WorldWideScience

Sample records for exotoxins

  1. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    Science.gov (United States)

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  2. Pseudomonas Exotoxin A: optimized by evolution for effective killing

    Directory of Open Access Journals (Sweden)

    Marta eMichalska

    2015-09-01

    Full Text Available Pseudomonas Exotoxin A (PE is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.

  3. Correspondence of High Levels of Beta-Exotoxin I and the Presence of cry1B in Bacillus thuringiensis

    Science.gov (United States)

    Espinasse, Sylvain; Gohar, Michel; Chaufaux, Josette; Buisson, Christophe; Perchat, Stéphane; Sanchis, Vincent

    2002-01-01

    Examination of 640 natural isolates of Bacillus thuringiensis showed that the 58 strains (9%) whose supernatants were toxic to Anthonomus grandis (Coleoptera: Curculionidae) produced between 10 and 175 μg of β-exotoxin I per ml. We also found that 55 (46%) of a sample of 118 strains whose culture supernatants were not toxic to A. grandis nevertheless produced between 2 and 5 μg/ml. However, these amounts of β-exotoxin I were below the threshold for detectable toxicity against this insect species. Secretion of large amounts of β-exotoxin I was strongly associated with the presence of cry1B and vip2 genes in the 640 natural B. thuringiensis isolates studied. We concluded that strains carrying cry1B and vip2 genes also possess, on the same plasmid, genetic determinants necessary to promote high levels of production of β-exotoxin I. PMID:12200263

  4. Influence of gamma radiation on the immunobiological and immunochemical properties of cholera exotoxin

    International Nuclear Information System (INIS)

    Nedugova, G.I.; Rubtsov, I.V.; Samojlenko, I.I.

    1984-01-01

    Native cholera exotoxin (abacterial centrifugalized deposit) has been irradiated using gamma-installations with a 60 Co source. A high inactivating effect of gamma-radiation on native cholera exotoxin is established: with the increase of radiation dose cholerogenity decreased for certain (at the dose 50 kGy) a complete inactivation of all studied series of liquid filtrate-toxin took place), activity of permeability factor and toxicity for mice decreased. A higher radiostability of dry toxin preparations as compared with the liquid ones is detected. Sterilization effect of radiation is achieved at the dose 20 kGy for liquid preparations and at the dose of 30 kGy for dry ones. When preserving the irradiated preparations of raw toxin in different temperature regimes for 6 months to 1.5 year (observation time) toxic properties are not restored, immunogenous properties do not change

  5. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins

    Science.gov (United States)

    Shibata, Toshio; Maki, Kouki; Hadano, Jinki; Fujikawa, Takumi; Kitazaki, Kazuki; Koshiba, Takumi; Kawabata, Shun-ichiro

    2015-01-01

    Transglutaminase (TG) catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi) of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes. PMID:26506243

  6. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins.

    Directory of Open Access Journals (Sweden)

    Toshio Shibata

    2015-10-01

    Full Text Available Transglutaminase (TG catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes.

  7. Inhibitory effect of totarol on exotoxin proteins hemolysin and enterotoxins secreted by Staphylococcus aureus.

    Science.gov (United States)

    Shi, Ce; Zhao, Xingchen; Li, Wenli; Meng, Rizeng; Liu, Zonghui; Liu, Mingyuan; Guo, Na; Yu, Lu

    2015-10-01

    Staphylococcus aureus (S. aureus) causes a wide variety of infections, which are of major concern worldwide. S. aureus produces multiple virulence factors, resulting in food infection and poisoning. These virulence factors include hyaluronidases, proteases, coagulases, lipases, deoxyribonucleases and enterotoxins. Among the extracellular proteins produced by S. aureus that contribute to pathogenicity, the exotoxins α-hemolysin, staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) are thought to be of major significance. Totarol, a plant extract, has been revealed to inhibit the proliferation of several pathogens effectively. However, there are no reports on the effects of totarol on the production of α-hemolysin, SEA or SEB secreted by S. aureus. The aim of this study was to evaluate the effects of totarol on these three exotoxins. Hemolysis assay, western blotting and real-time reverse transcriptase-PCR assay were performed to identify the influence of graded subinhibitory concentrations of totarol on the production of α-hemolysin and the two major enterotoxins, SEA and SEB, by S. aureus in a dose-dependent manner. Moreover, an enzyme linked immunosorbent assay showed that the TNF-α production of RAW264.7 cells stimulated by S. aureus supernatants was inhibited by subinhibitory concentrations of totarol. Form the data, we propose that totarol could potentially be used as a promising natural compound in the food and pharmaceutical industries.

  8. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs.

    Science.gov (United States)

    Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F

    1997-09-01

    Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.

  9. Invasive group A streptococcal disease in The Netherlands : Evidence for a protective role of anti-exotoxin A antibodies

    NARCIS (Netherlands)

    Mascini, EM; Jansze, M; Schellekens, JFP; Musser, JM; Faber, JAJ; Verhoef-Verhage, LAE; Schouls, L; van Leeuwen, WJ; Verhoef, J; van Dijk, H

    As part of a nationwide surveillance in The Netherlands during 1994-1997, 53 patients with invasive group A streptococcal (GAS) infections were evaluated for medical history, symptoms, and outcome. Patients' isolates were tested for the production of pyrogenic exotoxins A (SPE-A) and B (SPE-B).

  10. Streptococcal pyogenic exotoxin B (SpeB) boosts the contact system via binding of a-1 antitrypsin

    DEFF Research Database (Denmark)

    Meinert Niclasen, Louise; Olsen, Johan G; Dagil, Robert

    2011-01-01

    The Streptococcus pyogenes cysteine protease SpeB (streptococcal pyrogenic exotoxin B) is important for the invasive potential of the bacteria, but its production is down-regulated following systemic infection. This prompted us to investigate if SpeB potentiated the host immune response after sys...

  11. Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form

    DEFF Research Database (Denmark)

    Olsen, Johan G; Dagil, Robert; Niclasen, Louise Meinert

    2009-01-01

    Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 A, disclosing...

  12. Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Dangy

    2016-06-01

    Full Text Available Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone.Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone.The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target.

  13. Chemical composition of fennel essential oil and its impact on Staphylococcus aureus exotoxin production.

    Science.gov (United States)

    Qiu, Jiazhang; Li, Hongen; Su, Hongwei; Dong, Jing; Luo, Mingjing; Wang, Jianfeng; Leng, Bingfeng; Deng, Yanhong; Liu, Juxiong; Deng, Xuming

    2012-04-01

    In this study, fennel oil was isolated by hydrodistillation, and the chemical composition was determined by gas chromatography/mass spectral analysis. The antimicrobial activity of fennel oil against Staphylococcus aureus was evaluated by broth microdilution. A haemolysis assay, tumour necrosis factor (TNF) release assay, western blot, and real-time reverse transcription (RT)-PCR were applied to investigate the influence of fennel oil on the production of S. aureus virulence-related exoproteins. The data show that fennel oil, which contains a high level of trans-anethole, was active against S. aureus, with MICs ranging from 64 to 256 μg/ml. Furthermore, fennel oil, when used at subinhibitory concentrations, could dose-dependently decrease the expression of S. aureus exotoxins, including α-toxin, Staphylococcal enterotoxins (SEs) and toxic shock syndrome toxin 1 (TSST-1).

  14. Influence of gamma radiation on the immunobiological and immunochemical properties of cholera exotoxin. Communication 1. Changes in the biological activity of crude cholera exotoxin under the action of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nedugova, G I; Rubtsov, I V; Samojlenko, I I [Ministerstvo Zdravookhraneniya SSSR, Tsentral' nyj Inst. Ehpidemiologii

    1984-02-01

    Native cholera exotoxin (abacterial centrifugalized deposit) has been irradiated using gamma-installations with a /sup 60/Co source. A high inactivating effect of gamma-radiation on native cholera exotoxin is established: with the increase of radiation dose cholerogenity decreased for certain (at the dose 50 kGy) a complete inactivation of all studied series of liquid filtrate-toxin took place), activity of permeability factor and toxicity for mice decreased. A higher radiostability of dry toxin preparations as compared with the liquid ones is detected. Sterilization effect of radiation is achieved at the dose 20 kGy for liquid preparations and at the dose of 30 kGy for dry ones. When preserving the irradiated preparations of raw toxin in different temperature regimes for 6 months to 1.5 year (observation time) toxic properties are not restored, immunogenous properties do not change.

  15. Adsorptive effects of di-tri-octahedral smectite on Clostridium perfringens alpha, beta, and beta-2 exotoxins and equine colostral antibodies.

    Science.gov (United States)

    Lawler, Jacquelin Boggs; Hassel, Diana M; Magnuson, Roberta J; Hill, Ashley E; McCue, Patrick M; Traub-Dargatz, Josie L

    2008-02-01

    To determine the adsorptive capability of di-tri-octahedral smectite (DTOS) on Clostridium perfringens alpha, beta, and beta-2 exotoxins and equine colostral antibodies. 3 C perfringens exotoxins and 9 colostral samples. Alpha, beta, and beta-2 exotoxins were individually co-incubated with serial dilutions of DTOS or bismuth subsalicylate, and the amount of toxin remaining after incubation was determined via toxin-specific ELISAs. Colostral samples from healthy mares were individually co-incubated with serial dilutions of DTOS, and colostral IgG concentrations were determined via single radial immunodiffusion assay. Di-tri-octahedral smectite decreased the amount of each C perfringens exotoxin in co-incubated samples in a dose-dependent manner and was more effective than bismuth subsalicylate at reducing exotoxins in vitro. Decreases in the concentration of IgG were detected in samples of colostrum that were combined with DTOS at 1:4 through 1:16 dilutions, whereas no significant decrease was evident with DTOS at the 1:32 dilution. Di-tri-octahedral smectite effectively adsorbed C perfringens exotoxins in vitro and had a dose-dependent effect on the availability of equine colostral antibodies. Results suggested that DTOS may be an appropriate adjunctive treatment in the management of neonatal clostridiosis in horses. In vivo studies are necessary to fully assess the clinical efficacy of DTOS treatment.

  16. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A

    OpenAIRE

    Mazor, Ronit; Vassall, Aaron N.; Eberle, Jaime A.; Beers, Richard; Weldon, John E.; Venzon, David J.; Tsang, Kwong Y.; Benhar, Itai; Pastan, Ira

    2012-01-01

    Recombinant immunotoxins (RITs) are chimeric proteins that are being developed for cancer treatment. We have produced RITs that contain PE38, a portion of the bacterial protein Pseudomonas exotoxin A. Because the toxin is bacterial, it often induces neutralizing antibodies, which limit the number of treatment cycles and the effectiveness of the therapy. Because T cells are essential for antibody responses to proteins, we adopted an assay to map the CD4+ T-cell epitopes in PE38. We incubated p...

  17. The effect of garlic extract on the expression of genes elastase and exotoxin A in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Batoul Kavyani

    2016-11-01

    Full Text Available Background: Multidrug-resistant bacteria make many problems in clinical therapy, design and manufacture of synthetic drugs. Pseudomonas aeruginosa is one of the most important multidrug-resistance bacteria leads to variety infections in human especially in immunocompromised, patients with severe burns, and nosocomial infections. It Recent years, this organism makes a big challenge in clinical treatment of infections using a wide range of antibiotics. Medicinal herbs for thousands of years to prevent or treat infectious diseases were considered. Today, pharmacists have high interest of using medicinal herbs to prepare a new antimicrobial compounds. The goal of this study was to investigation the effect of aqueous and alcoholic extract of fresh garlic on the expression of genes encoding elastase and exotoxin A virulence factors, in P. aeruginosa PAO1 strain. Methods: Present study was an experimental study and performed from 2015 to 2016 in Hamadan University of Medical Science, Iran. The minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of aqueous and alcoholic extract of garlic was determined. Then in order to investigation the gene expression of elastase and exotoxin A genes, quantitative real-time polymerase chain reaction (qPCR method was performed at sub-MBC concentrations. Results: According to the results aqueous extracts of garlic had better impact in comparison with alcoholic alone. At concentration of 64 and 8 mg/ml of aqueous extract the expression of both elastase and exotoxin A genes were decreased. Although, the expression of elastase gene was most affected by garlic at different concentrations than exotoxin A. Conclusion: The results suggested that the compositions of garlic extracts can inhibit the production of virulence factors in P. aeruginosa. So in order to treat infectious diseases in the near future, medicinal plants known as new antimicrobial drugs can be used alone or with antibiotic drugs

  18. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression.

    Science.gov (United States)

    Nissen, Lorenzo; Sgorbati, Barbara; Biavati, Bruno; Belibasakis, Georgios N

    2014-01-01

    Beneficial microbes, such as lactobacilli establish a symbiosis with the host and confer health-associated effects, by limiting the growth of indigenous pathogens and challenging microbes introduced by altered foods. Nevertheless, there is scarce information on the effects of beneficial microbes on the virulence properties of bacterial species associated with oral diseases, such as periodontitis. Aggregatibacter actinomycetemcomitans is a Gram-negative species highly implicated in the etiology of localized aggressive periodontitis. The objective of this study was to investigate the effect of lactobacilli on the expression of the two major virulence factors of A. actinomycetemcomitans . Lactobacillus salivarius and L. gasseri were selected as beneficial species. The gene expressions of leukotoxin ( LtxA ) and cytolethal distending toxin ( CdtB ) by A. actinomycetemcomitans were analyzed in response to challenge by lactobacilli cell-free supernatants. Neither lactobacilli affected the growth, but strongly attenuated the expressions of both CdtB and LtxA in the two A. actinomycetemcomitans strains tested. This reduction of the expression of these two exotoxins was time-dependent. These fundamental findings may indicate that lactobacilli can reduce the virulence of putative opportunistic oral pathogens, and may provide insights to future therapeutic approaches for the respective diseases.

  19. Uptake, translocation, and metabolism of [14C]thuringiensin (β-exotoxin) in corn

    International Nuclear Information System (INIS)

    Mersie, W.; Singh, M.

    1989-01-01

    The absorption, translocation, and metabolism of [ 14 C]thuringiensin (β-exotoxin), an insecticide, derived from Bacillus thuringiensis was investigated in corn. Corn was harvested 3 and 7 days after its roots or leaves were exposed to thuringiensin. Corn absorbed more thuringiensin at 7 than 3 days of root exposure. Less than 10% of the applied thuringiensin was absorbed after 7 days of exposure. Only 12% of the foliar-applied thuringiensin was detected in the whole plant, and amounts absorbed at 3 and 7 days were similar. About 80% of the applied radioactivity was found in the leaf wash at both times of harvest, and only 20% of the absorbed was translocated out of the treated leaf. More than 95% of the absorbed radioactivity remained in the root. Time did not affect the distribution pattern of root- or foliar-applied thuringiensin in different parts of corn. In this study, thuringiensin was not readily absorbed by root or leaves of corn and had limited mobility in the plant. The insecticide was also not metabolized by corn shoot after 3 and 7 days of exposures. The implications of these results are discussed

  20. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    Science.gov (United States)

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  1. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans.

    Science.gov (United States)

    McEwan, Deborah L; Kirienko, Natalia V; Ausubel, Frederick M

    2012-04-19

    Intestinal epithelial cells are exposed to both innocuous and pathogenic microbes, which need to be distinguished to mount an effective immune response. To understand the mechanisms underlying pathogen recognition, we investigated how Pseudomonas aeruginosa triggers intestinal innate immunity in Caenorhabditis elegans, a process independent of Toll-like pattern recognition receptors. We show that the P. aeruginosa translational inhibitor Exotoxin A (ToxA), which ribosylates elongation factor 2 (EF2), upregulates a significant subset of genes normally induced by P. aeruginosa. Moreover, immune pathways involving the ATF-7 and ZIP-2 transcription factors, which protect C. elegans from P. aeruginosa, are required for preventing ToxA-mediated lethality. ToxA-responsive genes are not induced by enzymatically inactive ToxA protein but can be upregulated independently of ToxA by disruption of host protein translation. Thus, C. elegans has a surveillance mechanism to recognize ToxA through its effect on protein translation rather than by direct recognition of either ToxA or ribosylated EF2. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Comparison of Neutrophil Apoptosis by the Pseudomonas Aeruginosa Exotoxins between Healthy Individuals and Term Infants

    Directory of Open Access Journals (Sweden)

    Soheila Khazaei

    2013-04-01

    Full Text Available Background: Pseudomonas aeruginosa may be colonized in different human tissues and result in some infections potentially. Thus, considering that these bacteria are resistance to most of the current antibiotics, an examination on pathogenesis mechanisms of such bacteria can be effective in controlling the infections developed by it.Materials and Methods: In this project, among 40 blood samples (20 healthy persons, 20 infants, an amount of 5 ml (2 ml in the infants heparinized blood was collected form each and then neutrophils were isolated by a standard method and were counted by neubauer lam. After culturing Pseudomonas bacteria in broth medium, some tubes with densities of 1, 2, 3 and 4 McFarland were prepared and the bacteria were isolated by centrifuge method with 3000rpm for 10 minutes and then its exotoxin were exposed to neutrophils of the groups under study. The effect of time and the bacteria count on the amount of the secreted toxin and in adjacency to neutrophils was measured.Results: There were 11 men and 9 women in the health group and the infants group consisted of 12 boys and 8 girls. Death cell percentage of neutrophils was 100% in the health group and 8.90% in the infants group. Percentage of bacterial growth in the medium 1 and 2 McFarland was zero; in the medium 3 McFarland, it was 12.5% in the healthy group and 1% in the infants group (p<0.10. The average rate of cell death in the minute 15th was different in two groups (68.5% in health group vs. 92.5% in the infants (p<0.0005. Conclusion: This study showed the effect of Pseudomonas bacteria on the development of early cell death in the infants very well. As it was shown, this effect is time-dependent and this cell death (apoptosis is occurred in the infants earlier than health people.

  3. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Directory of Open Access Journals (Sweden)

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  4. Human Memory B Cells Targeting Staphylococcus aureus Exotoxins Are Prevalent with Skin and Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Adam J. Pelzek

    2018-03-01

    Full Text Available Staphylococcus aureus is a Gram-positive opportunistic pathogen that causes superficial and invasive infections in the hospital and community. High mortality from infection emphasizes the need for improved methods for prevention and treatment. Although S. aureus possesses an arsenal of virulence factors that contribute to evasion of host defenses, few studies have examined long-term humoral and B-cell responses. Adults with acute-phase skin and soft tissue infections were recruited; blood samples were obtained; and S. aureus isolates, including methicillin-resistant strains, were subjected to genomic sequence analysis. In comparisons of acute-phase sera with convalescent-phase sera, a minority (37.5% of patients displayed 2-fold or greater increases in antibody titers against three or more S. aureus antigens, whereas nearly half exhibited no changes, despite the presence of toxin genes in most infecting strains. Moreover, enhanced antibody responses waned over time, which could reflect a defect in B-cell memory or long-lived plasma cells. However, memory B cells reactive with a range of S. aureus antigens were prevalent at both acute-phase and convalescent-phase time points. While some memory B cells exhibited toxin-specific binding, those cross-reactive with structurally related leucocidin subunits were dominant across patients, suggesting the targeting of conserved epitopes. Memory B-cell reactivity correlated with serum antibody levels for selected S. aureus exotoxins, suggesting a relationship between the cellular and humoral compartments. Overall, although there was no global defect in the representation of anti-S. aureus memory B cells, there was evidence of restrictions in the range of epitopes recognized, which may suggest potential therapeutic approaches for augmenting host defenses.

  5. Involvement of T- and B-lymphocytes in the immune response to the protein exotoxin and the lipopolysaccharide antigens of Vibrio cholerae

    International Nuclear Information System (INIS)

    Kateley, J.R.; Patel, C.B.; Friedman, H.

    1975-01-01

    The immune response at the level of individual immunocytes to the somatic lipopolysaccharide antigen derived from whole Vibrio cholerae and to the purified protein exotoxin from this organism were studied in terms of the role of T- and B-lymphocytes. By adoptive cell transfer studies with irradiated recipient mice, it was shown that normal spleen cells from normal syngeneic mice could readily transfer the capability of responding to both types of cholera antigens. However, when the spleen cells were depleted of T-cells with anti-theta serum and complement, antibody responsiveness to the LPS antigen, but not the exotoxin, could be achieved in recipients. Furthermore, by appropriate transfer of either bone marrow, thymus, or thymus-marrow cell mixtures to irradiated mice, it was shown that the response to the cholera somatic antigen was relatively independent of thymus cells, whereas the response to exotoxin required ''helper'' T-cells

  6. Geographical variation in the presence of genes encoding superantigenic exotoxins and beta-hemolysin among Staphylococcus aureus isolated from bovine mastitis in Europe and USA

    DEFF Research Database (Denmark)

    Larsen, H. D.; Aarestrup, Frank Møller; Jensen, N. E.

    2002-01-01

    The object was to examine the geographical variation in the presence of superantigenic exotoxins and beta-hemolysin among epidemiologically independent Staphyirrcoccus aureus isolates from bovine mastitis. A total of 462 S. aureus isolates from nine European countries and USA were examined...... for the individual exotoxins. The genes encoding enterotoxin C, TSST-1, and enterotoxin D were the most common superantigens. The present and earlier studies demonstrate that the superantigenic exotoxins that were investigated in this study, do not play a role in the pathogenesis of bovine S. aureus mastitis...... regions in the beta-hemolysin encoding gene of the Norwegian isolates is suggested, and should be investigated further. The consistent presence of beta-hemolysin suggests that this factor, or a co-existing gene correlated to beta-hemolysin, may be an active virulence factor in the pathogenesis of bovine S...

  7. Molecular analysis of exotoxin A associated with antimicrobial resistance of Pseudomonas aeruginosa strains isolated from patients in Tehran hospitals

    Directory of Open Access Journals (Sweden)

    Nour Amirmozafari

    2014-12-01

    Full Text Available Background and Aim:  Pseudomonas aeruginosa is a unique bacteria that in order to survive in different environments by complex adaptation process can make changes in his virulence genes expression and drug resistance. The aim of this research is the investigation of existence of a logical association between toxA gene and antibiotic resistance in strains possess the gene. Materials and Methods: Antibiogram test by disk diffusion method (Kirby Bauer was performed according to CLSI protocols. In this study, the existence of toxA gene with the help of polymerase chain reaction (PCR in 102 clinical isolates from blood samples, wound, urine and trachea was examined. Chi-square test was used to investigate the relationship between exotoxin A and antibiotic resistance. Results: The 81 strains (79.4% had toxA gene. Frequency of toxA genes in isolated strains from different infections were wound (91.4%, blood (85.7%, trachea (72.7%, and urine (42.1%. Multiple resistance index in strains possess the toxA gene was calculated 75%. Chi 2 test to determine the relationship between drug resistance and gene toxA was significant (P<0.05. Conclusions: The significant chi-square test and an increase in multi-resistant strains possessing the toxA gene, can represent a considerable genetic switch between exotoxin A activity and resistance to antibiotics in the blood, urine, tracheal, wound infections Respectively, which lead to turn genes on of drug resistance regulating in bacteria. The results of this study will be verified by southern blot, analysis of the expression of toxA gene and determine the mechanism of resistance in resistant strains Methods.

  8. Influence of γ-radiation on the immunobiological and immunochemical properties of cholera exotoxin. Com. 2. Immunogenic properties of crudi irradiated toxin filtrate

    International Nuclear Information System (INIS)

    Rubtsov, I.V.; Nedugova, G.I.; Samojlenko, I.I.

    1984-01-01

    The effect of ionizing radiation on immunogenic activity of crude cholera exotoxin (filtrate-toxin), which presents initial raw material to prepare native preventive treatment preparation cholergene-anatoxin has been studied. It is stated, that the use of gamma-radiation for the detoxification and sterilization of cholera exotoxin (crude), preserves its immunogenic properties. The observed increase in immunogenic activity, manifested in the reliable increase of antitoxic antibodies titre to the irradiation preparation over the whole period of observation, as compared with control, in the authors' assumption can be caused by the processes of polymerization and aggregation, taking place in protein molecule during irradiation, which results in the growth of molecule dimensions and in immunogenicity increase

  9. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence.

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2017-06-15

    Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R 2 =0.9984) between the fluorescent intensity and the target DNA concentration in the samples. Copyright © 2016. Published by Elsevier B.V.

  10. Inhibition effect of tea tree oil on Listeria monocytogenes growth and exotoxin proteins listeriolysin O and p60 secretion.

    Science.gov (United States)

    Liu, Z; Meng, R; Zhao, X; Shi, C; Zhang, X; Zhang, Y; Guo, N

    2016-12-01

    Listeria monocytogenes (L. monocytogenes) is a Gram-positive bacterium that causes infections in humans. In this study, the effects of tea tree oil (TTO) at subinhibitory concentrations on L. monocytogenes growth and two important exotoxin proteins secreted by L. monocytogenes were researched. Treatment with half of minimal inhibitory concentration of TTO demonstrated very little or no reduction in numbers of viable ATCC 19115 cells. Listeriolysin O (LLO) and p60, were investigated. A listeriolysin assay was used to investigate the hemolytic activities of L. monocytogenes exposed to TTO, and the secretion of LLO and p60 was detected by immunoblot analysis. Additionally, real-time RT-PCR was used to analyse the influence of TTO on the transcription of LLO and p60 encoded genes hly and iap respectively. According to our experimental results, we propose that TTO could be used as a promising natural compound against L. monocytogenes and its virulence factors. This is the first report on the influence of subinhibitory concentrations of tea tree oil (TTO) on the secretion of listeriolysin O (LLO) and p60, the critical virulence factors involved in Listeria pathogenesis. The results showed that TTO at 0·25 mg ml -1 reduced the secretion of LLO and p60 to 10 and 34·9% respectively, in addtion, the transcription of hly and iap was reduced to 10 and 4·3% at 0·5 mg ml -1 respectively. We propose that TTO could be used as a promising antimicrobial compound and virulence inhibitor against L. monocytogenes. © 2016 The Society for Applied Microbiology.

  11. Determination of staphylococcal exotoxins, SCCmec types, and genetic relatedness of Staphylococcus intermedius group isolates from veterinary staff, companion animals, and hospital environments in Korea

    Science.gov (United States)

    Youn, Jung-Ho; Ahn, Kuk Ju; Lim, Suk-Kyung

    2011-01-01

    The Staphylococcus (S.) intermedius group (SIG) has been a main research subject in recent years. S. pseudintermedius causes pyoderma and otitis in companion animals as well as foodborne diseases. To prevent SIG-associated infection and disease outbreaks, identification of both staphylococcal exotoxins and staphylococcal cassette chromosome mec (SCCmec) types among SIG isolates may be helpful. In this study, it was found that a single isolate (one out of 178 SIG isolates examined) harbored the canine enterotoxin SEC gene. However, the S. intermedius exfoliative toxin gene was found in 166 SIG isolates although the S. aureus-derived exfoliative toxin genes, such as eta, etb and etd, were not detected. SCCmec typing resulted in classifying one isolate as SCCmec type IV, 41 isolates as type V (including three S. intermedius isolates), and 10 isolates as non-classifiable. Genetic relatedness of all S. pseudintermedius isolates recovered from veterinary staff, companion animals, and hospital environments was determined by pulsed-field gel electrophoresis. Strains having the same band patterns were detected in S. pseudintermedius isolates collected at 13 and 18 months, suggesting possible colonization and/or expansion of a specific S. pseudintermedius strain in a veterinary hospital. PMID:21897094

  12. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin.

    Science.gov (United States)

    Tafesse, Fikadu G; Guimaraes, Carla P; Maruyama, Takeshi; Carette, Jan E; Lory, Stephen; Brummelkamp, Thijn R; Ploegh, Hidde L

    2014-08-29

    A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Autoradiographic detection of mutation to exotoxin-A resistance in mouse fibroblasts treated with ethyl methanesulfonate, X-rays and ultraviolet light

    International Nuclear Information System (INIS)

    Tiah, M.; Ronen, A.

    1989-01-01

    P. aeruginosa exotoxin-A (PE) blocks protein synthesis in mammalian cells by inactivating elongation factor 2 (EF-2). Toxin-resistant mutant cells can be detected autoradioraphically, in cultures grown on microscope coverslips in the presence of PE, and exposed to [ 3 H]leucine. The frequency of PE-resistant cells detected by the autoradiographic assay in non-mutagenized cells of the established mouse cell line LTKA is 9.7 j 0.6 x 10 -5 . Upon treatment with ethyl methanesulfonate (EMS), X-rays of ultraviolet (UV) light it increases in a dose-dependent fashion. The mutational nature of the resistance detected by the assay is indicated by its clonal inheritance, and by the dose-dependent increase in the frequency of resistant cells after utagenesis. On the basis of the high frequency of PE-resistant cells detected by the autoradiographic assay, and their cross-resistance to diphteria toxin (DT), the authors suggest that the PE-resistant mutants detected by the autoradiographic assay are of class II, i.e., they are altered in the structural gene for EF-2. (author). 27 refs.; 5 figs.; 3 tabs

  14. Molecular mechanisms of action of bacterial exotoxins.

    Science.gov (United States)

    Balfanz, J; Rautenberg, P; Ullmann, U

    1996-07-01

    Toxins are one of the inventive strategies that bacteria have developed in order to survive. As virulence factors, they play a major role in the pathogenesis of infectious diseases. Recent discoveries have once more highlighted the effectiveness of these precisely adjusted bacterial weapons. Furthermore, toxins have become an invaluable tool in the investigation of fundamental cell processes, including regulation of cellular functions by various G proteins, cytoskeletal dynamics and neural transmission. In this review, the bacterial toxins are presented in a rational classification based on the molecular mechanisms of action.

  15. Toxicity Assessment of Bacillus thuringiensis β-exotoxins

    African Journals Online (AJOL)

    Dr. Obeidat

    2012-06-07

    Jun 7, 2012 ... tested on normal human erythrocytes by spectrophotometric method (Saitoh ... determine similarities between each pair of genotypes. The. Jaccard's ..... Control of Plant Pests and Diseases 1970-1980, Academic, London, pp.

  16. Prymnesium parvum exotoxins affect the grazing and viability of the calanoid copepod Eurytemora affinis

    DEFF Research Database (Denmark)

    Sopanen, S.; Koski, Marja; Uronen, P.

    2008-01-01

    The calanoid copepod Eurytemora affinis from the northern Baltic Sea was exposed to cell-free filtrates of the toxic haptophyte Prymnesium parvum as well as to cell mixtures of P. parvum and Rhodomonas salina. To test the effects of P. parvum exudates and allelopathy on selective grazers, copepods...... cultures were grown in nutrient-balanced (+NP) or limited (-N or -P) media to obtain different levels of toxicity. Survival, ingestion, faecal pellet production rates and egg production were measured over 3 d, together with measurements of P. parvum toxicity (hemolytic activity) (HA). Most of the copepods...... on grazers, and these effects are stronger under nutrient-depleted conditions; however, the presence of good-quality food lowers harmful effects for copepods. The negative effects caused either by direct intoxication or by food limitation following from strong allelopathic effects of P. parvum on other...

  17. The Staphylococcus aureus Exotoxin Recognition Using a Sensor Designed by Nanosilica and SEA genotyping by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    H. Ahari

    2014-09-01

    Full Text Available Considering the ever increasing population and industrialization of the developmental trend of human life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective, and even in most of the cases, the precision of practical techniques like bacterial cultivation and other techniques suffers from operator errors, or the errors of the mixtures used. Hence, with the advent of nanotechnology, the design of selective and smart sensors has turned into one of the greatest industrial revelations of the quality control of food products that, in few minutes time and with a very high precision, can identify the volume and toxicity of the bacteria. In this research, based on the bacterial antibody's connection to nanoparticles, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nm in the form of solid powder were utilized with Notrino brand. Then the suspension produced from the agent-linked nanosilica, which was connected to the bacterial antibody, was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of  10-3 molar, so that in case any toxin exists in the sample, a connection between the toxin antigen and the antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle-attached antibody was measured using spectrophotometry. The 23S rRNA gene that is conserved in all Staphylococcus spp. was used as the control. The accuracy of the test was monitored by using the serial dilution (l0-6 of overnight cell culture of Staphylococcus spp. bacteria (OD600: 0.02 = 107 cell. It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. The results indicated that the sensor detects up to 10-4molar density. Additionally, the sensitivity of the sensor was examined after 60 days; by the 56 day, it had confirmatory results, which started to decrease after this time. Comparison of practical nanobiosensory method with the conventional methods including culture and bio-technology methods (such as polymerase chain reaction confirmed its accuracy, sensitiveness and uniqueness.  It also reduces the time from hours to 30 minutes.

  18. Staphylococcal Enterotoxins, Toxic Shock Syndrome Toxin-I, and Streptococcal Pyrogenic Exotoxins: Some Basic Biology of Bacterial Superantigens

    National Research Council Canada - National Science Library

    Krakauer, Teresa

    2003-01-01

    Staphylococcus aureus and Streptococcus pyogenes are facultative gram-positive cocci that play an important role in a myriad of human illnesses, including food poisoning, skin infections, pharyngitis...

  19. [Detection of the functionally active domains in the molecule of the lethal factor of the anthrax exotoxin].

    Science.gov (United States)

    Noskov, A N; Kravchenko, T B; Noskova, V P

    1996-01-01

    Three functional domains were revealed in the molecule of the lethal factor of B. anthracis. They are located in the linear structure of the molecula as follows: the associative domain occupies the area from Lys39 to Met242, the stabilizing domain from Leu517 to Lys614, and the effector domain still further to the COOH-terminal Lys mino acid.

  20. Emergence of a Staphylococcus aureus Clone Resistant to Mupirocin and Fusidic Acid Carrying Exotoxin Genes and Causing Mainly Skin Infections.

    Science.gov (United States)

    Doudoulakakis, Anastassios; Spiliopoulou, Iris; Spyridis, Nikolaos; Giormezis, Nikolaos; Kopsidas, John; Militsopoulou, Maria; Lebessi, Evangelia; Tsolia, Maria

    2017-08-01

    Skin and soft tissue infections (SSTIs) caused by mupirocin-resistant Staphylococcus aureus strains have recently increased in number in our settings. We sought to evaluate the characteristics of these cases over a 43-month period. Data for all community-acquired staphylococcal infections caused by mupirocin-resistant strains were retrospectively reviewed. Genes encoding products producing high-level resistance (HLR) to mupirocin ( mupA ), fusidic acid resistance ( fusB ), resistance to macrolides and lincosamides ( ermC and ermA ), Panton-Valentine leukocidin (PVL) ( lukS/lukF -PV), exfoliative toxins ( eta and etb ), and fibronectin binding protein A ( fnbA ) were investigated by PCRs in 102 selected preserved strains. Genotyping was performed by SCC mec and agr typing, whereas clonality was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). A total of 437 cases among 2,137 staphylococcal infections were recorded in 2013 to 2016; they were all SSTIs with the exception of 1 case of primary bacteremia. Impetigo was the predominant clinical entity (371 cases [84.9%]), followed by staphylococcal scalded skin syndrome (21 cases [4.8%]), and there were no abscesses. The number of infections detected annually increased during the study years. All except 3 isolates were methicillin susceptible. The rates of HLR to mupirocin and constitutive resistance to clindamycin were 99% and 20.1%, respectively. Among the 102 tested strains, 100 (98%) were mupA positive and 97 (95%) were fusB positive, 26/27 clindamycin-resistant strains (96.3%) were ermA positive, 83 strains (81.4%) were lukS/lukF positive, 95 (93%) carried both eta and etb genes, and 99 (97%) were fnbA positive. Genotyping of methicillin-sensitive S. aureus (MSSA) strains revealed that 96/99 (96.7%) belonged to one main pulsotype, pulsotype 1, classified as sequence type 121 (ST121). The emergence of a single MSSA clone (ST121) causing impetigo was documented. Resistance to topical antimicrobials and a rich toxinogenic profile confer to this clone adaptability for spread in the community. Copyright © 2017 American Society for Microbiology.

  1. A Two-Component Regulatory System, CsrR-CsrS, Represses Expression of Three Streptococcus pyogenes Virulence Factors, Hyaluronic Acid Capsule, Streptolysin S, and Pyrogenic Exotoxin B

    OpenAIRE

    Heath, Andrew; DiRita, Victor J.; Barg, Neil L.; Engleberg, N. Cary

    1999-01-01

    Certain Tn916 insertions in the chromosome of an M1-type, nonmucoid Streptococcus pyogenes isolate (MGAS166) were previously shown to result in stable mucoidy with increased expression of the capsular synthetic genes. The transposon insertions in these strains are directly upstream of an apparent operon encoding a two-component regulatory system, designated csrR-csrS. Compared with MGAS166, these mucoid mutants are more hemolytic and cause significantly more tissue damage in a murine model of...

  2. 40 CFR 725.421 - Introduced genetic material.

    Science.gov (United States)

    2010-07-01

    ... fever toxins, pyrogenic exotoxins) Yersinia enterocolitica Heat-stable enterotoxins (ST) ... Neurotoxin Staphylococcus aureus Alpha toxin (alpha lysin) Yersinia pestis Murine toxin Snake toxins Bungarus...

  3. Evaluation of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to the Apx toxins of Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Nielsen, Ragnhild; van den Bosch, Johannes F.; Plambeck, Tamara

    2000-01-01

    The reference strains of the 12 serotypes of Actinobacillus pleuropneumoniae express one or two of three different RTX exotoxins designated Apr I, Apr II and Apr III. The toxins are important virulence factors. In the present study, ELISAs with purified Apr I, Apr II and Apr III, respectively...... of exotoxin is not revealed serologically in the ELISA test....

  4. FATAL GROUP A STREPTOCOCCAL TOXIC SHOCK-LIKE SYNDROME IN A CHILD WITH VARICELLA: REPORT OF THE FIRST WELL DOCUMENTED CASE WITH DETECTION OF THE GENETIC SEQUENCES THAT CODE FOR EXOTOXINS SPE A AND B, IN SÃO PAULO, BRAZIL

    Directory of Open Access Journals (Sweden)

    SZTAJNBOK Jaques

    1999-01-01

    Full Text Available A previously healthy seven-year-old boy was admitted to the intensive care unit because of toxaemia associated with varicella. He rapidly developed shock and multisystem organ failure associated with the appearance of a deep-seated soft tissue infection and, despite aggressive treatment, died on hospital day 4. An M-non-typable, spe A and spe B positive Group A Streptococcus was cultured from a deep soft tissue aspirate. The criteria for defining Streptococcal toxic shock-like syndrome were fulfilled. The authors discuss the clinical and pathophysiological aspects of this disease as well as some unusual clinical findings related to this case.

  5. Staphylococcus aureus bacteraemia in children: a formidable foe

    African Journals Online (AJOL)

    Staphylococcus aureus bacteraemia is a systemic disease; and, multiple organ involvement should be .... damage.3. Few studies have investigated the epidemiology of SAB in South ... producing a multitude of virulence factors, exotoxins and.

  6. Rapid generation of an anthrax immunotherapeutic from goats using a novel non-toxic muramyl dipeptide adjuvant

    OpenAIRE

    Kelly, Cassandra D; O'Loughlin, Chris; Gelder, Frank B; Peterson, Johnny W; Sower, Laurie E; Cirino, Nick M

    2007-01-01

    Background There is a clear need for vaccines and therapeutics for potential biological weapons of mass destruction and emerging diseases. Anthrax, caused by the bacterium Bacillus anthracis, has been used as both a biological warfare agent and bioterrorist weapon previously. Although antibiotic therapy is effective in the early stages of anthrax infection, it does not have any effect once exposed individuals become symptomatic due to B. anthracis exotoxin accumulation. The bipartite exotoxin...

  7. The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators.

    Science.gov (United States)

    Arnold, Jason W; Koudelka, Gerald B

    2014-02-01

    Phage-encoded Shiga toxin (Stx) acts as a bacterial defence against the eukaryotic predator Tetrahymena. To function as an effective bacterial anti-predator defence, Stx must kill a broad spectrum of predators. Consistent with that assertion, we show here that bacterially encoded Stx efficiently kills the bacteriovore Acanthamoeba castellanii in co-culture. We also show that, in addition to Stx, the phage-encoded exotoxin, diphtheria toxin (Dtx) expressed by Corynebacterium diphtheriae also can function as part of an anti-predator strategy; it kills Acanthamoeba in co-culture. Interestingly, only exotoxins produced by bacteria internalized by the Acanthamoeba predator are cytolethal; the presence of purified Dtx or Stx in culture medium has no effect on predator viability. This finding is consistent with our results indicating that intoxication of Acanthamoeba by these exotoxins does not require a receptor. Thus bacteria, in the disguise of a food source, function as a 'Trojan Horse', carrying genes encoding an exotoxin into target organisms. This 'Trojan Horse' mechanism of exotoxin delivery into predator cells allows intoxication of predators that lack a cell surface receptor for the particular toxin, allowing bacteria-bearing exotoxins to kill a broader spectrum of predators, increasing the fitness of the otherwise 'defenceless' prey bacteria. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. 75 FR 66104 - Government-Owned Inventions; Availability for Licensing

    Science.gov (United States)

    2010-10-27

    ...--Expressing Leukemia Cells''. PCT Patent Application WO 2007/016150--``Mutated Pseudomonas Exotoxins with... development and to identify potential molecular targets for the diagnosis, prevention, and treatment of cancer... cancer diagnosis, prevention, and treatment. Testing kinase inhibitors and other novel drugs being...

  9. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis

    Science.gov (United States)

    Shiga toxin 1, exotoxin A, diphtheria toxin and ricin are all AB-type protein toxins that act within the host cytosol to kill the host cell through a pathway involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. In...

  10. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1011 Viable spores of the... characteristics of the parent strain or contamination by other microorganisms. (3) Each lot of spore preparation... production is a Bacillus thuringiensis strain which does not produce β-exotoxin under standard manufacturing...

  11. Activité insecticide d'une souche marocaine de Bacillus ...

    African Journals Online (AJOL)

    endotoxines et β -exotoxines) extraites à partir d'une souche de Bacillus thuringiensis (Bt A9) isolée d'un sol au Maroc sur la mouche Ceratitis capitata Wied (Diptera ; Tephritidae). les endotoxines de Bt A9 agissent sur la mortalité des larves et la ...

  12. Stealth and mimicry by deadly bacterial toxins

    DEFF Research Database (Denmark)

    Yates, S.P.; Jørgensen, Rene; Andersen, Gregers Rom

    2006-01-01

    Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that serve as virulence factors in the pathogenic bacteria, Corynebacterium diphtheriae and Pseudomonas aeruginosa.  New high-resolution structural data of the Michaelis complex...

  13. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin

    DEFF Research Database (Denmark)

    Yahiro, Kinnosuke; Wada, Akihiro; Yamasaki, Eiki

    2004-01-01

    Helicobacter pylori produces a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Although VacA was able to interact with two receptor-like protein tyrosine phosphatases, RPTPbeta and RPTPalpha, RPTPbeta was found to be responsible for gastric damage caused...

  14. When No Response Is a Good Thing | Center for Cancer Research

    Science.gov (United States)

    Custom-designed therapies that target cell-surface antigens or receptors represent a promising immunological approach in cancer therapy. Antibodies that bind these targets are the starting point.  Potent toxins can then be added to them by fusing antibody fragments to powerful bacterial toxins such as Pseudomonas exotoxin (PE). This recombinant immunotoxin combines antibody selectivity with toxin cell-killing potency.

  15. Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

    Science.gov (United States)

    2012-07-27

    56 stock solution and 75 ml of the 16 dilution buffer was mixed with 25 ml of the supernatant, incubated for 30 min at 65 oC to inactivate endogenous ...shock by staphylococcal pyrogenic exotoxin type C. Infect Immun 36: 123–128. Meier survival analysis and log-rank tests were performed to compare

  16. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L. Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (TSST-1 in both methicillin-sensitive S. aureus (MSSA and methicillin-resistant S. aureus (MRSA. CONCLUSIONS/SIGNIFICANCE: The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.

  17. Anticancer peptides from bacteria

    OpenAIRE

    Tomasz M. Karpiński; Anna K. Szkaradkiewicz

    2013-01-01

    Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data ...

  18. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae.

    Science.gov (United States)

    Pérez, Melisa P; Sauka, Diego H; Onco, María I; Berretta, Marcelo F; Benintende, Graciela B

    Preliminary bioassays with whole cultures (WC) of 124 Bacillus thuringiensis strains were performed with neonate larvae of Anthonomus grandis, a major cotton pest in Argentina and other regions of the Americas. Three exotic and four native strains were selected for causing more than 50% mortality. All of them were β-exotoxin producers. The native strains shared similar morphology of parasporal crystals, similar protein pattern and identical insecticidal gene profiles. These features resembled Lepidoptera-toxic strains. Furthermore, these strains showed a Rep-PCR pattern identical to lepidoptericidal strain HD-1, suggesting that these strains may belong to serovar kurstaki. However, some differences were observed in the plasmid profiles and in the production of β-exotoxin. To determine the culture fractions where the insecticidal metabolites were present, bioassays including resuspended spore-crystal pellets, filtered supernatants (FS) were compared with those of WC. Both fractions tested showed some level of insecticidal activity. The results may suggest that the main toxic factors can be found in FS and could be directly correlated with the presence of β-exotoxin. Based on the bioassays with FS and autoclaved FS, the participation of thermolabile virulence factors such as Cry1I in toxicity is neither discarded. In the selected strains, β-exotoxin would be the major associated virulence factor; therefore, their use in biological control of A. grandis should be restricted. Nevertheless, these strains could be the source of genes (e.g., cry1Ia) to produce transgenic cotton plants resistant to this pest. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Influence of gamma radiation on the immunological and immunochemical properties of cholera

    International Nuclear Information System (INIS)

    Nedugova, G.I.; Rubtsov, I.V.; Samojlenko, I.I.

    1984-01-01

    Results of studying the effect of gamma-radiation on immunochemical properties and serologic activity of unpurified cholera exotoxin are presented. It is found that in irradiated toxin preparations physico-chemical alterations take place as the dose of ionizing radiation increases, which brings about the increase in electrophoretic mobility, aggregation of protein components. It is shown that serologic activity contained in antigene toxin preparations retains within the limits of radiation doses studied

  20. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons.

    Science.gov (United States)

    Schneider, Henriette; Geginat, Gernot; Hogardt, Michael; Kramer, Alexandra; Dürken, Matthias; Schroten, Horst; Tenenbaum, Tobias

    2012-06-01

    We analyzed an outbreak of invasive infections with an exotoxin U positive Pseudomonas aeruginosa strain within a pediatric oncology care unit. Environmental sampling and molecular characterization of the Pseudomonas aeruginosa strains led to identification of the outbreak source. An errant water jet into the sink within patient rooms was observed. Optimized outbreak management resulted in an abundance of further Pseudomonas aeruginosa infections within the pediatric oncology care unit.

  1. The life and death of translation elongation factor 2

    DEFF Research Database (Denmark)

    Jørgensen, Rene; Merrill, A.R.; Andersen, Gregers Rom

    2006-01-01

    The eukaryotic elongation factor 2 (eEF2) occupies an essential role in protein synthesis where it catalyses the translocation of the two tRNAs and the mRNA after peptidyl transfer on the 80S ribosome. Recent crystal structures of eEF2 and the cryo-EM reconstruction of its 80S complex now provide...... diphthamide residue, which is ADP-ribosylated by diphtheria toxin from Corynebacterium diphtheriae and exotoxin A from Pseudomonas aeruginosa....

  2. Immunogenetic determinants of susceptibility/resistance to Mycobacterium ulcerans infection: a population based study – Benin biological bank on Buruli ulcer

    OpenAIRE

    Capela, Carlos Alberto Pereira

    2016-01-01

    Tese de Doutoramento - Doutoramento em Medicina Buruli ulcer (BU) is an infectious disease found in tropical regions of Africa, America, Asia, and Australia. Most of the cases are reported in West Africa and BU is considered a neglected tropical disease by the World Health Organization (WHO). This necrotising skin infection is caused by Mycobacterium ulcerans that secretes the exotoxin mycolactone as its main virulence factor. There is emerging evidence for a major role of g...

  3. Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide.

    OpenAIRE

    Burns, F R; Paterson, C A; Gray, R D; Wells, J T

    1990-01-01

    Pseudomonas aeruginosa elastase is a zinc metalloproteinase which is released during P. aeruginosa infections. Pseudomonas keratitis, which occurs following contact lens-induced corneal trauma, can lead to rapid, liquefactive necrosis of the cornea. This destruction has been attributed to the release of both host-derived enzymes and the bacterial products P. aeruginosa elastase, alkaline protease, exotoxin A, and lipopolysaccharide endotoxin. A synthetic metalloproteinase inhibitor, HSCH2 (DL...

  4. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus.

    Science.gov (United States)

    Qiu, Jiazhang; Feng, Haihua; Lu, Jing; Xiang, Hua; Wang, Dacheng; Dong, Jing; Wang, Jianfeng; Wang, Xiaoliang; Liu, Juxiong; Deng, Xuming

    2010-09-01

    Eugenol, an essential oil component in plants, has been demonstrated to possess activity against both gram-positive and gram-negative bacteria. This study examined the influence that subinhibitory concentrations of eugenol may have on the expression of the major exotoxins produced by Staphylococcus aureus. The results from a tumor necrosis factor (TNF) release assay and a hemolysin assay indicated that S. aureus cultured with graded subinhibitory concentrations of eugenol (16 to 128 microg/ml) dose dependently decreased the TNF-inducing and hemolytic activities of culture supernatants. Western blot analysis showed that eugenol significantly reduced the production of staphylococcal enterotoxin A (SEA), SEB, and toxic shock syndrome toxin 1 (the key exotoxins to induce TNF release), as well as the expression of alpha-hemolysin (the major hemolysin to cause hemolysis). In addition, this suppression was also evaluated at the transcriptional level via real-time reverse transcription (RT)-PCR analysis. The transcriptional analysis indicated that 128 microg/ml of eugenol remarkably repressed the transcription of the S. aureus sea, seb, tst, and hla genes. According to these results, eugenol has the potential to be rationally applied on food products as a novel food antimicrobial agent both to inhibit the growth of bacteria and to suppress the production of exotoxins by S. aureus.

  5. Multiple-locus variable number of tandem repeats fingerprinting (MLVF) and virulence factor analysis of methicillin resistant Staphylococcus aureus SCCmec type III.

    Science.gov (United States)

    Emaneini, Mohammad; Jabalameli, Leila; Iman-Eini, Hossein; Aligholi, Marzieh; Ghasemi, Amir; Nakhjavani, Farrokh Akbari; Taherikalani, Morovat; Khoramian, Babak; Asadollahi, Parisa; Jabalameli, Fereshteh

    2011-01-01

    Methicillin resistant Staphylococcus aureus (MRSA), particularly strains with type III staphylococcal cassette chromosome mec (SCCmec), represent a serious human pathogen in Tehran, Iran. The disease-causing capability depends on their ability to produce a wide variety of virulent factors. The prevalence of exotoxin genes and multiple-locus variable number of tandem repeats fingerprinting (MLVF) profile among MRSA isolates, from patients in Tehran, was evaluated by PCR and Multiplex-PCR. The MLVF typing of 144 MRSA isolates with type III SCCmec produced 5 different MLVF types. Generally, 97.2% (140/144) of all the isolates were positive for at least one of the tested exotoxin genes. The most prevalent genes were hld, found in 87.5% (126/144) of the isolates followed by lukE-lukD and hla found in 72.9% (105/144) and 70.1% (101/144) of the isolates, respectively. The tst gene, belonging to MLVF types I, IV and V, was found among three of the isolates from blood and wound samples. The sea gene was detected in 58.3% (84/144) of the isolates and the sed and see genes were found in one isolate with MLVF type V. The coexistence of genes was observed in the 87.5% (126/144) of the isolates. The rate of coexistence of hld with lukE-lukD, hla with lukE-lukD and sea with lukE-lukD were 66.7% (96/144), 44.4% (64/144) and 44.4% (64/144), respectively. The present study demonstrated that MRSA strains with type III SCCmec show different MLVF patterns and exotoxin profiles.

  6. Glycerol monolaurate and dodecylglycerol effects on Staphylococcus aureus and toxic shock syndrome toxin-1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ying-Chi Lin

    2009-10-01

    Full Text Available Glycerol monolaurate (GML, a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG, a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability.Antimicrobial effects of GML and DDG (0 to 500 microg/ml on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day effects on S. aureus (MN8 growth (inoculum 3x10(8 CFU/ml, toxic shock syndrome toxin-1 (TSST-1 production, tumor necrosis factor-alpha (TNF-alpha concentrations and mortality over 7 days. DDG (50 and 100 microg/ml inhibited S. aureus growth in vitro more effectively than GML (p<0.01 and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80% and DDG-treated rabbits (2 of 5; 40% survived after 7 days. Control rabbits (5 of 5; 100% succumbed by day 4. GML suppressed TNF-alpha at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively.These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-alpha, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase.

  7. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  8. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    Energy Technology Data Exchange (ETDEWEB)

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C. (UMM)

    2016-07-05

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  9. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature

    Science.gov (United States)

    2016-08-26

    Each neurotoxin subtype within a serotype cleaves its target substrate at the same single conserved peptide bond, except for BoNT/F5 (Table 2) [55...common for strains of C. botulinum Group III to form a chimeric or hybrid protein that combines elements of BoNT/C and BoNT/D neurotoxin, rather than a...Approved for public release; distribution is unlimited. UNCLASSIFIED 15 reported as BoNT/CD or BoNT/DC chimeric toxins [22]. Two exotoxins

  10. Genes associados à virulência e multirresistência de antimicrobianos em linhagens Trueperella Pyogenes isoladas de mastite e outras afecções em animais domésticos

    OpenAIRE

    Risseti, Rafaela Mastrangelo [UNESP

    2015-01-01

    Trueperella pyogenes are opportunistic bacterium characterized by suppurative infections in domestic animals, commonly refractory to conventional therapy. Recently, genes which encode exotoxin pyolysin (plo), and factors that promote adhesion of T. pyogenes to host cells, such as fimbriae (fimA, fimC, fimE, fimG), neuraminidases (nanH, nanP), and collagen-binding protein (cbpA) have been associated to virulence of pathogen. The aim of present study was investigate occurrence of multi-drug res...

  11. Serratia marcescens Bullous Cellulitis in a Splenectomized Patient: A Case Report and Review of the Literature.

    Science.gov (United States)

    Fournier, John B; Dabiri, Ganary; Thomas, Vinod; Skowron, Gail; Carson, Polly; Falanga, Vincent

    2016-06-01

    Serratia marcescens is a Gram-negative bacillus belonging to the Enterobacteriaceae family. Cutaneous infection with Serratia is rare, and usually occurs in immunocompromised individuals. Primary cutaneous infections are uncommon, but they are typically severe and are associated with significant morbidity and mortality. The pathogenetic factors leading to S. marcescens infection are not fully understood, but contributing virulence factors include proteases, secreted exotoxins, and the formation of biofilm. We report a case of cellulitis occurring in a splenectomized patient, which led to multiple wound debridements and a transmetatarsal amputation. This dramatic case led us to review the published literature on soft tissue infections caused by S. marcescens. © The Author(s) 2016.

  12. Toxicity of fatty acid 18:5n3 from Gymnodinium cf. mikimotoi: II. Intracellular pH and K+ uptake in isolated trout hepatocytes.

    Science.gov (United States)

    Fossat, B; Porthé-Nibelle, J; Sola, F; Masoni, A; Gentien, P; Bodennec, G

    1999-01-01

    Effects of octadecapentaenoic acid 18:5n3 and other related polyunsaturated fatty acids present in gymnodinium cf. mikimotoi were tested in isolated trout hepatocytes. These exotoxins decreased intracellular pH followed by a slow recovery to initial value and alkalinization of acidic compartments, suggesting an inhibition of vacuolar H(+)-ATPases. Moreover, addition of 18:5n3 to the extracellular medium induced a decrease of K+ uptake into hepatocytes as a result of Na,K-ATPase inhibition. However, high concentrations (10(-5)-10(-3) M) are necessary to induce these effects.

  13. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria.

    Science.gov (United States)

    Sangolkar, Lalita N; Maske, Sarika S; Chakrabarti, Tapan

    2006-11-01

    Episodes of cyanobacterial toxic blooms and fatalities to animals and humans due to cyanobacterial toxins (CBT) are known worldwide. The hepatotoxins and neurotoxins (cyanotoxins) produced by bloom-forming cyanobacteria have been the cause of human and animal health hazards and even death. Prevailing concentration of cell bound endotoxin, exotoxin and the toxin variants depend on developmental stages of the bloom and the cyanobacterial (CB) species involved. Toxic and non-toxic strains do not show any predictable morphological difference. The current instrumental, immunological and molecular methods applied for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria are reviewed.

  14. VacA, the vacuolating cytotoxin of Helicobacter pylori, binds to multimerin 1 on human platelets

    OpenAIRE

    Satoh, Kaneo; Hirayama, Toshiya; Takano, Katsuhiro; Suzuki-Inoue, Katsue; Sato, Tadashi; Ohta, Masato; Nakagomi, Junko; Ozaki, Yukio

    2013-01-01

    Platelets were activated under the infection with H. pylori in human and mice. We investigated the role of VacA, an exotoxin released by H. pylori in this context. Acid-activated VacA, but not heated VacA, induced platelet CD62P expression. However, VacA reacted with none of the alleged VacA receptors present on platelet membranes. We therefore analyzed VacA associated proteins obtained through VacA affinity chromatography, using MALDI-TOF-MS. Multimerin1 was detected in two consecutive exper...

  15. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Directory of Open Access Journals (Sweden)

    Kellie Burnside

    2010-06-01

    Full Text Available Exotoxins, including the hemolysins known as the alpha (alpha and beta (beta toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1 were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1 increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU, serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE and a hypothetical protein (NWMN_1123 were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  16. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  17. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Science.gov (United States)

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  18. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes.

    Science.gov (United States)

    Burlet, E; HogenEsch, H; Dunham, A; Morefield, G

    2017-05-01

    Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.

  19. Toxins secreted by Bacillus isolated from lung adenocarcinomas favor the penetration of toxic substances

    Directory of Open Access Journals (Sweden)

    Alexandra eMerlos

    2015-11-01

    Full Text Available The aim was to explore the eventual role of bacteria in the induction of lung cancer by smoking habits. Viable bacteria closely related to the genus Bacillus were detected at high frequencies in lung-cancer biopsies. Similar, if not identical, microbes were isolated from cigarettes and in smog. Bacteria present in cigarettes could be transferred to a physiological solution via a smoker device that mimicked their potential transfer during smoking those bacteria produce exotoxins able to open transmembrane pores. These channels can be used as a way to penetrate cells of benzopyrenes and other toxic substances present in tobacco products. We hypothesize that Bacillaceae present in tobacco play a key role in the development of lung cancer.

  20. A clinical and bacteriologic investigation of invasive streptococcal infections in Japan on the basis of serotypes, toxin production, and genomic DNA fingerprints.

    Science.gov (United States)

    Nakashima, K; Ichiyama, S; Iinuma, Y; Hasegawa, Y; Ohta, M; Ooe, K; Shimizu, Y; Igarashi, H; Murai, T; Shimokata, K

    1997-08-01

    In a survey of invasive streptococcal infections in Japan, we analyzed isolates of Streptococcus pyogenes collected between 1992 and 1994. Genomic DNA fingerprints produced by pulsed-field gel electrophoresis (PFGE) were compared by computer-assisted analysis. Conventional serologic M types were subdivided into PFGE types showing close genetic similarity. Among the 42 isolates from patients with invasive diseases, 16 PFGE types were identified and genetic diversity was clearly demonstrated. Identical fingerprints were observed in both invasive and noninvasive isolates. Only 43% of invasive isolates produced streptococcal pyrogenic exotoxin A (SPE A), and 31% did not contain the speA gene. These findings suggest that the dissemination of a specific clone is not sufficient to explain all cases of these diseases in Japan and pose a question as to the role of SPE A as a major virulent factor. Bacterial factors other than SPE A and host factors should be considered in evaluation of the pathogenesis of the diseases.

  1. Staphylococcus aureus and hand eczema severity

    DEFF Research Database (Denmark)

    Haslund, P; Bangsgaard, N; Jarløv, J O

    2009-01-01

    BACKGROUND: The role of bacterial infections in hand eczema (HE) remains to be assessed. OBJECTIVES: To determine the prevalence of Staphylococcus aureus in patients with HE compared with controls, and to relate presence of S. aureus, subtypes and toxin production to severity of HE. METHODS......: Bacterial swabs were taken at three different visits from the hand and nose in 50 patients with HE and 50 controls. Staphylococcus aureus was subtyped by spa typing and assigned to clonal complexes (CCs), and isolates were tested for exotoxin-producing S. aureus strains. The Hand Eczema Severity Index...... and in the nose in all cases, and between visits in 90% of cases. Ten different CC types were identified, no association with severity was found, and toxin-producing strains were not found more frequently in patients with HE than in controls. CONCLUSIONS: Staphylococcus aureus was present on hands in almost half...

  2. Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate

    Science.gov (United States)

    Shin, Min-Kyoung; Jung, Myung Hwan; Lee, Won-Jung; Choi, Pil Son; Jang, Yong-Suk

    2011-01-01

    Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection. PMID:22122907

  3. Diagnosis and management of necrotising fasciitis: a multiparametric approach.

    Science.gov (United States)

    Morgan, M S

    2010-08-01

    Necrotising fasciitis (NF) is situated with myositis and myonecrosis at the severe end of a spectrum of skin and soft tissue infections but is far removed from erisepelas, impetigo and cellulitis. Inexperienced clinicians are easily misled by the protean manifestations of infection, especially exotoxin or superantigen mediated consequences from streptococcal NF. Early clinical suspicion and surgery are key to improving survival, and patients with NF need integrated multidisciplinary management, adjusted to the infecting organism(s), the site of infection, and the effects from any toxins produced. A multiparametric approach, incorporating various clinical and laboratory parameters, can aid aggressive management. This review describes the diagnosis and management of the major types of NF, emphasising important aetiological clues from the history and the appropriate usage of diagnostic investigations. The potential benefits of controversial therapeutic approaches, including hyperbaric oxygen and intravenous immunoglobulin, are discussed. Copyright 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Sulfasalazine Attenuates Staphylococcal Enterotoxin B-Induced Immune Responses

    Directory of Open Access Journals (Sweden)

    Teresa Krakauer

    2015-02-01

    Full Text Available Staphylococcal enterotoxin B (SEB and related exotoxins are important virulence factors produced by Staphylococcus aureus as they cause human diseases such as food poisoning and toxic shock. These toxins bind directly to cells of the immune system resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. The excessive release of proinflammatory cytokines from these cells mediates the toxic effects of SEB. This study examined the inhibitory activities of an anti-inflammatory drug, sulfasalazine, on SEB-stimulated human peripheral blood mononuclear cells (PBMC. Sulfasalazine dose-dependently inhibited tumor necrosis factor α, interleukin 1 (IL-1 β, IL-2, IL-6, interferon γ (IFNγ, and various chemotactic cytokines from SEB-stimulated human PBMC. Sulfasalazine also potently blocked SEB-induced T cell proliferation and NFκB activation. These results suggest that sulfasalazine might be useful in mitigating the toxic effects of SEB by blocking SEB-induced host inflammatory cascade and signaling pathways.

  5. Percutaneous sclerotherapy of sialoceles after parotidectomy with fibrin glue, OK-432, and bleomycin.

    Science.gov (United States)

    Chen, Wei-liang; Zhang, Li-ping; Huang, Zhi-quan; Zhou, Bin

    2013-12-01

    We evaluated the curative effect of fibrin glue combined with OK-432 (streptococcal pyrogenic exotoxin A, Picibanil™) and bleomycin on 9 patients with sialoceles after parotidectomy. The primary lesions included pleomorphic adenomas in 6 cases and Warthin's tumours in 3 cases. After a sialocele had been diagnosed each patient had repeated aspirations and pressure dressings for 3-4 weeks, but these treatments failed. The patients were then treated with percutaneous sclerotherapy with the injection of fibrin glue 8-10 ml combined with OK-432 5 mg and bleomycin 15 mg. All the sialoceles disappeared completely after a single procedure in 2-3 weeks. The patients have been followed up for more than 6 months with no evidence of recurrent sialocele or injury to the facial nerve related to sclerotherapy. This simple, safe technique can be successfully used to treat sialoceles after parotidectomy. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. The agr inhibitors solonamide B and analogues alter immune responses to Staphylococccus aureus but do not exhibit adverse effects on immune cell functions

    DEFF Research Database (Denmark)

    Baldry, Mara; Kitir, Betül; Frøkiær, Hanne

    2016-01-01

    Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alte......Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed...... as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase...

  7. TREATMENT OF CLOSTRIDIUM DIFFICILE- ASSOCIATED DISEASE

    Directory of Open Access Journals (Sweden)

    Snezana Antic-Mladenovic

    2007-04-01

    Full Text Available Clostridium difficile is a Gram-positive, spore-forming, anaerobic bacillus that is widely distributed in the environment, but is found as a part of a normal large bowel flora in approximately 3% of normal adults. C. difficile produces two protein exotoxins: toxin A and toxin B. Both toxins are responsible for causing the sings and symptoms of disease.C. difficile is now thought to be responsible for a spectrum of diseases, ranging from asymptomatic colonization to diarrhea of varying severity, life-threatening colitis, often as a consequence of long-term antibiotic exposure. This spectrum has become known as C. difficile-associated disease (CDAD.Treatment of Clostridium difficile-associated disease demand administration of effi-cient antibiotics (vancomycin, metronidazole, anion exchange resins and probiotics (Lactobacillus spp., Saccharomyces boulardii.

  8. Sensitive assays enable detection of serum IgG antibodies against Clostridium difficile toxin A and toxin B in healthy subjects and patients with Clostridium difficile infection.

    Science.gov (United States)

    Zhao, Xuemei; Bender, Florent; Shukla, Rajiv; Kang, John J; Caro-Aguilar, Ivette; Laterza, Omar F

    2016-04-01

    Pathogenic Clostridium difficile produces two proinflammatory exotoxins, toxin A and toxin B. Low level of serum antitoxin IgG antibodies is a risk factor for the development of primary and recurrent C. difficile infection (CDI). We developed and validated two sensitive, titer-based electrochemiluminescence assays for the detection of serum antibody levels against C. difficile toxins A and B. These assays demonstrated excellent precision. The sensitivity of the assays allowed the detection of antitoxin A and antitoxin B IgG antibodies in all tested serum samples during assay validation. The validated titer-based assays enable assessment of antitoxin A and antitoxin B IgG antibodies as potential biomarkers to identify patients with CDI at increased risk for CDI recurrence.

  9. Purification of alpha-toxin from Staphylococcus aureus and application to cell permeabilization

    International Nuclear Information System (INIS)

    Lind, I.; Ahnert-Hilger, G.; Fuchs, G.; Gratzl, M.

    1987-01-01

    Crude alpha-toxin was produced by Staphylococcus aureus, strain Wood 46. The amount of exotoxin was monitored during growth and all subsequent purification steps by determination of its hemolytic activity against rabbit erythrocytes. The culture supernatant was treated with ammonium sulfate (75% saturation). The resulting precipitate was dialyzed and subjected to cation-exchange chromatography. The fractions containing the hemolytic activity were further purified by gel chromatography. The final product was enriched by a factor of 8.5 compared to the crude toxin. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified toxin exhibited one major band. It caused the release of 86 Rb+ and ATP from rat insulinoma (RIN A2) as well as pheochromocytoma cells (PC12) in culture, indicating efficient permeabilization of their plasma membranes for small molecules

  10. Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle.

    Science.gov (United States)

    Monecke, Stefan; Kuhnert, Peter; Hotzel, Helmut; Slickers, Peter; Ehricht, Ralf

    2007-11-15

    Staphylococcus aureus is a common pathogen which can colonise and infect not only man, but also domestic animals. Especially, infection of cattle is of high economic relevance as S. aureus is an important causal agent of bovine mastitis. In the present contribution, a DNA microarray was applied for the study of 144 different gene targets, including resistance genes and genes encoding exotoxins, in S. aureus isolated from cows. One hundred and twenty-eight isolates from Germany and Switzerland were tested. These isolates were assigned to 20 different strains and nine clonal complexes. The majority of isolates belonged either to apparently closely related clonal complexes 8, 25, and 97 (together 34.4%) or were related to the sequenced bovine strain RF122 (48.4%). Notable characteristics of S. aureus of bovine origin are the carriage of intact haemolysin beta (in 82% of isolates tested), the absence of staphylokinase (in 89.1%), the presence of allelic variants of several exotoxins such as toxic shock syndrome toxin and enterotoxin N, and the occurrence of the leukocidin lukF-P83/lukM (in 53.1%). Two isolates were methicillin-resistant S. aureus (MRSA). One of them was a clonal complex 8 MRSA related to the epidemic MRSA strain Irish 01. The other one belonged to ST398/spa-type 34 resembling a newly emerging MRSA strain which has been described to occur in humans as well as in domestic animals. The presence of these two strains highlights the possibility of transfers of S. aureus strains between different host species.

  11. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS.

    Directory of Open Access Journals (Sweden)

    Abdelali Daddaoua

    Full Text Available Homologs of the transcriptional regulator PtxS are omnipresent in Pseudomonas, whereas PtxR homologues are exclusively found in human pathogenic Pseudomonas species. In all Pseudomonas sp., PtxS with 2-ketogluconate is the regulator of the gluconate degradation pathway and controls expression from its own promoter and also from the P(gad and P(kgu for the catabolic operons. There is evidence that PtxS and PtxR play a central role in the regulation of exotoxin A expression, a relevant primary virulence factor of Pseudomonas aeruginosa. We show using DNaseI-footprint analysis that in P. aeruginosa PtxR binds to the -35 region of the P(toxA promoter in front of the exotoxin A gene, whereas PtxS does not bind to this promoter. Bioinformatic and DNaseI-footprint analysis identified a PtxR binding site in the P(kgu and P(gad promoters that overlaps the -35 region, while the PtxS operator site is located 50 bp downstream from the PtxR site. In vitro, PtxS recognises PtxR with nanomolar affinity, but this interaction does not occur in the presence of 2-ketogluconate, the specific effector of PtxS. DNAaseI footprint assays of P(kgu and P(gad promoters with PtxS and PtxR showed a strong region of hyper-reactivity between both regulator binding sites, indicative of DNA distortion when both proteins are bound; however in the presence of 2-ketogluconate no protection was observed. We conclude that PtxS modulates PtxR activity in response to 2-ketogluconate by complex formation in solution in the case of the P(toxA promoter, or via the formation of a DNA loop as in the regulation of gluconate catabolic genes. Data suggest two different mechanisms of control exerted by the same regulator.

  12. Engineering of a Potent Recombinant Lectin-Toxin Fusion Protein to Eliminate Human Pluripotent Stem Cells.

    Science.gov (United States)

    Tateno, Hiroaki; Saito, Sayoko

    2017-07-10

    The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.

  13. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines.

    Science.gov (United States)

    Chellapandi, Paulchamy; Prisilla, Arokiyasamy

    2017-01-01

    Clostridium botulinum group III strains are able to produce cytotoxins, C2 toxin and C3 exotoxin, along with botulinum neurotoxin types C and D. C2 toxin and C3 exotoxin produced by this organism are the most important members of bacterial ADP-ribosyltransferase superfamily. Both toxins have distinct pathophysiological functions in the avian and mammalian hosts. The members of this superfamily transfer an ADP-ribose moiety of NAD+ to specific eukaryotic target proteins. The present review describes the structure, function and evolution aspects of these toxins with a special emphasis to the development of veterinary vaccines. C2 toxin is a binary toxin that consists of a catalytic subunit (C2I) and a translocation subunit (C2II). C2I component is structurally and functionally similar to the VIP2 and iota A toxin whereas C2II component shows a significant homology with the protective antigen from anthrax toxin and iota B. Unlike C2 toxin, C3 toxin is devoid of translocation/binding subunit. Extensive studies on their sequence-structure-function link spawn additional efforts to understand the catalytic mechanisms and target recognition. Structural and functional relationships with them are often determined by using evolutionary constraints as valuable biological measures. Enzyme-deficient mutants derived from these toxins have been used as drug/protein delivery systems in eukaryotic cells. Thus, current knowledge on their molecular diversity is a well-known perspective to design immunotoxin or subunit vaccine for C. botulinum infection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells.

    Science.gov (United States)

    Tang, Jinle; Li, Jialu; Zhu, Xuejun; Yu, Yuan; Chen, Dan; Yuan, Lei; Gu, Zhenyang; Zhang, Xingding; Qi, Lin; Gong, Zhishu; Jiang, Pengjun; Yu, Juhua; Meng, Huimin; An, Gangli; Zheng, Huyong; Yang, Lin

    2016-06-07

    Various CD7-targeting immunotoxins have been tested for its potential in treating CD7+ malignant patients but none of those immunotoxins was approved clinically because of lacking enough efficacy and safety. Here we successfully constructed the monovalent and bivalent CD7 nanobody-based immunotoxins PG001 and PG002, both conjugated with a truncated derivative of Pseudomonas exotoxin A respectively. The prokaryotic system expressed immunotoxins not only maintained their binding specificity for CD7-positive cells with a Kd of 16.74 nM and 3.6 nM for PG001 and PG002 respectively, but also efficiently promoted antigen-restricted apoptosis of the CD7-positive leukemia cell lines Jurkat and CEM, and primary T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) cells with an in vitro cytotoxic activity (EC50) in the range of 23-30 pM for PG002. In NOD/SCID mice transplanted with CEM cells, PG001 and PG002 prevented engraftment of the cells and markedly prolonged mouse survival. Owing to the efficient antigen-restricted anti-leukemic activity of PG002, this CD7 nanobody-based immunotoxin exhibited a superior anti-CD7 positive malignancies activity than previously reported immunotoxins, and may represent a promising therapeutic strategy in treating CD7-positive leukemia and lymphoma, which still remain a significant clinical challenge.

  15. Species-Dependent Functionality of the Human Cytolytic Fusion Proteins Granzyme B-H22(scFv and H22(scFv-Angiogenin in Macrophages

    Directory of Open Access Journals (Sweden)

    Theo Thepen

    2013-01-01

    Full Text Available Human cytolytic fusion proteins (hCFPs are comprised of a specific cell-surface-binding moiety and an effector molecule of human origin. In contrast to common immunotoxins, including bacterial or plant toxins, they are considered not to be immunogenic. Two examples for human pro-apoptotic effector proteins are the serine protease Granzyme B and the RNase Angiogenin. Pre-clinical testing of functionality in in vitro and in vivo studies is essential for therapeutics. Establishing relevant animal models that have predictive value for therapeutic success is a great challenge in biomedical research. In this study, we investigated the species-dependent cytotoxic activity of two hCFPs prior to their application in a murine inflammation model. We found that in vitro and ex vivo either hCFP was able to kill human cells only, leaving murine cells unaffected. In contrast, no species-dependency was found for the bacterial Pseudomonas exotoxin A based immunotoxin H22(scFv-ETA’. This species-dependent functioning has to be carefully considered when performing pre-clinical studies in animal models.

  16. Pathogenesis of tuberculosis and other mycobacteriosis.

    Science.gov (United States)

    Cardona, Pere-Joan

    2018-01-01

    The evolution between Mycobacterium tuberculosis infection and active tuberculosis is multifactorial and involves different biological scales. The synthesis of ESAT-6 or the induction of alveolar macrophage necrosis are key, but to understand it, it is necessary to consider the dynamics of endogenous and exogenous reinfection, drainage of lung parenchyma and respiratory mechanics, local fibrosis processes and blood supply. Paradoxically, the immune response generated by the infection is highly protective (90%) against active tuberculosis, although as it is essentially based on the proliferation of Th1 lymphocytes, it cannot prevent reinfection. Severe immunosuppression can only explain 10% of active tuberculosis cases, while the remainder are attributable to comorbidities, a proinflammatory environment and an unknown genetic propensity. The pathogenic capacity of environmental mycobacteria is discrete, linked to deficits in the innate and acquired immune response. The ability to generate biofilms and the ability of M. ulcerans to generate the exotoxin mycolactone is remarkable. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-03-24

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail.

  18. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    International Nuclear Information System (INIS)

    Kohno, Kenji; Hayes, H.; Mekada, Eisuke; Uchida, Tsuyoshi

    1987-01-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125 I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH 4 Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells

  19. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    Science.gov (United States)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  20. Attenuation of massive cytokine response to the staphylococcal enterotoxin B superantigen by the innate immunomodulatory protein lactoferrin

    Science.gov (United States)

    Hayworth, J L; Kasper, K J; Leon-Ponte, M; Herfst, C A; Yue, D; Brintnell, W C; Mazzuca, D M; Heinrichs, D E; Cairns, E; Madrenas, J; Hoskin, D W; McCormick, J K; Haeryfar, S M M

    2009-01-01

    Staphylococcal enterotoxin B (SEB) is a pyrogenic exotoxin and a potent superantigen which causes massive T cell activation and cytokine secretion, leading to profound immunosuppression and morbidity. The inhibition of SEB-induced responses is thus considered a goal in the management of certain types of staphylococcal infections. Lactoferrin (LF) is a multi-functional glycoprotein with both bacteriostatic and bactericidal activities. In addition, LF is known to have potent immunomodulatory properties. Given the anti-microbial and anti-inflammatory properties of this protein, we hypothesized that LF can modulate T cell responses to SEB. Here, we report that bovine LF (bLF) was indeed able to attenuate SEB-induced proliferation, interleukin-2 production and CD25 expression by human leucocyte antigen (HLA)-DR4 transgenic mouse T cells. This inhibition was not due to bLF's iron-binding capacity, and could be mimicked by the bLF-derived peptide lactoferricin. Cytokine secretion by an engineered SEB-responsive human Jurkat T cell line and by peripheral blood mononuclear cells from healthy donors was also inhibited by bLF. These findings reveal a previously unrecognized property of LF in modulation of SEB-triggered immune activation and suggest a therapeutic potential for this naturally occurring protein during toxic shock syndrome. PMID:19659771

  1. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes

    Science.gov (United States)

    Mazor, Ronit; Eberle, Jaime A.; Hu, Xiaobo; Vassall, Aaron N.; Onda, Masanori; Beers, Richard; Lee, Elizabeth C.; Kreitman, Robert J.; Lee, Byungkook; Baker, David; King, Chris; Hassan, Raffit; Benhar, Itai; Pastan, Ira

    2014-01-01

    Nonhuman proteins have valuable therapeutic properties, but their efficacy is limited by neutralizing antibodies. Recombinant immunotoxins (RITs) are potent anticancer agents that have produced many complete remissions in leukemia, but immunogenicity limits the number of doses that can be given to patients with normal immune systems. Using human cells, we identified eight helper T-cell epitopes in PE38, a portion of the bacterial protein Pseudomonas exotoxin A which consists of the toxin moiety of the RIT, and used this information to make LMB-T18 in which three epitopes were deleted and five others diminished by point mutations in key residues. LMB-T18 has high cytotoxic and antitumor activity and is very resistant to thermal denaturation. The new immunotoxin has a 93% decrease in T-cell epitopes and should have improved efficacy in patients because more treatment cycles can be given. Furthermore, the deimmunized toxin can be used to make RITs targeting other antigens, and the approach we describe can be used to deimmunize other therapeutically useful nonhuman proteins. PMID:24799704

  2. The effect of sub-inhibitory concentrations of rifaximin on urease production and on other virulence factors expressed by Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Staphylococcus aureus.

    Science.gov (United States)

    Ricci, Annalisa; Coppo, Erika; Barbieri, Ramona; Debbia, Eugenio A; Marchese, Anna

    2017-04-01

    Rifaximin, a topical derivative of rifampin, inhibited urease production and other virulence factors at sub-MIC concentrations in strains involved in hepatic encephalopathy and the expression of methicillin resistance in Staphylococcus aureus. In particular, urease production was affected in all Proteus mirabilis and Klebsiella pneumoniae strains as well as in all tested Pseudomonas aeruginosa isolates. Other exotoxins, synthesized by P. aeruginosa, such as protease, gelatinase, lipase, lecithinase and DNAse were also not metabolized in the presence of rifaximin. This antibiotic inhibited pigment production in both P. aeruginosa and Chromobacterium violaceum, a biosensor control strain. Lastly, rifaximin affected haemolysin production in S. aureus and was able to restore cefoxitin susceptibility when the strain was cultured in the presence of sub-MICs of the drug. The present findings confirm and extend previous observations about the beneficial effects of rifaximin for the treatment of gastrointestinal diseases, since in this anatomic site, it reaches a large array of concentrations which prevents enterobacteria from thriving and/or producing their major virulence factors.

  3. Photodynamic diagnostics of stress-induced gastrointestinal neoplasia in laboratory animals using 5-aminolevulinic acid and Al-phthalocyanine

    Science.gov (United States)

    Borisova, Ekaterina; Semyachkina-Glushkovskaya, Oxana; Navolokin, Nikita; Mantareva, Vanya; Angelov, Ivan; Agranovich, Ilana; Khorovodov, Alexander; Shushunova, Natalia; Bodrova, Anastasiya; Fedosov, Ivan; Namykin, Anton; Abdurashitov, Arkady; Avramov, Latchezar

    2018-02-01

    The main research objective is the development of innovative optical technologies for sensitive diagnosis of early stages of development of stomach cancer and monitoring of stress-induced appearance and development of tumors of the gastrointestinal tract by applying endogenous and exogenous fluorescence spectroscopy modalities. Different mechanisms solely and in combination for evaluation of the joint impact of bioenvironmental factors (stress, Helicobacter pillory, exo-toxins in the food, water, soil and air) were applied to induce gastrointestinal tract (GIT) neoplasia in rats. The transformation of damaged areas of the stomach mucosa into malignancies in all parts of gastrointestinal tract were detected using exogenous fluorescence of photosensitizers - 5-aminolevulinic acid (5-ALA) and aluminum phthalocyanine (Al-Pc). Fluorescent mapping of different organs (liver, spleen, lungs, brain) also was developed - to evaluate the distribution of the photosensitizers in the whole body on the second hour after photosensitizer application by intravenous injection. Fiber-optic probe was used to measure the organs investigated. Fluorescence spectra were detected by microspectrometer USB4000 (OceanOptics Inc., USA), and FS405 LED source on 405 nm was used as excitation source for both types of photosensitizers applied. Diagnostically-important parameters of oximetry, optical coherence tomography and speckle-imaging of the microcirculation of the stomach were also evaluated, to evaluate changes in the blood flow and vascular architecture, during the formation of the initial phases of the neoplasm development.

  4. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  5. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium

    Directory of Open Access Journals (Sweden)

    Nie Weijia

    2008-11-01

    Full Text Available Abstract Background Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. Results The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB were purified from bacterial crude extracts. Approximately 5 – 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. Conclusion We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.

  6. Cholera Toxin Promotes Th17 Cell Differentiation by Modulating Expression of Polarizing Cytokines and the Antigen-Presenting Potential of Dendritic Cells.

    Science.gov (United States)

    Kang, Jung-Ok; Lee, Jee-Boong; Chang, Jun

    2016-01-01

    Cholera toxin (CT), an exotoxin produced by Vibrio cholera, acts as a mucosal adjuvant. In a previous study, we showed that CT skews differentiation of CD4 T cells to IL-17-producing Th17 cells. Here, we found that intranasal administration of CT induced migration of migratory dendritic cell (DC) populations, CD103+ DCs and CD11bhi DCs, to the lung draining mediastinal lymph nodes (medLN). Among those DC subsets, CD11bhi DCs that were relatively immature had a major role in Th17 cell differentiation after administration of CT. CT-treated BMDCs showed reduced expression of MHC class II and CD86, similar to CD11bhi DCs in medLN, and these BMDCs promoted Th17 cell differentiation more potently than other BMDCs expressing higher levels of MHC class II and CD86. By analyzing the expression of activation markers such as CD25 and CD69, proliferation and IL-2 production, we determined that CT-treated BMDCs showed diminished antigen-presenting potential to CD4+ T cells compared with normal BMDCs. We also found that CT-stimulated BMDCs promote activin A expression as well as IL-6 and IL-1β, and activin A had a synergic role with TGF-β1 in CT-mediated Th17 cell differentiation. Taken together, our results suggest that CT-stimulated DCs promote Th17 cell differentiation by not only modulating antigen-presenting potential but also inducing Th polarizing cytokines.

  7. Diverse Profiles of Ricin-Cell Interactions in the Lung Following Intranasal Exposure to Ricin

    Directory of Open Access Journals (Sweden)

    Anita Sapoznikov

    2015-11-01

    Full Text Available Ricin, a plant-derived exotoxin, inhibits protein synthesis by ribosomal inactivation. Due to its wide availability and ease of preparation, ricin is considered a biothreat, foremost by respiratory exposure. We examined the in vivo interactions between ricin and cells of the lungs in mice intranasally exposed to the toxin and revealed multi-phasic cell-type-dependent binding profiles. While macrophages (MΦs and dendritic cells (DCs displayed biphasic binding to ricin, monophasic binding patterns were observed for other cell types; epithelial cells displayed early binding, while B cells and endothelial cells bound toxin late after intoxication. Neutrophils, which were massively recruited to the intoxicated lung, were refractive to toxin binding. Although epithelial cells bound ricin as early as MΦs and DCs, their rates of elimination differed considerably; a reduction in epithelial cell counts occurred late after intoxication and was restricted to alveolar type II cells only. The differential binding and cell-elimination patterns observed may stem from dissimilar accessibility of the toxin to different cells in the lung and may also reflect unequal interactions of the toxin with different cell-surface receptors. The multifaceted interactions observed in this study between ricin and the various cells of the target organ should be considered in the future development of efficient post-exposure countermeasures against ricin intoxication.

  8. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain.

    Science.gov (United States)

    Banks, David J; Porcella, Stephen F; Barbian, Kent D; Beres, Stephen B; Philips, Lauren E; Voyich, Jovanka M; DeLeo, Frank R; Martin, Judith M; Somerville, Greg A; Musser, James M

    2004-08-15

    We describe the genome sequence of a macrolide-resistant strain (MGAS10394) of serotype M6 group A Streptococcus (GAS). The genome is 1,900,156 bp in length, and 8 prophage-like elements or remnants compose 12.4% of the chromosome. A 8.3-kb prophage remnant encodes the SpeA4 variant of streptococcal pyrogenic exotoxin A. The genome of strain MGAS10394 contains a chimeric genetic element composed of prophage genes and a transposon encoding the mefA gene conferring macrolide resistance. This chimeric element also has a gene encoding a novel surface-exposed protein (designated "R6 protein"), with an LPKTG cell-anchor motif located at the carboxyterminus. Surface expression of this protein was confirmed by flow cytometry. Humans with GAS pharyngitis caused by serotype M6 strains had antibody against the R6 protein present in convalescent, but not acute, serum samples. Our studies add to the theme that GAS prophage-encoded extracellular proteins contribute to host-pathogen interactions in a strain-specific fashion.

  9. Study of Microbial Contamination of the Public Swimming Pools with Escherichia coli and Pseudomonas aeruginosa and Their Physical Parameters in Kermanshah, Iran

    Directory of Open Access Journals (Sweden)

    Afsaneh Haghmorad Korasti

    2016-09-01

    Full Text Available Background and Objectives: Public swimming pools' waters are contaminated with a wide variety of pathogenic microorganisms and are a suitable environment for transmission of different diseases. The aim of this study was to investigate the microbial contamination of the public swimming pools' waters with Escherichia coli and Pseudomonas aeruginosa and to determine certain parameters such as residual chlorine, pH, temperature and turbidity in these pools' waters in Kermanshah. In this descriptive, cross-sectional study, 129 water samples were taken from all active pools in Kermanshah and their bacteriologic and physicochemical properties were investigated. Phosphatase alkaline (PHO-A gene was used for molecular confirmation of E. coli isolates, and exotoxin A (ETA gene in PCR was employed to confirm pathogenicity of P. aeruginosa isolates. Data were analyzed by chi-square and t-test. p0.05. Conclusion: The results of this study indicated that appropriate amount of residual chlorine caused reduction in microbial contamination in the public swimming pools' waters in Kermanshah.

  10. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.

    Science.gov (United States)

    Lee, Young-Duck; Park, Jong-Hyun

    2016-02-01

    Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

  11. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus.

    Science.gov (United States)

    Koszczol, Carmen; Bernardo, Katussevani; Krönke, Martin; Krut, Oleg

    2006-09-01

    The semi-synthetic streptogramin quinupristin/dalfopristin antibiotic exerts potent bactericidal activity against Staphylococcus aureus. We investigated whether, like other bactericidal antibiotics used at subinhibitory concentrations, quinupristin/dalfopristin enhances release of toxins by Gram-positive cocci. The activity of quinupristin/dalfopristin on exotoxin release by S. aureus was investigated by 2D SDS-PAGE combined with MALDI-TOF/MS analysis and by western blotting. We show that quinupristin/dalfopristin at subinhibitory concentrations reduces the release of S. aureus factors that induce tumour necrosis factor secretion in macrophages. Furthermore, quinupristin/dalfopristin but not linezolid attenuated S. aureus-mediated killing of infected host cells. When added to S. aureus cultures at different stages of bacterial growth, quinupristin/dalfopristin reduced in a dose-dependent manner the release of specific virulence factors (e.g. autolysin, protein A, alpha- and beta-haemolysins, lipases). In contrast, other presumably non-toxic exoproteins remained unchanged. The results of the present study suggest that subinhibitory quinupristin/dalfopristin inhibits virulence factor release by S. aureus, which might be especially helpful for the treatment of S. aureus infections, where both bactericidal as well as anti-toxin activity may be advantageous.

  12. An evidence-based review of botulinum toxin (Botox) applications in non-cosmetic head and neck conditions

    Science.gov (United States)

    Persaud, Ricardo; Garas, George; Silva, Sanjeev; Stamatoglou, Constantine; Chatrath, Paul; Patel, Kalpesh

    2013-01-01

    Botulinum toxin (Botox) is an exotoxin produced from Clostridium botulinum. It works by blocking the release of acetylcholine from the cholinergic nerve end plates leading to inactivity of the muscles or glands innervated. Botox is best known for its beneficial role in facial aesthetics but recent literature has highlighted its usage in multiple non-cosmetic medical and surgical conditions. This article reviews the current evidence pertaining to Botox use in the head and neck. A literature review was conducted using The Cochrane Controlled Trials Register, Medline and EMBASE databases limited to English Language articles published from 1980 to 2012. The findings suggest that there is level 1 evidence supporting the efficacy of Botox in the treatment of spasmodic dysphonia, essential voice tremor, headache, cervical dystonia, masticatory myalgia, sialorrhoea, temporomandibular joint disorders, bruxism, blepharospasm, hemifacial spasm and rhinitis. For chronic neck pain there is level 1 evidence to show that Botox is ineffective. Level 2 evidence exists for vocal tics, trigeminal neuralgia, dysphagia and post-laryngectomy oesophageal speech. For stuttering, ‘first bite syndrome’, facial nerve paresis, Frey's syndrome, oromandibular dystonia and palatal/stapedial myoclonus the evidence is level 4. Thus, the literature highlights a therapeutic role for Botox in a wide range of non-cosmetic conditions pertaining to the head and neck (mainly level 1 evidence). With ongoing research, the spectrum of clinical applications and number of people receiving Botox will no doubt increase. Botox appears to justify its title as ‘the poison that heals’. PMID:23476731

  13. The therapeutic usage of botulinum toxin (Botox in non-cosmetic head and neck conditions – An evidence based review

    Directory of Open Access Journals (Sweden)

    Kamran Habib Awan

    2017-01-01

    Full Text Available Botulinum toxin (Botox is an exotoxin produced from Clostridium botulinum. It blocks the release of acetylcholine from the cholinergic nerve end plates resulting in inactivity of the muscles or glands innervated. The efficacy of Botox in facial aesthetics is well established; however, recent literature has highlighted its utilization in multiple non-cosmetic medical and surgical conditions. The present article reviews the current evidence pertaining to Botox use in the non-cosmetic head and neck conditions. A literature search was conducted using MEDLINE, EMBASE, ISI Web of Science and the Cochrane databases limited to English Language articles published from January 1980 to December 2014. The findings showed that there is level 1 evidence supporting the efficacy of Botox in the treatment of laryngeal dystonia, headache, cervical dystonia, masticatory myalgia, sialorrhoea, temporomandibular joint disorders, bruxism, blepharospasm, hemifacial spasm and rhinitis. For chronic neck pain there is level 1 evidence to show that Botox is ineffective. Level 2 evidence exists for vocal tics and trigeminal. For stuttering, facial nerve paresis, Frey’s syndrome and oromandibular dystonia the evidence is level 4. Thus, there is compelling evidence in the published literature to demonstrate the beneficial role of Botox in a wide range of non-cosmetic conditions pertaining to the head and neck (mainly level 1 evidence. With more and more research, the range of clinical applications and number of individuals getting Botox will doubtlessly increase. Botox appears to justify its title as ‘the poison that heals’.

  14. Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field.

    Science.gov (United States)

    Chattopadhyay, Pritam; Banerjee, Goutam

    2018-04-01

    Bacillus thuringiensis ( Bt ) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.

  15. Progress and novel strategies in vaccine development and treatment of anthrax.

    Science.gov (United States)

    Chitlaru, Theodor; Altboum, Zeev; Reuveny, Shaul; Shafferman, Avigdor

    2011-01-01

    The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis. © 2010 John Wiley & Sons A/S.

  16. The novel immunotoxin HM1.24-ETA′ induces apoptosis in multiple myeloma cells

    International Nuclear Information System (INIS)

    Staudinger, M; Glorius, P; Burger, R; Kellner, C; Klausz, K; Günther, A; Repp, R; Klapper, W; Gramatzki, M; Peipp, M

    2014-01-01

    Despite new treatment modalities, the clinical outcome in a substantial number of patients with multiple myeloma (MM) has yet to be improved. Antibody-based targeted therapies for myeloma patients could make use of the HM1.24 antigen (CD317), a surface molecule overexpressed on malignant plasma cells and efficiently internalized. Here, a novel immunotoxin, HM1.24-ETA′, is described. HM1.24-ETA′ was generated by genetic fusion of a CD317-specific single-chain Fv (scFv) antibody and a truncated variant of Pseudomonas aeruginosa exotoxin A (ETA′). HM1.24-ETA′ inhibited growth of interleukin 6 (IL-6)-dependent and -independent myeloma cell lines. Half-maximal growth inhibition was observed at concentrations as low as 0.3 nM. Target cell killing occurred via induction of apoptosis and was unaffected in co-culture experiments with bone marrow stromal cells. HM1.24-ETA′ efficiently triggered apoptosis of freshly isolated/cryopreserved cells of patients with plasma cell leukemia and MM and was active in a preclinical severe combined immunodeficiency (SCID) mouse xenograft model. Importantly, HM1.24-ETA′ was not cytotoxic against CD317-positive cells from healthy tissue (monocytes, human umbilical vein endothelial cells). These results indicate that CD317 may represent a promising target structure for specific and efficient immunotoxin therapy for patients with plasma cell tumors

  17. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  18. Efficiency of immunotoxin cytotoxicity is modulated by the intracellular itinerary.

    Directory of Open Access Journals (Sweden)

    Lori L Tortorella

    Full Text Available Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(F(v-PE38, are proposed to traffic to the trans-Golgi network (TGN and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity - presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.

  19. Toxina botulínica y su empleo en la patología oral y maxilofacial Botulinum toxin and its use in oral and maxillofacial pathology

    Directory of Open Access Journals (Sweden)

    D. Martínez-Pérez

    2004-06-01

    Full Text Available Resumen: Las toxinas botulínicas son exotoxinas de la bacteria formadora de esporas Clostridim botulinum y los agentes causantes del botulismo. Cuando se inyecta en el músculo produce una parálisis flácida. El efecto clínico está directamente relacionado con la dosis y debe ajustarse para cada caso concreto. La Toxina botulínica ha demostrado en los más de veinte años en que se está utilizando que es un fármaco seguro. Las indicaciones de la toxina botulínica en la actualidad incluyen todas aquellas patologías que resultan de la hiperfunción muscular y la disfunción autonómica.Abstract: Botilinum toxins are exotoxins of the bacteria that form the Clostridium botulinum spores and the causative agents of botulism. When injected into the muscle flaccid paralysis is produced. The clinical effect is directly related with the dose and is should be adjusted for each particular case. over the last twenty years that it has been in use, the botulinum toxin has shown itself to be a reliable drug. Current indications for the use of botulinum toxin include all those pathologies which are the results of muscle hyperfunction and autonomic dysfunction.

  20. Clinical case of using discrete plasmapheresis in infant with early neonatal sepsis and hemolytic disease

    Directory of Open Access Journals (Sweden)

    S. V. Aborin

    2017-01-01

    Full Text Available Currently in the literature there are insufficient data on the use of efferent hemocorrection methods in neonatal practice. The basic principle of this method is the removal of plasma containing endotoxins and exotoxins and other pathological substances, replacing it with donor plasma, colloid and crystalloid solutions. The therapeutic effect of plasmapheresis includes detoxification, anti-inflammatory and immunomodulatory effects by removing toxins and removal of circulating immune complexes, inflammatory mediators, and activated structures of the complement system. Discrete plasmapheresis in neonatal practice may be used in any body mass of the patient. This article describes a clinical case of successful application of discrete plasmapheresis in full-term newborn baby is in critical condition. The severity was due to severe early neonatal sepsis, development of multiple organ failure and accompanying RH-conflict. After two sessions of plasmapheresis was observed a positive clinical effect in reducing intoxication, systemic inflammatory response syndrome. Reducing the level of bilirubin is allowed to avoid the operation replacement blood transfusion.

  1. The review of most frequently occurring medical disorders related to aetiology of autism and the methods of treatment.

    Science.gov (United States)

    Cubala-Kucharska, Magdalena

    2010-01-01

    The medical understanding of autism has changed since it was first defined by Kanner. Nowadays medicine identifies many medical abnormalities and diseases, which may underline or aggravate the cognitive aspect, behavioural issues and general health in autists. This includes chronic inflammation of gastrointestinal tract, dysbiosis, maldigestion, malabsorption, malnutrition, food intolerance, allergies, chronic viral, fungal and bacterial infections, impaired kidney function, impaired detoxification of endo- and exotoxins, disorders of metal ion transportation. Treatment of the above mentioned conditions combined with improving detoxification mechanisms, followed by a special diet and individually customized supplementation of nutritional deficiencies may lead to the improvement of the functioning of these patients, changing their level of functioning and self-dependence. The aim of this paper is to present medical problems of children with autism which may be identified and treated by general practitioners as a review of current medical papers related to Autism Spectrum Disorder, in the context of author's professional experience, based on the medical cases from author's practice.

  2. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  3. Epidemiology of Diphtheria in India, 1996-2016: Implications for Prevention and Control.

    Science.gov (United States)

    Murhekar, Manoj

    2017-08-01

    Diphtheria is an acute disease caused by exotoxin-producing Corynebacterium diphtheriae . Globally, diphtheria has been showing a declining trend due to effective childhood vaccination programs. A substantial proportion of global burden of diphtheria is contributed by India. Hospital-based surveillance studies as well as diphtheria outbreaks published in last 20 years (1996-2016) indicate that diphtheria cases are frequent among school-going children and adolescents. In some Indian states, Muslim children are affected more. As per the national level health surveys, coverage of three doses of diphtheria vaccine was 80% during 2015-2016. Information about coverage of diphtheria boosters is not routinely collected through these surveys, but is expected to be low. Few studies also indicate low diphtheria immunity among school-going children and adults. The strategies for prevention of diphtheria need to focus on improving coverage of primary and booster doses of diphtheria vaccines administered as a part of Universal Immunization Program as well as introducing diphtheria vaccine for school-going children.

  4. Characterization of ultraviolet light-induced diphtheria toxin-resistant mutations in normal and Xeroderma pigmentosum human fibroblasts

    International Nuclear Information System (INIS)

    Glover, T.W.

    1979-01-01

    Quantitative mutagenesis studies in human cells have been severely limited by the lack of reliable genetic markers. Experiments were therefore performed to develop and characterize a better quantitative mutation assay for human cells. The uv-induction of diphtheria toxin resistant (DT/sup r/) mutations in normal and excision repair defective xeroderma pigmentosum (XP) fibroblasts has been quantitatively characterized. A concentration of diphtheria toxin to use in the selection of resistant mutants was determined whereby DT/sup r/ cells are cross-resistant to Pseudomonas aeurginosa exotoxin A, indicating mutants have altered elongation factor-2 (EF-2) which is not susceptible to ADP-ribosylation by either toxin. Results of this study indicate that XP fibroblasts have higher uv-induced mutation frequencies per unit uv-dose but similar frequencies per unit survival compared to normal cells as measured using a new genetic marker for quantitative mutagenesis. Furthermore, these results support a prediction of the mutation theory of cancer, namely, that cells from individuals with certain human syndromes that predispose the individual to cancer will have higher induced mutation frequencies than cells from non-susceptible individuals. This newly characterized genetic marker should be useful in quantitative mutagenesis studies in human cells

  5. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J. (Medical College of Wisconsin, Milwaukee (USA))

    1989-11-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from (3H-nicotinamide)NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from (32P-adenylate)NAD (0.2 mol/mol of protein). Label from (3H-nicotinamide)NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with (3H-nicotinamide)NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis.

  6. Characterization of a highly toxic strain of Bacillus thuringiensis serovar kurstaki very similar to the HD-73 strain.

    Science.gov (United States)

    Reinoso-Pozo, Yaritza; Del Rincón-Castro, Ma Cristina; Ibarra, Jorge E

    2016-09-01

    The LBIT-1200 strain of Bacillus thuringiensis was recently isolated from soil, and showed a 6.4 and 9.5 increase in toxicity, against Manduca sexta and Trichoplusia ni, respectively, compared to HD-73. However, LBIT-1200 was still highly similar to HD-73, including the production of bipyramidal crystals containing only one protein of ∼130 000 kDa, its flagellin gene sequence related to the kurstaki serotype, plasmid and RepPCR patterns similar to HD-73, no production of β-exotoxin and no presence of VIP genes. Sequencing of its cry gene showed the presence of a cry1Ac-type gene with four amino acid differences, including two amino acid replacements in domain III, compared to Cry1Ac1, which may explain its higher toxicity. In conclusion, the LBIT-1200 strain is a variant of the HD-73 strain but shows a much higher toxicity, which makes this new strain an important candidate to be developed as a bioinsecticide, once it passes other tests, throughout its biotechnological development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2017-01-01

    of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin...... A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher...... selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate...

  8. Tofacitinib Suppresses Antibody Responses to Protein Therapeutics in Murine Hosts1

    Science.gov (United States)

    Onda, Masanori; Ghoreschi, Kamran; Steward-Tharp, Scott; Thomas, Craig; O’Shea, John J.; Pastan, Ira H.; FitzGerald, David J.

    2014-01-01

    Immunogenicity remains the ‘Achilles’ heel’ of protein-based therapeutics. Anti-drug antibodies produced in response to protein therapeutics can severely limit both the safety and efficacy of this expanding class of agent. Here we report that monotherapy of mice with tofacitinib (the Janus kinase inhibitor) quells antibody responses to an immunotoxin derived from the bacterial protein, Pseudomonas exotoxin A, as well as to the model antigen, keyhole limpet hemocyanin. Thousandfold reductions in IgG1 titers to both antigens were observed 21 days post-immunization. In fact, suppression was evident for all IgG isotypes and IgM. A reduction in IgG3 production was also noted with a thymus-independent type II antigen. Mechanistic investigations revealed that tofacitinib treatment led to reduced numbers of CD127+ pro-B cells. Furthermore, we observed fewer germinal center B cells and the impaired formation of germinal centers of mice treated with tofacitinib. Since normal immunoglobulin levels were still present during the tofacitinib treatment, this agent specifically reduced anti-drug antibodies, thus preserving the potential efficacy of biological therapeutics, including those that are used as cancer therapeutics. PMID:24890727

  9. The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus.

    Science.gov (United States)

    Hodille, Elisabeth; Rose, Warren; Diep, Binh An; Goutelle, Sylvain; Lina, Gerard; Dumitrescu, Oana

    2017-10-01

    Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease. Copyright © 2017 American Society for Microbiology.

  10. Synergistic anticancer effects of the 9.2.27PE immunotoxin and ABT-737 in melanoma.

    Directory of Open Access Journals (Sweden)

    Karianne Risberg

    Full Text Available In cancer, combinations of drugs targeting different cellular functions is well accepted to improve tumor control. We studied the effects of a Pseudomonas exotoxin A (PE-based immunotoxin, the 9.2.27PE, and the BH-3 mimetic compound ABT-737 in a panel of melanoma cell lines. The drug combination resulted in synergistic cytotoxicity, and the cell death observed was associated with apoptosis, as activation of caspase-3, inactivation of Poly (ADP-ribose polymerase (PARP and increased DNA fragmentation could be prevented by pre-treatment with caspase and cathepsin inhibitors. We further show that ABT-737 caused endoplasmic reticulum (ER stress with increased GRP78 and phosphorylated eIF2α protein levels. Moreover, treatment with ABT-737 increased the intracellular calcium levels, an effect which was enhanced by 9.2.27PE, which as a single entity drug had minimal effect on calcium release from the ER. In addition, silencing of Mcl-1 by short hairpin RNA (shRNA enhanced the intracellular calcium levels and cytotoxicity caused by ABT-737. Notably, the combination of 9.2.27PE and ABT-737 caused growth delay in a human melanoma xenograft mice model, supporting further investigations of this particular drug combination.

  11. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection

    Science.gov (United States)

    Sun, Xingmin; Hirota, Simon A.

    2014-01-01

    Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of Clostridium difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis. PMID:25242213

  12. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Mirzaee, Malihe; Jalali-Javaran, Mokhtar; Moieni, Ahmad; Zeinali, Sirous; Behdani, Mahdi

    2018-05-01

    This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.

  13. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  14. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    International Nuclear Information System (INIS)

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J.

    1989-01-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from [3H-nicotinamide]NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from [32P-adenylate]NAD (0.2 mol/mol of protein). Label from [3H-nicotinamide]NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with [3H-nicotinamide]NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis

  15. Botulinum Toxin for Rhinitis.

    Science.gov (United States)

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  16. Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway.

    Science.gov (United States)

    McEwan, Deborah L; Feinbaum, Rhonda L; Stroustrup, Nicholas; Haas, Wilhelm; Conery, Annie L; Anselmo, Anthony; Sadreyev, Ruslan; Ausubel, Frederick M

    2016-12-07

    Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.

  17. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens

    Directory of Open Access Journals (Sweden)

    Stephen W. Tuffs

    2018-05-01

    Full Text Available Staphylococcal superantigens (SAgs constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC class II molecules with T cell receptors (TCRs to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence.

  18. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections. Published by Elsevier Inc.

  19. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential

    Directory of Open Access Journals (Sweden)

    Yu Y

    2017-03-01

    Full Text Available Yuan Yu,1–3 Jialu Li,1–3 Xuejun Zhu,4 Xiaowen Tang,2,5 Yangyi Bao,6 Xiang Sun,6 Yuhui Huang,1,2 Fang Tian,4 Xiaomei Liu,1,2 Lin Yang1–3 1The Cyrus Tang Hematology Center, 2Collaborative Innovation Center of Hematology, Soochow University, 3Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou, 4Central Laboratory, Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, 5Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 6Department of Hematology-Oncology, The First People’s Hospital of Hefei, Hefei, People’s Republic of China Background: Nanobodies, named as VHHs (variable domain of heavy chain of HCAb [heavy-chain antibodies], are derived from heavy-chain-only antibodies that circulate in sera of camelids. Their exceptional physicochemical properties, possibility of humanization, and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components, including immunotoxins. In our previous efforts, we have successfully generated the monovalent and bivalent CD7 nanobody-based immunotoxins, which can effectively trigger the apoptosis of CD7-positive malignant cells. To pursue the possibility of translating those immunotoxins into clinics, we humanized the nanobody sequences (designated as dhuVHH6 as well as further truncated the Pseudomonas exotoxin A (PE-derived PE38 toxin to produce a more protease-resistant form, which is named as PE-LR, by deleting majority of PE domain II. Methods and results: Three new types of immunotoxins, dhuVHH6-PE38, dVHH6-PE-LR, and dhuVHH6-PE-LR, were successfully constructed. These recombinant immunotoxins were expressed in Escherichia coli and showed that nanobody immunotoxins have the benefits of easy soluble expression in a prokaryotic expression system. Flow cytometry results revealed that

  20. Population and Whole Genome Sequence Based Characterization of Invasive Group A Streptococci Recovered in the United States during 2015

    Directory of Open Access Journals (Sweden)

    Sopio Chochua

    2017-09-01

    Full Text Available Group A streptococci (GAS are genetically diverse. Determination of strain features can reveal associations with disease and resistance and assist in vaccine formulation. We employed whole-genome sequence (WGS-based characterization of 1,454 invasive GAS isolates recovered in 2015 by Active Bacterial Core Surveillance and performed conventional antimicrobial susceptibility testing. Predictions were made for genotype, GAS carbohydrate, antimicrobial resistance, surface proteins (M family, fibronectin binding, T, R28, secreted virulence proteins (Sda1, Sic, exotoxins, hyaluronate capsule, and an upregulated nga operon (encodes NADase and streptolysin O promoter (Pnga3. Sixty-four M protein gene (emm types were identified among 69 clonal complexes (CCs, including one CC of Streptococcus dysgalactiae subsp. equisimilis. emm types predicted the presence or absence of active sof determinants and were segregated into sof-positive or sof-negative genetic complexes. Only one “emm type switch” between strains was apparent. sof-negative strains showed a propensity to cause infections in the first quarter of the year, while sof+ strain infections were more likely in summer. Of 1,454 isolates, 808 (55.6% were Pnga3 positive and 637 (78.9% were accounted for by types emm1, emm89, and emm12. Theoretical coverage of a 30-valent M vaccine combined with an M-related protein (Mrp vaccine encompassed 98% of the isolates. WGS data predicted that 15.3, 13.8, 12.7, and 0.6% of the isolates were nonsusceptible to tetracycline, erythromycin plus clindamycin, erythromycin, and fluoroquinolones, respectively, with only 19 discordant phenotypic results. Close phylogenetic clustering of emm59 isolates was consistent with recent regional emergence. This study revealed strain traits informative for GAS disease incidence tracking, outbreak detection, vaccine strategy, and antimicrobial therapy.

  1. Enhancement of Human Endothelial Cell Adhesion to Type I Collagen by Lysophosphatidic Acid (LPA and Sphingosine-1-Phosphate (S1P

    Directory of Open Access Journals (Sweden)

    Hsinyu Lee

    2004-06-01

    Full Text Available The diverse cellular effects of lysophosphatidic acid (LPA and sphingosine-1-phosphate (S1P are transduced by two structurally homologous subfamilies of G protein-coupled receptors, which are encoded by endothelial differentiation genes (Edg Rs. Human umbilical cord vein endothelial cells (HUVECs express Edg Rs for LPA (Edg2 and S1P (Edg1 and 3, which transduce signals for migration of HUVECs through micropore filters coated with type I collagen. Since activation of integrins is essential for optimal migration of endothelial cells, we now examine the capacity of LPA and S1P to augment integrin mediation of endothelial cell binding to type I collagen. Lysophospholipid enhancement of HUVEC adhesion to type I collagen is detectable within 20 minutes. Enhancement of adhesion by both LPA and S1P is significant at 50 nM and optimal at 5µM. Pertussis toxin (PTx, a specific inhibitor of Gi, and C3 exotoxin, a specific inhibitor of Rho, both suppress LPA and S1P enhancement of HUVEC adhesion. In contrast, PD98059, which blocks MAP kinase kinase (MEK, and wortmannin, which inhibits phosphatidylinositol 3-kinase (PI3K, had no effect on LPA- or S1P-enhancement of HUVEC adhesion. Neutralizing monoclonal antibodies specific for α2 and β1 integrin chains, concomitantly decrease LPA and S1P enhancement of HUVEC adhesion to type I collagen. LPA and S1P thus promote type I collagen-dependent adhesion and migration of HUVECs by recruiting α2 and β1 integrin through both Gi and Rho pathways. Integrin α2/β1 therefore appears to be critical on the effects of LPA and S1P on endothelial cell physiology.

  2. Utilizing Ayurvedic literature for the identification of novel phytochemical inhibitors of botulinum neurotoxin A.

    Science.gov (United States)

    Yalamanchili, Chinni; Manda, Vamshi K; Chittiboyina, Amar G; Guernieri, Rebecca L; Harrell, William A; Webb, Robert P; Smith, Leonard A; Khan, Ikhlas A

    2017-02-02

    Ayurveda, an ancient holistic system of health care practiced on the Indian subcontinent, utilizes a number of multi-plant formulations and is considered by many as a potential source for novel treatments, as well as the identification of new drugs. Our aim is to identify novel phytochemicals for the inhibition of bacterial exotoxin, botulinum neurotoxin A (BoNT/A) based on Ayurvedic literature. BoNT/A is released by Clostridium species, which when ingested, inhibits the release of acetylcholine by concentrating at the neuromuscular junction and causes flaccid paralysis, resulting in a condition termed as botulism, and may also lead to death due to respiratory arrest. Fifteen plants were selected from the book 'Diagnosis and treatment of diseases in Ayurveda' by Vaidya Bhagwan Dash and Lalitesh Kashyap, based on their frequency of use in the formulations used for the treatment of six diseases with neuromuscular symptoms similar to botulism. Phytochemicals from these plants were screened using in silico, and in vitro methods. Structures of 570 reported phytochemicals from 14 plants were docked inside six reported BoNT/A light chain crystal structures using ensemble docking module in Maestro (Schrödinger, LLE). From the docking scores and structural diversity, nine compounds including acoric acid 1, three flavonoids, three coumarins derivatives, one kava lactone were selected and screened using an in vitro HPLC-based protease assay. The bioassay results showed that several compounds possess BoNT/A LC inhibition of 50-60% when compared to positive controls NSC 84094 and CB7967495 (80-95%). Further testing of the active compounds identified from Ayurvedic literature and structure-activity studies of acoric acid 1 using more sensitive bioassays is under way. The identification of acoric acid 1, a novel scaffold against BoNT/A, exemplifies the utility of Ayurvedic literature for the discovery of novel drug leads. Copyright © 2016 Elsevier Ireland Ltd. All rights

  3. The proapoptotic activity of C-terminal domain of apoptosis-inducing factor (AIF is separated from its N-terminal

    Directory of Open Access Journals (Sweden)

    YONG ZHANG

    2009-01-01

    Full Text Available Apoptosis-inducing factor (AIF is a mitochondrial flavoprotein that mediates both NADH-oxidizing and caspase-independent apoptosis. Further, the proapoptotic activity of AIF is located in the C-terminus of AIF, although the precise minimum sequence responsible for apoptosis induction remains to be investigated. In the present study, we generated two truncated AIFs, AIFΔ1-480-FLAG, which is a FLAG-tagged C-terminal peptide comprising amino acids from 481 to 613, and AIF360-480 containing amino acids from 360 to 480 of AIF. We used confocal microscopy to demonstrate that both the truncated proteins are expressed and located in the cytoplasm of transfected cells. AIFΔ1-480 but not AIF360-480 induces apoptosis in transfected cells. We also found that the expression of AIFΔ1-480 could initiate the release of cytochrome c from the mitochondria. The suppression of caspase-9 via siRNA blocked the proapoptotic activity of AIFΔ1-480. Therefore, AIFΔ 1-480 is sufficient for inducing caspase-9-dependent apoptotic signaling, probably by promoting the release of cytochrome c. At last, we generated a chimeric immuno-AIFΔ 1-480 protein, which comprised an HER2 antibody, a Pseudomonas exotoxin A translocation domain and AIFΔ 1-480. Human Jurkat cells transfected with the immuno-AIFΔl-480 gene could express and secrete the chimeric protein, which selectively recognize and kill HER2-overexpressing tumor cells. Our study demonstrates the feasibility of the immuno-AIFΔl-480 gene as a novel approach to treating HER2-overexpressing cancers.

  4. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana

    2016-02-16

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  5. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins.

    Directory of Open Access Journals (Sweden)

    Shandee D Dixon

    Full Text Available Cytolethal distending toxins (CDTs are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT and enteropathogenic E. coli (Ec-CDT are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.

  6. Engineered toxins "zymoxins" are activated by the HCV NS3 protease by removal of an inhibitory protein domain.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available The synthesis of inactive enzyme precursors, also known as "zymogens," serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV as a model, we designed two HCV NS3 protease-activated "zymogenized" chimeric toxins (which we denote "zymoxins". In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA and Ricin A chain (RTA, respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the "zymoxin" approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected.

  7. Engineered Toxins “Zymoxins” Are Activated by the HCV NS3 Protease by Removal of an Inhibitory Protein Domain

    Science.gov (United States)

    Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai

    2011-01-01

    The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238

  8. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    Directory of Open Access Journals (Sweden)

    Raymond Kiu

    2017-12-01

    Full Text Available Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc, enterotoxin (cpe, and Perfringolysin O (pfo or pfoA, although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56 of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet and anti-defensins genes (mprF were consistently detected in silico (tet: 75%; mprF: 100%. However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  9. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors.

    Science.gov (United States)

    Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J

    2017-01-01

    Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens -associated exotoxins genes including α-toxin ( plc ), enterotoxin ( cpe ), and Perfringolysin O ( pfo or pfoA ), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes ( tet ) and anti-defensins genes ( mprF ) were consistently detected in silico ( tet : 75%; mprF : 100%). However, pre-antibiotic era strain genomes did not encode for tet , thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  10. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens.

    Science.gov (United States)

    Adachi, Keika; Ohtani, Kaori; Kawano, Michio; Singh, Ravindra Pal; Yousuf, Basit; Sonomoto, Kenji; Shimizu, Tohru; Nakayama, Jiro

    2018-05-01

    Clostridium perfringens produces various exotoxins and enzymes that cause food poisoning and gas gangrene. The genes involved in virulence are regulated by the agr-like quorum sensing (QS) system, which consists of a QS signal synthesis system and a VirSR two-component regulatory system (VirSR TCS) which is a global regulatory system composed of signal sensor kinase (VirS) and response regulator (VirR). We found that the perfringolysin O gene (pfoA) was transiently expressed during mid-log phase of bacterial growth; its expression was rapidly shut down thereafter, suggesting the existence of a self-quorum quenching (sQQ) system. The sQQ system was induced by the addition of stationary phase culture supernatant (SPCS). Activity of the sQQ system was heat stable, and was present following filtration through the ultrafiltration membrane, suggesting that small molecules acted as sQQ agents. In addition, sQQ was also induced by pure acetic and butyric acids at concentrations equivalent to those in the stationary phase culture, suggesting that organic acids produced by C. perfringens were involved in sQQ. In pH-controlled batch culture, sQQ was greatly diminished; expression level of pfoA extended to late-log growth phase, and was eventually increased by one order of magnitude. Furthermore, hydrochloric acid induced sQQ at the same pH as was used in organic acids. SPCS also suppressed the expression of genes regulated by VirSR TCS. Overall, the expression of virulence factors of C. perfringens was downregulated by the sQQ system, which was mediated by primary acidic metabolites and acidic environments. This suggested the possibility of pH-controlled anti-virulence strategies. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Development of a rapid immunochromatographic assay to detect contamination of raw oysters with enteropathogenic Vibrio parahaemolyticus.

    Science.gov (United States)

    Sakata, Junko; Yonekita, Taro; Kawatsu, Kentaro

    2018-01-02

    Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of enteropathogenic Vibrio parahaemolyticus. TDH and TRH are bacterial exotoxins, and their presence in culture medium serves as a specific marker for detecting this significant pathogen. Here, we developed and evaluated an immunochromatographic assay (TDH/TRH-ICA) to simultaneously or individually detect TDH and TRH. The TDH/TRH-ICA detected TDH in all broth cultures of 47 V. parahaemolyticus strains carrying tdh. The genes encoding TRH are classified as variants trh1 and trh2, and TRH was detected in all broth cultures of 25 V. parahaemolyticus strains carrying trh1 and certain proportion (5/31) of broth cultures of V. parahaemolyticus strains carrying trh2. In contrast, TDH and TRH were not detected in broth cultures of 12 non-enteropathogenic V. parahaemolyticus strains without tdh and trh. It was difficult to detect TRH2 using the TDH/TRH-ICA. However, TRH2 may not serve as a suitable marker for detecting enteropathogenic V. parahaemolyticus, and evidence indicates that TRH2 may not contribute to enteropathogenesis. Further, a screening method using a combination of TDH/TRH-ICA and SPP medium supplemented with 1.5% NaCl (modified-SPP medium) detected oyster samples artificially spiked with 1.1-22 colony-forming units of enteropathogenic V. parahaemolyticus per 25g of oysters within approximately 8.5h, including the enrichment culture. The assay may serve as a method that facilitates the rapid and easy detection of raw oysters contaminated with enteropathogenic V. parahaemolyticus. Copyright © 2017. Published by Elsevier B.V.

  12. Comparison between the Effects of Oral and Intramuscular Administration of Shin’iseihaito (Xinyiqingfeitang in a Streptococcus pyogenes-Induced Murine Sinusitis Model

    Directory of Open Access Journals (Sweden)

    Masaaki Minami

    2018-01-01

    Full Text Available Streptococcus pyogenes (S. pyogenes is a species of Gram-positive coccoid bacteria having many virulence factors. Its capsule and exotoxins can cause upper respiratory tract infections such as sinusitis. The general treatment for S. pyogenes-induced sinusitis is administration of antibiotics such as penicillin and macrolides; however, a serious problem associated with these antibiotics is their attenuated effect. Shin’iseihaito (Xinyiqingfeitang, a formula of Japanese traditional Kampo medicine and traditional Chinese medicine, has been used for the treatment of sinusitis. In general, formulas of Japanese traditional Kampo medicine are orally administered. This is in contrast to certain formulas of traditional Chinese medicine, which are being recently administered intramuscularly or intravenously. Regarding these traditional Chinese medicine formulas, the injection methodology is reported to be more effective than oral intake. In this study, we compared the efficacy between orally and intramuscularly administered Shin’iseihaito against S. pyogenes-induced sinusitis. We evaluated the antibacterial effect of Shin’iseihaito extract (SSHT against S. pyogenes by K-B disk diffusion assay. Furthermore, we investigated the nasal colonization of S. pyogenes, determined cytokine (TNF-α, IL-1β, and IL-6 levels, and conducted a splenocyte proliferative assay in a murine sinusitis model. SSHT displayed direct anti-S. pyogenes activity. Intramuscular administration of SSHT decreased the nasal colonization of S. pyogenes compared with oral administration. Thymidine uptake analysis revealed that the proliferation of splenocytes from S. pyogenes-infected mice under intramuscular SSHT treatment was upregulated compared to that of splenocytes from S. pyogenes-infected mice under oral SSHT treatment. We also found that TNF-α, IL-1β, and IL-6 levels in the nasal discharge from intramuscularly treated S. pyogenes-infected mice were lower than those from

  13. The Mycobacterium tuberculosis phagosome is a HLA-I processing competent organelle.

    Directory of Open Access Journals (Sweden)

    Jeff E Grotzke

    2009-04-01

    Full Text Available Mycobacterium tuberculosis (Mtb resides in a long-lived phagosomal compartment that resists maturation. The manner by which Mtb antigens are processed and presented on MHC Class I molecules is poorly understood. Using human dendritic cells and IFN-gamma release by CD8(+ T cell clones, we examined the processing and presentation pathway for two Mtb-derived antigens, each presented by a distinct HLA-I allele (HLA-Ia versus HLA-Ib. Presentation of both antigens is blocked by the retrotranslocation inhibitor exotoxin A. Inhibitor studies demonstrate that, after reaching the cytosol, both antigens require proteasomal degradation and TAP transport, but differ in the requirement for ER-golgi egress and new protein synthesis. Specifically, presentation by HLA-B8 but not HLA-E requires newly synthesized HLA-I and transport through the ER-golgi. Phenotypic analysis of the Mtb phagosome by flow organellometry revealed the presence of Class I and loading accessory molecules, including TAP and PDI. Furthermore, loaded HLA-I:peptide complexes are present within the Mtb phagosome, with a pronounced bias towards HLA-E:peptide complexes. In addition, protein analysis also reveals that HLA-E is enriched within the Mtb phagosome compared to HLA-A2. Together, these data suggest that the phagosome, through acquisition of ER-localized machinery and as a site of HLA-I loading, plays a vital role in the presentation of Mtb-derived antigens, similar to that described for presentation of latex bead-associated antigens. This is, to our knowledge, the first description of this presentation pathway for an intracellular pathogen. Moreover, these data suggest that HLA-E may play a unique role in the presentation of phagosomal antigens.

  14. Viable group A streptococci in macrophages during acute soft tissue infection.

    Directory of Open Access Journals (Sweden)

    Pontus Thulin

    2006-03-01

    Full Text Available Group A streptococcal severe soft tissue infections, such as necrotizing fasciitis, are rapidly progressive infections associated with high mortality. Group A streptococcus is typically considered an extracellular pathogen, but has been shown to reside intracellularly in host cells.We characterized in vivo interactions between group A streptococci (GAS and cells involved in innate immune responses, using human biopsies (n = 70 collected from 17 patients with soft tissue infections. Immunostaining and in situ image analysis revealed high amounts of bacteria in the biopsies, even in those collected after prolonged antibiotic therapy. Viability of the streptococci was assessed by use of a bacterial viability stain, which demonstrated viable bacteria in 74% of the biopsies. GAS were present both extracellularly and intracellularly within phagocytic cells, primarily within macrophages. Intracellular GAS were predominantly noted in biopsies from newly involved tissue characterized by lower inflammation and bacterial load, whereas purely extracellular GAS or a combination of intra- and extracellular GAS dominated in severely inflamed tissue. The latter tissue was also associated with a significantly increased amount of the cysteine protease streptococcal pyrogenic exotoxin SpeB. In vitro studies confirmed that macrophages serve as reservoirs for viable GAS, and infection with a speB-deletion mutant produced significantly lower frequencies of cells with viable GAS following infection as compared to the wild-type bacteria.This is the first study to demonstrate that GAS survive intracellularly in macrophages during acute invasive infections. This intracellular presence may have evolved as a mechanism to avoid antibiotic eradication, which may explain our finding that high bacterial load is present even in tissue collected after prolonged intravenous antibiotic therapy. This new insight into the pathogenesis of streptococcal soft tissue infections

  15. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads.

    Directory of Open Access Journals (Sweden)

    Maryann C Gruda

    Full Text Available Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis and septic shock, pathogen-associated molecular pattern molecules (PAMPS, such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host often leading to excessive cytokine production, a maladaptive systemic inflammatory response syndrome response (SIRS, and tissue damage that releases DAMPs, such as activated complement and HMGB-1, into the bloodstream causing further organ injury. Cytokine reduction using extracorporeal blood filtration has been correlated with improvement in survival and clinical outcomes in experimental studies and clinical reports, but the ability of this technology to reduce a broader range of inflammatory mediators has not been well-described. This study quantifies the size-selective adsorption of a wide range of sepsis-related inflammatory bacterial and fungal PAMPs, DAMPs and cytokines, in a single compartment, in vitro whole blood recirculation system.Purified proteins were added to whole blood at clinically relevant concentrations and recirculated through a device filled with CytoSorb® hemoadsorbent polymer beads (CytoSorbents Corporation, USA or control (no bead device in vitro. Except for the TNF-α trimer, hemoadsorption through porous polymer bead devices reduced the levels of a broad spectrum of cytokines, DAMPS, PAMPS and mycotoxins by more than 50 percent.This study demonstrates that CytoSorb® hemoadsorbent polymer beads efficiently remove a broad spectrum of toxic PAMPS and DAMPS from blood providing an additional means of reducing the uncontrolled inflammatory cascade that contributes to a maladaptive SIRS response, organ dysfunction and death in patients with a broad range of life-threatening inflammatory conditions such as sepsis, toxic shock syndrome, necrotizing fasciitis, and other severe inflammatory conditions.

  16. Viable Group A Streptococci in Macrophages during Acute Soft Tissue Infection.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Group A streptococcal severe soft tissue infections, such as necrotizing fasciitis, are rapidly progressive infections associated with high mortality. Group A streptococcus is typically considered an extracellular pathogen, but has been shown to reside intracellularly in host cells. METHODS AND FINDINGS: We characterized in vivo interactions between group A streptococci (GAS and cells involved in innate immune responses, using human biopsies (n = 70 collected from 17 patients with soft tissue infections. Immunostaining and in situ image analysis revealed high amounts of bacteria in the biopsies, even in those collected after prolonged antibiotic therapy. Viability of the streptococci was assessed by use of a bacterial viability stain, which demonstrated viable bacteria in 74% of the biopsies. GAS were present both extracellularly and intracellularly within phagocytic cells, primarily within macrophages. Intracellular GAS were predominantly noted in biopsies from newly involved tissue characterized by lower inflammation and bacterial load, whereas purely extracellular GAS or a combination of intra- and extracellular GAS dominated in severely inflamed tissue. The latter tissue was also associated with a significantly increased amount of the cysteine protease streptococcal pyrogenic exotoxin SpeB. In vitro studies confirmed that macrophages serve as reservoirs for viable GAS, and infection with a speB-deletion mutant produced significantly lower frequencies of cells with viable GAS following infection as compared to the wild-type bacteria. CONCLUSIONS: This is the first study to demonstrate that GAS survive intracellularly in macrophages during acute invasive infections. This intracellular presence may have evolved as a mechanism to avoid antibiotic eradication, which may explain our finding that high bacterial load is present even in tissue collected after prolonged intravenous antibiotic therapy. This new insight into the pathogenesis

  17. In trans complementation of lethal factor reveal roles in colonization and dissemination in a murine mouse model.

    Directory of Open Access Journals (Sweden)

    David E Lowe

    Full Text Available Lethal factor (LF is a component of the B. anthracis exotoxin and critical for pathogenesis. The roles of LF in early anthrax pathogenesis, such as colonization and dissemination from the initial site of infection, are poorly understood. In mice models of infection, LF-deficient strains either have altered dissemination patterns or do not colonize, precluding analysis of the role of LF in colonization and dissemination from the portal of entry. Previous reports indicate rabbit and guinea pig models infected with LF-deficient strains have decreased virulence, yet the inability to use bioluminescent imaging techniques to track B. anthracis growth and dissemination in these hosts makes analysis of early pathogenesis challenging. In this study, the roles of LF early in infection were analyzed using bioluminescent signature tagged libraries of B. anthracis with varying ratios of LF-producing and LF-deficient clones. Populations where all clones produced LF and populations where only 40% of clones produce LF were equally virulent. The 40% LF-producing clones trans complimented the LF mutants and permitted them to colonize and disseminate. Decreases of the LF producing strains to 10% or 0.3% of the population led to increased host survival and decreased trans complementation of the LF mutants. A library with 10% LF producing clones could replicate and disseminate, but fewer clones disseminated and the mutant clones were less competitive than wild type. The inoculum with 0.3% LF producing clones could not colonize the host. This strongly suggests that between 10% and 0.3% of the population must produce LF in order to colonize. In total, these findings suggest that a threshold of LF must be produced in order for colonization and dissemination to occur in vivo. These observations suggest that LF has a major role in the early stages of colonization and dissemination.

  18. Paradoxical effect of pertussis toxin on the delayed hypersensitivity response to autoantigens in mice.

    Directory of Open Access Journals (Sweden)

    Rajwahrdhan Yadav

    2010-08-01

    Full Text Available Pertussis toxin (PTX, an exotoxin of Bordetella pertussis, enhances the development of experimental autoimmune diseases such as experimental autoimmune uveitis (EAU and experimental autoimmune encephalomyelitis (EAE in rodent models. The mechanisms of the promotion of experimental autoimmune diseases by PTX may be based upon PTX-induced disruption of the blood eye/brain barriers facilitating the infiltration of inflammatory cells, the modulation of inflammatory cell migration and the enhancement of the activation of inflammatory cells. We hypothesized that the facilitation of experimental autoimmunity by PTX suggests that its influence on the in vivo immune response to auto-antigen may differ from its influence on non-self antigens.We have evaluated the effect of PTX on the simultaneous generation of delayed type hypersensitivity (DTH responses and autoimmune responses to uveitogenic interphotoreceptor retinoid binding protein peptide (IRBP161-180, encephalitogenic myelin oligodendrocyte glycoprotein peptide (MOG35-55 or ovalbumin (OVA. PTX injection of mice immunized to IRBP peptide161-180 led to (i the development of EAU as shown by histopathology of the retina, (ii pro-inflammatory cytokine production by splenocytes in response to IRBP peptide161-180, and (iii symptomatic EAE in mice immunized with encephalitogenic MOG peptide35-55. However, mice that received PTX had a reduced DTH response to IRBP161-180 peptide or MOG peptide35-55 when challenged distal to the site affected by autoreactive T cells. Moreover, footpad challenge with MOG35-55 peptide reduced EAE in mice immunized with MOG peptide. In contrast, the use of PTX when immunizing with OVA protein or an OVA immunogenic peptide did not affect the DTH response to OVA.The results suggest that that the reduced DTH response in mice receiving PTX may be specific for autoantigens and autoantigen-reactive T cells are diverted away from ectopic sites that received the autoantigen and towards

  19. Epidermal Growth Factor Receptor Signaling Enhances the Proinflammatory Effects of Staphylococcus aureus Gamma-Toxin on the Mucosa.

    Science.gov (United States)

    Gillman, Aaron N; Breshears, Laura M; Kistler, Charles K; Finnegan, Patrick M; Torres, Victor J; Schlievert, Patrick M; Peterson, Marnie L

    2017-06-28

    Staphylococcus aureus ( S. aureus ) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.

  20. Efficacy of Probiotics and Smectite in Rats with Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Kobyliak, Nazarii; Abenavoli, Ludovico; Falalyeyeva, Tetyana; Beregova, Tetyana

    2018-01-01

    Today probiotics have been suggested as a treatment for the prevention of non-alcoholic fatty liver disease (NAFLD). Smectite is a natural silicate that binds to digestive mucous and has the ability to bind endo- and exotoxins. The present study was designed to determine whether probiotics plus smectite is superior to probiotic alone on the monosodium glutamate (MSG) induced NAFLD model in rats. We included 60 rats divided into 4 groups 15 animals in each. Rats of group I were intact. Newborns rats of groups II-IV were injected with MSG. The III (Symbiter) group received 2.5 ml/kg of multiprobiotic "Symbiter" containing concentrated biomass of 14 probiotic bacteria genera. The IV (Symbiter+Smectite) groups received "Symbiter Forte" combination of probiotic biomass with smectite gel (250 mg). In both interventional groups reduction of total NAS score as compared to MSG-obesity was observed. Indeed similar values of steatosis score (0.93 ± 0.22 vs. 0.87 ± 0.16) in both treatment groups, we observed that lower total score for Symbiter+ Smectite are associated with more pronounced reduction of lobular inflammation (0.13 ± 0.09 vs. 0.33 ± 0.15) as compared to administration of probiotic alone. This data accompanied with significant reduction of IL-1 and restoration of IL-10 between these 2 groups. Additional to alive probiotic administration of smectite gel due to his absorbent activity and mucus layer stabilization properties can impact on synergistic enhancement of single effect which manifested with reduction of lobular inflammation and at list partly steatohepatitis prevention.

  1. Development of Immunopathobiogenesis on SIRS-Sepsis

    Directory of Open Access Journals (Sweden)

    A Guntur Hermawan

    2009-04-01

    Full Text Available Over the past decade, sepsis has been diagnosed according to consensus guidelines established in 1991 as an infection in addition to the symptoms of systemic inflammatory response syndrome (SIRS. In addition to the previous criteria, the 2001 conference added several new diagnostic criteria for sepsis. Of particular interest was the inclusion of the biomarkers procalcitonin (PCT and C-reactive protein (CRP, despite the overall conclusion that it was premature to use biomarkers for sepsis diagnosis. The primary recommendation of the panel was the implementation of the Predisposition, insult Infection, Response, and Organ dysfunction (PIRO.The immune system has traditionally been devided into innate and adaptive components, each of which has a different role and function in defending the host against infectious agents. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also increasing evidence supports an additional critical role for TLRs in orchestrating the development of adaptive immune responses. The superantigens are able to induce toxic shock syndrome and can sometimes cause multiple organ failure via adaptive immune system. The superantigenic activity of the bacterial exotoxins can be attributed to their ability to cross-link major histocompatibility complex class II molecules on antigen-presenting cells outside the peptide groove with T-cell receptors to form a trimolecular complex. This trimolecular interaction leads to uncontrolled release of a number of proinflammatory cytokines. Proinflammatory cytokines especially IFN-γ and TNF-α, the key cytokines causing toxic shock syndrome. KEYWORDS: sepsis, innate immunity, adaptive.

  2. Mycolactone-Dependent Depletion of Endothelial Cell Thrombomodulin Is Strongly Associated with Fibrin Deposition in Buruli Ulcer Lesions.

    Directory of Open Access Journals (Sweden)

    Joy Ogbechi

    2015-07-01

    Full Text Available A well-known histopathological feature of diseased skin in Buruli ulcer (BU is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM expression on the surface of human dermal microvascular endothelial cells (HDMVEC at doses as low as 2 ng/ml and as early as 8 hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this

  3. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    Science.gov (United States)

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design.

    Science.gov (United States)

    de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I

    2014-01-01

    The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.

  5. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies

    Science.gov (United States)

    Andersen, Kasper Krogh; Strokappe, Nika M.; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart

    2015-01-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA− TcdB+ strain of C. difficile (P survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  6. Modeling the effects of a Staphylococcal Enterotoxin B (SEB on the apoptosis pathway

    Directory of Open Access Journals (Sweden)

    Hammamieh Rasha

    2006-05-01

    Full Text Available Abstract Background The lack of detailed understanding of the mechanism of action of many biowarfare agents poses an immediate challenge to biodefense efforts. Many potential bioweapons have been shown to affect the cellular pathways controlling apoptosis 1234. For example, pathogen-produced exotoxins such as Staphylococcal Enterotoxin B (SEB and Anthrax Lethal Factor (LF have been shown to disrupt the Fas-mediated apoptotic pathway 24. To evaluate how these agents affect these pathways it is first necessary to understand the dynamics of a normally functioning apoptosis network. This can then serve as a baseline against which a pathogen perturbed system can be compared. Such comparisons can expose both the proteins most susceptible to alteration by the agent as well as the most critical reaction rates to better instill control on a biological network. Results We explore this through the modeling and simulation of the Fas-mediated apoptotic pathway under normal and SEB influenced conditions. We stimulated human Jurkat cells with an anti-Fas antibody in the presence and absence of SEB and determined the relative levels of seven proteins involved in the core pathway at five time points following exposure. These levels were used to impute relative rate constants and build a quantitative model consisting of a series of ordinary differential equations (ODEs that simulate the network under both normal and pathogen-influenced conditions. Experimental results show that cells exposed to SEB exhibit an increase in the rate of executioner caspase expression (and subsequently apoptosis of 1 hour 43 minutes (± 14 minutes, as compared to cells undergoing normal cell death. Conclusion Our model accurately reflects these results and reveals intervention points that can be altered to restore SEB-influenced system dynamics back to levels within the range of normal conditions.

  7. Passive therapy with humanized anti-staphylococcal enterotoxin B antibodies attenuates systemic inflammatory response and protects from lethal pneumonia caused by staphylococcal enterotoxin B-producing Staphylococcus aureus.

    Science.gov (United States)

    Karau, Melissa J; Tilahun, Mulualem E; Krogman, Ashton; Osborne, Barbara A; Goldsby, Richard A; David, Chella S; Mandrekar, Jayawant N; Patel, Robin; Rajagopalan, Govindarajan

    2017-10-03

    Drugs such as linezolid that inhibit bacterial protein synthesis may be beneficial in treating infections caused by toxigenic Staphylococcus aureus. As protein synthesis inhibitors have no effect on preformed toxins, neutralization of pathogenic exotoxins with anti-toxin antibodies may be beneficial in conjunction with antibacterial therapy. Herein, we evaluated the efficacy of human-mouse chimeric high-affinity neutralizing anti-staphylococcal enterotoxin B (SEB) antibodies in the treatment of experimental pneumonia caused by SEB-producing S. aureus. Since HLA class II transgenic mice mount a stronger systemic immune response following challenge with SEB and are more susceptible to SEB-induced lethal toxic shock than conventional mice strains, HLA-DR3 transgenic mice were used. Lethal pneumonia caused by SEB-producing S. aureus in HLA-DR3 transgenic mice was characterized by robust T cell activation and elevated systemic levels of several pro-inflammatory cytokines and chemokines. Prophylactic administration of a single dose of linezolid 30 min prior to the onset of infection attenuated the systemic inflammatory response and protected from mortality whereas linezolid administered 60 min after the onset of infection failed to confer significant protection. Human-mouse chimeric high-affinity neutralizing anti-SEB antibodies alone, but not polyclonal human IgG, mitigated this response and protected from death when administered immediately after initiation of infection. Further, anti-SEB antibodies as well as intact polyclonal human IgG, but not its Fab or Fc fragments, protected from lethal pneumonia when followed with linezolid therapy 60 min later. In conclusion, neutralization of superantigens with high-affinity antibodies may have beneficial effects in pneumonia.

  8. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression.

    Science.gov (United States)

    Höglund Åberg, Carola; Antonoglou, Georgios; Haubek, Dorte; Kwamin, Francis; Claesson, Rolf; Johansson, Anders

    2013-01-01

    The cytolethal distending toxin (Cdt) is a highly conserved exotoxin that are produced by a number of Gram negative bacteria, including Aggregatibacter actinomycetemcomitans, and affects mammalian cells by inhibiting cell division and causing apoptosis. A complete cdt-operon is present in the majority of A. actinomycetemcomitans, but the proportion of isolates that lack cdt-encoding genes (A, B and C) varies according to the population studied. The objectives of this study were to examine serotype, Cdt-genotype, and Cdt-activity in isolates of A. actinomycetemcomitans collected from an adolescent West African population and to examine the association between the carrier status of A. actinomycetemcomitans and the progression of attachment loss (AL). A total of 249 A. actinomycetemcomitans isolates from 200 Ghanaian adolescents were examined for serotype and cdt-genotype by PCR. The activity of the Cdt-toxin was examined by DNA-staining of exposed cultured cells and documented with flow cytometry. The periodontal status of the participants was examined at baseline and at a two-year follow-up. Presence of all three cdt-encoding genes was detected in 79% of the examined A. actinomycetemcomitans isolates. All these isolates showed a substantial Cdt-activity. The two different cdt-genotypes (with and without presence of all three cdt-encoding genes) showed a serotype-dependent distribution pattern. Presence of A. actinomycetemcomitans was significantly associated with progression of AL (OR = 5.126; 95% CI = [2.994-8.779], padolescents showed a distribution of serotype and cdt-genotype in line with results based on other previously studied populations. Presence of A. actinomycetemcomitans was significantly associated with disease progression, in particular the b serotype, whereas the association with disease progression was not particularly related to cdt-genotype, and Cdt-activity.

  9. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes

    Science.gov (United States)

    Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.

    2013-01-01

    ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906

  10. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila.

    Science.gov (United States)

    Grim, Christopher J; Kozlova, Elena V; Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Kirtley, Michelle L; van Lier, Christina J; Tiner, Bethany L; Erova, Tatiana E; Joseph, Sandeep J; Read, Timothy D; Shak, Joshua R; Joseph, Sam W; Singletary, Ed; Felland, Tracy; Baze, Wallace B; Horneman, Amy J; Chopra, Ashok K

    2014-07-01

    The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. The Effect of Microgravity on the Smallest Space Travelers: Bacterial Physiology and Virulence on Earth and in Microgravity

    Science.gov (United States)

    Pyle, Barry; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Since the first human flights outside of Earth's gravity, crew health and well-being have been major concerns. Exposure to microgravity during spaceflight is known to affect the human immune response, possibly making the crew members more vulnerable to infectious disease. In addition, biological experiments previously flown in space have shown that bacteria grow faster in microgravity than they do on Earth. The ability of certain antibiotics to control bacterial infections may also differ greatly in microgravity. It is therefore critical to understand how spaceflight and microgravity affect bacterial virulence, which is their ability to cause disease. By utilizing spaceflight hardware provided by the European Space Agency (ESA), Dr. Barry Pyle and his team at Montana State University, Bozeman, will be performing an experiment to study the effects of microgravity on the virulence of a common soil and water bacterium, Pseudomonas aeruginosa. Importantly, these bacteria have been detected in the water supplies of previous Space Shuttle flights. The experiment will examine the effects of microgravity exposure on bacterial growth and on the bacterium's ability to form a toxin called Exotoxin A. Another goal is to evaluate the effects of microgravity on the physiology of the bacteria by analyzing their ability to respire (produce energy), by studying the condition of the plasma membrane surrounding the cell, and by determining if specific enzymes remain active. Proteins produced by the bacteria will also be assayed to see if the normal functions of the bacteria are affected. In the context of human life support in spaceflight, the results of this experiment will offer guidance in providing the highest possible water quality for the Shuttle in order to limit the risk of infection to human occupants and to minimize water system and spacecraft deterioration.

  12. Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., alpha-hemolysin and enterotoxins by S. aureus. METHODOLOGY/PRINCIPAL FINDINGS: Secretion of alpha-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF release assays were performed to elucidate the biological relevance of changes in alpha-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding alpha-hemolysin, SEA and SEB, respectively was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of alpha-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. CONCLUSIONS/SIGNIFICANCE: Subinhibitory concentrations of thymol decreased the production of alpha-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with beta-lactams and glycopeptide antibiotics, which induce expression of alpha-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors.

  13. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Directory of Open Access Journals (Sweden)

    José B Gama

    2014-08-01

    Full Text Available Buruli ulcer (BU is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1 and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1. In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  14. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation.

    Science.gov (United States)

    Kämpf, Michael M; Braun, Martin; Sirena, Dominique; Ihssen, Julian; Thöny-Meyer, Linda; Ren, Qun

    2015-01-23

    Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step

  15. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models.

    Science.gov (United States)

    van den Dobbelsteen, Germie P J M; Faé, Kellen C; Serroyen, Jan; van den Nieuwenhof, Ingrid M; Braun, Martin; Haeuptle, Micha A; Sirena, Dominique; Schneider, Joerg; Alaimo, Cristina; Lipowsky, Gerd; Gambillara-Fonck, Veronica; Wacker, Michael; Poolman, Jan T

    2016-07-29

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are major human pathogens; however, no protective vaccine is currently available. We assessed in animal models the immunogenicity and safety of a 4-valent E. coli conjugate vaccine (ExPEC-4V, serotypes O1, O2, O6 and O25 conjugated to Exotoxin A from Pseudomonas aeruginosa (EPA)) produced using a novel in vivo bioconjugation method. Three doses of ExPEC-4V (with or without aluminum hydroxide) were administered to rabbits (2μg or 20μg per O-antigen, subcutaneously), mice (0.2μg or 2μg per O-antigen, subcutaneously) and rats (0.4μg or 4μg per O-antigen, intramuscularly). Antibody persistence and boostability were evaluated in rats using O6-EPA monovalent conjugate (0.4μg O-antigen/dose, intramuscularly). Toxicity was assessed in rats (16μg total polysaccharide, intramuscularly). Serum IgG and IgM antibodies were measured by ELISA. Robust antigen-specific IgG responses were observed in all animal models, with increased responses in rabbits when administered with adjuvant. O antigen-specific antibody responses persisted up to 168days post-priming. Booster immunization induced a rapid recall response. Toxicity of ExPEC-4V when administered to rats was considered to be at the no observed adverse effect level. ExPEC-4V conjugate vaccine showed good immunogenicity and tolerability in animal models supporting progression to clinical evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    Science.gov (United States)

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  17. Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB.

    Directory of Open Access Journals (Sweden)

    Jordi M Lanis

    Full Text Available The Clostridium difficile exotoxin, TcdB, which is a major virulence factor, varies between strains of this pathogen. Herein, we show that TcdB from the epidemic BI/NAP1/027 strain of C. difficile is more lethal, causes more extensive brain hemorrhage, and is antigenically variable from TcdB produced by previously studied strains of this pathogen (TcdB003. In mouse intoxication assays, TcdB from a ribotype 027 strain (TcdB027 was at least four fold more lethal than TcdB003. TcdB027 caused a previously undescribed brain hemorrhage in mice and this correlated with a heightened sensitivity of brain microvascular endothelial cells to the toxin. TcdB003 and TcdB027 also differed in their antigenic profiles and did not share cross-neutralizing epitopes in a major immunogenic region of the protein. Solid phase humoral mapping of epitopes in the carboxy-terminal domains (CTD of TcdB027 and TcdB003 identified 11 reactive epitopes that varied between the two forms of TcdB, and 13 epitopes that were shared or overlapping. Despite the epitope differences and absence of neutralizing epitopes in the CTD of TcdB027, a toxoid form of this toxin primed a strong protective response. These findings indicate TcdB027 is a more potent toxin than TcdB003 as measured by lethality assays and pathology, moreover the sequence differences between the two forms of TcdB alter antigenic epitopes and reduce cross-neutralization by antibodies targeting the CTD.

  18. Metaproteome analysis of endodontic infections in association with different clinical conditions.

    Directory of Open Access Journals (Sweden)

    José Claudio Provenzano

    Full Text Available Analysis of the metaproteome of microbial communities is important to provide an insight of community physiology and pathogenicity. This study evaluated the metaproteome of endodontic infections associated with acute apical abscesses and asymptomatic apical periodontitis lesions. Proteins persisting or expressed after root canal treatment were also evaluated. Finally, human proteins associated with these infections were identified. Samples were taken from root canals of teeth with asymptomatic apical periodontitis before and after chemomechanical treatment using either NaOCl or chlorhexidine as the irrigant. Samples from abscesses were taken by aspiration of the purulent exudate. Clinical samples were processed for analysis of the exoproteome by using two complementary mass spectrometry platforms: nanoflow liquid chromatography coupled with linear ion trap quadrupole Velos Orbitrap and liquid chromatography-quadrupole time-of-flight. A total of 308 proteins of microbial origin were identified. The number of proteins in abscesses was higher than in asymptomatic cases. In canals irrigated with chlorhexidine, the number of identified proteins decreased substantially, while in the NaOCl group the number of proteins increased. The large majority of microbial proteins found in endodontic samples were related to metabolic and housekeeping processes, including protein synthesis, energy metabolism and DNA processes. Moreover, several other proteins related to pathogenicity and resistance/survival were found, including proteins involved with adhesion, biofilm formation and antibiotic resistance, stress proteins, exotoxins, invasins, proteases and endopeptidases (mostly in abscesses, and an archaeal protein linked to methane production. The majority of human proteins detected were related to cellular processes and metabolism, as well as immune defense. Interrogation of the metaproteome of endodontic microbial communities provides information on the

  19. Metaproteome analysis of endodontic infections in association with different clinical conditions.

    Science.gov (United States)

    Provenzano, José Claudio; Siqueira, José F; Rôças, Isabela N; Domingues, Romênia R; Paes Leme, Adriana F; Silva, Márcia R S

    2013-01-01

    Analysis of the metaproteome of microbial communities is important to provide an insight of community physiology and pathogenicity. This study evaluated the metaproteome of endodontic infections associated with acute apical abscesses and asymptomatic apical periodontitis lesions. Proteins persisting or expressed after root canal treatment were also evaluated. Finally, human proteins associated with these infections were identified. Samples were taken from root canals of teeth with asymptomatic apical periodontitis before and after chemomechanical treatment using either NaOCl or chlorhexidine as the irrigant. Samples from abscesses were taken by aspiration of the purulent exudate. Clinical samples were processed for analysis of the exoproteome by using two complementary mass spectrometry platforms: nanoflow liquid chromatography coupled with linear ion trap quadrupole Velos Orbitrap and liquid chromatography-quadrupole time-of-flight. A total of 308 proteins of microbial origin were identified. The number of proteins in abscesses was higher than in asymptomatic cases. In canals irrigated with chlorhexidine, the number of identified proteins decreased substantially, while in the NaOCl group the number of proteins increased. The large majority of microbial proteins found in endodontic samples were related to metabolic and housekeeping processes, including protein synthesis, energy metabolism and DNA processes. Moreover, several other proteins related to pathogenicity and resistance/survival were found, including proteins involved with adhesion, biofilm formation and antibiotic resistance, stress proteins, exotoxins, invasins, proteases and endopeptidases (mostly in abscesses), and an archaeal protein linked to methane production. The majority of human proteins detected were related to cellular processes and metabolism, as well as immune defense. Interrogation of the metaproteome of endodontic microbial communities provides information on the physiology and

  20. Hyperosmotic nanoemulsions: Development and application of a new antimicrobial treatment for wound care

    Science.gov (United States)

    Connell, Sean

    Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the

  1. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  2. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Science.gov (United States)

    Gama, José B; Ohlmeier, Steffen; Martins, Teresa G; Fraga, Alexandra G; Sampaio-Marques, Belém; Carvalho, Maria A; Proença, Fernanda; Silva, Manuel T; Pedrosa, Jorge; Ludovico, Paula

    2014-08-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  3. Staphylococcal enterotoxin-like X (SElX is a unique superantigen with functional features of two major families of staphylococcal virulence factors.

    Directory of Open Access Journals (Sweden)

    Ries J Langley

    2017-09-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen that produces many virulence factors. Two major families of which are the staphylococcal superantigens (SAgs and the Staphylococcal Superantigen-Like (SSL exoproteins. The former are immunomodulatory toxins that induce a Vβ-specific activation of T cells, while the latter are immune evasion molecules that interfere with a wide range of innate immune defences. The superantigenic properties of Staphylococcal enterotoxin-like X (SElX have recently been established. We now reveal that SElX also possesses functional characteristics of the SSLs. A region of SElX displays high homology to the sialyl-lactosamine (sLacNac-specific binding site present in a sub-family of SSLs. By analysing the interaction of SElX with sLacNac-containing glycans we show that SElX has an equivalent specificity and host cell binding range to the SSLs. Mutation of key amino acids in this conserved region affects the ability of SElX to bind to cells of myeloid origin and significantly reduces its ability to protect S. aureus from destruction in a whole blood killing (WBK assay. Like the SSLs, SElX is up-regulated early during infection and is under the control of the S. aureus exotoxin expression (Sae two component gene regulatory system. Additionally, the structure of SElX in complex with the sLacNac-containing tetrasaccharide sialyl Lewis X (sLeX reveals that SElX is a unique single-domain SAg. In summary, SElX is an 'SSL-like' SAg.

  4. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden.

    Directory of Open Access Journals (Sweden)

    Gunlög Rasmussen

    Full Text Available Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated. DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46, bacteremia (n=55, and bacteremia with infective endocarditis (n=33. Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II, capsule polysaccharide serotype 5 (cap5, and adhesins such as S. aureus surface protein G (sasG and fibronectin-binding protein B (fnbB were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB, staphylococcal complement inhibitor (scn and the staphylococcal exotoxin-like protein (setC or selX. In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5 among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation. In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.

  5. A review on the types of immunotoxins and their use in cancer treatment: review article

    Directory of Open Access Journals (Sweden)

    Saber Soltani

    2018-04-01

    Full Text Available Immunotoxins such as pseudomonas exotoxin are Molecules with a unique structure like toxin-antibody part. These immunotoxins are two functional which crossing the cell membrane and enters the target cell and destroy the cell. Toxin-based treatments are a widespread research field and can have broad applications in the biology and public health. Immunotoxins act selectively against cancer cells and have a good potential for detecting and targeting cancer cells. Specific immunotoxins to target immune cells due to the selection type antibody and antibodies are responsible for the identification of the target cells. Cancer is becoming a major cause of death in most developed countries. In order to have a strong factor in cancer repression, that agent must target the cancer cells directly and specifically. Often, but not always, immunotoxins are produced for disabling and killing cancer cells, that this issue is one of new therapeutic approaches in recently. Clinical aims to designing and create new cancer therapies focused with this approach, a lot of information about the toxin and intracellular pathways have been obtained. So, toxins in medicine are useful for the treatment of human disease and study of professional cellular functions. So, immunotoxins have a high potential for cancer treatment. Other applications of immunotoxins, including immune system regulation and treatment of viral diseases and parasites diseases. More research is needed to improve the immunotoxin effects and to reduce their side effects. On the whole, with design creative, clever and experienced programs, many human diseases, particularly cancers can be in a short period of time and faster than other methods of treatment that the treatment of long, to be treated. Following the design and implementation of clinical trials, the effects of immunotoxins on animal tumorigenic models were performed. In fact, in this study, we focus on the use of protein-bound toxins with

  6. Adenovirus-dependent changes in cell membrane permeability: role of Na/sup +/, K/sup +/-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Seth, P.; Pastan, I.; Willingham, M.C.

    1987-03-01

    Adenovirus-dependent release of choline phosphate from KB cells at pH 6.0 was partially blocked by ouabain. In K/sup +/-containing medium, maximum inhibition of release was obtained by 10/sup -5/ M ouabain and half-maximal inhibition was achieved by about 0.5 x 10/sup -6/ M ouabain. Ouabain did not block either the binding or the uptake of adenovirus by KB cells. Without K/sup +/, about 25% of cell-associated choline phosphate was released by adenovirus, whereas with 1 mM K/sup +/ about 50% was released. This activation by K/sup +/ was blocked by 0.1 mM ouabain. HeLa cells behaved like KB cells, but a mutant of HeLa cells resistant to ouabain (D98-OR) released much lower amounts of choline phosphate in response to human adenovirus type 2 (Ad2). Wild-type D98-OR cells bound nearly the same amount of adenovirus as did normal HeLa cells. Ad2 also increased the activity of Na/sup +/, K/sup +/-ATPase in KB cells, with maximum activation at 50..mu..g of Ad2 per ml. In D98-OR cells, Ad2 failed to activate Na/sup +/, K/sup +/, ATPase activity. Ad2-dependent lysis of endocytic vesicles (receptosomes) was assayed by measuring Ad2-dependent enhancement of epidermal growth factor-Pseudomonas exotoxin toxicity. This action of adenovirus was increased when K/sup +/ was present in the medium. Under the conditions used, K/sup +/ had no effect on the amount of Ad2 or epidermal growth factor taken up by the cells. On the basis of these results, it is suggested that Ad2-dependent cellular efflux of choline phosphate and adenovirus-dependent lysis of receptosomes may require Na/sup +/, K/sup +/-ATPase activity.

  7. Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation.

    Science.gov (United States)

    Grimminger, F; Wahn, H; Mayer, K; Kiss, L; Walmrath, D; Seeger, W

    1997-02-01

    Escherichia coli hemolysin (HlyA) is a proteinaceous pore-forming exotoxin that is implicated as a significant pathogenicity factor in extraintestinal E. coli infections including sepsis. In perfused rabbit lungs, subcytolytic concentrations of the toxin evoke thromboxane-mediated vasoconstriction and prostanoid-independent protracted vascular permeability increase (11). In the present study, the influence of submicromolar concentrations of free arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the HlyA-induced leakage response was investigated. HlyA at concentration from 0.02 to 0.06 hemolytic units/ml provoked a dose-dependent, severalfold increase in the capillary filtration coefficient (Kfc), accompanied by the release of leukotriene(LT)B4, LTC4, and LTE4 into the recirculating buffer fluid. Simultaneous application of 100 nmol/L AA markedly augmented the HlyA-elicited leakage response, concomitant with an amplification of LTB4 release and a change in the kinetics of cysteinyl-LT generation. In contrast, 50 to 200 nmol/L EPA suppressed in a dose-dependent manner the HlyA-induced increase in Kfc values. This was accompanied by a blockage of 4-series LT generation and a dose-dependent appearance of LTB5, LTC5, and LTE5. In addition, EPA fully antagonized the AA-induced amplification of the HlyA-provoked Kfc increase, again accompanied by a shift from 4-series to 5-series LT generation. We conclude that the vascular leakage provoked by HlyA in rabbit lungs is differentially influenced by free AA versus free EPA, related to the generation of 4- versus 5-series leukotrienes. The composition of lipid emulsions used for parenteral nutrition may thus influence inflammatory capillary leakage.

  8. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  9. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Directory of Open Access Journals (Sweden)

    Katherine J Kasper

    2014-05-01

    Full Text Available Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS, how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6 mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  10. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  11. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential.

    Science.gov (United States)

    Yu, Yuan; Li, Jialu; Zhu, Xuejun; Tang, Xiaowen; Bao, Yangyi; Sun, Xiang; Huang, Yuhui; Tian, Fang; Liu, Xiaomei; Yang, Lin

    2017-01-01

    Nanobodies, named as VHHs (variable domain of heavy chain of HCAb [heavy-chain antibodies]), are derived from heavy-chain-only antibodies that circulate in sera of camelids. Their exceptional physicochemical properties, possibility of humanization, and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components, including immunotoxins. In our previous efforts, we have successfully generated the monovalent and bivalent CD7 nanobody-based immunotoxins, which can effectively trigger the apoptosis of CD7-positive malignant cells. To pursue the possibility of translating those immunotoxins into clinics, we humanized the nanobody sequences (designated as dhuVHH6) as well as further truncated the Pseudomonas exotoxin A (PE)-derived PE38 toxin to produce a more protease-resistant form, which is named as PE-LR, by deleting majority of PE domain II. Three new types of immunotoxins, dhuVHH6-PE38, dVHH6-PE-LR, and dhuVHH6-PE-LR, were successfully constructed. These recombinant immunotoxins were expressed in Escherichia coli and showed that nanobody immunotoxins have the benefits of easy soluble expression in a prokaryotic expression system. Flow cytometry results revealed that all immunotoxins still maintained the ability to bind specifically to CD7-positive T lymphocyte strains without binding to CD7-negative control cells. Laser scanning confocal microscopy revealed that these proteins can be endocytosed into the cytoplasm after binding with CD7-positive cells and that this phenomenon was not observed in CD7-negative cells. WST-8 experiments showed that all immunotoxins retained the highly effective and specific growth inhibition activity in CD7-positive cell lines and primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Further in vivo animal model experiments showed that humanized dhuVHH6-PE38 immunotoxin can tolerate higher doses and extend the survival of NOD-Prkdc em26 Il2rg em26 Nju (NCG) mice

  12. Turn a diarrhoea toxin into a receptor-mediated therapy for a plethora of CLDN-4-overexpressing cancers

    International Nuclear Information System (INIS)

    Yao, Qin; Cao, Siyu; Li, Chun; Mengesha, Asferd; Low, Pauline; Kong, Beihua; Dai, Shuzhen; Wei, Mingqian

    2010-01-01

    Research highlights: → CLDN-4 is the high-affinity receptor for Clostridium perfringens enterotoxin (CPE). → The targeted toxin C-CPE-ETA' utilises the C-terminal fragment of CPE for binding. → C-CPE-ETA' rapidly binds to and internalises into CLDN-4 positive cancer cells. → C-CPE-ETA' has anti-cancer ability in a range of CLDN-4 positive cancers. -- Abstract: Molecular targeted therapy (MTT) represents the new generation of anti-cancer arsenals. In this study, we report an alternative approach using a hybrid toxin that utilises the high-affinity of receptor-binding fragment of Clostridium perfringens enterotoxin (CPE). CPE naturally binds to CLDN-4 through the C-terminal 30 amino acid. However, recent studies have shown that CLDN-4 is also overexpressed on a range of cancer cells. We thus constructed a cDNA comprising C-CPE and a well characterised toxic domain of Pseudomonas aeruginosa exotoxin A (C-CPE-ETA'). The recombinant C-CPE-ETA' fusion protein was shown to retain the specificity of binding to CLDN-4 and initiating rapid penetration into cytosol in five different CLDN-4 positive cancer cells (Breast-MCF7, Skin-A431, Colon-SW480, Prostate-PC3 and DU145) but not to CLDN-4 negative cells (Hela, HUVEC). C-CPE-ETA' was strongly cytotoxic towards CLDN-4 positive cancer cell, as opposed to cells lacking CLDN-4 expression. Furthermore, we demonstrated that the recombinant fusion protein had significant anti-cancer ability in CLDN-4 positive cancer models in vivo. Subcutaneously implanted MCF7 and SW480 xenograft tumours were significantly decreased or abolished after three repeated injection of the hybrid toxin. Taken together, our results convincingly show that the hybrid toxin targets CLDN-4 positive cancer through receptor-binding, and causes significant tumour cell apoptosis, suggesting its potential as an alternative molecular targeted therapy against a plethora of CLDN-4 positive cancers.

  13. Transverse myelitis secondary to Melioidosis; A case report

    Directory of Open Access Journals (Sweden)

    Nandasiri Shanika

    2012-09-01

    Full Text Available Abstract Background Melioidosis has become an emerging infection in Sri Lanka; a country which is considered non endemic for it. Paraplegia due to Burkholderia pseudomallei is a very rare entity encountered even in countries where the disease is endemic. There are no reported cases of transverse myelitis due to melioidosis in Sri Lankan population thus we report the first case. Case presentation A 21 year old farmer presented with sudden onset bi lateral lower limb weakness, numbness and urine retention. Examination revealed flaccid areflexic lower limbs with a sensory loss of all modalities and a sensory level at T10 together with sphincter involvement. MRI of the thoracolumbar spine showed extensive myelitis of the thoracic spine complicating left psoas abscess without definite extension to the spinal cord or cord compression. Burkholderia pseudomallei was isolated from the psoas abscess pus cultures and the diagnosis of melioidosis was confirmed with high titers of Burkholderia pseudomallei antibodies and positive PCR. He was treated with high doses of IV ceftazidime and oral cotrimoxazole for one month with a plan to continue cotrimoxazole and doxycycline till one year. Patient’s general condition improved but the residual neurological problems persisted. Conclusion The exact pathogenesis of spinal cord melioidosis is not quite certain except in the cases where there is direct microbial invasion, which does not appear to be the case in our patient. We postulate our patient’s presentation could be due to ischemia of the spinal cord following septic embolisation or thrombosis of spinal artery due to the abscess nearby. A neurotrophic exotoxin causing myelitis or post infectious immunological demyelination is yet another possibility. This emphasizes the necessity of further studies to elucidate the exact pathogenesis in this type of presentations. Health care professionals in Sri Lanka, where this is an emerging infection, need to improve

  14. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha.

    Science.gov (United States)

    Morimoto, H; Bonavida, B

    1992-09-15

    We have reported that diphtheria toxin (DTX) mediates target cell lysis and intranucleosomal DNA fragmentation (apoptosis) and also synergizes with TNF-alpha. In this paper, we examined which step in the pathway of DTX-mediated inhibition of protein synthesis was important for induction of cytolytic activity and for synergy. Using a DTX-sensitive tumor cell line, we first examined the activity of the mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2). CRM 197 was not cytolytic for target cells and did not mediate intranucleosomal DNA fragmentation of viable cells. The failure of CRM 197 to mediate target cell lysis suggested that the catalytic activity of DTX is prerequisite for target cell lysis. This was corroborated by demonstrating that MeSAdo, which blocks the biosynthesis of diphthamide, inhibited DTX-mediated protein synthesis inhibition and also blocked target cell lysis. Furthermore, the addition of nicotinamide, which competes with NAD+ on the DTX action site of EF-2, also blocked DTX-mediated lysis. These findings suggest that ADP-ribosylation of EF-2 may be a necessary step in the pathway leading to target cell lysis. In contrast to the sensitive line, the SKOV-3 tumor cell line is sensitive to protein synthesis inhibition by DTX but is not susceptible to cytolysis and apoptosis by DTX. Thus, protein synthesis inhibition by DTX is not sufficient to mediate target cell lysis. The synergy in cytotoxicity obtained with the combination of DTX and TNF-alpha was examined in order to determine the pathway mediated by DTX in synergy. Like the direct lysis by DTX, synergy was significantly reduced by MeSAdo and by nicotinamide. Furthermore, synergy was not observed with combination of CRM 197 and TNF-alpha. These results demonstrate that, in synergy, DTX may utilize the same pathway required for its cytolytic activity. Pseudomonas aeruginosa exotoxin shared most the properties shown for DTX. Altogether, these findings

  15. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    International Nuclear Information System (INIS)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8 + T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract SEB

  16. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    Energy Technology Data Exchange (ETDEWEB)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S., E-mail: prakash@mailbox.sc.edu

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8{sup +} T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract

  17. Fine-mapping of immunodominant linear B-cell epitopes of the Staphylococcus aureus SEB antigen using short overlapping peptides.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhao

    Full Text Available Staphylococcal enterotoxin B (SEB is one of the most potent Staphylococcus aureus exotoxins (SEs. Due to its conserved sequence and stable structure, SEB might be a good candidate antigen for MRSA vaccines. Although cellular immune responses to SEB are well-characterized, much less is known regarding SEB-specific humoral immune responses, particularly regarding detailed epitope mapping. In this study, we utilized a recombinant nontoxic mutant of SEB (rSEB and an AlPO4 adjuvant to immunize BALB/c mice and confirmed that rSEB can induce a high antibody level and effective immune protection against MRSA infection. Next, the antisera of immunized mice were collected, and linear B cell epitopes within SEB were finely mapped using a series of overlapping synthetic peptides. Three immunodominant B cell epitopes of SEB were screened by ELISA, including a novel epitope, SEB205-222, and two known epitopes, SEB97-114 and SEB247-261. Using truncated peptides, an ELISA was performed with peptide-KLH antisera, and the core sequence of the three immunodominant B cell epitopes were verified as SEB97-112, SEB207-222, and SEB247-257. In vitro, all of the immunodominant epitope-specific antisera (anti-SEB97-112, anti-SEB207-222 and anti-SEB247-257 were observed to inhibit SEB-induced T cell mitogenesis and cytokine production from splenic lymphocytes of BALB/c mice. The homology analysis indicated that SEB97-112 and SEB207-222 were well-conserved among different Staphylococcus aureus strains. The 3D crystal structure of SEB indicated that SEB97-112 was in the loop region inside SEB, whereas SEB207-222 and SEB247-257 were in the β-slice region outside SEB. In summary, the fine-mapping of linear B-cell epitopes of the SEB antigen in this study will be useful to understand anti-SEB immunity against MRSA infection further and will be helpful to optimize MRSA vaccine designs that are based on the SEB antigen.

  18. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  19. Vibrios and Aeromonas.

    Science.gov (United States)

    Holmberg, S D

    1988-09-01

    There are many similarities in the Vibrionaceae that cause human illness in the United States (see Table 1). Vibrios are characteristically indigenous to marine, estuarine, and brackish environments. They are distributed mainly in Gulf of Mexico coastal water, and these organisms "bloom" when the water is warm. Outbreaks of disease in humans frequently occur in summer, coinciding with multiplication of vibrios in warm water. Sporadic cases and small outbreaks of cholera continue to occur in persons living on or near the Gulf of Mexico, but infection in most persons is unrecognized. In fact, more serious and frequent illnesses result from V. vulnificus wound infections and from gastroenteritis caused by vibrios other than V. cholerae 01. Underlying hepatic or neoplastic disease (especially leukemia) apparently increases the likelihood and severity of illnesses caused by V. vulnificus and Aeromonas. Some Vibrionaceae produce clinical illness by means of enterotoxins identical or similar to cholera toxin. For many others, hemolysins, cytotoxins, and other exotoxins are necessary to produce disease; the importance of these virulence factors often is not known or the importance of these virulence factors often is not known or is of doubtful significance. Also, purported pathogenicity as demonstrated by animal models, such as fluid accumulation in ligated ileal loops, is quite nonspecific and needs to be interpreted cautiously. For Plesiomonas, a mode of pathogenesis has not been discovered. Eating raw shellfish (frequently raw oysters) has been linked epidemiologically to enteric infections with most of these bacteria; foreign travel and exposure to seawater are other frequently observed epidemiologic associations with infection. Foreign travel, particularly to the Yucatan Peninsula of Mexico, has been strongly associated with the acquisition of non-01 V. cholerae and Plesiomonas organisms. Most Vibrionaceae in the United States are susceptible in vitro--and illnesses

  20. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  1. Sensibilidad antimicrobiana y caracterización de cepas de Streptococcus pyogenes aisladas de un brote de escarlatina Antimicrobial sensitivity and typing of Streptococcus pyogenes strains isolated during a scarlet fever outbreak

    Directory of Open Access Journals (Sweden)

    Alberto González Pedraza-Avilés

    2002-09-01

    Full Text Available Objetivo. Evaluar la actividad in vitro de 13 antibióticos contra 47 Streptococcus pyogenes grupo A (SGA. Determinar la presencia de genes que codifican para exotoxina pirogénica estreptocóccica A (SpeA y serotipos con base en proteína M. Material y métodos. Estudio transversal hecho en el Centro de Salud Dr. José Castro Villagrana sobre un brote de escarlatina en el Colegio Espíritu de América, entre diciembre de 1999 y enero de 2000. El número de niños estudiados fue 137. Se extrajeron porcentajes de sensibilidad. La concentración inhibitoria mínima (CIM se obtuvo por microdilución semiautomatizada. Se utilizó un secuenciador automatizado de DNA para el análisis de variación de secuencias en los genes que codifican para proteína M y SpeA. Resultados. Todas las cepas fueron sensibles a beta-lactámicos y clindamicina; 12.7% fueron resistentes a eritromicina. El serotipo M2 fue el más frecuente, 27 del total. Prácticamente todas las bacterias (96% con el gen SpeA tienen el gen que codifica para el serotipo M2. Conclusiones. Debido a la reciente reaparición de infecciones por SGA se sugiere realizar estudios tanto de sensibilidad a macrólidos y beta-lactámicos, como de epidemiología molecular.Objective. To evaluate the in vitro activities of 13 antimicrobial agents against 47 group A Streptococcus pyogenes (GAS strains, and to determine the presence of genes encoding streptococcal pyrogenic exotoxin A (SpeA and the M--protein serotypes. Materials and Methods. A cross-sectional study was conducted at Centro de Salud Dr. José Castro Villagrana, during a scarlet fever outbreak occurring between December 1999 and January 2000, among 137 children at Colegio Espíritu de América. Minimum Inhibitory Concentrations (MICs were obtained by the semiautomated microdilution method. Automated DNA sequencing was used for analysis of sequence variation in genes encoding the M protein, and SpeA. Results. All strains were sensitive to

  2. The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd.

    Science.gov (United States)

    Xu, Jia; Tan, Xiao; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2015-11-01

    Staphylococci are the leading pathogens of bovine mastitis which is difficult to control. However, the published data on the prevalence of staphylococcal species, virulence and antibiotic resistance genes in bovine mastitis from China are limited. In this study, 104 out of 209 subclinical mastitis milk samples from a single Chinese dairy herd were cultured-positive for staphylococci (49.8%), which were further identified as coagulase-positive staphylococci (CPS) or coagulase-negative staphylococci (CNS). According to the partial tuf and/or 16S rRNA gene sequence, the 28 CPS isolates were confirmed to be Staphylococcus aureus (26.9%), and 76 CNS isolates were assigned to 13 different species (73.1%) with Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus xylosus and Staphylococcus chromogenes as the dominant species. In the 28 S. aureus isolates, the most prevalent general virulence genes were coa, Ig and eno (100%), followed by hla (96.4%), hlb (92.9%), fib (92.9%), clfA (89.3%), clfB (85.7%) and nuc (85.7%). Both exotoxin and biofilm-associated genes were significantly less prevalent than the previously reported. Although 19 different virulence gene patterns were found, only one was dominant (32.1%). The prevalence of blaZ (82.1%) or mecA gene (35.7%) was much higher than the previously reported. In the 76 CNS isolates, the virulence genes were significantly less prevalent than that in the S. aureus isolates. Among the 4 main CNS species, S. chromogenes (n = 12) was the only species with high percentage (75%) of blaZ gene, while S. sciuri (n = 12) was the only species with the high percentage (66.7%) of mecA gene. The most of antibiotic resistance genes were present as multi-resistance genes, and the antibiotic resistances were attributed by different resistance genes between resistant S. aureus and CNS isolates. These data suggest that the prevalence of staphylococcal species, virulence and antibiotic resistance in the mastitis milk from the Chinese

  3. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  4. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy

    International Nuclear Information System (INIS)

    Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Wang, Hongxin; Wang, Zhouping

    2013-01-01

    Graphical abstract: -- Highlights: •An ultrasensitive FRET aptasensor was developed for staphylococcal enterotoxin B determination. •SEB was recognized by SEB aptamer with high affinity and specificity. •The Mn 2+ doped NaYF 4 :Yb/Er UCNPs used as donor to quencher dye (BHQ 3 ) in new FRET. •The fluorescence intensity was prominently amplified using an exonuclease-catalyzed target recycling strategy. -- Abstract: An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA 1 –UCNPs) and fluorescence quencher probes (complementary DNA 2 –Black Hole Quencher 3 (BHQ 3 )) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL −1 and a lower detection limit (LOD) of 0.3 pg mL −1 SEB (at 3σ). The fabricated aptasensor was used to measure SEB in a

  5. Early detection of Pseudomonas aeruginosa – comparison of conventional versus molecular (PCR detection directly from adult patients with cystic fibrosis (CF

    Directory of Open Access Journals (Sweden)

    Moore John E

    2004-10-01

    Full Text Available Abstract Background Pseudomonas aeruginosa (PA is the most important bacterial pathogen in patients with cystic fibrosis (CF patients. Currently, routine bacteriological culture on selective/non- selective culture media is the cornerstone of microbiological detection. The aim of this study was to compare isolation rates of PA by conventional culture and molecular (PCR detection directly from sputum. Methods Adult patients (n = 57 attending the regional adult CF centre in Northern Ireland, provided fresh sputum following airways clearance exercise. Following processing of the specimen with sputasol (1:1 vol, the specimen was examined for the presence of PA by plating onto a combination of culture media (Pseudomonas isolation agar, Blood agar & McConkey agar. In addition, from the same specimen, genomic bacterial DNA was extracted (1 ml and was amplified employing two sequence-specific targets, namely (i the outer membrane protein (oprL gene locus and (ii the exotoxin A (ETA gene locus. Results By sputum culture, there were 30 patients positive for PA, whereas by molecular techniques, there were 35 positive patients. In 39 patients (22 PA +ve & 17 PA -ve, there was complete agreement between molecular and conventional detection and with both PCR gene loci. The oprL locus was more sensitive than the ETA locus, as the former was positive in 10 more patients and there were no patients where the ETA was positive and the oprL target negative. Where a PCR +ve/culture -ve result was recorded (10 patients, we followed these patients and recorded that 5 of these patients converted to being culture-positive at times ranging from 4–17 months later, with a mean lag time of 4.5 months. Conclusions This study indicates that molecular detection of PA in sputum employing the oprL gene target, is a useful technique in the early detection of PA, gaining on average 4.5 months over conventional culture. It now remains to be established whether aggressive antibiotic

  6. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Dorte Haubek

    2014-08-01

    Full Text Available For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA and cytolethal distending toxin (Cdt. LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are

  7. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes.

    Science.gov (United States)

    Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R

    2013-04-23

    Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic

  8. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A K M G; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E; Kroeger, Kurt M; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N; Rodriguez, Ron; Lowenstein, Pedro R; Castro, Maria G

    2010-11-16

    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.

  9. Interleukin-4 receptor alpha overexpression in human bladder cancer correlates with the pathological grade and stage of the disease

    International Nuclear Information System (INIS)

    Joshi, Bharat H; Leland, Pamela; Lababidi, Samir; Varrichio, Frederick; Puri, Raj K

    2014-01-01

    Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran–Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III–IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not

  10. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Directory of Open Access Journals (Sweden)

    Rogério Tenreiro

    2010-10-01

    Full Text Available Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS, involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking

  11. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates.

    Science.gov (United States)

    Taha, Hesham; Dove, Stefan; Geduhn, Jens; König, Burkhard; Shen, Yuequan; Tang, Wei-Jen; Seifert, Roland

    2012-01-01

    Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). Conventional antibiotic treatment is ineffective against either toxaemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Our previous studies showed that EF is differentially inhibited by various purine and pyrimidine nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl (ANT) groups at the 2'(3')-O-ribosyl position, with the unique preference for the base cytosine (Taha et al., Mol Pharmacol 75:693 (2009)). MANT-CTP was the most potent EF inhibitor (K (i), 100 nM) among 16 compounds studied. Here, we examined the interaction of EF with a series of 18 2',3'-O-mono- and bis-(M)ANT-substituted nucleotides, recently shown to be very potent inhibitors of the AC toxin from Bordetella pertussis, CyaA (Geduhn et al., J Pharmacol Exp Ther 336:104 (2011)). We analysed purified EF and EF mutants in radiometric AC assays and in fluorescence spectroscopy studies and conducted molecular modelling studies. Bis-MANT nucleotides inhibited EF competitively. Propyl-ANT-ATP was the most potent EF inhibitor (K (i), 80 nM). In contrast to the observations made for CyaA, introduction of a second (M)ANT-group decreased rather than increased inhibitor potency at EF. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to bis-MANT-ATP, but FRET to bis-MANT-CTP was only small. Mutations N583Q, K353A and K353R differentially altered the inhibitory potencies of bis-MANT-ATP and bis-MANT-CTP. The nucleotide binding site of EF accommodates bulky bis-(M)ANT-substituted purine and pyrimidine nucleotides, but the fit is suboptimal compared to CyaA. These data provide a basis

  12. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi eSubramanian

    2015-10-01

    Full Text Available Bacteria produce and excrete a versatile and dynamic suit of compounds to defend against microbial competitors and mediate local population dynamics. These include a wide range of broad-spectrum non-ribosomally synthesized antibiotics, lytic enzymes, metabolic by-products, proteinaceous exotoxins and ribosomally produced antimicrobial peptides (bacteriocins. Most bacteria produce at least one bacteriocin. Bacteriocins are of interest in the food industry as natural preservatives and in the probiotics industry, leading to extensive studies on lactic acid bacteria (colicin produced by Escherichia coli is a model bacteriocin. Recent studies have projected use of bacteriocins in veterinary medicine and in agriculture, as a biostimulants of plant growth and development and as biocontrol agents. For example, bacteriocins such as Cerein 8A, Bac-GM17, putidacin, Bac 14B, amylocyclicin have been studied for their mechanisms of anti-microbial activity. Bac IH7 promotes tomato and musk melon plant growth. Thuricin 17 (Th17 is the only bacteriocin studied extensively for plant growth promotion and at the molecular level. Th17 functions as a bacterial signal compound, promoting plant growth in legumes and non-legumes. In Arabidopsis thaliana and Glycine max Th17 increased phytohormones IAA and SA at 24 h post treatment. At the proteome level Th17 treatment of 3-week-old A. thaliana rosettes led to > 2-fold changes in activation of the carbon and energy metabolism pathway proteins, 24 h post treatment. At 250 mM NaCl stress, the control plants under osmotic-shock shut down most of carbon-metabolism and activated energy-metabolism and antioxidant pathways. Th17 treated plants, at 250 mM NaCl, retained meaningful levels of the light harvesting complex, photosystem I and II proteins and energy and antioxidant pathways were activated, so that rosettes could better withstand the salt stress. In Glycine max, Th17 helped seeds germinate in the presence of Na

  13. Genomic and transcriptomic differences in community acquired methicillin resistant Staphylococcus aureus USA300 and USA400 strains.

    Science.gov (United States)

    Jones, Marcus B; Montgomery, Christopher P; Boyle-Vavra, Susan; Shatzkes, Kenneth; Maybank, Rosslyn; Frank, Bryan C; Peterson, Scott N; Daum, Robert S

    2014-12-19

    Staphylococcus aureus is a human pathogen responsible for substantial morbidity and mortality through its ability to cause a number of human infections including bacteremia, pneumonia and soft tissue infections. Of great concern is the emergence and dissemination of methicillin-resistant Staphylococcus aureus strains (MRSA) that are resistant to nearly all β-lactams. The emergence of the USA300 MRSA genetic background among community associated S. aureus infections (CA-MRSA) in the USA was followed by the disappearance of USA400 CA-MRSA isolates. To gain a greater understanding of the potential fitness advantages and virulence capacity of S. aureus USA300 clones, we performed whole genome sequencing of 15 USA300 and 4 USA400 clinical isolates. A comparison of representative genomes of the USA300 and USA400 pulsotypes indicates a number of differences in mobile genome elements. We examined the in vitro gene expression profiles by microarray hybridization and the in vivo transcriptomes during lung infection in mice of a USA300 and a USA400 MRSA strain by performing complete genome qRT-PCR analysis. The unique presence and increased expression of 6 exotoxins in USA300 (12- to 600-fold) compared to USA400 may contribute to the increased virulence of USA300 clones. Importantly, we also observed the up-regulation of prophage genes in USA300 (compared with USA400) during mouse lung infection (including genes encoded by both prophages ΦSa2usa and ΦSa3usa), suggesting that these prophages may play an important role in vivo by contributing to the elevated virulence characteristic of the USA300 clone. We observed differences in the genetic content of USA300 and USA400 strains, as well as significant differences of in vitro and in vivo gene expression of mobile elements in a lung pneumonia model. This is the first study to document the global transcription differences between USA300 and USA400 strains during both in vitro and in vivo growth.

  14. Association of Corynebacterium pseudotuberculosis recombinant proteins rCP09720 or rCP01850 with rPLD as immunogens in caseous lymphadenitis immunoprophylaxis.

    Science.gov (United States)

    Silva, Mara Thais de Oliveira; Bezerra, Francisco Silvestre Brilhante; de Pinho, Rodrigo Barros; Begnini, Karine Rech; Seixas, Fabiana Kommling; Collares, Tiago; Portela, Ricardo Dias; Azevedo, Vasco; Dellagostin, Odir; Borsuk, Sibele

    2018-01-02

    Caseous lymphadenitis (CLA) is a chronic disease responsible for significant economic losses in sheep and goat breeding worldwide. The treatment for this disease is not effective, and an intense vaccination schedule would be the best control strategy. In this study, we evaluated the associations of rCP09720 or rCP01850 proteins from Corynebacterium pseudotuberculosis with recombinant exotoxin phospholipase D (rPLD) as subunit vaccines in mice. Four experimental groups (10 animals each) were immunized with a sterile 0.9% saline solution (G1), rPLD (G2), rPLD + rCP09720 (G3), and rPLD + rCP01850 (G4). The mice received two doses of each vaccine at a 21-day interval and were challenged 21 days after the last immunization. The animals were evaluated daily for 40 days after the challenge, and mortality rate was recorded. The total IgG production level increased significantly in the experimental groups on day 42 after the first vaccination. Similarly, higher levels of specific IgG2a were observed in experimental groups G2, G3, and G4 compared to the IgG1 levels on day 42. G4 showed a significant (p < .05) humoral response against both antigens of the antigenic formulations. The cellular immune response induced by immunization was characterized by a significant (p < .05) production of interferon-γ compared to that in the control, while the concentrations of interleukin (IL)-4 and IL-12 were not significant in any group. A significant increase of tumor necrosis factor was observed only in G4. The survival rates after the challenge were 30% (rPLD), 40% (rPLD + rCP09720), and 50% (rPLD + rCP01850). Thus, the association of rCP01850 with rPLD resulted in the best protection against the challenge with C. pseudotuberculosis and induced a more intense type 1 T-helper cell immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis

    Science.gov (United States)

    Haubek, Dorte; Johansson, Anders

    2014-01-01

    For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2

  16. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.

    Directory of Open Access Journals (Sweden)

    Jing Luo

    Full Text Available The quorum sensing (QS circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed

  17. Padronização da titulação da toxina épsilon de Clostridium perfringens tipo D em linhagem contínua de células como alternativa ao bioensaio animal Standardization of the titration of the epsilon toxin of Clostridium perfringens type D in cell line as an alternative to animal bioassay

    Directory of Open Access Journals (Sweden)

    Milton Formiga Souza Júnior

    2010-03-01

    Full Text Available Enterotoxemia, também chamada de doença do rim pulposo, doença que acomete os ruminantes domésticos, é causada pela ação da toxina épsilon produzida pelo Clostridium perfringens tipo D, um anaeróbio comumente isolado do solo e das fezes de animais sadios. O método tradicional de diagnóstico baseia-se na detecção e classificação dessa exotoxina no conteúdo intestinal por meio da soroneutralização em camundongos. Com isso, o objetivo deste estudo foi padronizar um teste para detecção e titulação dessa toxina in vitro e compará-lo ao fenômeno in vivo. Para isso, uma partida de toxina épsilon de Clostridium perfringens tipo D foi titulada em camundongos e em várias linhagens contínuas de células. Após a determinação da linhagem celular mais sensível, realizaram-se ensaios de titulação in vitro de diluições de uma partida de toxina, comparando-os com os títulos in vivo conhecidos. Os resultados foram agrupados, e foi desenvolvida a equação matemática que melhor adaptou-se aos intervalos trabalhados. A linhagem MDCK, além de mais sensível, demonstrou que o fenômeno observado in vitro pode ser expresso por meio da equação matemática que apresenta uma correlação de 98,33%, com a dose mínima mortal determinada in vivo. Portanto, a linhagem MDCK permite titular a toxina épsilon de C. perfringens tipo D de forma específica e sensível, além de ser uma técnica prática, rápida e que dispensa o uso de animais.Enterotoxemia (also called pulpy kidney disease is an enteric disease, that affect ruminants, produced by epsilon toxin from Clostridium perfringens type D, an anaerobic commonly isolated from soil and feces of healthy animals. The diagnostic is based on detection of this exotoxin in the intestinal content by soroneutralization in mice. Therefore, this study aimed to standardize a test for detection and titration of the toxin in vitro, and compare it with the phenomenon in vivo. A volume of epsilon

  18. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression.

    Directory of Open Access Journals (Sweden)

    Christopher R Shaler

    2017-06-01

    Full Text Available Superantigens (SAgs are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS. Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB; ii the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT or γδ T cells, and is characterized by production of interferon (IFN-γ, tumor necrosis factor (TNF-α and interleukin (IL-2, but not IL-17A; iii high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1 participation, is required for MAIT cell activation; iv MAIT cell responses to SEB can occur in a T cell receptor (TCR Vβ-specific manner but are largely contributed by IL-12 and IL-18; v as MAIT cells are primed by SAgs, they also begin to

  19. Virulence markers associated with Trueperella pyogenes infections in livestock and companion animals.

    Science.gov (United States)

    Risseti, R M; Zastempowska, E; Twarużek, M; Lassa, H; Pantoja, J C F; de Vargas, A P C; Guerra, S T; Bolaños, C A D; de Paula, C L; Alves, A C; Colhado, B S; Portilho, F V R; Tasca, C; Lara, G H B; Ribeiro, M G

    2017-08-01

    Trueperella pyogenes is an opportunistic pathogen that causes diverse pyogenic infections in livestock. The genes that encode the exotoxin pyolysin (plo) and other putative factors that promote adhesion of pathogen to host cells (fimbriae fimA, fimC, fimE, fimG, neuraminidases nanH, nanP, and collagen-binding protein cbpA) have been associated with virulence, particularly in mastitis and uterus infections of dairy cows. However, the role of these virulence markers in the pathogenicity of the agent in domestic animals infections still is incompletely understood. The genes plo, fimA, fimC, fimE, fimG, nanH, nanP, and cbpA were investigated in 71 T. pyogenes strains recovered from cattle, sheep, goats, dogs, equines, and a pig, recovered from mastitis (n = 35), and non-mastitis (n = 36) cases (abscesses, reproductive tract diseases, pneumonia, lymphadenitis, encephalitis). The most common genes harboured by the isolates were: plo (71/71 = 100·0%), fimA (70/71 = 98·6%), nanP (56/71 = 78·9%), fimE (53/71 = 74·6%), fimC (46/71 = 64·8%) and nanH (45/71 = 63·4%), whereas cbpA (6/71 = 8·4%) and fimG (4/71 = 5·6%) were uncommon. The most frequent genotypes were plo/fimA/fimE/fimC/nanH/nanP (17/71 = 23·9%), plo/fimA/fimE/nanH/nanP (13/71 = 18·3%), and plo/fimA/fimE/fimC/nanP (11/71 = 15·5%). No association was observed between the presence of genes vs clinical signs or host species. To the best of our knowledge, this is the first report on aforementioned virulence factors of pathogen detected in diseased horses and dogs. The role of particular virulence factors of Trueperella pyogenes that determine different pyogenic infections among domestic animals is poorly understood. Eight putative virulence genes and genotype profiles of 71 isolates were investigated among different clinical manifestations in domestic animals. The most common genes were plo (71/71 = 100·0%), fimA (70/71 = 98·6%), nanP (56/71 = 78·9%), fimE (53/71 = 74·6

  20. Drug-binding ability of human serum albumin at children with chronic virus hepatitis radiochemical definition method

    International Nuclear Information System (INIS)

    Kim, A.A.; Dadakhanov, J.A.; Djuraeva, G.T.; Shukurov, B.V.; Mavlyanov, I.R.

    2006-01-01

    Full text: The chronic virus hepatitis produces numerous abnormalities of liver function. The viruses of B, C, D, F and G hepatitis possess the ability to cause chronically proceeding diseases. Earlier we have found that binding ability of serum albumin at patients with acute forms of virus hepatitis is authentically reduced in comparison with the given parameters of control group. At an acute virus hepatitis B with middle severity the reducing of binding ability of serum albumin was observed at 70 % of patients. At an acute virus hepatitis A the reduce of binding ability of serum albumin is less expressed than at acute virus hepatitis B. At of chronic virus intoxication in human organism there is a formation and accumulation of toxic compounds in the excessive concentrations, which are not inherent to a normal metabolism. One of universal mechanisms of reaction of an organism on the increasing concentration of metabolism products is formation of complexes of various compounds with blood plasma proteins. The formation in an organism of endo- and exotoxins excessive concentrations results in blocking the binding centers of albumin molecule that causes the change of its complexing ability. The purpose of the present research: investigation of binding ability of serum albumin with use of radiochemical method at children with a chronic virus hepatitis B and C. Materials and methods. Under clinical observation there were 52 children in the age from 3 till 14 years. From them at 32 the chronic virus hepatitis B was confirmed, at 20 chronic virus - hepatitis C. Etiological diagnostics was carried out by definition of specific markers of a hepatitis B and C method IFA and PCR. Binding ability of serum albumin was defined by radiochemical method with use of the tritium labeled no-spa (drotaverine hydrochloride). The control group consists from 10 conditionally health children of similar age. Results and their discussion. The results of investigation have shown, that at a

  1. Interleukin-4 receptor alpha overexpression in human bladder cancer correlates with the pathological grade and stage of the disease.

    Science.gov (United States)

    Joshi, Bharat H; Leland, Pamela; Lababidi, Samir; Varrichio, Frederick; Puri, Raj K

    2014-12-01

    Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran-Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥ 2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥ 2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III-IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not

  2. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Banerjee Pratik

    2009-04-01

    Full Text Available Abstract Background Probiotic microorganisms are receiving increasing interest for use in the prevention, treatment, or dietary management of certain diseases, including antibiotic-associated diarrhea (AAD. Clostridium difficile is the most common cause of AAD and the resulting C. difficile – mediated infection (CDI, is potentially deadly. C. difficile associated diarrhea (CDAD is manifested by severe inflammation and colitis, mostly due to the release of two exotoxins by C. difficile causing destruction of epithelial cells in the intestine. The aim of this study was to determine the effect of probiotic bacteria Lactobacillus delbrueckii ssp. bulgaricus B-30892 (LDB B-30892 on C. difficile-mediated cytotoxicity using Caco-2 cells as a model. Methods Experiments were carried out to test if the cytotoxicity induced by C. difficile-conditioned-medium on Caco-2 cells can be altered by cell-free supernatant (CFS from LDB B-30892 in different dilutions (1:2 to 1:2048. In a similar experimental setup, comparative evaluations of other probiotic strains were made by contrasting the results from these strains with the results from LDB B-30892, specifically the ability to affect C. difficile induced cytotoxicity on Caco-2 monolayers. Adhesion assays followed by quantitative analysis by Giemsa staining were conducted to test if the CFSs from LDB B-30892 and other probiotic test strains have the capability to alter the adhesion of C. difficile to the Caco-2 monolayer. Experiments were also performed to evaluate if LDB B-30892 or its released components have any bactericidal effect on C. difficile. Results and discussion Co-culturing of LDB B-30892 with C. difficile inhibited the C. difficile-mediated cytotoxicity on Caco-2 cells. When CFS from LDB B-30892-C. difficile co-culture was administered (up to a dilution of 1:16 on Caco-2 monolayer, there were no signs of cytotoxicity. When CFS from separately grown LDB B-30892 was mixed with the cell-free toxin

  3. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells

    Science.gov (United States)

    Banerjee, Pratik; Merkel, Glenn J; Bhunia, Arun K

    2009-01-01

    Background Probiotic microorganisms are receiving increasing interest for use in the prevention, treatment, or dietary management of certain diseases, including antibiotic-associated diarrhea (AAD). Clostridium difficile is the most common cause of AAD and the resulting C. difficile – mediated infection (CDI), is potentially deadly. C. difficile associated diarrhea (CDAD) is manifested by severe inflammation and colitis, mostly due to the release of two exotoxins by C. difficile causing destruction of epithelial cells in the intestine. The aim of this study was to determine the effect of probiotic bacteria Lactobacillus delbrueckii ssp. bulgaricus B-30892 (LDB B-30892) on C. difficile-mediated cytotoxicity using Caco-2 cells as a model. Methods Experiments were carried out to test if the cytotoxicity induced by C. difficile-conditioned-medium on Caco-2 cells can be altered by cell-free supernatant (CFS) from LDB B-30892 in different dilutions (1:2 to 1:2048). In a similar experimental setup, comparative evaluations of other probiotic strains were made by contrasting the results from these strains with the results from LDB B-30892, specifically the ability to affect C. difficile induced cytotoxicity on Caco-2 monolayers. Adhesion assays followed by quantitative analysis by Giemsa staining were conducted to test if the CFSs from LDB B-30892 and other probiotic test strains have the capability to alter the adhesion of C. difficile to the Caco-2 monolayer. Experiments were also performed to evaluate if LDB B-30892 or its released components have any bactericidal effect on C. difficile. Results and discussion Co-culturing of LDB B-30892 with C. difficile inhibited the C. difficile-mediated cytotoxicity on Caco-2 cells. When CFS from LDB B-30892-C. difficile co-culture was administered (up to a dilution of 1:16) on Caco-2 monolayer, there were no signs of cytotoxicity. When CFS from separately grown LDB B-30892 was mixed with the cell-free toxin preparation (CFT) of

  4. Radioimmunotoxin Therapy of Experimental Colon and Ovarian Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, Donald J.; Vallera, Daniel A.

    2006-02-09

    To pursue the development of radiolabeled immunotoxins (RIT) for colon cancer, it was first necessary to identify an immunotoxin (IT) that could selectively kill colon cancer cell lines. Recently, our collaborators in the Vallera laboratory have observed that potent recombinant IT can be synthesized using recombinant single chain antibodies (sFv) spliced to truncated diphtheria toxin (DT) consisting of the first 390 amino acids of native DT. DT was chosen as a toxin because it is a catalytic bacterial toxin that is easily manipulated in genetic engineering studies. Also, the Vallera lab has developed new procedures for preparing the sFv fusion toxins from bacterial inclusion bodies such as DT and another good genetic engineering toxin pseudomonas exotoxin (PE) based on detergent refolding. This allows for enhanced yields and higher purity that is essential for generating the protein that will be needed for preparation of larger amounts of RIT for therapy. Many potential sFvs were considered for targeting colon cancer. The best results have been obtained with an sFv recognizing EpCam. EpCam, also known as ESA or EGP40, is a 40 kDa epithelial transmembrane glycoprotein found on the basolateral surface of simple, pseudostratified, and transitional epithelia. It has been found overexpressed on 81% of adenocarcinomas of the colon (Went et al. Human pathology 35:122, 2004). EpCam sliced to DT (DTEpCam) was highly potent in studies in which we measured its ability to inhibit the proliferation of the HT-29 and COLO 205 colon cancer cell lines since we measured its IC50 at 1-2 x 10-2 nM. Potency is important, but is also critical that DTEpCam is selective in its cytotoxicity against EpCam-expressing target colon cancer cells. The activity of DTEpCam was highly selective since irrelevant control IT that did not recognize any markers on cancer cells, did not show any activity against the same colon cancer cell lines. Also, blocking studies were performed in which DTEpCam was

  5. Radioimmunotoxin Therapy of Experimental Colon and Ovarian Cancer

    International Nuclear Information System (INIS)

    Buchsbaum, Donald J.; Vallera, Daniel A.

    2006-01-01

    To pursue the development of radiolabeled immunotoxins (RIT) for colon cancer, it was first necessary to identify an immunotoxin (IT) that could selectively kill colon cancer cell lines. Recently, our collaborators in the Vallera laboratory have observed that potent recombinant IT can be synthesized using recombinant single chain antibodies (sFv) spliced to truncated diphtheria toxin (DT) consisting of the first 390 amino acids of native DT. DT was chosen as a toxin because it is a catalytic bacterial toxin that is easily manipulated in genetic engineering studies. Also, the Vallera lab has developed new procedures for preparing the sFv fusion toxins from bacterial inclusion bodies such as DT and another good genetic engineering toxin pseudomonas exotoxin (PE) based on detergent refolding. This allows for enhanced yields and higher purity that is essential for generating the protein that will be needed for preparation of larger amounts of RIT for therapy. Many potential sFvs were considered for targeting colon cancer. The best results have been obtained with an sFv recognizing EpCam. EpCam, also known as ESA or EGP40, is a 40 kDa epithelial transmembrane glycoprotein found on the basolateral surface of simple, pseudostratified, and transitional epithelia. It has been found overexpressed on 81% of adenocarcinomas of the colon (Went et al. Human pathology 35:122, 2004). EpCam sliced to DT (DTEpCam) was highly potent in studies in which we measured its ability to inhibit the proliferation of the HT-29 and COLO 205 colon cancer cell lines since we measured its IC50 at 1-2 x 10-2 nM. Potency is important, but is also critical that DTEpCam is selective in its cytotoxicity against EpCam-expressing target colon cancer cells. The activity of DTEpCam was highly selective since irrelevant control IT that did not recognize any markers on cancer cells, did not show any activity against the same colon cancer cell lines. Also, blocking studies were performed in which DTEpCam was

  6. Вплив концентрації бактерій на протимікробну активність декаметоксину = Influence of concentration on bacteria the activity the antimicrobial activity decamethoxinum

    Directory of Open Access Journals (Sweden)

    Oksana K. Stukan

    2015-06-01

      Abstract The use domestic antiseptic preparations in medicine allowed considerably improve the efficiency prophylaxis and treatment of of many diseases infectious genesis. It is known that they are active in in the presence of the products tissue decay; operate in acidic and alkaline environments do not cause local irritating. Preparations fixed form based decamethoxinum have inhibitory and the bactericidal action on bacteria, viruses, fungi and detoxic effect on staphylococcal, diphtheritic exotoxin, possess good regenerative effect against allergies. The study was conducted at clinical strains of Staphylococcus aureus by standard serial dilutions. The results showed high activity and effectiveness of the drug decamethoxinum.   The use of domestic of antiseptics preparations in medicine allowed considerably improved the effectiveness prophylaxis and treatment of many diseases of infectious genesis. It is known that they are active in the presence of the products tissue decay; operate in acidic and an alkaline environments do not cause local irritating. Investigation of antimicrobial activity decamethoxinum (DCM, carried out in clinical strains of Staphylococcus aureus. From different medical patients, prophylactic establishments, we have removed and been identified 187 clinical strains of microorganisms. Results of the study of antimicrobial activity decamethoxinum on clinical strains of Staphylococcus aureus have shown the following. The minimum bacteriostatic the concentration of DCM was equal to 0,75 ± 0,06 mg / ml, the minimum bactericidal concentration DCM has increased to 1,5 ± 0,06 mg / ml. The dependence of the biological activity of antimicrobial compounds on the number of microorganisms due to a decrease the number of available of molecules existing centers the active compound of by microorganisms in the conditions of the saturated substrate. In the process of studying of sowing dose test microorganisms to antimicrobial activity of antiseptics