WorldWideScience

Sample records for exotic antimatter detected

  1. Antimatter

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Antimatter is a challenge to physicists. P.Dirac introduced the concept of antimatter in 1932 and since then the counterpart in the antimatter world of most particles has been discovered. The likeness of both worlds was explained by the fact that particles and anti-particles must comply with CPT invariance. In 1956 a Chinese team showed that kaons break the P-symmetry. In order to save the CPT theorem it was assumed that the C-symmetry was also broken in kaon system. It was a short-lived relief and in 1964 an American team discovered processes that did not comply with the CP-symmetry. In 1964 the Russian physicist A. Sakharov stated that the CP-breaking favours the disappearance of antimatter. This idea implies that the CP-symmetry breaking should occur in lot of processes, so different research programs have been launched to study CP and T invariance. The experiments NA48, BABAR and CP-LEAR are briefly described. Whenever antimatter meets matter, a burst of energy is released and then can be detected, so our galaxy did not contain any antimatter. As for the rest of the universe, if antimatter exists it must be in places out of reach of our instruments. (A.C.)

  2. Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy

    Science.gov (United States)

    Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry

    2018-05-01

    Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

  3. Can we detect antimatter from other galaxies

    International Nuclear Information System (INIS)

    Ahlen, S.P.; Price, P.B.; Salamon, M.H.; Tarle, G.

    1982-01-01

    Recent developments in particle detection technology now make it possible to use well-established principles of high-order quantum electrodynamics to search for antimatter in the cosmic rays with unprecedented sensitivity. The technique is described and is shown to be superior in both collecting power and resolution to other, more conventional, techniques used in the past. By considering various estimates of the metagalactic cosmic-ray energy density and by taking into account the possible modulation of metagalactic cosmic rays by a galactic wind within the framework of the dynamical halo model, we show that our proposed experiment would be the first to be sensitive to the presence of extragalactic antimatter

  4. Can we detect antimatter from other galaxies

    Science.gov (United States)

    Ahlen, S. P.; Price, P. B.; Salamon, M. H.; Tarle, G.

    1982-01-01

    A novel particle detection technique employing well established principles of high order quantum electrodynamics for searching for antimatter in cosmic rays is described, and shown to have both collecting power and resolution superior to conventional alternatives. By taking into account various estimates of the metagalactic cosmic-ray energy density, and the possible modulation of metagalactic cosmic rays by a galactic wind within the framework of the dynamical halo model, it is shown that the experiment proposed would be the first to be sensitive to the presence of extragalactic antimatter.

  5. Antimatter

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Landua, Rolf

    2002-01-01

    Antiparticles are a crucial ingredient of particle physics and cosmology. More than 70 years after Dirac's bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: as a tool in accelerators; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on the experimental 'antimatter' programme at the Antiproton Decelerator (AD), with special emphysis on antihydrogen production and spectroscopy. The lecture will conclude with an outlook on present and potential future applications of antiparticles in science and our daily life.

  6. Feasibility for EGRET detection of antimatter concentrations in the universe

    Science.gov (United States)

    Hartman, R. C.

    1990-01-01

    Although the Grand Unified Theories of elementary particle dynamics have to some extent reduced the aesthetic attraction of matter-antimatter symmetry in the Universe, the idea is still not ruled out. Although first introduced by Alfven (1965), most of the theoretical development related to gamma-ray astronomy was carried out by Stecker, who has proposed (Stecker, Morgan, and Bredekamp, 1971) matter-antimatter annihilation extending back to large redshifts as a possible explanation of the apparently extragalactic diffuse gamma radiation. Other candidate explanations were also proposed, such as superposition of extragalactic discrete sources. Clearly, the existence of significant amounts of antimatter in the universe would be of great cosmological importance; its detection, however, is not simple. Since the photon is its own antiparticle, it carries no signature identifying whether it originated in a matter or an antimatter process; even aggregates of photons (spectra) are expected to be identical from matter and antimatter processes. The only likely indicator of the presence of concentrations of antimatter is evidence of its annihilation with normal matter, assuming there is some region of contact or overlap. The EGRET (Energetic Gamma-Ray Experimental Telescope) on the Gamma Ray Observatory, with a substantial increase in sensitivity compared with earlier high energy gamma ray telescopes, may be able to address this issue. The feasibility of using EGRET in such a search for antimatter annihilation in the Universe is considered.

  7. Feasibility for EGRET detection of antimatter concentrations in the universe

    International Nuclear Information System (INIS)

    Hartman, R.C.

    1990-01-01

    Although the Grand Unified Theories of elementary particle dynamics have to some extent reduced the aesthetic attraction of matter-antimatter symmetry in the Universe, the idea is still not ruled out. Although first introduced by Alfven (1965), most of the theoretical development related to gamma-ray astronomy was carried out by Stecker, who has proposed (Stecker, Morgan, and Bredekamp, 1971) matter-antimatter annihilation extending back to large redshifts as a possible explanation of the apparently extragalactic diffuse gamma radiation. Other candidate explanations were also proposed, such as superposition of extragalactic discrete sources. Clearly, the existence of significant amounts of antimatter in the universe would be of great cosmological importance; its detection, however, is not simple. Since the photon is its own antiparticle, it carries no signature identifying whether it originated in a matter or an antimatter process; even aggregates of photons (spectra) are expected to be identical from matter and antimatter processes. The only likely indicator of the presence of concentrations of antimatter is evidence of its annihilation with normal matter, assuming there is some region of contact or overlap. The EGRET (Energetic Gamma-Ray Experimental Telescope) on the Gamma Ray Observatory, with a substantial increase in sensitivity compared with earlier high energy gamma ray telescopes, may be able to address this issue. The feasibility of using EGRET in such a search for antimatter annihilation in the Universe is considered

  8. Antimatter annihilation detection with AEgIS

    CERN Document Server

    Gligorova, Angela

    2015-01-01

    AE ̄ gIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an antimatter exper- iment based at CERN, whose primary goal is to carry out the first direct measurement of the Earth’s gravitational acceleration on antimatter. A precise measurement of antimatter gravity would be the first precision test of the Weak Equivalence Principle for antimatter. The principle of the experiment is based on the formation of antihydrogen through a charge exchange reaction between laser excited (Rydberg) positronium and ultra-cold antiprotons. The antihydrogen atoms will be accelerated by an inhomogeneous electric field (Stark acceleration) to form a pulsed cold beam. The free fall of the antihydrogen due to Earth’s gravity will be measured using a moiré de- flectometer and a hybrid position detector. This detector is foreseen to consist of an active silicon part, where the annihilation of antihydrogen takes place, followed by an emulsion part coupled to a fiber time-of-flight detector. This overview prese...

  9. Santilli’s detection of antimatter galaxies: An introduction and experimental confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, P. M. [Department of Physics, Nutan Adarsh Arts, Commerce and Smt. Maniben Harilal Wegad Science College, Umrer-441203, India. Email: prashantmbhujbal@yahoo.com (India)

    2015-03-10

    Studies accompanied over the past few decades on the generalization of quantum mechanics known as hadronic mechanics, initiated in 1978 by the Italian-American physicist Ruggero Maria Santilli and its application for detection of light from antimatter galaxy is reported in this paper. The isodual (antimatter) light has negative energy E{sup d} =-E with negative unit, experiences a negative curvature tensor R{sup d}=-R (gravitational repulsion) when in a matter gravitational field, and possesses a negative index of refraction n{sup d}=-n when propagating within a transparent matter medium. Detection of antimatter galaxies is possible by the refractive telescope with concave lenses constructed by Santilli which follow the concept of negative energy and negative index of refraction for antimatter.

  10. Santilli’s detection of antimatter galaxies: An introduction and experimental confirmation

    International Nuclear Information System (INIS)

    Bhujbal, P. M.

    2015-01-01

    Studies accompanied over the past few decades on the generalization of quantum mechanics known as hadronic mechanics, initiated in 1978 by the Italian-American physicist Ruggero Maria Santilli and its application for detection of light from antimatter galaxy is reported in this paper. The isodual (antimatter) light has negative energy E d =-E with negative unit, experiences a negative curvature tensor R d =-R (gravitational repulsion) when in a matter gravitational field, and possesses a negative index of refraction n d =-n when propagating within a transparent matter medium. Detection of antimatter galaxies is possible by the refractive telescope with concave lenses constructed by Santilli which follow the concept of negative energy and negative index of refraction for antimatter

  11. Antimatter in cosmic rays

    International Nuclear Information System (INIS)

    Galaktionov, Yu.V.

    2002-01-01

    The current status of the antimatter problem is reviewed starting with theoretical developments over the last decades and then emphasizing the observational part. So far no antimatter was observed in agreement with numerous baryogenesis theories which expect no antimatter in our universe, although some primordial antimatter, theoretically, is not excluded and even predicted in a number of models. We analyse what we can learn from observations: what are the manifestations of antimatter, what are the difficulties in detecting it and what is the current experimental situation and perspective in the observation of antimatter. (author)

  12. Antimatter in the universe

    Science.gov (United States)

    Stigman, G.

    1973-01-01

    The means of detecting the presence of antimatter in the universe are discussed. Both direct, annihilation processes, and indirect, cosmic ray particles, were analyzed. All results were negative and it was concluded that no antimatter exists, if the universe is in fact symmetric. If the universe is not symmetric then matter and antimatter are well separated from each other.

  13. Rapid detection of exotic Lymantriids and Scolytids pilot study

    Science.gov (United States)

    Mary Ellen Dix

    2003-01-01

    Exotic invasive species, inadvertently introduced into North America through importation and travel, are threatening the integrity of North American forest ecosystems. The National Invasive Species Council in their 2001 Strategic Plan identified a collaborative program for early detection, diagnosis and response to high-risk, exotic, invasive insects, pathogens and...

  14. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  15. Puzzling antimatter

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    For many years, the absence of antimatter in the Universe has tantalised particle physicists and cosmologists: while the Big Bang should have created equal amounts of matter and antimatter, we do not observe any primordial antimatter today. Where has it gone? The LHC experiments have the potential to unveil natural processes that could hold the key to solving this paradox.   Every time that matter is created from pure energy, equal amounts of particles and antiparticles are generated. Conversely, when matter and antimatter meet, they annihilate and produce light. Antimatter is produced routinely when cosmic rays hit the Earth's atmosphere, and the annihilations of matter and antimatter are observed during physics experiments in particle accelerators. If the Universe contained antimatter regions, we would be able to observe intense fluxes of photons at the boundaries of the matter/antimatter regions. “Experiments measuring the diffuse gamma-ray background in the Universe would be able...

  16. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  17. Antimatter Economy

    Science.gov (United States)

    Hansen, Norm

    2004-05-01

    The Antimatter Economy will bring every country into the 21st century without destroying our environment and turn the Star Trek dream into reality by using antimatter from comets. At the April 2002 joint meeting of the American Physical Society and American Astronomical Society, I announced that comets were composed of antimatter, there were 109 antimatter elements, and the Periodic Table of Elements had been updated to include the antimatter elements. When matter and antimatter come together, energy is produce according to Einstein's equation of mass times the speed of light squared or E = mc2. Antimatter energy creates incredible opportunities for humanity. People in spacecraft will travel to the moon in hours, planets in days, and stars in weeks. Antimatter power will replace fossil plants and produce hydrogen from off-peak electrical power. Hydrogen will supplant gas in cars, trucks, and other vehicles. The billions of ton of coal, billions of barrels of oil, and trillions of cubic feet of natural gas will be used to make trillions of dollars of products to bring countries into the 21st century. Within this millennium, the Worlds Gross National Product will increase from 30 trillion to 3,000 trillion plus 1,500 trillion from space commercialization bringing the Total Gross National Product to 4,500 trillion. Millions of businesses and billions of jobs will be created. However, the real benefits will come from taking billions of people out of poverty and empowering them to pursue their dreams of life, liberty and pursuit of happiness. Please visit www.AntimatterEnergy.com.

  18. Antimatter Experiments

    CERN Multimedia

    2004-01-01

    Antimatter should behave in identical fashion to matter if a form of spacetime symmetry called CPT invariance holds. Two experiments at CERN near Geneva are testing this hypothesis using antihydrogen atoms

  19. Physicists make the most of antimatter

    International Nuclear Information System (INIS)

    Kalmus, Peter

    1987-01-01

    The paper concerns the detection and creation of antimatter. The concept of antimatter was first suggested by Schuster in 1898, was predicted by Dirac in the 1930's and discovered in an accelerator experiment in California in the 1950's. So far, physicists have found no evidence of large amounts of antimatter in nature. However, the creation of artificial antimatter in the laboratory is a possibility. The facilities at CERN should enable the making of antimatter, by using the antiproton beam from LEAR, to make antihydrogen. (UK)

  20. Searching for Primordial Antimatter

    Science.gov (United States)

    2008-10-01

    gas is involved in such a collision. If some of the gas from either cluster has particles of antimatter, then there will be annihilation and the X-rays will be accompanied by gamma rays. Steigman used data obtained by Chandra and Compton to study the so-called Bullet Cluster, where two large clusters of galaxies have crashed into one another at extremely high velocities. At a relatively close distance and with a favorable side-on orientation as viewed from Earth, the Bullet Cluster provides an excellent test site to search for the signal for antimatter. People Who Read This Also Read... Jet Power and Black Hole Assortment Revealed in New Chandra Image Chandra Data Reveal Rapidly Whirling Black Holes Black Holes Have Simple Feeding Habits Galaxies Coming of Age in Cosmic Blobs "This is the largest scale over which this test for antimatter has ever been done," said Steigman, whose paper was published in the Journal of Cosmology and Astroparticle Physics. "I'm looking to see if there could be any clusters of galaxies which are made of large amounts of antimatter." The observed amount of X-rays from Chandra and the non-detection of gamma rays from the Compton data show that the antimatter fraction in the Bullet Cluster is less than three parts per million. Moreover, simulations of the Bullet Cluster merger show that these results rule out any significant amounts of antimatter over scales of about 65 million light years, an estimate of the original separation of the two colliding clusters. "The collision of matter and antimatter is the most efficient process for generating energy in the Universe, but it just may not happen on very large scales," said Steigman. "But, I'm not giving up yet as I'm planning to look at other colliding galaxy clusters that have recently been discovered." Finding antimatter in the Universe might tell scientists about how long the period of inflation lasted. "Success in this experiment, although a long shot, would teach us a lot about the earliest

  1. Cosmic Ray Antimatter

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Over the last decade, space-born experiments have delivered new measurements of high energy cosmic-ray (CR) antiprotons and positrons, opening new frontiers in energy reach and precision. While being a promising discovery tool for new physics or exotic astrophysical phenomena, an irreducible background of antimatter comes from CR collisions with interstellar matter in the Galaxy. Understanding this irreducible source or constraining it from first principles is an interesting challenge: a game of hide-and-seek where the objective is to identify the laws of basic particle physics among the forest of astrophysical uncertainties. I describe an attempt to obtain such understanding, combining information from a zoo of CR species including massive nuclei and relativistic radioisotopes. I show that: (i) CR antiprotons most likely come from CR-gas collisions; (ii) positron data is consistent with, and suggestive of the same astrophysical production mechanism responsible for antiprotons and dominated by proton-proton c...

  2. Dark matter and exotic neutrino interactions in direct detection searches

    Energy Technology Data Exchange (ETDEWEB)

    Bertuzzo, Enrico [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,R. do Matão 1371, CEP. 05508-090, São Paulo (Brazil); Deppisch, Frank F. [Department of Physics and Astronomy, University College London,London WC1E 6BT (United Kingdom); Kulkarni, Suchita [Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften,Nikolsdorfer Gasse 18, 1050 Wien (Austria); Gonzalez, Yuber F. Perez; Funchal, Renata Zukanovich [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,R. do Matão 1371, CEP. 05508-090, São Paulo (Brazil)

    2017-04-12

    We investigate the effect of new physics interacting with both Dark Matter (DM) and neutrinos at DM direct detection experiments. Working within a simplified model formalism, we consider vector and scalar mediators to determine the scattering of DM as well as the modified scattering of solar neutrinos off nuclei. Using existing data from LUX as well as the expected sensitivity of LUX-ZEPLIN and DARWIN, we set limits on the couplings of the mediators to quarks, neutrinos and DM. Given the current limits, we also assess the true DM discovery potential of direct detection experiments under the presence of exotic neutrino interactions. In the case of a vector mediator, we show that the DM discovery reach of future experiments is affected for DM masses m{sub χ}≲10 GeV or DM scattering cross sections σ{sub χ}≲10{sup −47} cm{sup 2}. On the other hand, a scalar mediator will not affect the discovery reach appreciably.

  3. Risk maps for targeting exotic plant pest detection programs in the United States

    Science.gov (United States)

    R.D. Magarey; D.M. Borchert; J.S. Engle; M Garcia-Colunga; Frank H. Koch; et al

    2011-01-01

    In the United States, pest risk maps are used by the Cooperative Agricultural Pest Survey for spatial and temporal targeting of exotic plant pest detection programs. Methods are described to create standardized host distribution, climate and pathway risk maps for the top nationally ranked exotic pest targets. Two examples are provided to illustrate the risk mapping...

  4. Antimatter persuaded to react with matter

    CERN Multimedia

    Van Noorden, Richard

    2006-01-01

    "Matter and antimatter usually destroy each other in a flash of energy and a spray of exotic particles when they meet. Yet the two have been coaxed into a chemical reaction by the international research group Athena." (2/3 page)

  5. World of antimatter

    International Nuclear Information System (INIS)

    Adams, S.

    1998-01-01

    Every particle in nature has an antimatter partner in a curious world. when the two meet, they vanish in a flash of radiation. Physicists create antiparticles for their experiments, and can even build antimatter atoms. (author). 4 Figs

  6. Antimatter brochure (German version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  7. Antimatter brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  8. Antimatter and cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1989-01-01

    This paper discusses two aspects of antimatter and cosmology: 1. the fundamental cosmological question as to whether antimatter plays an equally important role as matter in the universe (overall baryon symmetry), and 2. cosmic-ray antimatter tests for the nature of the dark matter in the universe. (orig.)

  9. Detection and monitoring of invasive exotic plants: a comparison of four sampling methods

    Science.gov (United States)

    Cynthia D. Huebner

    2007-01-01

    The ability to detect and monitor exotic invasive plants is likely to vary depending on the sampling method employed. Methods with strong qualitative thoroughness for species detection often lack the intensity necessary to monitor vegetation change. Four sampling methods (systematic plot, stratified-random plot, modified Whittaker, and timed meander) in hemlock and red...

  10. Cosmic antimatter: models and phenomenology

    OpenAIRE

    Dolgov, A. D.

    2010-01-01

    The possibility of creation of cosmologically significant antimatter are analyzed in different scenarios of baryogenesis. It is argued that there may exist plenty of antimatter even in our Galaxy. Possible forms of antimatter objects and their observational signatures are discussed.

  11. Antimatter in the Universe

    OpenAIRE

    Dolgov, A. D.

    2002-01-01

    Different scenarios of baryogenesis are briefly reviewed from the point of view of possibility of generation of cosmologically interesting amount of antimatter. It is argued that creation of antimatter is possible and natural in many models. In some models not only anti-helium may be produced but also a heavier anti-elements and future observations of the latter would be critical for discovery or establishing stronger upper limits on existence of antimatter. Incidentally a recent observation ...

  12. Antimatter applied for Earth protection from asteroid collision

    Science.gov (United States)

    Satori, Shin; Kuninaka, Hitoshi; Kuriki, Kyoichi

    1990-01-01

    An Earth protection system against asteroids and meteorites in colliding orbit is proposed. The system consists of detection and deorbiting systems. Analyses are given for the resolution of microwave optics, the detectability of radar, the orbital plan of intercepting operation, and the antimatter mass require for totally or partially blasting the asteroid. Antimatter of 1 kg is required for deorbiting an asteroid 200 m in diameter. An experimental simulation of antimatter cooling and storage is planned. The facility under construction is discussed.

  13. On Antimatter and Cosmology.

    Science.gov (United States)

    Kevane, C J

    1961-02-24

    A cosmological model based on a gravitational plasma of matter and antimatter is discussed. The antigravitational interaction of matter and antimatter leads to segregation and an expansion of the plasma universe. The expansion time scale is controlled by the aggregation time scale.

  14. Antimatter plasmas and antihydrogen

    International Nuclear Information System (INIS)

    Greaves, R.G.; Surko, C.M.

    1997-01-01

    Recent successes in confining antimatter in the form of positron and antiproton plasmas have created new scientific and technological opportunities. Plasma techniques have been the cornerstone of experimental work in this area, and this is likely to be true for the foreseeable future. Work by a number of groups on trapping antimatter plasmas is summarized, and an overview of the promises and challenges in this field is presented. Topics relating to positron plasmas include the use of positrons to study the unique properties of electron endash positron plasmas, the interaction between positrons and ordinary matter, and the laboratory modeling of positron-annihilation processes in interstellar media. The availability of cold, trapped antiprotons and positrons makes possible the production of neutral antimatter in the form of antihydrogen. This is expected to enable precise comparisons of the properties of matter and antimatter, including tests of fundamental symmetries and the measurement of the interaction of antimatter with gravity. copyright 1997 American Institute of Physics

  15. Exotic power and propulsion concepts

    International Nuclear Information System (INIS)

    Forward, R.L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion

  16. Matter-antimatter Cosmology

    Science.gov (United States)

    Omnes, R.

    1973-01-01

    The possible existence of antimatter on a large scale in the universe is evaluated. As a starting point, an attempt was made to understand the origin of matter as being essentially analogous to the origin of backgound thermal radiation. Several theories and models are examined, with particular emphasis on nucleon-antinucleon interactions at intermediate energies. Data also cover annihilation interaction with the matter-antimatter boundary to produce the essential fluid motion known as coalesence.

  17. In defense of anti-matter

    International Nuclear Information System (INIS)

    Rogers, S.; Thompson, W.B.

    1980-01-01

    There appears to be a prejudice in the astronomical world against an obvious high-energy source - the mutual annihilation of matter and anti-matter. In favor of this prejudice is the lack of any convincing evidence of the presence of naturally occurring anti-matter. Only recently have cosmic-ray antiprotons been detected (cf. Golden et al., 1979), and then in numbers consistent with secondary production in flight, while annihilation X-rays have also been detected, but again in circumstances where they might well be attributed to secondary effects of some other high-energy process. (orig.)

  18. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework.

    Science.gov (United States)

    Colunga-Garcia, Manuel; Magarey, Roger A; Haack, Robert A; Gage, Stuart H; Qi, Jiaquo

    2010-03-01

    Urban areas are hubs of international transport and therefore are major gateways for exotic pests. Applying an urban gradient to analyze this pathway could provide insight into the ecological processes involved in human-mediated invasions. We defined an urban gradient for agricultural and forest ecosystems in the contiguous United States to (1) assess whether ecosystems nearer more urbanized areas were at greater risk of invasion, and (2) apply this knowledge to enhance early detection of exotic pests. We defined the gradient using the tonnage of imported products in adjacent urban areas and their distance to nearby agricultural or forest land. County-level detection reports for 39 exotic agricultural and forest pests of major economic importance were used to characterize invasions along the gradient. We found that counties with more exotic pests were nearer the urban end of the gradient. Assuming that the exotic species we analyzed represent typical invaders, then early detection efforts directed at 21-26% of U.S. agricultural and forest land would likely be able to detect 70% of invaded counties and 90% of the selected species. Applying an urban-gradient framework to current monitoring strategies should enhance early detection efforts of exotic pests, facilitating optimization in allocating resources to areas at greater risk of future invasions.

  19. The mystery of the antimatter

    International Nuclear Information System (INIS)

    O'Connell, Cathal

    2016-01-01

    The big bang created equal parts matter and antimatter. So what happened to all the antimatter?After years and years, matter and antimatter have turned out identical in every property tested. But there is one more particle, so little understood, that might harbour the secret behind our matter-dominated Universe - the mysterious neutrino.

  20. Antimatter in the classroom

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    A brand new teaching resource has just been made available on the CERN Education website. The Antimatter Teaching Module contains eight lesson plans, together with background materials and extension topics, which are part of a wide educational project whose aim is to stimulate interest in science by introducing themes in modern physics to students aged 14-15 years, that is, earlier than is the practice in most national curricula. Terrence Baine (left) and Rolf Landua (right) with an antimatter trap from the film 'Angels & Demons'. In his capacity as CERN’s first Teacher in Residence, Terrence Baine’s primary project was to develop teaching modules to help high school teachers around the world incorporate modern particle physics into their curricula. “Back in October, it was decided that the first module should be on antimatter”, explains Terrence, who worked on it in collaboration with Rolf Landua, head of the Education Group and antimatter expert. “...

  1. A moiré deflectometer for antimatter.

    Science.gov (United States)

    Aghion, S; Ahlén, O; Amsler, C; Ariga, A; Ariga, T; Belov, A S; Berggren, K; Bonomi, G; Bräunig, P; Bremer, J; Brusa, R S; Cabaret, L; Canali, C; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Derking, H; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S N; Haider, S; Huse, T; Jordan, E; Jørgensen, L V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnický, D; Lagomarsino, V; Lehner, S; Magnani, A; Malbrunot, C; Mariazzi, S; Matveev, V A; Moia, F; Nebbia, G; Nédélec, P; Oberthaler, M K; Pacifico, N; Petràček, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Storey, J; Vasquez, M A Subieta; Špaček, M; Testera, G; Vaccarone, R; Widmann, E; Zavatarelli, S; Zmeskal, J

    2014-07-28

    The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.

  2. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  3. Matter-antimatter asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The Conference is devoted to a multidisciplinary study of matter-antimatter asymmetry and, in particular, from the point of view of particle physics, astrophysics and cosmology. A number of topics, such as the practical applications of antimatter in medical imaging, of particular interest to non-specialists, will also be briefly covered. More than thirty years after the discovery of CP violation in the kaon system, precision experiments with kaons at CERN and Fermilab have demonstrated the existence of direct CP violation, opening a window on a hitherto poorly explored part of particle physics. On the one hand, two experiments devoted mainly to CP violation in B mesons, BABAR and Belle, are beginning to test CP violation in the Standard Model in a decisive way. On the other hand, balloon experiments and the space-based AMS project are circumscribing precise limits on the cosmological abundance of antimatter. Finally, the fundamental problem of cosmological matter-antimatter asymmetry at a Grand Unification scale or at the Electroweak phase transition has been the object of intense theoretical activity in recent years. This document gathers most of the slides that have been presented in the plenary and parallel sessions.

  4. Antimatter cancer treatment

    CERN Multimedia

    Van Noorden, Richard

    2006-01-01

    "The idea that antimatter beams could treat cancer might seem ridiculous. But researchers working at Cerns particle accelerator laboratory in Geneva don't think so. They have just reported a successful first experiment into the biological effects of antiprotons radiation on living cells."

  5. Gravity and Antimatter.

    Science.gov (United States)

    Goldman, Terry; And Others

    1988-01-01

    Discusses the theory and history behind an experiment that will be performed to measure the gravitational forces that effect antimatter. Describes conditions under which the principle of equivalence would be violated or supported. Reviews historical tests of equivalence, current theory and experiments. Presents the design of the new experiment.…

  6. Gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references

  7. Gravity and antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1988-01-01

    No one has ever dropped a single particle of antimatter. Yet physicists assume that it would fall to the ground just like ordinary matter. Their arguments are based on two well established ideas: the equivalence principle of gravitation and the quantum-mechanical symmetry between matter and antimatter. Today this line of reasoning is being undermined by the possibility that the first of these ideas, the principle of equivalence, may not be true. Indeed all modern attempts to include gravity with the other forces of nature in a consistent, unified quantum theory predict the existence of new gravitational-strength forces, that among other things, will violate the principle. Such effects have been seen already in recent experiments. Hence, an experiment to measure the gravitational acceleration of antimatter could be of great importance to the understanding of quantum gravity. An international team has been formed to measure the graviational acceleration of antiprotons. Such an experiment would provide an unambiquous test, if new gravitational interactions do exist. 10 figs

  8. Antimatter as an Energy Source

    International Nuclear Information System (INIS)

    Jackson, Gerald P.

    2009-01-01

    Antiprotons and positrons are constantly generated in space, and periodically manufactured by humans here on Earth. Harvesting of these particles in space and forming stable antimatter atoms and molecules would create a significant energy source for power and propulsion. Though dedicated fabrication of these particles on Earth consumes much more energy than could be liberated upon annihilation, manufactured antimatter represents a high-density energy storage mechanism well suited for spacecraft power and propulsion. In this paper the creation, storage, and utilization of antimatter is introduced. Specific examples of electrical energy generation and deep-space propulsion based on antimatter are also reviewed.

  9. Incorporating Spatio-temporal Phenological Variation in Detecting Exotic Saltcedar Using Landsat Time Series

    Science.gov (United States)

    Diao, C.; Wang, L.

    2017-12-01

    The invasion of exotic species compromises ecosystem functions and causes substantial economic losses at the global scale. Over the past century, non-native saltcedar has expanded into most riparian zones in southwestern United States and posed significant threats to the native biotic communities. Repeated monitoring of saltcedar distribution is essential for conservation agencies to locate highly susceptible areas and develop corresponding control strategies. Throughout the phenological cycle, the leaf senescence stage has been found to be the most crucial in spectrally detecting saltcedar. However, due to climate variability and anthropogenic forcing, the timing of saltcedar leaf senescence may vary over space and time. This spatial and inter-annual variation need to be accommodated to pinpoint the appropriate remotely sensed imagery for saltcedar mapping. The objective of this study was to develop a Landsat-based Multiyear Spectral Angle Clustering (MSAC) model to monitor the inter-annual leaf senescence of exotic saltcedar. At the Landsat scale, the time series analysis of vegetation phenology is usually limited by the temporal resolution of images. The MSAC model can overcome this limit and take advantage of the Landsat images from multiple years to compensate the lack of images in a single year. Results indicated the MSAC model provided a Landsat-based solution to capture the inter-annual leaf senescence of saltcedar. Compared to traditional NDVI-based phenological approaches, the proposed model achieved a more accurate classification results of saltcedar across years. The MSAC model provides unique opportunities to guide the selection of appropriate remotely sensed image for repetitive saltcedar mapping.

  10. The Search for Cosmological Antimatter

    Science.gov (United States)

    Streitmatter, Robert E.

    2004-01-01

    For more than 40 years, experimentalists have searched in the cosmic radiation for evidence of antimatter which may have been created in the early Universe. The experimental evidence for cosmologically significant amounts of antimatter in the Universe is reviewed. There is no compelling evidence, either theoretical of experimental. However, the possibility is not completely ruled out.

  11. Antimatter search with AMS (Alpha Magnetic Spectrometer) during STS-91 precursor flight

    International Nuclear Information System (INIS)

    Alpat, Behcet

    2000-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed to study the antimatter, matter and dark matter in space. AMS successfully flown on space shuttle Discovery during precursor flight STS-91 in a 51.7 degree sign orbit at altitudes between 320 and 390 km. No antimatter nuclei with Z ≥ 2 were detected. In this report we present the AMS performances during shuttle flight and we give new limits on antimatter/matter flux ratio

  12. Antimatter in the universe

    International Nuclear Information System (INIS)

    Papini, P.; Spillantini, P.

    1996-01-01

    In this paper, the present knowledge on the study of antimatter in the universe is summarized. From the theoretical point of view, both baryon symmetric and asymmetric cosmologies are possible in the framework of big-bang theories. With the three 'Sakharov's conditions', it is possible to imagine an evolution from the big bang toward a universe with 'all matter' inside or toward a symmetric universe with matter and antimatter separated in domains. Measurement of the γ ray cosmic background implies only a local asymmetry and does not rule out the possibility of a symmetry on a large scale. Observations of the antiproton spectrum and antinuclei in cosmic rays are useful tools for studying the possible existence of an antigalaxy. The number and quality of the present data are poor, and no data are available at high energy, where the presence of an antigalaxy must be revealable owing to a large amount of antiprotons and antinuclei. In this paper, the future experimental projects to measure the antiproton flux at high energies and to search for antinuclei in cosmic rays are briefly presented

  13. Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR

    Directory of Open Access Journals (Sweden)

    Hoseong Choi

    2013-03-01

    Full Text Available To detect five plant viruses (Beet black scorch virus, Beet necrotic yellow vein virus, Eggplant mottled dwarf virus, Pelargonium zonate spot virus, and Rice yellow mottle virus for quarantine purposes, we designed 15 RT-PCR primer sets. Primer design was based on the nucleotide sequence of the coat protein gene, which is highly conserved within species. All but one primer set successfully amplified the targets, and gradient PCRs indicated that the optimal temperature for the 14 useful primer sets was 51.9°C. Some primer sets worked well regardless of annealing temperature while others required a very specific annealing temperature. A primer specificity test using plant total RNAs and cDNAs of other plant virus-infected samples demonstrated that the designed primer sets were highly specific and generated reproducible results. The newly developed RT-PCR primer sets would be useful for quarantine inspections aimed at preventing the entry of exotic plant viruses into Korea.

  14. The United States Experience with the Exotic Cerambycid Anoplophora glabripennis: Detection, Quarantine, and Control

    Science.gov (United States)

    Robert A. Haack; Therese M. Poland; Rui-Tong Gao

    2000-01-01

    It is estimated that there are at least 4500 exotic (non-indigenous) organisms currently established in the United States(US) (US Congress 1993) and possibly as many as 50,000 (Pimentel et al. 2000). Of the many exotic organisms now in the US, more than 400 are insects that feed on trees and shrubs.(Haack and Byler 1993, Mattson et al. 1994, Niemela and Mattson 1996)....

  15. A moiré deflectometer for antimatter

    CERN Document Server

    Aghion, S; Amsler, C; Ariga, A; Ariga, T; Belov, A S; Berggren, K; Bonomi, G; Braunig, P; Bremer, J; Brusa, R S; Cabaret, L; Canali, C; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Derking, H; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S N; Haider, S; Huse, T; Jordan, E; Jørgensen, L V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnicky, D; Lagomarsino, V; Lehner, S; Magnani, A; Malbrunot, C; Mariazzi, S; Matveev, V A; Moia, F; Nebbia, G; Nedelec, P; Oberthaler, M K; Pacifico, N; Petracek, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Storey, J; Subieta Vasquez, M A; Spacek, M; Testera, G; Vaccarone, R; Widmann, E; Zavatarelli, S; Zmeskal, J

    2014-01-01

    The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational inter- action is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moire ́ deflectometer—for a measurement of the acceleration of slow antiprotons. The setup con- sists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleratio...

  16. The lost worlds of antimatter

    International Nuclear Information System (INIS)

    Davies, P.

    1980-01-01

    Given that matter can exist in two forms, each the mirror image of the other which annihilate each other on contact, producing energy, Dirac's cosmological model explains why there is no conspicuous antimatter in the world since it cannot co-exist with ordinary matter. However, if the creation of matter is always accompanied by an equal and opposite quantity of antimatter, how has all the material of the Universe come into existence without being infested by its mirror substance. The question of whether Grand Unified Theories can bring about an imbalance between matter and antimatter in the primeval Universe is considered. (UK)

  17. Antimatter performs optical gymnastics

    Energy Technology Data Exchange (ETDEWEB)

    Eades, John [University of Tokyo (Japan); CERN, Geneva (Switzerland)

    2005-03-01

    Lasers have been used for the first time to create antihydrogen, which could allow precise spectroscopic measurements of anti-atoms. The philosopher William James once said that 'if you wish to upset the law that all crows are black, you must not seek to show that none of them are - it is enough to produce a single white crow'. Likewise, if you wish to test the so-called CPT theorem, according to which a world constructed of antimatter behaves exactly the same as one constructed of matter, you do not need to create an entire 'antiworld'. It would be quite sufficient to show that the frequency of just one transition in a simple anti-atom differs from the value of the same transition in the corresponding ordinary atom. The question is, by how much? Any gross violations of the CPT theorem - which, more formally, states that a system remains unchanged under the combined operations of charge conjugation, parity reversal and time reversal - have already been ruled out experimentally. As a result, nobody expects any difference between matter and antimatter to be anything other than minute, if, indeed, there is a difference at all. The laser-spectroscopy tools that have made it possible to measure transition frequencies in ordinary hydrogen to extraordinarily high precision should also be applicable to antihydrogen. This makes hydrogen anti-atoms excellent candidates to test the CPT theorem. Now, researchers in the ATRAP collaboration at CERN have taken an important step along the obstacle-strewn path towards this goal by using lasers to control the production of antihydrogen atoms. (U.K.)

  18. Antimatter in the Milky Way

    International Nuclear Information System (INIS)

    Bambi, C.; Dolgov, A.D.

    2007-01-01

    Observational signatures of existence of antimatter objects in the Galaxy are discussed. We focus on point-like sources of gamma radiation, diffuse galactic gamma ray background and anti-nuclei in cosmic rays

  19. Alternative pathways to antimatter containment

    International Nuclear Information System (INIS)

    Rejcek, J.M.; Browder, M.K.; Fry, J.L.; Koymen, A.; Weiss, A.H.

    2003-01-01

    Antimatter containment is a gateway technology for future advancements in many areas. Immediate applications in propulsion, medicine, and instrumentation have already been envisioned and many others are yet to be considered. Key to this technological advance is identifying one or more pathways to achieve safe reliable containment of antimatter in sufficient quantities to be useful on an engineering and industrial scale. The goal of this paper is to review current approaches and discuss possible alternative pathways to antimatter containment. Specifically, this paper will address the possibility of designing a solid-state containment system that will safely hold antimatter in quantities dense enough to be of any engineering utility. A discussion of the current research, the needed engineering requirements, and a survey of current research is presented

  20. Multiquark exotics

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-01-01

    The question Are Anomalons Multiquark Exotics is discussed. It is concluded that so far there is no convincing experimental evidence for any multiquark exotic bound state nor for any exotic resonance. Except for the delta and S* there are no candidates for bound states and no firm theoretical predictions waiting to be tested. Exotic resonances may exist in the 1.5 to 2.0 GeV region and in the charmed sector, e.g., the charmed-strange exotics. The experimental search for multiquark resonances is still open and active

  1. Matter reflects Antimatter

    CERN Document Server

    Bianconi, A.; Cristiano, A.; Leali, M.; Lodi Rizzini, E.; Venturelli, L.; Zurlo, N.

    2008-01-01

    It is common belief that the interaction between antimatter and ordinary solid matter is dominated by annihilation. However, non-destructive processes may play a relevant role too. One century ago E. Rutherford wrote about the "diffuse reflection" of alpha and beta particles by thin layers of different metals: "The observations ... of Geiger and Marsden on the scattering of alpha rays indicate that some of the alpha particles must suffer a deflexion of more than a right angle at a single encounter.... It will be shown that the main deductions from the theory are independent of whether the central charge is supposed to be positive or negative". Although the theory of electromagnetic scattering is in first approximation independent of the relative sign of the colliding particles, in the case where projectile antiprotons are shot against a wall of solid matter the Rutherford diffuse reflection mechanism competes with the annihilation process. So it is not obvious at all that a relevant part of an antiproton beam...

  2. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  3. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  4. Antimatter in the universe and laboratory

    Directory of Open Access Journals (Sweden)

    Dolgov A.D.

    2015-01-01

    Full Text Available Possible signatures which may indicate an existence of antimatter in the Galaxy and in the early universe are reviewed. A model which could give rise to abundant antimatter in the Galaxy is considered.

  5. Antimatter in the universe and laboratory

    OpenAIRE

    Dolgov, A. D.

    2014-01-01

    Possible signatures which may indicate an existence of antimatter in the Galaxy and in the early universe are reviewed. A model which could give rise to abundant antimatter in the Galaxy is considered.

  6. Vast Antimatter Regions and Scalar Condensate Baryogenesis

    OpenAIRE

    Kirilova, D.; Panayotova, M.; Valchanov, T.

    2002-01-01

    The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.

  7. Negative numbers and antimatter particles

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2012-01-01

    Dirac's equation states that an electron implies the existence of an antielectron with the same mass (more generally same arithmetic properties) and opposite charge (more generally opposite algebraic properties). Subsequent observation of antielectron validated this concept. This statement can be extended to all matter particles; observation of antiproton, antineutron, antideuton … is in complete agreement with this view. Recently antihypertriton was observed and 38 atoms of antihydrogen were trapped. This opens the path for use in precise testing of nature's fundamental symmetries. The symmetric properties of a matter particle and its mirror antimatter particle seem to be well established. Interactions operate on matter particles and antimatter particles as well. Conservation of matter parallels addition operating on positive and negative numbers. Without antimatter particles, interactions of the Standard Model (electromagnetism, strong interaction and weak interaction) cannot have the structure of group. Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions), explaining why from pure energy (A = 0, L = 0) one can only obtain a pair of matter particle antimatter particle — electron antielectron, proton and antiproton — via materialization where the mass of a pair of particle antiparticle gives back to pure energy with annihilation. These two mechanisms cannot change the difference in the number of matter particles and antimatter particles. Thus from pure energy only a perfectly symmetric (in number) universe could be generated as proposed by Dirac but observation showed that our universe is not symmetric, it is a matter universe which is nevertheless neutral. Fall of reflection symmetries shattered the prejudice that there is no way to define in an absolute way right and left or matter and antimatter

  8. Matter and antimatter

    International Nuclear Information System (INIS)

    Schopper, H.

    1989-01-01

    For many years the physicist Herwig Schopper has been contributing in leading positions - either as director of DESY in Hamburg or as general director of CERN in Geneva - to the development of a fascinating field of modern physics. His book is the first comprehensive presentation of experimental particle physics for non-physicists. The search for the smallest constituents of matter, i.e. the exploration of the microcosmos, apart from the advance of the man into space belongs to the most exciting scientific-technical adventures of our century. Contrarily to the stars, atoms, atomic nuclei, and quarks cannot be seen. How objects are studied which are by thousands smaller than the smallest atomic nucleus? Can matter be decomposed in ever smaller constituents, or does there exist a limit? What is matter, and what is of consequence for the mysterious antimatter. Do the laws of the infinitely small also determine the development of the universe since its origin? Such and other questions - expressions of human curiosity - Schopper wants to answer with his generally understandable book. Thereby the 'machines' and the experiments of high-energy physics play a decicive role in the presentation. The author describes the development of the accelerators - in Europe, as well as in the Soviet Union, Japan, or in the USA -, and he shows, why for the investigation of the smallest immense experimental facilities - the 1989 finished LEP storage ring at CERN has a circumference of 27 kilometers - are necessary. Schopper explains how the 'machines' work and how the single experiments run. His book satisfies the curiosity of all those, who want to know more about the world of the quarks. (orig.) With 96 figs [de

  9. Studying Antimatter Gravity with Muonium

    Directory of Open Access Journals (Sweden)

    Aldo Antognini

    2018-04-01

    Full Text Available The gravitational acceleration of antimatter, g ¯ , has yet to be directly measured; an unexpected outcome of its measurement could change our understanding of gravity, the universe, and the possibility of a fifth force. Three avenues are apparent for such a measurement: antihydrogen, positronium, and muonium, the last requiring a precision atom interferometer and novel muonium beam under development. The interferometer and its few-picometer alignment and calibration systems appear feasible. With 100 nm grating pitch, measurements of g ¯ to 10%, 1%, or better can be envisioned. These could constitute the first gravitational measurements of leptonic matter, of 2nd-generation matter, and possibly, of antimatter.

  10. Artist's concept of Antimatter propulsion system

    Science.gov (United States)

    1999-01-01

    This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.

  11. Antimatter, the SME, and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Tasson, Jay D., E-mail: jtasson@carleton.edu [Whitman College, Department of Physics (United States)

    2012-12-15

    A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.

  12. Antimatter, the SME, and gravity

    International Nuclear Information System (INIS)

    Tasson, Jay D.

    2012-01-01

    A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.

  13. The gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs

  14. Atom optical tools for antimatter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Braeunig, Philippe H.M.

    2014-12-17

    The direct measurement of the gravitational acceleration of antimatter in the earth's field, which represents a test of the weak equivalence principle, is in the focus of several ongoing experimental attempts. This thesis investigates tools and techniques known from the field of atom optics that can be utilised for such a measurement with antihydrogen atoms as envisioned by the AEgIS collaboration. A first experimental step is presented, in which a detection due to an electromagnetic force acting on antiprotons is measured with a Moire deflectometer. This device, which can be described with classical particle trajectories, consists of two gratings and a spatially resolving detector. Key elements of this measurement are the use of an emulsion detector with high spatial resolution and an absolute reference technique based on an interferometric fringe pattern of light, which is not deflected by forces. For future realisations, a new detection and evaluation scheme to measure gravity based on a three-grating system enclosed by a vertex-reconstructing detector is discussed. This allows the use of a grating periodicity that is smaller than the resolution of the detector while making efficient use of the particle flux. Smaller periodicities are favourable to increase the inertial sensitivity of the measurement apparatus but require to take effects of diffraction into account. To explore this near-field regime with antimatter, a Talbot-Lau interferometer for antiprotons is proposed and its possible experimental implementation is discussed.

  15. Observation of the antimatter partner of Rutherford's α-particle - 4He-bar

    International Nuclear Information System (INIS)

    Tang, Aihong

    2012-01-01

    The antimatter helium-4 nucleus ( 4 He-bar, or anti-α) has not been observed previously although the α-particle was identified a century ago by Rutherford. High-energy nuclear collisions recreate energy densities similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are created with comparable abundances. However, the relatively short-lived expansion in nuclear collisions makes it possible for antimatter to decouple quickly from matter. This makes a high-energy accelerator facility the ideal environment for producing and studying antimatter. In this paper, we report 18 antihelium-4 nuclei discovered by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured invariant differential cross section is consistent with expectation from thermodynamics and coalescent nucleosynthesis models, which has implications for future production of even heavier antimatter nuclei, as well as for experimental searches for new phenomena in the cosmos. Future directions of rare and exotic matter searches from STAR will also be discussed.

  16. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  17. Exotic hardrons

    International Nuclear Information System (INIS)

    Landsberg, L.G.

    1994-01-01

    In this review, the present status of the physics of exotic hadrons (mesons and baryons) is considered. It is shown that, that during the last decade, several new meson states were observed, whose properties can hardly be explained in terms of the simple quark model. These particles have become serious candidates for exotic hadrons. The search for narrow, heavy baryons in different production and formation reactions is also discussed. 143 refs., 52 figs., 7 tabs

  18. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  19. World premiere. And the antimatter was

    International Nuclear Information System (INIS)

    Rouat, S.

    1996-01-01

    This paper gives an historical review of the discovery of antimatter. Nine anti-hydrogen atoms were produced in September 1995 by a German-Italian team using the CERN-LEAR. This exceptional event has convulsed the existing fundamental physics theories: the symmetry theory and the general relativity theory and its equivalence principle. The discovery of antimatter raises the question of the existence of an anti-universe and of where the antimatter could lie in the universe. The paper describes the experiment carried out at the CERN and the difficulties encountered for the measurement and the storage of antimatter particles. The possible forthcoming closure of the LEAR appears as a threat to future antimatter studies and developments using antimatter annihilation energy. (J.S.). 1 ref., 1 fig., 1 tab., 1 photo

  20. Antimatter: Its history and its properties

    International Nuclear Information System (INIS)

    Nieto, M.M.; Hughes, R.J.

    1987-01-01

    We review the conceptual developments of quantum theory and special relativity which culminated in the discovery of and understanding of antimatter. In particular, we emphasize how quantum theory and special relativity together imply that antimatter must exist. Our modern understanding of antimatter is summarized in the CPT theorem of relativistic quantum field theory. The implications of this theorem have never been contradicted by any experiment ever done. 38 refs

  1. Search for cosmic-ray antimatter

    Science.gov (United States)

    Smoot, G. F.; Buffington, A.; Orth, C. D.

    1975-01-01

    It appears probable that some fraction of the cosmic rays has extragalactic origin. A search for antimatter nuclei was conducted with the aid of a balloon-borne superconducting magnetic spectrometer. The investigation made use of the fact that matter and antimatter nuclei, because of their opposite signs of charge, would be deflected in opposite directions when passing through a magnetic field. The antimatter flux limits set by the experiments are discussed.

  2. Matter-antimatter domains in the universe

    International Nuclear Information System (INIS)

    Dolgov, A.

    2001-01-01

    A possible existence of cosmologically large domains of antimatter or astronomical 'anti-objects' is discussed. A brief review of different scenarios of baryogenesis predicting a noticeable amount of antimatter is given. Though both theory and observations indicate that the universe is most possibly uniformly charge asymmetric without any noticeable amount of antimatter, several natural scenarios are possible that allow for cosmologically (astronomically) interesting objects in close vicinity to us. The latter may be discovered by observation of cosmic ray antinuclei

  3. Matter and antimatter in the universe

    International Nuclear Information System (INIS)

    Dolgov, A.D.

    2002-01-01

    Different scenarios of baryogenesis are briefly reviewed from the point of view of possibility of generation of cosmologically interesting amount of antimatter. It is argued that creation of antimatter is possible and natural in many models. In some models not only anti-helium may be produced but also a heavier anti-elements and future observations of the latter would be critical for discovery or establishing stronger upper limits on existence of antimatter. Incidentally a recent observation of iron-rich quasar may present a support to one special model of antimatter creation

  4. Scientists hope to crack missing antimatter

    CERN Multimedia

    2000-01-01

    CERN announced that it would be able to study antimatter in depth using the world's first 'antimatter factory'. The AD has a circumference of 188 meters and will slow down particles and antiparticles to one tenth of the speed of light and then deliver them to experiments for study (1 page).

  5. Gravity measurement on antimatter and supergravity

    International Nuclear Information System (INIS)

    Beverini, N.; Poggiani, R.; Torelli, G.; Lagomarsino, V.; Manuzio, G.; Scuri, F.

    1988-01-01

    The relevance of gravity measurements with antimatter is discussed assuming both scalar and vector terms in the generalized gravitational potential. On the basis of previous experimental results a suitable parametrization allows to point out the different sensitivity between matter-matter and matter-antimatter experiments. (orig.)

  6. Observation of the antimatter helium-4 nucleus

    NARCIS (Netherlands)

    Agakishiev, H.; Aggarwal, M.M.; Braidot, E; Peitzmann, T.; Zoulkarneeva, Y.

    2011-01-01

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang1; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple

  7. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  8. Atomic physics of the antimatter explored with slow antiprotons

    International Nuclear Information System (INIS)

    Torii, Hiroyuki A.

    2010-01-01

    Frontiers of antimatter physics are reviewed, with a focus on our ASACUSA collaboration, doing research on 'Atomic Spectroscopy And Collisions Using Slow Antiprotons' at the 'Antiproton Decelerator' facility at CERN. Antiprotonic helium atoms give a unique test ground for testing CPT invariance between particles and antiparticles. Laser spectroscopy of this exotic atom has reached a precision of a few parts per billion in determation of the antiproton mass. We also have developed techniques to decelerate antiprotons and cool them to sub-eV energies in an electromagnetic trap at ultra-high vacuum and extract them as an ultra-slow beam at typically 250 eV. This unique low-energy beam opens up the possibility to study ionization and formation of antiprotonic atoms. The antihydrogen has been synthesized at low temperature in nested Penning traps by ATRAP and ATHENA(presently ALPHA) collaborations. Confinement of this neutral anti-atoms in a trap with magnetic field gradient is being studied, with an aim of 1S-2S laser spectroscopy in the future. ASACUSA has prepared a cusp trap for production of antihydrogen atoms, and aims at microwave spectroscopy between the hyperfine states of spin-polarized antihydrogen. A wide variety of low-energy antiproton physics also includes measurement of nuclear scattering, radiational biological effects, and gravity test of antimatter. (author)

  9. Baryogenesis model predicting antimatter in the Universe

    International Nuclear Information System (INIS)

    Kirilova, D.

    2003-01-01

    Cosmic ray and gamma-ray data do not rule out antimatter domains in the Universe, separated at distances bigger than 10 Mpc from us. Hence, it is interesting to analyze the possible generation of vast antimatter structures during the early Universe evolution. We discuss a SUSY-condensate baryogenesis model, predicting large separated regions of matter and antimatter. The model provides generation of the small locally observed baryon asymmetry for a natural initial conditions, it predicts vast antimatter domains, separated from the matter ones by baryonically empty voids. The characteristic scale of antimatter regions and their distance from the matter ones is in accordance with observational constraints from cosmic ray, gamma-ray and cosmic microwave background anisotropy data

  10. Measuring antimatter gravity with muonium

    Directory of Open Access Journals (Sweden)

    Kaplan Daniel M.

    2015-01-01

    Full Text Available The gravitational acceleration of antimatter, ḡ, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of ḡ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter.

  11. Antimatter. Past, present and future

    International Nuclear Information System (INIS)

    Zichichi, A.

    2001-01-01

    In order to have matter it needs to have fundamental fermions (quarks and leptons), particles (mesons and baryons) and nuclei. For antimatter to exist, the anti fundamental fermions as well as the antiparticles and the antinuclei are needed. The masses associated with these components of matter are the intrinsic (quarks and leptons), the confinement (mesons and baryons) and the binding [either nuclear (nuclei), or electromagnetic (atoms)]. The first two are positive, the two binding ones are negative. These masses have different origins. No one has been able to establish the origin of the intrinsic masses (it could be the Higgs mechanism, but this lacks experimental confirmation so far). The confinement masses are QCD non-perturbative effects. The nuclear binding masses are QCD-induced colour neutral effects; the electromagnetic binding is due to QED and, since QED is the best experimentally checked RQFT, its validity in terms of the CPT symmetry cannot easily be questioned and this is why the electromagnetic binding is not included in this review.If CPT were theoretically well established as it was when discovered, all mass differences, between any matter and its antimatter partner, should be zero

  12. Golden Jubilee photos: Gathering Antimatter

    CERN Multimedia

    2004-01-01

    One day, antimatter might take people where no one has gone before, but it isn't science fiction. Protons are easily obtainable by stripping electrons from hydrogen atoms, but their antimatter counterparts, the antiprotons, have to be created artificially at accelerators. Roughly one antiproton can be produced from around a million protons bombarding a target at 26 GeV. In 1978, when CERN decided to take the unprecedented step of turning the SPS accelerator into a proton-antiproton collider, it had to deal with the scarcity, and had to concentrate the beam until it was intense enough for the experiment. Antiprotons are produced with a wide range of angles and energy, so before they can be used in an accelerator they have to be captured and 'cooled', reducing the beam dimensions by many orders of magnitude. This was the job of the Antiproton Accumulator (AA), completed in 1980 and shown here before it disappeared from view under concrete shielding. It followed the pioneering Initial Cooling Experiment (ICE) i...

  13. Detection of irradiated cheese and exotic fruits by a simple routine control method

    International Nuclear Information System (INIS)

    Spiegelberg, A.; Schulzki, G.; Helle, N.; Boegl, K.W.; Schreiber, G.A.

    1993-01-01

    The results demonstrate very clearly that Florisil chromatography is a suitable routine method to detect irradiation treatment in Camembert, mango seeds and avocado flesh. Inspite of excluding 1-14:1 as marker for irradiation treatment on account of fat attendant flavour compounds in fruits, an unequivocal revelation of irradiated samples was possible because the most important radiation-induced hydrocarbons 1,7-26:2 and 8-14:1 (arising from oleic acid) could be clearly detected in both fruits. In addition, high amounts of 1-16:1 from stearic acid are present in irradiated mango and 6,9-17:2 from linoleic acid in avocado. (orig.)

  14. Exotic Physics

    OpenAIRE

    Sigamani, Michael

    2016-01-01

    A selection of results for searches for exotic physics at the LHC are presented. These include a search for massive resonances, dark matter with a high energy jet in association with large missing transverse momentum, long-lived neutral particles, and narrow dijet resonances. The results are based on 20/fb of LHC proton-proton collisions at sqrt(s) = 8 TeV taken with the CMS detector.

  15. Exotic charmonium

    Energy Technology Data Exchange (ETDEWEB)

    Pakhlova, Galina V; Pakhlov, Pavel N [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation); Eidel' man, Semen I [Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2010-06-07

    The most significant results on the spectroscopy, production, and decay of charmonium and charmonium-like states are reviewed. The surprise-filled physics of charmonium is currently attracting great experimental and theoretical attention. Unexpected properties exhibited by numerous discovered states fail to be explained by the theory, which instead suggests the existence in the spectra of charmonium-like particles of exotic systems different from usual bound states. (reviews of topical problems)

  16. MASS-SAT: Matter-antimatter space spectrometer on satellite

    CERN Document Server

    Basini, G; Massimo Brancaccio, F; Ricci, M; Bocciolini, M; Spillantini, P; Wang, Y F; Bongiorno, F; de Pascale, M P; Morselli, A; Picozza, P; de Marzo, C; Erriquez, O; Barbiellini, G; Vacchi, A; Galeotti, P; Ballocchi, G; Simon, M; Carlson, P; Goret, P; Golden, R L

    The MASS-SAT Experiment (Matter-Antimatter Space Spectrometer on SATellite) presented here is conceived to search for an experimental answer to many open problems related to both Astrophysics and Physics, through the detection of positrons, antiprotons, nuclei and, overall, antinuclei if they exist. Among these problems there are the hypothesized presence of antigalaxies in the Universe (the matter-antimatter symmetry problem), the existence of black holes as possible antiproton sources (the Hawking effect), the existence of photinos as antiproton sources (related to the dark-matter problem), the understanding of the mechanism of cosmic-ray acceleration in the interstellar medium, the determination of the relative abundancies of isotopes in cosmic rays and many others. The choice of an orbit expecially appropriate for that (geostationary or polar orbit) as well as the choice of an apparatus composed only of solid-state detectors and permanent magnets (no gas and no liquid helium on board, avoiding complexity ...

  17. Matter and antimatter in the universe

    International Nuclear Information System (INIS)

    Canetti, Laurent; Shaposhnikov, Mikhail; Drewes, Marco

    2012-01-01

    We review observational evidence for a matter–antimatter asymmetry in the early universe, which leads to the remnant matter density we observe today. We also discuss bounds on the presence of antimatter in the present-day universe, including the possibility of a large lepton asymmetry in the cosmic neutrino background. We briefly review the theoretical framework within which baryogenesis, the dynamical generation of a matter–antimatter asymmetry, can occur. As an example, we discuss a testable minimal particle physics model that simultaneously explains the baryon asymmetry of the universe, neutrino oscillations and dark matter. (paper)

  18. Theoretical aspects of antimatter and gravity.

    Science.gov (United States)

    Blas, Diego

    2018-03-28

    In this short contribution, I review the physical case of studying the gravitational properties of antimatter from a theoretical perspective. I first discuss which elements are desirable for any theory where the long-range interactions between matter and antimatter differ from those of matter with itself. Afterwards I describe the standard way to hide the effects of new forces in matter-matter interactions which still allows one to generate ponderable matter-antimatter interactions. Finally, I comment on some recent ideas and propose some possible future directions.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).

  19. Search for antimatter in primary cosmic rays.

    Science.gov (United States)

    Buffington, A.; Smith, L. H.; Smoot, G. F.; Alvarez, L. W.; Wahlig, M. A.

    1972-01-01

    Data from two flights of a new superconducting magnetic spectrometer are reported. This instrument was capable of a direct matter-antimatter separation in the cosmic rays. Antimatter events would appear in the spectrometer as trajectories which curve in the opposite direction to common matter, because of their negative charge. A brief description of the equipment and of the characteristics of the instrument is presented, along with the data processing techniques used. A new upper limit on the amount of antimatter in primary cosmic rays has been established. The limits are considerably lower than those for any previous experiment.

  20. Antimatter

    International Nuclear Information System (INIS)

    Kalmus, P.I.P.

    1990-01-01

    The two broad aims of particle physics, to study the ultimate constituents of matter: to find the smallest building blocks out of which we and the rest of the universe are made, and to study the nature of the forces through which these particles interact are discussed. In the early 1930s scientists had a relatively simple picture of elementary particles. Nuclei consisted of clusters of positively charged protons and uncharged neutrons having dimensions of around 10 -15 m. The nucleus was surrounded by a cloud of orbiting electrons, equal in number to the protons, to make an atom whose dimensions were around 10 -10 m. In addition the photon, the packet or quantum of light, was recognised as having particle-like properties. The idea that there might be antiparticles came not from experiment but from theoretical reasoning. The reasoning and the experiments which confirmed the theories put forward over the next decades are recounted. These culminated in the experiments at CERN in 1982 and 1983 to discover the W and Z particles. (author)

  1. Using antimatter in modern medicine

    OpenAIRE

    Machado, A.C.B.; Pleitez, V.; Tijero, M.C.

    2006-01-01

    Neste artigo, fazemos uma breve exposição de como um dos conceitos fundamentais da física moderna, a existência de antimatéria, tem aplicação na medicina, na chamada tomografia por emissão de pósitrons (PET na sigla em inglês). Ela consiste na produção de imagens tomográficas digitais do organismo que são obtidas pela detecção da radiação produzida na aniquilação do pósitron com o elétron. In this paper we discuss how the existence of antimatter, one of the main concepts of modern physics,...

  2. Matter-antimatter puzzle: LHCb improves resolution

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In 2010, Fermilab’s DØ experiment reported a one percent difference in the properties of matter and antimatter in decays of B mesons (that is, particles containing beauty quarks) to muons. Saturday, at the ICHEP Conference in Melbourne, the LHCb experiment at CERN presents new results, which do not confirm this anomaly and are consistent with the Standard Model predictions. The same experiment has also presented the first evidence of asymmetry arising in other decays of the same family of mesons. The image becomes clearer but the puzzle has not yet been solved.   Inside the LHCb detector. The matter-antimatter imbalance in the Universe is a very hot topic in physics. The conundrum arises from the fact that, although objects made of antimatter are not observed in the Universe, theory predicts that matter and antimatter be created equally in particle interactions and in the Big Bang. Only small deviations from this very symmetric behaviour are incorporated in the theory. E...

  3. More Sci- than Fi, Physicists Create Antimatter

    CERN Multimedia

    Overbye, Dennis

    2002-01-01

    Physicists working in Europe announced yesterday that they had passed through nature's looking glass and had created atoms made of antimatter, or antiatoms, opening up the possibility of experiments in a realm once reserved for science fiction writers (5 pages)

  4. Taiwan university joins search for antimatter

    CERN Multimedia

    Chiu, Y

    2002-01-01

    National Cheng Kung University announced yesterday that it will be joining the Alpha Magnetic Spectrometer, an international scientific research project aimed at looking for antimatter in space (1 page).

  5. The antimatter. Press breakfast 23 may 2000

    International Nuclear Information System (INIS)

    Spiro, M.; Dejardin, M.; Debu, P.; Aleksan, R.

    2000-05-01

    This document brings together the subjects discussed during the Press breakfast of 23 may 2000 on the antimatter, with scientists of the CEA and the CNRS. It presents the research programs and the experiments on the antimatter and the symmetry violation: the CP LEAR and the NA48 experiments at CERN, the BaBar detector at SLAC, the fundamental research at the CEA and the impacts on the energy policy. It provides also links for more detailed inquiries. (A.L.B.)

  6. Avatars of a Matter-Antimatter Universe

    CERN Document Server

    De Rújula, Alvaro

    1997-01-01

    An elegantly symmetric Universe, consisting of large islands of matter and antimatter, is by no means obviously out of the question. I review the observations that lead to the usual prejudice that the Universe contains only matter. I discuss recent work inferring that this prejudice can be converted into an inescapable conclusion. I argue that our theoretical conviction should not discourage direct searches for antimatter in cosmic rays.

  7. Systematic review of surveillance systems and methods for early detection of exotic, new and re-emerging diseases in animal populations.

    Science.gov (United States)

    Rodríguez-Prieto, V; Vicente-Rubiano, M; Sánchez-Matamoros, A; Rubio-Guerri, C; Melero, M; Martínez-López, B; Martínez-Avilés, M; Hoinville, L; Vergne, T; Comin, A; Schauer, B; Dórea, F; Pfeiffer, D U; Sánchez-Vizcaíno, J M

    2015-07-01

    In this globalized world, the spread of new, exotic and re-emerging diseases has become one of the most important threats to animal production and public health. This systematic review analyses conventional and novel early detection methods applied to surveillance. In all, 125 scientific documents were considered for this study. Exotic (n = 49) and re-emerging (n = 27) diseases constituted the most frequently represented health threats. In addition, the majority of studies were related to zoonoses (n = 66). The approaches found in the review could be divided in surveillance modalities, both active (n = 23) and passive (n = 5); and tools and methodologies that support surveillance activities (n = 57). Combinations of surveillance modalities and tools (n = 40) were also found. Risk-based approaches were very common (n = 60), especially in the papers describing tools and methodologies (n = 50). The main applications, benefits and limitations of each approach were extracted from the papers. This information will be very useful for informing the development of tools to facilitate the design of cost-effective surveillance strategies. Thus, the current literature review provides key information about the advantages, disadvantages, limitations and potential application of methodologies for the early detection of new, exotic and re-emerging diseases.

  8. Stability of matter-antimatter molecules

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin; Lee, Teck-Ghee

    2011-01-01

    Highlights: → We examine stability of matter-antimatter molecules with four constituents. → The binding of matter-antimatter molecules is a common phenomenon. → Molecules have bound states if ratio of constituent masses greater than ∼4. → We evaluate molecular binding energies and annihilation lifetimes. - Abstract: We examine the stability of matter-antimatter molecules by reducing the four-body problem into a simpler two-body problem with residual interactions. We find that matter-antimatter molecules with constituents (m 1 + ,m 2 - ,m-bar 2 + ,m-bar 1 - ) possess bound states if their constituent mass ratio m 1 /m 2 is greater than about 4. This stability condition suggests that the binding of matter-antimatter molecules is a rather common phenomenon. We evaluate the binding energies and eigenstates of matter-antimatter molecules (μ + e - )-(e + μ - ),(π + e - )-(e + π - ),(K + e - )-(e + K - ),(pe - )-(e + p-bar),(pμ - )-(μ + p-bar), and (K + μ - ) - (μ + K - ), which satisfy the stability condition. We estimate the molecular annihilation lifetimes in their s states.

  9. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework

    Science.gov (United States)

    Manuel Colunga-Garcia; Roger A. Magarey; Robert A. Haack; Stuart H. Gage; Jiaquo. Qi

    2010-01-01

    Urban areas are hubs of international transport and therefore are major gateways for exotic pests. Applying an urban gradient to analyze this pathway could provide insight into the ecological processes involved in human-mediated invasions. We defined an urban gradient for agricultural and forest ecosystems in the contiguous United States to (1) assess whether...

  10. Studying antimatter with laser precision

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The next generation of antihydrogen trapping devices, ALPHA-2, is moving into CERN’s Antiproton Decelerator (AD) hall. This brand-new experiment will allow the ALPHA collaboration to conduct studies of antimatter with greater precision. ALPHA spokesperson Jeffrey Hangst was recently awarded a grant by the Carlsberg Foundation, which will be used to purchase equipment for the new experiment.   A 3-D view of the new magnet (in blue) and cryostat. The red lines show the paths of laser beams. LHC-type current leads for the superconducting magnets are visible on the top-right of the image. The ALPHA collaboration has been working to trap and study antihydrogen since 2006. Using antiprotons provided by CERN’s Antiproton Decelerator (AD), ALPHA was the first experiment to trap antihydrogen and to hold it long enough to study its properties. “The new ALPHA-2 experiment will use integrated lasers to probe the trapped antihydrogen,” explains Jeffrey Hangst, ALP...

  11. Possible measurements of the gravitational acceleration with neutral antimatter

    International Nuclear Information System (INIS)

    Beverini, N.; Torelli, G.; Lagomarsino, V.; Manuzio, G.; Scuri, F.

    1989-01-01

    The interest in measuring the gravitational acceleration using neutral antimatter is discussed as well as the advantages compared with using charged antimatter, and a few possible experimental schemes are briefly discussed. (orig.)

  12. The Mystery of the Missing Antimatter

    CERN Document Server

    Quinn, Helen R

    2008-01-01

    In the first fractions of a second after the Big Bang lingers a question at the heart of our very existence: why does the universe contain matter but almost no antimatter? The laws of physics tell us that equal amounts of matter and antimatter were produced in the early universe--but then, something odd happened. Matter won out over antimatter; had it not, the universe today would be dark and barren. But how and when did this occur? Helen Quinn and Yossi Nir guide readers into the very heart of this mystery--and along the way offer an exhilarating grand tour of cutting-edge physics. They explain both the history of antimatter and recent advances in particle physics and cosmology. And they discuss the enormous, high-precision experiments that particle physicists are undertaking to test the laws of physics at their most fundamental levels--and how their results reveal tantalizing new possibilities for solving this puzzle at the heart of the cosmos. The Mystery of the Missing Antimatter is at once a history of i...

  13. What's the matter with Antimatter? Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    Antimatter may be the stuff of science fiction, but to physicists it poses a serious question. Why is there not more of it around? At the Big Bang, matter and antimatter should have been created in equal amounts, yet today we seem to live in a Universe entirely made of matter. So where has all the antimatter gone?

  14. Vast antimatter regions and SUSY-condensate baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.; Panayotova, M.; Valchanov, T.

    2002-10-01

    Natural and abundant creation of antimatter in the Universe in a SUSY baryogenesis model is described. The scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales, separated from the matter ones by baryonically empty voids. Observational constraints on such antimatter regions are discussed. (author)

  15. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  16. Does antimatter fall with the same acceleration as ordinary matter?

    International Nuclear Information System (INIS)

    Adelberger, E.G.; Heckel, B.R.; Stubbs, C.W.; Su, Y.

    1991-01-01

    Equivalence-principle experiments with ordinary matter probe the gravivector acceleration of antimatter in the same way as do direct measurements of antimatter in free fall and set stringent upper limits on the gravivector acceleration of antimatter predicted by certain quantum-gravity models

  17. Antimatter, a new frontier of science

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1988-09-01

    The interest in antimatter arises because antimatter offers such high potential, and it also happens to be the most fascinating of materials. In the discussions that follow, considerations will be made on the potential utilization of antimatter in various applications including: Alternate energy source for rocket propulsion and space missions; Pion-induced fission; Muon-catalyzed cold fusion; and Medicine: in treatment of cancer, and for superior radiographs. Comments also are provided that presently discount antiproton-proton annihilation as a possible source of negative muons in hypothetical hybrid fusion-fission reactors, but this could change in the future. Reasons are given as to why further exploratory work should be undertaken at this time. 42 refs., 7 figs., 3 tabs

  18. Antimatter questions the big-bang theory

    International Nuclear Information System (INIS)

    Daninos, F.

    2005-01-01

    A few moments after the big-bang matter an antimatter existed in the same quantities. Today the universe seems to be exclusively composed of matter. Nature prefers matter to antimatter but scientists do not know why. Experimental results from Babar and Belle experiments have confirmed the existence of CP violation in quark systems. This article draws the story of the quest for symmetry violation since the discovery of P violation in cobalt decay in the end of the fifties. Our understanding of CP violation is by far insufficient for explaining the matter-antimatter imbalance and may be we will have to admit that CP violation might concern other systems like neutrinos or super-symmetric particles. (A.C.)

  19. The antimatter goes back in the time

    International Nuclear Information System (INIS)

    Larousserie, D.; Loubiere, P.; Mathieu, L.

    1999-01-01

    This paper presents general aspects of the antimatter that offers new possibilities in cosmology and astrophysics but also promotes in medicine the medical imagery for the cancer diagnostic (the antiproton therapy). Different aspects of the antimatter are considered. It deals first with the instrumentation: the AD (Antiproton Decelerator) of the CERN, braking ring that produces 10 millions of antiproton per hours. Ten question-answer about the subject are abstracted to better understand this theory. It presents the AMS (Alpha Magnetic Spectrometer), that analysed ten millions particles (anti-electrons and antiprotons) during its fly with Discovery. Antimatter, as the matter mirror, don't respect the symmetry laws. The authors explain these symmetry violations. (A.L.B.)

  20. Antimatter Production at a Potential Boundary

    Science.gov (United States)

    LaPointe, Michael R.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Current antiproton production techniques rely on high-energy collisions between beam particles and target nuclei to produce particle and antiparticle pairs, but inherently low production and capture efficiencies render these techniques impractical for the cost-effective production of antimatter for space propulsion and other commercial applications. Based on Dirac's theory of the vacuum field, a new antimatter production concept is proposed in which particle-antiparticle pairs are created at the boundary of a steep potential step formed by the suppression of the local vacuum fields. Current antimatter production techniques are reviewed, followed by a description of Dirac's relativistic quantum theory of the vacuum state and corresponding solutions for particle tunneling and reflection from a potential barrier. The use of the Casimir effect to suppress local vacuum fields is presented as a possible technique for generating the sharp potential gradients required for particle-antiparticle pair creation.

  1. Some examples of propulsion applications using antimatter

    International Nuclear Information System (INIS)

    Augenstein, B.W.

    1985-07-01

    Macroapplications of antimatter and annihilation energies to various uses beyond very high energy physics, which presupposes the solution of basic production and storage problems is discussed. Propulsion applications in identifiable missions which cannot be achieved conventionally are discussed. The use of annihilation energies provides ways to access effective exhaust velocities from 10 Km/sec to a major fraction of light velocity. The promise of antimatter is illustrated by considering a mix ratio r = amount of normal matter/amount of antimatter and calculating the effective attained temperature of the mixture as approx. 2 GeV/r. Ensuring that this mixing produces high temperatures and that the energy does not largely escape from the mix is the art of utilizing annihilation energies. The immediate product of nucleon-antinucleon annihilations is almost wholly pions. The subsequent reaction trains and the ultimate forms of the end products, their spectral attributes, the decay or capture mechanisms, are documented

  2. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  3. High density storage of antimatter for space propulsion applications

    International Nuclear Information System (INIS)

    Smith, Gerald A.; Coughlin, Dan P.

    2001-01-01

    The specific energy of antimatter is 180 MJ/μg, making it the largest specific energy density material known to humankind. Three challenges remain to be solved for space propulsion applications: first, sufficient amounts must be made to permit missions into deep space; second, efficient methods must be found to turn the antimatter into thrust and Isp; and third, the antimatter must be stored for long periods of time. This paper addresses the third issue. We discuss conventional (electromagnetic) methods of confining antimatter, as well as unconventional concepts, including the use of quantum effects in materials and antimatter chemistry

  4. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Santilli, Ruggero Maria

    1997-01-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out

  5. Does antimatter emit a new light?

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Ruggero Maria [Instituto per la Ricerca di Base (Italy)

    1997-08-15

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out.

  6. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1996-01-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particle sand antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus by passing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out. 16 refs

  7. Antimatter and 20th Century Science

    Science.gov (United States)

    Williams, Gary

    2005-01-01

    This article gives an outline of the history of antimatter from the concept first introduced in 1898 up to the present day and is intended to complement the article "Antihydrogen on Tap" on page 229 [of this issue of "Physics Education"]. It is hoped that it will provide enough historical background material along with interesting snippets of…

  8. Antimatter/HiPAT Support Services

    Science.gov (United States)

    Lewis, Raymond A.

    2001-01-01

    Techniques were developed for trapping normal matter in the High Performance Antiproton Trap (HiPAT). Situations encountered included discharge phenomena, charge exchange and radial diffusion processes. It is important to identify these problems, since they will also limit the performance in trapping antimatter next year.

  9. Development of high-capacity antimatter storage

    International Nuclear Information System (INIS)

    Howe, Steven D.; Smith, Gerald A.

    2000-01-01

    Space is vast. Over the next few decades, humanity will strive to send probes farther and farther into space to establish long baselines for interferometry, to visit the Kuiper Belt, to identify the heliopause, or to map the Oort cloud. In order to solve many of the mysteries of the universe or to explore the solar system and beyond, one single technology must be developed--high performance propulsion. In essence, future missions to deep space will require specific impulses between 50,000 and 200,000 seconds and energy densities greater than 10 14 j/kg in order to accomplish the mission within the career lifetime of an individual, 40 years. Only two technologies available to mankind offer such performance--fusion and antimatter. Currently envisioned fusion systems are too massive. Alternatively, because of the high energy density, antimatter powered systems may be relatively compact. The single key technology that is required to enable the revolutionary concept of antimatter propulsion is safe, reliable, high-density storage. Under a grant from the NASA Institute of Advanced Concepts, we have identified two potential mechanisms that may enable high capacity antimatter storage systems to be built. We will describe planned experiments to verify the concepts. Development of a system capable of storing megajoules per gram will allow highly instrumented platforms to make fast missions to great distances. Such a development will open the universe to humanity

  10. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  11. Antimatter: What is and where did it go?

    International Nuclear Information System (INIS)

    Roodman, Aaron

    2008-01-01

    In this public lecture we will explore the mystery of antimatter: Where did it go? Why is the universe made up of only matter, with no observable antimatter? And why does the universe have any matter left in it anyway? The SLAC 'B'-Factory was built to answer these questions. Over the last decade, almost a billion 'B'-mesons were created and studied at the B-Factory to search for subtle differences between matter and antimatter, differences that lie at the heart of the antimatter mystery. We will explain the matter-antimatter discoveries made at the B-Factory, and their connection to this year's Nobel prize in physics. It does not matter if you have no prior knowledge of Antimatter; just bring your curiosity.

  12. CPT symmetry and antimatter gravity in general relativity

    Science.gov (United States)

    Villata, M.

    2011-04-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  13. Antimatter: What is and where did it go?

    Energy Technology Data Exchange (ETDEWEB)

    Roodman, Aaron (Stanford University)

    2008-10-28

    In this public lecture we will explore the mystery of antimatter: Where did it go? Why is the universe made up of only matter, with no observable antimatter? And why does the universe have any matter left in it anyway? The SLAC 'B'-Factory was built to answer these questions. Over the last decade, almost a billion 'B'-mesons were created and studied at the B-Factory to search for subtle differences between matter and antimatter, differences that lie at the heart of the antimatter mystery. We will explain the matter-antimatter discoveries made at the B-Factory, and their connection to this year's Nobel prize in physics. It does not matter if you have no prior knowledge of Antimatter; just bring your curiosity.

  14. Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion

    Science.gov (United States)

    2005-07-13

    FUSION REACTIONS AND MATTER- ANTIMATTER ANNIHILATION FOR SPACE PROPULSION Claude DEUTSCH LPGP (UMR-CNRS 8578), Bât. 210, UPS, 91405 Orsay...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE šFusion Reactions And Matter- Antimatter Annihilation For Space Propulsion 5a...which is possible with successful MCF or ICF. Appropriate vessel designs will be presented for fusion as well as for antimatter propulsion. In

  15. Gravitational mass of relativistic matter and antimatter

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  16. Gravitational mass of relativistic matter and antimatter

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-12-01

    Full Text Available The universality of free fall, the weak equivalence principle (WEP, is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits −65antimatter by Earth. Here we demonstrate an indirect bound 0.96

  17. Observation of the Antimatter Nuclei in Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Yoo, I.-K.

    2013-01-01

    Recently antimatter hyper-triton nuclei ( 3 Λ¯ H ¯) and antimatter helium nuclei ( 4 2 He ¯ ) are discovered with the Solenoidal Tracker At RHIC detector in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) (STAR Collaboration in Science 328(5974):58-62, 2010; STAR Collaboration in Nature 473:353-356, 2011). In this presentation, discoveries of antimatter particle are historically scanned and the recent observations at RHIC are reported in details as well as potential possibilities of discovery of antimatter nuclei at ALICE. (author)

  18. Energy exotic options

    International Nuclear Information System (INIS)

    Kaminski, V.; Gibner, S.; Pinnamaneni, K.

    1999-01-01

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  19. Heavy weak bosons, cosmic antimatter and DUMAND. 2: Looking for cosmic antimatter with DUMAND

    Science.gov (United States)

    Stecker, F. W.; Brown, R. W.

    1980-01-01

    Discussion of various means for using high energy neutrino astronomy to directly test for the existence of cosmic antimatter on a significant cosmological scale is presented. Studies of the ultrahigh energy diffuse neutrino background using acoustic detector and high mass Glashow resonances are reported. Point source studies are also discussed.

  20. The Matter-Antimatter Asymmetry of the Universe

    Science.gov (United States)

    Stecker, F. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    I will give here an overview of the present observational and theoretical situation regarding the question of the matter-antimatter asymmetry of the universe and the related question of the existence of antimatter on a cosmological scale. I will also give a simple discussion of the role of CP (charge conjugation parity) violation in this subject.

  1. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    Science.gov (United States)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  2. Matter-antimatter asymmetry - aspects at low energy

    NARCIS (Netherlands)

    Willmann, Lorenz; Jungmann, Klaus

    2015-01-01

    The apparent dominance of matter over antimatter in our universe is an obvious and puzzling fact which cannot be adequately explained in present physical frameworks that assume matter-antimatter symmetry at the big bang. However, our present knowledge of starting conditions and of known sources of

  3. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  4. Measurement of gravitational acceleration of antimatter

    International Nuclear Information System (INIS)

    Rouhani, S.

    1989-12-01

    The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs

  5. Black Holes and Gravitational Properties of Antimatter

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  6. Origin of the matter-antimatter asymmetry

    International Nuclear Information System (INIS)

    Dine, Michael; Kusenko, Alexander

    2004-01-01

    Although the origin of matter-antimatter asymmetry remains unknown, continuing advances in theory and improved experimental limits have ruled out some scenarios for baryogenesis, for example, sphaleron baryogenesis at the electroweak phase transition in the Standard Model. At the same time, the success of cosmological inflation and the prospects for discovering supersymmetry at the Large Hadron Collider have put some other models in sharper focus. We review the current state of our understanding of baryogenesis with emphasis on those scenarios that we consider most plausible

  7. Experiments with low-energy antimatter

    Directory of Open Access Journals (Sweden)

    Consolati G.

    2015-01-01

    Full Text Available Investigations on antimatter allow us to shed light on fundamental issues of contemporary physics. The only antiatom presently available, antihydrogen, is produced making use of the Antiproton Decelerator (AD facility at CERN. International collaborations currently on the floor (ALPHA, ASACUSA and ATRAP have succeeded in producing antihydrogen and are now involved in its confinement and manipulation. The AEGIS experiment is currently completing the commissioning of the apparatus which will generate and manipulate antiatoms. The present paper, after a report on the main results achieved with antihydrogen physics, gives an overview of the AEGIS experiment, describes its current status and discusses its first target.

  8. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  9. Is the Universe matter-antimatter symmetric

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-09-01

    According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation

  10. Problems of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    This paper outlines the problems of the quasi-steady matter-antimatter boundary layers discussed in Klein-Alfven's cosmological theory, and a crude model of the corresponding ambiplasma balance is presented: (i) at interstellar particle densities, no well-defined boundary layer can exist in presence of neutral gas, nor can such a layer be sustained in an unmagnetized fully ionized ambiplasma. (ii) Within the limits of applicability of the present model, sharply defined boundary layers are under certain conditions found to exist in a magnetized ambiplasma. Thus, at beta values less than unity, a steep pressure drop of the low-energy components of matter and antimatter can be balanced by a magnetic field and the electric currents in the ambiplasma. (iii) The boundary layer thickness is of the order of 2x 0 approximately 10/BT 0 sup(1/4) meters, where B is the magnetic field strength in MKS units and T 0 the characteristic temperature of the low-energy components in the layer. (Auth.)

  11. Traps for antimatter and antihydrogen production

    International Nuclear Information System (INIS)

    Holzscheiter, M.H.

    1994-01-01

    Even though positrons have been captured and stored in ion traps for precision measurements, the recent trapping and cooling of antiprotons may be considered as the beginning of a new era in antimatter research. For the first time all the ingredients to produce the first atom of the antimatter world, the antihydrogen atom, are at hand, and several groups have entered an active discussion on the feasibility of producing antihydrogen as well as on the possibility to perform precision tests on CPT and gravity. At the same time, the trapping of reasonable large numbers of antiprotons has opened up the way for a variety of exciting physics with ultra-low energy antiprotons, ranging from atomic physics issues to nuclear physics and medical applications. I will describe the current status of the work on trapping antiprotons and positrons, discuss possible physics applications of this technique, and describe the two most promising routes to produce antihydrogen for precision spectroscopy. Towards the end a few comments on storing the produced antihydrogen and on utilizing antihydrogen for gravity measurements and for CPT tests are given

  12. Measuring gravitational effects on antimatter in space

    Directory of Open Access Journals (Sweden)

    Piacentino Giovanni Maria

    2017-01-01

    Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  13. On exotic fireballs

    International Nuclear Information System (INIS)

    Tati, T.

    1984-01-01

    Exotic fireballs found by Brazil-Japan Collaboration of Chacaltaya Emulsion Chamber Experiment are interpreted in terms of a model of hadronic matter (of which hadrons are made) based on the theory of finite degree of freedom. It is considered in our picture that exotic fireballs reveal the part left undefined in the renormalization theory of quantum field and nonappearance of exotic fireballs (of relatively small mass, i.e. Mini-Centauro and Geminion) in CERN SPS collider experiment is possibly due to the existence of universal time realized by the cutoff of momentum degree of freedom of the field of basic particles. (Author) [pt

  14. Local gamma ray events as tests of the antimatter theory of gamma ray bursts

    International Nuclear Information System (INIS)

    Sofia, S.; Wilson, R.E.

    1976-01-01

    Nearby examples of the antimatter 'chunks' postulated by Sofia and Van Horn to explain the cosmic gamma ray bursts may produce detectable gamma ray events when struck by solar system meteoroids. These events would have a much shorter time scale and higher energy spectrum than the bursts already observed. In order to have a reasonably high event rate, the local meteoroid population must extend to a distance from the Sun of the order of 0.1 pc, but the required distance could become much lower if the instrumental threshold is improved. The expected gamma ray flux for interaction of the antimatter bodies with the solar wind is also examined, and found to be far below present instrumental capabilities. (Auth.)

  15. Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris

    Science.gov (United States)

    Tenenbaum, E. D.; Ziurys, L. M.

    2010-03-01

    A new interstellar molecule, AlOH, has been detected toward the envelope of VY Canis Majoris (VY CMa), an oxygen-rich red supergiant. Three rotational transitions of AlOH were observed using the facilities of the Arizona Radio Observatory (ARO). The J = 9 → 8 and J = 7 → 6 lines at 1 mm were measured with the ARO Submillimeter Telescope, while the J = 5 → 4 transition at 2 mm was observed with the ARO 12 m antenna on Kitt Peak. The AlOH spectra exhibit quite narrow line widths of 16-23 km s-1, as found for NaCl in this source, indicating that the emission arises from within the dust acceleration zone of the central circumstellar outflow. From a radiative transfer analysis, the abundance of AlOH relative to H2 was found to be ~1 × 10-7 for a source size of 0.26'' or 22 R* . In contrast, AlCl was not detected with f VY CMa is ~17. Therefore, AlOH appears to be the dominant gas-phase molecular carrier of aluminum in this oxygen-rich shell. Local thermodynamic equilibrium calculations predict that the monohydroxides should be the major carriers of Al, Ca, and Mg in O-rich envelopes, as opposed to the oxides or halides. The apparent predominance of aluminum-bearing molecules in VY CMa may reflect proton addition processes in H-shell burning.

  16. Investigation of matter-antimatter interaction for possible propulsion applications

    Science.gov (United States)

    Morgan, D. L., Jr.

    1974-01-01

    Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.

  17. Gamma ray astronomy and search for antimatter in the universe

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1989-01-01

    Gamma ray astronomy provides a powerful tool for searching antimatter in the universe; it probably provides the only means to determine, if the universe has baryon symmetry. Presently existing gamma-ray observations can be interpreted without postulating the existence of antimatter. However, the measurements are not precise enough to definitely exclude the possibility of its existence. The search for antimatter belongs to one of the main scientific objectives of the Gamma Ray Observatory GRO of NASA, which will be launched in 1990 by the Space Shuttle. (orig.)

  18. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan.

    Science.gov (United States)

    Andoh, Masako; Sakata, Akiko; Takano, Ai; Kawabata, Hiroki; Fujita, Hiromi; Une, Yumi; Goka, Koichi; Kishimoto, Toshio; Ando, Shuji

    2015-01-01

    One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the presence of Rickettsia and Ehrlichia spp. genes in ticks associated with reptiles and amphibians originating from outside Japan. Ninety-three ticks representing nine tick species (genera Amblyomma and Hyalomma) were isolated from at least 28 animals spanning 10 species and originating from 12 countries (Ghana, Jordan, Madagascar, Panama, Russia, Sri Lanka, Sudan, Suriname, Tanzania, Togo, Uzbekistan, and Zambia). None of the nine tick species are indigenous in Japan. The genes encoding the common rickettsial 17-kDa antigen, citrate synthase (gltA), and outer membrane protein A (ompA) were positively detected in 45.2% (42/93), 40.9% (38/93), and 23.7% (22/93) of the ticks, respectively, by polymerase chain reaction (PCR). The genes encoding ehrlichial heat shock protein (groEL) and major outer membrane protein (omp-1) were PCR-positive in 7.5% (7/93) and 2.2% (2/93) of the ticks, respectively. The p44 gene, which encodes the Anaplasma outer membrane protein, was not detected. Phylogenetic analysis showed that several of the rickettsial and ehrlichial sequences isolated in this study were highly similar to human pathogen genes, including agents not previously detected in Japan. These data demonstrate the global transportation of pathogenic Rickettsia and Ehrlichia through reptile- and amphibian-associated ticks. These imported animals have potential to transfer pathogens into human life. These results highlight the need to control the international transportation of known and

  19. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan.

    Directory of Open Access Journals (Sweden)

    Masako Andoh

    Full Text Available One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the presence of Rickettsia and Ehrlichia spp. genes in ticks associated with reptiles and amphibians originating from outside Japan. Ninety-three ticks representing nine tick species (genera Amblyomma and Hyalomma were isolated from at least 28 animals spanning 10 species and originating from 12 countries (Ghana, Jordan, Madagascar, Panama, Russia, Sri Lanka, Sudan, Suriname, Tanzania, Togo, Uzbekistan, and Zambia. None of the nine tick species are indigenous in Japan. The genes encoding the common rickettsial 17-kDa antigen, citrate synthase (gltA, and outer membrane protein A (ompA were positively detected in 45.2% (42/93, 40.9% (38/93, and 23.7% (22/93 of the ticks, respectively, by polymerase chain reaction (PCR. The genes encoding ehrlichial heat shock protein (groEL and major outer membrane protein (omp-1 were PCR-positive in 7.5% (7/93 and 2.2% (2/93 of the ticks, respectively. The p44 gene, which encodes the Anaplasma outer membrane protein, was not detected. Phylogenetic analysis showed that several of the rickettsial and ehrlichial sequences isolated in this study were highly similar to human pathogen genes, including agents not previously detected in Japan. These data demonstrate the global transportation of pathogenic Rickettsia and Ehrlichia through reptile- and amphibian-associated ticks. These imported animals have potential to transfer pathogens into human life. These results highlight the need to control the international transportation of known

  20. EXOTIC METAL MOLECULES IN OXYGEN-RICH ENVELOPES: DETECTION OF AlOH (X1Σ+) IN VY CANIS MAJORIS

    International Nuclear Information System (INIS)

    Tenenbaum, E. D.; Ziurys, L. M.

    2010-01-01

    A new interstellar molecule, AlOH, has been detected toward the envelope of VY Canis Majoris (VY CMa), an oxygen-rich red supergiant. Three rotational transitions of AlOH were observed using the facilities of the Arizona Radio Observatory (ARO). The J = 9 → 8 and J = 7 → 6 lines at 1 mm were measured with the ARO Submillimeter Telescope, while the J = 5 → 4 transition at 2 mm was observed with the ARO 12 m antenna on Kitt Peak. The AlOH spectra exhibit quite narrow line widths of 16-23 km s -1 , as found for NaCl in this source, indicating that the emission arises from within the dust acceleration zone of the central circumstellar outflow. From a radiative transfer analysis, the abundance of AlOH relative to H 2 was found to be ∼1 x 10 -7 for a source size of 0.26'' or 22 R * . In contrast, AlCl was not detected with f ≤ 5 x 10 -8 . AlOH is likely formed just beyond the photosphere via thermodynamic equilibrium chemistry and then disappears due to dust condensation. The AlOH/AlO abundance ratio found in VY CMa is ∼17. Therefore, AlOH appears to be the dominant gas-phase molecular carrier of aluminum in this oxygen-rich shell. Local thermodynamic equilibrium calculations predict that the monohydroxides should be the major carriers of Al, Ca, and Mg in O-rich envelopes, as opposed to the oxides or halides. The apparent predominance of aluminum-bearing molecules in VY CMa may reflect proton addition processes in H-shell burning.

  1. Exotic Metal Molecules in Oxygen-Rich Envelopes: Detection of AlOH (X1Σ^+) in VY Canis Majoris

    Science.gov (United States)

    Tenenbaum, E. D.; Ziurys, L. M.

    2010-06-01

    A new interstellar molecule, AlOH, has been detected toward the envelope of VY Canis Majoris, an oxygen-rich red supergiant. Three rotational transitions of AlOH were observed using the facilities of the Arizona Radio Observatory (ARO). The J = 9 → 8 and J = 7 → 6 lines at 1 mm were measured with the ARO Submillimeter Telescope (SMT), while the J = 5 → 4 transition at 2 mm was observed with the ARO 12 m antenna on Kitt Peak. The AlOH spectra exhibit quite narrow line widths, indicating that the emission arises from within the dust acceleration zone of the central circumstellar outflow. From a radiative transfer analysis, the abundance of AlOH relative to H_2 was found to be 1x10-7 for a source size of 0.26'' or 22 R_*. AlOH is likely formed just beyond the photosphere via thermodynamic equilibrium chemistry, and then disappears due to dust condensation. The AlOH/AlO abundance ratio found in VY CMa is ˜17. LTE calculations predict the monohydroxides should be the major carriers of Al, Ca, and Mg in O-rich envelopes, as opposed to the oxides or halides.

  2. The story of antimatter matter's vanished twin

    CERN Document Server

    Borissov, Guennadi

    2018-01-01

    Each elementary particle contained within every known substance has an almost identical twin called its antiparticle. Existing data clearly indicate that equal numbers of particles and antiparticles were initially created soon after the birth of the universe. Despite this, all objects around us, as well as all the stars in all the known galaxies, are made of particles, while antiparticles have almost completely vanished. The reasons behind this disappearance are not yet fully known. Uncovering them will allow us to not only penetrate much deeper into the structure of matter, but also to understand the secret mechanisms that determine the genesis and development of our immense universe. That is why explaining the mystery of the missing antimatter is currently considered to be one of the main tasks of particle physics. This book tells the story of all the achievements in solving the problem of the missing antiparticles including the latest developments in the field. It is written by Prof. Guennadi Borissov, an...

  3. The Matter-Antimatter Concept Revisited

    Directory of Open Access Journals (Sweden)

    Marquet P.

    2010-04-01

    Full Text Available In this paper, we briefly review the theory elaborated by Louis de Broglie who showed that in some circumstances, a particle tunneling through a dispersive refracting material may reverse its velocity with respect to that of its associated wave (phase velocity: this is a consequence of Rayleigh's formula defining the group velocity. Within his Double Solution Theory, de Broglie re-interprets Dirac's aether concept which was an early attempt to describe the matter-antimatter symmetry. In this new approach, de Broglie suggests that the (hidden sub-quantum medium required by his theory be likened to the dispersive and refracting material with identical properties. A Riemannian generalization of this scheme restricted to a space-time section, and formulated within an holonomic frame is here considered. This procedure is shown to be founded and consistent if one refers to the extended formulation of General Relativity (EGR theory, wherein pre-exists a persistent field.

  4. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  5. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  6. Probing antimatter gravity – The AEGIS experiment at CERN

    Directory of Open Access Journals (Sweden)

    Kellerbauer A.

    2016-01-01

    Full Text Available The weak equivalence principle states that the motion of a body in a gravitational field is independent of its structure or composition. This postulate of general relativity has been tested to very high precision with ordinary matter, but no relevant experimental verification with antimatter has ever been carried out. The AEGIS experiment will measure the gravitational acceleration of antihydrogen to ultimately 1% precision. For this purpose, a pulsed horizontal antihydrogen beam with a velocity of several 100 m s−1 will be produced. Its vertical deflection due to gravity will be detected by a setup consisting of material gratings coupled with a position-sensitive detector, operating as a moiré deflectometer or an atom interferometer. The AEGIS experiment is installed at CERN’s Antiproton Decelerator, currently the only facility in the world which produces copious amounts of low-energy antiprotons. The construction of the setup has been going on since 2010 and is nearing completion. A proof-of-principle experiment with antiprotons has demonstrated that the deflection of antiparticles by a few μm due to an external force can be detected. Technological and scientific development pertaining to specific challenges of the experiment, such as antihydrogen formation by positronium charge exchange or the position-sensitive detection of antihydrogen annihilations, is ongoing.

  7. How did matter gain the upper hand over antimatter?

    International Nuclear Information System (INIS)

    Quinn, Helen

    2009-01-01

    Antimatter exists. We routinely make it in laboratories. For every familiar particle type we find a matching antiparticle with opposite charge, but exactly the same mass. For example, a positron with positive charge has the same mass as an electron; an antiproton with negative charge has the same mass as a proton. Antimatter occurs naturally all over the universe wherever high-energy particles collide. The laws of physics for antimatter are very, very similar to those for antimatter--so far we know only one tiny difference in them, a detail of the weak interactions of quarks that earned Makoto Kobayashi and Toshihide Maskawa a share of the 2008 Nobel Prize for Physics. Our understanding of the early Universe also tells us that after inflation ended equal amounts of matter and antimatter were produced. Today there's a lot of matter in the universe, but very little antimatter. This leaves a big question for cosmology. How did matter gain the upper hand over antimatter? It's a question at the root of our existence. Without this excess, there would be no stars, no Earth, and no us. When a particle meets its antiparticle, they annihilate each other in a flash of radiation. This process removed all the antimatter and most of the matter as the universe expanded and cooled. All that's left today is the excess amount of matter when destruction began to dominate over production. To get from equality to inequality for matter and antimatter requires a difference in the laws of physics between them and some special situation where it affects the balance between them. But, when we try to use the tiny difference we know about between quark and antiquark weak interactions to generate the imbalance, it doesn't work. We find a way that it can indeed give a small excess of matter over antimatter, but not nearly enough to give us all the matter we see in our universe. We can patch up the theory by adding unknown particles to it to make a scenario that works. Indeed we can do that in

  8. 2nd International Workshop on Antimatter and Gravity

    CERN Document Server

    Scampoli, P

    2013-01-01

    The purpose of this meeting is to review the experimental and theoretical aspects of the interaction of antimatter with gravity. Tests of the weak equivalence principle with e.g. positronium, muonium and antihydrogen with be discussed. Progress reports on the experiments at the CERN Antiproton Decelerator and on the available future facilities will be presented. A session on the relevance of antimatter with respect to Dark Energy and Dark Matter in the Universe (theory and experiments) is also foreseen.

  9. Charged anti-cluster decay modes of antimatter nuclei

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Gherghescu, R.A.; Greiner, W.

    2015-01-01

    Antimatter may exist in large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. The antimatter character of Dirac’s negative energy states of electrons became clear after discovery in 1932 of the positron by C.D. Anderson. A positron soon finds an electron, undergo annihilation, and produces a pair of 511 keV rays. Antimatter is a material composed of antiparticles which bind with each other, e.g. e"+ and p can form an H atom. Charged antimatter can be confined by a combination of electric and magnetic fields, in a Penning trap. Anti-atoms are difficult to produce; the antihydrogen ( H ) was produced and confined for about 1000 s. The antimatter helium-4 nucleus, "4He, or , is the heaviest observed antinucleus. It was established that every antiparticle has the same mass with its particle counterpart; they differ essentially by the sign of electric charge: m_e_+ = m_e_-, m_p = m_p, m_n = m_n, etc. Also every antinucleus has the same mass or binding energy as its mirror nucleus. We expect that anti-alpha spontaneous emission from an antimatter nucleus will have the same Q-value and half-life as alpha emission from the corresponding mirror nucleus. The same will be true for anti-cluster decay and spontaneous fission of antimatter nuclei. This is the consequence of the invariance of binding energy as well as of the surface and Coulomb energy when passing from matter to antimatter nuclei. (author)

  10. Antimatter in the Direct-Action Theory of Fields

    Directory of Open Access Journals (Sweden)

    Ruth E. Kastner

    2016-01-01

    Full Text Available One of Feynman's greatest contributions to physics was the interpretation of negative energies as antimatter in quantum field theory. A key component of this interpretation is the Feynman propagator, which seeks to describe the behavior of antimatter at the virtual particle level. Ironically, it turns out that one can dispense with the Feynman propagator in a direct-action theory of fields, while still retaining the interpretation of negative energy solutions as antiparticles. Quanta 2016; 5: 12–18.

  11. When clusters collide: constraints on antimatter on the largest scales

    International Nuclear Information System (INIS)

    Steigman, Gary

    2008-01-01

    Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the ∼Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clusters of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 × 10 −9 to −6 , strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be −6 , can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order ∼20 Mpc (M∼5×10 15 M sun )

  12. Charge parity exotic mesons

    International Nuclear Information System (INIS)

    Burden, C.J.

    1998-01-01

    Full text: Evidence for a meson with exotic quantum numbers J PC 1 -+ , the ρ(1405), has been observed at the AGS at Brookhaven and Crystal Barrel at CERN. This meson is exotic to the extent that its quantum numbers are not consistent with the generalised Pauli exclusion principle applied to the naive constituent quark model. In a fully relativistic field theoretic treatment, however, there is nothing in principle to preclude the existence of charge parity exotics. Using our earlier covariant Bethe-Salpeter model of light-quark mesons with no new parameter fitting we demonstrate the existence of a q - q-bar bound state with the quantum numbers of the ρ

  13. The development and performance of the EXAM detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    Coan, T.E.

    1989-01-01

    The design and development of a practical balloon borne instrument capable of detecting heavy (Z approximately equal to -26) antimatter in the cosmic rays are described. Emphasis is placed on describing the essential physics of the EXAM (extragalactic antimatter) instrument's individual detectors that make such a detection possible. In particular, it is shown that the responses from a plastic scintillator, a Cerenkov radiation detector, dielectric track detectors, and proportional drift tube arrays can be used to uniquely determine the speed, charge magnitude, and charge sign of a cosmic ray nucleus. This novel nonmagnetic detection scheme permits the construction of a relatively light weight (approximately 2,000 kg) detector with a large collecting power (approximately 10 sq m sr). The profound cosmological and elementary particle physics implications of the detection of just a single heavy antimatter nucleus are discussed in chapter one, along with arguments that imply that such a detected antinucleus must necessarily be extragalactic in origin. Chapters two through six describe the response of EXAM's individual detectors to the passage of heavily ionizing charged particles. Chapter seven is an overview of the mechanical construction of the entire instrument. Details of the measurement of the light collection efficiency of EXAM's Cerenkov detector and primary scintillator using sea-level muons and how this will be used to assist in the flight data analysis are contained in chapter eight. This chapter also includes a description of the instrument's electronic configuration and its data acquisition system. Finally, there are two appendices summarizing some important mechanical stress calculations that were required to actually build the instrument

  14. On Emergent Physics, "Unparticles" and Exotic "Unmatter" States

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2008-10-01

    Full Text Available Emergent physics refers to the formation and evolution of collective patterns in systems that are nonlinear and out-of-equilibrium. This type of large-scale behavior often develops as a result of simple interactions at the component level and involves a dynamic interplay between order and randomness. On account of its universality, there are credible hints that emergence may play a leading role in the Tera-ElectronVolt (TeV sector of particle physics. Following this path, we examine the possibility of hypothetical high-energy states that have fractional number of quanta per state and consist of arbitrary mixtures of particles and antiparticles. These states are similar to "un-particles", massless fields of non-integral scaling dimensions that were recently conjectured to emerge in the TeV sector of particle physics. They are also linked to "unmatter", exotic clusters of matter and antimatter introduced few years ago in the context of Neutrosophy.

  15. Direct observation limits on antimatter gravitation

    International Nuclear Information System (INIS)

    Fischler, Mark; Lykken, Joe; Roberts, Tom; Fermilab

    2008-01-01

    The proposed Antihydrogen Gravity experiment at Fermilab (P981) will directly measure the gravitational attraction g between antihydrogen and the Earth, with an accuracy of 1% or better. The following key question has been asked by the PAC: Is a possible 1% difference between g and g already ruled out by other evidence? This memo presents the key points of existing evidence, to answer whether such a difference is ruled out (a) on the basis of direct observational evidence; and/or (b) on the basis of indirect evidence, combined with reasoning based on strongly held theoretical assumptions. The bottom line is that there are no direct observations or measurements of gravitational asymmetry which address the antimatter sector. There is evidence which by indirect reasoning can be taken to rule out such a difference, but the analysis needed to draw that conclusion rests on models and assumptions which are in question for other reasons and are thus worth testing. There is no compelling evidence or theoretical reason to rule out such a difference at the 1% level

  16. Academic Training - Studying Anti-Matter

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 24, 25, 26 April from 11:00 to 12:00 - Main Auditorium, bldg. 500 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March Studying Anti-Matter R. LANDUA / DSU Antiparticles are a crucial ingredient of particle physics and cosmology. Almost 80 years after Dirac's bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? When and how were they discovered? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: their production, their use in colliders; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on results and challenges of the '...

  17. The Matter-Antimatter Concept Revisited

    Directory of Open Access Journals (Sweden)

    Marquet P.

    2010-04-01

    Full Text Available In this paper, we briefly review the theory elaborated by Louis de Broglie who showed that in some circumstances, a particle tunneling through a dispersive refracting material may reverse its velocity with respect to that of its associated wave (phase velocity: this is a consequence of Rayleigh’s formula defining the group velocity. Within his “Double Solution Theory”, de Broglie re-interprets Dirac’s aether concept which was an early attempt to describe the matter-antimatter symmetry. In this new approach, de Broglie suggests that the (hidden sub-quantum medium required by his theory be likened to the dispersive and refracting material with identical properties. A Riemannian generalization of this scheme restricted to a space-time section, and formulated within an holonomic frame is here considered. This procedure is shown to be founded and consistent if one refers to the extended formulation of General Relativity (EGR theory, wherein pre-exists a persistent field.

  18. Exotic invasive plants

    Science.gov (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser

    2003-01-01

    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  19. Exotic biological control agents

    NARCIS (Netherlands)

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.

    2016-01-01

    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  20. Glueballs, Hybrids and Exotics

    Science.gov (United States)

    Reyes, M. A.; Moreno, G.

    2006-09-01

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates.

  1. Glueballs, Hybrids and Exotics

    International Nuclear Information System (INIS)

    Reyes, M. A.; Moreno, G.

    2006-01-01

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates

  2. Exotic baryonium exchanges

    International Nuclear Information System (INIS)

    Nicolescu, B.

    1978-05-01

    The prominent effects supposed to be associated with the exchange of exotic baryonium Regge trajectories are reviewed. The experimental presence of all expected effects leads to suggest that the baryonium exchange mechanism is a correct phenomenological picture and that mesons with isospin 2 or 3/2 or with strangeness 2, strongly coupled to the baryon-antibaryon channels, must be observed

  3. Exotic reptile bites.

    Science.gov (United States)

    Kelsey, J; Ehrlich, M; Henderson, S O

    1997-09-01

    Reptiles are a growing part of the exotic pet trade, and reptile bites have been considered innocuous in the emergency medicine literature. Two cases are reported of reptile bites, one from a green iguana and the other from a reticulated python. The treatment concerns associated with reptile bites are discussed.

  4. The antimatter factory is ready for another successful year

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN’s contribution to antimatter research is interspersed with important breakthroughs: from the creation of the very first anti-atoms in 1995 to the production of large quantities in 2002 and the invention in 2010 of the technique that freezes them down to allow precise studies of their properties. This week, antimatter experiments are on the starting blocks for a new run that promises to be just as exciting.   The Antiproton Decelerator (AD). CERN’s Antimatter Decelerator (AD) is a unique antimatter factory that produces low-energy anti-protons for creating anti-atoms. The AD delivers its precious ingredients to several experiments that use them to study antimatter properties from many different angles. The 2011 run is about to start, and the experiments are ready to enter a new data-taking period. Their scientific goals for this year include applying spectroscopy techniques for the first time to probe the inner workings of antihydrogen atoms; evaluating the biological effe...

  5. The need for expanded exploration of matter-antimatter annihilation for propulsion application

    Science.gov (United States)

    Massier, P. F.

    1982-01-01

    The use of matter-antimatter annihilation as a propulsion application for interstellar travel is discussed. The physical basis for the superior energy release in such a system is summarized, and the problems associated with antimatter production, collection and storage are assessed. Advances in devising a workable propulsion system are reported, and the parameters of an antimatter propulsion system are described.

  6. Interchange Instability and Transport in Matter-Antimatter Plasmas

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  7. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  8. Polarization of photons in matter–antimatter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Moskaliuk, S.S. [Bogolyubov Institute for Theoretical Physics, Metrolohichna Street, 14-b, Kyiv-143, Ukraine, UA-03143 e-mail: mss@bitp.kiev.ua (Ukraine)

    2015-03-10

    In this work we demonstrate the possibility of generation of linear polarization of the electromagnetic field (EMF) due to the quantum effects in matter-antimatter annihilation process for anisotropic space of the I type according to Bianchi. We study the dynamics of this process to estimate the degree of polarisation of the EMF in the external gravitational field of the anisotropic Bianchi I model. It has been established that the quantum effects in matter-antimatter annihilation process in the external gravitational field of the anisotropic Bianchi I model provide contribution to the degree of polarisation of the EMF in quadrupole harmonics.

  9. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    Science.gov (United States)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  10. Exotic Black Holes?

    OpenAIRE

    Brans, Carl H.

    1993-01-01

    Exotic smooth manifolds, ${\\bf R^2\\times_\\Theta S^2}$, are constructed and discussed as possible space-time models supporting the usual Kruskal presentation of the vacuum Schwarzschild metric locally, but {\\em not globally}. While having the same topology as the standard Kruskal model, none of these manifolds is diffeomorphic to standard Kruskal, although under certain conditions some global smooth Lorentz-signature metric can be continued from the local Kruskal form. Consequently, it can be ...

  11. Exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.; Yasue, M.

    1991-01-01

    An exotic composite vector boson V is introduced in two dynamical models of composite quarks, leptons, W, and Z. One is based on four-Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ, and V

  12. Clusters and exotic processes

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1975-01-01

    An attempt is made to present some data which may be construed as indicating that perhaps clusters play a role in high energy and exotic pion or kaon interactions with complex (A much greater than 16) nuclei. Also an attempt is made to summarize some very recent experimental work on pion interactions with nuclei which may or may not in the end support a picture in which clusters play an important role. (U.S.)

  13. Val L. Fitch, the CP Violation, and Antimatter

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Val L. Fitch, the CP Violation, and Antimatter Resources ) 'to verify a fundamental tenet of physics, known as CP [charge-parity] symmetry, by showing that two into two pi mesons. Cronin and Fitch had found an example of CP violation. The discovery's

  14. Why is the universe more partial to mater than antimatter?

    CERN Multimedia

    2006-01-01

    "B factory experiments at the Stanford Linear Accelerator (SLAC) in the USA and at the High Energy Accelerator Research Organization (KEK) in Japan have reached a new milestone in the quest to understand the matter-antimatter imbalance in our universe.

  15. The Role of Antimatter in Big-Bang Cosmology

    Science.gov (United States)

    Stecker, Floyd W.

    1974-01-01

    Discusses theories underlying man's conceptions of the universe, including Omnes' repulsive separation mechanism, the turbulence theory of galaxy formation, and the author's idea about gamma ray spectra in cosmological matter-antimatter annihilation. Indicates that the Apollo data provide encouraging evidence by fitting well with his theoretical…

  16. On the random geometry of a symmetric matter antimatter universe

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Goto, M.

    1977-05-01

    A statistical analysis is made of the randon geometry of an early symmetric matter-antimatter universe model. Such a model is shown to determine the total number of the largest agglomerations in the universe, as well as of some special configurations. Constraints on the time development of the protoagglomerations are also obtained

  17. Measurement of matter-antimatter differences in beauty baryon decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Carvalho Akiba, K.; Coco, V.; David, P. N.Y.; De Bruyn, K.; Ferro-Luzzi, M.; Ketel, T.; Koopman, R. F.; Van Leerdam, J.; Merk, M.; Onderwater, C. J.G.; Raven, G.; Schiller, M.; Serra, N.; Snoek, H.; Storaci, B.; Syropoulos, V.; Van Tilburg, J.; Tolk, S.; Tsopelas, P.; Tuning, N.

    Differences in the behaviour of matter and antimatter have been observed in K and B meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as CP

  18. Enabling Exploration of Deep Space: High Density Storage of Antimatter

    Science.gov (United States)

    Smith, Gerald A.; Kramer, Kevin J.

    1999-01-01

    Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.

  19. Measurement of matter-antimatter differences in beauty baryon decays

    NARCIS (Netherlands)

    Dufour, L.; Mulder, M; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.; van Veghel, M.

    Differences in the behaviour of matter and antimatter have been observed in K and B meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined chargeconjugation and parity transformations, known as CP

  20. Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS

    Science.gov (United States)

    Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; hide

    2011-01-01

    The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).

  1. Exotic smoothness and particle physics

    International Nuclear Information System (INIS)

    Sladkowski, J.

    1996-01-01

    Short introduction to exotic differential structures on manifolds is given. The possible physical context of this mathematical curiosity is discussed. The topic is very interesting although speculative. (author)

  2. ATLAS Exotic Searches

    CERN Document Server

    Bousson, Nicolas

    2012-01-01

    Thanks to the outstanding performance of the Large Hadron Collider (LHC) that delivered more than 2 fb^-1 of proton-proton collision data at center-of-mass energy of 7 TeV, the ATLAS experiment has been able to explore a wide range of exotic models trying to address the questions unanswered by the Standard Model of particle physics. Searches for leptoquarks, new heavy quarks, vector-like quarks, black holes, hidden valley and contact interactions are reviewed in these proceedings.

  3. Exotic searches at lep

    International Nuclear Information System (INIS)

    Seager, P.

    2001-01-01

    The search for exotic processes at LEP is presented. The Standard Model Higgs has as yet not been observed. This provides freedom to search for processes beyond the Standard Model and even beyond the minimal version of the supersymmetric extension to the Standard Model. This paper outlines the searches for charged Higgs bosons, fermiophobic Higgs bosons, invisibly decaying Higgs bosons, technicolor, leptoquarks, unstable heavy leptons and excited leptons. The results presented are those from the LEP collaborations using data taken up to a centre-of-mass energy of √s = 202 GeV. (author)

  4. Euroschool on Exotic Beams

    CERN Document Server

    Pfützner, Marek

    2018-01-01

    This is the fifth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II as LNP 700, Vol. III as LNP 764 and Vol. IV as LNP 879.

  5. Turning the Star Trek Dream into Reality by Understanding Matter & Antimatter

    Science.gov (United States)

    Hansen, Norm

    2002-04-01

    People are going to learn all about matter and antimatter. Where matter and antimatter comes from. Where antimatter exists within our solar system. What the Periodic Table of Matter-AntiMatter Elements looks like. What each of the 109 antimatter element's nuclear, physical, and chemical characteristics are. How much energy is produced from matter and antimatter. And what needs to be done to turn the Star Trek Dream into Reality. The Milky Way Galaxy is composed of matter and antimatter. At the center of the galaxy, there are two black holes. One black hole is composed of matter; and the other is antimatter. The black holes are ejecting matter and antimatter into space forming a halo and spiral arms of matter & antimatter stars. The sun is one of the billions of stars that are composed of matter. There are a similar number of antimatter stars. Our Solar System contains the sun, earth, planets, and asteroids that are composed of matter, and comets that are composed of antimatter. When galactic antimatter enters our solar system, the antimatter is called comets. Astronomers have observed hundred of comets orbiting the sun and are finding new comets every year. During the last century, mass destruction has resulted when antimatter collided with Jupiter and Earth. How Humanity deals with the opportunities and dangers of antimatter will determine our destiny. Mankind has known about comets destructive power for thousands of years going back to the days of antiquity. Did comets have anything to do with the disappearance of Atlantis over twelve thousand years ago? We may never know; but is there a similar situation about to take place? Scientists have been studying antimatter by producing, storing, and colliding small quantities at national laboratories for several decades. Symmetry exists between matter and antimatter. Science and Technology provides unlimited opportunities to benefit humanity. Antimatter can be used, as a natural source of energy, to bring every country

  6. Diagnostic imaging of exotic pets

    International Nuclear Information System (INIS)

    Silverman, S.

    1993-01-01

    Radiographic, ultrasonographic, and computed tomographic (CT) imaging are important diagnostic modalities in exotic pets. The use of appropriate radiographic equipment, film-screen combinations, and radiographic projections enhances the information obtained from radiographs. Both normal findings and common radiographic abnormalities are discussed. The use of ultrasonography and CT scanning for exotic small mammals and reptiles is described

  7. Current Status of Exotic Hadrons

    International Nuclear Information System (INIS)

    Saeed, M.A.; Ahmed, Maqsood; Fazal-e-Aleem

    2005-01-01

    Physics of exotic hadrons is in the limelight these days. The models for these baryons are discussed as well as their production and decay processes and methods of their identification. The results of recent experiments in this field are presented, in which some unusual states are observed. These states are candidates for exotic hadrons

  8. LHCB : Exotic hadrons at LHCb

    CERN Multimedia

    Salazar De Paula, Leandro

    2015-01-01

    The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHCb experiment we present the unambiguous new observation of exotic charmonia hadrons produced in B decays.

  9. Search for antimatter in 1012 eV cosmic rays using Artemis method and interpretation of the cosmic rays spectrum

    International Nuclear Information System (INIS)

    Pomarede, D.

    1999-04-01

    This thesis is divided into three parts. The first part is a review of the present knowledge of the antimatter and of the cosmic rays. Theoretical and experimental aspects are presented. It is demonstrated that a measurement of the antimatter abundance in TeV cosmic rays is of fundamental interest, and would establish the symmetric or asymmetric nature of the Universe. The second part is dedicated to the method of antimatter research through the Earth Moon ion spectrometer (ARTEMIS). The account is given of the winter 1996-97 41-nights observation campaign undertaken at the Whipple Observatory in Arizona (USA). A 109 photomultiplier camera is operated on the 40 meter telescope to detect by Cherenkov imaging the cosmic ray initiated showers. We describe the performance of an optical filter used to reduce the noise. The development and the utilization of a simulation program are described. The main work is the analysis of the data: data characterization, understanding of the apparatus, understanding of the noise and its influence, calibration, search for signals by different methods. Subtle systematic effects are uncovered. The simulations establish that the amount of data is insufficient to reveal a shadow effect in the cosmic ray flux. The conclusion of this work is that the experimental setup was not suitable, and we propose important improvements of the method based on a bigger focal plane that would allow to reach a one percent sensitivity on the antimatter content of the cosmic rays. In the third part of the thesis, an interpretation of the total cosmic ray spectrum is proposed and discussed. (author)

  10. ELENA prepares a bright future for antimatter research

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    At its recent session in June, the CERN Council approved the construction of the Extra Low ENergy Antiproton ring (ELENA) – an upgrade of the existing Antiproton Decelerator. ELENA will allow the further deceleration of antiprotons, resulting in an increased number of particles trapped downstream in the experimental set-ups. This will give an important boost to antimatter research in the years to come.   Layout of the AD experimental hall: the Antiproton Decelerator ring (purple); the ALPHA, ASACUSA, and ATRAP experiments (green); the ACE experiment (not pictured); and the new ELENA ring (blue). The Antiproton Decelerator (AD) is CERN’s widely recognized facility for the study of antimatter properties. The recent successes of the AD experiments are just the latest in a long list of important scientific results that started with LEAR (Low Energy Antiproton Ring). The scientific demand for low-energy antiprotons at the AD continues to grow. There are now four experiments runnin...

  11. Cosmic matter-antimatter asymmetry and gravitational force

    Science.gov (United States)

    Hsu, J. P.

    1980-01-01

    Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.

  12. Exotic nuclei: production, properties and specificity

    International Nuclear Information System (INIS)

    Van Duppen, Piet

    1998-01-01

    In this paper we will put the production of energetic radioactive ion beams of exotic nuclei in perspective and describe the two complementary production processes that are used nowadays: Isotope Separation On-Line (ISOL) followed by post-acceleration, and In-Flight Separation (IFS). After a general description of the process we will focus on recent technical developments in the field. In the subsequent section we give some 'typical' examples of physics cases that are addressed with exotic beams. The examples are chosen not only because their physics importance but also to demonstrate the complementary aspects in the production process and the detection systems. This overview will not be complete and the reader is referred to literature for further information, nor is the lecture intended to give an overview of all the efforts that are taking place in the field by mentioning every project separately. (author)

  13. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX

    1989-01-01

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  14. Antimatter Production for Near-Term Propulsion Applications

    Science.gov (United States)

    Gerrish, Harold P.; Schmidt, George R.

    1999-01-01

    This presentation discusses the use and potential of power generated from Proton-Antiproton Annihilation. The problem is that there is not enough production of anti-protons, and that the production methods are inefficient. The cost for 1 gram of antiprotons is estimated at 62.5 trillion dollars. Applications which require large quantities (i.e., about 1 kg) will require dramatic improvements in the efficiency of the production of the antiprotons. However, applications which involve small quantities (i.e., 1 to 10 micrograms may be practical with a relative expansion of capacities. There are four "conventional" antimatter propulsion concepts which are: (1) the solid core, (2) the gas core, (3) the plasma core, and the (4) beam core. These are compared in terms of specific impulse, propulsive energy utilization and vehicle structure/propellant mass ratio. Antimatter-catalyzed fusion propulsion is also evaluated. The improvements outlined in the presentation to the Fermilab production, and other sites. capability would result in worldwide capacity of several micrograms per year, by the middle of the next decade. The conclusions drawn are: (1) the Conventional antimatter propulsion IS not practical due to large p-bar requirement; (2) Antimatter-catalyzed systems can be reasonably considered this "solves" energy cost problem by employing substantially smaller quantities; (3) With current infrastructure, cost for 1 microgram of p-bars is $62.5 million, but with near-term improvements cost should drop; (4) Milligram-scale facility would require a $15 billion investment, but could produce 1 mg, at $0.1/kW-hr, for $6.25 million.

  15. Cosmic ray antimatter: Is it primary or secondary?

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1981-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic ray antiprotons, including the low energy measurement of Buffington, were examined. It is concluded that the cosmic ray antiproton data may be strong evidence for antimatter galaxies and baryon symmetric cosmology. The present antiproton data are consistent with a primary extragalactic component having antiproton/proton approximately equal to .0032 + or - 0.7.

  16. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  17. ALICE’s wonderland reveals the heaviest antimatter ever observed

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Producing and observing antiparticles is part of everyday life for many physics laboratories around the world, including CERN. However, recreating and observing the anti-nuclei of complex atoms is a much more difficult task. Analysing data collected in a run of just one month, ALICE has recently found evidence of the formation of four anti-nuclei of Helium 4, the heaviest antimatter ever created in a laboratory.   The STAR experiment at RHIC came first and published the result in March: they presented evidence of 18 anti-nuclei of Helium 4 collected over several years of data taking. “ALICE came second but it's amazing to see how fast the results came,” exclaims Paolo Giubellino, the experiment’s spokesperson. “We were able to confirm the observation of 4He anti-nuclei with data collected in November 2010.” Scientists agree on the fact that antimatter was created in the Big Bang together with matter. However, today we do not observe antimatter outsid...

  18. Asymmetric creation of matter and antimatter in the expanding universe

    International Nuclear Information System (INIS)

    Papastamatiou, N.J.; Parker, L.

    1979-01-01

    We consider a simple model in which the matter-antimatter asymmetry of the universe is brought about by an effective two-particle interaction that violates baryon-number conservation as well as CP invariance. The particle fields participating in the interaction are quantized, and their time development in an isotropically expanding universe is found to all orders in the coupling constant. Pair production by the asymmetric interaction, as well as symmetric production by the gravitational field of the expanding universe, appear simultaneously in the solution. Taking an initial state in which no particles participating in the asymmetric interaction are present, we find the created baryon-number density. We consider in more detail the case when the matter-antimatter asymmetry is produced during a stage when the radius of the universe is small with respect to its present value. We make numerical estimates of the created matter-antimatter asymmetry, and put limits on possible values of the parameters of this model

  19. Beta limitation of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1987-08-01

    A model has earlier been proposed for a boundary layer which separates a cloud of matter from one of antimatter in a magnetized ambiplasma. In this model steady pressure equilibrium ceases to exist when a certain beta limit is exceeded. The latter is defined as the ratio between the ambiplasma and magnetic field pressures which balance each other in the boundary layer. Thus, at an increasing density, the high-energy particles created by annihilation within the layer are 'pumped up' to a pressure which cannot be balanced by a given magnetic field. The boundary layer then 'disrupts'. The critical beta limit thus obtained falls within the observed parameter ranges of galaxies and other large cosmical objects. Provided that the considered matter-antimatter balance holds true, this limit is thus expected to impose certain existence conditions on matter-antimatter boundary layers. Such a limitation may apply to certain cosmical objects and cosmological models. The maximum time scale for the corresponding disruption development has been estimated to be in the range from about 10 -4 to 10 2 seconds for boundary layers at ambiplasma particle densities in the range from 10 4 to 10 -2 m -3 , respectively. (author)

  20. Complementary aspects on matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1990-05-01

    This paper gives some complementary aspects on the problems of the matter-antimatter metagalaxy model and its cellular structure, as being proposed by Klein and Alfven. A previously outlined one-dimensional model of a magnetized matter-antimatter boundary layer is updated and extended, by introducing amended nuclear annihilation data, and by making improved approximations of the layer structure and its dependence on relevant parameters. The critical beta value obtained from this model leads to critical plasma densities which are not high enough to become reconcilable with a cellular matter-antimatter structure within the volume of a galaxy. Additional investigations are required on the questions whether the obtained beta limit would still apply to cells of the size of a galaxy, and whether large modification of this limit could result from further refinement of the theory and from the transition to a three-dimensional model. Attention is called to the wide area of further research on ambiplasma physics, and on a three-dimensional cell structure with associated problems of equilibrium and stability. In particular, the high-energy ambiplasma component has to be further analysed in terms of kinetic theory, on account of the large Larmor radii of the corresponding electrons and positrons

  1. BROOKHAVEN: Glueballs, hybrids and exotics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S. -U.

    1988-12-15

    A workshop at Brookhaven from August 29 to September 1 looked at the current status of hadron spectroscopy beyond the realm of states conventionally built up from quarks and discussed future experimental effort to explore such exotic states.

  2. New possibilities for exotic hadrons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1987-01-01

    New theoretical ideas and experimental evidence for exotic hadrons are presented. A new exciting candidate is an anticharmed baryon; i.e., a bound state of a nucleon and an F (now called D 3 ). New experimental evidence for four-quark exotic mesons presented at this conference is discussed. The confusion in the E-iota region and the pseudoscalar spectrum still await further experimental clarification

  3. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  4. Future energy, exotic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dumon, R

    1974-01-01

    The Detroit Energy Conference has highlighted the declining oil reserves, estimated worldwide at 95 billion tons vs. an annual rate of consumption of over 3 billion tons. The present problem is one of price; also, petroleum seems too valuable to be simply burned. New sources must come into action before 1985. The most abundant is coal, with 600 billion tons of easily recoverable reserves; then comes oil shale with a potential of 400 billion tons of oil. Exploitation at the rate of 55 go 140 million tons/yr is planned in the U.S. after 1985. More exotic and impossible to estimate quantitatively are such sources as wind, tides, and the thermal energy of the oceans--these are probably far in the future. The same is true of solar and geothermal energy in large amounts. The only other realistic energy source is nuclear energy: the European Economic Community looks forward to covering 60% of its energy needs from nuclear energy in the year 2000. Even today, from 400 mw upward, a nuclear generating plant is more economical than a fossil fueled one. Conservation will become the byword, and profound changes in society are to be expected.

  5. Can the New Neutrino Telescopes Reveal the Gravitational Properties of Antimatter?

    Directory of Open Access Journals (Sweden)

    Dragan Slavkov Hajdukovic

    2011-01-01

    Full Text Available We argue that the hypothesis of the gravitational repulsion between matter and antimatter can be tested at the Ice Cube, a neutrino telescope, recently constructed at the South Pole. If there is such a gravitational repulsion, the gravitational field, deep inside the horizon of a black hole, might create neutrino-antineutrino pairs from the quantum vacuum. While neutrinos must stay confined inside the horizon, the antineutrinos should be violently ejected. Hence, a black hole (made from matter should behave as a point-like source of antineutrinos. Our simplified calculations suggest that the antineutrinos emitted by supermassive black holes in the centre of the Milky Way and Andromeda Galaxy could be detected by the new generation of neutrino telescopes.

  6. Antimatter and Dark Matter Search in Space: BESS-Polar Results

    Science.gov (United States)

    Mitchell, John W.; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  7. The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter

    Science.gov (United States)

    Mitchell, John; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  8. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  9. A simulation study of antimatter-helium ion planar channeling in silicon

    International Nuclear Information System (INIS)

    Wijesundera, Dharshana; Jayarathna, Sandun; Bellwied, Rene; Chu, Wei-Kan

    2012-01-01

    With the physical significance arising with the reports on experimental observation of antimatter-He nuclei, we have investigated a case of 2 MeV antimatter-He ion planar channeling in Si (1 0 0) in comparison with He channeling, by simulation. For a negatively charged antimatter-He nucleus, the planar potential well is centered at the atomic plane itself as opposed to the center-channel minimum for He ions; the antimatter-He ion distribution therefore tends to concentrate toward the atomic lattice planes. The antimatter-He ion flux distribution and the resulting close encounter probability are crucial in determining the probability of close encounter events including annihilation at channeling incidence. We have therefore analyzed the variation of antimatter-He ion flux distribution within the channels with respect to the angle of incidence and have thereby derived the orientation dependence of probability of close encounter events, or an antimatter-He channeling angular scan. The angular scan is inverted with a maximum yield at the perfect beam-planar alignment. The half-angle is narrower compared to He channeling, as a consequence of the narrower planar channeling potential centered at the lattice planes. The high de-channeling rate associated with the higher antimatter-He ion concentration in the proximity of lattice planes causes the maximum yield to be less prominent and to decrease rapidly with depth. The shoulder region shows strong depth dependent reduction that can be associated to near surface depth dependent ion flux variation.

  10. Possible evidence for the existence of antimatter on a cosmological scale in the universe.

    Science.gov (United States)

    Stecker, F. W.; Morgan, D. L., Jr.; Bredekamp, J.

    1971-01-01

    Initial results of a detailed calculation of the cosmological gamma-ray spectrum from matter-antimatter annihilation in the universe. The similarity between the calculated spectrum and the present observations of the gamma-ray background spectrum above 1 MeV suggests that such observations may be evidence of the existence of antimatter on a large scale in the universe.

  11. Separated matter and antimatter domains with vanishing domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.; Tkachev, I.I., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su, E-mail: tkachev@ms2.inr.ac.ru [Physics Department and Laboratory of Cosmology and Elementary Particle Physics, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation)

    2015-10-01

    We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.

  12. Search for signatures with top, bottom, tau and exotics

    CERN Document Server

    Andrea Favareto; Luigi Longo

    2016-01-01

    The Standard Model (SM) of particle physics is a sensational success, especially since the discov- ery of the 125 GeV Higgs boson. However, there are still several open questions that the Standard Model doesnâ??t address, like the nature of dark matter and dark energy, the matter-antimatter asym- metry, the neutrino oscillations, the inconsistency with the general relativity and the hierarchy problem. Theories Beyond the Standard Model (BSM), such as Supersymmetry, Little and Com- posite Higgs, Extra-Dimensions, Extended Gauge models, Technicolor, Left-Right symmetric models, and many other BSM scenarios are trying to answer these questions. In these proceed- ings we present the most recent results for searches Beyond the Standard Model at the LHC by the ATLAS and CMS experiments, focusing on signatures with top, bottom, tau and exotics. The data are found to be consistent with the Standard Model. The non-observation of a signal permits to set limits at the 95pct confidence level on the production cross sect...

  13. On Emergent Physics, "Unparticles" and Exotic "Unmatter" States

    Directory of Open Access Journals (Sweden)

    Goldfain E.

    2008-10-01

    Full Text Available Emergent physics refers to the formation and evolution of collective patterns in systems that are nonlinear and out-of-equilibrium. This type of large-scale behavior often de- velops as a result of simple interactions at the component level and involves a dynamic interplay between order and randomness. On account of its universality, there are credi- ble hints that emergence may play a leading role in the Tera-ElectronVolt (TeV sector of particle physics. Following this path, we examine the possibility of hypothetical high- energy states that have fractional number of quanta per state and consist of arbitrary mixtures of particles and antiparticles. These states are similar to “un-particles”, mass- less fields of non-integral scaling dimensions that were recently conjectured to emerge in the TeV sector of particle physics. They are also linked to “unmatter”, exotic clusters of matter and antimatter introduced few years ago in the context of Neutrosophy.

  14. The Symmetry, or Lack of it, Between Matter and Antimatter

    International Nuclear Information System (INIS)

    Quinn, Helen R

    2001-01-01

    The subject of antimatter and its relationship to matter began with Dirac, with the publication of his famous equation in 1928.[1] Today it remains an active area of particle physics. The dominant issue for a number of major experimental programs is to decipher the nature of the difference in the laws of physics for matter and for antimatter. This has been a central issue of my work in the past few years, and a recurring theme in earlier work. Hence when I was asked to review a subject of my choice for this conference, this was the obvious choice for me; a very different focus from any other talk here. (Also, it allows me along the way make reference to both pieces of work for which I was cited in my Dirac award, though neither is central to this story.) Given this opportunity, I decided to start with the early history of the subject, both in honor of Dirac and his essential role in it, and because it is fascinating to look back and see how understanding evolves

  15. A new “culprit” for matter-antimatter asymmetry

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    In our matter-dominated Universe, the observation of new processes showing matter-antimatter asymmetry allows scientists to test their theories and, possibly, to explore new territories. The LHCb collaboration has recently observed matter-antimatter asymmetries in the decays of the B0s meson, which thus becomes the fourth particle known to present such behaviour.   The VELO detector: a crucial element for particle identifiation in LHCb. Almost all physics processes known to scientists show perfect symmetry if a particle is interchanged with its antiparticle (C symmetry), and then if left and right are swapped (P symmetry). So it becomes very hard to explain why the Universe itself does not conform to this symmetry and, instead, shows a huge preference for matter. Processes that violate this symmetry are rare and of great interest to scientists. Violation of the CP symmetry in neutral kaons was first observed by Nobel Prize Laureates James Cronin and Val Fitch in the 1960s. About 40 years la...

  16. Exotic highly ionising particles at the LHC

    CERN Document Server

    De Roeck, A; Mermod, P; Milstead, D; Sloan, T

    2012-01-01

    The experiments at the Large Hadron Collider (LHC) are able to discover or set limits on the production of exotic particles with TeV-scale masses possessing values of electric and/or magnetic charge such that they appear as highly ionising particles (HIPs). In this paper the sensitivity of the LHC experiments to HIP production is discussed in detail. It is shown that a number of different detection methods are required to investigate as fully as possible the charge-mass range. These include direct detection as the HIPs pass through detectors and, in the case of magnetically charged objects, the so-called induction method with which monopoles which stop in accelerator and detector material could be observed. The benefit of using complementary approaches to HIP detection is discussed.

  17. Do we live in the universe successively dominated by matter and antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of...

  18. Antimatter Requirements and Energy Costs for Near-Term Propulsion Applications

    Science.gov (United States)

    Schmidt, G. R.; Gerrish, H. P.; Martin, J. J.; Smith, G. A.; Meyer, K. J.

    1999-01-01

    The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities that could exist within the early part of next century. Results show that although it may be impractical to consider systems that rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-term production capabilities. In fact, a new facility designed solely for antiproton production but based on existing technology could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $6.4 million per mission.

  19. Annihilation physics of exotic galactic dark matter particles

    Science.gov (United States)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  20. Multiquark exotics (baryonium, dibaryons etc)

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.

    1987-01-01

    The multiquark exotic resonant states q 2 -(anti q) 2 , q 3 -(anti q) 3 , q 6 and q 9 are discussed as systems composed of the few colour clusters. Special attention is devoted to the problem of narrow resonances in channels anti NN, Δanti p+pions, πNN and NN. 42 refs.; 2 figs.; 5 tabs

  1. Exotic meson studies at LHCb

    Directory of Open Access Journals (Sweden)

    Kreps Michal

    2014-01-01

    Full Text Available The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations of several states. Using the pp collisions data collected at 7 and 8 TeV by the LHCb experiment, we performed studies of the X(3872 decay rate to ψ (2Sγ final state, as well as confirmation the Z(4430+ state.

  2. Exotic decay in cerium isotopes

    Indian Academy of Sciences (India)

    Geiger–Nuttall plots were studied for different clusters and are found to be linear. Inclusion of proximity potential will not produce much deviation to linear nature of Geiger–Nuttall plots. It is observed that neutron excess in the parent nuclei slow down the exotic decay process. These findings support the earlier observations ...

  3. Fourteenth Exotic Beam Summer School EBSS 2015

    International Nuclear Information System (INIS)

    Wiedenhoever, Ingo

    2016-01-01

    The Fourteenth Annual Exotic Beam Summer School EBSS 2015 was held August 2nd - August 7th, 2015, and belongs to the series of summer programs aimed at educating future workforce in nuclear physics-related areas, mostly about the challenges of radioactive ion beam physics. Through these schools the research community will be able to exploit fully the opportunities created by the exotic beam facilities. These facilities in the US include CARIBU at ANL, the NSCL and the future FRIB laboratory as well as smaller-scale university laboratories. The skill set needed by the future workforce is very diverse and a fundamental understanding of theoretical, technical, computational and applied fields are all important. Therefore, the Exotic Beam Summer Schools follow a unique approach, in which the students not only receive lectures but also participate in hands-on activities. The lectures covered broad topics in both the experimental and theoretical physics of nuclei far from stability as well as radioactive ions production and applications. The afternoons provided opportunities for 'hands-on' projects with experimental equipment and techniques useful in FRIB research. Five activities were performed in groups of eight students, rotating through the activities over the five afternoons of the school. The center of the activities was an experiment at the FSU tandem accelerator, measuring the angular distribution and cross section of the "1"2C(d,p)"1"3C transfer reaction, measured with a silicon telescope in a scattering chamber. The experimental data were analyzed by performing a DWBA calculation with the program DWUCK, and the resulting spectroscopic factors were compared to a shell model calculation. The other activities included target preparation, digital gamma-spectroscopy and modern neutron detection methods.

  4. Fourteenth Exotic Beam Summer School EBSS 2015

    Energy Technology Data Exchange (ETDEWEB)

    Wiedenhoever, Ingo [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    2016-07-11

    The Fourteenth Annual Exotic Beam Summer School EBSS 2015 was held August 2nd - August 7th, 2015, and belongs to the series of summer programs aimed at educating future workforce in nuclear physics-related areas, mostly about the challenges of radioactive ion beam physics. Through these schools the research community will be able to exploit fully the opportunities created by the exotic beam facilities. These facilities in the US include CARIBU at ANL, the NSCL and the future FRIB laboratory as well as smaller-scale university laboratories. The skill set needed by the future workforce is very diverse and a fundamental understanding of theoretical, technical, computational and applied fields are all important. Therefore, the Exotic Beam Summer Schools follow a unique approach, in which the students not only receive lectures but also participate in hands-on activities. The lectures covered broad topics in both the experimental and theoretical physics of nuclei far from stability as well as radioactive ions production and applications. The afternoons provided opportunities for "hands-on" projects with experimental equipment and techniques useful in FRIB research. Five activities were performed in groups of eight students, rotating through the activities over the five afternoons of the school. The center of the activities was an experiment at the FSU tandem accelerator, measuring the angular distribution and cross section of the 12C(d,p)13C transfer reaction, measured with a silicon telescope in a scattering chamber. The experimental data were analyzed by performing a DWBA calculation with the program DWUCK, and the resulting spectroscopic factors were compared to a shell model calculation. The other activities included target preparation, digital gamma-spectroscopy and modern neutron detection methods.

  5. Exotic quarks in Twin Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Chia [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Jung, Sunghoon [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Salvioni, Ennio [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Tsai, Yuhsin [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Maryland Center for Fundamental Physics,Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ∼ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ∼ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.

  6. EXAM: An experiment to search for antimatter in distant clusters of galaxies

    International Nuclear Information System (INIS)

    Ahlen, S.P.

    1986-01-01

    It is often claimed that the absence of antimatter in the universe is evidence in favor of Grand Unified Theories (GUT's) of particle physics. This is due to the three requirements initially enumerated by Sakharov, for the evolution of a matter-antimatter symmetric universe to an asymmetric universe: 1) Existence of baryon number non-conserving processes such as predicted by GUT's, 2) Existence of CP violating processes in the hot early universe, 3) Deviations from thermal equilibrium in the early universe. However, before this argument can be accepted, one must examine the evidence against antimatter in the universe

  7. Looking for the origin of the matter-antimatter asymmetry. Recent results from the Belle experiment

    International Nuclear Information System (INIS)

    Katayama, Nobuhiko

    2006-01-01

    Why is our Universe made of matter and not antimatter? It might be explained if the laws that govern matter and antimatter are different. In 1964, matter-antimatter asymmetry was discovered in the weak decays of elementary particles called Kaons. At the KEKB B factory we have discovered CP violations in B meson decays and have thus established the Kobayashi-Maskawa model of CP violation. The present article reviews the history of CP violation, focusing on recent results from the B factories and prospects in this field. (author)

  8. Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Cleymans, J.; Kabana, S.; Kraus, I.; Oeschler, H.; Redlich, K.; Sharma, N.

    2011-01-01

    One of the striking features of particle production at high beam energies is the near-equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In particular, we quantify explicitly the energy dependence of the approach to matter-antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter such as antihypernuclei.

  9. Matter-antimatter asymmetry induced by a running vacuum coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo, Departamento de Astronomia, Sao Paulo (Brazil); Singleton, D. [California State University Fresno, Department of Physics, Fresno, CA (United States); Institute of Experimental and Theoretical Physics Al-Farabi KazNU, Almaty (Kazakhstan)

    2017-12-15

    We show that a CP-violating interaction induced by a derivative coupling between the running vacuum and a non-conserving baryon current may dynamically break CPT and trigger baryogenesis through an effective chemical potential. By assuming a non-singular class of running vacuum cosmologies which provides a complete cosmic history (from an early inflationary de Sitter stage to the present day quasi-de Sitter acceleration), it is found that an acceptable baryon asymmetry is generated for many different choices of the model parameters. It is interesting that the same ingredient (running vacuum energy density) addresses several open cosmological questions/problems: avoids the initial singularity, provides a smooth exit for primordial inflation, alleviates both the coincidence and the cosmological constant problems, and, finally, is also capable of explaining the generation of matter-antimatter asymmetry in the very early Universe. (orig.)

  10. Star Trek meets the Big Bang curiosity is leading scientists on a mission to explain antimatter

    CERN Multimedia

    Cookson, C

    1998-01-01

    Next year, scientists at CERN will inaugurate the world's first 'antimatter factory'. The 'Antiproton Decelerator' will make more than 2000 atoms of anti-hydrogen an hour and contain them in a magnetic trap within a vacuum (1 page).

  11. Isodual theory of antimatter applications to antigravity, grand unification and cosmology

    CERN Document Server

    Santilli, Ruggero Maria

    2006-01-01

    Antimatter, already conjectured by A. Schuster in 1898, was actually predicted by P.A.M. Dirac in the late 19-twenties in the negative-energy solutions of the Dirac equation. Its existence was subsequently confirmed via the Wilson chamber and became an established part of theoretical physics. Dirac soon discovered that particles with negative energy do not behave in a physically conventional manner, and he therefore developed his "hole theory". This restricted the study of antimatter to the sole level of second quantization. As a result antimatter created a scientific imbalance, because matter was treated at all levels of study, while antimatter was treated only at the level of second quantization. In search of a new mathematics for the resolution of this imbalance the author conceived what we know today as Santilli’s isodual mathematics, which permitted the construction of isodual classical mechanics, isodual quantization and isodual quantum mechanics. The scope of this monograph is to show that our classi...

  12. Matter-antimatter and matter-matter interactions at intermediate energies

    International Nuclear Information System (INIS)

    Santos, Antonio Carlos Fontes dos

    2002-01-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed

  13. Anti-helium flux as a signature for antimatter globular clusters in our galaxy

    International Nuclear Information System (INIS)

    Belotskij, K.M.; Golubkov, Yu.A.; Khlopov, M.Yu.; Konoplich, R.V.; Sakharov, A.S.

    2000-01-01

    The alpha magnetic spectrometer experiment is shown to be sensitive to test the hypothesis on the existence of antimatter globular cluster in our Galaxy. The hypothesis follows from the analysis of possible tests for the mechanisms of baryosynthesis and uses antimatter domain in the matter domain Universe as the probe for the physics underlaying the origin of the matter. The interval of masses for the antimatter in our Galaxy is fixed from below by the condition of antimatter domain survival in the matter dominated Universe and from above by the observed gamma-ray flux. For this interval the expected fluxes of anti-helium-3 and anti-helium-4 are calculated with the account of their interaction with the matter in the Galaxy [ru

  14. Anti-helium flux as a signature for antimatter globular clusters in our galaxy

    International Nuclear Information System (INIS)

    Belotsky, K.M.; Golubkov, Yu.A.; Khlopov, M.Yu.; Konoplich, R.V.; Sakharov, A.S.

    2000-01-01

    The Alpha Magnetic Spectrometer experiment is shown to be sensitive to test the hypothesis on the existence of antimatter globular cluster in our Galaxy. The hypothesis follows from the analysis of possible tests for the mechanisms of baryosynthesis and uses antimatter domains in the matter-dominated Universe as the probe for the physics underlying the origin of matter. The interval of masses for the antimatter in our Galaxy is fixed from below by the condition of antimatter domain survival in the matter-dominated Universe and from above by the observed gamma-ray flux. For this interval, the expected fluxes of anti-helium-3 and anti-helium-4 are calculated with account for their interaction with the matter in the Galaxy

  15. Kinetics of Interactions of Matter, Antimatter and Radiation Consistent with Antisymmetric (CPT-Invariant Thermodynamics

    Directory of Open Access Journals (Sweden)

    A.Y. Klimenko

    2017-05-01

    Full Text Available This work investigates the influence of directional properties of decoherence on kinetics rate equations. The physical reality is understood as a chain of unitary and decoherence events. The former are quantum-deterministic, while the latter introduce uncertainty and increase entropy. For interactions of matter and antimatter, two approaches are considered: symmetric decoherence, which corresponds to conventional symmetric (CP-invariant thermodynamics, and antisymmetric decoherence, which corresponds to antisymmetric (CPT-invariant thermodynamics. Radiation, in its interactions with matter and antimatter, is shown to be decoherence-neutral. The symmetric and antisymmetric assumptions result in different interactions of radiation with matter and antimatter. The theoretical predictions for these differences are testable by comparing absorption (emission of light by thermodynamic systems made of matter and antimatter. Canonical typicality for quantum mixtures is briefly discussed in Appendix A.

  16. Radio Frequency (RF) Trap for Confinement of Antimatter Plasmas Using Rotating Wall Electric Fields

    Science.gov (United States)

    Sims, William Herbert, III; Pearson, J. Boise

    2004-01-01

    Perturbations associated with a rotating wall electric field enable the confinement of ions for periods approaching weeks. This steady state confinement is a result of a radio frequency manipulation of the ions. Using state-of-the-art techniques it is shown that radio frequency energy can produce useable manipulation of the ion cloud (matter or antimatter) for use in containment experiments. The current research focuses on the improvement of confinement systems capable of containing and transporting antimatter.

  17. Bottomonium, charmonium and exotic states

    International Nuclear Information System (INIS)

    Nakao, M.

    2014-01-01

    Heavy quarkonia states have been extensively studied in the past decade by B-factories and other experiments, and have provided many surprises that suggest that our understanding of the meson is still incomplete. The recent BaBar and Belle data filled many of the missing seats in the bottomonium table such as η b or h b , while LHC experiments are also contributing, for example in the observation of χ b (3P) state by ATLAS. There are clear signs of exotic states, such as the charged Z b + and Z c + found by Belle, yet puzzling X(3872), and overpopulated Y state series. Recent progress on the bottomonium, charmonium and exotic states is discussed in this review. (author)

  18. Exotic Small Mammals and Bartonella

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Nina Marano discusses Bartonella, a bacterial agent that’s prevalent in many species, including cats, dogs, and cattle. Wild animals are normally thought to carry Bartonella, so when animals are caught in the wild for pet trade, the risk that humans can become infected with Bartonella increases. Bartonella is an identified risk associated with ownership of exotic animals and has serious health consequences.

  19. An exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1990-08-01

    An exotic composite vector boson, V, is introduced in two dynamical models of composite quarks, leptons, W and Z. One is based on four Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ and V. (author)

  20. Exotic phases in neutron stars

    International Nuclear Information System (INIS)

    Li, A.; Burgio, G.F.; Lombardo, U.; Peng, G.X.

    2008-01-01

    The appearance of exotic phases in neutron stars is studied. The possible transition from hadron to quark phase is studied within the density dependent mass quark model, and the kaon condensation within the Nelson and Kaplan model. In both cases a microscopic approach is adopted for dense hadron matter. From the study of the possible coexistence between the two phases it is found that the hybrid phase may strongly hinder the onset of kaon condensation. (author)

  1. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  2. Microsporidiosis in Vertebrate Companion Exotic Animals

    Directory of Open Access Journals (Sweden)

    Claire Vergneau-Grosset

    2015-12-01

    Full Text Available Veterinarians caring for companion animals may encounter microsporidia in various host species, and diagnosis and treatment of these fungal organisms can be particularly challenging. Fourteen microsporidial species have been reported to infect humans and some of them are zoonotic; however, to date, direct zoonotic transmission is difficult to document versus transit through the digestive tract. In this context, summarizing information available about microsporidiosis of companion exotic animals is relevant due to the proximity of these animals to their owners. Diagnostic modalities and therapeutic challenges are reviewed by taxa. Further studies are needed to better assess risks associated with animal microsporidia for immunosuppressed owners and to improve detection and treatment of infected companion animals.

  3. Exotics. Heavy pentaquarks and tetraquarks

    International Nuclear Information System (INIS)

    Ali, Ahmed; Lange, Jens Soeren; Stone, Sheldon

    2017-07-01

    For many decades after the invention of the quark model in 1964 there was no evidence that hadrons are formed from anything other than the simplest pairings of quarks and antiquarks, mesons being formed of a quark-antiquark pair and baryons from three quarks. In the last decade, however, in an explosion of data from both e"+e"- and hadron colliders, there are many recently observed states that do not fit into this picture. These new particles are called generically ''exotics''. They can be either mesons or baryons. Remarkably, they all decay into at least one meson formed of either a c anti c or b anti b pair. In this review, after the introduction, we explore each of these new discoveries in detail first from an experimental point of view, then subsequently give a theoretical discussion. These exotics can be explained if the new mesons contain two-quarks and two antiquarks (tetraquarks), while the baryons contain four-quarks plus an antiquark (pentaquarks). The theoretical explanations for these states take three divergent tracks: tightly bound objects, just as in the case of normal hadrons, but with more constituents, or loosely bound ''molecules'' similar to the deuteron, but formed from two mesons, or a meson or baryon, or more wistfully, they are not multiquark states but appear due to kinematic effects caused by different rescatterings of virtual particles; most of these models have all been post-dictions. Both the tightly and loosely bound models predict the masses and related quantum numbers of new, as yet undiscovered states. Thus, future experimental discoveries are needed along with theoretical advances to elucidate the structure of these new exotic states.

  4. Exotics. Heavy pentaquarks and tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Lange, Jens Soeren [Giessen Univ. (Germany). II. Physikalisches Inst.; Stone, Sheldon [Syracuse Univ., Syracuse, NY (United States). Physics Dept.

    2017-07-15

    For many decades after the invention of the quark model in 1964 there was no evidence that hadrons are formed from anything other than the simplest pairings of quarks and antiquarks, mesons being formed of a quark-antiquark pair and baryons from three quarks. In the last decade, however, in an explosion of data from both e{sup +}e{sup -} and hadron colliders, there are many recently observed states that do not fit into this picture. These new particles are called generically ''exotics''. They can be either mesons or baryons. Remarkably, they all decay into at least one meson formed of either a c anti c or b anti b pair. In this review, after the introduction, we explore each of these new discoveries in detail first from an experimental point of view, then subsequently give a theoretical discussion. These exotics can be explained if the new mesons contain two-quarks and two antiquarks (tetraquarks), while the baryons contain four-quarks plus an antiquark (pentaquarks). The theoretical explanations for these states take three divergent tracks: tightly bound objects, just as in the case of normal hadrons, but with more constituents, or loosely bound ''molecules'' similar to the deuteron, but formed from two mesons, or a meson or baryon, or more wistfully, they are not multiquark states but appear due to kinematic effects caused by different rescatterings of virtual particles; most of these models have all been post-dictions. Both the tightly and loosely bound models predict the masses and related quantum numbers of new, as yet undiscovered states. Thus, future experimental discoveries are needed along with theoretical advances to elucidate the structure of these new exotic states.

  5. AEgIS experiment: Towards antihydrogen beam production for antimatter gravity measurements

    CERN Document Server

    Mariazzi, Sebastiano; Amsler, Claude; Ariga, Akitaka; Ariga, Tomoko; Belov, Alexandre S; Bonomi, Germano; Bräunig, Philippe; Brusa, Roberto S; Bremer, Johan; Cabaret, Louis; Canali, Carlo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Cialdi, Simone; Comparat, Daniel; Consolati, Giovanni; Dassa, Luca; Derking, Jan Hendrik; Di Domizio, Sergio; Di Noto, Lea; Doser, Michael; Dudarev, Alexey; Ereditato, Antonio; Ferragut, Rafael; Fontana, Andrea; Genova, Pablo; Giammarchi, Marco; Gligorova, Angela; Gninenko, Sergei N; Hogan, Stephen D; Haider, Stefan; Jordan, Elena; Jørgensen, Lars V; Kaltenbacher, Thomas; Kawada, Jiro; Kellerbauer, Alban; Kimura, Mitsuhiro; Knecht, Andreas; Krasnický, Daniel; Lagomarsino, Vittorio; Lehner, Sebastian; Malbrunot, Chloe; Matveev, Viktor A; Merkt, Frederic; Moia, Fabio; Nebbia, Giancarlo; Nédélec, Patrick; Oberthaler, Markus K; Pacifico, Nicola; Petráček, Vojtech; Pistillo, Ciro; Prelz, Francesco; Prevedelli, Marco; Regenfus, Christian; Riccardi, Cristina; Røhne, Ole; Rotondi, Alberto; Sandaker, Heidi; Scampoli, Paola; Storey, James; Subieta Vasquez, Martin A.; Spaček, Michal; Czech Technical U. in Prague - FNSPE - B\\oehova 7 - 11519 - Praha 1 - Czech Aff25 Testera, Gemma; Vaccarone, Renzo; Villa, Fabio; Widmann, Eberhard; Zavatarelli, Sandra; Zmeskal, Johann

    2014-01-01

    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moir ́ e deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 10 3 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers ar...

  6. Exotic Nuclei Arena in JHP

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-12-01

    The Exotic Nuclei Arena planned in Japanese Hadron Project aims to accelerate various unstable nuclei produced in 1-GeV proton-induced reactions up to 6.5 MeV/u by means of heavy-ion linacs. The present status of research and development for the Earena is briefly reported. The construction of the prototype facility to accelerate unstable beams up to 0.8 MeV/u is planned in 1992-94, in which the existing cyclotron in INS is used as the primary accelerator. (author)

  7. Exotic Small Mammals and Bartonella

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    In this podcast, Dr. Nina Marano discusses Bartonella, a bacterial agent that’s prevalent in many species, including cats, dogs, and cattle. Wild animals are normally thought to carry Bartonella, so when animals are caught in the wild for pet trade, the risk that humans can become infected with Bartonella increases. Bartonella is an identified risk associated with ownership of exotic animals and has serious health consequences.  Created: 4/9/2009 by Emerging Infectious Diseases.   Date Released: 4/9/2009.

  8. Mitigating exotic impacts: restoring native deer mouse populations elevated by an exotic food subsidy

    Science.gov (United States)

    Dean E. Pearson; Robert J. Fletcher

    2008-01-01

    The threat posed by exotic organisms to native systems has led to extensive research on exotic invaders, yet management of invasives has progressed relatively slowly. This is partly due to poor understanding of how exotic species management influences native organisms. To address this shortfall, we experimentally evaluated the efficacy of an invasives management tool...

  9. A trip to Rome—thanks to antimatter

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    The Angels and Demons exhibition created by the PH Department’s Education Group came to an end last summer. The exhibition was accompanied by a competition, with a first prize of a flight to Rome. Now we know the winner’s name. An exhibit of the Angels&Demons - the science behind the story exhibition She is Sarah Manton, and she is from Scotland. In September Sarah will fly to Rome with her husband to retrace the Angels and Demons street itinerary. “We are looking forward to visiting the usual tourist sights, including all the places that feature in Angels and Demons such as the Pantheon,” she said in answer to a question from the exhibition organisers. The couple was touring CERN when, intrigued by the Globe and the name of the exhibition, they decided to do a visit and participate in the competition. Five correct answers on antimatter later—and several months on—Sarah got a pleasant surprise: “I decided to have a go at the quiz an...

  10. LS1 Report: antimatter research on the starting blocks

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The consolidation work at the Antiproton Decelerator (AD) has been very intensive and the operators now have a basically new machine to “drive”. Thanks to the accurate preparation work still ongoing, the machine will soon deliver its first beam of antiprotons to the experiments. The renewed efficiency of the whole complex will ensure the best performance of the whole of CERN’s antimatter research programme in the long term.   The test bench for the new Magnetic Horn stripline. On the left, high voltage cables are connected to the stripline, which then feeds a 6 kV 400 kA pulse to the Horn. The Horn itself (the cylindrical object on the right) can be seen mounted on its chariot. The consolidation programme at the AD planned during LS1 has involved some of the most vital parts of the decelerator such as the target area, the ring magnets, the stochastic cooling system, vacuum system, control system and various aspects of the instrumentation. In addit...

  11. New experiment to gain unparalleled insight into antimatter

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    At last week’s Research Board meeting, the Baryon Antibaryon Symmetry Experiment (BASE) was approved for installation at CERN. The experiment will be diving into the search for matter-antimatter asymmetry, as it aims to take ultra-high precision measurements of the antiproton magnetic moment.   CERN's AD Hall: the new home of the BASE double Penning trap set-up. The BASE collaboration will be setting up shop in the AD Hall this September with its first CERN-based experimental set-up. Using the novel double-Penning trap set-up developed at the University of Mainz, GSI Darmstadt and the Max Plank Institute for Nuclear Physics (Germany), the BASE team will be able to measure the antiproton magnetic moment with hitherto unreachable part-per-billion precision. “We constructed the first double-Penning trap at our companion facility in Germany, and made the first ever direct observations of single spin flips of a single proton,” explains Stefan Ulmer from RIKE...

  12. a Classical Isodual Theory of Antimatter and its Prediction of Antigravity

    Science.gov (United States)

    Santilli, Ruggero Maria

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus

  13. CP violation and the matter-antimatter asymmetry of the Universe

    International Nuclear Information System (INIS)

    Hambye, T.

    2012-01-01

    In our everyday environment one observes only matter. That is quite a fortunate situation... Any sizeable presence of antimatter on Earth, from the enormous energy it would release through annihilation with matter, would prevent us talking about it. For the physicist this fact, at first sight obvious, is nevertheless a kind of surprise: antimatter, which is observed in cosmic rays, in radioactive decays of nuclei, which has been copiously produced and extensively studied in accelerators and which is nowadays currently used in hospitals, turns out to have pretty much the same properties as matter. Moreover, the fact that matter dominates appears to be a general property of our Universe: no evidence of large quantities of antimatter has been observed at any distance from us. Why would matter have taken the advantage on antimatter? In this short review we explain how, through a limited number of basic elements, one can find answers to this question. Matter and antimatter have, in fact, not exactly the same properties: from laboratory experiments CP conservation is known not to be a fundamental law of nature. (author)

  14. Marine exotic isopods from the Iberian Peninsula and nearby waters.

    Science.gov (United States)

    Martínez-Laiz, Gemma; Ros, Macarena; Guerra-García, José M

    2018-01-01

    Effective management of marine bioinvasions starts with prevention, communication among the scientific community and comprehensive updated data on the distribution ranges of exotic species. Despite being a hotspot for introduction due to numerous shipping routes converging at the Strait of Gibraltar, knowledge of marine exotics in the Iberian Peninsula is scarce, especially of abundant but small-sized and taxonomically challenging taxa such as the Order Isopoda. To fill this gap, we conducted several sampling surveys in 44 marinas and provide the first comprehensive study of marine exotic isopods from the Iberian Peninsula, the southern side of the Strait of Gibraltar (northern Africa) and the Balearic Islands. Exotic species included Ianiropsis serricaudis (first record for the Iberian Peninsula and Lusitanian marine province), Paracerceis sculpta (first record for the Alboran Sea ecoregion), Paradella dianae , Paranthura japonica (earliest record for the Iberian Peninsula) and Sphaeroma walkeri . Photographs with morphological details for identification for non-taxonomic experts are provided, their worldwide distribution is updated and patterns of invasion are discussed. We report an expansion in the distribution range of all species, especially at the Strait of Gibraltar and nearby areas. Ianiropsis serricaudis and Paranthura japonica are polyvectic, with shellfish trade and recreational boating being most probable vectors for their introduction and secondary spread. The subsequent finding of the studied species in additional marinas over the years points at recreational boating as a vector and indicates a future spread. We call for attention to reduce lags in the detection and reporting of small-size exotics, which usually remain overlooked or underestimated until the invasion process is at an advanced stage.

  15. Effects of exotic composite bosons in the TRISTAN, SLC and LEP region

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1989-11-01

    Starting with typical dynamical composite models for exotic bosons as well as weak bosons, we derive their effective interactions, examine the restrictions from the presently known experimental results, and estimate possible effects on e + e - scattering. Some of the neutral exotics in the composite model, which decouple from neutrinos at low energies, can be as light as the order of the weak boson masses and offer the possibility of detecting sizable effects in the TRISTAN, SLC and LEP energy region. (author)

  16. Experimental evidence for hadroproduction of exotic mesons

    International Nuclear Information System (INIS)

    G. S. Adams; T. Adams; Z. Bar-Yam; J. M. Bishop; V. A. Bodyagin; B. B. Brabson; D. S. Brown; N. M. Cason; S. U. Chung; R. R. Crittenden; J. P. Cummings; K. Danyo; S. Denisov; V. Dorofeev; J. P. Dowd; A. R. Dzierba; P. Eugenio; J. Gunter; R. W. Hackenburg; M. Hayek; E. I. Ivanov; I. Kachaev; W. Kern; E. King; O. L. Kodolova; V. L. Korotkikh; M. A. Kostin; J. Kuhn; R. Lindenbusch; V. Lipaev; J. M. LoSecco; J. J. Manak; J. Napolitano; M. Nozar; C. Olchanski; A. I. Ostrovidov; T. K. Pedlar; A. Popov; D. R. Rust; D. Ryabchikov; A. H. Sanjari; L. I. Sarycheva; E. Scott; K. K. Seth; N. Shenhav; W. D. Shephard; N. B. Sinev; J. A. Smith; P. T. Smith; D. L. Stienike; T. Sulanke; S. A. Taegar; S. Teige; D. R. Thompson; I. N. Vardanyan; D. P. Weygand; D. White; H. J. Willutzki; J. Wise; M. Witkowski; A. A. Yershov; D. Zhao

    2001-01-01

    New measurements of peripheral meson production are presented. The data confirm the existence of exotic mesons at 1.4 and 1.6 GeV/c2. The latter state dominates the eta'pi- decay spectrum. The data on eta pi+pi-pi- decay show large strength in several exotic (Jpc = 1- +) waves as well

  17. The mass and radius of exotic fragment

    International Nuclear Information System (INIS)

    Schutz, Y.

    1989-01-01

    Recent developments in the study of exotic nuclei are presented. A method to measure the ground-state mass is presented and the results are compared with standard models. Total reaction cross section measurements for exotic nuclei are also presented and interpreted in terms of matter distribution in the nucleus

  18. Domestic exotics and the perception of invasibility

    Science.gov (United States)

    Qinfeng Guo; Robert Ricklefs

    2010-01-01

    Susceptibility of an area to invasion by exotic species is often judged by the fraction of introduced species in the local biota. However, the degree of invasion, particularly in mainland areas, has often been underestimated because of the exclusion of ‘domestic exotics’ (those introduced to internal units from within the national border) in calculations. Because all...

  19. Matter-antimatter accounting, thermodynamics, and black-hole radiation

    International Nuclear Information System (INIS)

    Toussaint, D.; Treiman, S.B.; Wilczek, F.; Zee, A.

    1979-01-01

    We discuss several issues bearing on the observed asymmetry between matter and antimatter in the content of the universe, in particular, the possible role in this of Hawking radiation from black holes, with allowance for weak C- and T-violating interactions. We show that the radiation, species by species, can be asymmetric between baryons and antibaryons. However, if baryon number is microscopically conserved there cannot be a net flux of baryon number in the radiation. Black-hole absorption from a medium with net baryon number zero can drive the medium to an asymmetric state. On the other hand, if baryon conservation is violated, a net asymmetry can develop. This can arise through asymmetric gravitational interactions of the radiated particles, and conceivably, by radiation of long-lived particles which decay asymmetrically. In the absence of microscopic baryon conservation, asymmetries can also arise from collision processes generally,say in the early stages of the universe as a whole. However, no asymmetries can develop (indeed any ''initial'' ones are erased) insofar as the baryon-violating interactions are in thermal equilibrium, as they might well be in the dense, high-temperature stages of the very early universe. Thus particle collisions can generate asymmetries only when nonequilibrium effects driven by cosmological expansion come into play. A scenario for baryon-number generation suggested by superunified theories is discussed in some detail. Black-hole radiation is another highly nonequilibrium process which is very efficient in producing asymmetry, given microscopic C, T, and baryon-number violation

  20. New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences

    International Nuclear Information System (INIS)

    Cai Ronggen; Li Tong; Li Xueqian; Wang Xun

    2007-01-01

    Motivated by the alpha-magnetic-spectrometer (AMS) project, we assume that after the big bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter, respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes. The matter and antimatter on the two branes attract each other via gravitational force, meanwhile the scalar field causes a Casimir effect to result in a repulsive force against the gravitation. We find that the Casimir force is much stronger than the gravitational force, as long as the separation of the two branes is small. Thus at early epoch after the big bang, the two branes were closer and then have been separated by the Casimir repulsive force from each other. The trend will continue until the separation is sufficiently large and then the gravitational force observed in our four-space would obviously deviate from the Newton's universal gravitational law. We suppose that there is a potential barrier at the brane boundary, which is similar to the surface tension for a water membrane. The barrier prevents the matter (antimatter) particles from entering the space between two branes and jump from one brane to another. However, by the quantum tunneling, a sizable antimatter flux may come to our brane and be observed by the AMS. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models, and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which comes to our detector in the nonrelativistic approximation and make a rough numerical estimate of possible numbers of antihelium at AMS

  1. Exotic RG flows from holography

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite (France); Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of Physics, University of Crete, Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, Heraklion (Greece); Nitti, Francesco; Silva Pimenta, Leandro [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite (France)

    2017-02-15

    Holographic RG flows are studied in an Einstein-dilaton theory with a general potential. The superpotential formalism is utilized in order to characterize and classify all solutions that are associated with asymptotically AdS space-times. Such solutions correspond to holographic RG flows and are characterized by their holographic β-functions. Novel solutions are found that have exotic properties from a RG point-of view. Some have β-functions that are defined patch-wise and lead to flows where the β-function changes sign without the flow stopping. Others describe flows that end in non-neighboring extrema in field space. Finally others describe regular flows between two minima of the potential and correspond holographically to flows driven by the VEV of an irrelevant operator in the UV CFT. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  3. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  4. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    Science.gov (United States)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  5. Cosmic ray neutrino tests for heavier weak bosons and cosmic antimatter

    Science.gov (United States)

    Brown, R. W.; Stecker, F. W.

    1981-01-01

    A program for using high energy neutrino astronomy with large neutrino detectors to directly test for the existence of heavier weak intermediate vector bosons (ivb) and cosmic antimatter is described. Such observations can provide a direct test of baryon symmetric cosmologies. Changes in the total cross section for nu(N) yields mu(X) due to additional propagators are discussed and higher mass resonances in the annihilation channel bar-nu sub e e(-) yields X are analyzed. The annihilation channel is instrumental in the search for antimatter, partcularly if heavier IVB's exist.

  6. Constraining antimatter domains in the early universe with big bang nucleosynthesis.

    Science.gov (United States)

    Kurki-Suonio, H; Sihvola, E

    2000-04-24

    We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of 4He. For larger domains, the limit comes from 3He overproduction. Since most of the 3He from &pmacr; 4He annihilation are themselves annihilated, the main source of primordial 3He is the photodisintegration of 4He by the electromagnetic cascades initiated by the annihilation.

  7. Exotic mammals disperse exotic fungi that promote invasion by exotic trees.

    Science.gov (United States)

    Nuñez, Martin A; Hayward, Jeremy; Horton, Thomas R; Amico, Guillermo C; Dimarco, Romina D; Barrios-Garcia, M Noelia; Simberloff, Daniel

    2013-01-01

    Biological invasions are often complex phenomena because many factors influence their outcome. One key aspect is how non-natives interact with the local biota. Interaction with local species may be especially important for exotic species that require an obligatory mutualist, such as Pinaceae species that need ectomycorrhizal (EM) fungi. EM fungi and seeds of Pinaceae disperse independently, so they may use different vectors. We studied the role of exotic mammals as dispersal agents of EM fungi on Isla Victoria, Argentina, where many Pinaceae species have been introduced. Only a few of these tree species have become invasive, and they are found in high densities only near plantations, partly because these Pinaceae trees lack proper EM fungi when their seeds land far from plantations. Native mammals (a dwarf deer and rodents) are rare around plantations and do not appear to play a role in these invasions. With greenhouse experiments using animal feces as inoculum, plus observational and molecular studies, we found that wild boar and deer, both non-native, are dispersing EM fungi. Approximately 30% of the Pinaceae seedlings growing with feces of wild boar and 15% of the seedlings growing with deer feces were colonized by non-native EM fungi. Seedlings growing in control pots were not colonized by EM fungi. We found a low diversity of fungi colonizing the seedlings, with the hypogeous Rhizopogon as the most abundant genus. Wild boar, a recent introduction to the island, appear to be the main animal dispersing the fungi and may be playing a key role in facilitating the invasion of pine trees and even triggering their spread. These results show that interactions among non-natives help explain pine invasions in our study area.

  8. Trends in exotic-atom research

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Horvath, D.

    1983-01-01

    An attempt was made to analyze the trends in the development of exotic-atom research on the basis of a recently compiled bibliography. The analysis of nearly 4000 publications demonstrated that: (1) exotic atoms are nuclear probes used in every field of physics, from the test of quantum electrodynamics (QED) to chemical physics, to materials sciences; (2) the role of nuclear and atomic physics in exotic atom research is decreasing (although it is still significant), while that of materials sciences and chemial physics is exponentially increasing; and (3) prior to 1980 most investigators were mainly interested in atoms with negative muons, while during the last few years the positive muon (μSR) studies have dominated exotic atom research

  9. Probabilistic methods in exotic option pricing

    NARCIS (Netherlands)

    Anderluh, J.H.M.

    2007-01-01

    The thesis presents three ways of calculating the Parisian option price as an illustration of probabilistic methods in exotic option pricing. Moreover options on commidities are considered and double-sided barrier options in a compound Poisson framework.

  10. A comprehensive method for exotic option pricing

    OpenAIRE

    Rossella Agliardi

    2010-01-01

    This work illustrates how several new pricing formulas for exotic options can be derived within a Levy framework by employing a unique pricing expression. Many existing pricing formulas of the traditional Gaussian model are obtained as a by-product.

  11. Euro-led research team creates first ever reaction between matter and antimatter

    CERN Multimedia

    2006-01-01

    "An EU-funded team of international researchers has produced the first ever reaction between matter and antimatter, creating protonium. Protonium is a unique type of atom that consists of a proton and an antiproton orbiting around each other." (1 page)

  12. Study of the concordance of a matter-antimatter symmetric Dirac-Milne Universe

    International Nuclear Information System (INIS)

    Benoit-Levy, A.

    2009-09-01

    This thesis is devoted to the study of the Dirac-Milne Universe, a cosmological model in which matter and antimatter are present in equal quantities and where antimatter, as suggested by general relativity through the properties of the Kerr-Newman solutions, is supposed to have a negative active gravitational mass. Supposing such hypothesis removes the necessity to invoke inflation, Dark Energy and Dark matter as mandatory components. Matter (with positive mass) and antimatter (with negative mass) being present in equal quantities, the scale factor evolves linearly with time. After a short summary of basic properties of standard cosmology, some consequences of this linear evolution are studied. The full study of primordial nucleosynthesis within the framework of the Dirac-Milne universe reveals that deuterium can be produced by residual annihilations between matter and antimatter shortly before recombination. Even though Dirac-Milne universe does not present any recent acceleration of the expansion, it is shown that this model is in good agreement with the cosmological test of type Ia supernovae. It is also shown that the position of the acoustic scale of the Cosmic Microwave Background (CMB) naturally appears at the degree scale. The full study of the CMB spectrum and the coherence of the notion of negative mass remain to be investigated, but this work exhibits a original model that could potentially give an alternative description of our Universe. (author)

  13. York University atomic scientist contributes to new breakthrough in the production of antimatter

    CERN Multimedia

    2002-01-01

    Physicists working in Europe, including Canada Research Chair in Atomic Physics at York University, Prof. Eric Hessels, have succeeded in capturing the first glimpse of the structure of antimatter. The ATRAP group of scientists at CERN have managed to examine the internal states of anti-hydrogen atoms (1/2 page).

  14. Unified picture for Dirac neutrinos, dark matter, dark energy and matter–antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2008-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  15. Matter-antimatter separation in the early universe by rotating black holes

    Science.gov (United States)

    Leahy, D. A.

    1981-01-01

    Consideration of the effect of rotating black holes evaporating early in the universe shows that they would have produced oppositely directed neutrino and antineutrino currents, which push matter and antimatter apart. This separation mechanism is, however, too feeble to account for a present baryon-to-photon ratio of 10 to the -9th, and has no significant observational consequences.

  16. Matter antimatter domains: A possible solution to the CP domain wall problem in the early universe

    Science.gov (United States)

    Mohanty, A. K.; Stecker, F. W.

    1984-01-01

    An SU(5) grand unified theory model is used to show how the degeneracy between vacua with different spontaneously broken charge parity can be dynamically lifted by a condensate of heavy fermion pairs. This drives a phase transition to a unique vacuum state with definite charge parity. The transition eliminates the domain walls in a matter antimatter symmetric domain cosmology.

  17. Exotic quarkonium states in CMS experiment

    CERN Document Server

    Chen, Kai-Feng

    2013-01-01

    Using large data samples of di-muon events, CMS can perform detailed measurements and searches for new states in the field of exotic quarkonium. We present our results on the production of prompt and non-prompt $\\rm X(3872)$, detected in the ${\\rm J}/\\psi \\pi^+\\pi^-$ decay channel, which extend to higher $p_{\\rm T}$ values than in any previous measurement. The cross-section ratio with respect to the $\\psi(2S)$ is given differentially in $p_{\\rm T}$, as well as $p_{\\rm T}$ integrated. For the first time at the LHC, the fraction of $\\rm X(3872)$ coming from B hadron decays has been measured. After these studies of the charmonium $\\rm X$, we present a new search for its bottomonium counterpart, denoted as $\\rm X_b$, based on a data sample of pp collisions at 8 TeV collected by CMS in 2012. In analogy to the $\\rm X(3872)$ studies, the analysis uses the ${\\rm X_b} \\to \\Upsilon(1S) \\pi \\pi$ exclusive decay channel, with the $\\Upsilon(1S)$ decaying to $\\mu^+ \\mu^-$ pairs. No evidence for $\\rm X_b$ is observed and up...

  18. Using exotic atoms to keep borders safe

    International Nuclear Information System (INIS)

    Stocki, T J; Olsthoorn, J; Jason, A; Miyadera, H; Esch, E-I; Hoteling, N J; Heffner, R H; Green, A; Adelmann, A

    2011-01-01

    Muons, created by a particle accelerator, can be used to scan cargo for special nuclear materials (SNM). These muons have a sufficiently long lifetime and are penetrating enough that they can be used to actively scan cargo to ensure the non-proliferation of SNM. A set of 'proof-of-concept' experiments have been performed to show that active muon analysis can be used. Experiments were performed at high intensity, medium energy particle accelerators (TRIUMF and PSI). Negative muons form exotic atoms with one electron replaced by the muon. Since the muon is captured in an excited state, it will give off x-rays which can be detected by high purity germanium detectors. The characteristic x-ray spectrum can be potentially used to identify nuclides. The muonic x-rays corresponding to the SNM of interest have been measured, even with the use of various shielding configurations composed of lead, iron, polyethylene, or fibreglass. These preliminary results show that muon scanning systems can be successfully used to find shielded SNM, helping to ensure the safety of all citizens.

  19. Using exotic atoms to keep borders safe

    International Nuclear Information System (INIS)

    Jason, A.; Miyadera, H.; Esch, E.I.; Hoteling, N.J.; Adelmann, A.; Heffner, R.H.; Green, A.; Olsthoorn, J.; Stocki, T.J.

    2010-01-01

    Muons, created by a particle accelerator, can be used to scan cargo for special nuclear materials (SNM). These muons exist long enough and are penetrating enough that they can be used to actively scan cargo to ensure the non-proliferation of SNM. A set of 'proof-of-concept' experiments have been performed to show that active muon analysis can be used. Experiments were performed at high intensity, medium energy particle accelerators (TRIUMF and PSI). Negative muons form exotic atoms with one electron replaced by the muon. Since the muon is captured in an excited state, it will give off x-rays which can be detected by high purity germanium detectors. These characteristic x-rays can be used to identify the nuclide. The muonic x-rays corresponding to the SNM of interest have been measured, even with the use of various shielding configurations composed of lead, iron, polyethylene, or fiberglass. These preliminary results show that muons can be successfully used to find shielded SNM. The safety of North Americans can be protected by the use of this technology.

  20. Camel as a transboundary vector for emerging exotic Salmonella serovars.

    Science.gov (United States)

    Ghoneim, Nahed H; Abdel-Moein, Khaled A; Zaher, Hala

    2017-05-01

    The current study was conducted to shed light on the role of imported camels as a transboundary vector for emerging exotic Salmonella serovars. Fecal samples were collected from 206 camels directly after slaughtering including 25 local camels and 181 imported ones as well as stool specimens were obtained from 50 slaughterhouse workers at the same abattoir. The obtained samples were cultured while Salmonella serovars were identified through Gram's stain films, biochemical tests and serotyping with antisera kit. Moreover, the obtained Salmonella serovars were examined by PCR for the presence of invA and stn genes. The overall prevalence of Salmonella serovars among the examined camels was 8.3%. Stn gene was detected in the vast majority of exotic strains (11/14) 78.6% including emerging serovars such as Salmonella Saintpaul, S. Chester, S. Typhimurium whereas only one isolate from local camels carried stn gene (1/3) 33.3%. On the other hand, none of the examined humans yielded positive result. Our findings highlight the potential role of imported camels as a transboundary vector for exotic emerging Salomenella serovars.

  1. Meteors, space aliens, and other exotic encounters

    Science.gov (United States)

    Tom. Hofacker

    1998-01-01

    Exotics have had a big impact on our environment. If you do not think so, just look at how many people believe that humans would not exist on this planet were it not for exotics. This belief centers on two main theories: (1) that humans could not have evolved were it not for a huge meteor from outer space striking the earth resulting in extinction of the dinasours, the...

  2. Exotic hadron and string junction model

    International Nuclear Information System (INIS)

    Imachi, Masahiro

    1978-01-01

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  3. Deep electroproduction of exotic hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2004-01-01

    We evaluate the leading order amplitude for the deep exclusive electroproduction of an exotic hybrid meson in the Bjorken regime. We show that, contrarily to naive expectation, this amplitude factorizes at the twist 2 level and thus scales like usual meson electroproduction when the virtual photon and the hybrid meson are longitudinally polarized. Exotic hybrid mesons may thus be studied in electroproduction experiments at JLAB, HERA (HERMES) or CERN (Compass)

  4. Search for exotic physics with ATLAS

    CERN Document Server

    Delsart, Pierre-Antoine

    2006-01-01

    At the LHC, the program of research in particle physics beyond the Standard Model is extremely rich. With the ATLAS detector, besides SUSY mainstream studies, many exotic theoretical models will be investigated. They range from compositeness of fundamental fermions to extra dimension scenarii through GUT models and include many variants. I shall review some selected typical studies by the ATLAS collaboration on exotic physics, highlighting the discovery prospects and the recent analyses using the latest full detector simulations.

  5. Everyday and Exotic Foodborne Parasites

    Directory of Open Access Journals (Sweden)

    Marilyn B Lee

    2000-01-01

    Full Text Available Everyday foodborne parasites, which are endemic in Canada, include the protozoans Entamoeba histolytica, Giardia lamblia and Cryptosporidium parvum. However, these parasites are most frequently acquired through unfiltered drinking water, homosexual activity or close personal contact such as in daycare centres and occasionally via a food vehicle. It is likely that many foodborne outbreaks from these protozoa go undetected. Transmission of helminth infections, such as tapeworms, is rare in Canada because of effective sewage treatment. However, a common foodborne parasite of significance is Toxoplasma gondii. Although infection can be acquired from accidental ingestion of oocysts from cat feces, infection can also result from consumption of tissue cysts in undercooked meat, such as pork or lamb. Congenital transmission poses an immense financial burden, costing Canada an estimated $240 million annually. Also of concern is toxoplasmosis in AIDS patients, which may lead to toxoplasmosis encephalitis, the second most common AIDS-related opportunistic infection of the central nervous system. Exotic parasites (ie, those acquired from abroad or from imported food are of growing concern because more Canadians are travelling and the number of Canada?s trading partners is increasing. Since 1996, over 3000 cases of Cyclospora infection reported in the United States and Canada were epidemiologically associated with importation of Guatemalan raspberries. Unlike toxoplasmosis, where strategies for control largely rest with individual practices, control of cyclosporiasis rests with government policy, which should prohibit the importation of foods at high risk.

  6. P fluxes and exotic branes

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Davide M. [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Risoli, Stefano [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-12-21

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T{sup 6}/[ℤ{sub 2}×ℤ{sub 2}] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  7. P fluxes and exotic branes

    International Nuclear Information System (INIS)

    Lombardo, Davide M.; Riccioni, Fabio; Risoli, Stefano

    2016-01-01

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T 6 /[ℤ 2 ×ℤ 2 ] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  8. Electron scattering and reactions from exotic nuclei

    International Nuclear Information System (INIS)

    Karataglidis, S.

    2017-01-01

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  9. EXOTIC: Development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    Flipot, A.J.; Kennedy, P.; Conrad, R.

    1989-03-01

    As part of the joint European Programme on fusion blanket technology three laboratories, Northern Research Laboratories (NRL), Springfields in the UK, SCK/CEN-Mol in Belgium and ECN-Petten in conjunction with JRC-Petten in the Netherlands have worked closely together since 1983 on the development of ceramic breeder materials, the programme being codenamed EXOTIC. Lithium oxides, aluminates, silicates and zirconates have been produced, characterised and irradiated in the HFR-Petten in experiments EXOTIC-1, -2 and -3. EXOTIC-4 is in preparation. In this fourth annual progress report the work achieved in 1987 is reported. For EXOTIC-1 to -3 mainly post irradiation examinations have been carried out like: visual inspection, puncturing of closed capsules, tritium retention measurements and material characterisation. Moreover, tritium release experiments on small specimens have started. SCK/CEN performed a general study on lithium silicates, in particular on the thermal stability. Finally, the fabrication and the characterisation of the materials to be irradiated in experiment EXOTIC-4 are presented. The eight capsules of EXOTIC-4 will be loaed with samples of Li 2 SiO 3 , Li 2 O, Li 2 ZrO 3 , Li 6 Zr 2 O 7 and Li 8 ZrO 6 . The irradiation will last 4 reactor cycles or about 100, Full Power Day, FPD. The main objective is to determine the tritium residence time of the various lithium zirconates. 18 figs., 8 refs., 15 tabs

  10. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  11. Human land use promotes the abundance and diversity of exotic species on caribbean islands.

    Science.gov (United States)

    Jesse, Wendy A M; Behm, Jocelyn E; Helmus, Matthew R; Ellers, Jacintha

    2018-05-31

    Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human-impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two PCA ordination axes related to habitat structure (i.e. forest or non-forest) and human impact level (i.e. addition of man-made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in non-forested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in non-forested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and non-forested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on

  12. Exotic mosquito threats require strategic surveillance and response planning.

    Science.gov (United States)

    Webb, Cameron E; Doggett, Stephen L

    2016-12-14

    Mosquito-borne diseases caused by endemic pathogens such as Ross River, Barmah Forest and Murray Valley encephalitis viruses are an annual concern in New South Wales (NSW), Australia. More than a dozen mosquito species have been implicated in the transmission of these pathogens, with each mosquito occupying a specialised ecological niche that influences their habitat associations, host feeding preferences and the environmental drivers of their abundance. The NSW Arbovirus Surveillance and Mosquito Monitoring Program provides an early warning system for potential outbreaks of mosquito-borne disease by tracking annual activity of these mosquitoes and their associated pathogens. Although the program will effectively track changes in local mosquito populations that may increase with a changing climate, urbanisation and wetland rehabilitation, it will be less effective with current surveillance methodologies at detecting or monitoring changes in exotic mosquito threats, where different surveillance strategies need to be used. Exotic container-inhabiting mosquitoes such as Aedes aegypti and Ae. albopictus pose a threat to NSW because they are nuisance-biting pests and vectors of pathogens such as dengue, chikungunya and Zika viruses. International movement of humans and their belongings have spread these mosquitoes to many regions of the world. In recent years, these two mosquitoes have been detected by the Australian Government Department of Agriculture and Water Resources at local airports and seaports. To target the detection of these exotic mosquitoes, new trapping technologies and networks of surveillance locations are required. Additionally, incursions of these mosquitoes into urban areas of the state will require strategic responses to minimise substantial public health and economic burdens to local communities.

  13. Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: a review.

    Science.gov (United States)

    Lasekan, Ola; Abbas, Kassim A

    2012-01-01

    The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed.

  14. Chemical reaction between matter and antimatter realized for the first time: it brings about the formation of protonium

    CERN Multimedia

    2006-01-01

    "Matter and antimatter particles run into each other and they annihilate into a small flash of energy: it happened at the first light of the Universe and it happens every day in the particles accelerators throughout the world." (1 page)

  15. How to build an antimatter rocket for interstellar missions - systems level considerations in designing advanced propulsion technology vehicles

    Science.gov (United States)

    Frisbee, Robert H.

    2003-01-01

    This paper discusses the general mission requirements and system technologies that would be required to implement an antimatter propulsion system where a magnetic nozzle is used to direct charged particles to produce thrust.

  16. Injuries, envenomations and stings from exotic pets.

    Science.gov (United States)

    Warwick, Clifford; Steedman, Catrina

    2012-07-01

    A variety of exotic vertebrate and invertebrate species are kept as 'pets' including fishes, amphibians (for example, frogs and toads), reptiles (turtles, crocodiles, lizards and snakes), birds, mammals (for example, primates, civets, and lions), and invertebrates (for example spiders, scorpions, and centipedes), and ownership of some of these animals is rising. Data for 2009-2011 suggest that the number of homes with reptiles rose by approximately 12.5%. Recent surveys, including only some of these animals, indicated that they might be present in around 18.6% of homes (equal to approximately 42 million animals of which around 40 million are indoor or outdoor fish). Many exotic 'pets' are capable of causing injury or poisoning to their keepers and some contacts prove fatal. We examined NHS Health Episode Statistics for England using selected formal categories for hospital admissions and bed days for 2004-2010 using the following categories of injury, envenomation or sting; bitten or struck by crocodile or alligator; bitten or crushed by other reptiles: contact with venomous snakes and lizards; contact with scorpions. Between 2004 and 2010 these data conservatively show a total of 760 full consultation episodes, 709 admissions and 2,121 hospital bed days were associated with injuries probably from exotic pets. Injuries, envenomations and stings from exotic pets constitute a small but important component of emerging medical problems. Greater awareness of relevant injuries and medical sequelae from exotic pet keeping may help medics formulate their clinical assessment and advice to patients.

  17. The antimatter. Press breakfast 23 may 2000; L'antimatiere. Petit dejeuner de presse 23 mai 2000

    Energy Technology Data Exchange (ETDEWEB)

    Spiro, M; Dejardin, M; Debu, P; Aleksan, R [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France)

    2000-05-01

    This document brings together the subjects discussed during the Press breakfast of 23 may 2000 on the antimatter, with scientists of the CEA and the CNRS. It presents the research programs and the experiments on the antimatter and the symmetry violation: the CP LEAR and the NA48 experiments at CERN, the BaBar detector at SLAC, the fundamental research at the CEA and the impacts on the energy policy. It provides also links for more detailed inquiries. (A.L.B.)

  18. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  19. Quasi-exotic open-flavor mesons

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria)

    2017-06-15

    Meson states with exotic quantum numbers arise naturally in a covariant bound-state framework in QCD. We investigate the consequences of shifting quark masses such that the states are no longer restricted to certain C-parities, but only by J{sup P}. Then, a priori, one can no longer distinguish exotic or conventional states. In order to identify signatures of the different states to look for experimentally, we provide the behavior of masses, leptonic decay constants, and orbital-angular-momentum decomposition of such mesons, as well as the constellations in which they could be found. Most prominently, we consider the case of charged quasi-exotic excitations of the pion. (orig.)

  20. X-ray spectroscopy from exotic atoms

    International Nuclear Information System (INIS)

    Hartmann, F.J.

    1994-01-01

    Why do experimentalists study exotic atoms, in particular antiprotonic atoms? The answer is simple: the information about electromagnetic, weak, and strong interactions that can be obtained by doing X-ray spectroscopy from exotic atoms is really worth the effort. It is possible to (1) enlarge the knowledge about the properties of exotic particles (such as mass and magnetic moment); (2) open a possibility to test quantum electrodynamics; (3) get detailed insight into the shape of nuclei (characterized by the nuclear radium and higher momenta) and even into the neutron distribution in the nucleus (neutron halo); and (4) use it as a powerful tool to learn about the strong interaction at very low relative hadron-nucleon velocities

  1. Can the new Neutrino Telescopes and LHC reveal the gravitational proprieties of antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    What are the gravitational proprieties of antimatter is still not known. One possibility is the gravitational repulsion between matter and antimatter (in short we call it antigravity). We point out two possible signatures of the assumed existence of antigravity. First, the supermassive black hole in the center of our Galaxy (Southern Sky)and in the center of the Andromeda Galaxy (Northern Sky)may produce a flux of antineutrinos measurable with the new generation of the neutrino telescopes; like the IceCube Neutrino Detector under construction at the South Pole, and the future one cubic kilometer telescope in Mediterranean Sea. Second, if microscopic black holes are successfully produced at the Large Hadron Collider (LHC) at CERN, their thermal (Hawking's) radiation should be dominated by a non-thermal radiation caused by antigravity.

  2. Some aspects of matter-antimatter asymmetry and states in the Universe

    International Nuclear Information System (INIS)

    Braghin, Fabio L.

    2011-01-01

    Full text: Matter-antimatter asymmetry observed in our Universe is discussed considering different aspects. The usual baryogenesis mechanism proposed by Sakharov is described and and few other mechanisms are analyzed. Furthermore, the possibility of the existence of antimatter islands is discussed in view of different observational results and plans for future observations. For the different mechanisms of producing such asymmetry, besides the breaking of CP, particular attention is given to CPT , considering both its possible breakdown in different systems and the framework of the CPT theorem, and to few other different effects which are (or might be) present in the (extended) phase diagram of strong interacting systems and which might not rely on non-equilibrium conditions. Some ideas of relevance for finite (anti)baryonic density systems are discussed as well. (author)

  3. Status of exotic states at ATLAS

    CERN Document Server

    Yeletskikh, Ivan; The ATLAS collaboration

    2017-01-01

    We review the status of searches and measurements of exotic hadron states at ATLAS. Among them: the search for the beauty partner of X(3872) charmonium state, the measurement of differential cross-section of the prompt and non-prompt production of X(3872) in the J/psi pi pi final states, the search for the structure in the B_s pi invariant mass, reported by D0 experiment, search for exotic states in B-hadron decays: pentaquarks in Lambda_b decays and tetraquarks in B-meson decays. ATLAS results and ongoing analyses perspectives are highlighted together with CMS and LHCb results.

  4. Greater soil carbon accumulation in deeper soils in native- than in exotic-dominated grassland plantings in the southern Plains

    Science.gov (United States)

    Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.

    2017-12-01

    Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.

  5. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  6. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    Science.gov (United States)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  7. Emerging science and technology of antimatter plasmas and trap-based beams

    International Nuclear Information System (INIS)

    Surko, C.M.; Greaves, R.G.

    2004-01-01

    Progress in the ability to accumulate and cool positrons and antiprotons is enabling new scientific and technological opportunities. The driver for this work is plasma physics research - developing new ways to create and manipulate antimatter plasmas. An overview is presented of recent results and near-term goals and challenges. In atomic physics, new experiments on the resonant capture of positrons by molecules provide the first direct evidence that positrons bind to 'ordinary' matter (i.e., atoms and molecules). The formation of low-energy antihydrogen was observed recently by injecting low-energy antiprotons into a cold positron plasma. This opens up a range of new scientific opportunities, including precision tests of fundamental symmetries such as invariance under charge conjugation, parity, and time reversal, and study of the chemistry of matter and antimatter. The first laboratory study of electron-positron plasmas has been conducted by passing an electron beam through a positron plasma. The next major step in these studies will be the simultaneous confinement of electron and positron plasmas. Although very challenging, such experiments would permit studies of the nonlinear behavior predicted for this unique and interesting plasma system. The use of trap-based positron beams to study transport in fusion plasmas and to characterize materials is reviewed. More challenging experiments are described, such as the creation of a Bose-condensed gas of positronium atoms. Finally, the future of positron trapping and beam formation is discussed, including the development of a novel multicell trap to increase by orders of magnitude the number of positrons trapped, portable antimatter traps, and cold antimatter beams (e.g., with energy spreads ≤1 meV) for precision studies of positron-matter interactions

  8. Gravitationally neutral dark matter–dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    International Nuclear Information System (INIS)

    Gribov, I A; Trigger, S A

    2016-01-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” ( M + gr and M -gr ), which have the same positive inertial mass M in = | M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M +gr -M -gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M ±gr superclusters without Big Rip. (paper)

  9. Exotic snakes are not always found in exotic places: how poison centres can assist emergency departments.

    Science.gov (United States)

    Lubich, Carol; Krenzelok, Edward P

    2007-11-01

    Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban settings, that are confronted with these exposures. It is important for emergency departments to be aware of the large underground presence of exotic venomous reptile pets and to utilise the expertise of regional poison centres that will also assist in the procurement of exotic antivenoms.

  10. Final Technical Report: "New Tools for Physics with Low-energy Antimatter"

    Energy Technology Data Exchange (ETDEWEB)

    Surko, Clifford M. [U. C. San Diego

    2013-10-02

    The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap from the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.

  11. The Janus Cosmological Model (JCM) : An answer to the missing cosmological antimatter

    Science.gov (United States)

    D'Agostini, Gilles; Petit, Jean-Pierre

    2017-01-01

    Cosmological antimatter absence remains unexplained. Twin universes 1967 Sakarov's model suggests an answer: excess of matter and anti-quarks production in our universe is balanced by equivalent excess of antimatter and quark in twin universe. JCM provides geometrical framework, with a single manifold , two metrics solutions of two coupled field equations, to describe two populations of particles, one with positive energy-mass and the other with negative energy-mass : the `twin matter'. In a quantum point of view, it's a copy of the standard matter but with negative mass and energy. The matter-antimatter duality holds in both sectors. The standard and twin matters do not interact except through the gravitational coupling expressed in field equations. The twin matter is unobservable from matter-made apparatus. Field equations shows that matter and twin matter repel each other. Twin matter surrounding galaxies explains their confinement (dark matter role) and, in the dust universe era, mainly drives the process of expansion of the positive sector, responsible of the observed acceleration (dark energy role).

  12. Prospects for Studies of the Free Fall and Gravitational Quantum States of Antimatter

    Directory of Open Access Journals (Sweden)

    G. Dufour

    2015-01-01

    Full Text Available Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium, and antihydrogen. Among those, the project GBAR at CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs. Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we report on the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications.

  13. Ion Storage Tests with the High Performance Antimatter Trap (HiPAT)

    Science.gov (United States)

    Martin, James J.; Lewis, Raymond A.; Chakrabarti, Suman; Pearson, Boise; Schafer, Charles (Technical Monitor)

    2002-01-01

    The NASA/Marshall Space Flight Centers (NASA/MSFC) Propulsion Research Center (PRC) is evaluating an antiproton storage system, referred to as the High Performance Antiproton Trap (HiPAT). This interest stems from the sheer energy represented by matter/antimatter annihilation process with has an energy density approximately 10 order of magnitude above that of chemical propellants. In other terms, one gram of antiprotons contains the equivalent energy of approximately 23 space shuttle external tanks or ET's (each ET contains roughly 740,000 kgs of fuel and oxidizer). This incredible source of stored energy, if harnessed, would be an enabling technology for deep space mission where both spacecraft weight and propulsion performance are key to satisfying aggressive mission requirements. The HiPAT hardware consists of a 4 Tesla superconductor system, an ultra high vacuum test section (vacuum approaching 10(exp -12) torr), and a high voltage confinement electrode system (up to 20 kvolts operation). The current laboratory layout is illustrated. The HiPAT designed objectives included storage of up to 1 trillion antiprotons with corresponding lifetimes approaching 18 days. To date, testing has centered on the storage of positive hydrogen ions produced in situ by a stream of high-energy electrons that passes through the trapping region. However, due to space charge issues and electron beam compression as it passes through the HiPAT central field, current ion production is limited to less then 50,000 ions. Ion lifetime was determined by counting particle populations at the end of various storage time intervals. Particle detection was accomplished by destructively expelling the ions against a micro-channel plate located just outside the traps magnetic field. The effect of radio frequency (RF) stabilization on the lifetime of trapped particles was also examined. This technique, referred to as a rotating wall, made use of a segmented electrode located near the center of the trap

  14. Single production of an exotic bottom partner at LHC

    International Nuclear Information System (INIS)

    Álvarez, Ezequiel; Rold, Leandro Da; Vietto, Juan Ignacio Sanchez

    2014-01-01

    We study single production and detection at the LHC run II of exotic partners of the bottom quark. For masses larger than 1 TeV single production can dominate over pair production that is suppressed due to phase space. The presence of exotic partners of the bottom is motivated in models aiming to solve the A FB b anomaly measured at LEP and SLC. Minimal models of this type with partial compositeness predict, as the lightest bottom partner, a new fermion V of electric charge −4/3, also called mirror. The relevant coupling for our study is a WVb vertex, which yields a signal that corresponds to a hard W, a hard b-jet and a forward light jet. We design a search strategy for the leptonic decay of the W, which avoids the large QCD multijet background and its large uncertainties. We find that the main backgrounds are W+jets and tt-bar, and the key variables to enhance the signal over them are a hard b-jet and the rapidity of the light jet. We determine the discovery reach for the LHC run II, in particular we predict that, for couplings of order ∼g/10, this signal could be detected at a 95% confidence level with a mass up to 2.4 TeV using the first 100 fb −1

  15. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  16. Young and Exotic Stellar Zoo

    Science.gov (United States)

    2005-03-01

    constellation Ara (the Altar). It was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970 - 74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100,000 - and this is why it has taken so long to uncover the true nature of this particular cluster. In 2001, the team of astronomers identified more than a dozen extremely hot and peculiar massive stars in the cluster, so-called "Wolf-Rayet" stars. They have since studied Westerlund 1 extensively with various ESO telescopes. They used images from the Wide Field Imager (WFI) attached to the 2.2-m ESO/MPG as well as from the SUperb Seeing Imager 2 (SuSI2) camera on the ESO 3.5-m New Technology Telescope (NTT). From these observations, they were able to identify about 200 cluster member stars. To establish the true nature of these stars, the astronomers then performed spectroscopic observations of about one quarter of them. For this, they used the Boller & Chivens spectrograph on the ESO 1.52-m telescope and the ESO Multi-Mode Instrument (EMMI) on the NTT. An Exotic Zoo These observations have revealed a large population of very bright and massive, quite extreme stars. Some would fill the solar system space within the orbit of Saturn (about 2,000 times larger than the Sun!), others are as bright as a million Suns. Westerlund 1 is obviously a fantastic stellar zoo, with a most exotic population and a true astronomical bonanza. All stars identified are evolved and very massive, spanning the full range of stellar oddities from Wolf-Rayet stars, OB supergiants, Yellow Hypergiants (nearly as bright as a million Suns) and Luminous Blue Variables (similar to the exceptional Eta Carinae object - see ESO PR 31/03). All stars so far analysed in Westerlund 1 weigh at least 30-40 times more than the Sun. Because such stars have a rather short life - astronomically speaking

  17. Results from searches for exotic phenomena

    CERN Document Server

    Martyniuk, Alex; The ATLAS collaboration

    2017-01-01

    This talk will review the current state of experimental searches for "exotic" physics beyond the standard model of particle physics. The talk will cover a wide range of searches from ATLAS and CMS, in a (hopefully) jargon free pedagogical fashion, showing the big picture of the field at this time.

  18. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  19. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  20. Biodiversity and the exotic species threat

    Science.gov (United States)

    Peter S. White

    1998-01-01

    Exotic species invasions, called by one conservation biologist the "least reversible" of all human impacts, cause harm to economies (e.g., fisheries, wildlife populations, tourism), the environment (e.g., in the form of broadcast of pesticides and herbicides), human health and wellbeing (e.g., allergic responses and the increase in fire severity in some...

  1. EXOTIC: Development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    Kwast, H.; Conrad, R.

    1989-09-01

    In this fifth EXOTIC annual progress report the work carried out in 1988 is reported. For EXOTIC-1, -2 and -3 the post-irradiation examinations have been continued with tritium retention measurements, annealng experiments, determination of physical and mechanical properties and X-ray diffraction analysis. Irradiation of EXOTIC-4 has been performde and the post-irradiation examination has started. Transient tritium release curves are given and analysed. The resulting tritium residence times show that for the Li-zirconates a residence time of less than one day can be achieved in the temperature region of 350-600 C. The loading scheme, the objectives and some fabrication data of EXOTIC-5 are give. Moreover, the fabrication of laboratory scale batches has started to investigate the effect of microstructural parameters on tritium release. Finally, an investigation was started on the system Li 2 O-ZrO 2 , with emphasis on the lithia-rich compositions. 40 figs., 9 refs., 10 tabs

  2. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  3. Overview of Exotic Physics at ATLAS

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2016-01-01

    Proceeding for the conference plenary talk at HEPMAD16, Madagascar on the topic of "Overview of Exotic Physics at ATLAS" (ATL-PHYS-SLIDE-2016-807 https://cds.cern.ch/record/2225222) Deadline: 16/12/2016 (could be postponed for some days later upon request as recently suggested by the conference organizer)

  4. Summary of exotic collider concepts group

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1995-01-01

    We present a summary of the discussions in the Exotic Collider Concepts Group. Most of the discussions were centered around the status and open problems for muon-muon and gamma-gamma colliders. In addition the group discussed some general problems and new results of accelerator physics. copyright 1995 American Institute of Physics

  5. Top 5 exotic clones for potato breeding

    Science.gov (United States)

    Wild and cultivated relatives of potato feature prominently in breeding programs. In this short article, I describe five exotic clones that have promising traits for the future of the US potato industry. They include M6, an inbred line of S. chacoense that provides a source of genes for self-compati...

  6. Properties of exotic matter for heavy-ion searches

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.; Greiner, C.; Stoecker, H.; Vischer, A.P.

    1997-01-01

    We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (metastable exotic multihypernuclear objects (MEMOs)) and their relevance for present and future heavy-ion searches. The strong and weak decays are discussed separately to distinguish between long- and short-lived candidates where the former ones are detectable in present heavy-ion experiments while the latter ones are present in future heavy-ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass-to-charge ratio like a anti deuteron (M/Z approx.= -2) but masses of A 10-16. We also predict many short-lived candidates, both in quark and hadronic form, which can be highly charged. Purely hyperonic nuclei such as the Ξα (2Ξ 0 2Ξ - ) are bound and have a negative charge while carrying a positive baryon number. We also demonstrate that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy-ion colliders. (author)

  7. Electroweak scale physics & exotic searches at LHCb

    CERN Document Server

    Lupton, Olli

    2018-01-01

    The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range 2–5 that is principally designed for the study of b- and c-hadrons, but which is well-suited to a wide variety of electroweak scale measurements and exotic searches that are highly complementary to other experiments at the LHC and elsewhere. Several features of the detector that are crucial for the core flavour physics programme, such as excellent vertex and momentum resolution, and a powerful trigger system, contribute to excellent jet tagging performance and sensitivity to low mass exotic states. LHCb operates at a substantially lower instantaneous luminosity than the general purpose detectors at the LHC, ATLAS and CMS, which results in a clean, low pile-up environment in which to search for physics beyond the Standard Model (SM).

  8. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2015-10-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.

  9. Electron microscopy of some exotic materials

    International Nuclear Information System (INIS)

    Mitchell, T.E.

    1998-01-01

    Just about every material has been looked at under the microscope, either out of pure inquisitiveness or the need to relate the microstructure to its properties. Some of these materials are mundane, like steels or glass or polyethylene; others are so-called advanced, such as intermetallics, silicon nitride or zirconia; yet others might be called exotic whether they be martian rocks, high temperature superconductors, fullerenes, diamonds, or the latest thin film device. Many exotic materials are important in Los Alamos, not only weapons materials such as actinides, tritium and explosives, but also civilian materials for energy applications. Here the author will report briefly on plutonium and uranium, on rhenium disilicide, and on Cu-Nb nanolayered composites

  10. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2006-04-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.

  11. Kulit ikan kakap tersamak: Exotic dan prospektif

    Directory of Open Access Journals (Sweden)

    Emiliana Kasmudjiastuti

    2005-01-01

    Full Text Available Kakap fish skins are waste products of fillet industry. Up to now they have been wasted, of course accumulatively will cause environmental pollution. They are classified as the type of non conventional leather and exotic ones for the reasons of having special, beautiful, unique, typical, and attractive grain. Kakap fish skin have relatively small dimentions, there fore the tanning process can be done by home industry because simple equipments are possible to be used to process the fish skins into leather. In addition, Kakap fish leather have physical property of good tensile strength that may be used as material for leather goods. Although small however the exotic leather of kakap fish skins are prospective to be developed as material to manufacture exclusive leather goods, especially for niche markets. They also can be used as an alternative to substitute conventional leather.

  12. Detection of low-energy antinuclei in space using an active-target particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Thomas; Greenwald, Daniel; Konorov, Igor; Paul, Stephan [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany)

    2015-07-01

    Measuring antimatter in space excellently probes various astrophysical processes. The abundances and energy spectra of antiparticles reveal a lot about the creation and propagation of cosmic-ray particles in the universe. Abnormalities in their spectra can reveal exotic sources or inaccuracies in our understanding of the involved processes. The measurement of antiprotons and the search for antideuterons and antihelium are optimal at low kinetic energies since background from high-energy cosmic-ray collisions is low. For this reason, we are developing an active-target particle detector capable of detecting ions and anti-ions in the energy range of 30-100 MeV per nucleon. The detector consists of 900 scintillating fibers coupled to silicon photomultipliers and is designed to operate on nanosatellites. The primary application of the detector will be the Antiproton Flux in Space (AFIS) mission, whose goal is the measurement of geomagnetically trapped antiprotons inside Earth's inner radiation belt. In this talk, we explain our particle identification technique and present results from first in-beam measurements with a prototype.

  13. 2d orbifolds with exotic supersymmetry

    Science.gov (United States)

    Florakis, Ioannis; García-Etxebarria, Iñaki; Lüst, Dieter; Regalado, Diego

    2018-02-01

    We analyse various two dimensional theories arising from compactification of type II and heterotic string theory on asymmetric orbifolds. We find extra supersymmetry generators arising from twisted sectors, giving rise to exotic supersymmetry algebras. Among others we discover new cases with a large number of supercharges, such as N=(20,8), N=(24,8), N=(32,0), N=(24,24) and N=(48,0).

  14. Constraints on fermion mixing with exotics

    International Nuclear Information System (INIS)

    Nardi, E.; Tommasini, D.

    1991-11-01

    We analyze the constraints on the mixing angles of the standard fermions with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets), that appear in many extensions of the electroweak theory. The updated Charged Current and Neutral Current experimental data, including also the recent Z-peak measurements, are considered. The results of the global analysis of all these data are then presented

  15. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  16. Remarks on the exotic U-meson

    International Nuclear Information System (INIS)

    Chan Hongmo; Tsou Sheungtsun

    1991-12-01

    In expectation of imminent results from the new hyperon beam experiment at CERN concerning the exotic U-meson at 3.1 GeV, we propose a detailed program of experimental tests to check the suggestion that U is a qqq-barq-bar ''M-diquonium'' state. Apart from some very characteristic decay modes, the U is expected to occur together with several analogous states with various quantum numbers to which it is intimately related. (author)

  17. Exotic rotational correlations in quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig

    2017-05-01

    It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.

  18. Strange exotic states and compact stars

    International Nuclear Information System (INIS)

    Sagert, Irina; Wietoska, Mirjam; Schaffner-Bielich, Juergen

    2006-01-01

    We discuss the possible appearance of strange exotic multi-quark states in the interiors of neutron stars and signals for the existence of strange quark matter in the cores of compact stars. We show how the in-medium properties of possible pentaquark states are constrained by pulsar mass measurements. The possibility of generating the observed large pulsar kick velocities by asymmetric emission of neutrinos from strange quark matter in magnetic fields is outlined

  19. Production and identification of very exotic nuclei

    International Nuclear Information System (INIS)

    Pougheon, F.

    1986-01-01

    New very exotic nuclei have been produced by fragmentation of the projectile at intermediate energy at GANIL. They have been identified through time of flight and ΔE-E measurements after a magnetic separation with the 0 0 LISE spectrometer. New neutron rich isotopes have been identified up to Z = 26 and evidence for the stability of the new series Tz = -5/2 has been shown. These results improve the knowledge of the neutron and proton drip lines

  20. Human salmonellosis associated with exotic pets.

    OpenAIRE

    Woodward, D L; Khakhria, R; Johnson, W M

    1997-01-01

    During the period from 1994 to 1996, an increase in the number of laboratory-confirmed cases of human salmonellosis associated with exposure to exotic pets including iguanas, pet turtles, sugar gliders, and hedgehogs was observed in Canada. Pet turtle-associated salmonellosis was recognized as a serious public health problem in the 1960s and 1970s, and in February 1975 legislation banning the importation of turtles into Canada was enacted by Agriculture Canada. Reptile-associated salmonellosi...

  1. Development and data analysis of a position detector for AE$\\bar{g}$IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Document Server

    Gligorova, Angela; Doser, Michael; Pacifico, Nicola

    2015-03-13

    AE$\\mathrm{\\bar{g}}$IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an antimatter experiment based at CERN, the European Organization for Nuclear Research, whose goal is to carry out the first direct measurement of the Earth’s gravitational acceleration on antimatter. The outcome of such measurement would be the first precision test of the Weak Equivalence Principle in a completely new area. According to WEP, all bodies fall with the same acceleration regardless of their mass and composition. AE$\\mathrm{\\bar{g}}$IS will attempt to achieve its aim by measuring the gravitational acceleration ($\\bar{g}$) for antihydrogen with 1$\\%$ relative precision. The first step towards the final goal is the formation of a pulsed, cold antihydrogen beam, which will be performed by a charge exchange reaction between laser excited (Rydberg) positronium and cold (100 mK) antiprotons. The antihydrogen atoms will be accelerated by an inhomogeneous electric field (Stark acceleration) to form a beam whose fr...

  2. Exploring exotic states with twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri

    2017-01-01

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  3. Exploring exotic states with twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Agadjanov, Dimitri

    2017-09-11

    he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.

  4. Human salmonellosis associated with exotic pets.

    Science.gov (United States)

    Woodward, D L; Khakhria, R; Johnson, W M

    1997-11-01

    During the period from 1994 to 1996, an increase in the number of laboratory-confirmed cases of human salmonellosis associated with exposure to exotic pets including iguanas, pet turtles, sugar gliders, and hedgehogs was observed in Canada. Pet turtle-associated salmonellosis was recognized as a serious public health problem in the 1960s and 1970s, and in February 1975 legislation banning the importation of turtles into Canada was enacted by Agriculture Canada. Reptile-associated salmonellosis is once again being recognized as a resurgent disease. From 1993 to 1995, there were more than 20,000 laboratory-confirmed human cases of salmonellosis in Canada. The major source of Salmonella infection is food; however, an estimated 3 to 5% of all cases of salmonellosis in humans are associated with exposure to exotic pets. Among the isolates from these patients with salmonellosis, a variety of Salmonella serotypes were also associated with exotic pets and included the following: S. java, S. stanley, S. poona, S. jangwani, S. tilene, S. litchfield, S. manhattan, S. pomona, S. miami, S. rubislaw, S. marina subsp. IV, and S. wassenaar subsp. IV.

  5. Infectious threats from exotic pets: dermatological implications.

    Science.gov (United States)

    Rosen, Ted; Jablon, Jennifer

    2003-04-01

    Zoonoses are diseases that can be transmitted from animals to humans. More than 250 distinct zoonoses have been described in the literature. It is estimated that 56% of United States households contain at least one pet, and although considerable research has been performed regarding the more common household animals including dogs, cats, small birds, and rodents, surprisingly little is known about the zoonotic hazards of owning the more exotic pets. According to the 1997 USPHS/IDSA Report on the Prevention of Opportunistic Infections in Persons Infected with Human Immunodeficiency Virus, the immunocompromised patient should avoid contact with feces-laden soil, litter boxes, reptiles, most pet birds, and any animal less than 6 months old . It has also been documented that because of their inquisitive nature, children are at even higher risk for infection from animals than adolescents or immunocompetent adults. In this article the authors have reviewed the available data regarding hazards associated with the hedgehog, flying squirrel, iguana, chinchilla, and cockatoo. With the growing popularity of such exotic pets, further observation and research is warranted. Physicians need to be aware of the possibility of zoonotic disease related to exotic pet ownership, and they should address this issue when obtaining a history and formulating a differential diagnosis of cutaneous lesions suggestive of such illnesses.

  6. Exotic atoms. Technical progress report

    International Nuclear Information System (INIS)

    Kunselman, R.

    1994-01-01

    The experiments use a variety of hydrogen isotopic mixtures to form solid targets for muons to produce muonic hydrogen isotope atoms that escape into vacuum. The method relies on transfer of the muon from a proton to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections (RT effect), and are emitted from the surface of the layer. A second solid hydrogen isotopic target is produced downstream on which the muonic hydrogen atom can react. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes of energy dependence of transfer, production rates, and muon molecular formation. The processes include muon catalyzed fusion of muonic tritium with deuterium which is the most possible candidate for energy production fusion. Our interest is the nuclear physics reaction rates and to use the muonic hydrogen isotopes in vacuum for energy level measurements. The method uses time of flight and is reminiscent of double scattering experiments. Two other experiments are in the development stages. First to measure the energy dependence of the Ramsauer-Townsend cross section in tritium where it has not been measured. The measurements would be compared to deuterium and calculations. Second, kaonic atoms, hypernuclei, and kaon-nucleon scattering at DAPHNE

  7. Experimental considerations for testing antimatter antigravity using positronium 1S-2S spectroscopy

    Science.gov (United States)

    Crivelli, P.; Cooke, D. A.; Friedreich, S.

    2014-05-01

    In this contribution to the WAG 2013 workshop we report on the status of our measurement of the 1S-2S transition frequency of positronium. The aim of this experiment is to reach a precision of 0.5 ppb in order to cross check the QED calculations. After reviewing the current available sources of Ps, we consider laser cooling as a route to push the precision in the measurement down to 0.1 ppb. If such an uncertainty could be achieved, this would be sensitive to the gravitational redshift and therefore be able to assess the sign of gravity for antimatter.

  8. Soft CP violation and the global matter-antimatter symmetry of the universe

    Science.gov (United States)

    Senjanovic, G.; Stecker, F. W.

    1980-01-01

    Scenarios for baryon production are considered within the context of SU(5) and SO(10) grand unified theories where CP violation arises spontaneously. The spontaneous CP symmetry breaking then results in a matter-antimatter domain structure in the universe. Two possible, distinct types of theories of soft CP violation are defined. In the first type the CP nonconservation originates only from the breaking of SU(2) sub L X U(1) symmetry, and in the second type, even at the unification temperature scale, CP violation can emerge as a result of symmetry breaking by the vacuum expectation values of the superheavy Higgs sector scalars.

  9. Dissecting the Science of "Angels and Demons" or Antimatter and Other Matters (Vernon W. Hughes Memorial Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Howard

    2009-05-27

    Howard Gordon, a physicist from the U.S. Department of Energy’s Brookhaven National Laboratory, and local educators will separate the science facts from the science fiction of “Angels & Demons,” a major motion picture based on Dan Brown’s best-selling novel. The film, which opens nationally in theaters today, focuses on a plot to destroy the Vatican using antimatter stolen from the Large Hadron Collider (LHC) at the European particle physics laboratory CERN. Speakers will explain the real science of the LHC, including antimatter – oppositely charged cousins of ordinary matter with intriguing properties.

  10. Dissecting the Science of 'Angels and Demons' or Antimatter and Other Matters (Vernon W. Hughes Memorial Lecture)

    International Nuclear Information System (INIS)

    Gordon, Howard

    2009-01-01

    Howard Gordon, a physicist from the U.S. Department of Energy's Brookhaven National Laboratory, and local educators will separate the science facts from the science fiction of 'Angels and Demons,' a major motion picture based on Dan Brown's best-selling novel. The film, which opens nationally in theaters today, focuses on a plot to destroy the Vatican using antimatter stolen from the Large Hadron Collider (LHC) at the European particle physics laboratory CERN. Speakers will explain the real science of the LHC, including antimatter - oppositely charged cousins of ordinary matter with intriguing properties.

  11. Exotic particle searches using the Purdue AMS facility

    International Nuclear Information System (INIS)

    Javorsek, D. II; Elmore, D.; Fischbach, E.; Miller, T.

    2001-01-01

    Two exotic particle searches are being performed using the Accelerator Mass Spectrometer (AMS) at the Purdue Rare Isotope Measurement Laboratory (PRIME Lab). Recent theoretical developments allow for the possibility of small violations of the symmetrization postulate, which may lead in turn to detectable violations of the Pauli exclusion principle. We report the results of a new experimental search for paronic (Pauli-violating) Be, denoted by Be', in samples where Be' retention would be highest. Our limits represent an improvement by a factor of approximately 300 over a previous search for Be'. There are also several recent cosmological motivations for strongly interacting massive particles (SIMPs). We present results from our current search for anomalous heavy isotopes of Au in samples of Australian and laboratory gold with a limit on SIMP abundance ratios as low as 10 -12 . This experiment provides significant constraints on the existence of such particles in high Z nuclei

  12. On exotic hybrid meson production in γ*γ collisions

    International Nuclear Information System (INIS)

    Anikin, I.V.; Teryaev, O.V.; Pire, B.; Szymanowski, L.; Universite de Liege; Paris-11 Univ., 91 - Orsay; Wallon, S.

    2006-01-01

    We present a theoretical study of exotic hybrid meson (J PC =1 -+ ) production in photon-photon collisions where one of the photons is deeply virtual, including twist two and twist three contributions. We calculate the cross section of this process, which turns out to be large enough to imply sizeable counting rates in the present high luminosity electron-positron colliders. We emphasize the importance of the πη decay channel for the detection of the hybrid meson candidate π 1 (1400) and calculate the cross section and the angular distribution for πη pair production in the unpolarized case. This angular distribution is a useful tool for disentangling the hybrid meson signal from the background. Finally, we calculate the single spin asymmetry associated with one initial longitudinally polarized lepton. (orig.)

  13. Prospects for comparison of matter and antimatter gravitation with ALPHA-g

    Science.gov (United States)

    Bertsche, W. A.

    2018-03-01

    The ALPHA experiment has recently entered an expansion phase of its experimental programme, driven in part by the expected benefits of conducting experiments in the framework of the new AD + ELENA antiproton facility at CERN. With antihydrogen trapping now a routine operation in the ALPHA experiment, the collaboration is leading progress towards precision atomic measurements on trapped antihydrogen atoms, with the first excitation of the 1S-2S transition and the first measurement of the antihydrogen hyperfine spectrum (Ahmadi et al. 2017 Nature 541, 506-510 (doi:10.1038/nature21040); Nature 548, 66-69 (doi:10.1038/nature23446)). We are building on these successes to extend our physics programme to include a measurement of antimatter gravitation. We plan to expand a proof-of-principle method (Amole et al. 2013 Nat. Commun. 4, 1785 (doi:10.1038/ncomms2787)), first demonstrated in the original ALPHA apparatus, and perform a precise measurement of antimatter gravitational acceleration with the aim of achieving a test of the weak equivalence principle at the 1% level. The design of this apparatus has drawn from a growing body of experience on the simulation and verification of antihydrogen orbits confined within magnetic-minimum atom traps. The new experiment, ALPHA-g, will be an additional atom-trapping apparatus located at the ALPHA experiment with the intention of measuring antihydrogen gravitation. This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

  14. Light element abundances in a matter-antimatter model of the universe

    International Nuclear Information System (INIS)

    Aly, J.J.

    1978-01-01

    This paper is devoted to the problem of light element synthesis in a baryon symmetric Big-Bang cosmology, in which the universe is constituted at the end of the leptonic era by a nucleon-antinucleon emulsion. If the initial typical size of the matter or antimatter regions is sufficiently high to avoid significant neutron annihilation, nucleosynthesis can proceed in this kind of model in the same way as in the conventional Big-Bang. But the abundances of the created light elements can be modified at a later time by interaction of the nuclei with the high energy particles and photons resulting from annihilation. In this article, we consider two specific mechanisms able to change the abundances: a 4 He 'nucleodisruption' process (proposed by Combes et al., 1975), which leads to deuterium production, and 4 He photodisintegration by annihilation γ-rays, which leads to an increase of the 3 He and D production. General relations are established which allow one to compute the abundances of the so created elements when the size l of the matter or antimatter regions and the annihilation rate are given as function of time. These relations are applied to the Omnes model, in which the size l grows by a coalescence mechanism. It is shown that in this model the D and 3 He abundances are much greater than the limits on primordial abundances deduced from the present observations. (orig.) [de

  15. Prospects for comparison of matter and antimatter gravitation with ALPHA-g.

    Science.gov (United States)

    Bertsche, W A

    2018-03-28

    The ALPHA experiment has recently entered an expansion phase of its experimental programme, driven in part by the expected benefits of conducting experiments in the framework of the new AD + ELENA antiproton facility at CERN. With antihydrogen trapping now a routine operation in the ALPHA experiment, the collaboration is leading progress towards precision atomic measurements on trapped antihydrogen atoms, with the first excitation of the 1S-2S transition and the first measurement of the antihydrogen hyperfine spectrum (Ahmadi et al. 2017 Nature 541 , 506-510 (doi:10.1038/nature21040); Nature 548 , 66-69 (doi:10.1038/nature23446)). We are building on these successes to extend our physics programme to include a measurement of antimatter gravitation. We plan to expand a proof-of-principle method (Amole et al. 2013 Nat. Commun. 4 , 1785 (doi:10.1038/ncomms2787)), first demonstrated in the original ALPHA apparatus, and perform a precise measurement of antimatter gravitational acceleration with the aim of achieving a test of the weak equivalence principle at the 1% level. The design of this apparatus has drawn from a growing body of experience on the simulation and verification of antihydrogen orbits confined within magnetic-minimum atom traps. The new experiment, ALPHA-g, will be an additional atom-trapping apparatus located at the ALPHA experiment with the intention of measuring antihydrogen gravitation.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Authors.

  16. Mathematical Descriptions of Axially Varying Penning Traps for the Antimatter Experiment: gravity, Interferometry, and Spectroscopy

    CERN Document Server

    Stephanie, Brown

    2015-01-01

    Antimatter, though proposed in 1933, is still not well understood. AEgIS aims to study the interaction of antihydrogen with the earth's gravitational field. This information will add to our understanding of the matter-antimatter asymmetry present in our universe. This paper discusses a Penning-Malmberg with a magnetic mirror that will hold $C_{2}^{-}$ that will be used for sympathetic cooling of antiprotons before the antihydrogen is created. The trap, which is critical to the cooling process of the antihydrogen, can be characterized by the separatrix between trapped and untrapped particles. This paper applies analytical processes used to define the separatrix of pure electron plasmas to a molecular plasma. Our work is based on the desire conditions (density, particle number, field strength, trap size) of the high field region. The initial application of a semi-analytical method applied to our trap defines the trap potential difference at \\~ 0.6V. The separatrix is defined in both the high and low fiel...

  17. The role of exotic tree species in Nordic forestry

    DEFF Research Database (Denmark)

    Kjær, Erik Dahl; Lobo, Albin; Myking, Tor

    2014-01-01

    the vegetation and forest history and its implications for the interest in using exotic species. We review to what extent exotic species can contribute to increased economic returns from forest plantings and the potential negative ecological effects associated with introduction of new species. Considering...... the expected climate changes, we discuss whether and how the increased use of exotic species can contribute to sustained and increased health and productivity of Nordic forests without jeopardising ecological and social values....

  18. Aliens in Paradise. Boat density and exotic coastal mollusks in Moorea Island (French Polynesia).

    Science.gov (United States)

    Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

    2015-12-01

    Pacific islands are particularly vulnerable to the effects of invasive species. After habitat destruction or modification, invasive species are responsible for more biological extinctions than any other cause. Further, the rate of extinction of native species has been higher on islands than anywhere else in the world. Invasive species have also degraded native ecosystems. In order to detect exotic intertidal mollusk species, an extensive sampling around Moorea Island, a more or less unspoiled island surrounded by a rich coral reef habitat, has been developed considering that sampled points have different characteristics in wave exposure, algae coverage, type of substrate, distance to ports, distance to freshwater, distance sewage and boat traffic. Samples were DNA barcoded for unequivocal species assignation. The presence of five NIS among 26 species seems an important signal of introduction of alien biota in Moorea Island coast. However they were represented by a total of 38 individuals among 1487 mollusks (2.55%). While the distance to relatively big ports influenced directly species richness, the intensity of maritime traffic measured as boat density near sampling points was significantly associated with the frequency of exotic species. Other environmental factors did not show significant correlation with the frequency of exotics, suggesting that in an environment without big discontinuities, with little habitat modification, local boat traffic is the most influential factor in the spread of exotic species. This could be mitigated relatively easily by reducing boat density in local zones of ecological interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Discovering uncolored naturalness in exotic Higgs decays

    International Nuclear Information System (INIS)

    Curtin, David; Verhaaren, Christopher B.

    2015-01-01

    Solutions to the hierarchy problem usually require top partners. In standard SUSY or composite Higgs theories, the partners carry SM color and are becoming increasingly constrained by LHC searches. However, theories like Folded SUSY (FS), Twin Higgs (TH) and Quirky Little Higgs (QLH) introduce uncolored top partners, which can be SM singlets or carry electroweak charge. Their small production cross section left doubt as to whether the LHC can effectively probe such scenarios. Typically, these partners are charged under their own mirror color gauge group. In FS and QLH, the absence of light mirror matter allows glueballs to form at the bottom of the mirror spectrum. This is also the case in some TH realizations. The Higgs can decay to these mirror glueballs, with the glueballs decaying into SM particles with potentially observable lifetimes. We undertake the first detailed study of this glueball signature and quantitatively demonstrate the discovery potential of uncolored naturalness via exotic Higgs decays at the LHC and a potential future 100 TeV collider. Our findings indicate that mirror glueballs are the smoking gun signature of natural FS and QLH type theories, in analogy to tree-level Higgs coupling shifts for the TH. We show that glueball masses in the ∼10–60 GeV mass range are theoretically preferred. Careful treatment of lifetime, mirror-hadronization and nonperturbative uncertainties is required to perform meaningful collider studies. We outline several new search strategies for exotic Higgs decays of the form h→XX→4f at the LHC, with X having lifetimes in the 10μm to km range. We find that FS stops can be probed with masses up to 600 (1100) GeV at the LHC with 300 (3000) fb −1 of data, and TH top partners could be accessible with masses up to 900 (1500) GeV. This makes exotic Higgs decays the prime discovery channel for uncolored naturalness at the LHC.

  20. Exotic nuclei from a theoretical perspective

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Oak Ridge National Lab., TN; Univ. of Warsaw

    1998-01-01

    One of the main frontiers of nuclear structure today is the physics of radioactive nuclear beams. Experiments with radioactive beams will make it possible to look closely into many aspects of the nuclear many-body problem. What makes this subject both exciting and difficult is: (i) the weak binding and corresponding closeness of the particle continuum, implying a large diffuseness of the nuclear surface and extreme spatial dimensions characterizing the outermost nucleons, and (ii) access to the exotic combinations of proton and neutron numbers which offer prospects for completely new structural phenomena

  1. Exotic woody plant invaders of the Transvaal

    Directory of Open Access Journals (Sweden)

    L. Henderson

    1984-12-01

    Full Text Available The frequency and abundance o ;f exotic, woody plant invaders were recorded in 60% of the quarter degree squares in the study area. Sixty-one invaders were encountered o f which the most important and aggressive were Acacia dealbaia, Populus spp.,  Melia azedarach, Opuntia ficus-indica, Salix babylonica and  Acacia mearnsii. Invasion patterns are discussed and an attempt is made to correlate distribution with environmental factors. Attention is drawn to the areas of greatest invasion and the areas that are liable to show the greatest expansion in the future.

  2. Hard production of exotic hybrid mesons

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.; Teryaev, O.V. [Bogoliubov Lab. of Theoretical Physics, JINR, Dubna (Russian Federation); Pire, B.; Anikin, I. [Ecole Polytechnique, CPHT, 91 - Palaiseau (France); Szymanowski, I. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Liege Univ. (Belgium); Anikin, I.; Wallon, S. [Paris-11 Univ., Lab. de Physique Theorique, 91 - Orsay (France)

    2005-07-01

    Exotic hybrid mesons H, with quantum numbers J{sup PC} = 1{sup -+} may be copiously produced in the hard exclusive processes {gamma}{sup *}(Q{sup 2}){gamma} {yields} H and {gamma}{sup *}(Q{sup 2})P(p) {yields} HP(p') because they have a leading twist distribution amplitude with a sizable coupling constant f{sub H}, which may be estimated through QCD sum rules. The reaction rates scale in the same way as the corresponding rates for usual mesons. (authors)

  3. Shell model calculations for exotic nuclei

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  4. Hadronic interaction and structure of exotic nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    2009-01-01

    I will overview recent studies on the evolution of the shell structure in stable and exotic nuclei, and will show its relevance to hadronic interaction, including nuclear forces. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The shell structure and existing limit of nuclei depend also on the three-body interaction in a specific way. I will sketch how the Δ-hole excitation induced three-body force (Fujita-Miyazawa force) modifies them. (author)

  5. Experiments with stored relativistic exotic nuclei

    International Nuclear Information System (INIS)

    Klepper, O.; Attallah, F.; Beckert, K.; Bosch, F.; Dolinskiy, A.; Eickhoff, H.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Hellstroem, M.; Herfurth, F.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Quint, W.; Tradon, T.; Reich, H.; Scheidenberger, C.; Schlitt, B.; Steck, M.; Suemmerer, K.; Vermeeren, L.; Winkler, M.; Winkler, Th.; Falch, M.; Kerscher, Th.; Loebner, K.E.G.; Fujita, Y.; Novikov, Yu.; Patyk, Z.; Stadlmann, J.; Wollnik, H.

    1999-01-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: 1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10 -6 . The achieved mass resolving power of m/Δm = 6.5·10 5 (FWHM) in recent measurements represents an improvement by a factor of two compared to authors' previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54≤Z≤84. The results are compared with mass models and estimated values based on extrapolations of experimental values. 2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5·10 5 (FWHM) was achieved in this mode of operation. 3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability

  6. Exotic hybrid mesons in hard electroproduction

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC =1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e., as 1/Q 2 . This is due to the nonvanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy-momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in α S and we explore the consequences of fixing the renormalization scale ambiguity through the Brodsky-Lepage-Mackenzie (BLM) procedure. We study the particular case where the hybrid meson decays through a πη meson pair. We discuss the πη generalized distribution amplitude and then calculate the production amplitude for this process. We propose a forward-backward asymmetry in the production of π and η mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at very high energy, in the diffractive limit where a QCD Odderon exchange mechanism should dominate. The conclusion of our study is that hard electroproduction is a promising way to study exotic hybrid mesons, in particular, at JLAB, HERA (HERMES), or CERN (Compass)

  7. Studying antimatter

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Antiparticles are a crucial ingredient of particle physics and cosmology. Almost 80 years after Dirac’s bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? When and how were they discovered? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: their production, their use in colliders; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on results and challenges of the “antimatter” programme at the Antiproton Decelerator (AD), with special emphasis on antihydrogen production, trapping and precision measurements.

  8. Exotic aspects of hadronic atoms-anomalous quasi-stabilities

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1993-07-01

    Recently revealed, but hitherto unknown, new aspects of hadronic atoms, namely, anomalous quasi-stabilities of negative hadrons, are discussed. One is on long-lived antiprotonic helium atoms, characterized as 'atomic exotic halo' and the other is on deeply bound pionic atoms, characterized as 'nuclear exotic halo'. (author)

  9. Invasion of exotic earthworms into ecosystems inhabited by native earthworms

    Science.gov (United States)

    P. F. Hendrix; G. H. Baker; M. A. Callaham Jr; G. A. Damoff; Fragoso C.; G. Gonzalez; S. W. James; S. L. Lachnicht; T. Winsome; X. Zou

    2006-01-01

    The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in...

  10. A survey of exotic plants in federal wilderness areas

    Science.gov (United States)

    Marilyn Marler

    2000-01-01

    I conducted a survey of wilderness areas to provide an overview of plant invasions in the National Wilderness Preservation System. Fifteen per cent of responding mangers reported that exotic plants were among their top 10 management concerns, either because they are actively dealing with control of exotic pest plants or have prioritized prevention of their...

  11. Comparative study of genetic influence on the susceptibility of exotic ...

    African Journals Online (AJOL)

    This study investigated comparatively the genetic influence on the susceptibility of exotic cockerels, pullets and broilers to natural infection with infectious bursal disease (IBD) virus in a flock of 150 seven-week-old exotic breed of chickens comprising of 50 Black Harco cockerels, 50 Black Harco pullets and 50 White ...

  12. A possible global group structure for exotic states

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue-Qian [Nankai University, School of Physics, Tianjin (China); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China)

    2014-12-01

    Based on the fact that the long expected pentaquark which possesses the exotic quantum numbers of B = 1 and S = 1 was not experimentally found, although exotic states of XY Z have been observed recently, we conjecture that the heavy flavors may play an important role in stabilizing the hadronic structures beyond the traditional q anti q and qqq composites. (orig.)

  13. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve.

    Directory of Open Access Journals (Sweden)

    Wendy E Morrison

    2011-03-01

    Full Text Available Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4-17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp. preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of

  14. Production and decay of exotic fermions in high energy collisions

    International Nuclear Information System (INIS)

    Queiroz Filho, Pedro Pacheco de

    1995-05-01

    In this work, we investigate the production and decay of exotic fermions predicted by some extensions of the standard model. We select for our study the more popular models: vector singlet, vector doublet and Fermion Mirror-Fermion. We want to establish the differences between these models and also in relation to the Standard Model. We make investigations by Monte Carlo simulations, to study the phenomenology of the particles expected in these models, particularly the exotic fermions. These studies were done for electron-proton collisions at DESY HERA energies. We considered the investigation of exotic quark production, electron-positron collisions in LEP II and NLC energies in order to study the production of exotic leptons, and virtual exotic lepton contribution in the specific process e + e - → ιν-bar ι W + . (author)

  15. The instrument PAMELA for antimatter and dark matter search in space

    International Nuclear Information System (INIS)

    Picozza, Piergiorgio; Sparvoli, Roberta

    2010-01-01

    The PAMELA satellite experiment is dedicated to the study of charged particles in cosmic radiation, with a particular focus on antiparticles for the search of antimatter and signals of dark matter, in the energy window from 100 MeV to some hundreds of GeV. PAMELA is installed on board of the Resurs DK1 satellite that was launched from the Baikonur cosmodrome on June 15th, 2006. The PAMELA apparatus comprises a magnetic spectrometer, a time-of-flight system, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows antiparticles to be reliably identified from a large background of other charged particles.

  16. Jeans instability and antiscreening in the system of matter-antimatter with antigravitation

    International Nuclear Information System (INIS)

    Trigger, S A; Gribov, I A

    2015-01-01

    The hypothesis of antigravitational interaction of elementary particles and antiparticles is applied to the simple two-component hydrodynamic model Λ-CDM (Lambda cold-dark matter) with gravitational repulsion and attraction. An increase in the Jeans instability rate, the presence of antiscreening, and the dominant role of the gravitational repulsion as a possible mechanism of spatial separation of matter and antimatter in the Universe are shown, as well as the observable acceleration of far galaxies. The sound wave is found for the two-component gravitational-antigravitational system. The suggested approach permits to reestablish the idea about baryon symmetry of the Universe, causing its steady large-scale flatness and accelerated Universe expansion. (paper)

  17. The electrosphere of macroscopc ""nuclei"": diffuse emissions in the MeV band from dark antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Michael Mcneil [Los Alamos National Laboratory; Lawson, Kyle [CANADA; Zhitnitsky, Ariel R [CANADA

    2009-01-01

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultra-rel ativistic densities to the non-relativistic Boltzmann regime. We use this to present a microscopically justified calculation of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from the galaxy. This provides another nontrivial verification of the dark matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.

  18. Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry.

    Science.gov (United States)

    Kusenko, Alexander; Pearce, Lauren; Yang, Louis

    2015-02-13

    The recent measurement of the Higgs boson mass implies a relatively slow rise of the standard model Higgs potential at large scales, and a possible second minimum at even larger scales. Consequently, the Higgs field may develop a large vacuum expectation value during inflation. The relaxation of the Higgs field from its large postinflationary value to the minimum of the effective potential represents an important stage in the evolution of the Universe. During this epoch, the time-dependent Higgs condensate can create an effective chemical potential for the lepton number, leading to a generation of the lepton asymmetry in the presence of some large right-handed Majorana neutrino masses. The electroweak sphalerons redistribute this asymmetry between leptons and baryons. This Higgs relaxation leptogenesis can explain the observed matter-antimatter asymmetry of the Universe even if the standard model is valid up to the scale of inflation, and any new physics is suppressed by that high scale.

  19. Neutrinos in the Early Universe, Kalb-Ramond Torsion and Matter-Antimatter Asymmetry

    Directory of Open Access Journals (Sweden)

    Mavromatos Nick E.

    2014-04-01

    Full Text Available The generation of a matter-antimatter asymmetry in the universe may be induced by the propagation of fermions in non-trivial, spherically asymmetric (and hence Lorentz violating gravitational backgrounds. Such backgrounds may characterise the epoch of the early universe. The key point in these models is that the background induces di_erent dispersion relations, hence populations, between fermions and antifermions, and thus CPT Violation (CPTV appears in thermal equilibrium. Species populations may freeze out leading to leptogenesis and baryogenesis. We consider here a string-inspired scenario, in which the CPTV is associated with a cosmological background with torsion provided by the Kalb-Ramond (KR antisymemtric tensor field of the string gravitational multiplet. In a four-dimensional space time this field is dual to a pseudoscalar “axionlike” field. The mixing of the KR field with an ordinary axion field can lead to the generation of a Majorana neutrino mass.

  20. Effects of exotic composite bosons in e+e- scattering at 50--100 GeV

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.; Yasue, M.

    1990-01-01

    We show that some of the neutral exotics in the composite model decouple from neutrinos at low energies, and can be as light as the mass scale of the weak interactions, offering the possibility of detecting sizable effects in e + e - scattering at 50--100 GeV

  1. Domain Walls and Matter-Antimatter Domains in the Early Universe

    Directory of Open Access Journals (Sweden)

    Dolgov A.D.

    2017-01-01

    Full Text Available We suggest a scenario of spontaneous (or dynamical C and CP violation according to which it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP violation existed only in the early universe and later it disappeared with the only trace of generated matter and antimatter domains. So this scenario does not suffer from the problem of domain walls. According to this scenario the width of the domain wall should grow exponentially to prevent annihilation at the domain boundaries. Though there is a classical result obtained by Basu and Vilenkin that the width of the wall tends to the one of the stationary solution (constant physical width. That is why we considered thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we were interested not only in stationary solutions found therein, but also investigated the general case of domain wall evolution with time. When the wall thickness parameter, δ0 , is smaller than H−1/2 where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ0>H−1/2 We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for δ0≫H−1 An explanation for the critical value δ0c=H−1/2 is also proposed.

  2. How exotic does an exotic information and education initiative about the impact of non-indigenous species need to be?

    Science.gov (United States)

    William F. Hammond

    1998-01-01

    Providing individuals with effective information, programs, and educational materials about "exotics" or non-indigenous species is generally not a very effective way to get people to act to control, eliminate, and restore damage from exotic species to native ecosystems. Information tends to inform the motivated and educated. Educational research and marketing...

  3. Matter-antimatter and matter-matter interactions at intermediate energies; Interacao materia-antimateria e materia-materia a energias intermediarias

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Carlos Fontes dos [Missouri Univ., Rolla, MO (United States). Dept. of Physics]. E-mail: antoniocfs@hotmail.com

    2002-07-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed.

  4. Exotic Phenomena Searches at Hadron Colliders

    CERN Document Server

    INSPIRE-00305407

    2013-01-01

    This review presents a selection of the final results of searches for various exotic physics phenomena in proton-proton collisions at $\\sqrt{s}=7$ and 8~TeV delivered by the LHC and collected with the ATLAS and CMS detectors in 2011 (5 $fb^{-1}$) and in the first part of 2012 (4 $fb^{-1}$). Searches for large extra dimensions, gravitons, microscopic black holes, long-lived particles, dark matter, and leptoquarks are presented in this report. No sign of new physics beyond the standard model has been observed so far. In the majority of the cases these searches set the most stringent limits to date on the aforementioned new physics phenomena.

  5. Probing Exotic Physics With Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  6. Search for exotic mesons at SLAC

    International Nuclear Information System (INIS)

    Bonamy, P.; Baggett, N.; Fieguth, T.

    1975-01-01

    The theoretical justification and results from recent experimental searches for backward-produced exotic mesons including two experiments carried out by the collaboration at SLAC are reviewed. The first experiment put upper limits of about 1 to 2 μb for X ++ → (2π, 4π, 6π) ++ and anti ppπ + π + in the reaction π + + p → X ++ + n/sub forward/ at 8.4 GeV/c studied with the SLAC 14 inch rapid cycling bubble chamber triggered by a downstream neutron detector. Also the important features of the recently completed second experiment with the SLAC streamer chamber to study the reaction π - + p → X -- + p/sub forward/ at 14 GeV/c are discussed

  7. Rational F-theory GUTs without exotics

    Science.gov (United States)

    Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian

    2014-07-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  8. Rational F-theory GUTs without exotics

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Pena, Damian Kaloni Mayorga; Oehlmann, Paul-Konstantin

    2014-01-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  9. Rational F-theory GUTs without exotics

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian

    2014-01-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U1 symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  10. Casimir Energy, Extra Dimensions and Exotic Propulsion

    Science.gov (United States)

    Obousy, R.; Saharian, A.

    It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next generation of particle accelerators. This adjustment of the size of the higher dimension could serve as a technological mechanism to locally adjust the dark energy density and change the local expansion of spacetime. This idea holds tantalizing possibilities in the context of exotic spacecraft propulsion.

  11. Exotic meson decay widths using lattice QCD

    International Nuclear Information System (INIS)

    Cook, M. S.; Fiebig, H. R.

    2006-01-01

    A decay width calculation for a hybrid exotic meson h, with J PC =1 -+ , is presented for the channel h→πa 1 . This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and πa 1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative πa 1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes having a lattice spacing of 0.07 fm

  12. Exotic nuclei arena in Japanese Hadron Project

    International Nuclear Information System (INIS)

    Nomura, T.

    1990-04-01

    A description is given on the radioactive beam facility proposed as one of the research arenas in Japanese Hadron Project. The facility consists of a 1 GeV proton linac, an isotope separator on-line (ISOL) and a series of heavy-ion (HI) linacs. Various exotic nuclei produced by 1 GeV proton beam mainly via spallation processes of a thick target, are mass-separated by the ISOL with a high mass-resolving power and are injected into the HI linac with the energy of 1 keV/u. The acceleration is made in three stages using different types of linacs, i.e., split-coaxial RFQ. Interdigital-H, and Alvarez, the maximum energy in each stage being 0.17, 1.4 and 6.5 MeV/u, respectively. A few examples of scientific interests realized in this facility will be briefly discussed. (author)

  13. Probing exotic physics with cosmic neutrinos

    International Nuclear Information System (INIS)

    Hooper, Dan; Fermilab

    2005-01-01

    Traditionally, collider experiments have been the primary tool used in searching for particle physics beyond the Standard Model. In this talk, I will discuss alternative approaches for exploring exotic physics scenarios using high energy and ultra-high energy cosmic neutrinos. Such neutrinos can be used to study interactions at energies higher, and over baselines longer, than those accessible to colliders. In this way, neutrino astronomy can provide a window into fundamental physics which is highly complementary to collider techniques. I will discuss the role of neutrino astronomy in fundamental physics, considering the use of such techniques in studying several specific scenarios including low scale gravity models, Standard Model electroweak instanton induced interactions, decaying neutrinos and quantum decoherence

  14. Exotic snakes are not always found in exotic places: how poison centres can assist emergency departments

    OpenAIRE

    Lubich, Carol; Krenzelok, Edward P

    2009-01-01

    Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban sett...

  15. Exotic snakes are not always found in exotic places: how poison centres can assist emergency departments

    OpenAIRE

    Lubich, Carol; Krenzelok, Edward P

    2007-01-01

    Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban sett...

  16. The exotic exchange of smoke rings

    International Nuclear Information System (INIS)

    Niemi, Antti J.

    2006-01-01

    Smoke rings are fascinating, to humans and animals alike. Experienced cigarette smokers blow them for entertainment while dolphins play with air-filled underwater rings that know how to puff. Smoke ring machines can be bought from science gadget shops and Lord Kelvin explains in a paper [Lord Kelvin, Proceedings of the Royal Society of Edinburgh, Vol. VI (1867), p. 94; reprinted in Philos. Mag. Vol. XXXIV (1867), p. 15] how one can be constructed from a cardboard box. Even Mount Etna [http://news.bbc.co.uk/1/hi/sci/tech/696953.stm] and our Sun [http://spacescience.com/headlines/y2000/ast03feb 1 .htm] are known to be sources of huge smoke rings. But a smoke ring is not only fun to watch. It is also an organized structure with the ability to engage in complex acts, best exemplified by the leapfrogging motion of two smoke rings. Here we propose that the leapfrogging actually encodes very important Physics: It is a direct three dimensional generalization of the motion that in the two dimensional context is responsible for exotic exchange statistics which rules the properties of structures and materials such as quantum Hall systems and high-temperature superconductors. By employing very simple and universal concepts with roots in the hydrodynamical Euler equation, the universal law that describes the properties of fluids and gases, we argue that three dimensional exotic exchange statistics is commonplace. Our observations could have far reaching consequences in fluids and gases which are subject to the laws of quantum mechanics, from helium superfluids to Bose-Einstein condensed alkali gases and even metallic hydrogen in its liquid phases. (author)

  17. Supersymmetric dark matter: Indirect detection

    International Nuclear Information System (INIS)

    Bergstroem, L.

    2000-01-01

    Dark matter detection experiments are improving to the point where they can detect or restrict the primary particle physics candidates for non baryonic dark matter. The methods for detection are usually categorized as direct, i.e., searching for signals caused by passage of dark matter particles in terrestrial detectors, or indirect. Indirect detection methods include searching for antimatter and gamma rays, in particular gamma ray lines, in cosmic rays and high-energy neutrinos from the centre of the Earth or Sun caused by accretion and annihilation of dark matter particles. A review is given of recent progress in indirect detection, both on the theoretical and experimental side

  18. Ultra-fast timing study of exotic neutron-rich Fe isotopes

    CERN Document Server

    Olaizola, Bruno; Mach, Henryk

    The cornerstone of nuclear structure, as we know it from stable nuclei, is the existence of magic numbers. The most stable nuclei arise for completely occupied shells, closed shells, and give rise to the magic numbers. At the Valley of Stability their values are 8, 20, 28, 50, 82 and 126. The steady development of the production, separation and identication of exotic nuclei, together with the improvement of the detection techniques, makes it possible to experimentally explore nuclei further away from the Valley of Stability. These exotic nuclei with nucleon numbers supposed to be magic do not always have the properties one would expect. As extra nucleons are added (or removed) from stable nuclei, the single particle energies are modied and strong quadrupole correlations appear, which may neutralize the spherical meanfield shell gaps. The investigation of the evolution of shell structure far from stability has become a major subject in Nuclear Physics. Research in this field has strong implications also in nuc...

  19. Exposure of Asian Elephants and Other Exotic Ungulates to Schmallenberg Virus.

    Science.gov (United States)

    Molenaar, Fieke M; La Rocca, S Anna; Khatri, Meenakshi; Lopez, Javier; Steinbach, Falko; Dastjerdi, Akbar

    2015-01-01

    Schmallenberg virus (SBV) is an emerging Orthobunyavirus, first described in 2011 in cattle in Germany and subsequently spread throughout Europe, affecting mainly ruminant livestock through the induction of foetal malformations. To gain a better understanding of the spectrum of susceptible species and to assess the value of current SBV serological assays, screening of serum samples from exotic artiodactyls and perissodactyls collected at the Living Collections from the Zoological Society of London (Whipsnade and London Zoos) and Chester Zoo was carried out. There was compelling evidence of SBV infection in both zoological collections. The competitive ELISA has proved to be applicable for the detection of SBV in exotic Bovidae, Cervidae, Suidae, Giraffidae and most notably in endangered Asian elephants (Elephas maximus), but unreliable for the screening of Camelidae, for which the plaque reduction neutralisation test was considered the assay of choice.

  20. Exposure of Asian Elephants and Other Exotic Ungulates to Schmallenberg Virus.

    Directory of Open Access Journals (Sweden)

    Fieke M Molenaar

    Full Text Available Schmallenberg virus (SBV is an emerging Orthobunyavirus, first described in 2011 in cattle in Germany and subsequently spread throughout Europe, affecting mainly ruminant livestock through the induction of foetal malformations. To gain a better understanding of the spectrum of susceptible species and to assess the value of current SBV serological assays, screening of serum samples from exotic artiodactyls and perissodactyls collected at the Living Collections from the Zoological Society of London (Whipsnade and London Zoos and Chester Zoo was carried out. There was compelling evidence of SBV infection in both zoological collections. The competitive ELISA has proved to be applicable for the detection of SBV in exotic Bovidae, Cervidae, Suidae, Giraffidae and most notably in endangered Asian elephants (Elephas maximus, but unreliable for the screening of Camelidae, for which the plaque reduction neutralisation test was considered the assay of choice.

  1. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    International Nuclear Information System (INIS)

    Gu, Pei-Hong

    2014-01-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar ') H scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar ') H scalar also mediates a U(1) em × U(1)' em kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice

  2. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2014-12-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{sub em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.

  3. Formation of fast exotic atoms by radiative Coulomb capture

    International Nuclear Information System (INIS)

    Chatterjee, L.; Das, G.; Chakravorty, A.; Goswami, R.; Mondal, S.K.

    1993-01-01

    Interesting surprises in some exotic atom kinetics have been reported recently. These involve muonic atom transfer cross sections, nuclear pion capture and the q 1s effect in μCF. These can be explained if the exotic atom population contains a contributing fast component. Such fast atoms can be formed by radiative continuum to bound transitions of fast (keV) muons or pions. Cross sections for formation of such fast pionic and muonic atoms and their velocity distributions are reported. The possibility of these processes competing with the thermalisation channels and contributing effectively to the exotic atom population discussed. (orig.)

  4. 9 CFR 352.3 - Application by official exotic animal establishment for inspection services.

    Science.gov (United States)

    2010-01-01

    .... (a) Any person desiring to process an exotic animal, exotic animal carcasses, exotic animal meat and... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Application by official exotic animal establishment for inspection services. 352.3 Section 352.3 Animals and Animal Products FOOD SAFETY AND...

  5. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Abstract. Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  6. Exotic dual of type II double field theory

    Directory of Open Access Journals (Sweden)

    Eric A. Bergshoeff

    2017-04-01

    Full Text Available We perform an exotic dualization of the Ramond–Ramond fields in type II double field theory, in which they are encoded in a Majorana–Weyl spinor of O(D,D. Starting from a first-order master action, the dual theory in terms of a tensor–spinor of O(D,D is determined. This tensor–spinor is subject to an exotic version of the (self-duality constraint needed for a democratic formulation. We show that in components, reducing O(D,D to GL(D, one obtains the expected exotically dual theory in terms of mixed Young tableaux fields. To this end, we generalize exotic dualizations to self-dual fields, such as the 4-form in type IIB string theory.

  7. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active

  8. High energy exotic interactions observed by Chacaltaya emulsion chamber

    International Nuclear Information System (INIS)

    Chinellato, J.A.; Dobrigkeit, C.; Bellandi Filho, J.

    1984-01-01

    Exotic events like Centauros, Chirons and Geminions which appears in cosmic ray interactions of the Brazil-Japan Collaboration at Chacaltaya are presented. Genetic hypothesis on how these kind of events are produced are discussed. (L.C.) [pt

  9. Reverting urban exotic pine forests to Macchia and indigenous ...

    African Journals Online (AJOL)

    Reverting urban exotic pine forests to Macchia and indigenous forest ... Harvesting operations were planned to make the transition from high open ... Key words: Strip-cutting, Cable yarding, Participatory planning, Shelterwood, Urban forests ...

  10. Experimental Constraints of the Exotic Shearing of Space-Time

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Jonathan William [Univ. of Chicago, IL (United States)

    2016-08-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exotic coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.

  11. Using anti pp annihilation to find exotic mesons

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1987-10-01

    Present data suggests that a number of mesons have been found which cannot be accommodated in standard anti qq multiplets. Theory suggests that such exotic mesons should exist in the spectrum of Quantum Chromodynamics, but provides little guide to their properties. It is argued that a high luminosity, low energy anti pp machine would be a powerful tool with which to search for such exotics

  12. Parent di-nuclear quasimolecular states as exotic resonant states

    International Nuclear Information System (INIS)

    Grama, N.

    2002-01-01

    It in shown that the parent di-nuclear quasimolecular state is an exotic resonant state that corresponds to a S-matrix pole in the neighbourhood of an attractor in the k-plane. The properties of the parent quasimolecular states i.e. energy, widths, deviation from the linear dependence of the energy on l(l + 1) doorway character and criteria for observability, result naturally from the general properties of the exotic resonant states. (author)

  13. The exotic atoms of QCD: glueballs, hybrids and baryonia

    International Nuclear Information System (INIS)

    Barnes, T.

    1984-05-01

    The theoretical basis underlying the expected ''exotic'' states in QCD, the theory of quarks and gluons, is reviewed in three lectures. The first lecture is an historical introduction to QCD. The second lecture is a critical review of the MIT bag model and QCD on a lattice. The status of three candidate ''exotic'' states seen in psi radiative decays, the i(1440), O(1700) and zeta(2220) are discussed in the third lecture. (author)

  14. Exotic nuclei and radioactive beams; Noyaux exotiques et faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P.

    1996-12-31

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs.

  15. International symposium on exotic nuclear structures. Book of abstracst

    International Nuclear Information System (INIS)

    2000-01-01

    The following topics were discussed at the meeting: Physics of weakly bound nuclei, neutron skin and halo; Evolution of shell structures for neutron-rich nuclei; Collective excitations in nuclei with exotic nuclear shapes; Cluster structures; Super- and hyperdeformed nuclei, exotic structures in the actinides; Superheavy elements; Towards understanding the structure of nucleons; New experimental techniques, facilities for radioactive beams. All abstracts (75 items) were submitted as full text to the INIS database. (R.P.)

  16. Doubly charmed exotic mesons: A gift of nature?

    Energy Technology Data Exchange (ETDEWEB)

    Carames, T.F. [Departamento de Fisica Fundamental, Universidad de Salamanca, E-37008 Salamanca (Spain); Valcarce, A., E-mail: valcarce@usal.e [Departamento de Fisica Fundamental, Universidad de Salamanca, E-37008 Salamanca (Spain); Vijande, J. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Valencia (UV) and IFIC (UV-CSIC), Valencia (Spain)

    2011-05-16

    We study doubly charmed exotic states by solving the scattering problem of two D mesons. Our results point to the existence of a stable isoscalar doubly charmed meson with quantum numbers (I)J{sup P}=(0)1{sup +}. We perform a thorough comparison to the results obtained within the hyperspherical harmonic formalism. Such exotic states could be measured at LHC and RHIC. Their experimental observation would, for the first time, confirm the contribution of multiquark structures to hadron spectroscopy.

  17. Exotic Optical Beam Classes for Free-Space Communication

    Science.gov (United States)

    2016-03-24

    wandering of an optical vortex is one of the significant problems with the application of vortex beams to FSO applications. From a geometrical optics ...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free-space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free-space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c

  18. Exotic hadron production in a quark combination model

    International Nuclear Information System (INIS)

    Han Wei; Shao Fenglan; Li Shiyuan; Shang Yonghui; Yao Tao

    2009-01-01

    The philosophy on production of exotic hadrons (multiquark states) in the framework of the quark combination model is investigated, taking f 0 (980) as an example. The production rate and p T spectra of f 0 (980) considered as (ss) or (sqsq), respectively, are calculated and compared in Au+Au collisions at √(s NN )=200 GeV. The unitarity of various combination models, when open for exotic hadron production, is addressed.

  19. Exotic colored scalars at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Kfir; Efrati, Aielet; Frugiuele, Claudia; Nir, Yosef [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 7610001 (Israel)

    2017-02-21

    We study the phenomenology of exotic color-triplet scalar particles X with charge |Q|=2/3,4/3,5/3,7/3,8/3 and 10/3. If X is an SU(2){sub W}-non-singlet, mass splitting within the multiplet allows for cascade decays of the members into the lightest state. We study examples where the lightest state, in turn, decays into a three-body W{sup ±}jj final state, and show that in such case the entire multiplet is compatible with indirect precision tests and with direct collider searches for continuum pair production of X down to m{sub X}∼250 GeV. However, bound states S, made of XX{sup †} pairs at m{sub S}≈2m{sub X}, form under rather generic conditions and their decay to diphoton can be the first discovery channel of the model. Furthermore, for SU(2){sub W}-non-singlets, the mode S→W{sup +}W{sup −} may be observable and the width of S→γγ and S→jj may appear large as a consequence of mass splittings within the X-multiplet. As an example we study in detail the case of an SU(2){sub W}-quartet, finding that m{sub X}≃450 GeV is allowed by all current searches.

  20. Exotic hybrid mesons in hard electroproduction

    CERN Document Server

    Anikin, I V; Szymanowski, L; Teryaev, O V; Wallon, S

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic $J^{PC}=1^{-+}$ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as $1/Q^2$. This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in $\\alpha_{S}$ and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. We study the particular case where the hybrid meson decays through a $\\pi\\eta $ meson pair. We discuss the $\\pi\\eta$ generalized distribution amplitude and then calculate the production amplitude for this process. We propose a forward-backward asymmetry in the production of $\\pi$ and $\\eta$ mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at very ...

  1. Nuclear Track Detectors. Searches for Exotic Particles

    CERN Document Server

    Giacomelli, Giorgio

    2008-01-01

    We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 exotic particles. iii) Environmental studies, radiation monitoring, neutron dosimetry.

  2. Effects of exotic species on Yellowstone's grizzly bears

    Science.gov (United States)

    Reinhart, Daniel P.; Haroldson, Mark A.; Mattson, D.J.; Gunther, Kerry A.

    2001-01-01

    Humans have affected grizzly bears (Ursus arctos horribilis) by direct mortality, competition for space and resources, and introduction of exotic species. Exotic organisms that have affected grizzly bears in the Greater Yellowstone Area include common dandelion (Taraxacum officinale), nonnative clovers (Trifolium spp.), domesticated livestock, bovine brucellosis (Brucella abortus), lake trout (Salvelinus namaycush), and white pine blister rust (Cronartium ribicola). Some bears consume substantial amounts of dandelion and clover. However, these exotic foods provide little digested energy compared to higher-quality bear foods. Domestic livestock are of greater energetic value, but use of this food by bears often leads to conflicts with humans and subsequent increases in bear mortality. Lake trout, blister rust, and brucellosis diminish grizzly bears foods. Lake trout prey on native cutthroat trout (Oncorhynchus clarkii) in Yellowstone Lake; white pine blister rust has the potential to destroy native whitebark pine (Pinus albicaulis) stands; and management response to bovine brucellosis, a disease found in the Yellowstone bison (Bison bison) and elk (Cervus elaphus), could reduce populations of these 2 species. Exotic species will likely cause more harm than good for Yellowstone grizzly bears. Managers have few options to mitigate or contain the impacts of exotics on Yellowstone's grizzly bears. Moreover, their potential negative impacts have only begun to unfold. Exotic species may lead to the loss of substantial highquality grizzly bear foods, including much of the bison, trout, and pine seeds that Yellowstone grizzly bears currently depend upon.

  3. The mass formula for an exotic BTZ black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com

    2016-04-15

    An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point of view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.

  4. The mass formula for an exotic BTZ black hole

    International Nuclear Information System (INIS)

    Zhang, Baocheng

    2016-01-01

    An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point of view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.

  5. Are exotic herbivores better competitors? A meta-analysis.

    Science.gov (United States)

    Radville, Laura; Gonda-King, Liahna; Gómez, Sara; Kaplan, Ian; Preisser, Evan L

    2014-01-01

    Competition plays an important role in structuring the community dynamics of phytophagous insects. As the number and impact of biological invasions increase, it has become increasingly important to determine whether competitive differences exist between native and exotic insects. We conducted a meta-analysis to test the hypothesis that native/ exotic status affects the outcome of herbivore competition. Specifically, we used data from 160 published studies to assess plant-mediated competition in phytophagous insects. For each pair of competing herbivores, we determined the native range and coevolutionary history of each herbivore and host plant. Plant-mediated competition occurred frequently, but neither native nor exotic insects were consistently better competitors. Spatial separation reduced competition in native insects but showed little effect on exotics. Temporal separation negatively impacted native insects but did not affect competition in exotics. Insects that coevolved with their host plant were more affected by interspecific competition than herbivores that lacked a coevolutionary history. Insects that have not coevolved with their host plant may be at a competitive advantage if they overcome plant defenses. As native/exotic status does not consistently predict outcomes of competitive interactions, plant-insect coevolutionary history should be considered in studies of competition.

  6. arXiv Measurement of matter-antimatter differences in beauty baryon decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, V.V.; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2017-01-30

    Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C\\!P$ violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for $C\\!P$-violating asymmetries in the decay angle distributions of $\\Lambda^0_b$ baryons decaying to $p\\pi^-\\pi^+\\pi^-$ and $p\\pi^-K^+K^-$ final states. These four-body hadronic decays are a promising place to search for sources of $C\\!P$ violation both within and beyond the Standard Model of particle physics. We find evidence for $C\\!P$ violation in $\\Lambda^0_b$ to $p\\pi^-\\pi^+\\pi^-$ decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for $C\\!P$ violation in the baryon sector.

  7. Measurement of matter-antimatter differences in beauty baryon decays at LHCb

    CERN Multimedia

    Merli, Andrea

    2017-01-01

    Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C\\!P$ violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for $C\\!P$-violating asymmetries in the decay angle distributions of $\\Lambda_b^0$ baryons decaying to $p\\pi^-\\pi^+\\pi^-$ and $p\\pi^-K^+K^-m$ final states. These four-body hadronic decays are a promising place to search for sources of $C\\!P$ violation both within and beyond the Standard Model of particle physics. We find evidence for $C\\!P$ violation in $\\Lambda_b^0$ to $p\\pi^-\\pi^+\\pi^-$ decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for $C\\!P$ violation in the baryon sector.

  8. Ticks imported to Europe with exotic reptiles.

    Science.gov (United States)

    Mihalca, Andrei Daniel

    2015-09-30

    It is known that traded exotic animals carry with them an immense number of associated symbionts, including parasites. Reptiles are no exception. Most of the imported reptiles originate from tropical countries and their possibility to carry potentially dangerous pathogens is high. According to CITES, Europe is currently the main reptile importer in the world. Despite this, there is no review or analysis available for the risk related to the importation of tick-borne diseases with traded reptile to the EU. The main aim of the manuscript is to provide a review on the available literature on ticks introduced to and exchanged between European countries via the live reptile trade. So far, the published reports of ticks imported on reptiles are limited to few European countries: Italy, Poland, Spain, Netherlands, Belgium, Slovenia and UK. The following species have been reported: Hyalomma aegyptium, Amblyomma dissimile, Amblyomma exornatum, Amblyomma flavomaculatum, Amblyomma fuscolineatum, Amblyomma latum, Amblyomma quadricavum, Amblyomma marmoreum, Amblyomma nuttalli, Amblyomma sparsum, Amblyomma sphenodonti, Amblyomma transversale and Amblyomma varanense. The majority of species are of African origin, followed by American and Asian species. All groups of reptiles (chelonians, snakes, lizards, crocodiles, tuataras) were involved. However, it seems that certain groups (i.e. tortoises of genus Testudo, monitor lizards of genus Varanus, snakes of genus Python) are more important as host for imported ticks, but this may be related to higher levels of international trade. Even fewer are the reports of tick-borne pathogens associated with imported reptile ticks. Despite the diversity of tick species reported on imported reptiles, the situations of truly invasive species are atypical and are limited in natural environments to maximum two cases where H. aegyptium was involved. Otherwise, the risk associated with reptile trade for introduction of invasive tick to Europe is low

  9. The South African fruit fly action plan: area-wide suppression and exotic species surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Brian N., E-mail: barnesb@arc.agric.z [ARC Infruitec-Nietvoorbij Institute for Fruit, Vine and Wine, Stellenbosch (South Africa); Venter, Jan-Hendrik, E-mail: janhendrikv@nda.agric.z [Directorate Plant Health, Pretoria (South Africa)

    2006-07-01

    Two species of tephritid fruit flies of economic importance, Mediterranean fruit fly (Medfly, Ceratitis capitata [Wiedemann]) and Natal fruit fly (C. rosa Karsch) cause economic losses in the South African deciduous fruit industry of approximately US$3 million per annum. A third species, marula fruit fly, C. cosyra (Walker), causes damage to citrus and sub-tropical fruits in the north-eastern part of the country. In 1999 a sterile insect technique (SIT) programme against Medfly was initiated over 10,000 ha of table grapes with a goal of cost-effective, ecologically compatible suppression of Medfly. The SIT programme was extended to two other fruit production areas in 2004. Although results in all three SIT areas have been mixed, populations of wild Medflies, as well as associated pesticide usage and control costs, have been reduced since the start of sterile fly releases. Reasons for the partial degree of success and the relatively slow expansion of Medfly SIT to other areas include economic, operational and cultural factors, as well as certain fruit production practices. Before fruit fly-free areas can be created, deficiencies in the ability to mass-rear Natal fruit fly need to be overcome so that an SIT programme against this species can be initiated. Any fruit fly suppression or eradication campaign will be severely compromised by any introductions into South Africa of exotic fruit fly species. The risk of such introductions is increasing as trade with and travel to the country increases. A Plant Health Early Warning Systems Division has been initiated to formulate fruit fly detection and action plans. Melon fly (Bactrocera cucurbitae [Coquillett]), Asian fruit fly (B. invadens Drew, Tsurutu and White) and peach fruit fly (B. zonata [Saunders]), which are all well established in parts of Africa and/or Indian Ocean islands, have been identified as presenting the highest risk for entering and becoming established in South Africa. An exotic fruit fly surveillance

  10. The South African fruit fly action plan: area-wide suppression and exotic species surveillance

    International Nuclear Information System (INIS)

    Barnes, Brian N.; Venter, Jan-Hendrik

    2006-01-01

    Two species of tephritid fruit flies of economic importance, Mediterranean fruit fly (Medfly, Ceratitis capitata [Wiedemann]) and Natal fruit fly (C. rosa Karsch) cause economic losses in the South African deciduous fruit industry of approximately US$3 million per annum. A third species, marula fruit fly, C. cosyra (Walker), causes damage to citrus and sub-tropical fruits in the north-eastern part of the country. In 1999 a sterile insect technique (SIT) programme against Medfly was initiated over 10,000 ha of table grapes with a goal of cost-effective, ecologically compatible suppression of Medfly. The SIT programme was extended to two other fruit production areas in 2004. Although results in all three SIT areas have been mixed, populations of wild Medflies, as well as associated pesticide usage and control costs, have been reduced since the start of sterile fly releases. Reasons for the partial degree of success and the relatively slow expansion of Medfly SIT to other areas include economic, operational and cultural factors, as well as certain fruit production practices. Before fruit fly-free areas can be created, deficiencies in the ability to mass-rear Natal fruit fly need to be overcome so that an SIT programme against this species can be initiated. Any fruit fly suppression or eradication campaign will be severely compromised by any introductions into South Africa of exotic fruit fly species. The risk of such introductions is increasing as trade with and travel to the country increases. A Plant Health Early Warning Systems Division has been initiated to formulate fruit fly detection and action plans. Melon fly (Bactrocera cucurbitae [Coquillett]), Asian fruit fly (B. invadens Drew, Tsurutu and White) and peach fruit fly (B. zonata [Saunders]), which are all well established in parts of Africa and/or Indian Ocean islands, have been identified as presenting the highest risk for entering and becoming established in South Africa. An exotic fruit fly surveillance

  11. On hypercharge flux and exotics in F-theory GUTs

    CERN Document Server

    Dudas, Emilian; 10.1007

    2010-01-01

    We study SU(5) Grand Unified Theories within a local framework in F-theory with multiple extra U(1) symmetries arising from a small monodromy group. The use of hypercharge flux for doublet-triplet splitting implies massless exotics in the spectrum that are protected from obtaining a mass by the U(1) symmetries. We find that lifting the exotics by giving vacuum expectation values to some GUT singlets spontaneously breaks all the U(1) symmetries which implies that proton decay operators are induced. If we impose an additional R-parity symmetry by hand we find all the exotics can be lifted while proton decay operators are still forbidden. These models can retain the gauge coupling unification accuracy of the MSSM at 1-loop. For models where the generations are distributed across multiple curves we also present a motivation for the quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen approach to flavour.

  12. Compounding and Extralabel Use of Drugs in Exotic Animal Medicine.

    Science.gov (United States)

    Powers, Lauren V; Davidson, Gigi

    2018-05-01

    Extralabel drug use is the use of a Food and Drug Administration (FDA)-approved drug in a manner different from what is stipulated on the approved label. Compounding is the process of preparing a medication in a manner not indicated on the label to create a formulation specifically tailored to the needs of an individual patient. Extralabel drug use and compounding are vital aspects of safe and effective drug delivery to patients in exotic animal practice. There are few FDA-approved drugs for exotic animal species, and many approved drugs for other species are not available in suitable formulations for use in exotic animals. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. [Cynocephali and Blemmyae. Congenital anomalies and medieval exotic races].

    Science.gov (United States)

    Bos, C A; Baljet, B

    1999-12-18

    In the mediaeval Dutch manuscript Der naturen bloeme ('On the flowers of nature') by Jacob van Maerlant (circa 1230-circa 1296), an encyclopaedia of descriptions of people, animals, plants and minerals dating from about 1270, many illustrations refer to the text. An intriguing part of the book is called 'Vreemde volkeren' ('Exotic people'). In another manuscript of Van Maerlant, Dit is die istory van Troyen ('The history of Troyes') in the chapter 'De wonderen van het Verre Oosten' ('The miracles of the Far East') the exotic people are also described. These exotic people have many features similar to congenital malformations. 'Hippopodes' are probably based on the lobster claw syndrome, 'Cynocephali' on anencephaly, 'Arimaspi' on cyclopia, 'Blemmyae' on acardiacus, the double-faced on diprosopus, 'Sciopods' on polydactyly and 'Antipodes' on the sirenomelia sequence.

  14. Exotic fermions in the left-right symmetric model

    International Nuclear Information System (INIS)

    Choi, J.; Volkas, R.R.

    1992-01-01

    A systematic study is made of non-standard fermion multiplets in left-right symmetric models with gauge group SU(3) x SU(2) L x SU(2) R x U(1) BL . Constraints from gauge anomaly cancellation and invariance of Yukawa coupling terms are used to define interesting classes of exotic fermions. The standard quark lepton spectrum of left-right symmetric models was identified as the simplest member of an infinite class. Phenomenological implications of the next simplest member of this class are then studied. Classes of exotic fermions which may couple to the standard fermions through doublet Higgs bosons were also considered, then shown that some of these exotics may be used to induce a generalised universal see-saw mechanism. 12 refs., 1 tab

  15. Time delayed K sup + N reactions and exotic baryon resonances

    CERN Document Server

    Kelkar, N G; Khemchandani, K P

    2003-01-01

    Evidence and hints, from both the theoretical and experimental sides, of exotic baryon resonances with B = S, have been with us for the last 30 years. The poor status of the general acceptance of these Z* resonances is partly due to the prejudice against penta-quark baryons and partly due to the opinion that a proof of the existence of exotic states must be rigorous. This can refer to the quality and amount of data gathered, and also to the analytical methods applied in the study of these resonances. It then seems mandatory that all possibilities and aspects be exploited. We do that by analysing the time delay in K sup + N scattering, encountering clear signals of the exotic Z* resonances close to the pole values found in partial wave analyses.

  16. The Discovery of Anti-Matter The Autobiography of Carl David Anderson, the Youngest Man to Win the Nobel Prize

    CERN Document Server

    1999-01-01

    In 1936, at age 31, Carl David Anderson became the second youngest Nobel laureate for his discovery of antimatter when he observed positrons in a cloud chamber.He is responsible for developing rocket power weapons that were used in World War II.He was born in New York City in 1905 and was educated in Los Angeles. He served for many years as a physics professor at California Institute of Technology. Prior to Oppenheimer, Anderson was offered the job of heading the Los Alamos atomic bomb program but could not assume the role because of family obligations.He was a pioneer in studying cosmic rays

  17. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  18. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  19. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    International Nuclear Information System (INIS)

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-01-01

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  20. The search for exotic baryons at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Deconinck, Wouter

    2008-07-15

    One of the interesting questions of Quantum Chromodynamics, the theory that governs the interactions between quarks and gluons, has been whether it is possible to observe hadrons which can not be explained as a combination of only two or three valence quarks. In numerous searches the existence of these exotic hadrons could not be confirmed. Recently, calculations based on the quark soliton model predicted the narrow exotic baryons {theta}{sup +} and {xi}{sup --}. A narrow resonance identified as the {theta}{sup +} was observed by several experiments at the predicted mass of 1540 MeV, but later followed by several dedicated experiments that could not confirm these positive results. At the HERMES experiment a search for the quasi-real photoproduction of the exotic baryon {theta}{sup +} on a deuterium target and the subsequent decay through pK{sup 0}{sub S} {yields} p{pi}{sup +}{pi}{sup -} revealed a narrow resonance in the pK{sup 0}{sub S} invariant mass distribution at 1528 MeV. In the search for the corresponding antiparticle {xi}{sup --} the result is consistent with zero events. In this thesis we present the search for the exotic baryon {xi}{sup --} on a deuterium target in the data sample used for the observation of the {theta}{sup +}. An upper limit on the cross section of the exotic baryon {xi}{sup --} is determined. The search for the exotic baryon {theta}{sup +} on hydrogen and deuterium targets at the HERMES experiment is extensively discussed. The event mixing method can be used to estimate the distribution of background events. Several difficulties with this method were addressed, but the background description in the case of the exotic baryon {theta}{sup +} remains unconvincing. Between the years 2002 and 2005 the HERMES experiment operated with a magnetic holding field around the hydrogen target. A method for the reconstruction of displaced vertices in this field was developed. The data collected during the years 2006 and 2007 offer an integrated

  1. The search for exotic baryons at the HERMES experiment

    International Nuclear Information System (INIS)

    Deconinck, Wouter

    2008-07-01

    One of the interesting questions of Quantum Chromodynamics, the theory that governs the interactions between quarks and gluons, has been whether it is possible to observe hadrons which can not be explained as a combination of only two or three valence quarks. In numerous searches the existence of these exotic hadrons could not be confirmed. Recently, calculations based on the quark soliton model predicted the narrow exotic baryons Θ + and Ξ -- . A narrow resonance identified as the Θ + was observed by several experiments at the predicted mass of 1540 MeV, but later followed by several dedicated experiments that could not confirm these positive results. At the HERMES experiment a search for the quasi-real photoproduction of the exotic baryon Θ + on a deuterium target and the subsequent decay through pK 0 S → pπ + π - revealed a narrow resonance in the pK 0 S invariant mass distribution at 1528 MeV. In the search for the corresponding antiparticle Ξ -- the result is consistent with zero events. In this thesis we present the search for the exotic baryon Ξ -- on a deuterium target in the data sample used for the observation of the Θ + . An upper limit on the cross section of the exotic baryon Ξ -- is determined. The search for the exotic baryon Θ + on hydrogen and deuterium targets at the HERMES experiment is extensively discussed. The event mixing method can be used to estimate the distribution of background events. Several difficulties with this method were addressed, but the background description in the case of the exotic baryon Θ + remains unconvincing. Between the years 2002 and 2005 the HERMES experiment operated with a magnetic holding field around the hydrogen target. A method for the reconstruction of displaced vertices in this field was developed. The data collected during the years 2006 and 2007 offer an integrated luminosity that is several times higher than in previous data sets. After investigating all data sets collected with the HERMES

  2. CALORIFIC PROPERTIES OF WASTES FROM SOME EXOTIC WOOD SPECIES

    Directory of Open Access Journals (Sweden)

    Aurel LUNGULEASA

    2016-03-01

    Full Text Available This paper aims to present some results about the calorific properties of biomass wastes from exotic species used as fuels. There are presented the main characteristics of biomass energy, respectively the low and high calorific value, burning speed and energy efficiency. Methodology takes into consideration the equipment, wooden species and relationships for calorific determination. The final conclusion resulting from the experiments is that the biomass of exotic species is as good as any other woody biomass, when is used as fuel, because the calorific properties are closely, even slightly higher than of classical fuels.

  3. Relativistic Energy Density Functionals: Exotic modes of excitation

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-01-01

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of β-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  4. Signatures for exotic quark singlets from superstrings

    International Nuclear Information System (INIS)

    Barger, V.; Deshpande, N.G.; Gunion, J.F.

    1986-09-01

    We consider various scenarios, at Superconducting Super Collider energy and luminosity, for detection of the extra colored, weak isospin singlet, charge -1/3 heavy fermion resulting from E 6 compactification in superstring theories

  5. The PAMELA space mission for antimatter and dark matter searches in space

    International Nuclear Information System (INIS)

    Boezio, M.; Bruno, A.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Borisov, S.; Bottai, S.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Consiglio, L.; De Pascale, M. P.; De Santis, C.

    2012-01-01

    The PAMELA satellite-borne experiment has presented new results on cosmic-ray antiparticles that can be interpreted in terms of DM annihilation or pulsar contribution. The instrument was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources. PAMELA is also searching for primordial antinuclei (anti-helium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. This talk illustrates the most recent scientific results obtained by the PAMELA experiment.

  6. The PAMELA space mission for antimatter and dark matter searches in space

    Energy Technology Data Exchange (ETDEWEB)

    Boezio, M., E-mail: Mirko.Boezio@ts.infn.it [INFN, Sezione di Trieste (Italy); Bruno, A., E-mail: Alessandro.Bruno@ba.infn.it [University of Bari, Department of Physics (Italy); Adriani, O. [University of Florence, Department of Physics (Italy); Barbarino, G. C. [University of Naples ' Federico II' , Department of Physics (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute (Russian Federation); Bellotti, R. [University of Bari, Department of Physics (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute (Russian Federation); Bongi, M. [INFN, Sezione di Florence (Italy); Bonvicini, V. [INFN, Sezione di Trieste (Italy); Borisov, S. [INFN, Sezione di Rome ' Tor Vergata' (Italy); Bottai, S. [INFN, Sezione di Florence (Italy); Cafagna, F. [University of Bari, Department of Physics (Italy); Campana, D.; Carbone, R. [INFN, Sezione di Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics (Sweden); Casolino, M. [INFN, Sezione di Rome ' Tor Vergata' (Italy); Castellini, G. [IFAC (Italy); Consiglio, L. [INFN, Sezione di Naples (Italy); De Pascale, M. P.; De Santis, C. [INFN, Sezione di Rome ' Tor Vergata' (Italy); and others

    2012-12-15

    The PAMELA satellite-borne experiment has presented new results on cosmic-ray antiparticles that can be interpreted in terms of DM annihilation or pulsar contribution. The instrument was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources. PAMELA is also searching for primordial antinuclei (anti-helium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. This talk illustrates the most recent scientific results obtained by the PAMELA experiment.

  7. Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?

    Energy Technology Data Exchange (ETDEWEB)

    Seabloom, Eric W. [Department of Ecology, Evolution, and Behavior, University of MN, St. Paul MN 55108 USA; Borer, Elizabeth T. [Department of Ecology, Evolution, and Behavior, University of MN, St. Paul MN 55108 USA; Buckley, Yvonne [ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane Queensland 4072 Australia; Cleland, Elsa E. [Ecology, Behavior & Evolution Section, University of California, San Diego La Jolla CA 92093 USA; Davies, Kendi [Department of Ecology and Evolutionary Biology, University of Colorado, Boulder CO 80309 USA; Firn, Jennifer [Queensland University of Technology, Biogeosciences, Brisbane Queensland 4000 Australia; Harpole, W. Stanley [Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA; Hautier, Yann [Department of Ecology, Evolution, and Behavior, University of MN, St. Paul MN 55108 USA; Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich Switzerland; Lind, Eric [Department of Ecology, Evolution, and Behavior, University of MN, St. Paul MN 55108 USA; MacDougall, Andrew [Department of Integrative Biology, University of Guelph, Guelph Ontario N1G 2W1 Canada; Orrock, John L. [Department of Zoology, University of Wisconsin, Madison WI 53706 USA; Prober, Suzanne M. [CSIRO Ecosystem Sciences, Private Bag 5 Wembley WA 6913 Australia; Adler, Peter [Department of Wildland Resources and the Ecology Center, Utah State University, Logan UT 84322 USA; Alberti, Juan [Instituto de Investigaciones Marinas y Costeras (UNMdP-CONICET), Mar del Plata Argentina; Michael Anderson, T. [Department of Biology, Wake Forest University, Winston-Salem NC 27109 USA; Bakker, Jonathan D. [School of Environmental and Forest Sciences, University of Washington, Seattle WA 98195-4115 USA; Biederman, Lori A. [Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA; Blumenthal, Dana [Rangeland Resources Research Unit, USDA Agricultural Research Service, Fort Collins CO 80526 USA; Brown, Cynthia S. [Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins CO 80523 USA; Brudvig, Lars A. [Department of Plant Biology, Michigan State University, East Lansing MI 48824 USA; Caldeira, Maria [Centro de Estudos Florestais, Instituto Superior de Agronomia, Technical University of Lisbon, Lisbon Portugal; Chu, Chengjin [School of Life Sciences, Lanzhou University, Lanzhou 730000 China; Crawley, Michael J. [Department of Biology, Imperial College London, Silwood Park Ascot SL5 7PY UK; Daleo, Pedro [Instituto de Investigaciones Marinas y Costeras (UNMdP-CONICET), Mar del Plata Argentina; Damschen, Ellen I. [Department of Zoology, University of Wisconsin, Madison WI 53706 USA; D' Antonio, Carla M. [Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara CA 93106 USA; DeCrappeo, Nicole M. [U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Corvallis OR 97331 USA; Dickman, Chris R. [Desert Ecology Research Group, School of Biological Sciences, University of Sydney, Sydney NSW 2006 Australia; Du, Guozhen [School of Life Sciences, Lanzhou University, Lanzhou 730000 China; Fay, Philip A. [USDA-ARS Grassland Soil and Water Research Lab, Temple TX 76502 USA; Frater, Paul [Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA; Gruner, Daniel S. [Department of Entomology, University of Maryland, College Park MD 20742 USA; Hagenah, Nicole [School of Life Sciences, University of KwaZulu-Natal, Scottsville Pietermaritzburg 3209 South Africa; Department of Ecology, Evolutionary Biology, Yale University, New Haven CT 06520 USA; Hector, Andrew [Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich Switzerland; Helm, Aveliina [Institute of Ecology and Earth Sciences, University of Tartu, Tartu Estonia; Hillebrand, Helmut [Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University, Wilhelmshaven Germany; Hofmockel, Kirsten S. [Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA; Humphries, Hope C. [INSTAAR, University of Colorado, Boulder CO 80309-0450 USA; Iribarne, Oscar [Instituto de Investigaciones Marinas y Costeras (UNMdP-CONICET), Mar del Plata Argentina; Jin, Virginia L. [USDA-ARS Agroecosystem Management Research Unit, Lincoln NE 68583 USA; Kay, Adam [Biology Department, University of St. Thomas, Saint Paul MN 55105 USA; Kirkman, Kevin P. [School of Life Sciences, University of KwaZulu-Natal, Scottsville Pietermaritzburg 3209 South Africa; Klein, Julia A. [Department Forest, Rangeland & Watershed Stewardship, Colorado State University, Fort Collins CO 80523-1472 USA; Knops, Johannes M. H. [School of Biological Sciences, University of Nebraska, Lincoln NE 68588 USA; La Pierre, Kimberly J. [Department of Ecology, Evolutionary Biology, Yale University, New Haven CT 06520 USA; Ladwig, Laura M. [Department of Biology, University of New Mexico, Albuquerque NM 87103 USA; Lambrinos, John G. [Department of Horticulture, Oregon State University, Corvallis OR 97331 USA; Leakey, Andrew D. B. [Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana IL 61801 USA; Li, Qi [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008 Qinghai China; Li, Wei [Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224 China; McCulley, Rebecca [Department of Plant & Soil Sciences, University of Kentucky, Lexington KY 40546 USA; Melbourne, Brett [Department of Ecology and Evolutionary Biology, University of Colorado, Boulder CO 80309 USA; Mitchell, Charles E. [Department of Biology, University of North Carolina, Chapel Hill NC 27599 USA; Moore, Joslin L. [Australian Research Centre for Urban Ecology, Melbourne, c/o School of Botany, University of Melbourne, Melbourne Victoria 3010 Australia; Morgan, John [Department of Botany, La Trobe University, Bundoora 3086 Victoria Australia; Mortensen, Brent [Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA; O' Halloran, Lydia R. [Department of Zoology, Oregon State University, Corvallis OR 97331 USA; Pärtel, Meelis [Institute of Ecology and Earth Sciences, University of Tartu, Tartu Estonia; Pascual, Jesús [Instituto de Investigaciones Marinas y Costeras (UNMdP-CONICET), Mar del Plata Argentina; Pyke, David A. [U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Corvallis OR 97331 USA; Risch, Anita C. [Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf Switzerland; Salguero-Gómez, Roberto [ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane Queensland 4072 Australia; Sankaran, Mahesh [National Centre for Biological Sciences, GKVK Campus, Bellary Road Bangalore 560065 India; Schuetz, Martin [Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf Switzerland; Simonsen, Anna [Department of Ecology & Evolutionary Biology, University of Toronto, Toronto ON M5S 3B2 Canada; Smith, Melinda [Department of Biology, Colorado State University, Fort Collins CO 80523 USA; Stevens, Carly [Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ UK; Sullivan, Lauren [Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA; Wardle, Glenda M. [Desert Ecology Research Group, School of Biological Sciences, University of Sydney, Sydney NSW 2006 Australia; Wolkovich, Elizabeth M. [Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4 Canada; Wragg, Peter D. [Department of Ecology, Evolution, and Behavior, University of MN, St. Paul MN 55108 USA; Wright, Justin [Department of Biology, Duke University, Durham NC 27708 USA; Yang, Louie [Department of Entomology, University of California, Davis CA 95616 USA

    2013-10-16

    Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring

  8. Lie-admissible invariant treatment of irreversibility for matter and antimatter at the classical and operator levels

    International Nuclear Information System (INIS)

    Santilli, R.M.

    2006-01-01

    It was generally believed throughout the 20th century that irreversibility is a purely classical event without operator counterpart. however, a classical irreversible system cannot be consistently decomposed into a finite number of reversible quantum particles (and. vive versa), thus establishing that the origin of irreversibility is basically unknown at the dawn of the 21-st century. To resolve this problem. we adopt the historical analytical representation of irreversibility by Lagrange and Hamilton, that with external terms in their analytic equations; we show that, when properly written, the brackets of the time evolution characterize covering Lie-admissible algebras; we prove that the formalism has fully consistent operator counterpart given by the Lie-admissible branch of hadronic mechanics; we identify mathematical and physical inconsistencies when irreversible formulations are treated with the conventional mathematics used for reversible systems; we show that when the dynamical equations are treated with a novel irreversible mathematics, Lie-admissible formulations are fully consistent because invariant at both the classical and operator levels; and we complete our analysis with a number of explicit applications to irreversible processes in classical mechanics, particle physics and thermodynamics. The case of closed-isolated systems verifying conventional total conservation laws, yet possessing an irreversible structure, is treated via the simpler Lie-isotopic branch of hadronic mechanics. The analysis is conducted for both matter and antimatter at the classical and operator levels to prevent insidious inconsistencies occurring for the sole study of matter or, separately, antimatter

  9. Characterization of Indian and exotic quality protein maize (QPM ...

    African Journals Online (AJOL)

    Polymorphism analysis and genetic diversity of normal maize and quality protein maize (QPM) inbreds among locally well adapted germplasm is a prerequisite for hybrid maize breeding program. The diversity analyses of 48 maize accessions including Indian and exotic germplasm using 75 simple sequence repeat (SSR) ...

  10. Productivity of Indigenous and Exotic Cattle on Kenya Ranches ...

    African Journals Online (AJOL)

    A comparison of productivity and adaptability of indigenous (Boran and Small East African Zebu) and the exotic (Sahiwal and Ayrshire) cattle on Kenyan ranches located in semi-arid areas of the Rift Valley Provinces was done. Data sets of the cattle breeds over the 1979-1993 period on Deloraine, Elkarama, Ilkerin, ...

  11. Exotic Options: a Chooser Option and its Pricing

    Directory of Open Access Journals (Sweden)

    Raimonda Martinkutė-Kaulienė

    2012-12-01

    Full Text Available Financial instruments traded in the markets and investors’ situation in such markets are getting more and more complex. This leads to more complex derivative structures used for hedging that are harder to analyze and which risk is harder managed. Because of the complexity of these instruments, the basic characteristics of many exotic options may sometimes be not clearly understood. Most scientific studies have been focused on developing models for pricing various types of exotic options, but it is important to study their unique characteristics and to understand them correctly in order to use them in proper market situations. The paper examines main aspects of options, emphasizing the variety of exotic options and their place in financial markets and risk management process. As the exact valuation of exotic options is quite difficult, the article deals with the theoretical and practical aspects of pricing of chooser options that suggest a broad range of usage and application in different market conditions. The calculations made in the article showed that the price of the chooser is closely correlated with the choice time and low correlated with its strike price. So the first mentioned factor should be taken into consideration when making appropriate hedging and investing decisions.

  12. Present and Future Experiments with Stored Exotic Nuclei at GSI

    International Nuclear Information System (INIS)

    Geissel, H.

    2009-01-01

    Recent results and perspectives of experiments with stored exotic nuclei at GSI-FAIR will presented. An overview on the planned NUSTAR experiments will also presented. Relativistic exotic nuclei produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage-cooler ring ESR for accurate mass- and lifetime measurements. Direct mass measurements of electron-cooled exotic nuclei were performed using time-resolved Schottky spectrometry. Fragments with half-lives shorter than the time required for electron cooling have been investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique gives access to all nuclei with half-lives down to the microsecond range and has been successfully applied. Lifetimes of stored bare and few-electron ions have been measured with the goal to study the beta-decay under ionization conditions prevailing in stellar plasma. For the first time the direct observation of bound-state beta decay has been achieved with 2 07T l fragments. The future project FAIR includes a new large-acceptance in-flight separator (Super-FRS) in combination with a new storage ring system (CR, NESR) which will be ideal tools to study exotic nuclei far from stability.(author)

  13. Phenology of exotic invasive weeds associated with downy brome

    Science.gov (United States)

    The exotic and highly invasive annual grass downy brome (Bromus tectorum) has invaded millions of hectares of rangelands throughout the Intermountain West. Downy brome increases the chance, rate, season and spread of wildfires, resulting in the destruction of native plant communities and the wildli...

  14. Ecosystem impacts of exotic annual invaders in the genus Bromus

    Science.gov (United States)

    Matthew J. Germino; Jayne Belnap; John M. Stark; Edith B Allen; Benjamin Rau

    2016-01-01

    An understanding of the impacts of exotic plant species on ecosystems is necessary to justify and guide efforts to limit their spread, restore natives, and plan for conservation. Invasive annual grasses such as Bromus tectorum, B. rubens, B. hordeaceus, and B. diandrus (hereafter collectively referred to as Bromus) transform the structure and function of ecosystems...

  15. Antimicrobial Screening of Some Exotic Tree Species of Rajasthan Desert

    OpenAIRE

    B.B.S. Kapoor* and Shelja Pandita

    2013-01-01

    Antimicrobial screening of ethyl ether and alcoholic extracts of leaves of four selected exotic tree species growing inRajasthan Desert was carried out. Colophospermum mopane, Holoptelea integrifolia, Kigelia pinnata andPutranjiva roxburghii showed positive reactions against bacterial pathogens i.e. Staphylococcus aureus, Escherichiacoli and a fungal pathogen Candida albicans.

  16. Developing survey grids to substantiate freedom from exotic pests

    Science.gov (United States)

    John W. Coulston; Frank H. Koch; William D. Smith

    2009-01-01

    Systematic, hierarchical intensification of the Environmental Monitoring and Assessment Program hexagon for North America yields a simple procedure for developing national-scale survey grids. In this article, we describe the steps to create a national-scale survey grid using a risk map as the starting point. We illustrate the steps using an exotic pest example in which...

  17. On the exotic Higgs decays in effective field theory.

    Science.gov (United States)

    Bélusca-Maïto, Hermès; Falkowski, Adam

    2016-01-01

    We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context.

  18. Some exotic mesons and glueballs from the string model

    International Nuclear Information System (INIS)

    Burden, C.J.; Tassie, L.J.

    1982-01-01

    Planar solutions are found to the relativistic string equation corresponding to rigid-body rotation. These solutions allow for the construction of certain classes of exotic mesons and of glueballs with asymptotically straight Chew-Frautschi plots. We determine the asymtotic slope of the Chew-Frautschi plots for these hadrons. (orig.)

  19. The effects of exotic weed Flaveria bidentis with different invasion ...

    African Journals Online (AJOL)

    A new exotic weed, Flaveria bidentis, is spreading in central China where it forms dense monospecific patches modifying the structure of different native ecosystems and threatening native aboveground biodiversity. However, little is known about the consequences of such an invasion for soil bacterial community, especially ...

  20. Probing the partonic structure of exotic particles in hard electroproduction

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2005-01-01

    We argue that the electroproduction of exotic particles is a useful tool for study of their partonic structure. In the case of hybrid mesons, the magnitude of their cross sections shows that they are accessible for measurements in existing electroproduction experiments

  1. {pi}{eta} pair hard electroproduction and exotic hybrid mesons

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.V. [LPT, Universite Paris-Sud, 91405-Orsay, France, UMR 8627 du CNRS (France); BLTP, JINR, 141980 Dubna (Russian Federation); CPHT, Ecole Polytechnique, 91128 Palaiseau, France, UMR 7644 du CNRS (France); Pire, B. [CPHT, Ecole Polytechnique, 91128 Palaiseau, France, UMR 7644 du CNRS (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland) and Univ. de Liege, B-4000 Liege (Belgium); Teryaev, O.V. [BLTP, JINR, 141980 Dubna (Russian Federation); Wallon, S. [LPT, Universite Paris-Sud, 91405-Orsay, France, UMR 8627 du CNRS (France)

    2005-06-13

    We show that hard electroproduction is a promising way to study exotic hybrid mesons, in particular through the hybrid decay channel H->{pi}{eta}. We discuss the {pi}{eta} generalized distribution amplitude, calculate the production amplitude and propose a forward-backward asymmetry as a signal for the hybrid meson production.

  2. πη pair hard electroproduction and exotic hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2005-01-01

    We show that hard electroproduction is a promising way to study exotic hybrid mesons, in particular through the hybrid decay channel H->πη. We discuss the πη generalized distribution amplitude, calculate the production amplitude and propose a forward-backward asymmetry as a signal for the hybrid meson production

  3. Introduction: Exotic annual Bromus in the western USA [Chapter 1

    Science.gov (United States)

    Matthew J. Germino; Jeanne C. Chambers; Cynthia S. Brown

    2016-01-01

    The spread and impacts of exotic species are unambiguous, global threats to many ecosystems. A prominent example is the suite of annual grasses in the Bromus genus (Bromus hereafter) that originate from Europe and Eurasia but have invaded or are invading large areas of the Western USA. This book brings a diverse, multidisciplinary group of authors together to...

  4. Searches for exotic interactions in nuclear beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Naviliat-Cuncic, O. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 640 S Shaw Lane, East Lansing MI 48824 (United States)

    2016-07-07

    This contribution presents current efforts in the search for exotic interactions in nuclear β decay using a calorimetric technique for the measurement of the β energy spectrum shape. We describe the criteria for the choice of sensitive candidates in Gamow-Teller transitions and present the status of measurements performed in {sup 6}He and {sup 20}F decay.

  5. Bounds on charged lepton mixing with exotic charged leptons Ф

    Indian Academy of Sciences (India)

    imposing the constraints that the amplitude should not exceed the perturbative unitarity limit at high energy (. Ф. × = A), we obtain bounds on light heavy charged lepton mixing parameter sin. 2. (2 a. L) where a. L is the mixing angle of the ordinary charged lepton with its exotic partner. For A = 1 TeV, no bound is obtained on ...

  6. Physico-chemical properties of topsoil under indigenous and exotic ...

    African Journals Online (AJOL)

    This study evaluated selected physico-chemical properties of topsoil under monoculture plantation of an indigenous tree species - Nauclea diderrichii, and those of four exotic tree species – Theobroma cacao, Gmelina arborea, Pinus caribaea and Tectona grandis, located in Omo Biosphere Reserve, Ogun State, Nigeria.

  7. Correlated randomness: Some examples of exotic statistical physics

    Indian Academy of Sciences (India)

    journal of. May 2005 physics pp. 645–660. Correlated randomness: Some examples of exotic statistical physics .... The key idea is that scale invariance is a statement not about algebraic .... Very recently an article appeared in Phys. Rev. ... One quarter of any newspaper with a financial section is filled with economic fluc-.

  8. On the exotic Higgs decays in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belusca-Maito, Hermes; Falkowski, Adam [Universite Paris-Sud, Laboratoire de Physique Theorique, Orsay (France)

    2016-09-15

    We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context. (orig.)

  9. Exotic Higgs and mh ≅ 125 GeV

    International Nuclear Information System (INIS)

    Englert, C.

    2014-01-01

    We review non-SM (Standard Model) Higgs signatures which are missed in standard analyses by both ATLAS and CMS and show how the strong bounds by recent measurements can be relaxed in strongly-interacting theories. We also review strategies how to measure or constrain exotic Higgs decay at the LHC and a future linear collider. (author)

  10. Backward exotic meson production in π-n→px--

    International Nuclear Information System (INIS)

    Mantell, D.

    1978-01-01

    A discussion is given of some of the theory and theoretical techniques as well as actual previous experiments for the study of π - + n → p + X -- interactions. Included are the forces, classification, inclusive reactions, quark diagrams, properties of the unobserved X, cross sections, exotic mesons, duality and crossing, the working and normalization of some actual rexperiments, and analysis. 10 references

  11. Exotic plants along roads near La Paz, Bolivia

    Czech Academy of Sciences Publication Activity Database

    Fernández-Murillo, M. P.; Rico, Adriana; Kindlmann, Pavel

    2015-01-01

    Roč. 55, č. 6 (2015), s. 565-573 ISSN 0043-1737 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : exotic species * roads * altitude * distribution * Pennisetum clandestinum Subject RIV: EH - Ecology, Behaviour Impact factor: 1.517, year: 2015

  12. Exotic nuclei in self-consistent mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.

    1999-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics

  13. Searches for Exotic Physics with leptons with the ATLAS Detector

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    With the large sample of pp collisions recorded in the past year, ATLAS has taken full advantage of the opportunity to explore new territory at the TeV scale. In this seminar, an overview of searches for new exotic particles is presented, with a special emphasis on signatures with leptons.

  14. Children prioritize virtual exotic biodiversity over local biodiversity.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Ballouard

    Full Text Available Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1 a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2 an internet content analysis (i.e. Google searching sessions using keywords was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect "virtual" (unseen, exotic rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity.

  15. Exotic baryon resonances. Modern status. Possibilities to search and investigate

    International Nuclear Information System (INIS)

    Bagdasaryan, L.S.; Galumyan, P.I.; Grigoryan, A.A.; Kazaryan, S.P.; Khachatryan, G.N.; Oganesyan, A.G.; Vartapetyan, H.H.

    1985-01-01

    A possibility to investigate the exotic baryon resonances with qqqqq quark composition, in the systems pπ + π + , Λπ - π - , Σ - π - , etc. possessing exotic quantum numbers of isospin is considered. The most favourable reactions and kinematical regions where an effective search for the exotic baryons is possible are grounded. The contribution of the background subprocesses to the investigated systems is analyzed in various reactions and momenta configurations of the particles. The analysis shows that the search for the I=5/2 resonances in the system pπ + π + (Δ ++ π + ) is more reasonable in the π + p-interaction process, this system carrying the main portion of momentum in the lab. system. The exotic hyperons with S=-1 srangeness and I=2 isospin are to be searched in the fast-flying systems Λπ - π - (Σ* - (1385)π - ) and Σ - π - produced in the reactions on the K - beams. The cross sections of the production of the E 55 -baryon (J p =5/2 + , I=5/2) in the π + p → E 55 +++ π- and π + p → E 55 +++ x processes are theoretically estimated. The estimations show that in the experiments with the OMEGA spectometer at CERN one can get a substantial increase in the statistics as compared to that available, thus providing a detailed analysis of the pπ + π + system on the high confidence level. The question of investigation of the exotic baryon Regge trajectories in the processes of the inclusive production of ordinary (nonexotic) Δ ++ (1232), Σ* + (1385)- and Σ + -resonances in the π - -beam fragmentation region is also considered

  16. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  17. Monitoring and eradication of exotic fruit flies in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Allwood, Allan; Vueti, Ema Tora

    2003-01-01

    Fruit flies (family Tephritidae) are very mobile and are capable of breaching quarantine barriers, resulting in authorities and horticultural industries having to conduct expensive eradication programs. During the last two decades, with improved air travel and large increases in traveller numbers, the numbers of incursions and outbreaks of exotic pest fruit flies, especially in the Pacific region, have increased, particularly those species belonging to the dorsalis complex. Quarantine surveillance or early warning systems for recording exotic fruit flies include border inspections, passenger profiling, detection trapping, host surveys, and emergency response capacity. Having these systems fully operational improves the prospects of recording new incursions or outbreaks before they have time to expand, but it is still essential to have the capacity to undertake an eradication response as quickly as possible. Eradication programs using protein bait application technique, male annihilation technique, and, in some cases, sterile insect technique have been recently used in Mauritius, Thailand, Philippines, Australia, Nauru, Cook Islands, and French Polynesia against a range of fruit fly species. (author)

  18. Exotic Fish in Exotic Plantations: A Multi-Scale Approach to Understand Amphibian Occurrence in the Mediterranean Region.

    Directory of Open Access Journals (Sweden)

    Joana Cruz

    Full Text Available Globally, amphibian populations are threatened by a diverse range of factors including habitat destruction and alteration. Forestry practices have been linked with low diversity and abundance of amphibians. The effect of exotic Eucalyptus spp. plantations on amphibian communities has been studied in a number of biodiversity hotspots, but little is known of its impact in the Mediterranean region. Here, we identify the environmental factors influencing the presence of six species of amphibians (the Caudata Pleurodeles waltl, Salamandra salamandra, Lissotriton boscai, Triturus marmoratus and the anurans Pelobates cultripes and Hyla arborea/meridionalis occupying 88 ponds. The study was conducted in a Mediterranean landscape dominated by eucalypt plantations alternated with traditional use (agricultural, montados and native forest at three different scales: local (pond, intermediate (400 metres radius buffer and broad (1000 metres radius buffer. Using the Akaike Information Criterion for small samples (AICc, we selected the top-ranked models for estimating the probability of occurrence of each species at each spatial scale separately and across all three spatial scales, using a combination of covariates from the different magnitudes. Models with a combination of covariates at the different spatial scales had a stronger support than those at individual scales. The presence of predatory fish in a pond had a strong effect on Caudata presence. Permanent ponds were selected by Hyla arborea/meridionalis over temporary ponds. Species occurrence was not increased by a higher density of streams, but the density of ponds impacted negatively on Lissotriton boscai. The proximity of ponds occupied by their conspecifics had a positive effect on the occurrence of Lissotriton boscai and Pleurodeles waltl. Eucalypt plantations had a negative effect on the occurrence of the newt Lissotriton boscai and anurans Hyla arborea/meridionalis, but had a positive effect on

  19. The ISOL exotic beam facility at LNS: the EXCYT project

    International Nuclear Information System (INIS)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D.; Qin, J.; Wollnik, H.

    1997-01-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ''two accelerators'' method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.)

  20. The ISOL exotic beam facility at LNS: the EXCYT project

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Qin, J. [Institute of Atomic Energy, Beijing (China); Wollnik, H. [Giessen Univ. (Germany)

    1997-04-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ``two accelerators`` method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.). 8 refs.