

    2005-04-01

    Previously, we have performed T typing of Streptococcus pyogenes strains isolated from patients with streptococcal toxic shock syndrome (STSS) in Japan, and streptococcal pyrogenic exotoxin (SPE) typing for epidemiological examination. In this study, we conducted a drug sensitivity test using these strains, and investigated the results of gene analysis by pulse-field gel electrophoresis (PFGE) of S. pyogenes strains derived from patients with STSS, the patient's family, and patients other than those with STSS. To clarify the relationship between the host and bacterial factors, we investigated the association between clinical symptoms and T typing of the isolated strains/production of streptococcal pyrogenic exotoxin. There were no strains resistant to beta-lactams, and only 1 strain was resistant to multiple agents other than beta-lactams. The PFGE pattern of T1 type strains was classified into 2 ; the pattern was consistent between the strains derived from patients with STSS and those derived from the patient's family. The PFGE pattern of T3 type strains was classified into 5 (IV) ; Pattern I, which was most frequently observed, was detected in both the strains derived from patients with STSS/non-STSS. However, Patterns II and III were detected only in the strains derived from patients with non-STSS. Patterns IV and V were detected only in the strains derived from patients with STSS. When examining the association between clinical symptoms and bacterial factors, disseminated intravascular coagulation (DIC) was associated with T1-SPE B-producing strains, and pharyngitis was associated with T3-SPE A-producing strains. In the future, the relationship between the host and bacterial factors should be further investigated.

  10. Strain-dependent induction of neutrophil histamine production and cell death by Pseudomonas aeruginosa

    Science.gov (United States)

    Xu, Xiang; Zhang, Hong; Song, Yuanlin; Lynch, Susan V.; Lowell, Clifford A.; Wiener-Kronish, Jeanine P.; Caughey, George H.

    2012-01-01

    Airway diseases often feature persistent neutrophilic inflammation and infection. In cystic fibrosis bronchitis, for example, Pseudomonas aeruginosa is isolated frequently. Previously, this laboratory revealed that neutrophils become major sources of histamine in mice with tracheobronchitis caused by the wall-less bacterium Mycoplasma pulmonis. To test the hypothesis that more-broadly pathogenic P. aeruginosa (which expresses cell wall-associated LPS and novel toxins) has similar effects, we incubated naïve mouse neutrophils with two strains of P. aeruginosa. Strain PAO1 greatly increased neutrophil histamine content and secretion, whereas strain PA103 depressed histamine production by killing neutrophils. The histamine-stimulating capacity of PAO1, but not PA103-mediated toxicity, persisted in heat-killed organisms. In PAO1-infected mice, lung and neutrophil histamine content increased. However, PAO1 did not alter production by mast cells (classical histamine reservoirs), which also resisted PA103 toxicity. To explore mechanisms of neutrophil-selective induction, we measured changes in mRNA encoding histidine decarboxylase (rate-limiting for histamine synthesis), probed involvement of endotoxin-TLR pathways in Myd88-deficient neutrophils, and examined contributions of pyocyanin and exotoxins. Results revealed that PAO1 increased histamine production by up-regulating histidine decarboxylase mRNA via pathways largely independent of TLR, pyocyanin, and type III secretion system exotoxins. PAO1 also increased histidine decarboxylase mRNA in neutrophils purified from infected lung. Stimulation required direct contact with neutrophils and was blocked by phagocytosis inhibitor cytochalasin D. In summary, Pseudomonas-augmented histamine production by neutrophils is strain-dependent in vitro and likely mediated by up-regulation of histidine decarboxylase. These findings raise the possibility that Pseudomonas-stimulated neutrophils can enhance airway inflammation by

  11. Adaptive Change Inferred from Genomic Population Analysis of the ST93 Epidemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Stinear, Timothy P.; Holt, Kathryn E.; Chua, Kyra; Stepnell, Justin; Tuck, Kellie L.; Coombs, Geoffrey; Harrison, Paul Francis; Seemann, Torsten; Howden, Benjamin P.

    2014-01-01

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has emerged as a major public health problem around the world. In Australia, ST93-IV[2B] is the dominant CA-MRSA clone and displays significantly greater virulence than other S. aureus. Here, we have examined the evolution of ST93 via genomic analysis of 12 MSSA and 44 MRSA ST93 isolates, collected from around Australia over a 17-year period. Comparative analysis revealed a core genome of 2.6 Mb, sharing greater than 99.7% nucleotide identity. The accessory genome was 0.45 Mb and comprised additional mobile DNA elements, harboring resistance to erythromycin, trimethoprim, and tetracycline. Phylogenetic inference revealed a molecular clock and suggested that a single clone of methicillin susceptible, Panton-Valentine leukocidin (PVL) positive, ST93 S. aureus likely spread from North Western Australia in the early 1970s, acquiring methicillin resistance at least twice in the mid 1990s. We also explored associations between genotype and important MRSA phenotypes including oxacillin MIC and production of exotoxins (α-hemolysin [Hla], δ-hemolysin [Hld], PSMα3, and PVL). High-level expression of Hla is a signature feature of ST93 and reduced expression in eight isolates was readily explained by mutations in the agr locus. However, subtle but significant decreases in Hld were also noted over time that coincided with decreasing oxacillin resistance and were independent of agr mutations. The evolution of ST93 S. aureus is thus associated with a reduction in both exotoxin expression and oxacillin MIC, suggesting MRSA ST93 isolates are under pressure for adaptive change. PMID:24482534

  12. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS.

    Directory of Open Access Journals (Sweden)

    Abdelali Daddaoua

    Full Text Available Homologs of the transcriptional regulator PtxS are omnipresent in Pseudomonas, whereas PtxR homologues are exclusively found in human pathogenic Pseudomonas species. In all Pseudomonas sp., PtxS with 2-ketogluconate is the regulator of the gluconate degradation pathway and controls expression from its own promoter and also from the P(gad and P(kgu for the catabolic operons. There is evidence that PtxS and PtxR play a central role in the regulation of exotoxin A expression, a relevant primary virulence factor of Pseudomonas aeruginosa. We show using DNaseI-footprint analysis that in P. aeruginosa PtxR binds to the -35 region of the P(toxA promoter in front of the exotoxin A gene, whereas PtxS does not bind to this promoter. Bioinformatic and DNaseI-footprint analysis identified a PtxR binding site in the P(kgu and P(gad promoters that overlaps the -35 region, while the PtxS operator site is located 50 bp downstream from the PtxR site. In vitro, PtxS recognises PtxR with nanomolar affinity, but this interaction does not occur in the presence of 2-ketogluconate, the specific effector of PtxS. DNAaseI footprint assays of P(kgu and P(gad promoters with PtxS and PtxR showed a strong region of hyper-reactivity between both regulator binding sites, indicative of DNA distortion when both proteins are bound; however in the presence of 2-ketogluconate no protection was observed. We conclude that PtxS modulates PtxR activity in response to 2-ketogluconate by complex formation in solution in the case of the P(toxA promoter, or via the formation of a DNA loop as in the regulation of gluconate catabolic genes. Data suggest two different mechanisms of control exerted by the same regulator.

  13. Possible role of superantigens in inducing autoimmunity in pemphigus patients.

    Science.gov (United States)

    Dar, Sajad A; Das, Shukla; Bhattacharya, Sambit N; Ramachandran, Vishnampettai G; Ahmed, Tanzeel; Banerjee, Basu Dev; Sonthalia, Sidharth; Sood, Vikas; Banerjea, Akhil C

    2011-10-01

    The diagnostic and pathological relevance of anti-desmoglein autoantibodies in common forms of pemphigus has been well established, and T cells have been shown to play a role in the onset and progression of these diseases. The role of superantigens in provoking polyclonal activation of T cells with many different fine specificities, possibly including autoreactive T cells and T-cell mediated autoantibody response, is unknown. Further, abnormal T-cell function may lead to opportunistic infections particularly with Candida. The response of T cells of pemphigus patients to recall antigens of these opportunists is not clear. The aim of this study was to investigate the in vitro response of T lymphocytes from pemphigus patients to common bacterial superantigens such as streptococcal pyrogenic exotoxin A and staphylococcal enterotoxin B, and recall antigens such as Candida antigen. Changes in CD3(+) CD4(+) and CD3(+) CD8(+) T-cell sub-populations and expression of naive/memory markers (CD45RA(+) /RO(+)) on different T cells were analyzed by flow cytometry. Significant elevation in CD3(+) CD4(+) and expression of the memory (CD45RO(+)) markers on these cells was observed both in pemphigus vulgaris and pemphigus foliaceus patients, as compared to healthy controls, upon stimulation with streptococcal pyrogenic exotoxin A and staphylococcal enterotoxin B. However, only memory T cells (CD45RO(+)) were significantly increased upon Candida antigen stimulation. Our study suggests that CD4(+) memory T lymphocytes may modulate the pathogenic autoantibody response in pemphigus patients, and also emphasizes the possibility that the superantigen-reactive T cells participate in the triggering of autoimmunity in pemphigus. © 2011 Japanese Dermatological Association.

  14. Characterization of Mexican Bacillus thuringiensis strains toxic for lepidopteran and coleopteran larvae.

    Science.gov (United States)

    Tamez-Guerra, Patricia; Iracheta, Maria M; Pereyra-Alférez, Benito; Galán-Wong, Luis J; Gomez-Flores, Ricardo; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2004-01-01

    Bacillus thuringiensis strains C-4, C-9, GM-7, and GM-10, isolated from northeast Mexico and selected for their high toxicity against lepidopteran and coleopteran pests, were characterized following United States Environmental Protection Agency (EPA)'s guidelines. Flagellar serotyping revealed that GM-7 and GM-10 belonged to serotype aizawai, whereas C-4, C-9 corresponded to the kumamotoensis serotype. GM-10 and C-9 were also shown to be the most effective against lepidoptera and coleoptera larvae, respectively. None of the tested strains produced beta-exotoxin or showed activity against mosquitoes. GM-7 and GM-10 were sensitive to R-41 and CP-51 phages. All strains synthesized crystal proteins of 130-140 kDa. PCR analysis showed that C-4, GM-7, and GM-10 strains expressed cry1 genes, and C-9 expressed cry3 and cry7/8 genes, but not cry1. However, the C-9 strain had no cross-reaction with antisera raised against Cry3A and Cry7A proteins. GM-7 and GM-10 were sensitive to R-41 and CP-51 phages. When the delta-endotoxin (crystal) from the four strains was subcutaneously injected to Balb/c mice, alone or in combination with spores, only C-4 and C-9 provoked tissue necrosis similar to that caused by the beta-exotoxin producer HD-41. Tissue necrosis was prevented with the injection of pentoxifylline, an inhibitor of tumor necrosis factor alpha (TNF-alpha) production, suggesting a role of this cytokine in the observed effect. Our results demonstrated that GM-7 and GM-10 strains are effective and suitable for control of lepidopteran pests and safe for mammals under EPA regulations. The potential of the C-9 strain for the control of several coleopteran pests, and the induction of tissue necrosis in mice by C-4 and C-9 strains, are discussed.

  15. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.

    Science.gov (United States)

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R; Foster, Timothy J; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-11-01

    Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The

  16. A Phase I study of an intravesically administered immunotoxin targeting EpCAM for the treatment of nonmuscle-invasive bladder cancer in BCG-refractory and BCG-intolerant patients

    Directory of Open Access Journals (Sweden)

    Mark Kowalski

    2010-11-01

    Full Text Available Mark Kowalski1, Joycelyn Entwistle2, Jeannick Cizeau2, Demi Niforos1, Shauna Loewen2, Wendy Chapman1, Glen C MacDonald21Viventia Biotechnologies Inc., Mississauga, ON, Canada; 2Viventia Biotechnologies Inc., Winnipeg, MB, CanadaPurpose: A Phase I dose-escalation study was performed to determine the maximum tolerated dose (MTD of the immunotoxin VB4-845 in patients with nonmuscle-invasive bladder cancer (NMIBC refractory to or intolerant of bacillus Calmette–Guerin (BCG. Secondary objectives included evaluation of the safety, tolerability, pharmacokinetics, immunogenicity, and efficacy of VB4-845.Patients and methods: Sixty-four patients with Grade 2 or 3, stage Ta or T1 transitional cell carcinoma or in situ carcinoma, either refractory to or intolerant of BCG therapy, were enrolled. Treatment was administered in ascending dose cohorts ranging from 0.1 to 30.16 mg. After receiving weekly instillations of VB4-845 to the bladder via catheter for 6 consecutive weeks, patients were followed for 4–6 weeks post-therapy and assessed at week 12.Results: An MTD was not determined, as a dose-limiting toxicity was not identified over the dose range tested. VB4-845 therapy was safe and well tolerated with most adverse events reported as mild; as a result, no patients were removed from the study in response to toxicity. By the end of the study, the majority of patients had developed antibodies to the exotoxin portion of VB4-845. A complete response was achieved in 39% of patients at the 12-week time point.Conclusions: VB4-845 dosed on a weekly basis for 6 weeks was very well tolerated at all dose levels. Although an MTD was not determined at the doses administered, VB4-845 showed evidence of an antitumor effect that warrants further clinical investigation for the treatment of NMIBC in this patient population.Keywords: Pseudomonas exotoxin A, anti-EpCAM, fusion protein, targeted therapy

  17. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    Directory of Open Access Journals (Sweden)

    Srikanth Mairpady Shambat

    2015-11-01

    Full Text Available Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL, and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a

  18. In silico characterization of the family of PARP-like poly(ADP-ribosyltransferases (pARTs

    Directory of Open Access Journals (Sweden)

    Dittmar Katharina

    2005-10-01

    Full Text Available Abstract Background ADP-ribosylation is an enzyme-catalyzed posttranslational protein modification in which mono(ADP-ribosyltransferases (mARTs and poly(ADP-ribosyltransferases (pARTs transfer the ADP-ribose moiety from NAD onto specific amino acid side chains and/or ADP-ribose units on target proteins. Results Using a combination of database search tools we identified the genes encoding recognizable pART domains in the public genome databases. In humans, the pART family encompasses 17 members. For 16 of these genes, an orthologue exists also in the mouse, rat, and pufferfish. Based on the degree of amino acid sequence similarity in the catalytic domain, conserved intron positions, and fused protein domains, pARTs can be divided into five major subgroups. All six members of groups 1 and 2 contain the H-Y-E trias of amino acid residues found also in the active sites of Diphtheria toxin and Pseudomonas exotoxin A, while the eleven members of groups 3 – 5 carry variations of this motif. The pART catalytic domain is found associated in Lego-like fashion with a variety of domains, including nucleic acid-binding, protein-protein interaction, and ubiquitylation domains. Some of these domain associations appear to be very ancient since they are observed also in insects, fungi, amoebae, and plants. The recently completed genome of the pufferfish T. nigroviridis contains recognizable orthologues for all pARTs except for pART7. The nearly completed albeit still fragmentary chicken genome contains recognizable orthologues for twelve pARTs. Simpler eucaryotes generally contain fewer pARTs: two in the fly D. melanogaster, three each in the mosquito A. gambiae, the nematode C. elegans, and the ascomycete microfungus G. zeae, six in the amoeba E. histolytica, nine in the slime mold D. discoideum, and ten in the cress plant A. thaliana. GenBank contains two pART homologues from the large double stranded DNA viruses Chilo iridescent virus and Bacteriophage Aeh1

  19. New Type of Exfoliatin Obtained from Staphylococcal Strains, Belonging to Phage Groups Other than Group II, Isolated from Patients with Impetigo and Ritter's Disease

    Science.gov (United States)

    Kondo, Isamu; Sakurai, Susumu; Sarai, Yasunaga

    1974-01-01

    Four strains of Staphylococcus aureus of a phage type other than the second group, isolated from patients with impetigo and Ritter's disease, were found to produce an exotoxin similar to those reported by Melish et al. (1972), Kapral and Miller (1971), and Arbuthnott et al. (1973). This toxin could elicit a general exfoliation of the epidermis with the so-called Nikolsky sign when subcutaneously inoculated into neonatal mice within 4 days after birth. The new toxin was serologically different from exfoliatin produced by the phage group II staphylococci previously reported (Kondo et al., 1973) and showed an electrophoretic pattern corresponding to that of the B-type toxin of the latter in acrylamide disc electrophoresis. It had the same molecular weight as that of the latter, which was estimated to be about 24,000. It was thermolabile and lost its toxic activity by heating at 60 C for 30 min; in addition, most of the toxicity was lost within 1 month of storage even at −30 C. We propose to designate the old typical heat-stable exfoliatin as S. aureus exfoliatin A and the new heat-susceptible exfoliatin as S. aureus exfoliatin B. Images PMID:4139120

  20. Efficiency of immunotoxin cytotoxicity is modulated by the intracellular itinerary.

    Directory of Open Access Journals (Sweden)

    Lori L Tortorella

    Full Text Available Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(F(v-PE38, are proposed to traffic to the trans-Golgi network (TGN and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity - presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.

  1. BOTULINUM TOXIN

    Science.gov (United States)

    Nigam, P K; Nigam, Anjana

    2010-01-01

    Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C1, C2, D, E, F and G). All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice. PMID:20418969

  2. An evidence-based review of botulinum toxin (Botox) applications in non-cosmetic head and neck conditions

    Science.gov (United States)

    Persaud, Ricardo; Garas, George; Silva, Sanjeev; Stamatoglou, Constantine; Chatrath, Paul; Patel, Kalpesh

    2013-01-01

    Botulinum toxin (Botox) is an exotoxin produced from Clostridium botulinum. It works by blocking the release of acetylcholine from the cholinergic nerve end plates leading to inactivity of the muscles or glands innervated. Botox is best known for its beneficial role in facial aesthetics but recent literature has highlighted its usage in multiple non-cosmetic medical and surgical conditions. This article reviews the current evidence pertaining to Botox use in the head and neck. A literature review was conducted using The Cochrane Controlled Trials Register, Medline and EMBASE databases limited to English Language articles published from 1980 to 2012. The findings suggest that there is level 1 evidence supporting the efficacy of Botox in the treatment of spasmodic dysphonia, essential voice tremor, headache, cervical dystonia, masticatory myalgia, sialorrhoea, temporomandibular joint disorders, bruxism, blepharospasm, hemifacial spasm and rhinitis. For chronic neck pain there is level 1 evidence to show that Botox is ineffective. Level 2 evidence exists for vocal tics, trigeminal neuralgia, dysphagia and post-laryngectomy oesophageal speech. For stuttering, ‘first bite syndrome’, facial nerve paresis, Frey's syndrome, oromandibular dystonia and palatal/stapedial myoclonus the evidence is level 4. Thus, the literature highlights a therapeutic role for Botox in a wide range of non-cosmetic conditions pertaining to the head and neck (mainly level 1 evidence). With ongoing research, the spectrum of clinical applications and number of people receiving Botox will no doubt increase. Botox appears to justify its title as ‘the poison that heals’. PMID:23476731

  3. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  4. Impact of psm-mec in Methicillin-Resistant Staphylococcus aureus (ST764) Strains Isolated from Keratitis Patients.

    Science.gov (United States)

    Suzuki, Takashi; Yamamoto, Toshihiro; Kaito, Chikara; Miyamoto, Hitoshi; Ohashi, Yuichi

    2016-10-01

    Staphylococcus aureus is a predominant pathogen in keratitis, and the rate of methicillin-resistant S. aureus (MRSA) is increasing. In our previous study, genotypes of MRSA isolates from keratitis cases were classified into ST5 or ST764 lineage by multi-locus sequence typing. In this study, we examined the virulence properties of these MRSA keratitis isolates and its virulence determinants. There was no difference in the prevalence of virulence genes, such as adhesion and toxins, between ST5 and ST764 isolates. All ST5 isolates carried the intact psm-mec gene, which suppresses exotoxin production and colony spreading, but promotes biofilm formation. In contrast, all ST764 isolates had one point mutation in the psm-mec gene. Biofilm production in ST5 isolates was significantly higher than that in ST764 isolates, whereas colony spreading, hemolytic activity, and production of alpha-phenol-soluble modulins were higher in ST764 than in ST5 isolates. The toxicity of ST764 supernatants to corneal epithelial cells was higher than that of ST5 supernatants. These results suggest that the point mutation in the psm-mec gene contributes to the difference in virulence properties between ST5 and ST764 isolates in MRSA keratitis.

  5. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J. (Medical College of Wisconsin, Milwaukee (USA))

    1989-11-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from (3H-nicotinamide)NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from (32P-adenylate)NAD (0.2 mol/mol of protein). Label from (3H-nicotinamide)NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with (3H-nicotinamide)NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis.

  6. Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor.

    Directory of Open Access Journals (Sweden)

    Kerstin Y Beste

    Full Text Available Guanylyl cyclases (GCs regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs and a nitric oxide-activated soluble GC (sGC. Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF from Bacillus anthracis possess nucleotidyl cyclase (NC activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.

  7. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections. Published by Elsevier Inc.

  8. Detecting the dormant: a review of recent advances in molecular techniques for assessing the viability of bacterial endospores.

    Science.gov (United States)

    Mohapatra, Bidyut R; La Duc, Myron T

    2013-09-01

    Due to their contribution to gastrointestinal and pulmonary disease, their ability to produce various deadly exotoxins, and their resistance to extreme temperature, pressure, radiation, and common chemical disinfecting agents, bacterial endospores of the Firmicutes phylum are a major concern for public and environmental health. In addition, the hardy and dormant nature of endospores renders them a particularly significant threat to the integrity of robotic extraterrestrial life-detection investigations. To prevent the contamination of critical surfaces with seemingly ubiquitous bacterial endospores, clean rooms maintained at exceedingly stringent cleanliness levels (i.e., fewer than 100,000 airborne particles per ft(3)) are used for surgical procedures, pharmaceutical processing and packaging, and fabrication and assembly of medical devices and spacecraft components. However, numerous spore-forming bacterial species have been reported to withstand typical clean room bioreduction strategies (e.g., UV lights, maintained humidity, paucity of available nutrients), which highlights the need for rapid and reliable molecular methods for detecting, enumerating, and monitoring the incidence of viable endospores. Robust means of evaluating and tracking spore burden not only provide much needed information pertaining to endospore ecophysiology in different environmental niches but also empower decontamination and bioreduction strategies aimed at sustaining the reliability and integrity of clean room environments. An overview of recent molecular advances in detecting and enumerating viable endospores, as well as the expanding phylogenetic diversity of pathogenic and clean room-associated spore-forming bacteria, ensues.

  9. Right in Front of Our Eyes: Evolution of Streptococcal Toxic Shock Syndrome with Ischemic Optic Neuropathy.

    Science.gov (United States)

    Elhamamsy, Salaheldin M; Al-Qadi, Mazen O; Minami, Taro; Neill, Marguerite

    2016-12-01

    Toxic shock syndrome occurs from dysregulation of host inflammatory responses. Toxin- producing strains of Group A streptococcus cause TSS. Ischemic optic neuropathy rarely complicates septic shock. We present a rare case of streptococcal pharyngitis complicated by septic arthritis and TSS with reversible blindness due to non-arteritic ischemic optic neuropathy. A 28-year-old man drove to our ED with exudative pharyngitis. A rapid streptococcal test was positive. While awaiting oral penicillin he became hypotensive refractory to IV fluids and developed knee effusion. The patient noted progressive dimming of his vision. Arthrocentesis yielded GAS. ICU course was complicated by ARDS but after 2 weeks the patient was weaned off vasopressors and the ventilator. He regained his vision and had no neurological sequelae. The patient's GAS isolate was M protein gene (emm) type 1 and T type 1. He was followed in the IM clinic for 9 months post discharge with complete resolution of symptoms. The rapidity of the development of shock is attributed to streptococcal exotoxins acting as superantigens. GAS type M1 is commonly associated with severe shock in TSS. The severe shock was the likely cause of his ischemic optic neuropathy. Early recognition and aggressive management of TSS are crucial to clinical outcome. [Full article available at http://rimed.org/rimedicaljournal-2016-12.asp].

  10. A Galactose-Binding Lectin Isolated from Aplysia kurodai (Sea Hare Eggs Inhibits Streptolysin-Induced Hemolysis

    Directory of Open Access Journals (Sweden)

    Imtiaj Hasan

    2014-09-01

    Full Text Available A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO, an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA, T-antigen (PNA, and Tn-antigen (ABA agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL and a mushroom (ABA, but was promoted by a plant lectin (ECA. Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.

  11. Toxina botulínica y su empleo en la patología oral y maxilofacial Botulinum toxin and its use in oral and maxillofacial pathology

    Directory of Open Access Journals (Sweden)

    D. Martínez-Pérez

    2004-06-01

    Full Text Available Resumen: Las toxinas botulínicas son exotoxinas de la bacteria formadora de esporas Clostridim botulinum y los agentes causantes del botulismo. Cuando se inyecta en el músculo produce una parálisis flácida. El efecto clínico está directamente relacionado con la dosis y debe ajustarse para cada caso concreto. La Toxina botulínica ha demostrado en los más de veinte años en que se está utilizando que es un fármaco seguro. Las indicaciones de la toxina botulínica en la actualidad incluyen todas aquellas patologías que resultan de la hiperfunción muscular y la disfunción autonómica.Abstract: Botilinum toxins are exotoxins of the bacteria that form the Clostridium botulinum spores and the causative agents of botulism. When injected into the muscle flaccid paralysis is produced. The clinical effect is directly related with the dose and is should be adjusted for each particular case. over the last twenty years that it has been in use, the botulinum toxin has shown itself to be a reliable drug. Current indications for the use of botulinum toxin include all those pathologies which are the results of muscle hyperfunction and autonomic dysfunction.

  12. Staphylococcal scalded skin syndrome: diagnosis and management in children and adults.

    Science.gov (United States)

    Handler, M Z; Schwartz, R A

    2014-11-01

    Staphylococcal scalded skin syndrome is a potentially life-threatening disorder caused most often by a phage group II Staphylococcus aureus infection. Staphylococcal scalded skin syndrome is more common in newborns than in adults. Staphylococcal scalded skin syndrome tends to appear abruptly with diffuse erythema and fever. The diagnosis can be confirmed by a skin biopsy specimen, which can be expedited by frozen section processing, as staphylococcal scalded skin syndrome should be distinguished from life threatening toxic epidermal necrolysis. Histologically, the superficial epidermis is detached, the separation level being at the granular layer. The diffuse skin loss is due to a circulating bacterial exotoxin. The aetiological exfoliating toxin is a serine protease that splits only desmoglein 1. The exfoliative toxins are spread haematogenously from a localized source of infection, causing widespread epidermal damage at distant sites. Sepsis and pneumonia are the most feared complications. The purpose of this review is to summarize advances in understanding of this serious disorder and provide therapeutic options for both paediatric and adult patients. Recent epidemiological studies have demonstrated that paediatric patients have an increased incidence of Staphylococcal scalded skin syndrome during the summer and autumn. Mortality is less than 10% in children, but is between 40% and 63% in adults, despite antibacterial therapy. Previously, intravenous immunoglobulin had been recommended to combat Staphylococcal scalded skin syndrome, but a recent study associates its use with prolonged hospitalization. © 2014 European Academy of Dermatology and Venereology.

  13. Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro.

    Science.gov (United States)

    Shahverdi, A R; Monsef-Esfahani, H R; Tavasoli, F; Zaheri, A; Mirjani, R

    2007-01-01

    Therapy with antimicrobial drugs, such as clindamycin, that perturb the intestinal flora but fail to inhibit growth of other microorganisms can permit the proliferation of Clostridium difficile and the elaboration of exotoxin. Therefore, there has been increasing interest in the use of inhibitors of antibiotic resistance for use in combination therapy. The essential oil of Cinnamomum zeylanicum bark enhanced the bactericidal activity of clindamycin and decreased the minimum inhibitory concentration of clindamycin required for a toxicogenic strain of C. difficile. Thin-layer chromatography (TLC) analysis of the essential oil separated a fraction (R(f) = 0.54) that was the most effective at enhancing the clindamycin antimicrobial activity. Using gas liquid chromatography and known standards, the active fraction was identified as trans-cinnamaldehyde (3-phenyl-2-Propenal). Combinations of clindamycin and trans-cinnamaldehyde were tested to determine the fractional inhibitory concentration (FIC) index by conventional checkerboard titration. The FIC index for C. difficile was found to be 0.312, which confirmed the synergistic actions of clindamycin and trans-cinnamaldehyde. The presence of 20 microg/mL of trans-cinnamaldehyde decreased the MIC of clindamycin for C. difficile 16-fold, from 4.0 to 0.25 microg/mL. These results signify that low concentrations of trans-cinnamaldehyde elevate the antimicrobial action of clindamycin, suggesting a possible clinical benefit for utilizing these natural products for combination therapy against C. difficile.

  14. Rho signaling pathway and apical constriction in the early lens placode.

    Science.gov (United States)

    Borges, Ricardo Moraes; Lamers, Marcelo Lazzaron; Forti, Fabio Luis; Santos, Marinilce Fagundes Dos; Yan, Chao Yun Irene

    2011-05-01

    Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase activity. Here we investigate apical constriction during chick lens placode invagination. Inhibition of actin polymerization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify if lens placode invaginate through apical constriction, we analyzed the role of Rho-ROCK pathway. Rho GTPases expression at the apical portion of the lens placode occurs with the same dynamics as that of the cytoskeleton. Overexpression of the pan-Rho inhibitor C3 exotoxin abolished invagination and had a strong effect on apical myosin II enrichment and a mild effect on apical actin localization. In contrast, pharmacological inhibition of ROCK activity interfered significantly with apical enrichment of both actin and myosin. These results suggest that apical constriction in lens invagination involves ROCK but apical concentration of actin and myosin are regulated through different pathways upstream of ROCK. genesis 49:368-379, 2011. 2011 Wiley-Liss, Inc.

  15. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines.

    Science.gov (United States)

    Xu, Tingting; Close, Dan M; Webb, James D; Price, Sarah L; Ripp, Steven A; Sayler, Gary S

    2013-05-29

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  16. Intranasal Rapamycin Rescues Mice from Staphylococcal Enterotoxin B-Induced Shock

    Directory of Open Access Journals (Sweden)

    Teresa Krakauer

    2012-09-01

    Full Text Available Staphylococcal enterotoxin B (SEB and related exotoxins produced by Staphylococcus aureus are potent activators of the immune system and cause toxic shock in humans. Currently there is no effective treatment except for the use of intravenous immunoglobulins administered shortly after SEB exposure. Intranasal SEB induces long-lasting lung injury which requires prolonged drug treatment. We investigated the effects of rapamycin, an immunosuppressive drug used to prevent graft rejection, by intranasal administration in a lethal mouse model of SEB-induced shock. The results show that intranasal rapamycin alone delivered as late as 17 h after SEB protected 100% of mice from lethal shock. Additionally, rapamycin diminished the weight loss and temperature fluctuations elicited by SEB. Intranasal rapamycin attenuated lung MCP-1, IL-2, IL-6, and IFNγ by 70%, 30%, 64%, and 68% respectively. Furthermore, short courses (three doses of rapamycin were sufficient to block SEB-induced shock. Intranasal rapamycin represents a novel use of an immunosuppressant targeting directly to site of toxin exposure, reducing dosages needed and allowing a wider therapeutic window.

  17. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Science.gov (United States)

    Kasper, Katherine J; Zeppa, Joseph J; Wakabayashi, Adrienne T; Xu, Stacey X; Mazzuca, Delfina M; Welch, Ian; Baroja, Miren L; Kotb, Malak; Cairns, Ewa; Cleary, P Patrick; Haeryfar, S M Mansour; McCormick, John K

    2014-05-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  18. A note on Aeromonas spp. from chickens as possible food-borne pathogens.

    Science.gov (United States)

    Kirov, S M; Anderson, M J; McMeekin, T A

    1990-04-01

    The possible role of Aeromonas spp. as potential food-borne psychrotrophic pathogens was investigated by examining organisms isolated from processed raw chicken for their biochemical characteristics, ability to produce exotoxins and to grow at chill temperatures. These strains, in particular A. sobria, with identical characteristics to human diarrhoea-associated aeromonads were readily found. Chicken, and human and environmental (water) strains characterized in a previous study, were investigated for their ability to grow at refrigeration temperatures (5 +/- 2 degrees C) and, for selected strains, the theoretical minimum temperature for growth (Tmin) was determined from the growth pattern in a temperature gradient incubator. All enterotoxigenic chicken strains tested were typical mesophiles, with an optimal growth temperature of approximately 37 degrees C and Tmin values approximately 4.5 degrees C. They were rapidly outgrown by a psychrotrophic Pseudomonas sp. typical of spoilage biota found on food. Enterotoxin was not produced below 15 degrees C by any of the toxigenic food strains tested. The Aeromonas strains isolated from chickens in this study seem unlikely therefore to be a significant health risk, provided the chickens are properly stored and cooked. This would appear to be substantiated by the lack of reports of food-associated outbreaks of illness from these sources.

  19. A survey of bacterial toxins involved in food poisoning: a suggestion for bacterial food poisoning toxin nomenclature.

    Science.gov (United States)

    Granum, P E; Tomas, J M; Alouf, J E

    1995-12-01

    There is at present no accepted nomenclature for bacterial protein toxins, although there have been several attempts at dividing them into groups by their mode of action. In this paper we will not try to describe all known bacterial protein toxins, but concentrate on the toxins involved in food poisoning. Although most of these toxins are enterotoxins (protein exotoxins with the site of action on the mucosal cells of the intestinal tract) there are also other toxins involved in food poisoning, like the neurotoxins. In Table 1 the most important food pathogens in Europe are listed. For most, but not all, of these food pathogens, toxins are virulence factors. Generally, we divide food poisoning into infections and intoxications, where Salmonella spp. and Shigella spp. are typical examples of infections and Clostridium botulinum and Staphylococcus aureus for intoxications. We consider it better to make four different groups of food pathogenic bacteria, according to Table 2. Today the first three groups are all defined as infections, although for both group 2 and 3 the bacterium itself does not harm the host directly. The bacterium in such locations is like an 'enterotoxin factory'. The bacteria belonging to group 3 do not even interact with the epithelial cells in the intestine, while the bacteria of group 2 must colonise the epithelial cells prior to enterotoxin production.

  20. Development of a dose assay for a Clostridium difficile vaccine using a tandem ion exchange high performance liquid chromatography method.

    Science.gov (United States)

    Wang, Feng; Ha, Sha; Rustandi, Richard R

    2017-05-19

    Clostridium difficile is a gram-positive intestine bacterium that causes a severe diarrhea and could eventually be lethal. The main virulence factor is related to the release of two major exotoxins, toxin A (TcdA) and toxin B (TcdB). Recent C. difficile-associated disease (CDAD) outbreaks have been caused by hypervirulent strains which secrete an additional binary toxin (CDTa/CDTb). Vaccination against these toxins is considered the best way to combat the CDAD. Recently, a novel tetravalent C. difficile vaccine candidate containing all four toxins produced from a baculovirus expression system has been developed. A dose assay to release this tetravalent C. difficile vaccine was developed using tandem ion-exchange HPLC chromatography. A sequential weak cation exchange (carboxyl group) and weak anion exchange (tertiary amine group) columns were employed. The four C. difficile vaccine antigen pIs range from 4.4 to 8.6. The final optimized separation employs salt gradient elution at two different pHs. The standard analytical parameters such as LOD, LOQ, linearity, accuracy, precision and repeatability were evaluated for this method and it was deemed acceptable as a quantitative assay for vaccine release. Furthermore, the developed method was utilized for monitoring the stability of the tetravalent C. difficile vaccine in final container. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Emergence of a novel lineage containing a prophage in emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK.

    Science.gov (United States)

    Al-Shahib, Ali; Underwood, Anthony; Afshar, Baharak; Turner, Claire E; Lamagni, Theresa; Sriskandan, Shiranee; Efstratiou, Androulla

    2016-06-01

    A sudden increase in invasive Group A Streptococcus (iGAS) infections associated with emm/M3 isolates during the winter of 2008/09 prompted the initiation of enhanced surveillance in England. In order to characterise the population of emm/M3 GAS within the UK and determine bacterial factors that might be responsible for this upsurge, 442 emm/M3 isolates from cases of invasive and non-invasive infections during the period 2001-2013 were subjected to whole genome sequencing. MLST analysis differentiated emm/M3 isolates into three sequence types (STs): ST15, ST315 and ST406. Analysis of the whole genome SNP-based phylogeny showed that the majority of isolates from the 2008-2009 upsurge period belonged to a distinct lineage characterized by the presence of a prophage carrying the speC exotoxin and spd1 DNAase genes but loss of two other prophages considered typical of the emm/M3 lineage. This lineage was significantly associated with the upsurge in iGAS cases and we postulate that the upsurge could be attributed in part to expansion of this novel prophage-containing lineage within the population. The study underlines the importance of prompt genomic analysis of changes in the GAS population, providing an advanced public health warning system for newly emergent, pathogenic strains.

  2. Generation of an artificial human B cell line test system using Transpo-mAbTM technology to evaluate the therapeutic efficacy of novel antigen-specific fusion proteins.

    Science.gov (United States)

    Klose, Diana; Woitok, Mira; Niesen, Judith; Beerli, Roger R; Grawunder, Ulf; Fischer, Rainer; Barth, Stefan; Fendel, Rolf; Nachreiner, Thomas

    2017-01-01

    The antigen-specific targeting of autoreactive B cells via their unique B cell receptors (BCRs) is a novel and promising alternative to the systemic suppression of humoral immunity. We generated and characterized cytolytic fusion proteins based on an existing immunotoxin comprising tetanus toxoid fragment C (TTC) as the targeting component and the modified Pseudomonas aeruginosa exotoxin A (ETA') as the cytotoxic component. The immunotoxin was reconfigured to replace ETA' with either the granzyme B mutant R201K or MAPTau as human effector domains. The novel cytolytic fusion proteins were characterized with a recombinant human lymphocytic cell line developed using Transpo-mAb™ technology. Genes encoding a chimeric TTC-reactive immunoglobulin G were successfully integrated into the genome of the precursor B cell line REH so that the cells could present TTC-reactive BCRs on their surface. These cells were used to investigate the specific cytotoxicity of GrB(R201K)-TTC and TTC-MAPTau, revealing that the serpin proteinase inhibitor 9-resistant granzyme B R201K mutant induced apoptosis specifically in the lymphocytic cell line. Our data confirm that antigen-based fusion proteins containing granzyme B (R201K) are suitable candidates for the depletion of autoreactive B cells.

  3. Epidemiology of Diphtheria in India, 1996-2016: Implications for Prevention and Control.

    Science.gov (United States)

    Murhekar, Manoj

    2017-08-01

    Diphtheria is an acute disease caused by exotoxin-producing Corynebacterium diphtheriae. Globally, diphtheria has been showing a declining trend due to effective childhood vaccination programs. A substantial proportion of global burden of diphtheria is contributed by India. Hospital-based surveillance studies as well as diphtheria outbreaks published in last 20 years (1996-2016) indicate that diphtheria cases are frequent among school-going children and adolescents. In some Indian states, Muslim children are affected more. As per the national level health surveys, coverage of three doses of diphtheria vaccine was 80% during 2015-2016. Information about coverage of diphtheria boosters is not routinely collected through these surveys, but is expected to be low. Few studies also indicate low diphtheria immunity among school-going children and adults. The strategies for prevention of diphtheria need to focus on improving coverage of primary and booster doses of diphtheria vaccines administered as a part of Universal Immunization Program as well as introducing diphtheria vaccine for school-going children.

  4. Group A streptococcal puerperal sepsis: initial characterization of virulence factors in association with clinical parameters.

    Science.gov (United States)

    Byrne, Janice L B; Aagaard-Tillery, Kjersti M; Johnson, Jason L; Wright, Larry J; Silver, Robert M

    2009-10-01

    Group A beta-hemolytic streptococcus (GAS) is an uncommon but potentially fatal source of postpartum infection. Pathogenesis in invasive GAS infections has been linked to bacterial virulence factors. In this study, we sought to provide an initial description of potential virulence factors in association with puerperal morbidity by virtue of specific M-protein type antigens. Women with confirmed GAS puerperal infection in the Salt Lake City region were prospectively identified over a 6-year interval (1991-1997). From this cohort, GAS isolates were analyzed with respect to M-serotype and presence of genes encoding the Streptococcal Pyogenic Exotoxins A and B (SPE-A and SPE-B). Bacterial isolates from 18 subjects with GAS puerperal infection underwent M-serotyping and PCR-based genotyping for the speA and speB genes. Among these, 8/18 subjects manifest criteria of severe disease. All 18 isolate strains expressed speB; 6/18 isolates expressed speA. Of the M-serotypes, 8/8 severe disease isolates expressed M-types 1 (N=3) or 28 (N=5). Pulse-field gel electrophoresis did not indicate an outbreak strain among similar isolates. We conclude that in this initial characterization, morbidity among women with GAS puerperal infection is associated with M-types 1 and 28, but not speB genotype.

  5. Different Types of Cell Death Induced by Enterotoxins

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Hong

    2010-08-01

    Full Text Available The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  6. Unraveling genomic and phenotypic nature of multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04 isolated from keratitis patient.

    Science.gov (United States)

    N, Murugan; J, Malathi; V, Umashankar; H N, Madhavan

    2016-12-01

    Multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04, obtained from a keratitis patient was found to exhibit resistance to betalactam (Penicillins, cephalosporins, including carbapenems, except aztreonam), aminoglycosides, quinolone group of drugs and susceptible to colistin. The complete genome sequencing of the ocular isolate to measure and ascertain the degree of multidrug resistance in VRFPA04 strain resulted in 6,818,030bp (6.8Mb) genome sizes, which happen to be the third largest genome available in the Genbank to date. Two chromosomally integrated class I integrons carrying blaVIM-2 carbapenemase gene, multiple secretory systems consisting of types I-VI and VIII proteins and ocular virulence factors exo-T, Y, U and exotoxin A, a gene that inhibits protein synthesis which could have caused corneal cell death and Phytohormone auxin biosynthetic protein were detected in the genome of VRFPA04 Genome. In addition, 58 Regions of Genomic Plasticity (RGPs) regions, multiple phage genomes, genomic islands, CRISPR genes and RND family efflux pumps, such as MexCD-OprJ and MexEF-OprN and its regulators, MexT and MexR, were unraveled in VRFPA04. Thus, the current study reveals the virulence factors and resistome nature of an ocular isolate P aeruginosa VRFPA04 genome. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Mannheimia haemolytica A2 secretes different proteases into the culture medium and in outer membrane vesicles.

    Science.gov (United States)

    Ramírez Rico, Gerardo; Martínez-Castillo, Moisés; González-Ruíz, Cynthia; Luna-Castro, Sarahí; de la Garza, Mireya

    2017-12-01

    Respiratory diseases in ruminants have a significantly negative impact on the worldwide economy. The bacterium Mannheimia haemolytica is involved in pneumonic infections in bovine and ovine. In gram-negative bacteria, six secretion systems related to the colonization process and host tissue damage have been reported. In addition, in the last two decades, the production of outer membrane vesicles has been studied as a different bacterial strategy to release virulence factors, such as exotoxins, lipopolysaccharides, and proteases. However, in M. haemolytica serotype A2, protease secretion and release in vesicles have not been reported as virulence mechanisms. The aim of this work was to identify proteases released into the culture supernatant and in vesicles of M. haemolytica A2. Our results showed evident differences in the molecular mass and activity of proteases present in culture supernatants and outer membrane vesicles based on zymography assays. The biochemical characterization of M. haemolytica proteases revealed that the main types were cysteine and metalloproteases. A specific metalloprotease of 100 kDa was active in the culture supernatants, but it was not active and was found in low quantities in vesicles. Proteases could be an important virulence factor during the infectious pneumonic process led by M. haemolytica. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Yersinia pestis requires the 2-component regulatory system OmpR-EnvZ to resist innate immunity during the early and late stages of plague.

    Science.gov (United States)

    Reboul, Angéline; Lemaître, Nadine; Titecat, Marie; Merchez, Maud; Deloison, Gaspard; Ricard, Isabelle; Pradel, Elizabeth; Marceau, Michaël; Sebbane, Florent

    2014-11-01

    Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Staphylococcal α-hemolysin is neurotoxic and causes lysis of brain cells in vivo and in vitro.

    Science.gov (United States)

    Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Tønjum, Tone; Mæhlen, Jan; Antal, Ellen-Ann; Hassel, Bjørnar

    2015-05-01

    Formation of a bacterial brain abscess entails loss of brain cells and formation of pus. The mechanisms behind the cell loss are not fully understood. Staphylococcus aureus, a common cause of brain abscesses, produces various exotoxins, including α-hemolysin, which is an important factor in brain abscess formation. α-Hemolysin may cause cytolysis by forming pores in the plasma membrane of various eukaryotic cells. However, whether α-hemolysin causes lysis of brain cells is not known. Nor is it known whether α-hemolysin in the brain causes cell death through pore formation or by acting as a chemoattractant, recruiting leukocytes and causing inflammation. Here we show that α-hemolysin injected into rat brain causes cell damage and edema formation within 30 min. Cell damage was accompanied by an increase in extracellular concentrations of zinc, GABA, glutamate, and other amino acids, indicating plasma membrane damage, but leukocytic infiltration was not seen 0.5-12h after α-hemolysin injection. This was in contrast to injection of S. aureus, which triggered extensive infiltration with neutrophils within 8h. In vitro, α-hemolysin caused concentration-dependent lysis of isolated nerve endings and cultured astrocytes. We conclude that α-hemolysin contributes to the cell death inherent in staphylococcal brain abscess formation as a pore-forming neurotoxin. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions.

    Directory of Open Access Journals (Sweden)

    Mara Baldry

    Full Text Available Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization.

  11. Local Epidermal Growth Factor Receptor Signaling Mediates the Systemic Pathogenic Effects of Staphylococcus aureus Toxic Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Laura M Breshears

    Full Text Available Secreted factors of Staphylococcus aureus can activate host signaling from the epidermal growth factor receptor (EGFR. The superantigen toxic shock syndrome toxin-1 (TSST-1 contributes to mucosal cytokine production through a disintegrin and metalloproteinase (ADAM-mediated shedding of EGFR ligands and subsequent EGFR activation. The secreted hemolysin, α-toxin, can also induce EGFR signaling and directly interacts with ADAM10, a sheddase of EGFR ligands. The current work explores the role of EGFR signaling in menstrual toxic shock syndrome (mTSS, a disease mediated by TSST-1. The data presented show that TSST-1 and α-toxin induce ADAM- and EGFR-dependent cytokine production from human vaginal epithelial cells. TSST-1 and α-toxin also induce cytokine production from an ex vivo porcine vaginal mucosa (PVM model. EGFR signaling is responsible for the majority of IL-8 production from PVM in response to secreted toxins and live S. aureus. Finally, data are presented demonstrating that inhibition of EGFR signaling with the EGFR-specific tyrosine kinase inhibitor AG1478 significantly increases survival in a rabbit model of mTSS. These data indicate that EGFR signaling is critical for progression of an S. aureus exotoxin-mediated disease and may represent an attractive host target for therapeutics.

  12. The therapeutic usage of botulinum toxin (Botox in non-cosmetic head and neck conditions – An evidence based review

    Directory of Open Access Journals (Sweden)

    Kamran Habib Awan

    2017-01-01

    Full Text Available Botulinum toxin (Botox is an exotoxin produced from Clostridium botulinum. It blocks the release of acetylcholine from the cholinergic nerve end plates resulting in inactivity of the muscles or glands innervated. The efficacy of Botox in facial aesthetics is well established; however, recent literature has highlighted its utilization in multiple non-cosmetic medical and surgical conditions. The present article reviews the current evidence pertaining to Botox use in the non-cosmetic head and neck conditions. A literature search was conducted using MEDLINE, EMBASE, ISI Web of Science and the Cochrane databases limited to English Language articles published from January 1980 to December 2014. The findings showed that there is level 1 evidence supporting the efficacy of Botox in the treatment of laryngeal dystonia, headache, cervical dystonia, masticatory myalgia, sialorrhoea, temporomandibular joint disorders, bruxism, blepharospasm, hemifacial spasm and rhinitis. For chronic neck pain there is level 1 evidence to show that Botox is ineffective. Level 2 evidence exists for vocal tics and trigeminal. For stuttering, facial nerve paresis, Frey’s syndrome and oromandibular dystonia the evidence is level 4. Thus, there is compelling evidence in the published literature to demonstrate the beneficial role of Botox in a wide range of non-cosmetic conditions pertaining to the head and neck (mainly level 1 evidence. With more and more research, the range of clinical applications and number of individuals getting Botox will doubtlessly increase. Botox appears to justify its title as ‘the poison that heals’.

  13. Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins.

    Science.gov (United States)

    Bestebroer, Jovanka; van Kessel, Kok P M; Azouagh, Hafida; Walenkamp, Annemiek M; Boer, Ingrid G J; Romijn, Roland A; van Strijp, Jos A G; de Haas, Carla J C

    2009-01-08

    Staphylococcus aureus secretes several virulence factors modulating immune responses. Staphylococcal superantigen-like (SSL) proteins are a family of 14 exotoxins with homology to superantigens, but with generally unknown function. Recently, we showed that SSL5 binds to P-selectin glycoprotein ligand 1 dependently of sialyl Lewis X and inhibits P-selectin-dependent neutrophil rolling. Here, we show that SSL5 potently and specifically inhibits leukocyte activation by anaphylatoxins and all classes of chemokines. SSL5 inhibited calcium mobilization, actin polymerization, and chemotaxis induced by chemokines and anaphylatoxins but not by other chemoattractants. Antibody competition experiments showed that SSL5 targets several chemokine and anaphylatoxin receptors. In addition, transfection studies showed that SSL5 binds glycosylated N-termini of all G protein-coupled receptors (GPCRs) but only inhibits stimuli of protein nature that require the receptor N-terminus for activation. Furthermore, SSL5 increased binding of chemokines to cells independent of chemokine receptors through their common glycosaminoglycan-binding site. Importance of glycans was shown for both GPCR and chemokine binding. Thus, SSL5 is an important immunomodulatory protein of S aureus that targets several crucial, initial stages of leukocyte extravasation. It is therefore a potential new antiinflammatory compound for diseases associated with chemoattractants and their receptors and disorders characterized by excessive recruitment of leukocytes.

  14. Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway.

    Science.gov (United States)

    McEwan, Deborah L; Feinbaum, Rhonda L; Stroustrup, Nicholas; Haas, Wilhelm; Conery, Annie L; Anselmo, Anthony; Sadreyev, Ruslan; Ausubel, Frederick M

    2016-12-07

    Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.

  15. Programmed cellular necrosis mediated by the pore-forming alpha-toxin from Clostridium septicum.

    Directory of Open Access Journals (Sweden)

    Catherine L Kennedy

    2009-07-01

    Full Text Available Programmed necrosis is a mechanism of cell death that has been described for neuronal excitotoxicity and ischemia/reperfusion injury, but has not been extensively studied in the context of exposure to bacterial exotoxins. The alpha-toxin of Clostridium septicum is a beta-barrel pore-forming toxin and a potent cytotoxin; however, the mechanism by which it induces cell death has not been elucidated in detail. We report that alpha-toxin formed Ca(2+-permeable pores in murine myoblast cells, leading to an increase in intracellular Ca(2+ levels. This Ca(2+ influx did not induce apoptosis, as has been described for other small pore-forming toxins, but a cascade of events consistent with programmed necrosis. Ca(2+ influx was associated with calpain activation and release of cathepsins from lysosomes. We also observed deregulation of mitochondrial activity, leading to increased ROS levels, and dramatically reduced levels of ATP. Finally, the immunostimulatory histone binding protein HMGB1 was found to be released from the nuclei of alpha-toxin-treated cells. Collectively, these data show that alpha-toxin initiates a multifaceted necrotic cell death response that is consistent with its essential role in C. septicum-mediated myonecrosis and sepsis. We postulate that cellular intoxication with pore-forming toxins may be a major mechanism by which programmed necrosis is induced.

  16. Subversion of a Lysosomal Pathway Regulating Neutrophil Apoptosis by a Major Bacterial Toxin, Pyocyanin1

    Science.gov (United States)

    Prince, Lynne R.; Bianchi, Stephen M.; Vaughan, Kathryn M.; Bewley, Martin A.; Marriott, Helen M.; Walmsley, Sarah R.; Taylor, Graham W.; Buttle, David J.; Sabroe, Ian; Dockrell, David H.; Whyte, Moira K. B.

    2008-01-01

    Neutrophils undergo rapid constitutive apoptosis that is accelerated following bacterial ingestion as part of effective immunity, but is also accelerated by bacterial exotoxins as a mechanism of immune evasion. The paradigm of pathogen-driven neutrophil apoptosis is exemplified by the Pseudomonas aeruginosa toxic metabolite, pyocyanin. We previously showed pyocyanin dramatically accelerates neutrophil apoptosis both in vitro and in vivo, impairs host defenses, and favors bacterial persistence. Here, we investigated the mechanisms of pyocyanin-induced neutrophil apoptosis. Pyocyanin induced early lysosomal dysfunction, shown by altered lysosomal pH, within 15 mins of exposure. Lysosomal disruption was followed by mitochondrial membrane permeabilization, caspase activation and destabilization of Mcl-1. Pharmacological inhibitors of a lysosomal protease, cathepsin D (CTSD), abrogated pyocyanin-induced apoptosis and translocation of CTSD to the cytosol followed pyocyanin treatment and lysosomal disruption. A stable analogue of cyclic AMP (dbcAMP) impeded the translocation of CTSD and prevented the destabilization of Mcl-1 by pyocyanin. Thus pyocyanin activated a co-ordinated series of events dependent upon lysosomal dysfunction and protease release, the first description of a bacterial toxin utilising a lysosomal cell death pathway. This may be a pathological pathway of cell death to which neutrophils are particularly susceptible, and could be therapeutically targeted to limit neutrophil death and preserve host responses. PMID:18292577

  17. Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin.

    Science.gov (United States)

    Prince, Lynne R; Bianchi, Stephen M; Vaughan, Kathryn M; Bewley, Martin A; Marriott, Helen M; Walmsley, Sarah R; Taylor, Graham W; Buttle, David J; Sabroe, Ian; Dockrell, David H; Whyte, Moira K B

    2008-03-01

    Neutrophils undergo rapid constitutive apoptosis that is accelerated following bacterial ingestion as part of effective immunity, but is also accelerated by bacterial exotoxins as a mechanism of immune evasion. The paradigm of pathogen-driven neutrophil apoptosis is exemplified by the Pseudomonas aeruginosa toxic metabolite, pyocyanin. We previously showed pyocyanin dramatically accelerates neutrophil apoptosis both in vitro and in vivo, impairs host defenses, and favors bacterial persistence. In this study, we investigated the mechanisms of pyocyanin-induced neutrophil apoptosis. Pyocyanin induced early lysosomal dysfunction, shown by altered lysosomal pH, within 15 min of exposure. Lysosomal disruption was followed by mitochondrial membrane permeabilization, caspase activation, and destabilization of Mcl-1. Pharmacological inhibitors of a lysosomal protease, cathepsin D (CTSD), abrogated pyocyanin-induced apoptosis, and translocation of CTSD to the cytosol followed pyocyanin treatment and lysosomal disruption. A stable analog of cAMP (dibutyryl cAMP) impeded the translocation of CTSD and prevented the destabilization of Mcl-1 by pyocyanin. Thus, pyocyanin activated a coordinated series of events dependent upon lysosomal dysfunction and protease release, the first description of a bacterial toxin using a lysosomal cell death pathway. This may be a pathological pathway of cell death to which neutrophils are particularly susceptible, and could be therapeutically targeted to limit neutrophil death and preserve host responses.

  18. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2.

    Science.gov (United States)

    Hao, Yonghua; Kuang, Zhizhou; Walling, Brent E; Bhatia, Shikha; Sivaguru, Mayandi; Chen, Yin; Gaskins, H Rex; Lau, Gee W

    2012-03-01

    The redox-active exotoxin pyocyanin (PCN) can be recovered in 100 µM concentrations in the sputa of bronchiectasis patients chronically infected with Pseudomonas aeruginosa (PA). However, the importance of PCN within bronchiectatic airways colonized by PA remains unrecognized. Recently, we have shown that PCN is required for chronic PA lung infection in mice, and that chronic instillation of PCN induces goblet cell hyperplasia (GCH), pulmonary fibrosis, emphysema and influx of immune cells in mouse airways. Many of these pathological features are strikingly similar to the mouse airways devoid of functional FoxA2, a transcriptional repressor of GCH and mucus biosynthesis. In this study, we postulate that PCN causes and exacerbates GCH and mucus hypersecretion in bronchiectatic airways chronically infected by PA by inactivating FoxA2. We demonstrate that PCN represses the expression of FoxA2 in mouse airways and in bronchial epithelial cells cultured at an air-liquid interface or conventionally, resulting in GCH, increased MUC5B mucin gene expression and mucus hypersecretion. Immunohistochemical and inhibitor studies indicate that PCN upregulates the expression of Stat6 and EGFR, both of which in turn repress the expression of FoxA2. These studies demonstrate that PCN induces GCH and mucus hypersecretion by inactivating FoxA2. © 2011 Blackwell Publishing Ltd.

  19. Cells transformed by PLC-gamma 1 overexpression are highly sensitive to clostridium difficile toxin A-induced apoptosis and mitotic inhibition.

    Science.gov (United States)

    Nam, Hyo Jung; Kang, Jin Ku; Chang, Jong Soo; Lee, Min Soo; Nam, Seung Taek; Jung, Hyun Woo; Kim, Sung-Kuk; Ha, Eun-Mi; Seok, Heon; Son, Seung Woo; Park, Young Joo; Kim, Ho

    2012-01-01

    Phospholipase C-γl (PLC-γl) expression is associated with cellular transformation. Notably, PLC-gamma is up-regulated in colorectal cancer tissue and breast carcinoma. Because exotoxins released by Clostridium botulinum have been shown to induce apoptosis and promote growth arrest in various cancer cell lines, we examined here the potential of Clostridium difficile toxin A to selectively induce apoptosis in cells transformed by PLC-γl overexpression. We found that PLC-γl-transformed cells, but not vectortransformed (control) cells, were highly sensitive to C. difficile toxin A-induced apoptosis and mitotic inhibition. Moreover, expression of the proapoptotic Bcl2 family member, Bim, and activation of caspase-3 were significantly up-regulated by toxin A in PLC-γl-transformed cells. Toxin A-induced cell rounding and paxillin dephosphorylation were also significantly higher in PLC-γl-transformed cells than in control cells. These findings suggest that C. difficile toxin A may have potential as an anticancer agent against colorectal cancers and breast carcinomas in which PLC-γl is highly up-regulated.

  20. Nosocomial Staphylococcal Toxic Shock. Case Report

    Directory of Open Access Journals (Sweden)

    Arbune Manuela

    2016-07-01

    Full Text Available Staphylococcal toxic shock syndrome (STSS is a rare, potentially lethal infection, with a clinical picture of multiple organ dysfunction and shock. The etiology is Staphylococcus aureus exotoxin, while enterotoxins act as superantigens. Most cases are identified in women using a vaginal tampon. A 51-year-old female, with a past medical history of biliary dyskinesia, presented in the emergency room complaining of sudden onset of abdominal pain, vomiting, headache, myalgia, and chills. The initial diagnosis was biliary colic and was treated parenterally with Amoxi-clavulanate and fluid replacement. Initially, progress was unsatisfactory. Four days after admission she developed a systemic inflammatory syndrome, diffuse rash, jaundice, oliguria, confusion, persistent hypotension and biological evidence of thrombocytopenia, nitrogen retention, and cholestasis. She was admitted to the intensive care unit. A gluteal phlegmon induced after intramuscular injections was identified and surgically treated. Blood bacteriological cultures were negative, though MRSA was isolated in phlegmon pus. A diagnosis of STSS was based on CDC criteria.

  1. ETIOPATHOGENESIS OF DISEASES CAUSED BY CLOSTRIDIUM DIFFICILE

    Directory of Open Access Journals (Sweden)

    Predrag Stojanović

    2015-03-01

    Full Text Available Clostridium (C. difficile is a typical representative of the genus Clostridium. After colonization of the intestinal tract, toxigenic C. difficile strains are capable to produce two exotoxins, enterotoxin (toxin A and cytotoxin (toxin B, which cause diarrhea and colitis. Toxin A binds to specific carbohydrate receptors on the surface of intestinal cells and this is the beginning of damages in the intestinal tract which include destruction of the villi epithelium, limiting membrane, intercellular connections (zonula occludens and surface of the mucosa. If only toxin B is injected into intestinal cells, it does not cause damage nor increased fluids secretion. Probably, the reason for this is the inability of the toxin to bind to the cell membrane receptor in the intestinal tract under normal physiological conditions. Toxigenic strains of C. difficile can be found in the intestines of healthy people, without any symptoms or clinical signs (asymptomatic colonization. However, in people with risk factors, they can cause diarrhea of varying severity and life-threatening pseudomembranous colitis. These diseases are known as C. difficile associated disease - CDAD.

  2. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  3. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium

    Directory of Open Access Journals (Sweden)

    Nie Weijia

    2008-11-01

    Full Text Available Abstract Background Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. Results The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB were purified from bacterial crude extracts. Approximately 5 – 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. Conclusion We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.

  4. Allelopathy as an emergent, exploitable public good in the bloom-forming microalga Prymnesium parvum.

    Science.gov (United States)

    Driscoll, William W; Espinosa, Noelle J; Eldakar, Omar T; Hackett, Jeremiah D

    2013-06-01

    Many microbes cooperatively secrete extracellular products that favorably modify their environment. Consistent with social evolution theory, structured habitats play a role in maintaining these traits in microbial model systems, by localizing the benefits and separating strains that invest in these products from 'cheater' strains that benefit without paying the cost. It is thus surprising that many unicellular, well-mixed microalgal populations invest in extracellular toxins that confer ecological benefits upon the entire population, for example, by eliminating nutrient competitors (allelopathy). Here we test the hypotheses that microalgal exotoxins are (1) exploitable public goods that benefit all cells, regardless of investment, or (2) nonexploitable private goods involved in cell-level functions. We test these hypotheses with high-toxicity (TOX+) and low-toxicity (TOX-) strains of the damaging, mixotrophic microalga Prymnesium parvum and two common competitors: green algae and diatoms. TOX+ actually benefits from dense populations of competing green algae, which can also be prey for P. parvum, yielding a relative fitness advantage over coexisting TOX-. However, with nonprey competitors (diatoms), TOX- increases in frequency over TOX+, despite benefiting from the exclusion of diatoms by TOX+. An evolutionary unstable, ecologically devastating public good may emerge from traits selected at lower levels expressed in novel environments. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  5. Diverse Profiles of Ricin-Cell Interactions in the Lung Following Intranasal Exposure to Ricin

    Directory of Open Access Journals (Sweden)

    Anita Sapoznikov

    2015-11-01

    Full Text Available Ricin, a plant-derived exotoxin, inhibits protein synthesis by ribosomal inactivation. Due to its wide availability and ease of preparation, ricin is considered a biothreat, foremost by respiratory exposure. We examined the in vivo interactions between ricin and cells of the lungs in mice intranasally exposed to the toxin and revealed multi-phasic cell-type-dependent binding profiles. While macrophages (MΦs and dendritic cells (DCs displayed biphasic binding to ricin, monophasic binding patterns were observed for other cell types; epithelial cells displayed early binding, while B cells and endothelial cells bound toxin late after intoxication. Neutrophils, which were massively recruited to the intoxicated lung, were refractive to toxin binding. Although epithelial cells bound ricin as early as MΦs and DCs, their rates of elimination differed considerably; a reduction in epithelial cell counts occurred late after intoxication and was restricted to alveolar type II cells only. The differential binding and cell-elimination patterns observed may stem from dissimilar accessibility of the toxin to different cells in the lung and may also reflect unequal interactions of the toxin with different cell-surface receptors. The multifaceted interactions observed in this study between ricin and the various cells of the target organ should be considered in the future development of efficient post-exposure countermeasures against ricin intoxication.

  6. Highly virulent M1 Streptococcus pyogenes isolates resistant to clindamycin.

    Science.gov (United States)

    Plainvert, C; Martin, C; Loubinoux, J; Touak, G; Dmytruk, N; Collobert, G; Fouet, A; Ploy, M-C; Poyart, C

    2015-01-01

    Emm1-type group A Streptococcus (GAS), or Streptococcus pyogenes, is mostly responsible for invasive infections such as necrotizing fasciitis (NF) and streptococcal toxic shock syndrome (STSS). The recommended treatment of severe invasive GAS infections is a combination of clindamycin and penicillin. Until 2012, almost all emm1 isolates were susceptible to clindamycin. We aimed to identify the phenotypic and genotypic characteristics of emm1 GAS clone resistant to clindamycin. GAS strains were characterized by emm sequence typing, detection of genes encoding pyrogenic exotoxins or superantigens. Cluster analysis was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Antibiotic susceptibility was assessed using disk diffusion and resistance genes were detected by PCR. A total of 1321 GAS invasive isolates were analyzed between January 2011 and December 2012. The overall number of invasive isolates resistant to clindamycin was 52 (3.9%); seven of them were emm1 isolates. All isolates had the same genomic markers: macrolide resistance due to the presence of the erm(B) gene, emm subtype 1.0, the same toxin or superantigen profile, PFGE pattern and sequence type. This is the first description of highly virulent GAS emm1 isolates resistant to clindamycin in France. This article strengthens the need for monitoring the epidemiology of invasive GAS strains as they could lead to changes in treatment guidelines. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Molecular characterization and evaluation of the emerging antibiotic-resistant Streptococcus pyogenes from eastern India.

    Science.gov (United States)

    Ray, Dipanwita; Saha, Somnath; Sinha, Sukanta; Pal, Nishith Kumar; Bhattacharya, Basudev

    2016-12-12

    Group A Streptococcus strains causing wide variety of diseases, recently became noticeable in eastern India, are not amenable to standard treatment protocol thus enhancing the possibility of disease morbidity by becoming antibiotic resistance. The association of Lancefield group A Streptococcal variation with degree of vir architectural diversity was evaluated using emm typing and restriction fragment length polymorphism analyses. The antibiotic sensitivity patterns were examined by modified Kirby-Bauer method of disk diffusion. Percentage calculations, 95% confidence interval and one-way ANOVA were used to assess differences in proportions. Our observations revealed 20 different emm types and 13 different HaeIII vir typing patterns. A 1.2 kb fragment was found in all HaeIII typing pattern. Fragments of 1.2 kb and 550 bp were conserved in majority of the isolates. HinfI digestion was found proficient in differentiating the strains of same vir typing patterns. Strong predominance of speC (85%) and speF (80%) genes have been observed encoding exotoxins production. 4 isolates were found to be erythromycin resistant and were of genotype emm49. High degree of tetracycline resistance was shown by 53.57% isolates which belonged to 12 different emm genotypes. These findings suggested that in addition to emm typing, sequential application of HaeIII and HinfI restriction enzymes in vir typing analysis is an effective tool for group A streptococcal molecular characterization associated with antibiotic resistance.

  8. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  9. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  10. Role of Pore-Forming Toxins in Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    Andreas F.-P. Sonnen

    2013-01-01

    Full Text Available Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.

  11. Combination treatments with the PKC inhibitor, enzastaurin, enhance the cytotoxicity of the anti-mesothelin immunotoxin, SS1P.

    Directory of Open Access Journals (Sweden)

    Abid R Mattoo

    Full Text Available Activated protein kinase C (PKC contributes to tumor survival and proliferation, provoking the development of inhibitory agents as potential cancer therapeutics. Immunotoxins are antibody-based recombinant proteins that employ antibody fragments for cancer targeting and bacterial toxins as the cytotoxic agent. Pseudomonas exotoxin-based immunotoxins act via the ADP-ribosylation of EF2 leading to the enzymatic inhibition of protein synthesis. Combining PKC inhibitors with the immunotoxin SS1P, targeted to surface mesothelin, was undertaken to explore possible therapeutic strategies. Enzastaurin but not two other PKC inhibitors combined with SS1P to produce synergistic cell death via apoptosis. Mechanistic insights of the synergistic killing centered on the complete loss of the prosurvival Bcl2 protein, Mcl-1, the loss of AKT and the activation of caspase 3/7. Synergy was most evident when cells exhibited resistance to the immunotoxin alone. Further, because PKC inhibition by itself was not sufficient to enhance SS1P action, enzastaurin must target other kinases that are involved in the immunotoxin pathway.

  12. Inflammatory and Bone Remodeling Responses to the Cytolethal Distending Toxins

    Directory of Open Access Journals (Sweden)

    Georgios N. Belibasakis

    2014-04-01

    Full Text Available The cytolethal distending toxins (CDTs are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.

  13. A family cluster of streptococcal toxic shock syndrome in children: clinical implication and epidemiological investigation.

    Science.gov (United States)

    Huang, Y C; Hsueh, P R; Lin, T Y; Yan, D C; Hsia, S H

    2001-05-01

    Most invasive group A streptococcal (GAS) disease occurs sporadically. Reports of family clusters of these infections are scanty, and most invasive disease occurs in adults. We describe a family cluster of streptococcal toxic shock syndrome (STSS) involving 3 children and present the results of an epidemiologic investigation. During a 16-day period, 3 children in a family developed STSS with an interval of 7 and 9 days, respectively, between the onset of disease. Cases 2 and 3 had GAS isolated from blood culture. Case 2 was fatal. Pharyngeal culture survey of the family members and schoolchildren was conducted. Antibiogram, serotyping, detection of exotoxin genes, and random amplified polymorphic DNA patterns of the disease strains and survey strains were examined. One of 15 family members sampled-the sister of the index case-and 7 (5.6%) of 125 schoolchildren sampled had GAS isolated from pharyngeal cultures. Of the 10 strains examined, 2 isolates from the patients, 1 from the sister of index case, and 2 from the classmates of case 2 (the fatal case) had an identical pattern of both genotype and phenotype. We describe a family cluster of STSS involving 3 children caused by a single clone and provide additional data regarding invasive GAS infection subsequent to household contact. Additional studies should be conducted in conjunction with surveillance to define better the magnitude of risk in household contacts and to identify settings in which subsequent infections may occur.

  14. Evolution of the Staphylococcus argenteus ST2250 Clone in Northeastern Thailand Is Linked with the Acquisition of Livestock-Associated Staphylococcal Genes.

    Science.gov (United States)

    Moradigaravand, Danesh; Jamrozy, Dorota; Mostowy, Rafal; Anderson, Annaliesa; Nickerson, Emma K; Thaipadungpanit, Janjira; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Tandhavanant, Sarunporn; Wikraiphat, Chanthiwa; Wongsuvan, Gumphol; Teerawattanasook, Nittaya; Jutrakul, Yaowaruk; Srisurat, Nuttiya; Chaimanee, Prajuab; Eoin West, T; Blane, Beth; Parkhill, Julian; Chantratita, Narisara; Peacock, Sharon J

    2017-07-05

    Staphylococcus argenteus is a newly named species previously described as a divergent lineage of Staphylococcus aureus that has recently been shown to have a global distribution. Despite growing evidence of the clinical importance of this species, knowledge about its population epidemiology and genomic architecture is limited. We used whole-genome sequencing to evaluate and compare S. aureus (n = 251) and S. argenteus (n = 68) isolates from adults with staphylococcal sepsis at several hospitals in northeastern Thailand between 2006 and 2013. The majority (82%) of the S. argenteus isolates were of multilocus sequence type 2250 (ST2250). S. aureus was more diverse, although 43% of the isolates belonged to ST121. Bayesian analysis suggested an S. argenteus ST2250 substitution rate of 4.66 (95% confidence interval [CI], 3.12 to 6.38) mutations per genome per year, which was comparable to the S. aureus ST121 substitution rate of 4.07 (95% CI, 2.61 to 5.55). S. argenteus ST2250 emerged in Thailand an estimated 15 years ago, which contrasts with the S. aureus ST1, ST88, and ST121 clades that emerged around 100 to 150 years ago. Comparison of S. argenteus ST2250 genomes from Thailand and a global collection indicated a single introduction into Thailand, followed by transmission to local and more distant countries in Southeast Asia and further afield. S. argenteus and S. aureus shared around half of their core gene repertoire, indicating a high level of divergence and providing strong support for their classification as separate species. Several gene clusters were present in ST2250 isolates but absent from the other S. argenteus and S. aureus study isolates. These included multiple exotoxins and antibiotic resistance genes that have been linked previously with livestock-associated S. aureus, consistent with a livestock reservoir for S. argenteus These genes appeared to be associated with plasmids and mobile genetic elements and may have contributed to the

  15. Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer.

    Science.gov (United States)

    Kessler, Claudia; Pardo, Alessa; Tur, Mehmet K; Gattenlöhner, Stefan; Fischer, Rainer; Kolberg, Katharina; Barth, Stefan

    2017-10-01

    Despite great progress in the diagnosis and treatment of localized prostate cancer (PCa), there remains a need for new diagnostic markers that can accurately distinguish indolent and aggressive variants. One promising approach is the antibody-based targeting of prostate stem cell antigen (PSCA), which is frequently overexpressed in PCa. Here, we show the construction of a molecular imaging probe comprising a humanized scFv fragment recognizing PSCA genetically fused to an engineered version of the human DNA repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT), the SNAP-tag, enabling specific covalent coupling to various fluorophores for diagnosis of PCa. Furthermore, the recombinant immunotoxin (IT) PSCA(scFv)-ETA' comprising the PSCA(scFv) and a truncated version of Pseudomonas exotoxin A (PE, ETA') was generated. We analyzed the specific binding and internalization behavior of the molecular imaging probe PSCA(scFv)-SNAP in vitro by flow cytometry and live cell imaging, compared to the corresponding IT PSCA(scFv)-ETA'. The cytotoxic activity of PSCA(scFv)-ETA' was tested using cell viability assays. Specific binding was confirmed on formalin-fixed paraffin-embedded tissue specimen of early and advanced PCa. Alexa Fluor® 647 labeling of PSCA(scFv)-SNAP confirmed selective binding to PSCA, leading to rapid internalization into the target cells. The recombinant IT PSCA(scFv)-ETA' showed selective binding leading to internalization and efficient elimination of target cells. Our data demonstrate, for the first time, the specific binding, internalization, and cytotoxicity of a scFv-based fusion protein targeting PSCA. Immunohistochemical staining confirmed the specific ex vivo binding to primary PCa material.

  16. Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation.

    Science.gov (United States)

    Grimminger, F; Wahn, H; Mayer, K; Kiss, L; Walmrath, D; Seeger, W

    1997-02-01

    Escherichia coli hemolysin (HlyA) is a proteinaceous pore-forming exotoxin that is implicated as a significant pathogenicity factor in extraintestinal E. coli infections including sepsis. In perfused rabbit lungs, subcytolytic concentrations of the toxin evoke thromboxane-mediated vasoconstriction and prostanoid-independent protracted vascular permeability increase (11). In the present study, the influence of submicromolar concentrations of free arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the HlyA-induced leakage response was investigated. HlyA at concentration from 0.02 to 0.06 hemolytic units/ml provoked a dose-dependent, severalfold increase in the capillary filtration coefficient (Kfc), accompanied by the release of leukotriene(LT)B4, LTC4, and LTE4 into the recirculating buffer fluid. Simultaneous application of 100 nmol/L AA markedly augmented the HlyA-elicited leakage response, concomitant with an amplification of LTB4 release and a change in the kinetics of cysteinyl-LT generation. In contrast, 50 to 200 nmol/L EPA suppressed in a dose-dependent manner the HlyA-induced increase in Kfc values. This was accompanied by a blockage of 4-series LT generation and a dose-dependent appearance of LTB5, LTC5, and LTE5. In addition, EPA fully antagonized the AA-induced amplification of the HlyA-provoked Kfc increase, again accompanied by a shift from 4-series to 5-series LT generation. We conclude that the vascular leakage provoked by HlyA in rabbit lungs is differentially influenced by free AA versus free EPA, related to the generation of 4- versus 5-series leukotrienes. The composition of lipid emulsions used for parenteral nutrition may thus influence inflammatory capillary leakage.

  17. THE INFLUENCE OF TESTICLE EXTRACT ON THE INTRADERMAL SPREAD OF INJECTED FLUIDS AND PARTICLES.

    Science.gov (United States)

    Hoffman, D C; Duran-Reynals, F

    1931-02-28

    The experiments in this paper show that testicle extract causes India ink particles and those of Prussian blue to spread much more extensively through the intercellular spaces than similar suspensions made with Ringer's solution. Methylene blue inoculated intravenously localizes more extensively in areas previously injected with testicle extracts than in control areas receiving injections of tissue extracts without enhancing power. Kidney extracts have this property to a less degree, whereas spleen extracts and blood serum are devoid of it. The spreading power of extracts is destroyed by heating at 60 degrees C. for 30 minutes, as is also the power to enhance infections. The precise mode of action of the Reynals factor is not known, but the results of the experiments here presented suggest that it may depend at least in part on the property whereby testicle extract increases the spread of injected material and alters the permeability of tissue cells. It is not inconceivable that changes in permeability facilitate the passage of vaccine virus through the endothelial cells of the blood and lymph vessels, and lead to the generalized vaccinia which is of frequent occurrence in the reported results (20). It has been shown that fluids and suspensions of inert particles are spread by the extract.B. tetanus and B. coli exotoxins and trypsin were not enhanced at all in their action despite the fact that they were spread through a more extensive area in the tissues. Viruses, on the other hand, are markedly influenced and in this respect resemble bacteria, not toxins and enzymes. It appears probable that a definite capacity for multiplication on the part of an injected substance is required if its pathogenic effects are to be enhanced. It may be concluded tentatively that the enhancing power of the testicle extract may depend on that property which not only spreads the injected material through a larger area but renders the tissue cells more easily penetrable by the agents.

  18. Natural indoles, indole-3-carbinol and 3,3'-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression.

    Science.gov (United States)

    Busbee, Philip B; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3'-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8(+) T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. © 2013.

  19. Potent neutralization of staphylococcal enterotoxin B by synergistic action of chimeric antibodies.

    Science.gov (United States)

    Tilahun, Mulualem E; Rajagopalan, Govindarajan; Shah-Mahoney, Nalini; Lawlor, Rebecca G; Tilahun, Ashenafi Y; Xie, Chen; Natarajan, Kannan; Margulies, David H; Ratner, David I; Osborne, Barbara A; Goldsby, Richard A

    2010-06-01

    Staphylococcal enterotoxin B (SEB), a shock-inducing exotoxin synthesized by Staphylococcus aureus, is an important cause of food poisoning and is a class B bioterrorism agent. SEB mediates antigen-independent activation of a major subset of the T-cell population by cross-linking T-cell receptors (TCRs) with class II major histocompatibility complex (MHC-II) molecules of antigen-presenting cells, resulting in the induction of antigen independent proliferation and cytokine secretion by a significant fraction of the T-cell population. Neutralizing antibodies inhibit SEB-mediated T-cell activation by blocking the toxin's interaction with the TCR or MHC-II and provide protection against the debilitating effects of this superantigen. We derived and searched a set of monoclonal mouse anti-SEB antibodies to identify neutralizing anti-SEB antibodies that bind to different sites on the toxin. A pair of non-cross-reactive, neutralizing anti-SEB monoclonal antibodies (MAbs) was found, and a combination of these antibodies inhibited SEB-induced T-cell proliferation in a synergistic rather than merely additive manner. In order to engineer antibodies more suitable than mouse MAbs for use in humans, the genes encoding the VL and VH gene segments of a synergistically acting pair of mouse MAbs were grafted, respectively, onto genes encoding the constant regions of human Igkappa and human IgG1, transfected into mammalian cells, and used to generate chimeric versions of these antibodies that had affinity and neutralization profiles essentially identical to their mouse counterparts. When tested in cultures of human peripheral blood mononuclear cells or splenocytes derived from HLA-DR3 transgenic mice, the chimeric human-mouse antibodies synergistically neutralized SEB-induced T-cell activation and cytokine production.

  20. Immunopathology of Brucella infection.

    Science.gov (United States)

    Baldi, Pablo C; Giambartolomei, Guillermo H

    2013-04-01

    In spite of the protean nature of the disease, inflammation is a hallmark of brucellosis and affected tissues usually exhibit inflammatory infiltrates. As Brucella lacks exotoxins, exoproteases or cytolysins, pathological findings in brucellosis probably arise from inflammation-driven processes. The cellular and molecular bases of immunopathological phenomena probably involved in Brucella pathogenesis have been unraveled in the last few years. Brucella-infected osteoblasts, either alone or in synergy with infected macrophages, produce cytokines, chemokines and matrixmetalloproteinases (MMPs), and similar phenomena are mounted by fibroblast-like synoviocytes. The released cytokines promote the secretion of MMPs and induce osteoclastogenesis. Altogether, these phenomena may contribute to the bone loss and cartilage degradation usually observed in brucellar arthritis and osteomyelitis. Proinflammatory cytokines may be also involved in the pathogenesis of neurobrucellosis. B. abortus and its lipoproteins elicit an inflammatory response in the CNS of mice, leading to astrogliosis, a characteristic feature of neurobrucellosis. Heat-killed bacteria (HKBA) and the L-Omp19 lipoprotein elicit astrocyte apoptosis and proliferation (two features of astrogliosis), and apoptosis depends on TNF-α signaling. Brucella also infects and replicates in human endothelial cells, inducing the production of chemokines and IL-6, and an increased expression of adhesion molecules. The sustained inflammatory process derived from the longlasting infection of the endothelium may be important for the development of endocarditis. Therefore, while Brucella induces a low grade inflammation as compared to other pathogens, its prolonged intracellular persistence in infected tissues supports a long-lasting inflammatory response that mediates different pathways of tissue damage. In this context, approaches to avoid the invasion of host cells or limit the intracellular survival of the bacterium may be

  1. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    Science.gov (United States)

    Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J.

    2017-01-01

    Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc), enterotoxin (cpe), and Perfringolysin O (pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet) and anti-defensins genes (mprF) were consistently detected in silico (tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen. PMID:29312194

  2. Immunization with recombinant bivalent chimera r-Cpae confers protection against alpha toxin and enterotoxin of Clostridium perfringens type A in murine model.

    Science.gov (United States)

    Shreya, Das; Uppalapati, Siva R; Kingston, Joseph J; Sripathy, Murali H; Batra, Harsh V

    2015-05-01

    Clostridium perfringens type A, an anaerobic pathogen is the most potent cause of soft tissue infections like gas gangrene and enteric diseases like food poisoning and enteritis. The disease manifestations are mediated via two important exotoxins, viz. myonecrotic alpha toxin (αC) and enterotoxin (CPE). In the present study, we synthesized a bivalent chimeric protein r-Cpae comprising C-terminal binding regions of αC and CPE using structural vaccinology rationale and assessed its protective efficacy against both alpha toxin (αC) and enterotoxin (CPE) respectively, in murine model. Active immunization of mice with r-Cpae generated high circulating serum IgG (systemic), significantly increased intestinal mucosal s-IgA antibody titres and resulted in substantial protection to the immunized animals (100% and 75% survival) with reduced tissue morbidity when administered with 5×LD(100) doses of αC (intramuscular) and CPE (intra-gastric gavage) respectively. Mouse RBCs and Caco-2 cells incubated with a mixture of anti-r-Cpae antibodies and αC and CPE respectively, illustrated significantly higher protection against the respective toxins. Passive immunization of mice with a similar mixture resulted in 91-100% survival at the end of the 15 days observation period while mice immunized with a concoction of sham sera and respective toxins died within 2-3 days. This work demonstrates the efficacy of the rationally designed r-Cpae chimeric protein as a potential sub unit vaccine candidate against αC and CPE of C. perfringens type A toxemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mycolactone-Dependent Depletion of Endothelial Cell Thrombomodulin Is Strongly Associated with Fibrin Deposition in Buruli Ulcer Lesions.

    Directory of Open Access Journals (Sweden)

    Joy Ogbechi

    2015-07-01

    Full Text Available A well-known histopathological feature of diseased skin in Buruli ulcer (BU is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM expression on the surface of human dermal microvascular endothelial cells (HDMVEC at doses as low as 2 ng/ml and as early as 8 hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this

  4. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: Phase III randomized study.

    Science.gov (United States)

    Fattom, Ali; Matalon, Albert; Buerkert, John; Taylor, Kimberly; Damaso, Silvia; Boutriau, Dominique

    2015-01-01

    In a previous study in end-stage renal disease (ESRD) hemodialysis patients, a single dose of Staphylococcus aureus type 5 and 8 capsular polysaccharides (T5/T8) conjugated to nontoxic recombinant Pseudomonas aeruginosa exotoxin A investigational vaccine showed no efficacy against S. aureus bacteremia 1 year post-vaccination, but a trend for efficacy was observed over the first 40 weeks post-vaccination. Vaccine efficacy (VE) of 2 vaccine doses was therefore evaluated. In a double-blind trial 3359 ESRD patients were randomized (1:1) to receive vaccine or placebo at week 0 and 35. VE in preventing S. aureus bacteremia was assessed between 3-35 weeks and 3-60 weeks post-dose-1. Anti-T5 and anti-T8 antibodies were measured. Serious adverse events (SAEs) were recorded for 42 days post-vaccination and deaths until study end. No significant difference in the incidence of S. aureus bacteremia was observed between vaccine and placebo groups between weeks 3-35 weeks post-dose 1 (VE -23%, 95%CI: -98;23, p = 0.39) or at 3-60 weeks post-dose-1 (VE -8%, 95%CI: -57;26, p = 0.70). Day 42 geometric mean antibody concentrations were 272.4 μg/ml and 242.0 μg/ml (T5 and T8, respectively) in vaccinees. SAEs were reported by 24%/25.3% of vaccinees/placebo recipients. These data do not show a protective effect of either 1 or 2 vaccine doses against S. aureus bacteremia in ESRD patients. The vaccine induced a robust immune response and had an acceptable safety profile. Further investigation suggested possible suboptimal vaccine quality (manufacturing) and a need to expand the antigen composition of the vaccine. This study is registered at www.clinicaltrials.gov NCT00071214.

  5. Novel Isolate of Bacillus thuringiensis subsp. thuringiensis That Produces a Quasicuboidal Crystal of Cry1Ab21 Toxic to Larvae of Trichoplusia ni▿

    Science.gov (United States)

    Swiecicka, Izabela; Bideshi, Dennis K.; Federici, Brian A.

    2008-01-01

    A new isolate (IS5056) of Bacillus thuringiensis subsp. thuringiensis that produces a novel variant of Cry1Ab, Cry1Ab21, was isolated from soil collected in northeastern Poland. Cry1Ab21 was composed of 1,155 amino acids and had a molecular mass of 130.5 kDa, and a single copy of the gene coding for this endotoxin was located on a ∼75-kbp plasmid. When synthesized by the wild-type strain, Cry1Ab21 produced a unique, irregular, bipyramidal crystal whose long and short axes were both approximately 1 μm long, which gave it a cuboidal appearance in wet mount preparations. In diet incorporation bioassays, the 50% lethal concentrations of the crystal-spore complex were 16.9 and 29.7 μg ml−1 for second- and fourth-instar larvae of the cabbage looper, Trichoplusia ni, respectively, but the isolate was essentially nontoxic to larvae of the beet armyworm, Spodoptera exigua. A bioassay of autoclaved spore-crystal preparations showed no evidence of β-exotoxin activity, indicating that toxicity was due primarily to Cry1Ab21. Studies of the pathogenesis of isolate IS5056 in second-instar larvae of T. ni showed that after larval death the bacterium colonized and subsequently sporulated extensively throughout the cadaver, suggesting that other bacteria inhabiting the midgut lumen played little if any role in mortality. As T. ni is among the most destructive pests of vegetable crops in North America and has developed resistance to B. thuringiensis, this new isolate may have applied value. PMID:18083867

  6. Population and Whole Genome Sequence Based Characterization of Invasive Group A Streptococci Recovered in the United States during 2015

    Directory of Open Access Journals (Sweden)

    Sopio Chochua

    2017-09-01

    Full Text Available Group A streptococci (GAS are genetically diverse. Determination of strain features can reveal associations with disease and resistance and assist in vaccine formulation. We employed whole-genome sequence (WGS-based characterization of 1,454 invasive GAS isolates recovered in 2015 by Active Bacterial Core Surveillance and performed conventional antimicrobial susceptibility testing. Predictions were made for genotype, GAS carbohydrate, antimicrobial resistance, surface proteins (M family, fibronectin binding, T, R28, secreted virulence proteins (Sda1, Sic, exotoxins, hyaluronate capsule, and an upregulated nga operon (encodes NADase and streptolysin O promoter (Pnga3. Sixty-four M protein gene (emm types were identified among 69 clonal complexes (CCs, including one CC of Streptococcus dysgalactiae subsp. equisimilis. emm types predicted the presence or absence of active sof determinants and were segregated into sof-positive or sof-negative genetic complexes. Only one “emm type switch” between strains was apparent. sof-negative strains showed a propensity to cause infections in the first quarter of the year, while sof+ strain infections were more likely in summer. Of 1,454 isolates, 808 (55.6% were Pnga3 positive and 637 (78.9% were accounted for by types emm1, emm89, and emm12. Theoretical coverage of a 30-valent M vaccine combined with an M-related protein (Mrp vaccine encompassed 98% of the isolates. WGS data predicted that 15.3, 13.8, 12.7, and 0.6% of the isolates were nonsusceptible to tetracycline, erythromycin plus clindamycin, erythromycin, and fluoroquinolones, respectively, with only 19 discordant phenotypic results. Close phylogenetic clustering of emm59 isolates was consistent with recent regional emergence. This study revealed strain traits informative for GAS disease incidence tracking, outbreak detection, vaccine strategy, and antimicrobial therapy.

  7. Helicobacter pylori's unconventional role in health and disease.

    Directory of Open Access Journals (Sweden)

    Marion S Dorer

    2009-10-01

    Full Text Available The discovery of a bacterium, Helicobacter pylori, that is resident in the human stomach and causes chronic disease (peptic ulcer and gastric cancer was radical on many levels. Whereas the mouth and the colon were both known to host a large number of microorganisms, collectively referred to as the microbiome, the stomach was thought to be a virtual Sahara desert for microbes because of its high acidity. We now know that H. pylori is one of many species of bacteria that live in the stomach, although H. pylori seems to dominate this community. H. pylori does not behave as a classical bacterial pathogen: disease is not solely mediated by production of toxins, although certain H. pylori genes, including those that encode exotoxins, increase the risk of disease development. Instead, disease seems to result from a complex interaction between the bacterium, the host, and the environment. Furthermore, H. pylori was the first bacterium observed to behave as a carcinogen. The innate and adaptive immune defenses of the host, combined with factors in the environment of the stomach, apparently drive a continuously high rate of genomic variation in H. pylori. Studies of this genetic diversity in strains isolated from various locations across the globe show that H. pylori has coevolved with humans throughout our history. This long association has given rise not only to disease, but also to possible protective effects, particularly with respect to diseases of the esophagus. Given this complex relationship with human health, eradication of H. pylori in nonsymptomatic individuals may not be the best course of action. The story of H. pylori teaches us to look more deeply at our resident microbiome and the complexity of its interactions, both in this complex population and within our own tissues, to gain a better understanding of health and disease.

  8. Hyperosmotic nanoemulsions: Development and application of a new antimicrobial treatment for wound care

    Science.gov (United States)

    Connell, Sean

    Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the

  9. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden.

    Directory of Open Access Journals (Sweden)

    Gunlög Rasmussen

    Full Text Available Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated. DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46, bacteremia (n=55, and bacteremia with infective endocarditis (n=33. Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II, capsule polysaccharide serotype 5 (cap5, and adhesins such as S. aureus surface protein G (sasG and fibronectin-binding protein B (fnbB were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB, staphylococcal complement inhibitor (scn and the staphylococcal exotoxin-like protein (setC or selX. In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5 among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation. In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.

  10. Taurolidine--a new drug with anti-tumor and anti-angiogenic effects.

    Science.gov (United States)

    Jacobi, Christoph A; Menenakos, Charalambos; Braumann, Chris

    2005-10-01

    Taurolidine [bis(1,1-dioxoperhydro-1,2,4-thiadiazinyl-4)-methane (TRD)], a product derived from the aminosulfoacid taurin, was first described as an anti-bacterial substance. It was mainly used in the treatment of patients with peritonis as well as antiendoxic agent in patients with systematic inflammatory response syndrome. Meanwhile, quite interesting new experimental findings elucidated several new mechanisms concerning not only antibiotic but also anti-tumor effects. TRD significantly reduces the pathogenicity of prokaryotes, leading to a degeneration of the bacterial wall, and binds free lipoplysaccharides (LPSs) and exotoxins. Furthermore syntheses of tumor necrosis factor-a and interleukin-1b are reduced in LPS-stimulated human macrophages in a dose dependent manner. Tumor angiogenesis is promoted by enhanced expression of all these endogenous angiogenic factors, indicating an anti-angiogenetic effect of TRD. Tumor angiogenesis has a key role in tumor growth. TRD additionally inhibits tumor cell growth by a mitochondrial cytochrome c-dependent apoptotic mechanism, has a direct and elective effect on glial and neuronal brain tumor cells via Fas-ligand-mediated cell death, and inhibits protein synthesis at an early phase of translation, which might explain its various apoptotic effects. Subsequent to these experimental observations, TRD has shown encouraging clinical results after intravenous administration in patients with gastrointestinal malignancies and tumors of the central nerve system. A remarkable experimental observation that comes to complete the above-mentioned findings is the low toxicity on leukopoiesis and erythropoiesis as well as on kidney and liver function in animal models. Several other data confirm low toxicity of the agent after its clinical administration in humans. Prospective clinical studies are currently investigating the efficacy of TRD on local and metastatic tumor growth in different malignancies.

  11. Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples.

    Science.gov (United States)

    Zhang, Yi-Fan; Ho, Mitchell

    2017-04-01

    Rabbit monoclonal antibodies (RabMAbs) can recognize diverse epitopes, including those poorly immunogenic in mice and humans. However, there have been only a few reports on RabMAb humanization, an important antibody engineering step usually done before clinical applications are investigated. To pursue a general method for humanization of RabMAbs, we analyzed the complex structures of 5 RabMAbs with their antigens currently available in the Protein Data Bank, and identified antigen-contacting residues on the rabbit Fv within the 6 Angstrom distance to its antigen. We also analyzed the supporting residues for antigen-contacting residues on the same heavy or light chain. We identified "HV4" and "LV4" in rabbit Fvs, non-complementarity-determining region (CDR) loops that are structurally close to the antigen and located in framework 3 of the heavy chain and light chain, respectively. Based on our structural and sequence analysis, we designed a humanization strategy by grafting the combined Kabat/IMGT/Paratome CDRs, which cover most antigen-contacting residues, into a human germline framework sequence. Using this strategy, we humanized 4 RabMAbs that recognize poorly immunogenic epitopes in the cancer target mesothelin. Three of the 4 humanized rabbit Fvs have similar or improved functional binding affinity for mesothelin-expressing cells. Interestingly, 4 immunotoxins composed of the humanized scFvs fused to a clinically used fragment of Pseudomonas exotoxin (PE38) showed stronger cytotoxicity against tumor cells than the immunotoxins derived from their original rabbit scFvs. Our data suggest that grafting the combined Kabat/IMGT/Paratome CDRs to a stable human germline framework can be a general approach to humanize RabMAbs.

  12. Cellular immunity confers transient protection in experimental Buruli ulcer following BCG or mycolactone-negative Mycobacterium ulcerans vaccination.

    Directory of Open Access Journals (Sweden)

    Alexandra G Fraga

    Full Text Available BACKGROUND: Buruli ulcer (BU is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-γ T cell response in the draining lymph node (DLN. BCG vaccination also resulted in cell-mediated immunity (CMI in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-γ and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. CONCLUSIONS/SIGNIFICANCE: The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised.

  13. Viable group A streptococci in macrophages during acute soft tissue infection.

    Directory of Open Access Journals (Sweden)

    Pontus Thulin

    2006-03-01

    Full Text Available Group A streptococcal severe soft tissue infections, such as necrotizing fasciitis, are rapidly progressive infections associated with high mortality. Group A streptococcus is typically considered an extracellular pathogen, but has been shown to reside intracellularly in host cells.We characterized in vivo interactions between group A streptococci (GAS and cells involved in innate immune responses, using human biopsies (n = 70 collected from 17 patients with soft tissue infections. Immunostaining and in situ image analysis revealed high amounts of bacteria in the biopsies, even in those collected after prolonged antibiotic therapy. Viability of the streptococci was assessed by use of a bacterial viability stain, which demonstrated viable bacteria in 74% of the biopsies. GAS were present both extracellularly and intracellularly within phagocytic cells, primarily within macrophages. Intracellular GAS were predominantly noted in biopsies from newly involved tissue characterized by lower inflammation and bacterial load, whereas purely extracellular GAS or a combination of intra- and extracellular GAS dominated in severely inflamed tissue. The latter tissue was also associated with a significantly increased amount of the cysteine protease streptococcal pyrogenic exotoxin SpeB. In vitro studies confirmed that macrophages serve as reservoirs for viable GAS, and infection with a speB-deletion mutant produced significantly lower frequencies of cells with viable GAS following infection as compared to the wild-type bacteria.This is the first study to demonstrate that GAS survive intracellularly in macrophages during acute invasive infections. This intracellular presence may have evolved as a mechanism to avoid antibiotic eradication, which may explain our finding that high bacterial load is present even in tissue collected after prolonged intravenous antibiotic therapy. This new insight into the pathogenesis of streptococcal soft tissue infections

  14. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  15. Viable Group A Streptococci in Macrophages during Acute Soft Tissue Infection.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Group A streptococcal severe soft tissue infections, such as necrotizing fasciitis, are rapidly progressive infections associated with high mortality. Group A streptococcus is typically considered an extracellular pathogen, but has been shown to reside intracellularly in host cells. METHODS AND FINDINGS: We characterized in vivo interactions between group A streptococci (GAS and cells involved in innate immune responses, using human biopsies (n = 70 collected from 17 patients with soft tissue infections. Immunostaining and in situ image analysis revealed high amounts of bacteria in the biopsies, even in those collected after prolonged antibiotic therapy. Viability of the streptococci was assessed by use of a bacterial viability stain, which demonstrated viable bacteria in 74% of the biopsies. GAS were present both extracellularly and intracellularly within phagocytic cells, primarily within macrophages. Intracellular GAS were predominantly noted in biopsies from newly involved tissue characterized by lower inflammation and bacterial load, whereas purely extracellular GAS or a combination of intra- and extracellular GAS dominated in severely inflamed tissue. The latter tissue was also associated with a significantly increased amount of the cysteine protease streptococcal pyrogenic exotoxin SpeB. In vitro studies confirmed that macrophages serve as reservoirs for viable GAS, and infection with a speB-deletion mutant produced significantly lower frequencies of cells with viable GAS following infection as compared to the wild-type bacteria. CONCLUSIONS: This is the first study to demonstrate that GAS survive intracellularly in macrophages during acute invasive infections. This intracellular presence may have evolved as a mechanism to avoid antibiotic eradication, which may explain our finding that high bacterial load is present even in tissue collected after prolonged intravenous antibiotic therapy. This new insight into the pathogenesis

  16. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway.

    Science.gov (United States)

    Zhang, Sainan; Yang, Naibin; Ni, Shunlan; Li, Wenyuan; Xu, Lanman; Dong, Peihong; Lu, Mingqin

    2014-01-01

    Endotoxin tolerance (ET) is an important phenomenon, which affects inflammation and phagocytosis. Pretreatment with low dose of lipopolysaccharide (LPS) can protect liver injury from various hepatotoxicants such as acetaminophen and pseudomonas aeruginosa exotoxin A. The current study aimed to investigate the protecting mechanisms of endotoxin tolerance in acute liver failure induced by D-galactosamine (D-GalN)/LPS and possible role of toll-like receptors 4 (TLR4) signaling pathway in this phenomenon. Acute liver failure was induced by Injection of D-GalN/LPS. To mimic endotoxin tolerance, male Sprague-Dawley rats were treated with low dose of LPS (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent injection of D-GalN/LPS. Rat survival was determined by survival rate. Liver injury was confirmed by serum biochemical and liver histopathological examination. Inflammatory cytokines were determined by ELISA and nuclear factor-kappa B (NF-κB) (P65), toll-like receptors 4 (TLR4) and Interleukin-1 receptor-associated kinase-1 (IRAK-1) were measured by reverse transcriptase polymerase chain reaction and western blot respectively. Pretreatment of LPS significantly improved rat survival. Moreover, rats pretreated with LPS exhibited lower serum enzyme (ALT, AST and TBiL) level, lower production of inflammatory cytokines and more minor liver histopathological damage than rats without pretreatment of LPS. LPS pretreatment suppressed production of TLR4 and IRAK-1. LPS pretreatment also inhibited activation of hepatic NF-κB. These results indicated that endotoxin tolerance contributed to liver protection against D-GalN/LPS induced acute liver failure through down-regulation of TLR4 and NF-κB pathway.

  17. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Science.gov (United States)

    Gama, José B; Ohlmeier, Steffen; Martins, Teresa G; Fraga, Alexandra G; Sampaio-Marques, Belém; Carvalho, Maria A; Proença, Fernanda; Silva, Manuel T; Pedrosa, Jorge; Ludovico, Paula

    2014-08-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  18. Campylobacter concisus pathotypes are present at significant levels in patients with gastroenteritis.

    Science.gov (United States)

    Underwood, Alexander P; Kaakoush, Nadeem O; Sodhi, Nidhi; Merif, Juan; Seah Lee, Way; Riordan, Stephen M; Rawlinson, William D; Mitchell, Hazel M

    2016-03-01

    Given that Campylobacter jejuni is recognized as the most common cause of bacterial gastroenteritis worldwide, recent findings showing comparable levels of Campylobacter concisus in patients with gastroenteritis would suggest that this bacterium is clinically important. The prevalence and abundance of Campylobacter concisus in stool samples collected from patients with acute gastroenteritis was examined using quantitative real-time PCR. The associated virulence determinants exotoxin 9 and zonula occludens toxin DNA were detected for Campylobacter concisus-infected samples using real-time PCR. Campylobacter concisus was detected at high prevalence in patients with gastroenteritis (49.7 %), higher than that observed for Campylobacter jejuni (∼5 %). The levels of Campylobacter concisus were putatively classified into clinically relevant and potentially transient subgroups based on a threshold developed using Campylobacter jejuni levels, as the highly sensitive real-time PCR probably detected transient passage of the bacterium from the oral cavity. A total of 18 % of patients were found to have clinically relevant levels of Campylobacter concisus, a significant number of which also had high levels of one of the virulence determinants. Of these patients, 78 % were found to have no other gastrointestinal pathogen identified in the stool, which strongly suggests a role for Campylobacter concisus in the aetiology of gastroenteritis in these patients. These results emphasize the need for diagnostic laboratories to employ identification protocols for emerging Campylobacter species. Clinical follow-up in patients presenting with high levels of Campylobacter concisus in the intestinal tract is needed, given that it has been associated with more chronic sequelae.

  19. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads.

    Directory of Open Access Journals (Sweden)

    Maryann C Gruda

    Full Text Available Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis and septic shock, pathogen-associated molecular pattern molecules (PAMPS, such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host often leading to excessive cytokine production, a maladaptive systemic inflammatory response syndrome response (SIRS, and tissue damage that releases DAMPs, such as activated complement and HMGB-1, into the bloodstream causing further organ injury. Cytokine reduction using extracorporeal blood filtration has been correlated with improvement in survival and clinical outcomes in experimental studies and clinical reports, but the ability of this technology to reduce a broader range of inflammatory mediators has not been well-described. This study quantifies the size-selective adsorption of a wide range of sepsis-related inflammatory bacterial and fungal PAMPs, DAMPs and cytokines, in a single compartment, in vitro whole blood recirculation system.Purified proteins were added to whole blood at clinically relevant concentrations and recirculated through a device filled with CytoSorb® hemoadsorbent polymer beads (CytoSorbents Corporation, USA or control (no bead device in vitro. Except for the TNF-α trimer, hemoadsorption through porous polymer bead devices reduced the levels of a broad spectrum of cytokines, DAMPS, PAMPS and mycotoxins by more than 50 percent.This study demonstrates that CytoSorb® hemoadsorbent polymer beads efficiently remove a broad spectrum of toxic PAMPS and DAMPS from blood providing an additional means of reducing the uncontrolled inflammatory cascade that contributes to a maladaptive SIRS response, organ dysfunction and death in patients with a broad range of life-threatening inflammatory conditions such as sepsis, toxic shock syndrome, necrotizing fasciitis, and other severe inflammatory conditions.

  20. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer.

    Directory of Open Access Journals (Sweden)

    Carlos Capela

    2016-04-01

    Full Text Available Buruli ulcer (BU is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection.Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form.Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype and 300 healthy endemic controls.The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR, 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02.Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.

  1. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: A single blind, partially randomized Phase I study.

    Science.gov (United States)

    Hatz, Christoph F R; Bally, Bettina; Rohrer, Susanne; Steffen, Robert; Kramme, Stefanie; Siegrist, Claire-Anne; Wacker, Michael; Alaimo, Cristina; Fonck, Veronica Gambillara

    2015-08-26

    Shigellae cause severe disease in endemic countries, especially in children. Several efficacy trials have been conducted with candidate vaccines against Shigellae, but the lack of protection, the safety concerns, or manufacturing challenges hindered successful market approval. Conjugated vaccines have been shown to be safe and effective for different pathogens (i.e., Neisseria meningitidis, Shigella pneumonia, Haemophilus influenzae). The bio-conjugation technology, exploited here for the Shigella dysenteriae candidate vaccine, offers a novel and potentially simpler way to develop and produce vaccines against one of the major causes of morbidity and mortality in developing countries. A novel S. dysenteriae bioconjugate vaccine (GVXN SD133) made of the polysaccharide component of the Shigella O1 lipopolysaccharide, conjugated to the exotoxin protein A of Pseudomonas aeruginosa (EPA), was evaluated for immunogenicity and safety in healthy adults in a single blind, partially randomized Phase I study. Forty subjects (10 in each dose group; 2 μg or 10 μg with or without aluminium adjuvant) received two injections 60 days apart and were followed-up for 150 days. Both doses and formulations were well tolerated; the safety and reactogenicity profiles were consistent with that of other conjugated vaccines, adjuvanted or not, independent of the dose and the number of injections. The GVXN SD133 vaccine elicited statistically significant O1 specific humoral responses at all time points in all vaccination groups. Between-group comparisons did not show statistically significant differences in geometric mean titers of immunoglobulin G and A at any post-vaccination time point. This study demonstrated that the GVXN SD133 vaccine has a satisfactory safety profile. It elicited a significant humoral response to Shigella O1 polysaccharides at all doses tested. The protein carrier also elicited functional antibodies, showing the technology's advantages in preserving both sugar and

  2. Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans.

    Science.gov (United States)

    Purschke, Frauke Gina; Hiller, Ekkehard; Trick, Iris; Rupp, Steffen

    2012-12-01

    The majority of microorganisms persist in nature as surface-attached communities often surrounded by an extracellular matrix, called biofilms. Most natural biofilms are not formed by a single species but by multiple species. Microorganisms not only cooperate as in some multispecies biofilms but also compete for available nutrients. The Gram-negative bacterium Pseudomonas aeruginosa and the polymorphic fungus Candida albicans are two opportunistic pathogens that are often found coexisting in a human host. Several models of mixed biofilms have been reported for these organisms showing antagonistic behavior. To investigate the interaction of P. aeruginosa and C. albicans in more detail, we analyzed the secretome of single and mixed biofilms of both organisms using MALDI-TOF MS/MS at several time points. Overall 247 individual proteins were identified, 170 originated from P. aeruginosa and 77 from C. albicans. Only 39 of the 131 in mixed biofilms identified proteins were assigned to the fungus whereby the remaining 92 proteins belonged to P. aeruginosa. In single-species biofilms, both organisms showed a higher diversity of proteins with 73 being assigned to C. albicans and 154 to P. aeruginosa. Most interestingly, P. aeruginosa in the presence of C. albicans secreted 16 proteins in significantly higher amounts or exclusively among other virulence factors such as exotoxin A and iron acquisition systems. In addition, the high affinity iron-binding siderophore pyoverdine was identified in mixed biofilms but not in bacterial biofilms, indicating that P. aeruginosa increases its capability to sequester iron in competition with C. albicans. In contrast, C. albicans metabolism was significantly reduced, including a reduction in detectable iron acquisition proteins. The results obtained in this study show that microorganisms not only compete with the host for essential nutrients but also strongly with the present microflora in order to gain a competitive advantage.

  3. Influence of mitochondrion-toxic agents on the cardiovascular system.

    Science.gov (United States)

    Finsterer, Josef; Ohnsorge, Peter

    2013-12-01

    Cardiovascular disease may be induced or worsened by mitochondrion-toxic agents. Mitochondrion-toxic agents may be classified as those with or without a clinical effect, those which induce cardiac disease only in humans or animals or both, as prescribed drugs, illicit drugs, exotoxins, or nutritiants, as those which affect the heart exclusively or also other organs, as those which are effective only in patients with a mitochondrial disorder or cardiac disease or also in healthy subjects, or as solid, liquid, or volatile agents. In humans, cardiotoxic agents due to mitochondrial dysfunction include anthracyclines (particularly doxorubicin), mitoxantrone, cyclophosphamide, cisplatin, fluorouracil, imatinib, bortezomib, trastuzumab, arsenic trioxide, cyclosporine-A, zidovudine, lamotrigine, glycosides, lidocain, isoproterenol, nitroprusside, pivalic acid, alcohol, cocaine, pesticides, cadmium, mycotoxins, cyanotoxins, meat meal, or carbon monoxide. Even more agents exhibit cardiac abnormalities due to mitochondrion-toxicity only in animals or tissue cultures. The mitochondrion-toxic effect results from impairment of the respiratory chain, the oxidative phosphorylation, the Krebs cycle, or the β-oxidation, from decrease of the mitochondrion-membrane potential, from increased oxidative stress, reduced anti-oxidative capacity, or from induction of apoptosis. Cardiac abnormalities induced via these mechanisms include cardiomyopathy, myocarditis, coronary heart disease, arrhythmias, heart failure, or Takotsubo syndrome. Discontinuation of the cardiotoxic agent results in complete recovery in the majority of the cases. Antioxidants and nutritiants may be of additional help. Particularly coenzyme-Q, riboflavin, vitamin-E, vitamin-C, L-carnitine, vitamin-D, thiamin, folic acid, omega-3 fatty acids, and D-ribose may alleviate mitochondrial cardiotoxic effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Flexible Survival Strategies of Pseudomonas aeruginosa in Biofilms Result in Increased Fitness Compared with Candida albicans *

    Science.gov (United States)

    Purschke, Frauke Gina; Hiller, Ekkehard; Trick, Iris; Rupp, Steffen

    2012-01-01

    The majority of microorganisms persist in nature as surface-attached communities often surrounded by an extracellular matrix, called biofilms. Most natural biofilms are not formed by a single species but by multiple species. Microorganisms not only cooperate as in some multispecies biofilms but also compete for available nutrients. The Gram-negative bacterium Pseudomonas aeruginosa and the polymorphic fungus Candida albicans are two opportunistic pathogens that are often found coexisting in a human host. Several models of mixed biofilms have been reported for these organisms showing antagonistic behavior. To investigate the interaction of P. aeruginosa and C. albicans in more detail, we analyzed the secretome of single and mixed biofilms of both organisms using MALDI-TOF MS/MS at several time points. Overall 247 individual proteins were identified, 170 originated from P. aeruginosa and 77 from C. albicans. Only 39 of the 131 in mixed biofilms identified proteins were assigned to the fungus whereby the remaining 92 proteins belonged to P. aeruginosa. In single-species biofilms, both organisms showed a higher diversity of proteins with 73 being assigned to C. albicans and 154 to P. aeruginosa. Most interestingly, P. aeruginosa in the presence of C. albicans secreted 16 proteins in significantly higher amounts or exclusively among other virulence factors such as exotoxin A and iron acquisition systems. In addition, the high affinity iron-binding siderophore pyoverdine was identified in mixed biofilms but not in bacterial biofilms, indicating that P. aeruginosa increases its capability to sequester iron in competition with C. albicans. In contrast, C. albicans metabolism was significantly reduced, including a reduction in detectable iron acquisition proteins. The results obtained in this study show that microorganisms not only compete with the host for essential nutrients but also strongly with the present microflora in order to gain a competitive advantage. PMID

  5. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins.

    Directory of Open Access Journals (Sweden)

    Shandee D Dixon

    Full Text Available Cytolethal distending toxins (CDTs are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT and enteropathogenic E. coli (Ec-CDT are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.

  6. Cyclooxygenase 2 pathway and its therapeutic inhibition in superantigen-induced toxic shock.

    Science.gov (United States)

    Rajagopalan, Govindarajan; Asmann, Yan W; Lytle, Anna K; Tilahun, Ashenafi Y; Theuer, Jayne E; Smart, Michele K; Patel, Robin; David, Chella S

    2008-12-01

    Bacterial superantigens are a family of exotoxins that are the most potent T-cell activators known. Because of their ability to induce strong immune activation, superantigens have been implicated in a variety of diseases ranging from self-limiting food poisoning to more severe toxic shock syndrome (TSS) and have the potential to be used as agents of bioterrorism. Nonetheless, the precise molecular mechanisms by which T-cell activation by superantigens lead to acute systemic inflammatory response, multiple organ dysfunction, and ultimately death are unclear. Inadequate understanding of the pathogenesis has resulted in lack of development of effective therapy for superantigen-induced TSS. To fill these deficiencies, we systematically dissected the molecular pathogenesis of superantigen-induced TSS using the humanized human leukocyte antigen-DR3 transgenic mouse model by microarray-based gene expression profiling. Splenic expression of prostaglandin-endoperoxide synthase 2 (PTGS-2; also called cyclooxygenase 2 or COX-2) gene was increased by several hundred folds shortly after systemic superantigen (staphylococcal enterotoxin B [SEB]) exposure. In addition, expressions of several genes associated with eicosanoid pathway were significantly modulated by SEB, as analyzed by dedicated software. Given the importance of the COX-2 pathway in inflammation, we examined whether therapeutic inhibition of COX-2 by a highly selective inhibitor, CAY10404, could be beneficial. Our studies showed that i.p. administration of CAY10404 (50 mg/kg) immediately after challenge with 10 microg of SEB was unable to inhibit SEB-induced in vivo cytokine/chemokine production or T-cell activation/proliferation and did not prevent superantigen-associated thymocyte apoptosis.

  7. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana

    2016-02-16

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  8. [Hemolytic-uremic syndrome after verotoxin-producing Escherichia coli infection].

    Science.gov (United States)

    Mariani-Kurkdjian, P; Bingen, E

    1995-01-14

    The haemolytic uraemic syndrome, first described in 1955 by Gasser, is the number one cause of acute renal failure in infants. There are three types of the haemolytic uraemic syndrome: the seasonal epidemic form with prodromic diarrhoea and generally favourable outcome which usually occurs in infants, a less typical form without signs of digestive tract involvement and no seasonal prevalence which occurs more readily in older children and sometimes in families has a less favourable prognosis, and finally drug- or disease-related forms. Currently, overall mortality due to haemolytic uraemic syndrome has been reduced to about 4%, usually as a result of damage to the central nervous system. Several microorganism, including Shigella dysenteriae, Salmonella typhi, Campylobacter jejuni, Streptococcus pneumoniae, Rickittsiae and certain viruses (Coksackiae, Influenzae, Epstein-Barr) have been identified as causative agents. In 1983, digestive tract infection due to an Escherichia coli strain producing verotoxin was identified as capable of producing haemolytic uraemic syndrome and more rarely thrombopenic thrombotic purpura. The germ produces two exotoxins (whose effect is accentuated by the E. coli lipopolysaccharide endotoxin) which lead to the glomerular microangiopathy causing haemolytic uraemic syndrome. Diagnosis is based on identification (monoclonal antibodies, ELISA, PCR) of the verotoxins themselves or the two encoding genes in stool samples. Symptomatic treatment is essential but the effectiveness of antibiotics is still debated. Theoretically, antibiotics could worsen the syndrome by increasing endotoxin release from lysed bacteria, but inversely they could also prevent the syndrome if given early enough. Further research is required to acquire precise epidemiological data and identify animal reservoirs of verotoxin producing E. coli.

  9. Human alpha-defensins inhibit Clostridium difficile toxin B.

    Science.gov (United States)

    Giesemann, Torsten; Guttenberg, Gregor; Aktories, Klaus

    2008-06-01

    Clostridium difficile toxins A and B are major virulence factors implicated in pseudomembranous colitis and antibiotic-associated diarrhea. The toxins are glucosyltransferases, which inactivate Rho proteins involved in cellular signaling. Human alpha-defensins as part of the innate immune system inactivate various microbial pathogens as well as specific bacterial exotoxins. Here, we studied the effects of alpha-defensins human neutrophil protein (HNP)-1, HNP-3, and enteric human defensin (HD)-5 on the activity of C difficile toxins A and B. Inactivation of C difficile toxins by alpha-defensins in vivo was monitored by microscopy, determination of the transepithelial resistance of CaCo-2 cell monolayers, and analysis of the glucosylation of Rac1 in toxin-treated cells. In vitro glucosylation was used to determine K(m) and median inhibitory concentration (IC(50)) values. Formation of defensin-toxin complexes was analyzed by precipitation and turbidity studies. Treatment of cells with human alpha-defensins caused loss of cytotoxicity of toxin B, but not of toxin A. Only alpha-defensins, but not beta-defensin-1 or cathelicidin LL-37, inhibited toxin B-catalyzed in vitro glucosylation of Rho guanosine triphosphatases in a competitive manner, increasing K(m) values for uridine 5'-diphosphate-glucose up to 10-fold. The IC(50) values for inhibition of toxin B-catalyzed glucosylation by the alpha-defensins were 0.6-1.5 micromol/L. At high concentrations, defensins (HNP-1 > or = 2 micromol/L) caused high-molecular-mass aggregates, comparable to Bacillus anthracis protective antigen and lethal factor. Our data indicate that toxin B interacts with high affinity with alpha-defensins and suggest that defensins may provide a defense mechanism against some types of clostridial glucosylating cytotoxins.

  10. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  11. Immunogenicity of self-associated aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1.

    Directory of Open Access Journals (Sweden)

    Feng Qian

    Full Text Available Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25, was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42 was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42 conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42 self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42 specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.

  12. Complement C3d conjugation to anthrax protective antigen promotes a rapid, sustained, and protective antibody response.

    Directory of Open Access Journals (Sweden)

    Ravi V Kolla

    Full Text Available B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4 of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure.

  13. Utilizing Ayurvedic literature for the identification of novel phytochemical inhibitors of botulinum neurotoxin A.

    Science.gov (United States)

    Yalamanchili, Chinni; Manda, Vamshi K; Chittiboyina, Amar G; Guernieri, Rebecca L; Harrell, William A; Webb, Robert P; Smith, Leonard A; Khan, Ikhlas A

    2017-02-02

    Ayurveda, an ancient holistic system of health care practiced on the Indian subcontinent, utilizes a number of multi-plant formulations and is considered by many as a potential source for novel treatments, as well as the identification of new drugs. Our aim is to identify novel phytochemicals for the inhibition of bacterial exotoxin, botulinum neurotoxin A (BoNT/A) based on Ayurvedic literature. BoNT/A is released by Clostridium species, which when ingested, inhibits the release of acetylcholine by concentrating at the neuromuscular junction and causes flaccid paralysis, resulting in a condition termed as botulism, and may also lead to death due to respiratory arrest. Fifteen plants were selected from the book 'Diagnosis and treatment of diseases in Ayurveda' by Vaidya Bhagwan Dash and Lalitesh Kashyap, based on their frequency of use in the formulations used for the treatment of six diseases with neuromuscular symptoms similar to botulism. Phytochemicals from these plants were screened using in silico, and in vitro methods. Structures of 570 reported phytochemicals from 14 plants were docked inside six reported BoNT/A light chain crystal structures using ensemble docking module in Maestro (Schrödinger, LLE). From the docking scores and structural diversity, nine compounds including acoric acid 1, three flavonoids, three coumarins derivatives, one kava lactone were selected and screened using an in vitro HPLC-based protease assay. The bioassay results showed that several compounds possess BoNT/A LC inhibition of 50-60% when compared to positive controls NSC 84094 and CB7967495 (80-95%). Further testing of the active compounds identified from Ayurvedic literature and structure-activity studies of acoric acid 1 using more sensitive bioassays is under way. The identification of acoric acid 1, a novel scaffold against BoNT/A, exemplifies the utility of Ayurvedic literature for the discovery of novel drug leads. Copyright © 2016 Elsevier Ireland Ltd. All rights

  14. Subinhibitory Concentrations of Thymol Reduce Enterotoxins A and B and α-Hemolysin Production in Staphylococcus aureus Isolates

    Science.gov (United States)

    Xiang, Hua; Feng, Haihua; Jiang, Youshuai; Xia, Lijie; Dong, Jing; Lu, Jing; Yu, Lu; Deng, Xuming

    2010-01-01

    Background Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., α-hemolysin and enterotoxins) by S. aureus. Methodology/Principal Findings Secretion of α-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF) release assays were performed to elucidate the biological relevance of changes in α-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding α-hemolysin, SEA and SEB, respectively) was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of α-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. Conclusions/Significance Subinhibitory concentrations of thymol decreased the production of α-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with β-lactams and glycopeptide antibiotics, which induce expression of α-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors. PMID:20305813

  15. Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates.

    Science.gov (United States)

    Qiu, Jiazhang; Wang, Dacheng; Xiang, Hua; Feng, Haihua; Jiang, Youshuai; Xia, Lijie; Dong, Jing; Lu, Jing; Yu, Lu; Deng, Xuming

    2010-03-17

    Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., alpha-hemolysin and enterotoxins) by S. aureus. Secretion of alpha-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF) release assays were performed to elucidate the biological relevance of changes in alpha-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding alpha-hemolysin, SEA and SEB, respectively) was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of alpha-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. Subinhibitory concentrations of thymol decreased the production of alpha-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with beta-lactams and glycopeptide antibiotics, which induce expression of alpha-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors.

  16. Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., alpha-hemolysin and enterotoxins by S. aureus. METHODOLOGY/PRINCIPAL FINDINGS: Secretion of alpha-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF release assays were performed to elucidate the biological relevance of changes in alpha-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding alpha-hemolysin, SEA and SEB, respectively was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of alpha-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. CONCLUSIONS/SIGNIFICANCE: Subinhibitory concentrations of thymol decreased the production of alpha-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with beta-lactams and glycopeptide antibiotics, which induce expression of alpha-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors.

  17. Identification of Staphylococcus aureus α-hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells.

    Science.gov (United States)

    Swofford, Charles A; St Jean, Adam T; Panteli, Jan T; Brentzel, Zachary J; Forbes, Neil S

    2014-06-01

    Targeted bacterial delivery of anticancer proteins has the ability to overcome therapeutic resistance in tumors that limits the efficacy of chemotherapeutics. The ability of bacteria to specifically target tumors allows for delivery of aggressive proteins that directly kill cancer cells and cannot be administered systemically. However, few proteins have been tested for this purpose. To identify effective molecules, we systematically sorted proteins that have been shown to cause mammalian cell death. The genes for five proteins were selected and cloned into Escherichia coli and Salmonella. Supernatant from cultures of the transformed bacteria was applied to flasks of MCF-7 mammary carcinoma cells to identify proteins that (1) were expressed, (2) secreted, and (3) rapidly killed cancer cells. Time-lapse images were taken to visualize mammalian cell morphology. Of the investigated proteins, α-hemolysin from Staphylococcus aureus (SAH) was the most promising because it was secreted, caused trauma to cellular membranes, and induced oncosis in 18 min. After exposure for 6 h, SAH decreased cell viability by 90%. In comparison, the positive control, Pseudomonas aeruginosa exotoxin A (PEA), required 11 days to achieve a similar effect, when administered at 3,000 times its LC50 . The maximum death rate induced by SAH was calculated to be a reduction in cell viability of 7.1% per min, which was 200-fold faster than the PEA control. Two proteins, Dermonecrotic Toxin and Phospholipase C were active when extracted from the bacterial cytoplasm but were not secreted. This investigation revealed for the first time SAH as a potent anticancer drug for delivery by bacteria because of its ability to be secreted in a fully functional form and aggressively kill cancer cells. © 2014 Wiley Periodicals, Inc.

  18. Separately or combined, LukG/LukH is functionally unique compared to other staphylococcal bicomponent leukotoxins.

    Directory of Open Access Journals (Sweden)

    Machi Yanai

    Full Text Available Staphylococcus aureus is a major human pathogen that elaborates several exotoxins. Among these are the bicomponent leukotoxins (BCLs, which include γ-hemolysin, Panton-Valentine leukocidin (PVL, and LukDE. The toxin components are classified as either F or S proteins, which are secreted individually and assemble on cell surfaces to form hetero-oligomeric pores resulting in lysis of PMNs and/or erythrocytes. F and S proteins of γ-hemolysin, PVL and LukDE have ∼ 70% sequence homology within the same class and several heterologous combinations of F and S members from these three bicomponent toxin groups are functional. Recently, an additional BCL pair, LukGH (also called LukAB that has only 30% homology to γ-hemolysin, PVL and LukDE, has been characterized from S. aureus. Our results showed that LukGH was more cytotoxic to human PMNs than PVL. However, LukGH-induced calcium ion influx in PMNs was markedly attenuated and slower than that induced by PVL and other staphylococcal BCLs. In contrast to other heterologous BCL combinations, LukG in combination with heterologous S components, and LukH in combination with heterologous F components did not induce calcium ion entry or cell lysis in human PMNs or rabbit erythrocytes. Like PVL, LukGH induced IL-8 production by PMNs. While individual components LukG and LukH had no cytolytic or calcium influx activity, they each induced high levels of IL-8 transcription and secretion. IL-8 production induced by LukG or LukH was dependent on NF-κB. Therefore, our results indicate LukGH differs functionally from other staphylococcal BCLs.

  19. Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease.

    Directory of Open Access Journals (Sweden)

    Stephen B Beres

    Full Text Available Outbreaks of disease attributable to human error or natural causes can provide unique opportunities to gain new information about host-pathogen interactions and new leads for pathogenesis research. Poststreptococcal glomerulonephritis (PSGN, a sequela of infection with pathogenic streptococci, is a common cause of preventable kidney disease worldwide. Although PSGN usually occurs after infection with group A streptococci, organisms of Lancefield group C and G also can be responsible. Despite decades of study, the molecular pathogenesis of PSGN is poorly understood. As a first step toward gaining new information about PSGN pathogenesis, we sequenced the genome of Streptococcus equi subsp. zooepidemicus strain MGCS10565, a group C organism that caused a very large and unusually severe epidemic of nephritis in Brazil. The genome is a circular chromosome of 2,024,171 bp. The genome shares extensive gene content, including many virulence factors, with genetically related group A streptococci, but unexpectedly lacks prophages. The genome contains many apparently foreign genes interspersed around the chromosome, consistent with the presence of a full array of genes required for natural competence. An inordinately large family of genes encodes secreted extracellular collagen-like proteins with multiple integrin-binding motifs. The absence of a gene related to speB rules out the long-held belief that streptococcal pyrogenic exotoxin B or antibodies reacting with it singularly cause PSGN. Many proteins previously implicated in GAS PSGN, such as streptokinase, are either highly divergent in strain MGCS10565 or are not more closely related between these species than to orthologs present in other streptococci that do not commonly cause PSGN. Our analysis provides a comparative genomics framework for renewed appraisal of molecular events underlying APSGN pathogenesis.

  20. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS).

    Science.gov (United States)

    Shimomura, Yumi; Okumura, Kayo; Murayama, Somay Yamagata; Yagi, Junji; Ubukata, Kimiko; Kirikae, Teruo; Miyoshi-Akiyama, Tohru

    2011-01-11

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause

  1. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences

    Science.gov (United States)

    Nasser, Waleed; Beres, Stephen B.; Olsen, Randall J.; Dean, Melissa A.; Rice, Kelsey A.; Long, S. Wesley; Kristinsson, Karl G.; Gottfredsson, Magnus; Vuopio, Jaana; Raisanen, Kati; Caugant, Dominique A.; Steinbakk, Martin; Low, Donald E.; McGeer, Allison; Darenberg, Jessica; Henriques-Normark, Birgitta; Van Beneden, Chris A.; Hoffmann, Steen; Musser, James M.

    2014-01-01

    We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD+-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide. PMID:24733896

  2. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS

    Directory of Open Access Journals (Sweden)

    Ubukata Kimiko

    2011-01-01

    Full Text Available Abstract Background Streptococcus dysgalactiae subsp. equisimilis (SDSE causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS, as does Lancefield group A Streptococcus pyogenes (GAS. We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. Results We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS, suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Conclusion Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles

  3. Production of glycoprotein vaccines in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ihssen Julian

    2010-08-01

    Full Text Available Abstract Background Conjugate vaccines in which polysaccharide antigens are covalently linked to carrier proteins belong to the most effective and safest vaccines against bacterial pathogens. State-of-the art production of conjugate vaccines using chemical methods is a laborious, multi-step process. In vivo enzymatic coupling using the general glycosylation pathway of Campylobacter jejuni in recombinant Escherichia coli has been suggested as a simpler method for producing conjugate vaccines. In this study we describe the in vivo biosynthesis of two novel conjugate vaccine candidates against Shigella dysenteriae type 1, an important bacterial pathogen causing severe gastro-intestinal disease states mainly in developing countries. Results Two different periplasmic carrier proteins, AcrA from C. jejuni and a toxoid form of Pseudomonas aeruginosa exotoxin were glycosylated with Shigella O antigens in E. coli. Starting from shake flask cultivation in standard complex medium a lab-scale fed-batch process was developed for glycoconjugate production. It was found that efficiency of glycosylation but not carrier protein expression was highly susceptible to the physiological state at induction. After induction glycoconjugates generally appeared later than unglycosylated carrier protein, suggesting that glycosylation was the rate-limiting step for synthesis of conjugate vaccines in E. coli. Glycoconjugate synthesis, in particular expression of oligosaccharyltransferase PglB, strongly inhibited growth of E. coli cells after induction, making it necessary to separate biomass growth and recombinant protein expression phases. With a simple pulse and linear feed strategy and the use of semi-defined glycerol medium, volumetric glycoconjugate yield was increased 30 to 50-fold. Conclusions The presented data demonstrate that glycosylated proteins can be produced in recombinant E. coli at a larger scale. The described methodologies constitute an important step

  4. Phage display-based on-slide selection of tumor-specific antibodies on formalin-fixed paraffin-embedded human tissue biopsies.

    Science.gov (United States)

    Ten Haaf, Andre; Pscherer, Sibylle; Fries, Katharina; Barth, Stefan; Gattenlöhner, Stefan; Tur, Mehmet Kemal

    2015-08-01

    Phage display is an effective method for the generation of target-specific human antibodies. Standard phage display panning use purified proteins, antigen-transfected cells or tumor cell lines as target structure to generate specific antibodies. However, recombinant proteins can be difficult to express and purify in their native conformation and suitable cell lines are not always available. Additionally the antigen expression profile may change during cultivation and thus differ from the malignant cells in patient. Here we describe a method for the selection of specific antibodies from phage display libraries by panning against formalin-fixed paraffin-embedded (FFPE) tissue biopsies immobilized on glass slides, using small cell lung cancer (SCLC) as a case study. The human Tomlinson single-chain variable fragment (scFv) phage libraries I and J were panned against SCLC FFPE tissue slides for positive selection and healthy lung tissue for subtraction. The specificity of the selected scFv antibodies was confirmed in vitro by ELISA on immobilized SCLC cell membranes, by flow cytometry using the SCLC cell lines NCI-H69, NCI-H82 and DMS 273, and ex vivo against tissue microarrays containing 35 different SCLC samples and 20 types of normal organs. We monitored the internalization of three selected scFv antibodies and fused them with Pseudomonas exotoxin A (ETA') to produce immunotoxins whose cytotoxicity was confirmed by cell viability and apoptosis assays on different SCLC cell lines, achieving IC50 values of up to 23nM. The selection of SCLC-specific scFv antibodies by panning against FFPE tissue slides circumvents the challenges of using purified antigens or cell lines for antibody selection. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Paradoxical effect of pertussis toxin on the delayed hypersensitivity response to autoantigens in mice.

    Directory of Open Access Journals (Sweden)

    Rajwahrdhan Yadav

    2010-08-01

    Full Text Available Pertussis toxin (PTX, an exotoxin of Bordetella pertussis, enhances the development of experimental autoimmune diseases such as experimental autoimmune uveitis (EAU and experimental autoimmune encephalomyelitis (EAE in rodent models. The mechanisms of the promotion of experimental autoimmune diseases by PTX may be based upon PTX-induced disruption of the blood eye/brain barriers facilitating the infiltration of inflammatory cells, the modulation of inflammatory cell migration and the enhancement of the activation of inflammatory cells. We hypothesized that the facilitation of experimental autoimmunity by PTX suggests that its influence on the in vivo immune response to auto-antigen may differ from its influence on non-self antigens.We have evaluated the effect of PTX on the simultaneous generation of delayed type hypersensitivity (DTH responses and autoimmune responses to uveitogenic interphotoreceptor retinoid binding protein peptide (IRBP161-180, encephalitogenic myelin oligodendrocyte glycoprotein peptide (MOG35-55 or ovalbumin (OVA. PTX injection of mice immunized to IRBP peptide161-180 led to (i the development of EAU as shown by histopathology of the retina, (ii pro-inflammatory cytokine production by splenocytes in response to IRBP peptide161-180, and (iii symptomatic EAE in mice immunized with encephalitogenic MOG peptide35-55. However, mice that received PTX had a reduced DTH response to IRBP161-180 peptide or MOG peptide35-55 when challenged distal to the site affected by autoreactive T cells. Moreover, footpad challenge with MOG35-55 peptide reduced EAE in mice immunized with MOG peptide. In contrast, the use of PTX when immunizing with OVA protein or an OVA immunogenic peptide did not affect the DTH response to OVA.The results suggest that that the reduced DTH response in mice receiving PTX may be specific for autoantigens and autoantigen-reactive T cells are diverted away from ectopic sites that received the autoantigen and towards

  6. Changes in Antibody Levels during and following an Episode of Acute Adenolymphangitis (ADL among Lymphedema Patients in Leogane, Haiti.

    Directory of Open Access Journals (Sweden)

    Katherine E Mues

    Full Text Available Episodes of acute adenolymphangitis (ADL are often the first clinical sign of lymphatic filariasis (LF. They are often accompanied by swelling of the affected limb, inflammation, fever, and general malaise and lead to the progression of lymphedema. Although ADL episodes have been studied for a century or more, questions still remain as to their etiology. We quantified antibody levels to pathogens that potentially contribute to ADL episodes during and after an episode among lymphedema patients in Léogâne, Haiti. We estimated the proportion of ADL episodes hypothesized to be attributed to specific pathogens.We measured antibody levels to specific pathogens during and following an ADL episode among 41 lymphedema patients enrolled in a cohort study in Léogâne, Haiti. We calculated the absolute and relative changes in antibody levels between the ADL and convalescent time points. We calculated the proportion of episodes that demonstrated a two-fold increase in antibody level for several bacterial, fungal, and filarial pathogens.Our results showed the greatest proportion of two-fold changes in antibody levels for the carbohydrate antigen Streptococcus group A, followed by IgG2 responses to a soluble filarial antigen (BpG2, Streptococcal Pyrogenic Exotoxin B, and an antigen for the fungal pathogen Candida. When comparing the median antibody level during the ADL episode to the median antibody level at the convalescent time point, only the antigens for Pseudomonas species (P-value = 0.0351 and Streptolysin O (P-value = 0.0074 showed a significant result.Although our results are limited by the lack of a control group and few antibody responses, they provide some evidence for infection with Streptococcus A as a potential contributing factor to ADL episodes. Our results add to the current evidence and illustrate the importance of determining the causal role of bacterial and fungal pathogens and immunological antifilarial response in ADL episodes.

  7. Staphylococcal enterotoxin-like X (SElX is a unique superantigen with functional features of two major families of staphylococcal virulence factors.

    Directory of Open Access Journals (Sweden)

    Ries J Langley

    2017-09-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen that produces many virulence factors. Two major families of which are the staphylococcal superantigens (SAgs and the Staphylococcal Superantigen-Like (SSL exoproteins. The former are immunomodulatory toxins that induce a Vβ-specific activation of T cells, while the latter are immune evasion molecules that interfere with a wide range of innate immune defences. The superantigenic properties of Staphylococcal enterotoxin-like X (SElX have recently been established. We now reveal that SElX also possesses functional characteristics of the SSLs. A region of SElX displays high homology to the sialyl-lactosamine (sLacNac-specific binding site present in a sub-family of SSLs. By analysing the interaction of SElX with sLacNac-containing glycans we show that SElX has an equivalent specificity and host cell binding range to the SSLs. Mutation of key amino acids in this conserved region affects the ability of SElX to bind to cells of myeloid origin and significantly reduces its ability to protect S. aureus from destruction in a whole blood killing (WBK assay. Like the SSLs, SElX is up-regulated early during infection and is under the control of the S. aureus exotoxin expression (Sae two component gene regulatory system. Additionally, the structure of SElX in complex with the sLacNac-containing tetrasaccharide sialyl Lewis X (sLeX reveals that SElX is a unique single-domain SAg. In summary, SElX is an 'SSL-like' SAg.

  8. Modeling the effects of a Staphylococcal Enterotoxin B (SEB on the apoptosis pathway

    Directory of Open Access Journals (Sweden)

    Hammamieh Rasha

    2006-05-01

    Full Text Available Abstract Background The lack of detailed understanding of the mechanism of action of many biowarfare agents poses an immediate challenge to biodefense efforts. Many potential bioweapons have been shown to affect the cellular pathways controlling apoptosis 1234. For example, pathogen-produced exotoxins such as Staphylococcal Enterotoxin B (SEB and Anthrax Lethal Factor (LF have been shown to disrupt the Fas-mediated apoptotic pathway 24. To evaluate how these agents affect these pathways it is first necessary to understand the dynamics of a normally functioning apoptosis network. This can then serve as a baseline against which a pathogen perturbed system can be compared. Such comparisons can expose both the proteins most susceptible to alteration by the agent as well as the most critical reaction rates to better instill control on a biological network. Results We explore this through the modeling and simulation of the Fas-mediated apoptotic pathway under normal and SEB influenced conditions. We stimulated human Jurkat cells with an anti-Fas antibody in the presence and absence of SEB and determined the relative levels of seven proteins involved in the core pathway at five time points following exposure. These levels were used to impute relative rate constants and build a quantitative model consisting of a series of ordinary differential equations (ODEs that simulate the network under both normal and pathogen-influenced conditions. Experimental results show that cells exposed to SEB exhibit an increase in the rate of executioner caspase expression (and subsequently apoptosis of 1 hour 43 minutes (± 14 minutes, as compared to cells undergoing normal cell death. Conclusion Our model accurately reflects these results and reveals intervention points that can be altered to restore SEB-influenced system dynamics back to levels within the range of normal conditions.

  9. Streptococcus super antigen in polyp tissue of patients with nasal polyposis and chronic rhinosinusitis in comparison to normal population

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadi

    2013-11-01

    Full Text Available Background: Nasal polyp (NP is a benign mucosal mass located in both sinuses and nares which is mostly seen in association with cystic fibrosis, asthma or oversensitivity to aspirin. The prominent histological feature of NP is inflammatory cell infiltration with eosinophil predominance. Superantigens role in causing NP complications is already proven. Superantigens, which are mostly originated from Streptococci and Staphylococci, activate T cells strongly and increase the process of production and release of cytokines, and secretion of IgE from B cells, which in turn directly affects proinflammatory cells such as eosinophils, both in their tissues infiltration and functions.Methods: The samples are collected from patients referring to ENT clinic in Rasoul Akram training Hospital in Tehran after thorough clinical and paraclinical examinations. For control group the samples collected from patients undergoing rhinoplasty. All the samples kept frozen and sent to immunology lab. The DNA of the excised tissues extracted and amplified by using the superantigens specific primers and PCR product detected by gel electrophoresis. The date analyzed by using mean and SD and χ2 analytical tools.  Results: Fifteen healthy individuals, 25 patients with rhinosinusitis and 24 with polyposis entered this trial. Group A Streptococcus toxin detection was significantly more frequent in those with nasal polyp and rhinosinusitis compared to healthy individuals (P=0.001 and 0.005, respectively, but the results were almost the same for those with nasal polyp and rhinosinusitis (P=0.4.Conclusion: Streptococci may play an important role in induction or clinical exacerbation of polyposis and group A Streptococcus pyogenes exotoxin (SPEs with superantigenic effects may have a crucial role in etiology and pathogenesis of polyps with or without rhinosinusitis. It is postulated that, T cells polyclonal activation by SPEs may cause recruitment of inflammatory cells in nasal

  10. Engineered toxins "zymoxins" are activated by the HCV NS3 protease by removal of an inhibitory protein domain.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available The synthesis of inactive enzyme precursors, also known as "zymogens," serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV as a model, we designed two HCV NS3 protease-activated "zymogenized" chimeric toxins (which we denote "zymoxins". In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA and Ricin A chain (RTA, respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the "zymoxin" approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected.

  11. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors.

    Science.gov (United States)

    Schappa, Jill T; Frantz, Aric M; Gorden, Brandi H; Dickerson, Erin B; Vallera, Daniel A; Modiano, Jaime F

    2013-10-15

    Targeted toxins have the potential to overcome intrinsic or acquired resistance of cancer cells to conventional cytotoxic agents. Here, we hypothesized that EGFuPA-toxin, a bispecific ligand-targeted toxin (BLT) consisting of a deimmunized Pseudomonas exotoxin (PE) conjugated to epidermal growth factor and urokinase, would efficiently target and kill cells derived from canine hemangiosarcoma (HSA), a highly chemotherapy resistant tumor, as well as cultured hemangiospheres, used as a surrogate for cancer stem cells (CSC). EGFuPA-toxin showed cytotoxicity in four HSA cell lines (Emma, Frog, DD-1 and SB) at a concentration of ≤100 nM, and the cytotoxicity was dependent on specific ligand-receptor interactions. Monospecific targeted toxins also killed these chemoresistant cells; in this case, a "threshold" level of EGFR expression appeared to be required to make cells sensitive to the monospecific EGF-toxin, but not to the monospecific uPA-toxin. The IC₅₀ of CSCs was higher by approximately two orders of magnitude as compared to non-CSCs, but these cells were still sensitive to EGFuPA-toxin at nanomolar (i.e., pharmacologically relevant) concentrations, and when targeted by EGFuPA-toxin, resulted in death of the entire cell population. Taken together, our results support the use of these toxins to treat chemoresistant tumors such as sarcomas, including those that conform to the CSC model. Our results also support the use of companion animals with cancer for further translational development of these cytotoxic molecules. Copyright © 2013 UICC.

  12. Mycolactone-Dependent Depletion of Endothelial Cell Thrombomodulin Is Strongly Associated with Fibrin Deposition in Buruli Ulcer Lesions

    Science.gov (United States)

    Ogbechi, Joy; Ruf, Marie-Thérèse; Hall, Belinda S.; Bodman-Smith, Katherine; Vogel, Moritz; Wu, Hua-Lin; Stainer, Alexander; Esmon, Charles T.; Ahnström, Josefin; Pluschke, Gerd; Simmonds, Rachel E.

    2015-01-01

    A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin’s substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells’ ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone’s effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin

  13. Chemical Screens Identify Drugs that Enhance or Mitigate Cellular Responses to Antibody-Toxin Fusion Proteins.

    Directory of Open Access Journals (Sweden)

    Antonella Antignani

    Full Text Available The intersection of small molecular weight drugs and antibody-based therapeutics is rarely studied in large scale. Both types of agents are currently part of the cancer armamentarium. However, very little is known about how to combine them in optimal ways. Immunotoxins are antibody-toxin gene fusion proteins engineered to target cancer cells via antibody binding to surface antigens. For fusion proteins derived from Pseudomonas exotoxin (PE, potency relies on the enzymatic domain of the toxin which catalyzes the ADP-ribosylation of EF2 causing inhibition of protein synthesis leading to cell death. Candidate immunotoxins have demonstrated clear value in clinical trials but generally have not been curative as single agents. Therefore we undertook three screens to discover effective combinations that could act synergistically. From the MIPE-3 library of compounds we identified various enhancers of immunotoxin action and at least one major class of inhibitor. Follow-up experiments confirmed the screening data and suggested that immunotoxins when administered with everolimus or nilotinib exhibit favorable combinatory activity and would be candidates for preclinical development. Mechanistic studies revealed that everolimus-immunotoxin combinations acted synergistically on elements of the protein synthetic machinery, including S61 kinase and 4E-BP1 of the mTORC1 pathway. Conversely, PARP inhibitors antagonized immunotoxins and also blocked the toxicity due to native ADP-ribosylating toxins. Thus, our goal of investigating a chemical library was justified based on the identification of several approved compounds that could be developed preclinically as 'enhancers' and at least one class of mitigator to be avoided.

  14. The Mycobacterium tuberculosis phagosome is a HLA-I processing competent organelle.

    Directory of Open Access Journals (Sweden)

    Jeff E Grotzke

    2009-04-01

    Full Text Available Mycobacterium tuberculosis (Mtb resides in a long-lived phagosomal compartment that resists maturation. The manner by which Mtb antigens are processed and presented on MHC Class I molecules is poorly understood. Using human dendritic cells and IFN-gamma release by CD8(+ T cell clones, we examined the processing and presentation pathway for two Mtb-derived antigens, each presented by a distinct HLA-I allele (HLA-Ia versus HLA-Ib. Presentation of both antigens is blocked by the retrotranslocation inhibitor exotoxin A. Inhibitor studies demonstrate that, after reaching the cytosol, both antigens require proteasomal degradation and TAP transport, but differ in the requirement for ER-golgi egress and new protein synthesis. Specifically, presentation by HLA-B8 but not HLA-E requires newly synthesized HLA-I and transport through the ER-golgi. Phenotypic analysis of the Mtb phagosome by flow organellometry revealed the presence of Class I and loading accessory molecules, including TAP and PDI. Furthermore, loaded HLA-I:peptide complexes are present within the Mtb phagosome, with a pronounced bias towards HLA-E:peptide complexes. In addition, protein analysis also reveals that HLA-E is enriched within the Mtb phagosome compared to HLA-A2. Together, these data suggest that the phagosome, through acquisition of ER-localized machinery and as a site of HLA-I loading, plays a vital role in the presentation of Mtb-derived antigens, similar to that described for presentation of latex bead-associated antigens. This is, to our knowledge, the first description of this presentation pathway for an intracellular pathogen. Moreover, these data suggest that HLA-E may play a unique role in the presentation of phagosomal antigens.

  15. Properties of hemolysin and protease produced by Aeromonas trota.

    Directory of Open Access Journals (Sweden)

    Eizo Takahashi

    Full Text Available We examined the properties of exotoxins produced by Aeromonas trota (A. enteropelogenes, one of the diarrheagenic species of Aeromonadaceae. Nine of 19 A. trota isolates that grew on solid media containing erythrocytes showed hemolytic activity. However, the hemolytic activities of the culture supernatants of these hemolytic strains of A. trota were markedly lower than those of A. sobria when cultured in liquid medium, and the amount of hemolysin detected by immunoblotting using antiserum against the hemolysin produced by A. sobria was also low. A mouse intestine loop assay using living bacterial cells showed that A. trota 701 caused the significant accumulation of fluid, and antiserum against the hemolysin produced suppressed the enterotoxic action of A. trota 701. These results indicated that A. trota 701 was diarrheagenic and the hemolysin produced was the causative agent of the enterotoxic activity of A. trota. The hemolysin in A. sobria was previously shown to be secreted in a preform (inactive form and be activated when the carboxy-terminal domain was cleaved off by proteases in the culture supernatant. Since mature hemolysin was detected in the culture supernatants of A. trota, we analyzed the extracellular protease produced by A. trota. Fifteen of 19 A. trota isolates that grew on solid media containing skim milk showed proteolytic activity. We subsequently found that most A. trota isolates possessed the serine protease gene, but not the metalloprotease gene. Therefore, we determined the nucleotide sequence of the serine protease gene and its chaperone A. trota gene. The results obtained revealed that the deduced amino acid sequences of serine protease and the chaperone were homologous to those of A. sobria with identities of 83.0% and 75.8%, respectively.

  16. Properties of hemolysin and protease produced by Aeromonas trota.

    Science.gov (United States)

    Takahashi, Eizo; Ozaki, Haruka; Fujii, Yoshio; Kobayashi, Hidetomo; Yamanaka, Hiroyasu; Arimoto, Sakae; Negishi, Tomoe; Okamoto, Keinosuke

    2014-01-01

    We examined the properties of exotoxins produced by Aeromonas trota (A. enteropelogenes), one of the diarrheagenic species of Aeromonadaceae. Nine of 19 A. trota isolates that grew on solid media containing erythrocytes showed hemolytic activity. However, the hemolytic activities of the culture supernatants of these hemolytic strains of A. trota were markedly lower than those of A. sobria when cultured in liquid medium, and the amount of hemolysin detected by immunoblotting using antiserum against the hemolysin produced by A. sobria was also low. A mouse intestine loop assay using living bacterial cells showed that A. trota 701 caused the significant accumulation of fluid, and antiserum against the hemolysin produced suppressed the enterotoxic action of A. trota 701. These results indicated that A. trota 701 was diarrheagenic and the hemolysin produced was the causative agent of the enterotoxic activity of A. trota. The hemolysin in A. sobria was previously shown to be secreted in a preform (inactive form) and be activated when the carboxy-terminal domain was cleaved off by proteases in the culture supernatant. Since mature hemolysin was detected in the culture supernatants of A. trota, we analyzed the extracellular protease produced by A. trota. Fifteen of 19 A. trota isolates that grew on solid media containing skim milk showed proteolytic activity. We subsequently found that most A. trota isolates possessed the serine protease gene, but not the metalloprotease gene. Therefore, we determined the nucleotide sequence of the serine protease gene and its chaperone A. trota gene. The results obtained revealed that the deduced amino acid sequences of serine protease and the chaperone were homologous to those of A. sobria with identities of 83.0% and 75.8%, respectively.

  17. Safe and Effective Sarcoma Therapy through Bispecific Targeting of EGFR and uPAR.

    Science.gov (United States)

    Borgatti, Antonella; Koopmeiners, Joseph S; Sarver, Aaron L; Winter, Amber L; Stuebner, Kathleen; Todhunter, Deborah; Rizzardi, Anthony E; Henriksen, Jonathan C; Schmechel, Stephen; Forster, Colleen L; Kim, Jong-Hyuk; Froelich, Jerry; Walz, Jillian; Henson, Michael S; Breen, Matthew; Lindblad-Toh, Kerstin; Oh, Felix; Pilbeam, Kristy; Modiano, Jaime F; Vallera, Daniel A

    2017-05-01

    Sarcomas differ from carcinomas in their mesenchymal origin. Therapeutic advancements have come slowly, so alternative drugs and models are urgently needed. These studies report a new drug for sarcomas that simultaneously targets both tumor and tumor neovasculature. eBAT is a bispecific angiotoxin consisting of truncated, deimmunized Pseudomonas exotoxin fused to EGF and the amino terminal fragment of urokinase. Here, we study the drug in an in vivo "ontarget" companion dog trial as eBAT effectively kills canine hemangiosarcoma and human sarcoma cells in vitro We reasoned the model has value due to the common occurrence of spontaneous sarcomas in dogs and a limited lifespan allowing for rapid accrual and data collection. Splenectomized dogs with minimal residual disease were given one cycle of eBAT followed by adjuvant doxorubicin in an adaptive dose-finding, phase I-II study of 23 dogs with spontaneous, stage I-II, splenic hemangiosarcoma. eBAT improved 6-month survival from 450 days. eBAT abated expected toxicity associated with EGFR targeting, a finding supported by mouse studies. Urokinase plasminogen activator receptor and EGFR are targets for human sarcomas, so thorough evaluation is crucial for validation of the dog model. Thus, we validated these markers for human sarcoma targeting in the study of 212 human and 97 canine sarcoma samples. Our results support further translation of eBAT for human patients with sarcomas and perhaps other EGFR-expressing malignancies. Mol Cancer Ther; 16(5); 956-65. ©2017 AACR. ©2017 American Association for Cancer Research.

  18. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    Science.gov (United States)

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  19. Unique Genomic Arrangements in an Invasive Serotype M23 Strain of Streptococcus pyogenes Identify Genes That Induce Hypervirulence

    Science.gov (United States)

    Bao, Yunjuan; Liang, Zhong; Booyjzsen, Claire; Mayfield, Jeffrey A.; Li, Yang; Lee, Shaun W.; Ploplis, Victoria A.; Song, Hui

    2014-01-01

    The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF−) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors. PMID:25225265

  20. Characterisation of clinically isolated Streptococcus pyogenes from balanoposthitis patients, with special emphasis on emm89 isolates.

    Science.gov (United States)

    Hasegawa, Tadao; Hata, Nanako; Matsui, Hideyuki; Isaka, Masanori; Tatsuno, Ichiro

    2017-04-01

    Streptococcus pyogenes causes a variety of diseases, such as pharyngitis and toxic shock syndrome. In addition, this bacterium is a causative agent of balanoposthitis. To reveal the bacteriological characteristics of the isolates from balanoposthitis patients, we analysed 47 isolates. In addition, novel clade genotype emm89 S. pyogenes isolates have been reported to be spreading worldwide recently. Hence, we further analysed eight emm89 isolates. A drug susceptibility experiment was performed and emm types were determined. More detailed experiments, such as PCR analysis for the presence of virulence-associated genes and MLST analysis, were performed especially using emm89 isolates. All isolates were sensitive to ampicillin, but 34 % of the isolates were resistant to at least one antibiotic. The emm types of the isolates varied, with emm89 and emm11 being the most prevalent, but the emm1 type was not detected. The analysis of emm89 isolates revealed that drug susceptibilities varied. All isolates were negative for the hasABC gene and produced active NADase that are characteristics of novel clade genotype emm89 S. pyogenes. MLST analysis demonstrated that six isolates were of the ST101 type, the most predominant type reported thus far, but two isolates were of the ST646 type. According to the PCR analysis used to determine the presence of streptococcal pyrogenic exotoxin-related genes, the six ST101 isolates were further classified into four groups. These results suggest that balanoposthitis is caused by a variety of types of S. pyogenes, with novel clade genotype emm89 isolates playing a role in balanoposthitis infections in Japan.

  1. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    Directory of Open Access Journals (Sweden)

    Raymond Kiu

    2017-12-01

    Full Text Available Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc, enterotoxin (cpe, and Perfringolysin O (pfo or pfoA, although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56 of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet and anti-defensins genes (mprF were consistently detected in silico (tet: 75%; mprF: 100%. However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  2. Prevalence of Enterotoxigenic Staphylococcus aureus Isolated From Chicken Nugget in Iran

    Science.gov (United States)

    Madahi, Hajar; Rostami, Fatemeh; Rahimi, Ebrahim; Safarpoor Dehkordi, Farhad

    2014-01-01

    Background: The enterotoxigenic Staphylococcus aureus is considered as one of the most important cause of food poisoning that manifests with gastroenteritis, diarrhea, and vomiting. Its complications usually occur when bacterial virulence genes are produced. The most important virulence factors are cell-associated components, exoenzymes, exotoxins, enterotoxins, and enterotoxin-like toxins. Objectives: The present study aimed to study the presence of S. aureus and its virulence factors in chicken nuggets in Iran. Materials and Methods: Totally, 420 chicken nuggets from five brands were collected from Isfahan and Chaharmahal-va-Bakhtiari provinces, Iran. Samples were cultured and the positive results were studied using ELISA and PCR for detection of classical staphylococcal enterotoxins and sea-sej virulence genes, respectively. Results: Results showed that 27 (6.42%) of 420 samples were contaminated with S. aureus with bacteria concentration between 6.1 × 103 to 8.4 × 101/mL. Totally, 33.33% of isolates produced SEA, 4.16% SEB, 12.50% SEC, 8.33% SED, 12.50% SEA + SEC, and 12.50% SEA + SED. The most commonly detected genes were sea (25%), sea + seg (8.33%), sec (12.50%), sea + sed (12.50%), and sea + sec + sej (12.50%). Conclusions: S. aureus can easily contaminate the chicken nugget and this contamination is usually associated with significant presences of virulence genes. Consumption of these nuggets certainly is associated with gastrointestinal diseases. Therefore, some food safety and quality standards should be applied and performed in most of the Iranian food units to control growth of S. aureus and its virulence factors. PMID:25485044

  3. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Dorte Haubek

    2014-08-01

    Full Text Available For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA and cytolethal distending toxin (Cdt. LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are

  4. Turn a diarrhoea toxin into a receptor-mediated therapy for a plethora of CLDN-4-overexpressing cancers

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Qin [Division of Molecular and Gene Therapies, School of Medical Science, Griffith University, Gold Coast Campus, Southport, Qld 4215 (Australia); Department of Obstetrics and Gynaecology, Affiliated Hospital of Medical Collage, Qingdao University, Qingdao 266003, Shandong (China); Cao, Siyu; Li, Chun; Mengesha, Asferd; Low, Pauline [Division of Molecular and Gene Therapies, School of Medical Science, Griffith University, Gold Coast Campus, Southport, Qld 4215 (Australia); Kong, Beihua [Department of Obstetrics and Gynaecology, Qilu Hospital, Shandong University, Ji' nan 250012, Shandong (China); Dai, Shuzhen, E-mail: qddaishuzhen@163.com [Department of Obstetrics and Gynaecology, Affiliated Hospital of Medical Collage, Qingdao University, Qingdao 266003, Shandong (China); Wei, Mingqian, E-mail: m.wei@griffith.edu.au [Division of Molecular and Gene Therapies, School of Medical Science, Griffith University, Gold Coast Campus, Southport, Qld 4215 (Australia)

    2010-07-30

    Research highlights: {yields} CLDN-4 is the high-affinity receptor for Clostridium perfringens enterotoxin (CPE). {yields} The targeted toxin C-CPE-ETA' utilises the C-terminal fragment of CPE for binding. {yields} C-CPE-ETA' rapidly binds to and internalises into CLDN-4 positive cancer cells. {yields} C-CPE-ETA' has anti-cancer ability in a range of CLDN-4 positive cancers. -- Abstract: Molecular targeted therapy (MTT) represents the new generation of anti-cancer arsenals. In this study, we report an alternative approach using a hybrid toxin that utilises the high-affinity of receptor-binding fragment of Clostridium perfringens enterotoxin (CPE). CPE naturally binds to CLDN-4 through the C-terminal 30 amino acid. However, recent studies have shown that CLDN-4 is also overexpressed on a range of cancer cells. We thus constructed a cDNA comprising C-CPE and a well characterised toxic domain of Pseudomonas aeruginosa exotoxin A (C-CPE-ETA'). The recombinant C-CPE-ETA' fusion protein was shown to retain the specificity of binding to CLDN-4 and initiating rapid penetration into cytosol in five different CLDN-4 positive cancer cells (Breast-MCF7, Skin-A431, Colon-SW480, Prostate-PC3 and DU145) but not to CLDN-4 negative cells (Hela, HUVEC). C-CPE-ETA' was strongly cytotoxic towards CLDN-4 positive cancer cell, as opposed to cells lacking CLDN-4 expression. Furthermore, we demonstrated that the recombinant fusion protein had significant anti-cancer ability in CLDN-4 positive cancer models in vivo. Subcutaneously implanted MCF7 and SW480 xenograft tumours were significantly decreased or abolished after three repeated injection of the hybrid toxin. Taken together, our results convincingly show that the hybrid toxin targets CLDN-4 positive cancer through receptor-binding, and causes significant tumour cell apoptosis, suggesting its potential as an alternative molecular targeted therapy against a plethora of CLDN-4 positive cancers.

  5. Methylation-associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line.

    Science.gov (United States)

    Hollevoet, Kevin; Mason-Osann, Emily; Müller, Fabian; Pastan, Ira

    2015-01-01

    Anti-mesothelin Pseudomonas exotoxin A-based recombinant immunotoxins (RITs) present a potential treatment modality for pancreatic ductal adenocarcinoma (PDAC). To study mechanisms of resistance, the sensitive PDAC cell line KLM-1 was intermittently exposed to the anti-mesothelin SS1-LR-GGS RIT. Surviving cells were resistant to various anti-mesothelin RITs (IC50s >1 μg/ml), including the novel de-immunized RG7787. These resistant KLM-1-R cells were equally sensitive to the anti-CD71 HB21(Fv)-PE40 RIT as KLM-1, indicating resistance was specific to anti-mesothelin RITs. Mesothelin gene expression was partially down-regulated in KLM-1-R, resulting in 5-fold lower surface protein levels and decreased cellular uptake of RG7787 compared to KLM-1. Bisulfite sequencing analysis found that the mesothelin promoter region was significantly more methylated in KLM-1-R (59 ± 3.6%) compared to KLM-1 (41 ± 4.8%), indicating hypermethylation as a mechanism of mesothelin downregulation. The DNA methyltransferase inhibitor 5-azacytidine restored original mesothelin surface expression to more than half in KLM-1-R and increased sensitivity to RG7787 (IC50 = 722.4 ± 232.6 ng/ml), although cells remained significantly less sensitive compared to parental KLM-1 cells (IC50 = 4.41 ± 0.38 ng/ml). Mesothelin cDNA introduction in KLM-1-R led to 5-fold higher surface protein levels and significantly higher RG7887 uptake compared to KLM-1. As a result, the original sensitivity to RG7787 was fully restored (IC50 = 4.49 ± 1.11 ng/ml). A significantly higher RG7787 uptake was thus required to reach the original cytotoxicity in resistant cells, hinting that intracellular RIT trafficking is also a limiting factor. RNA deep sequencing analysis of KLM-1 and KLM-1-R cells supported our experimental findings; compared to KLM-1, resistant cells displayed differential expression of genes linked to intracellular transport and an expression pattern that matched a more general hypermethylation status

  6. Methylation-associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line.

    Directory of Open Access Journals (Sweden)

    Kevin Hollevoet

    Full Text Available Anti-mesothelin Pseudomonas exotoxin A-based recombinant immunotoxins (RITs present a potential treatment modality for pancreatic ductal adenocarcinoma (PDAC. To study mechanisms of resistance, the sensitive PDAC cell line KLM-1 was intermittently exposed to the anti-mesothelin SS1-LR-GGS RIT. Surviving cells were resistant to various anti-mesothelin RITs (IC50s >1 μg/ml, including the novel de-immunized RG7787. These resistant KLM-1-R cells were equally sensitive to the anti-CD71 HB21(Fv-PE40 RIT as KLM-1, indicating resistance was specific to anti-mesothelin RITs. Mesothelin gene expression was partially down-regulated in KLM-1-R, resulting in 5-fold lower surface protein levels and decreased cellular uptake of RG7787 compared to KLM-1. Bisulfite sequencing analysis found that the mesothelin promoter region was significantly more methylated in KLM-1-R (59 ± 3.6% compared to KLM-1 (41 ± 4.8%, indicating hypermethylation as a mechanism of mesothelin downregulation. The DNA methyltransferase inhibitor 5-azacytidine restored original mesothelin surface expression to more than half in KLM-1-R and increased sensitivity to RG7787 (IC50 = 722.4 ± 232.6 ng/ml, although cells remained significantly less sensitive compared to parental KLM-1 cells (IC50 = 4.41 ± 0.38 ng/ml. Mesothelin cDNA introduction in KLM-1-R led to 5-fold higher surface protein levels and significantly higher RG7887 uptake compared to KLM-1. As a result, the original sensitivity to RG7787 was fully restored (IC50 = 4.49 ± 1.11 ng/ml. A significantly higher RG7787 uptake was thus required to reach the original cytotoxicity in resistant cells, hinting that intracellular RIT trafficking is also a limiting factor. RNA deep sequencing analysis of KLM-1 and KLM-1-R cells supported our experimental findings; compared to KLM-1, resistant cells displayed differential expression of genes linked to intracellular transport and an expression pattern that matched a more general

  7. Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection.

    Science.gov (United States)

    Czechowska, Kamila; McKeithen-Mead, Saria; Al Moussawi, Khatoun; Kazmierczak, Barbara I

    2014-05-27

    The opportunistic pathogen Pseudomonas aeruginosa expresses a type 3 secretion system (T3SS) strongly associated with bacterial virulence in murine models and human patients. T3SS effectors target host innate immune mechanisms, and T3SS-defective mutants are cleared more efficiently than T3SS-positive bacteria by an immunocompetent host. Nonetheless, T3SS-negative isolates are recovered from many patients with documented P. aeruginosa infections, leading us to test whether T3SS-negative strains could have a selective advantage during in vivo infection. Mice were infected with mixtures of T3SS-positive WT P. aeruginosa plus isogenic T3SS-OFF or constitutively T3SS-ON mutants. Relative fitness of bacteria in this acute pneumonia model was reflected by the competitive index of mutants relative to WT. T3SS-OFF strains outcompeted WT PA103 in vivo, whereas a T3SS-ON mutant showed decreased fitness compared with WT. In vitro growth rates of WT and T3SS-OFF bacteria were determined under T3SS-inducing conditions and did not differ significantly. Increased fitness of T3SS-OFF bacteria was no longer observed at high ratios of T3SS-OFF to WT, a feature characteristic of bacterial cheaters. Cheating by T3SS-OFF bacteria occurred only when T3SS-positive bacteria expressed the phospholipase A2 effector Exotoxin U (ExoU). T3SS-OFF bacteria showed no fitness advantage in competition experiments carried out in immunodeficient MyD88-knockout mice or in neutrophil-depleted animals. Our findings indicate that T3SS-negative isolates benefit from the public good provided by ExoU-mediated killing of recruited innate immune cells. Whether this transient increase in fitness observed for T3SS-negative strains in mice contributes to the observed persistence of T3SS-negative isolates in humans is of ongoing interest.

  8. Fine-mapping of immunodominant linear B-cell epitopes of the Staphylococcus aureus SEB antigen using short overlapping peptides.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhao

    Full Text Available Staphylococcal enterotoxin B (SEB is one of the most potent Staphylococcus aureus exotoxins (SEs. Due to its conserved sequence and stable structure, SEB might be a good candidate antigen for MRSA vaccines. Although cellular immune responses to SEB are well-characterized, much less is known regarding SEB-specific humoral immune responses, particularly regarding detailed epitope mapping. In this study, we utilized a recombinant nontoxic mutant of SEB (rSEB and an AlPO4 adjuvant to immunize BALB/c mice and confirmed that rSEB can induce a high antibody level and effective immune protection against MRSA infection. Next, the antisera of immunized mice were collected, and linear B cell epitopes within SEB were finely mapped using a series of overlapping synthetic peptides. Three immunodominant B cell epitopes of SEB were screened by ELISA, including a novel epitope, SEB205-222, and two known epitopes, SEB97-114 and SEB247-261. Using truncated peptides, an ELISA was performed with peptide-KLH antisera, and the core sequence of the three immunodominant B cell epitopes were verified as SEB97-112, SEB207-222, and SEB247-257. In vitro, all of the immunodominant epitope-specific antisera (anti-SEB97-112, anti-SEB207-222 and anti-SEB247-257 were observed to inhibit SEB-induced T cell mitogenesis and cytokine production from splenic lymphocytes of BALB/c mice. The homology analysis indicated that SEB97-112 and SEB207-222 were well-conserved among different Staphylococcus aureus strains. The 3D crystal structure of SEB indicated that SEB97-112 was in the loop region inside SEB, whereas SEB207-222 and SEB247-257 were in the β-slice region outside SEB. In summary, the fine-mapping of linear B-cell epitopes of the SEB antigen in this study will be useful to understand anti-SEB immunity against MRSA infection further and will be helpful to optimize MRSA vaccine designs that are based on the SEB antigen.

  9. Fine-mapping of immunodominant linear B-cell epitopes of the Staphylococcus aureus SEB antigen using short overlapping peptides.

    Science.gov (United States)

    Zhao, Zhuo; Li, Bin; Sun, He-Qiang; Zhang, Jin-Yong; Wang, Yi-Lin; Chen, Li; Hu, Jian; He, Ya-Fei; Zeng, Hao; Zou, Quan-Ming; Wu, Chao

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is one of the most potent Staphylococcus aureus exotoxins (SEs). Due to its conserved sequence and stable structure, SEB might be a good candidate antigen for MRSA vaccines. Although cellular immune responses to SEB are well-characterized, much less is known regarding SEB-specific humoral immune responses, particularly regarding detailed epitope mapping. In this study, we utilized a recombinant nontoxic mutant of SEB (rSEB) and an AlPO4 adjuvant to immunize BALB/c mice and confirmed that rSEB can induce a high antibody level and effective immune protection against MRSA infection. Next, the antisera of immunized mice were collected, and linear B cell epitopes within SEB were finely mapped using a series of overlapping synthetic peptides. Three immunodominant B cell epitopes of SEB were screened by ELISA, including a novel epitope, SEB205-222, and two known epitopes, SEB97-114 and SEB247-261. Using truncated peptides, an ELISA was performed with peptide-KLH antisera, and the core sequence of the three immunodominant B cell epitopes were verified as SEB97-112, SEB207-222, and SEB247-257. In vitro, all of the immunodominant epitope-specific antisera (anti-SEB97-112, anti-SEB207-222 and anti-SEB247-257) were observed to inhibit SEB-induced T cell mitogenesis and cytokine production from splenic lymphocytes of BALB/c mice. The homology analysis indicated that SEB97-112 and SEB207-222 were well-conserved among different Staphylococcus aureus strains. The 3D crystal structure of SEB indicated that SEB97-112 was in the loop region inside SEB, whereas SEB207-222 and SEB247-257 were in the β-slice region outside SEB. In summary, the fine-mapping of linear B-cell epitopes of the SEB antigen in this study will be useful to understand anti-SEB immunity against MRSA infection further and will be helpful to optimize MRSA vaccine designs that are based on the SEB antigen.

  10. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Wang, Hongxin; Wang, Zhouping, E-mail: wangzp@jiangnan.edu.cn

    2013-06-11

    Graphical abstract: -- Highlights: •An ultrasensitive FRET aptasensor was developed for staphylococcal enterotoxin B determination. •SEB was recognized by SEB aptamer with high affinity and specificity. •The Mn{sup 2+} doped NaYF{sub 4}:Yb/Er UCNPs used as donor to quencher dye (BHQ{sub 3}) in new FRET. •The fluorescence intensity was prominently amplified using an exonuclease-catalyzed target recycling strategy. -- Abstract: An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA{sub 1}–UCNPs) and fluorescence quencher probes (complementary DNA{sub 2}–Black Hole Quencher{sub 3} (BHQ{sub 3})) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL{sup −1} and a lower detection limit (LOD) of 0.3 pg mL{sup −1} SEB (at 3σ). The fabricated

  11. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB

    Directory of Open Access Journals (Sweden)

    Ihssen Julian

    2012-09-01

    Full Text Available Abstract Background Protein glycosylation is of fundamental importance in many biological systems. The discovery of N-glycosylation in bacteria and the functional expression of the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli enabled the production of engineered glycoproteins and the study of the underlying molecular mechanisms. A particularly promising application for protein glycosylation in recombinant bacteria is the production of potent conjugate vaccines where polysaccharide antigens of pathogenic bacteria are covalently bound to immunogenic carrier proteins. Results In this study capsular polysaccharides of the clinically relevant pathogen Staphylococcus aureus serotype 5 (CP5 were expressed in Escherichia coli and linked in vivo to a detoxified version of Pseudomonas aeruginosa exotoxin (EPA. We investigated which amino acids of the periplasmic domain of PglB are crucial for the glycosylation reaction using a newly established 96-well screening system enabling the relative quantification of glycoproteins by enzyme-linked immunosorbent assay. A random mutant library was generated by error-prone PCR and screened for inactivating amino acid substitutions. In addition to 15 inactive variants with amino acid changes within the previously known, strictly conserved WWDYG motif of N-oligosaccharyltransferases, 8 inactivating mutations mapped to a flexible loop in close vicinity of the amide nitrogen atom of the acceptor asparagine as revealed in the crystal structure of the homologous enzyme C. lari PglB. The importance of the conserved loop residue H479 for glycosylation was confirmed by site directed mutagenesis, while a change to alanine of the adjacent, non-conserved L480 had no effect. In addition, we investigated functional requirements in the so-called MIV motif of bacterial N-oligosaccharyltransferases. Amino acid residues I571 and V575, which had been postulated to interact with the acceptor peptide, were

  12. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi eSubramanian

    2015-10-01

    Full Text Available Bacteria produce and excrete a versatile and dynamic suit of compounds to defend against microbial competitors and mediate local population dynamics. These include a wide range of broad-spectrum non-ribosomally synthesized antibiotics, lytic enzymes, metabolic by-products, proteinaceous exotoxins and ribosomally produced antimicrobial peptides (bacteriocins. Most bacteria produce at least one bacteriocin. Bacteriocins are of interest in the food industry as natural preservatives and in the probiotics industry, leading to extensive studies on lactic acid bacteria (colicin produced by Escherichia coli is a model bacteriocin. Recent studies have projected use of bacteriocins in veterinary medicine and in agriculture, as a biostimulants of plant growth and development and as biocontrol agents. For example, bacteriocins such as Cerein 8A, Bac-GM17, putidacin, Bac 14B, amylocyclicin have been studied for their mechanisms of anti-microbial activity. Bac IH7 promotes tomato and musk melon plant growth. Thuricin 17 (Th17 is the only bacteriocin studied extensively for plant growth promotion and at the molecular level. Th17 functions as a bacterial signal compound, promoting plant growth in legumes and non-legumes. In Arabidopsis thaliana and Glycine max Th17 increased phytohormones IAA and SA at 24 h post treatment. At the proteome level Th17 treatment of 3-week-old A. thaliana rosettes led to > 2-fold changes in activation of the carbon and energy metabolism pathway proteins, 24 h post treatment. At 250 mM NaCl stress, the control plants under osmotic-shock shut down most of carbon-metabolism and activated energy-metabolism and antioxidant pathways. Th17 treated plants, at 250 mM NaCl, retained meaningful levels of the light harvesting complex, photosystem I and II proteins and energy and antioxidant pathways were activated, so that rosettes could better withstand the salt stress. In Glycine max, Th17 helped seeds germinate in the presence of Na

  13. Superantigen-presentation by rat major histocompatibility complex class II molecules RT1.Bl and RT1.Dl.

    Science.gov (United States)

    Dlaske, Henry; Karaüzüm, Hatice; Monzon-Casanova, Elisa; Rudolf, Ronald; Starick, Lisa; Müller, Ingrid; Wildner, Gerhild; Diedrichs-Möhring, Maria; Koch, Norbert; Miyoshi-Akiyama, Tohru; Uchiyama, Takehiko; Wonigeit, Kurt; Fleischer, Bernhard; Overbeck, Silke; Rink, Lothar; Herrmann, Thomas

    2009-09-01

    Rat major histocompatibility complex (MHC) class II molecules RT1.B(l) (DQ-like) and RT1.D(l) (DR-like) were cloned from the LEW strain using reverse transcription-polymerase chain reaction and expressed in mouse L929 cells. The transduced lines bound MHC class II-specific monoclonal antibodies in an MHC-isotype-specific manner and presented peptide antigens and superantigens to T-cell hybridomas. The T-cell-hybridomas responded well to all superantigens presented by human MHC class II, whereas the response varied considerably with rat MHC class II-transduced lines as presenters. The T-cell hybridomas responded to the pyrogenic superantigens Staphylococcus enterotoxin B (SEB), SEC1, SEC2 and SEC3 only at high concentrations with RT1.B(l)-transduced and RT1.D(l)-transduced cells as presenters. The same was true for streptococcal pyrogenic exotoxin A (SPEA), but this was presented only by RT1.B(l) and not by RT1.D(l). SPEC was recognized only if presented by human MHC class II. Presentation of Yersinia pseudotuberculosis superantigen (YPM) showed no MHC isotype preference, while Mycoplasma arthritidis superantigen (MAS or MAM) was presented by RT1.D(l) but not by RT1.B(l). Interestingly, and in contrast to RT1.B(l), the RT1.D(l) completely failed to present SEA and toxic shock syndrome toxin 1 even after transduction of invariant chain (CD74) or expression in other cell types such as the surface MHC class II-negative mouse B-cell lymphoma (M12.4.1.C3). We discuss the idea that a lack of SEA presentation may not be a general feature of RT1.D molecules but could be a consequence of RT1.D(l)beta-chain allele-specific substitutions (arginine 80 to lysine, asparagine 82 to aspartic acid) in the extremely conserved region flanking the Zn(2+)-binding histidine 81, which is crucial for high-affinity SEA-binding.

  14. [Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces].

    Science.gov (United States)

    Sudağidan, Mert; Cavuşoğlu, Cengiz; Bacakoğlu, Feza

    2008-01-01

    Staphylococci are the most important agents of nosocomial infections originating from biomaterials. The aim of this study was to investigate the presence of virulence genes and their phenotypic expressions in 11 methicillin-resistant Staphylococcus aureus strains isolated from the surfaces of clinically used biomaterials of 48 thorasic intensive-care unit patients. By the use of specific primers, the presence of genes encoding the attachment and biofilm production (icaA, icaC, bap), methicillin resistance (mecA), enterotoxins A-E (sea, seb, sec, sed, see), toxic shock syndrome toxin (tst), exfoliative toxins A and B (eta and etb), alpha- and beta-hemolysins (hla and hlb), staphylococcal exotoxin-like protein-1 (set1), proteases (sspA, sspB, aur, serine proteaz gene), lipase (geh) and the regulatory genes (sarA and agrCA) were investigated by polymerase chain reaction (PCR). The phenotypic properties of the isolates such as biofilm formation, antibiotic susceptibility, extracellular protease and lipase production were also evaluated. None of the isolates were found to be biofilm and/or slime producers, however, all strains were found to have icaA gene which is responsible for biofilm formation. Nevertheless the presence of icaC and bap genes that are also responsible for biofilm formation were not detected. All the strains have had mecA gene and were resistant to oxacillin, penicilin G and gentamicin, while 10 were also resistant to erythromycin and nine were also resistant to ofloxacin. The isolates were susceptible to vancomycin, teicoplanin and co-trimoxazole. Screening of toxin and regulatory genes revealed that all the strains harboured sea, set1, hla, hlb and sarA genes. The phenotypic tests for the determination of extracellular protease production revealed that all the strains formed very weak zones on skim milk and milk agar plates, and yielded negative results on casein agar plates. Furthermore, all strains were found to harbour sspA, sspB, aur and serine

  15. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis

    Science.gov (United States)

    Haubek, Dorte; Johansson, Anders

    2014-01-01

    For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2

  16. The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd.

    Science.gov (United States)

    Xu, Jia; Tan, Xiao; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2015-11-01

    Staphylococci are the leading pathogens of bovine mastitis which is difficult to control. However, the published data on the prevalence of staphylococcal species, virulence and antibiotic resistance genes in bovine mastitis from China are limited. In this study, 104 out of 209 subclinical mastitis milk samples from a single Chinese dairy herd were cultured-positive for staphylococci (49.8%), which were further identified as coagulase-positive staphylococci (CPS) or coagulase-negative staphylococci (CNS). According to the partial tuf and/or 16S rRNA gene sequence, the 28 CPS isolates were confirmed to be Staphylococcus aureus (26.9%), and 76 CNS isolates were assigned to 13 different species (73.1%) with Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus xylosus and Staphylococcus chromogenes as the dominant species. In the 28 S. aureus isolates, the most prevalent general virulence genes were coa, Ig and eno (100%), followed by hla (96.4%), hlb (92.9%), fib (92.9%), clfA (89.3%), clfB (85.7%) and nuc (85.7%). Both exotoxin and biofilm-associated genes were significantly less prevalent than the previously reported. Although 19 different virulence gene patterns were found, only one was dominant (32.1%). The prevalence of blaZ (82.1%) or mecA gene (35.7%) was much higher than the previously reported. In the 76 CNS isolates, the virulence genes were significantly less prevalent than that in the S. aureus isolates. Among the 4 main CNS species, S. chromogenes (n = 12) was the only species with high percentage (75%) of blaZ gene, while S. sciuri (n = 12) was the only species with the high percentage (66.7%) of mecA gene. The most of antibiotic resistance genes were present as multi-resistance genes, and the antibiotic resistances were attributed by different resistance genes between resistant S. aureus and CNS isolates. These data suggest that the prevalence of staphylococcal species, virulence and antibiotic resistance in the mastitis milk from the Chinese

  17. Novel Molecular Multilevel Targeted Antitumor Agents.

    Science.gov (United States)

    Sonawane, Poonam; Choi, Young A; Pandya, Hetal; Herpai, Denise M; Fokt, Izabela; Priebe, Waldemar; Debinski, Waldemar

    2017-01-01

    A multifunctional fusion protein, IL-13.E13K-D2-NLS, effectively recognizes glioblastoma (GBM) cells and delivers its portion to the cell nucleus. IL-13.E13K-D2-NLS is composed of a cancer cell targeting ligand (IL-13.E13K), specialized cytosol translocation bacterial toxin domain 2 of Pseudomonas exotoxin A (D2) and SV40 T antigen nuclear localization signal (NLS). We have now tested whether we can produce proteins that would serve as a delivery vehicle to lysosomes and mitochondria as well. Moreover, we examined whether IL-13.E13K-D2-NLS can deliver anti-cancer drugs like doxorubicin to their nuclear site of action in cancer cells. We have thus constructed two novel proteins: IL-13.E13K-D2-LLS which incorporates lysosomal localization signal (LLS) of a human lysosomal associated membrane protein (LAMP-1) for targeting to lysosomes and IL-13-D2-KK2, which incorporates a pro-apoptotic peptide (KLAKLAK)2 (KK2) exerting its action in mitochondria. Furthermore, we have produced IL-13.E13K-D2-NLS and IL-13.E13K-D2-LLS versions containing a cysteine for site-specific conjugation with a modified doxorubicin, WP936. We found that single-chain recombinant proteins IL-13.E13K-D2-LLS and IL-13-D2-KK2 are internalized and localized mostly to the lysosomal and mitochondrial compartments, respectively, without major trafficking to cells' nuclei. We also determined that IL-13.E13K-D2-NLS-cys[WP936], IL-13.E13K-D2-LAMP-cys[WP936] and IL-13-D2-KK2 were cytotoxic to GBM cells overexpressing IL-13RA2, while much less cytotoxic to GBM cell lines expressing low levels of the receptor. IL-13.E13K-D2-NLS-cys[WP936] was the most potent of the tested anti-tumor agents including free WP936. We believe that our receptor-directed intracellular organelle-targeted proteins can be employed for numerous specific and safer treatment applications when drugs have specific intracellular sites of their action.

  18. Recombinant production of the antibody fragment D1.3 scFv with different Bacillus strains.

    Science.gov (United States)

    Lakowitz, Antonia; Krull, Rainer; Biedendieck, Rebekka

    2017-01-23

    Different strains of the genus Bacillus are versatile candidates for the industrial production and secretion of heterologous proteins. They can be cultivated quite easily, show high growth rates and are usually non-pathogenic and free of endo- and exotoxins. They have the ability to secrete proteins with high efficiency into the growth medium, which allows cost-effective downstream purification processing. Some of the most interesting and challenging heterologous proteins are recombinant antibodies and antibody fragments. They are important and suitable tools in medical research for analytics, diagnostics and therapy. The smallest conventional antibody fragment with high-affinity binding to an antigen is the single-chain fragment variable (scFv). Here, different strains of the genus Bacillus were investigated using diverse cultivation systems for their suitability to produce and secret a recombinant scFv. Extracellular production of lysozyme-specific scFv D1.3 was realized by constructing a plasmid with a xylose-inducible promoter optimized for Bacillus megaterium and the D1.3scFv gene fused to the coding sequence of the LipA signal peptide from B. megaterium. Functional scFv was successfully secreted with B. megaterium MS941, Bacillus licheniformis MW3 and the three Bacillus subtilis strains 168, DB431 and WB800N differing in the number of produced proteases. Starting with shake flasks (150 mL), the bioprocess was scaled down to microtiter plates (1250 µL) as well as scaled up to laboratory-scale bioreactors (2 L). The highest extracellular concentration of D1.3 scFv (130 mg L(-1)) and highest space-time-yield (8 mg L(-1) h(-1)) were accomplished with B. subtilis WB800N, a strain deficient in eight proteases. These results were reproduced by the production and secretion of a recombinant penicillin G acylase (Pac). The genus Bacillus provides high potential microbial host systems for the secretion of challenging heterologous proteins like antibody

  19. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.

    Science.gov (United States)

    Luo, Jing; Dong, Biying; Wang, Ke; Cai, Shuangqi; Liu, Tangjuan; Cheng, Xiaojing; Lei, Danqing; Chen, Yanling; Li, Yanan; Kong, Jinliang; Chen, Yiqiang

    2017-01-01

    The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the

  20. DEBS – a unification theory for dry eye and blepharitis

    Directory of Open Access Journals (Sweden)

    Rynerson JM

    2016-12-01

    Full Text Available James M Rynerson,1 Henry D Perry2 1BlephEx, LLC, Alvaton, KY, 2Department of Ophthalmology, Nassau University Medical Center, Hofstra University School of Medicine, East Meadow, NY, USA Abstract: For many years, blepharitis and dry eye disease have been thought to be two distinct diseases, and evaporative dry eye distinct from aqueous insufficiency. In this treatise, we propose a new way of looking at dry eye, both evaporative and insufficiency, as the natural sequelae of decades of chronic blepharitis. Dry eye is simply the late form and late manifestation of one disease, blepharitis. We suggest the use of a new term in describing this one chronic disease, namely dry eye blepharitis syndrome (DEBS. Bacteria colonize the lid margin within a structure known as a biofilm. The biofilm allows for population densities that initiate quorum-sensing gene activation. These newly activated gene products consist of inflammatory virulence factors, such as exotoxins, cytolytic toxins, and super-antigens, which are then present for the rest of the patient’s life. The biofilm never goes away; it only thickens with age, producing increasing quantities of bacterial virulence factors, and thus, increasing inflammation. These virulence factors are likely the culprits that first cause follicular inflammation, then meibomian gland dysfunction, aqueous insufficiency, and finally, after many decades, lid destruction. We suggest that there are four stages of DEBS which correlate with the clinical manifestations of folliculitis, meibomitis, lacrimalitis, and finally lid structure damage evidenced by entropion, ectropion, and floppy eyelid syndrome. When one fully understands the structure and location of the glands within the lid, it becomes easy to understand this staged disease process. The longer a gland can resist the relentless encroachment of the invading biofilm, the longer it can maintain normal function. The stages depend purely on anatomy and years of

  1. Interferon gamma-dependent intestinal pathology contributes to the lethality in bacterial superantigen-induced toxic shock syndrome.

    Directory of Open Access Journals (Sweden)

    Ashenafi Y Tilahun

    2011-02-01

    Full Text Available Toxic shock syndrome (TSS caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ, followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ(+/+ mice became sick and succumbed to TSS, HLA-DR3.IFN-γ(-/- mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ(-/- transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17 and chemokines (KC, rantes, eotaxin and MCP-1 were significantly lower in HLA-DR3.IFN-γ(-/- transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8(+ CD4(+ and CD8(+ T cells was even more pronounced in HLA-DR3.IFN-γ(-/- transgenic mice when compared to HLA-DR3.IFN-γ(+/+ mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ(+/+ and HLA-DR3.IFN-γ(-/- transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ(+/+ transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ(-/- transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ(+/+ but not HLA-DR3.IFN-γ(-/- mice during TSS. Overall

  2. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A K M G; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E; Kroeger, Kurt M; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N; Rodriguez, Ron; Lowenstein, Pedro R; Castro, Maria G

    2010-11-16

    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.

  3. Fowl cholera.

    Science.gov (United States)

    Christensen, J P; Bisgaard, M

    2000-08-01

    Pasteurella multocida subspecies multocida is the most common cause of fowl cholera, although P. multocida subspecies septica and gallicida may also cause fowl cholera-like disease to some extent. However, the virulence properties of the different subspecies for various hosts have not been elucidated. The severity and incidence of P. multocida infections may vary considerably depending on several factors associated with the host (including species and age of infected birds), the environment and the bacterial strain. No single virulence factor has been associated with the observed variation in virulence among strains. Possible virulence factors include the following: the capsule, endotoxin, outer membrane proteins, iron binding systems, heat shock proteins, neuraminidase production and antibody cleaving enzymes. No RTX toxins (repeats in toxin) appear to be produced by P. multocida, but P. multocida exotoxin (PMT) could contribute to virulence in some avian infections. The epidemiology of fowl cholera appears complex. Traditional serotyping systems are only of limited use in epidemiological studies. In recent years, molecular typing methods have been applied to avian strains of P. multocida of different origin. The results obtained using these newer methods indicate that wild birds may be a source of infection to commercial poultry. Documentation suggesting that mammals play a similar role is not as comprehensive, but the possibility cannot be excluded. Carrier birds seem to play a major role in the transmission of cholera. Surviving birds from diseased flocks appear to represent a risk, but more recent investigations indicate that carriers of P. multocida may exist within poultry flocks with no history of previous outbreaks of fowl cholera. The significance of this awaits further investigation. The site of infection for P. multocida is generally believed to be the respiratory tract. The outcome of infections may range from peracute/acute infections to chronic

  4. Evolution of the Staphylococcus argenteus ST2250 Clone in Northeastern Thailand Is Linked with the Acquisition of Livestock-Associated Staphylococcal Genes

    Directory of Open Access Journals (Sweden)

    Danesh Moradigaravand

    2017-07-01

    Full Text Available Staphylococcus argenteus is a newly named species previously described as a divergent lineage of Staphylococcus aureus that has recently been shown to have a global distribution. Despite growing evidence of the clinical importance of this species, knowledge about its population epidemiology and genomic architecture is limited. We used whole-genome sequencing to evaluate and compare S. aureus (n = 251 and S. argenteus (n = 68 isolates from adults with staphylococcal sepsis at several hospitals in northeastern Thailand between 2006 and 2013. The majority (82% of the S. argenteus isolates were of multilocus sequence type 2250 (ST2250. S. aureus was more diverse, although 43% of the isolates belonged to ST121. Bayesian analysis suggested an S. argenteus ST2250 substitution rate of 4.66 (95% confidence interval [CI], 3.12 to 6.38 mutations per genome per year, which was comparable to the S. aureus ST121 substitution rate of 4.07 (95% CI, 2.61 to 5.55. S. argenteus ST2250 emerged in Thailand an estimated 15 years ago, which contrasts with the S. aureus ST1, ST88, and ST121 clades that emerged around 100 to 150 years ago. Comparison of S. argenteus ST2250 genomes from Thailand and a global collection indicated a single introduction into Thailand, followed by transmission to local and more distant countries in Southeast Asia and further afield. S. argenteus and S. aureus shared around half of their core gene repertoire, indicating a high level of divergence and providing strong support for their classification as separate species. Several gene clusters were present in ST2250 isolates but absent from the other S. argenteus and S. aureus study isolates. These included multiple exotoxins and antibiotic resistance genes that have been linked previously with livestock-associated S. aureus, consistent with a livestock reservoir for S. argenteus. These genes appeared to be associated with plasmids and mobile genetic elements and may have

  5. Diversity and impact of prokaryotic toxins on aquatic environments: a review.

    Science.gov (United States)

    Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério

    2010-10-01

    Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water

  6. Sensibilidad antimicrobiana y caracterización de cepas de Streptococcus pyogenes aisladas de un brote de escarlatina Antimicrobial sensitivity and typing of Streptococcus pyogenes strains isolated during a scarlet fever outbreak

    Directory of Open Access Journals (Sweden)

    Alberto González Pedraza-Avilés

    2002-09-01

    Full Text Available Objetivo. Evaluar la actividad in vitro de 13 antibióticos contra 47 Streptococcus pyogenes grupo A (SGA. Determinar la presencia de genes que codifican para exotoxina pirogénica estreptocóccica A (SpeA y serotipos con base en proteína M. Material y métodos. Estudio transversal hecho en el Centro de Salud Dr. José Castro Villagrana sobre un brote de escarlatina en el Colegio Espíritu de América, entre diciembre de 1999 y enero de 2000. El número de niños estudiados fue 137. Se extrajeron porcentajes de sensibilidad. La concentración inhibitoria mínima (CIM se obtuvo por microdilución semiautomatizada. Se utilizó un secuenciador automatizado de DNA para el análisis de variación de secuencias en los genes que codifican para proteína M y SpeA. Resultados. Todas las cepas fueron sensibles a beta-lactámicos y clindamicina; 12.7% fueron resistentes a eritromicina. El serotipo M2 fue el más frecuente, 27 del total. Prácticamente todas las bacterias (96% con el gen SpeA tienen el gen que codifica para el serotipo M2. Conclusiones. Debido a la reciente reaparición de infecciones por SGA se sugiere realizar estudios tanto de sensibilidad a macrólidos y beta-lactámicos, como de epidemiología molecular.Objective. To evaluate the in vitro activities of 13 antimicrobial agents against 47 group A Streptococcus pyogenes (GAS strains, and to determine the presence of genes encoding streptococcal pyrogenic exotoxin A (SpeA and the M--protein serotypes. Materials and Methods. A cross-sectional study was conducted at Centro de Salud Dr. José Castro Villagrana, during a scarlet fever outbreak occurring between December 1999 and January 2000, among 137 children at Colegio Espíritu de América. Minimum Inhibitory Concentrations (MICs were obtained by the semiautomated microdilution method. Automated DNA sequencing was used for analysis of sequence variation in genes encoding the M protein, and SpeA. Results. All strains were sensitive to

  7. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.

    Directory of Open Access Journals (Sweden)

    Jing Luo

    Full Text Available The quorum sensing (QS circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed

  8. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Directory of Open Access Journals (Sweden)

    Rogério Tenreiro

    2010-10-01

    Full Text Available Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS, involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking

  9. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  10. Early detection of Pseudomonas aeruginosa – comparison of conventional versus molecular (PCR detection directly from adult patients with cystic fibrosis (CF

    Directory of Open Access Journals (Sweden)

    Moore John E

    2004-10-01

    Full Text Available Abstract Background Pseudomonas aeruginosa (PA is the most important bacterial pathogen in patients with cystic fibrosis (CF patients. Currently, routine bacteriological culture on selective/non- selective culture media is the cornerstone of microbiological detection. The aim of this study was to compare isolation rates of PA by conventional culture and molecular (PCR detection directly from sputum. Methods Adult patients (n = 57 attending the regional adult CF centre in Northern Ireland, provided fresh sputum following airways clearance exercise. Following processing of the specimen with sputasol (1:1 vol, the specimen was examined for the presence of PA by plating onto a combination of culture media (Pseudomonas isolation agar, Blood agar & McConkey agar. In addition, from the same specimen, genomic bacterial DNA was extracted (1 ml and was amplified employing two sequence-specific targets, namely (i the outer membrane protein (oprL gene locus and (ii the exotoxin A (ETA gene locus. Results By sputum culture, there were 30 patients positive for PA, whereas by molecular techniques, there were 35 positive patients. In 39 patients (22 PA +ve & 17 PA -ve, there was complete agreement between molecular and conventional detection and with both PCR gene loci. The oprL locus was more sensitive than the ETA locus, as the former was positive in 10 more patients and there were no patients where the ETA was positive and the oprL target negative. Where a PCR +ve/culture -ve result was recorded (10 patients, we followed these patients and recorded that 5 of these patients converted to being culture-positive at times ranging from 4–17 months later, with a mean lag time of 4.5 months. Conclusions This study indicates that molecular detection of PA in sputum employing the oprL gene target, is a useful technique in the early detection of PA, gaining on average 4.5 months over conventional culture. It now remains to be established whether aggressive antibiotic

  11. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  12. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    Energy Technology Data Exchange (ETDEWEB)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S., E-mail: prakash@mailbox.sc.edu

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8{sup +} T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract

  13. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  14. [Viral superantigens].

    Science.gov (United States)

    Us, Dürdal

    2016-07-01

    Superantigens (SAgs) are microbial proteins produced by various microorganisms that elicit excessive and strong stimulation of T cells via an unconventional mechanism. They cause polyclonal activation of T cells in a non-specific manner, by binding to a particular variable-beta (Vβ) chain of T-cell receptor (TCR) and MHC class II molecule, in unprocessed form and outside of peptide-binding cleft, forming a bridge between the antigen presenting cell and the T cell. SAgs are classified into three groups, namely 1) exogenous (soluble proteins and exotoxins secreted by microorganisms), 2) endogenous (transmembrane proteins encoded by viruses which are integrated into the genome) and 3) B-cell SAgs (proteins which stimulate predominantly B cells). The best characterized and mostly studied SAgs are staphylococcal and streptococcal exotoxins, however it is well-known that many other microorganisms also possess SAg activities. Despite the presence of several viruses that cause severe infections in humans, the number of viruses that have proteins identified with SAg property in their pathogenesis, is relatively low. To date, the defined viruses that encoded SAgs are as follows; mouse mammary tumor virus (MMTV) (Marrack, et al. 1991), rabies virus (Lafon, et al. 1992), Epstein-Barr virus (EBV) (Sutkowski, et al. 1996), human endogenous retrovirus (HERV) (Conrad, et al. 1997), human immunodeficiency virus (HIV) (Posnett, et al. 1995; Torres, et al. 1996; Townsley-Fuchs, et al. 1997) and Ebola virus (Leroy, et al. 2011). SAgs were first described in the MMTV, a polymorphic B-type retrovirus that is either contained in the genome as an endogenous provirus (germline transmission) or exogenous infectious virus that transmits vertically via breast milk. Both MMTV forms encode SAgs. The SAg-mediated massive T cell activation is required for the spread of exogenous MMTV from intestines to mammary glands, facilitating the transmission of infectious virus. On the other hand

  15. [Clinical and bacteriological significance of the Streptococcus milleri group in deep neck abscesses].

    Science.gov (United States)

    Fujiyoshi, T; Okasaka, T; Yoshida, M; Makishima, K

    2001-02-01

    not all facilities use identical techniques in routine bacteriological examination, a considerable number of the S. milleri group could be missed in unknown species of Streptococci or alpha-streptococcus and culture-negative cases. The detailed pathogenesis of the S. milleri group remains to be clarified. Infection by normal flora on mucosa is thought to occur due to an imbalance between organisms and host defense in deep neck abscesses. Some strains of the S. milleri group have been reported to produce many tissue-destroying enzymes such as collagenase and hyaluronidase. The co-existence of the S. milleri group with some anaerobe strains has also been suggested to accelerate inflammation. We discuss the mechanism inducing the massive release of cytokines through T cell response to certain exotoxins produced by S. milleri group, as reported in toxic shock-like syndrome due to the group A beta-streptococcus and in alpha-streptococcal shock syndrome due to viridans streptococci (alpha-streptococci).

  16. Virulence markers associated with Trueperella pyogenes infections in livestock and companion animals.

    Science.gov (United States)

    Risseti, R M; Zastempowska, E; Twarużek, M; Lassa, H; Pantoja, J C F; de Vargas, A P C; Guerra, S T; Bolaños, C A D; de Paula, C L; Alves, A C; Colhado, B S; Portilho, F V R; Tasca, C; Lara, G H B; Ribeiro, M G

    2017-08-01

    Trueperella pyogenes is an opportunistic pathogen that causes diverse pyogenic infections in livestock. The genes that encode the exotoxin pyolysin (plo) and other putative factors that promote adhesion of pathogen to host cells (fimbriae fimA, fimC, fimE, fimG, neuraminidases nanH, nanP, and collagen-binding protein cbpA) have been associated with virulence, particularly in mastitis and uterus infections of dairy cows. However, the role of these virulence markers in the pathogenicity of the agent in domestic animals infections still is incompletely understood. The genes plo, fimA, fimC, fimE, fimG, nanH, nanP, and cbpA were investigated in 71 T. pyogenes strains recovered from cattle, sheep, goats, dogs, equines, and a pig, recovered from mastitis (n = 35), and non-mastitis (n = 36) cases (abscesses, reproductive tract diseases, pneumonia, lymphadenitis, encephalitis). The most common genes harboured by the isolates were: plo (71/71 = 100·0%), fimA (70/71 = 98·6%), nanP (56/71 = 78·9%), fimE (53/71 = 74·6%), fimC (46/71 = 64·8%) and nanH (45/71 = 63·4%), whereas cbpA (6/71 = 8·4%) and fimG (4/71 = 5·6%) were uncommon. The most frequent genotypes were plo/fimA/fimE/fimC/nanH/nanP (17/71 = 23·9%), plo/fimA/fimE/nanH/nanP (13/71 = 18·3%), and plo/fimA/fimE/fimC/nanP (11/71 = 15·5%). No association was observed between the presence of genes vs clinical signs or host species. To the best of our knowledge, this is the first report on aforementioned virulence factors of pathogen detected in diseased horses and dogs. The role of particular virulence factors of Trueperella pyogenes that determine different pyogenic infections among domestic animals is poorly understood. Eight putative virulence genes and genotype profiles of 71 isolates were investigated among different clinical manifestations in domestic animals. The most common genes were plo (71/71 = 100·0%), fimA (70/71 = 98·6%), nanP (56/71 = 78·9%), fimE (53/71 = 74·6

  17. Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis.

    Science.gov (United States)

    Lo, Hsueh-Hsia; Cheng, Wei-Shan

    2015-01-01

    Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. Streptococcus dysgalactiae subspecies equisimilis (SDSE), the dominant human pathogenic species among group G streptococci, is the causative agent of several invasive and non-invasive diseases worldwide. However, limited information is available about the distribution of virulence factors among SDSE isolates, or their association with emm types and the isolation sites. In this study, 246 beta-hemolytic group G SDSE isolates collected in central Taiwan between February 2007 and August 2011 were under investigation. Of these, 66 isolates were obtained from normally sterile sites and 180 from non-sterile sites. emm typing revealed 32 types, with the most prevalent one being stG10.0 (39.8%), followed by stG245.0 (15.4%), stG840.0 (12.2%), stG6.1 (7.7%), and stG652.0 (4.1%). The virulence genes lmb (encoding laminin-binding protein), gapC (glyceraldehyde 3-phosphate dehydrogenase), sagA (streptolysin S), and hylB (hyaluronidase) existed in all isolates. Also, 99.2% of the isolates possessed slo (streptolysin O) and scpA (C5a peptidase) genes. In addition, 72.8%, 14.6%, 9.4%, and 2.4% of the isolates possessed the genes ska (streptokinase), cbp (putative collagen-binding protein, SDEG_1781), fbp (putative fibronectin-binding protein, SDEG_0161), and sicG (streptococcal inhibitor of complement), respectively. The only superantigen gene detected was spegg (streptococcus pyrogenic exotoxin G(dys) ), which was possessed by 74.4% of the isolates; these isolates correlated with non-sterile sites. Positive correlations were observed between the following emm types and virulence genes: stG10.0 and stG840.0 with spegg, stG6.1 and stG652.0 with ska, and stG840.0 with cbp. On the other hand, negative correlations were observed between the following: stG245.0, stG6.1, and stG652.0 types with spegg, stG10.0 with ska

  18. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Banerjee Pratik

    2009-04-01

    Full Text Available Abstract Background Probiotic microorganisms are receiving increasing interest for use in the prevention, treatment, or dietary management of certain diseases, including antibiotic-associated diarrhea (AAD. Clostridium difficile is the most common cause of AAD and the resulting C. difficile – mediated infection (CDI, is potentially deadly. C. difficile associated diarrhea (CDAD is manifested by severe inflammation and colitis, mostly due to the release of two exotoxins by C. difficile causing destruction of epithelial cells in the intestine. The aim of this study was to determine the effect of probiotic bacteria Lactobacillus delbrueckii ssp. bulgaricus B-30892 (LDB B-30892 on C. difficile-mediated cytotoxicity using Caco-2 cells as a model. Methods Experiments were carried out to test if the cytotoxicity induced by C. difficile-conditioned-medium on Caco-2 cells can be altered by cell-free supernatant (CFS from LDB B-30892 in different dilutions (1:2 to 1:2048. In a similar experimental setup, comparative evaluations of other probiotic strains were made by contrasting the results from these strains with the results from LDB B-30892, specifically the ability to affect C. difficile induced cytotoxicity on Caco-2 monolayers. Adhesion assays followed by quantitative analysis by Giemsa staining were conducted to test if the CFSs from LDB B-30892 and other probiotic test strains have the capability to alter the adhesion of C. difficile to the Caco-2 monolayer. Experiments were also performed to evaluate if LDB B-30892 or its released components have any bactericidal effect on C. difficile. Results and discussion Co-culturing of LDB B-30892 with C. difficile inhibited the C. difficile-mediated cytotoxicity on Caco-2 cells. When CFS from LDB B-30892-C. difficile co-culture was administered (up to a dilution of 1:16 on Caco-2 monolayer, there were no signs of cytotoxicity. When CFS from separately grown LDB B-30892 was mixed with the cell-free toxin

  19. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression.

    Directory of Open Access Journals (Sweden)

    Christopher R Shaler

    2017-06-01

    Full Text Available Superantigens (SAgs are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS. Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB; ii the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT or γδ T cells, and is characterized by production of interferon (IFN-γ, tumor necrosis factor (TNF-α and interleukin (IL-2, but not IL-17A; iii high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1 participation, is required for MAIT cell activation; iv MAIT cell responses to SEB can occur in a T cell receptor (TCR Vβ-specific manner but are largely contributed by IL-12 and IL-18; v as MAIT cells are primed by SAgs, they also begin to

  20. Radioimmunotoxin Therapy of Experimental Colon and Ovarian Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, Donald J.; Vallera, Daniel A.

    2006-02-09

    To pursue the development of radiolabeled immunotoxins (RIT) for colon cancer, it was first necessary to identify an immunotoxin (IT) that could selectively kill colon cancer cell lines. Recently, our collaborators in the Vallera laboratory have observed that potent recombinant IT can be synthesized using recombinant single chain antibodies (sFv) spliced to truncated diphtheria toxin (DT) consisting of the first 390 amino acids of native DT. DT was chosen as a toxin because it is a catalytic bacterial toxin that is easily manipulated in genetic engineering studies. Also, the Vallera lab has developed new procedures for preparing the sFv fusion toxins from bacterial inclusion bodies such as DT and another good genetic engineering toxin pseudomonas exotoxin (PE) based on detergent refolding. This allows for enhanced yields and higher purity that is essential for generating the protein that will be needed for preparation of larger amounts of RIT for therapy. Many potential sFvs were considered for targeting colon cancer. The best results have been obtained with an sFv recognizing EpCam. EpCam, also known as ESA or EGP40, is a 40 kDa epithelial transmembrane glycoprotein found on the basolateral surface of simple, pseudostratified, and transitional epithelia. It has been found overexpressed on 81% of adenocarcinomas of the colon (Went et al. Human pathology 35:122, 2004). EpCam sliced to DT (DTEpCam) was highly potent in studies in which we measured its ability to inhibit the proliferation of the HT-29 and COLO 205 colon cancer cell lines since we measured its IC50 at 1-2 x 10-2 nM. Potency is important, but is also critical that DTEpCam is selective in its cytotoxicity against EpCam-expressing target colon cancer cells. The activity of DTEpCam was highly selective since irrelevant control IT that did not recognize any markers on cancer cells, did not show any activity against the same colon cancer cell lines. Also, blocking studies were performed in which DTEpCam was