WorldWideScience

Sample records for exoplanet system hat-p-3

  1. Detection of the Secondary Eclipse of Exoplanet HAT P-11b

    Science.gov (United States)

    Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  2. WARM SPITZER PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Kamen O. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cowan, Nicolas B. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Desert, Jean-Michel [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Sada, Pedro V. [Department of Physics and Mathematics, University of Monterrey, Monterrey (Mexico); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-06-20

    We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 {mu}m bands. HAT-P-3b and HAT-P-4b are Jupiter-mass objects orbiting an early K and an early G dwarf star, respectively. For HAT-P-3b we find eclipse depths of 0.112%+0.015%-0.030% (3.6 micron) and 0.094%+0.016%-0.009% (4.5 {mu}m). The HAT-P-4b values are 0.142%+0.014%-0.016% (3.6 micron) and 0.122%+0.012%-0.014% 4.5 {mu}m). The two planets' photometry is consistent with inefficient heat redistribution from their day to night sides (and low albedos), but it is inconclusive about possible temperature inversions in their atmospheres. HAT-P-12b is a Saturn-mass planet and is one of the coolest planets ever observed during secondary eclipse, along with the hot Neptune GJ 436b and the hot Saturn WASP-29b. We are able to place 3{sigma} upper limits on the secondary eclipse depth of HAT-P-12b in both wavelengths: <0.042% (3.6 {mu}m) and <0.085% (4.5 {mu}m). We discuss these results in the context of the Spitzer secondary eclipse measurements of GJ 436b and WASP-29b. It is possible that we do not detect the eclipses of HAT-P-12b due to high eccentricity, but find that weak planetary emission in these wavelengths is a more likely explanation. We place 3{sigma} upper limits on the |e cos {omega}| quantity (where e is eccentricity and {omega} is the argument of periapsis) for HAT-P-3b (<0.0081) and HAT-P-4b (<0.0042), based on the secondary eclipse timings.

  3. HAT-P-11: Discovery of a Second Planet and a Clue to Understanding Exoplanet Obliquities

    Science.gov (United States)

    Yee, Samuel W.; Petigura, Erik A.; Fulton, Benjamin J.; Knutson, Heather A.; Batygin, Konstantin; Bakos, Gáspár Á.; Hartman, Joel D.; Hirsch, Lea A.; Howard, Andrew W.; Isaacson, Howard; Kosiarek, Molly R.; Sinukoff, Evan; Weiss, Lauren M.

    2018-06-01

    HAT-P-11 is a mid-K dwarf that hosts one of the first Neptune-sized planets found outside the solar system. The orbit of HAT-P-11b is misaligned with the star’s spin—one of the few known cases of a misaligned planet orbiting a star less massive than the Sun. We find an additional planet in the system based on a decade of precision radial velocity (RV) measurements from Keck/High Resolution Echelle Spectrometer. HAT-P-11c is similar to Jupiter in its mass ({M}P\\sin i=1.6+/- 0.1 M J ) and orbital period (P={9.3}-0.5+1.0 year), but has a much more eccentric orbit (e = 0.60 ± 0.03). In our joint modeling of RV and stellar activity, we found an activity-induced RV signal of ∼7 {{m}} {{{s}}}-1, consistent with other active K dwarfs, but significantly smaller than the 31 {{m}} {{{s}}}-1 reflex motion due to HAT-P-11c. We investigated the dynamical coupling between HAT-P-11b and c as a possible explanation for HAT-P-11b’s misaligned orbit, finding that planet–planet Kozai interactions cannot tilt planet b’s orbit due to general relativistic precession; however, nodal precession operating on million year timescales is a viable mechanism to explain HAT-P-11b’s high obliquity. This leaves open the question of why HAT-P-11c may have such a tilted orbit. At a distance of 38 pc, the HAT-P-11 system offers rich opportunities for further exoplanet characterization through astrometry and direct imaging.

  4. The GAPS programme with HARPS-N at TNG. XVI. Measurement of the Rossiter-McLaughlin effect of transiting planetary systems HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60

    Science.gov (United States)

    Mancini, L.; Esposito, M.; Covino, E.; Southworth, J.; Biazzo, K.; Bruni, I.; Ciceri, S.; Evans, D.; Lanza, A. F.; Poretti, E.; Sarkis, P.; Smith, A. M. S.; Brogi, M.; Affer, L.; Benatti, S.; Bignamini, A.; Boccato, C.; Bonomo, A. S.; Borsa, F.; Carleo, I.; Claudi, R.; Cosentino, R.; Damasso, M.; Desidera, S.; Giacobbe, P.; González-Álvarez, E.; Gratton, R.; Harutyunyan, A.; Leto, G.; Maggio, A.; Malavolta, L.; Maldonado, J.; Martinez-Fiorenzano, A.; Masiero, S.; Micela, G.; Molinari, E.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Rainer, M.; Scandariato, G.; Smareglia, R.; Sozzetti, A.; Andreuzzi, G.; Henning, Th.

    2018-05-01

    Context. The measurement of the orbital obliquity of hot Jupiters with different physical characteristics can provide clues to the mechanisms of migration and orbital evolution of this particular class of giant exoplanets. Aims: We aim to derive the degree of alignment between planetary orbit and stellar spin angular momentum vectors and look for possible links with other orbital and fundamental physical parameters of the star-planet system. We focus on the characterisation of five transiting planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60) and the determination of their sky-projected planet orbital obliquity through the measurement of the Rossiter-McLaughlin effect. Methods: We used HARPS-N high-precision radial velocity measurements, gathered during transit events, to measure the Rossiter-McLaughlin effect in the target systems and determine the sky-projected angle between the planetary orbital plane and stellar equator. The characterisation of stellar atmospheric parameters was performed by exploiting the HARPS-N spectra, using line equivalent width ratios and spectral synthesis methods. Photometric parameters of the five transiting exoplanets were re-analysed through 17 new light curves, obtained with an array of medium-class telescopes, and other light curves from the literature. Survey-time-series photometric data were analysed for determining the rotation periods of the five stars and their spin inclination. Results: From the analysis of the Rossiter-McLaughlin effect we derived a sky-projected obliquity of λ = 21.2° ± 8.7°, λ = -54°-13°+41°, λ = -2.1° ± 3.0°, λ = 0° ± 11°, and λ = -129° ± 17° for HAT-P-3 b, HAT-P-12 b, HAT-P-22 b, WASP-39 b, and WASP-60 b, respectively. The latter value indicates that WASP-60 b is moving on a retrograde orbit. These values represent the first measurements of λ for the five exoplanetary systems under study. The stellar activity of HAT-P-22 indicates a rotation period of 28.7 ± 0

  5. Observations and modeling of the transiting exoplanets XO-2b, HAT-P-18b, and WASP-80b

    Directory of Open Access Journals (Sweden)

    Kjurkchieva Diana P.

    2017-01-01

    Full Text Available We present photometric observations and transit solutions of the exoplanets XO-2b, HAT-P-18b and WASP 80b. Our solution of the XO-2b transit gave system parameters whose values are close to those of the previous studies. The solutions of the new transits of HAT-P-18b and WASP 80b differ from the previous ones by bigger stellar and planet radii. We obtained new values of the target initial epochs corresponding to slightly different periods. Our investigation reaffirmed that small telescopes can be used successfully for the study of exoplanets orbiting stars brighter than 13 mag.

  6. Implications of the Secondary Eclipse of Exoplanet HAT-P-11b

    Science.gov (United States)

    Barry, Richard K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We observed exoplanet HAT-P-11b and have successfully detected its secondary eclipse. We conducted observations using the Spitzer Space Telescope in the post-cryo mission at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b is one of only two known exo-Neptunes and has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. We discuss implications of these observations.

  7. Atmospheric Retrievals of HAT-P-16b and WASP-11b/HAT-P-10b

    Science.gov (United States)

    McIntyre, Kathleen; Harrington, Joseph; Challener, Ryan; Lenius, Maria; Hartman, Joel D.; Bakos, Gaspar A.; Blecic, Jasmina; Cubillos, Patricio E.; Cameron, Andrew

    2018-01-01

    We report Bayesian atmospheric retrievals performed on the exoplanets HAT-P-16b and WASP-11b/HAT-P-10b. HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). WASP-11b/HAT-P-10b is a cooler (1020 ± 17 K), 0.487 ± 0.018 Jupiter-mass exoplanet orbiting a K3 star every 3.7224747 ± 0.0000065 days (Bakos et al. 2009, co-discovered by West et al. 2008). We observed secondary eclipses of both planets using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the two planets. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  8. HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance.

    Science.gov (United States)

    Wakeford, Hannah R; Sing, David K; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric D; Tremblin, Pascal; Amundsen, David S; Lewis, Nikole K; Mandell, Avi M; Fortney, Jonathan J; Knutson, Heather; Benneke, Björn; Evans, Thomas M

    2017-05-12

    A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H 2 O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals. Copyright © 2017, American Association for the Advancement of Science.

  9. Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b

    Science.gov (United States)

    Wang, Yong-Hao; Wang, Songhu; Liu, Hui-Gen; Hinse, Tobias C.; Laughlin, Gregory; Wu, Dong-Hong; Zhang, Xiaojia; Zhou, Xu; Wu, Zhenyu; Zhou, Ji-Lin; Wittenmyer, R. A.; Eastman, Jason; Zhang, Hui; Hori, Yasunori; Narita, Norio; Chen, Yuanyuan; Ma, Jun; Peng, Xiyan; Zhang, Tian-Meng; Zou, Hu; Nie, Jun-Dan; Zhou, Zhi-Min

    2017-08-01

    We present 10 R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project. The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6{--}3.0 {mmag}. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet to star radius ratio ({R}{{P}}/{R}* ), the ingress/egress duration (τ) and the total duration (T 14), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3 {M}\\oplus near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.

  10. WARM SPITZER OBSERVATIONS OF THREE HOT EXOPLANETS: XO-4b, HAT-P-6b, AND HAT-P-8b

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Kamen O. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Deming, Drake [Planetary Systems Laboratory, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Sada, Pedro V. [Department of Physics and Mathematics, University of Monterrey, Monterrey (Mexico); Cowan, Nicolas B. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Desert, Jean-Michel; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P.; Lewis, Nikole K. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2012-02-10

    We analyze Warm Spitzer/Infrared Array Camera observations of the secondary eclipses of three planets, XO-4b, HAT-P-6b, and HAT-P-8b. We measure secondary eclipse amplitudes at 3.6 {mu}m and 4.5 {mu}m for each target. XO-4b exhibits a stronger eclipse depth at 4.5 {mu}m than at 3.6 {mu}m, which is consistent with the presence of a temperature inversion. HAT-P-8b shows a stronger eclipse amplitude at 3.6 {mu}m and is best described by models without a temperature inversion. The eclipse depths of HAT-P-6b can be fitted with models with a small or no temperature inversion. We consider our results in the context of a postulated relationship between stellar activity and temperature inversion and a relationship between irradiation level and planet dayside temperature, as discussed by Knutson et al. and Cowan and Agol, respectively. Our results are consistent with these hypotheses, but do not significantly strengthen them. To measure accurate secondary eclipse central phases, we require accurate ephemerides. We obtain primary transit observations and supplement them with publicly available observations to update the orbital ephemerides of the three planets. Based on the secondary eclipse timing, we set upper boundaries for ecos ({omega}) for HAT-P-6b, HAT-P-8b, and XO-4b and find that the values are consistent with circular orbits.

  11. HAT-P-38h

    DEFF Research Database (Denmark)

    Sato, Bun'ei; Hartman, Joel D.; Bakos, Gaspar Á.

    2012-01-01

    We report on the discovery of HAT-P-38b, a Saturn-mass exoplanet, transiting the V = 12.56 dwarf star GSC 2314-00559 on a P = 4.6404 d circular orbit. The host star is a 0.89 M-circle dot late G dwarf, with solar metallicity and a radius of 0.92 R-circle dot. The planetary companion has a mass of...

  12. A Bayesian analysis of HAT-P-7b using the EXONEST algorithm

    International Nuclear Information System (INIS)

    Placek, Ben; Knuth, Kevin H.

    2015-01-01

    The study of exoplanets (planets orbiting other stars) is revolutionizing the way we view our universe. High-precision photometric data provided by the Kepler Space Telescope (Kepler) enables not only the detection of such planets, but also their characterization. This presents a unique opportunity to apply Bayesian methods to better characterize the multitude of previously confirmed exoplanets. This paper focuses on applying the EXONEST algorithm to characterize the transiting short-period-hot-Jupiter, HAT-P-7b (also referred to as Kepler-2b). EXONEST evaluates a suite of exoplanet photometric models by applying Bayesian Model Selection, which is implemented with the MultiNest algorithm. These models take into account planetary effects, such as reflected light and thermal emissions, as well as the effect of the planetary motion on the host star, such as Doppler beaming, or boosting, of light from the reflex motion of the host star, and photometric variations due to the planet-induced ellipsoidal shape of the host star. By calculating model evidences, one can determine which model best describes the observed data, thus identifying which effects dominate the planetary system. Presented are parameter estimates and model evidences for HAT-P-7b

  13. 3D spin-orbit angle of Kepler-25 and HAT-P-7

    Directory of Open Access Journals (Sweden)

    Benomar Othman

    2015-01-01

    Full Text Available The number of discovered exoplanets now exceeds 1500, mostly due to the Kepler space instrument observations. Many of these planet orbit in less than a week around their host stars. This implies that the inward migration of those planets is a basic ingredient of successful theories of planet formation and evolution. Several mechanisms have been proposed to explain the observed periods, which lead to different orbit eccentricity and obliquity distributions. Here we summarise and discuss the results of obliquities for two Kepler stars: HAT-P-7 and Kepler-25. These are interesting stellar systems as we could carry out a joint analysis using asteroseismology, transit lightcurve and the Rossiter-McLaughlin effect in order to measure the three dimensional obliquity.

  14. HAT-P-16b: A Bayesian Atmospheric Retrieval

    Science.gov (United States)

    McIntyre, Kathleen; Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Challener, Ryan; Bakos, Gaspar

    2017-10-01

    HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). We observed two secondary eclipses of HAT-P-16b using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the planet. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  15. FURTHER CONSTRAINTS ON THE OPTICAL TRANSMISSION SPECTRUM OF HAT-P-1b

    International Nuclear Information System (INIS)

    Montalto, M.; Santos, N. C.; Martins, J. H. C.; Figueira, P.; Alonso, R.; Iro, N.; Desidera, S.

    2015-01-01

    We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo. Our measurements imply an average planet to star radius ratio equal to R p /R * = (0.1159 ± 0.0005). This result is consistent with the value obtained from recent near-infrared measurements of this object, but differs from previously reported optical measurements, being lower by around 4.4 exoplanet scale heights. Analyzing the data over five different spectral bins of ∼600 Å wide, we observed a single peaked spectrum (3.7 σ level) with a blue cutoff corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in-between 6180 and 7400 Å. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported

  16. FURTHER CONSTRAINTS ON THE OPTICAL TRANSMISSION SPECTRUM OF HAT-P-1b

    Energy Technology Data Exchange (ETDEWEB)

    Montalto, M.; Santos, N. C.; Martins, J. H. C.; Figueira, P.; Alonso, R. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal); Iro, N. [Theoretical Meteorology Group Klimacampus, University of Hamburg Grindelberg 5, D-20144, Hamburg (Germany); Desidera, S., E-mail: Marco.Montalto@astro.up.pt [INAF—Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, Padova, I-35122 (Italy)

    2015-09-20

    We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo. Our measurements imply an average planet to star radius ratio equal to R{sub p}/R{sub *} = (0.1159 ± 0.0005). This result is consistent with the value obtained from recent near-infrared measurements of this object, but differs from previously reported optical measurements, being lower by around 4.4 exoplanet scale heights. Analyzing the data over five different spectral bins of ∼600 Å wide, we observed a single peaked spectrum (3.7 σ level) with a blue cutoff corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in-between 6180 and 7400 Å. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.

  17. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  18. Probing the parameters of the HAT-P-2 system

    Science.gov (United States)

    Bailey, Elizabeth; Naoz, Smadar; Batygin, Konstantin

    2018-04-01

    The HAT-P-2 system contributes an exceptional set of parameters to the exoplanetary inventory. HAT-P-2b weighs in at approximately 9 Jupiter masses, residing on one of the most eccentric, close-in orbits of any hot Jupiter (e~0.5, a~0.07). The identification of an RV trend points to the existence of an additional, long-period companion, which may have facilitated Kozai-Lidov cycles in the system over its multi-Gyr history. The well-constrained parameters of HAT-P-2b present an opportunity to predict the parameters of the perturber, and furthermore, to assess the tidal dissipation involved in the system's evolution. In this work, we employ an octupole-level secular model to account for the interaction of the two massive planets, thus classifying the system's deviations away from purely quadrupolar dynamics.

  19. A SEARCH FOR WATER IN THE ATMOSPHERE OF HAT-P-26b USING LDSS-3C

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Kevin B.; Bean, Jacob L.; Seifahrt, Andreas; Gilbert, Gregory J. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Line, Michael R. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Désert, Jean-Michel [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam (Netherlands); Fortney, Jonathan J., E-mail: kbs@uchicago.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-01

    The characterization of a physically diverse set of transiting exoplanets is an important and necessary step toward establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at ∼10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet’s atmospheric chemical abundances. We also update HAT-P-26b’s transit ephemeris, t{sub 0} = 2455304.65218(25) BJD{sub TDB}, and orbital period, p = 4.2345023(7) days.

  20. HAT-P-68b: A Transiting Hot Jupiter Around a K5 Dwarf Star

    Science.gov (United States)

    Lindor, Bethlee; Hartman, Joel D.

    2018-01-01

    One of the main goals of the astrophysical society has been to detect sources of life outside of Earth. To aid this search, astronomers have spent the last 2 decades focused on the discovery and characterization of exoplanets. The most effective method for doing so has been transit photometry, wherein we measure the brightness of stars over periods of time. These measurements, or light curves, are later analyzed for dips in brightness caused by objects passing in front of the star. However, variations in these time series can also occur due to non-planetary systems and a meticulous process is needed to distinguish the planets from the various false positives that are detected. HATNet is one of many surveys involved in this endeavor, and in this work I analyze HAT-P-68. First, I model the system as a single star with a transiting planet and derive estimates of the stellar and planetary physical parameters. I also model HAT-P-68 as a number of a false positives such as a pair of stars in an eclipsing binary blended with a background star, and a planet-sized star orbiting a Sun-like star. In order to rule out the possibility that HAT-P-68 is a blend, I carried out a statistical blend analysis of the photometric data and find that all blend models tested can be ruled out. Thus, I conclude that HAT-P-68 is a system with a transiting hot jupiter and consider what future observations would be most promising to further characterize the system.

  1. Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies

    Science.gov (United States)

    Saffe, C.; Jofré, E.; Martioli, E.; Flores, M.; Petrucci, R.; Jaque Arancibia, M.

    2017-07-01

    Aims: We aim to explore the possible chemical signature of planet formation in the binary system HAT-P-4 by studying the trends of abundance vs. condensation temperature Tc. The star HAT-P-4 hosts a planet detected by transits, while its stellar companion does not have any detected planet. We also study the lithium content, which might shed light on the problem of Li depletion in exoplanet host stars. Methods: We derived for the first time both stellar parameters and high-precision chemical abundances by applying a line-by-line full differential approach. The stellar parameters were determined by imposing ionization and excitation equilibrium of Fe lines, with an updated version of the FUNDPAR program, together with ATLAS9 model atmospheres and the MOOG code. We derived detailed abundances of different species with equivalent widths and spectral synthesis with the MOOG program. Results: The exoplanet host star HAT-P-4 is found to be 0.1 dex more metal rich than its companion, which is one of the highest differences in metallicity observed in similar systems. This could have important implications for chemical tagging studies. We rule out a possible peculiar composition for each star, such as is the case for λ Boötis and δ Scuti, and neither is this binary a blue straggler. The star HAT-P-4 is enhanced in refractory elements relative to volatile when compared to its stellar companion. Notably, the Li abundance in HAT-P-4 is greater than that of its companion by 0.3 dex, which is contrary to the model that explains the Li depletion by the presence of planets. We propose a scenario where at the time of planet formation, the star HAT-P-4 locked the inner refractory material in planetesimals and rocky planets, and formed the outer gas giant planet at a greater distance. The refractories were then accreted onto the star, possibly as a result of the migration of the giant planet. This explains the higher metallicity, the higher Li content, and the negative Tc trend we

  2. Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack F

    2007-09-01

    Full Text Available Abstract Background Histone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4. Results Here, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC. While mutational inactivation of the histone acetyltransferase (HAT gene HAT1 alone does not compromise origin firing or initiation of DNA replication, a deletion in HAT1 (or HAT2 exacerbates the growth defects of conditional orc-ts mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork. Conclusion We have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p. The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.

  3. Spitzer Secondary Eclipses of HAT-P-13b

    Science.gov (United States)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  4. HATS-50b through HATS-53b: Four Transiting Hot Jupiters Orbiting G-type Stars Discovered by the HATSouth Survey

    Science.gov (United States)

    Henning, Th.; Mancini, L.; Sarkis, P.; Bakos, G. Á.; Hartman, J. D.; Bayliss, D.; Bento, J.; Bhatti, W.; Brahm, R.; Ciceri, S.; Csubry, Z.; de Val-Borro, M.; Espinoza, N.; Fulton, B. J.; Howard, A. W.; Isaacson, H. T.; Jordán, A.; Marcy, G. W.; Penev, K.; Rabus, M.; Suc, V.; Tan, T. G.; Tinney, C. G.; Wright, D. J.; Zhou, G.; Durkan, S.; Lazar, J.; Papp, I.; Sari, P.

    2018-02-01

    We report the discovery of four close-in transiting exoplanets (HATS-50b through HATS-53b), discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V = 12.5–14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal-rich ([{Fe}/{{H}}]=0.2{--}0.3), larger, and more massive. Three of the new exoplanets, namely HATS-50b, HATS-51b, and HATS-53b, have low density (HATS-50b: 0.39+/- 0.10 {M}{{J}}, 1.130+/- 0.075 {R}{{J}}; HATS-51b: 0.768+/- 0.045 {M}{{J}}, 1.41+/- 0.19 {R}{{J}}; HATS-53b: 0.595+/- 0.089 {M}{{J}}, 1.340+/- 0.056 {R}{{J}}) and similar orbital periods (3.8297 days, 3.3489 days, 3.8538 days, respectively). Instead, HATS-52b is more dense (mass 2.24+/- 0.15 {M}{{J}} and radius 1.382+/- 0.086 {R}{{J}}) and has a shorter orbital period (1.3667 days). It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature ({T}{eq}=1834+/- 73 K). HATS-50 shows a marginal additional transit feature consistent with an ultra-short-period hot super Neptune (upper mass limit 0.16 {M}{{J}}), which will be able to be confirmed with TESS photometry. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on observations made with the ESO 3.6 m, the NTT, the MPG 2.2 m and Euler 1.2 m Telescopes at the ESO Observatory in

  5. WASP-12b AND HAT-P-8b are members of triple star systems

    Energy Technology Data Exchange (ETDEWEB)

    Bechter, Eric B.; Crepp, Justin R.; Matthews, Christopher T. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Ngo, Henry; Knutson, Heather A.; Batygin, Konstantin; Johnson, John Asher [Department of Planetary Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Hinkley, Sasha; Muirhead, Philip S.; Montet, Benjamin T.; Morton, Timothy D. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Howard, Andrew W., E-mail: ebechter@nd.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-06-10

    We present high spatial resolution images that demonstrate that WASP-12b and HAT-P-8b orbit the primary stars of hierarchical triple star systems. In each case, two distant companions with colors and brightnesses consistent with M dwarfs co-orbit the hot Jupiter planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. and Crossfield et al. into two distinct sources separated by 84.3 ± 0.6 mas (21 ± 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al., is in fact composed of two stars separated by 65.3 ± 0.5 mas (15 ± 1 AU). Our follow-up observations demonstrate physical association through common proper motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18 ± 0.02 M {sub ☉} using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well studied planet hosts now represent higher-order multi-star systems with potentially complex dynamics, underscoring the importance of diffraction-limited imaging and providing additional context for understanding the migrant population of transiting hot Jupiters.

  6. WASP-12b and HAT-P-8b are Members of Triple Star Systems

    Science.gov (United States)

    Bechter, Eric B.; Crepp, Justin R.; Ngo, Henry; Knutson, Heather A.; Batygin, Konstantin; Hinkley, Sasha; Muirhead, Philip S.; Johnson, John Asher; Howard, Andrew W.; Montet, Benjamin T.; Matthews, Christopher T.; Morton, Timothy D.

    2014-06-01

    We present high spatial resolution images that demonstrate that WASP-12b and HAT-P-8b orbit the primary stars of hierarchical triple star systems. In each case, two distant companions with colors and brightnesses consistent with M dwarfs co-orbit the hot Jupiter planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. and Crossfield et al. into two distinct sources separated by 84.3 ± 0.6 mas (21 ± 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al., is in fact composed of two stars separated by 65.3 ± 0.5 mas (15 ± 1 AU). Our follow-up observations demonstrate physical association through common proper motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18 ± 0.02 M ⊙ using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well studied planet hosts now represent higher-order multi-star systems with potentially complex dynamics, underscoring the importance of diffraction-limited imaging and providing additional context for understanding the migrant population of transiting hot Jupiters.

  7. WASP-12b AND HAT-P-8b are members of triple star systems

    International Nuclear Information System (INIS)

    Bechter, Eric B.; Crepp, Justin R.; Matthews, Christopher T.; Ngo, Henry; Knutson, Heather A.; Batygin, Konstantin; Johnson, John Asher; Hinkley, Sasha; Muirhead, Philip S.; Montet, Benjamin T.; Morton, Timothy D.; Howard, Andrew W.

    2014-01-01

    We present high spatial resolution images that demonstrate that WASP-12b and HAT-P-8b orbit the primary stars of hierarchical triple star systems. In each case, two distant companions with colors and brightnesses consistent with M dwarfs co-orbit the hot Jupiter planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. and Crossfield et al. into two distinct sources separated by 84.3 ± 0.6 mas (21 ± 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al., is in fact composed of two stars separated by 65.3 ± 0.5 mas (15 ± 1 AU). Our follow-up observations demonstrate physical association through common proper motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18 ± 0.02 M ☉ using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well studied planet hosts now represent higher-order multi-star systems with potentially complex dynamics, underscoring the importance of diffraction-limited imaging and providing additional context for understanding the migrant population of transiting hot Jupiters.

  8. Transiting Exoplanet Monitoring Project (TEMP). IV. Refined System Parameters, Transit Timing Variations, and Orbital Stability of the Transiting Planetary System HAT-P-25

    Science.gov (United States)

    Wang, Xian-Yu; Wang, Songhu; Hinse, Tobias C.; Li, Kai; Wang, Yong-Hao; Laughlin, Gregory; Liu, Hui-Gen; Zhang, Hui; Wu, Zhen-Yu; Zhou, Xu; Zhou, Ji-Lin; Hu, Shao-Ming; Wu, Dong-Hong; Peng, Xi-Yan; Chen, Yuan-Yuan

    2018-06-01

    We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and orbital parameters of the transiting planet. Specifically, we determine the mid-transit times (T C ) and update the linear ephemeris, T C[0] = 2456418.80996 ± 0.00025 [BJDTDB] and P = 3.65281572 ± 0.00000095 days. We carry out a search for transit timing variations (TTVs), and find no significant TTV signal at the ΔT = 80 s-level, placing a limit on the possible strength of planet–planet interactions (TTVG). In the course of our analysis, we calculate the upper mass-limits of the potential nearby perturbers. Near the 1:2, 2:1, and 3:1 resonances with HAT-P-25b, perturbers with masses greater than 0.5, 0.3, and 0.5 M ⊕ respectively, can be excluded. Furthermore, based on the analysis of TTVs caused by light travel time effect (LTTE) we also eliminate the possibility that a long-period perturber exists with M p > 3000 MJ within a = 11.2 au of the parent star.

  9. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    International Nuclear Information System (INIS)

    Wit, Julien de; Lewis, Nikole K.; Knutson, Heather A.; Batygin, Konstantin; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-01-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  10. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Energy Technology Data Exchange (ETDEWEB)

    Wit, Julien de [Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Knutson, Heather A.; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Antoci, Victoria [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, Gregory [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91009 (United States); Cowan, Nicolas B. [Department of Physics, Department of Earth and Planetary Sciences, McGill University, 3550 rue University, Montreal, QC H3A 2A7 (Canada); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-02-20

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  11. A near-infrared transmission spectrum for the warm Saturn HAT-P-12b

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R.; Knutson, Heather; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Deming, Drake; Wilkins, Ashlee, E-mail: mrl@gps.caltech.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2013-12-01

    We present a Hubble Space Telescope Wide Field Camera-3 (WFC3) transmission spectrum for the transiting exoplanet HAT-P-12b. This warm (1000 K) sub-Saturn-mass planet has a smaller mass and a lower temperature than the hot Jupiters that have been studied so far. We find that the planet's measured transmission spectrum lacks the expected water absorption feature for a hydrogen-dominated atmosphere and is instead best described by a model with high-altitude clouds. Using a frequentist hypothesis testing procedure, we can rule out a hydrogen-dominated cloud-free atmosphere to 4.9σ. When combined with other recent WFC3 studies, our observations suggest that clouds may be common in exoplanetary atmospheres.

  12. HAT-P-25b

    DEFF Research Database (Denmark)

    Quinn, S.N.; Bakos, G. 'A; Hartman, J.

    2012-01-01

    We report the discovery of HAT-P-25b, a transiting extrasolar planet orbiting the V = 13.19 G5 dwarf star GSC 1788-01237, with a period P = 3.652836 +/- 0.000019 days, transit epoch Tc = 2455176.85173 +/- 0.00047 (BJD), and transit duration 0.1174 +/- 0.0017 days. The host star has mass of 1.01 +...

  13. REFINED SYSTEM PARAMETERS AND TTV STUDY OF TRANSITING EXOPLANETARY SYSTEM HAT-P-20

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Leilei; Gu, Shenghong; Wang, Xiaobin; Cao, Dongtao; Wang, Yibo; Xiang, Yue [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Cameron, Andrew Collier [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Hui, Ho-Keung; Kwok, Chi-Tai [Ho Koon Nature Education cum Astronomical Centre, Sik Sik Yuen, Hong Kong (China); Yeung, Bill; Ng, Eric [Hong Kong Astronomical Society, Hong Kong (China); Horta, Ferran Grau, E-mail: wangxb@ynao.ac.cn [Observatori Ca l’Ou, C/de Dalt 18, Sant Martí Sesgueioles (Spain)

    2017-01-01

    We report new photometric observations of the transiting exoplanetary system HAT-P-20, obtained using CCD cameras at Yunnan Observatories and Ho Koon Nature Education cum Astronomical Centre, China, from 2010 to 2013, and Observatori Ca l’Ou, Sant Marti Sesgueioles, Spain, from 2013 to 2015. The observed data are corrected for systematic errors according to the coarse de-correlation and SYSREM algorithms, so as to enhance the signal of the transit events. In order to consistently model the star spots and transits of this exoplanetary system, we develop a highly efficient tool STMT based on the analytic models of Mandel and Agol and Montalto et al. The physical parameters of HAT-P-20 are refined by homogeneously analyzing our new data, the radial velocity data, and the earlier photometric data in the literature with the Markov chain Monte Carlo technique. New radii and masses of both host star and planet are larger than those in the discovery paper due to the discrepancy of the radius among K-dwarfs between predicted values by standard stellar models and empirical calibration from observations. Through the analysis of all available mid-transit times calculated with the normal model and spotted model, we conclude that the periodic transit timing variations in these transit events revealed by employing the normal model are probably induced by spot crossing events. From the analysis of the distribution of occulted spots by HAT-P-20b, we constrain the misaligned architecture between the planetary orbit and the spin of the host star.

  14. SPITZER IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b

    International Nuclear Information System (INIS)

    Todorov, Kamen; Deming, Drake; Harrington, Jospeph; Stevenson, Kevin B.; Bowman, William C.; Nymeyer, Sarah; Fortney, Jonathan J.; Bakos, Gaspar A.

    2010-01-01

    We report Spitzer/IRAC photometry of the transiting giant exoplanet HAT-P-1b during its secondary eclipse. This planet lies near the postulated boundary between the pM and pL-class of hot Jupiters, and is important as a test of models for temperature inversions in hot Jupiter atmospheres. We derive eclipse depths for HAT-P-1b, in units of the stellar flux, that are: 0.080% ± 0.008% [3.6 μm], 0.135% ± 0.022% [4.5 μm], 0.203% ± 0.031% [5.8 μm], and 0.238% ± 0.040% [8.0 μm]. These values are best fit using an atmosphere with a modest temperature inversion, intermediate between the archetype inverted atmosphere (HD 209458b) and a model without an inversion. The observations also suggest that this planet is radiating a large fraction of the available stellar irradiance on its dayside, with little available for redistribution by circulation. This planet has sometimes been speculated to be inflated by tidal dissipation, based on its large radius in discovery observations, and on a non-zero orbital eccentricity allowed by the radial velocity data. The timing of the secondary eclipse is very sensitive to orbital eccentricity, and we find that the central phase of the eclipse is 0.4999 ± 0.0005. The difference between the expected and observed phase indicates that the orbit is close to circular, with a 3σ limit of |e cos ω| < 0.002.

  15. ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nikole K.; Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather A.; Desert, Jean-Michel; Kao, Melodie [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Laughlin, Gregory; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Burrows, Adam; Bakos, Gaspar A.; Hartman, Joel D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Mighell, Kenneth J. [National Optical Astronomy Observatories, Tucson, AZ 85726 (United States); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Hinkley, Sasha; Johnson, John Asher [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew W., E-mail: nklewis@mit.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); and others

    2013-04-01

    We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands of the Spitzer Space Telescope. The 3.6 and 4.5 {mu}m data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 {mu}m that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 {+-} 0.28, 5.84 {+-} 0.39, and 4.68 {+-} 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% {+-} 0.0089%, 0.1162% {+-} 0.0080%, and 0.1888% {+-} 0.0072% in the 3.6, 4.5, and 8.0 {mu}m bands, respectively. Our measured secondary eclipse depths of 0.0996% {+-} 0.0072%, 0.1031% {+-} 0.0061%, 0.071%{sub -0.013%}{sup +0.029,} and 0.1392% {+-} 0.0095% in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 {+-} 0.00048) and argument of periapse ({omega} = 188. Degree-Sign 09 {+-} 0. Degree-Sign 39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long

  16. ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

    International Nuclear Information System (INIS)

    Lewis, Nikole K.; Showman, Adam P.; Knutson, Heather A.; Désert, Jean-Michel; Kao, Melodie; Cowan, Nicolas B.; Laughlin, Gregory; Fortney, Jonathan J.; Burrows, Adam; Bakos, Gáspár Á.; Hartman, Joel D.; Deming, Drake; Crepp, Justin R.; Mighell, Kenneth J.; Agol, Eric; Charbonneau, David; Fischer, Debra A.; Hinkley, Sasha; Johnson, John Asher; Howard, Andrew W.

    2013-01-01

    We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, 0.071% -0.013% +0.029, and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188.°09 ± 0.°39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of

  17. HAT-P-16b

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Bakos, G. A.; Hartman, J. D.

    2010-01-01

    We report the discovery of HAT-P-16b, a transiting extrasolar planet orbiting the V = 10.8 mag F8 dwarf GSC 2792-01700, with a period P = 2.775960 ± 0.000003 days, transit epoch Tc = 2455027.59293 ± 0.00031 (BJD10), and transit duration 0.1276 ± 0.0013 days. The host star has a mass of 1.22 ± 0.0...

  18. HAT-P-10b: A LIGHT AND MODERATELY HOT JUPITER TRANSITING A K DWARF

    International Nuclear Information System (INIS)

    Bakos, G. A.; Pal, A.; Torres, G.; Sipocz, B.; Latham, D. W.; Noyes, R. W.; Hartman, J.; Esquerdo, G. A.; Sasselov, D. D.; Kovacs, Gabor; Stefanik, R. P.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Butler, R. P.; Lazar, J.; Papp, I.; Sari, P.

    2009-01-01

    We report on the discovery of HAT-P-10b, one of the lowest mass (0.487 ± 0.018 M J ) transiting extrasolar planets (TEPs) discovered to date by transit searches. HAT-P-10b orbits the moderately bright V = 11.89 K dwarf GSC 02340-01714, with a period P = 3.7224747 ± 0.0000065 days, transit epoch T c = 2454759.68683 ± 0.00016 (BJD), and duration 0.1090 ± 0.0008 days. HAT-P-10b has a radius of 1.005 +0.032 -0.027 R J yielding a mean density of 0.594 ± 0.052 g cm -3 . Comparing these observations with recent theoretical models we find that HAT-P-10b is consistent with a ∼4.5 Gyr, almost pure hydrogen and helium gas giant planet with a 10 M + core. With an equilibrium temperature of T eq = 1020 ± 17 K, HAT-P-10b is one of the coldest TEPs. Curiously, its Safronov number θ = 0.053 ± 0.002 falls close to the dividing line between the two suggested TEP populations.

  19. HATS-36b and 24 Other Transiting/Eclipsing Systems from the HATSouth-K2 Campaign 7 Program

    Science.gov (United States)

    Bayliss, D.; Hartman, J. D.; Zhou, G.; Bakos, G. Á.; Vanderburg, A.; Bento, J.; Mancini, L.; Ciceri, S.; Brahm, R.; Jordán, A.; Espinoza, N.; Rabus, M.; Tan, T. G.; Penev, K.; Bhatti, W.; de Val-Borro, M.; Suc, V.; Csubry, Z.; Henning, Th.; Sarkis, P.; Lázár, J.; Papp, I.; Sári, P.

    2018-03-01

    We report on the result of a campaign to monitor 25 HATSouth candidates using the Kepler space telescope during Campaign 7 of the K2 mission. We discover HATS-36b (EPIC 215969174b, K2-145b), an eccentric (e=0.105+/- 0.028) hot Jupiter with a mass of 3.216+/- 0.062 {M}{{J}} and a radius of 1.235+/- 0.043 {R}{{J}}, which transits a solar-type G0V star (V = 14.386) in a 4.1752-day period. We also refine the properties of three previously discovered HATSouth transiting planets (HATS-9b, HATS-11b, and HATS-12b) and search the K2 data for TTVs and additional transiting planets in these systems. In addition, we also report on a further three systems that remain as Jupiter-radius transiting exoplanet candidates. These candidates do not have determined masses, however pass all of our other vetting observations. Finally, we report on the 18 candidates that we are now able to classify as eclipsing binary or blended eclipsing binary systems based on a combination of the HATSouth data, the K2 data, and follow-up ground-based photometry and spectroscopy. These range in periods from 0.7 day to 16.7 days, and down to 1.5 mmag in eclipse depths. Our results show the power of combining ground-based imaging and spectroscopy with higher precision space-based photometry, and serve as an illustration as to what will be possible when combining ground-based observations with TESS data.

  20. HAT-P-13b,c: A TRANSITING HOT JUPITER WITH A MASSIVE OUTER COMPANION ON AN ECCENTRIC ORBIT

    International Nuclear Information System (INIS)

    Bakos, G. A.; Noyes, R. W.; Hartman, J.; Torres, G.; Latham, D. W.; Sasselov, D. D.; Stefanik, R. P.; Sipocz, B.; Kovacs, Gabor; Esquerdo, G. A.; Pal, A.; Howard, A. W.; Marcy, G. W.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Lazar, J.; Papp, I.; Sari, P.

    2009-01-01

    We report on the discovery of a planetary system with a close-in transiting hot Jupiter on a near circular orbit and a massive outer planet on a highly eccentric orbit. The inner planet, HAT-P-13b, transits the bright V = 10.622 G4 dwarf star GSC 3416 - 00543 every P = 2.916260 ± 0.000010 days, with transit epoch T c = 2454779.92979 ± 0.00038 (BJD) and duration 0.1345 ± 0.0017 days. The outer planet HAT-P-13c orbits the star every P 2 = 428.5 ± 3.0 days with a nominal transit center (assuming zero impact parameter) of T 2c = 2454870.4 ± 1.8 (BJD) or time of periastron passage T 2,peri = 2454890.05 ± 0.48 (BJD). Transits of the outer planet have not been observed, and may not be present. The host star has a mass of 1.22 +0.05 -0.10 M sun , radius of 1.56 ± 0.08 R sun , effective temperature of 5653 ± 90 K, and is rather metal-rich with [Fe/H] = +0.41 ± 0.08. The inner planetary companion has a mass of 0.853 +0.029 -0.046 M J , and radius of 1.281 ± 0.079 R J , yielding a mean density of 0.498 +0.103 -0.069 g cm -3 . The outer companion has m 2 sin i 2 = 15.2 ± 1.0 M J , and orbits on a highly eccentric orbit of e 2 = 0.691 ± 0.018. While we have not detected significant transit timing variations of HAT-P-13b, due to gravitational and light-travel time effects, future observations will constrain the orbital inclination of HAT-P-13c, along with its mutual inclination to HAT-P-13b. The HAT-P-13 (b, c) double-planet system may prove extremely valuable for theoretical studies of the formation and dynamics of planetary systems.

  1. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    International Nuclear Information System (INIS)

    Spiegel, David S.; Burrows, Adam

    2010-01-01

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmospheric structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio (∼ -5 ) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.

  2. Characterization of the atmosphere of the hot Jupiter HAT-P-32Ab and the M-dwarf companion HAT-P-32B

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ming; Wright, Jason T.; Curtis, Jason [Department of Astronomy and Astrophysics, Pennsylvania State University, PA 16802 (United States); O' Rourke, Joseph G.; Knutson, Heather A.; Ngo, Henry [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Fortney, Johnathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Fulton, Benjamin J.; Baranec, Christoph [Institute for Astronomy, University of Hawai' i at Mānoa, Hilo, HI 96720-2700 (United States); Riddle, Reed; Hinkley, Sasha [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Muirhead, Philip S. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Burruss, Rick, E-mail: mingzhao@psu.edu [Jet Propulsion Laboratory, California Institute of Technology, CA 91109 (United States)

    2014-12-01

    We report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/Wide-field Infra-Red Camera (WIRC) in H and K{sub S} bands and with Spitzer/IRAC at 3.6 and 4.5 μm. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P-32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.''923 ± 0.''004 and a position angle 110.°64 ± 0.°12. We measure the flux ratios of the binary in g'r'i'z' and H and K{sub S} bands, and determine T {sub eff}= 3565 ± 82 K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090% ± 0.033%, 0.178% ± 0.057%, 0.364% ± 0.016%, and 0.438% ± 0.020% in the H, K{sub S} , 3.6 and 4.5 μm bands, respectively. We compare these with planetary atmospheric models, and find they prefer an atmosphere with a temperature inversion and inefficient heat redistribution. However, we also find that the data are equally well described by a blackbody model for the planet with T {sub p} = 2042 ± 50 K. Finally, we measure a secondary eclipse timing offset of 0.3 ± 1.3 minutes from the predicted mid-eclipse time, which constrains e = 0.0072{sub −0.0064}{sup +0.0700} when combined with radial velocity data and is more consistent with a circular orbit.

  3. Broad-band spectrophotometry of HAT-P-32 b

    DEFF Research Database (Denmark)

    Mallonn, M.; Bernt, I.; Herrero, E.

    2016-01-01

    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previou...... makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes....

  4. Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yoichi Sunagawa

    2018-04-01

    Full Text Available The natural compound, curcumin (CUR, possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC and bisdemethoxycurcumin (BDMC are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy.Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure–activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy. Keywords: Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin, p300, Cardiomyocyte hypertrophy

  5. The elliptic quantum algebra Uq,p(sl-hatN) and its vertex operators

    International Nuclear Information System (INIS)

    Chang Wenjing; Ding Xiangmao

    2009-01-01

    We construct a realization of the elliptic quantum algebra U q,p (sl-hat N ) for any given level k in terms of free boson fields and their twisted partners. It can be considered as the elliptic deformation of the Wakimoto realization of the quantum affine algebra U q (sl-hat N ). We also construct a family of screening currents, which commute with the currents of U q,p (sl-hat N ) up to total q-differences. And we give explicit twisted expressions for the type I and type II vertex operators of U q,p (sl-hat N ) by twisting the known results of the type I vertex operators of the quantum affine algebra U q (sl-hat N ) and the new results of the type II vertex operators of U q (sl-hat N ) we obtained in this paper.

  6. Exoplanet Transits of Stellar Active Regions

    Science.gov (United States)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  7. Dynamical measurements of the interior structure of exoplanets

    International Nuclear Information System (INIS)

    Becker, Juliette C.; Batygin, Konstantin

    2013-01-01

    Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system's orbital state can yield meaningful constraints on the transiting planet's interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets.

  8. HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets

    Science.gov (United States)

    Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Penev, K.; Bieryla, A.; Latham, D. W.; Kovács, G.; Torres, G.; Csubry, Z.; de Val-Borro, M.; Buchhave, L.; Kovács, T.; Quinn, S.; Howard, A. W.; Isaacson, H.; Fulton, B. J.; Everett, M. E.; Esquerdo, G.; Béky, B.; Szklenar, T.; Falco, E.; Santerne, A.; Boisse, I.; Hébrard, G.; Burrows, A.; Lázár, J.; Papp, I.; Sári, P.

    2016-12-01

    We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of 2.6055 and 2.9721 days, masses of 0.527+/- 0.083 {M}{{J}} and 0.783+/- 0.057 {M}{{J}}, and inflated radii of 1.89+/- 0.13 {R}{{J}} and {1.59}-0.10+0.16 {R}{{J}}, respectively. They orbit moderately bright (V=13.145+/- 0.029 and V=12.993+/- 0.052) stars of mass 1.212+/- 0.050 {M}⊙ and {1.255}-0.054+0.107 {M}⊙ . The stars are at the main-sequence turnoff. While it is well known that the radii of close-in giant planets are correlated with their equilibrium temperatures, whether or not the radii of planets increase in time as their hosts evolve and become more luminous is an open question. Looking at the broader sample of well-characterized close-in transiting giant planets, we find that there is a statistically significant correlation between planetary radii and the fractional ages of their host stars, with a false-alarm probability of only 0.0041%. We find that the correlation between the radii of planets and the fractional ages of their hosts is fully explained by the known correlation between planetary radii and their present-day equilibrium temperatures; however, if the zero-age main-sequence equilibrium temperature is used in place of the present-day equilibrium temperature, then a correlation with age must also be included to explain the planetary radii. This suggests that, after contracting during the pre-main-sequence, close-in giant planets are reinflated over time due to the increasing level of irradiation received from their host stars. Prior theoretical work indicates that such a dynamic response to irradiation requires a significant fraction of the incident energy to be deposited deep within the planetary interiors. Based on observations obtained with the Hungarian-made Automated Telescope Network. Based on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology

  9. The elliptic quantum algebra U{sub q,p}(sl-hat{sub N}) and its vertex operators

    Energy Technology Data Exchange (ETDEWEB)

    Chang Wenjing [School of Mathematical Science, Capital Normal University, Beijing 100048 (China); Ding Xiangmao [Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: wjchang@amss.ac.cn, E-mail: xmding@amss.ac.cn

    2009-10-23

    We construct a realization of the elliptic quantum algebra U{sub q,p}(sl-hat{sub N}) for any given level k in terms of free boson fields and their twisted partners. It can be considered as the elliptic deformation of the Wakimoto realization of the quantum affine algebra U{sub q}(sl-hat{sub N}). We also construct a family of screening currents, which commute with the currents of U{sub q,p}(sl-hat{sub N}) up to total q-differences. And we give explicit twisted expressions for the type I and type II vertex operators of U{sub q,p}(sl-hat{sub N}) by twisting the known results of the type I vertex operators of the quantum affine algebra U{sub q}(sl-hat{sub N}) and the new results of the type II vertex operators of U{sub q}(sl-hat{sub N}) we obtained in this paper.

  10. Exoplanets Detection, Formation, Properties, Habitability

    CERN Document Server

    Mason, John W

    2008-01-01

    This edited, multi-author volume will be an invaluable introduction and reference to all key aspects in the field of exoplanet research. The reviews cover: Detection methods and properties of known exoplanets, Detection of extrasolar planets by gravitational microlensing. The formation and evolution of terrestrial planets in protoplanetary and debris disks. The brown dwarf-exoplanet connection. Formation, migration mechanisms and properties of hot Jupiters. Dynamics of multiple exoplanet systems. Doppler exoplanet surveys. Searching for exoplanets in the stellar graveyard. Formation and habitability of extra solar planets in multiple star systems. Exoplanet habitats and the possibilities for life. Moons of exoplanets: habitats for life. Contributing authors: •Rory Barnes •David P. Bennett •Jian Ge •Nader Haghighipour •Patrick Irwin •Hugh Jones •Victoria Meadows •Stanimir Metchev •I. Neill Reid •George Rieke •Caleb Scharf •Steinn Sigurdsson

  11. HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD

    International Nuclear Information System (INIS)

    Bakos, G. A.; Torres, G.; Pal, A.; Hartman, J.; Noyes, R. W.; Latham, D. W.; Sasselov, D. D.; Sipocz, B.; Esquerdo, G. A.; Kovacs, Gabor; Fernandez, J.; Kovacs, Geza; Moor, A.; Fischer, D. A.; Isaacson, H.; Johnson, J. A.; Marcy, G. W.; Howard, A.; Butler, R. P.; Vogt, S.

    2010-01-01

    We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V = 9.587) and metal rich ([Fe/H] = +0.31 ± 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 ± 0.0000071 days and produces a transit signal with depth of 4.2 mmag, the shallowest found by transit searches that is due to a confirmed planet. We present a global analysis of the available photometric and radial velocity (RV) data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17 M + , 3.8 R + ) both in mass M p = 0.081 ± 0.009 M J (25.8 ± 2.9 M + ) and radius R p = 0.422 ± 0.014 R J (4.73 ± 0.16 R + ). HAT-P-11b orbits in an eccentric orbit with e = 0.198 ± 0.046 and ω = 355. 0 2 ± 17. 0 3, causing a reflex motion of its parent star with amplitude 11.6 ± 1.2 m s -1 , a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is T c = 2454605.89132 ± 0.00032 (BJD), with duration 0.0957 ± 0.0012 days, and secondary eclipse epoch of 2454608.96 ± 0.15 days (BJD). The basic stellar parameters of the host star are M * = 0.809 +0.020 -0.027 M sun , R * = 0.752 ± 0.021 R sun , and T eff* = 4780 ± 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission; this should make possible fruitful investigations of the detailed physical characteristic of both the planet and its parent star at unprecedented precision. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. This will be particularly useful for eccentric TEPs with low-amplitude RV variations in Kepler's field. We also present a blend analysis, that for the first time treats the case of a

  12. HAT-P-12b: A LOW-DENSITY SUB-SATURN MASS PLANET TRANSITING A METAL-POOR K DWARF

    International Nuclear Information System (INIS)

    Hartman, J. D.; Bakos, G. A.; Torres, G.; Noyes, R. W.; Pal, A.; Latham, D. W.; Sipocz, B.; Esquerdo, G. A.; Sasselov, D. D.; Kovacs, Gabor; Stefanik, R. P.; Fernandez, J. M.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Butler, R. P.; Lazar, J.; Papp, I.

    2009-01-01

    We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V ∼ 12.8 K4 dwarf GSC 03033 - 00706, with a period P = 3.2130598 ± 0.0000021 d, transit epoch T c = 2454419.19556 ± 0.00020 (BJD), and transit duration 0.0974 ± 0.0006 d. The host star has a mass of 0.73 ± 0.02 M sun , radius of 0.70 +0.02 -0.01 R sun , effective temperature 4650 ± 60 K, and metallicity [Fe/H] = -0.29 ± 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 ± 0.012 M J and radius of 0.959 +0.029 -0.021 R J yielding a mean density of 0.295 ± 0.025 g cm -3 . Comparing these observations with recent theoretical models, we find that HAT-P-12b is consistent with a ∼1-4.5 Gyr, mildly irradiated, H/He-dominated planet with a core mass M C ∼ + . HAT-P-12b is thus the least massive H/He-dominated gas giant planet found to date. This record was previously held by Saturn.

  13. MODELS OF NEPTUNE-MASS EXOPLANETS: EMERGENT FLUXES AND ALBEDOS

    International Nuclear Information System (INIS)

    Spiegel, David S.; Burrows, Adam; Ibgui, Laurent; Hubeny, Ivan; Milsom, John A.

    2010-01-01

    There are now many known exoplanets with Msin i within a factor of 2 of Neptune's, including the transiting planets GJ 436b and HAT-P-11b. Planets in this mass range are different from their more massive cousins in several ways that are relevant to their radiative properties and thermal structures. By analogy with Neptune and Uranus, they are likely to have metal abundances that are an order of magnitude or more greater than those of larger, more massive planets. This increases their opacity, decreases Rayleigh scattering, and changes their equation of state. Furthermore, their smaller radii mean that fluxes from these planets are roughly an order of magnitude lower than those of otherwise identical gas giant planets. Here, we compute a range of plausible radiative equilibrium models of GJ 436b and HAT-P-11b. In addition, we explore the dependence of generic Neptune-mass planets on a range of physical properties, including their distance from their host stars, their metallicity, the spectral type of their stars, the redistribution of heat in their atmospheres, and the possible presence of additional optical opacity in their upper atmospheres.

  14. ANALYSIS OF SPIN-ORBIT ALIGNMENT IN THE WASP-32, WASP-38, AND HAT-P-27/WASP-40 SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. J. A.; Collier Cameron, A.; Enoch, B.; Miller, G. R. M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Diaz, R. F. [LAM (Laboratoire d' Astrophysique de Marseille), Aix Marseille Universite, CNRS, UMR 7326, F-13388 Marseille (France); Doyle, A. P.; Smalley, B.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L. [Astrophysics Group, School of Physical and Geographical Sciences, Lennard-Jones Building, Keele University, Staffordshire ST5 5BG (United Kingdom); Gillon, M. [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17 (Bat. B5C) Sart Tilman, B-4000 Liege (Belgium); Lendl, M.; Triaud, A. H. M. J.; Queloz, D. [Observatoire Astronomique de l' Universite de Geneve, 51 Chemin des Maillettes, CH-1290 Sauverny (Switzerland); Pollacco, D. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University, University Road, Belfast BT7 1NN (United Kingdom); Boisse, I. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Hebrard, G., E-mail: djab@st-andrews.ac.uk [Institut dAstrophysique de Paris, UMR7095 CNRS, Universite Pierre and Marie Curie, 98bis boulevard Arago, F-75014 Paris (France)

    2012-12-01

    We present measurements of the spin-orbit alignment angle, {lambda}, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the Rossiter-McLaughlin effect for all three systems and also carry out Doppler tomography for WASP-32 and WASP-38. We find that WASP-32 (T {sub eff} = 6140{sup +90} {sub -100} K) is aligned, with an alignment angle of {lambda} = 10.{sup 0}5{sup +6.4} {sub -6.5} obtained through tomography, and that WASP-38 (T {sub eff} = 6180{sup +40} {sub -60} K) is also aligned, with tomographic analysis yielding {lambda} = 7.{sup 0}5{sup +4.7} {sub -6.1}. The latter result provides an order-of-magnitude improvement in the uncertainty in {lambda} compared to the previous analysis of Simpson et al. We are only able to loosely constrain the angle for HAT-P-27/WASP-40 (T{sub eff} = 5190{sup +160} {sub -170} K) to {lambda} = 24.{sup 0}2{sup +76.0}{sub -44.5}, owing to the poor signal-to-noise ratio of our data. We consider this result a non-detection under a slightly updated version of the alignment test of Brown et al. We place our results in the context of the full sample of spin-orbit alignment measurements, finding that they provide further support for previously established trends.

  15. Home Automated Telemanagement (HAT System to Facilitate Self-Care of Patients with Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Joseph Finkelstein

    2003-06-01

    Full Text Available Successful patient self-management requires a multidisciplinary approach that includes regular patient assessment, disease-specific education, control of medication adherence, implementation of health behavior change models and social support. Existing systems for computer-assisted disease management do not provide this multidisciplinary patient support and do not address treatment compliance issues. We developed the Home Automated Telemanagement (HAT system for patients with different chronic health conditions to facilitate their self-care. The HAT system consists of a home unit, HAT server, and clinician units. Patients at home use a palmtop or a laptop connected with a disease monitor on a regular basis. Each HAT session consists of self-testing, feedback, and educational components. The self-reported symptom data and objective results obtained from disease-specific sensors are automatically sent from patient homes to the HAT server in the hospital. Any web-enabled device can serve as a clinician unit to review patient results. The HAT system monitors self-testing results and patient compliance. The HAT system has been implemented and tested in patients receiving anticoagulation therapy, patients with asthma, COPD and other health conditions. Evaluation results indicated high level of acceptance of the HAT system by the patients and that the system has a positive impact on main clinical outcomes and patient satisfaction with medical care.

  16. HAT-P-49b: a 1.7 M {sub J} planet transiting a bright 1.5 M {sub ☉} F-star

    Energy Technology Data Exchange (ETDEWEB)

    Bieryla, A.; Latham, D. W.; Buchhave, L. A.; Béky, B.; Falco, E.; Torres, G.; Noyes, R. W.; Berlind, P.; Calkins, M. C.; Esquerdo, G. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Csubry, Z.; Penev, K.; De Val-Borro, M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Kovács, G. [Konkoly Observatory, Budapest 1121 (Hungary); Boisse, I. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Lázár, J.; Papp, I., E-mail: abieryla@cfa.harvard.edu, E-mail: gbakos@astro.princeton.edu [Hungarian Astronomical Association (HAA), Budapest 1461 (Hungary); and others

    2014-04-01

    We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54 M {sub ☉} and a radius of 1.83 R {sub ☉}. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter-McLaughlin follow-up due to the host star's fast rotation, 16 km s{sup –1}. The planetary companion has a period of 2.6915 days, mass of 1.73 M {sub J}, and radius of 1.41 R {sub J}. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M{sub p} and R{sub p} well determined.

  17. Warm Spitzer and Palomar near-IR secondary eclipse photometry of two hot Jupiters: WASP-48b and HAT-P-23b

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Joseph G.; Knutson, Heather A.; Désert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Zhao, Ming [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Todorov, Kamen O. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2014-02-01

    We report secondary eclipse photometry of two hot Jupiters, WASP-48b and HAT-P-23b, at 3.6 and 4.5 μm taken with the InfraRed Array Camera aboard the Spitzer Space Telescope during the warm Spitzer mission and in the H and K{sub S} bands with the Wide Field IR Camera at the Palomar 200 inch Hale Telescope. WASP-48b and HAT-P-23b are Jupiter-mass and twice Jupiter-mass objects orbiting an old, slightly evolved F star and an early G dwarf star, respectively. In the H, K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.047% ± 0.016%, 0.109% ± 0.027%, 0.176% ± 0.013%, and 0.214% ± 0.020% for WASP-48b. In the K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.234% ± 0.046%, 0.248% ± 0.019%, and 0.309% ± 0.026% for HAT-P-23b. For WASP-48b and HAT-P-23b, respectively, we measure delays of 2.6 ± 3.9 minutes and 4.0 ± 2.4 minutes relative to the predicted times of secondary eclipse for circular orbits, placing 2σ upper limits on |ecos ω| of 0.0053 and 0.0080, both of which are consistent with circular orbits. The dayside emission spectra of these planets are well-described by blackbodies with effective temperatures of 2158 ± 100 K (WASP-48b) and 2154 ± 90 K (HAT-P-23b), corresponding to moderate recirculation in the zero albedo case. Our measured eclipse depths are also consistent with one-dimensional radiative transfer models featuring varying degrees of recirculation and weak thermal inversions or no inversions at all. We discuss how the absence of strong temperature inversions on these planets may be related to the activity levels and metallicities of their host stars.

  18. How a hat may affect 3-month-olds' recognition of a face: an eye-tracking study.

    Science.gov (United States)

    Bulf, Hermann; Valenza, Eloisa; Turati, Chiara

    2013-01-01

    Recent studies have shown that infants' face recognition rests on a robust face representation that is resilient to a variety of facial transformations such as rotations in depth, motion, occlusion or deprivation of inner/outer features. Here, we investigated whether 3-month-old infants' ability to represent the invariant aspects of a face is affected by the presence of an external add-on element, i.e. a hat. Using a visual habituation task, three experiments were carried out in which face recognition was investigated by manipulating the presence/absence of a hat during face encoding (i.e. habituation phase) and face recognition (i.e. test phase). An eye-tracker system was used to record the time infants spent looking at face-relevant information compared to the hat. The results showed that infants' face recognition was not affected by the presence of the external element when the type of the hat did not vary between the habituation and test phases, and when both the novel and the familiar face wore the same hat during the test phase (Experiment 1). Infants' ability to recognize the invariant aspects of a face was preserved also when the hat was absent in the habituation phase and the same hat was shown only during the test phase (Experiment 2). Conversely, when the novel face identity competed with a novel hat, the hat triggered the infants' attention, interfering with the recognition process and preventing the infants' preference for the novel face during the test phase (Experiment 3). Findings from the current study shed light on how faces and objects are processed when they are simultaneously presented in the same visual scene, contributing to an understanding of how infants respond to the multiple and composite information available in their surrounding environment.

  19. Possible detection of a bimodal cloud distribution in the atmosphere of HAT-P-32 A b from multiband photometry

    Science.gov (United States)

    Tregloan-Reed, J.; Southworth, J.; Mancini, L.; Mollière, P.; Ciceri, S.; Bruni, I.; Ricci, D.; Ayala-Loera, C.; Henning, T.

    2018-03-01

    We present high-precision photometry of eight separate transit events in the HAT-P-32 planetary system. One transit event was observed simultaneously by two telescopes of which one obtained a simultaneous multiband light curve in three optical bands, giving a total of 11 transit light curves. Due to the filter selection and in conjunction with using the defocused photometry technique, we were able to obtain an extremely high-precision, ground-based transit in the u band (350 nm), with an rms scatter of ≈1 mmag. All 11 transits were modelled using PRISM and GEMC, and the physical properties of the system calculated. We find the mass and radius of the host star to be 1.182 ± 0.041 M⊙ and 1.225 ± 0.015 R⊙, respectively. For the planet, we find a mass of 0.80 ± 0.14 MJup, a radius of 1.807 ± 0.022 RJup, and a density of 0.126 ± 0.023 ρJup. These values are consistent with those found in the literature. We also obtain a new orbital ephemeris for the system T0 = BJD/TDB 2 454 420.447187(96) + 2.15000800(10) × E. We measured the transmission spectrum of HAT-P-32 A b and compared it to theoretical transmission spectra. Our results indicate a bimodal cloud particle distribution consisting of Rayleigh-like haze and grey absorbing cloud particles within the atmosphere of HAT-P-32 A b.

  20. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  1. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  2. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  3. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  4. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    Science.gov (United States)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental

  5. Catalogue of Exoplanets in Multiple-Star-Systems

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos; Pilat-Lohinger, Elke

    2017-07-01

    Cataloguing the data of exoplanetary systems becomes more and more important, due to the fact that they conclude the observations and support the theoretical studies. Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia is available at http://exoplanet.eu/ and described at Schneider et al. 2011). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database. Therefore we started to compile a catalogue for binary and multiple star systems. Since 2013 the catalogue can be found at http://www.univie.ac.at/adg/schwarz/multiple.html (description can be found at Schwarz et al. 2016) which will be updated regularly and is linked to the Extrasolar Planets Encyclopaedia. The data of the binary catalogue can be downloaded as a file (.csv) and used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. Every columns of the list can be sorted in two directions: ascending, meaning from the lowest value to the highest, or descending. In addition an introduction and help is also given in the menu bar of the catalogue including an example list.

  6. Exoplanets

    Science.gov (United States)

    Seager, S.

    2010-12-01

    -mass planets and those further from the star. All in all, technology enables slow but sure progress, and this fuels ongoing discovery. Theory, like observations, also takes time to unfold and mature. We can anticipate an "ultimate" planet formation model similar to the "millenimum simulation" for galaxy formation and evolution. In time, incorporating detailed physics as well as being able to reproduce the generic outcome of planet populations (mass, radius, and orbital characteristics, including period) will enable a deeper understanding of planet formation and migration. Similarly, the ideal exoplanet atmosphere code of the future could be a three-dimensional Monte Carlo code that includes radiative transfer with inhomogeneous cloud coverage and surface features, a code that also solves for the temperature structure and combines with a hydrodynamical simulation to calculate the three-dimensional temperature and wind structure. Classical orbital mechanics, already reinvigorated by interesting exoplanet systems (e.g., planets in resonant orbits, hot Jupiter exoplanets that orbit in the direction opposite to the stellar rotation), also has a role to play in explaining fundamental mechanisms of how planetary system configurations came to be. Orbital dynamics modeling is driving the search for moons and other unseen planet companions by their perturbations on transiting planet signatures. Exoplanets is a unique science because it involves so many disciplines within and beyond planetary science and astrophysics. The other disciplines include geophysics, high-pressure mineral physics, quantum mechanics, chemistry, and even microbiology. While exoplanet observations clearly belong under the branch of astronomy, for many years the whole discipline of exoplanets lacked a true home. Physics departments have said "Exoplanets: It's interesting, but is it physics?" Planetary and Earth science departments used to collecting real data in their hands from Earth and in situ measurements from

  7. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  8. Direct Detection of Polarized, Scattered Light from Exoplanets

    Science.gov (United States)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  9. Life Beyond the Solar System: Observation and Modeling of Exoplanet Environments

    OpenAIRE

    Del Genio, Anthony; Airapetian, Vladimir; Apai, Daniel; Batalha, Natalie; Brain, Dave; Danchi, William; Gelino, Dawn; Domagal-Goldman, Shawn; Fortney, Jonathan J.; Henning, Wade; Rushby, Andrew

    2018-01-01

    The search for life on planets outside our solar system has largely been the province of the astrophysics community until recently. A major development since the NASA Astrobiology Strategy 2015 document (AS15) has been the integration of other NASA science disciplines (planetary science, heliophysics, Earth science) with ongoing exoplanet research in astrophysics. The NASA Nexus for Exoplanet System Science (NExSS) provides a forum for scientists to collaborate across disciplines to accelerat...

  10. The detectability of radio emission from exoplanets

    Science.gov (United States)

    Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.

    2018-05-01

    Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.

  11. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  12. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  13. On variable geometric factor systems for top-hat electrostatic space plasma analyzers

    International Nuclear Information System (INIS)

    Collinson, Glyn A; Kataria, Dhiren O

    2010-01-01

    Even in the relatively small region of space that is the Earth's magnetosphere, ion and electron fluxes can vary by several orders of magnitude. Top-hat electrostatic analyzers currently do not possess the dynamic range required to sample plasma under all conditions. The purpose of this study was to compare, through computer simulation, three new electrostatic methods that would allow the sensitivity of a sensor to be varied through control of its geometric factor (GF) (much like an aperture on a camera). The methods studied were inner filter plates, split hemispherical analyzer (SHA) and top-cap electrode. This is the first discussion of the filter plate concept and also the first study where all three systems are studied within a common analyzer design, so that their relative merits could be fairly compared. Filter plates were found to have the important advantage that they facilitate the reduction in instrument sensitivity whilst keeping all other instrument parameters constant. However, it was discovered that filter plates have numerous disadvantages that make such a system impracticable for a top-hat electrostatic analyzer. It was found that both the top-cap electrode and SHA are promising variable geometric factor system (VGFS) concepts for implementation into a top-hat electrostatic analyzer, each with distinct advantages over the other

  14. Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U 3 O 8 whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions

  15. THE EVIL-MC MODEL FOR ELLIPSOIDAL VARIATIONS OF PLANET-HOSTING STARS AND APPLICATIONS TO THE HAT-P-7 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Brian K. [Carnegie Institution for Science, Washington, DC 20015 (United States); Lewis, Nikole K.; Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Kuiper Space Sciences Building, Tucson, AZ 85721 (United States); Barnes, Jason W. [Department of Physics, University of Idaho, Engineering-Physics Building, Moscow, ID 83844 (United States); Deming, L. Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fortney, Jonathan J., E-mail: bjackson@dtm.ciw.edu [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2012-06-01

    We present a new model for Ellipsoidal Variations Induced by a Low-Mass Companion, the EVIL-MC model. We employ several approximations appropriate for planetary systems to substantially increase the computational efficiency of our model relative to more general ellipsoidal variation models and improve upon the accuracy of simpler models. This new approach gives us a unique ability to rapidly and accurately determine planetary system parameters. We use the EVIL-MC model to analyze Kepler Quarter 0-2 (Q0-2) observations of the HAT-P-7 system, an F-type star orbited by a {approx} Jupiter-mass companion. Our analysis corroborates previous estimates of the planet-star mass ratio q = (1.10 {+-} 0.06) Multiplication-Sign 10{sup -3}, and we have revised the planet's dayside brightness temperature to 2680{sup +10}{sub -20} K. We also find a large difference between the day- and nightside planetary flux, with little nightside emission. Preliminary dynamical+radiative modeling of the atmosphere indicates that this result is qualitatively consistent with high altitude absorption of stellar heating. Similar analyses of Kepler and CoRoT photometry of other planets using EVIL-MC will play a key role in providing constraints on the properties of many extrasolar systems, especially given the limited resources for follow-up and characterization of these systems. However, as we highlight, there are important degeneracies between the contributions from ellipsoidal variations and planetary emission and reflection. Consequently, for many of the hottest and brightest Kepler and CoRoT planets, accurate estimates of the planetary emission and reflection, diagnostic of atmospheric heat budgets, will require accurate modeling of the photometric contribution from the stellar ellipsoidal variation.

  16. What asteroseismology can do for exoplanets

    Directory of Open Access Journals (Sweden)

    Van Eylen Vincent

    2015-01-01

    Full Text Available We describe three useful applications of asteroseismology in the context of exoplanet science: (1 the detailed characterisation of exoplanet host stars; (2 the measurement of stellar inclinations; and (3 the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 [1]. This is one of the brightest (V = 9.4 Kepler exoplanet host stars, containing a small (2.8 R⊕ transiting planet in a long orbit (17.8 days, and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42 was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  17. Engineering assessment of inactive uranium mill tailings: Mexican Hat site, Mexican Hat, Utah. Summary

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: (a) heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U 3 O 8 whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions

  18. Qatar Exoplanet Survey: Qatar-6b—A Grazing Transiting Hot Jupiter

    Science.gov (United States)

    Alsubai, Khalid; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Esquerdo, Gilbert A.; Mislis, Dimitris; Pyrzas, Stylianos; Foxell, Emma; McCormac, James; Baranec, Christoph; Vilchez, Nicolas P. E.; West, Richard; Esamdin, Ali; Dang, Zhenwei; Dalee, Hani M.; Al-Rajihi, Amani A.; Al-Harbi, Abeer Kh.

    2018-02-01

    We report the discovery of Qatar-6b, a new transiting planet identified by the Qatar Exoplanet Survey (QES). The planet orbits a relatively bright (V = 11.44), early-K main-sequence star at an orbital period of P3.506 days. An SED fit to available multi-band photometry, ranging from the near-UV to the mid-IR, yields a distance of d = 101 ± 6 pc to the system. From a global fit to follow-up photometric and spectroscopic observations, we calculate the mass and radius of the planet to be M P = 0.67 ± 0.07 M J and R P = 1.06 ± 0.07 R J, respectively. We use multi-color photometric light curves to show that the transit is grazing, making Qatar-6b one of the few exoplanets known in a grazing transit configuration. It adds to the short list of targets that offer the best opportunity to look for additional bodies in the host planetary system through variations in the transit impact factor and duration.

  19. The LEECH Exoplanet Imaging Survey: Characterization of the Coldest Directly Imaged Exoplanet, GJ 504 b, and Evidence for Superstellar Metallicity

    Science.gov (United States)

    Skemer, Andrew J.; Morley, Caroline V.; Zimmerman, Neil T.; Skrutskie, Michael F.; Leisenring, Jarron; Buenzli, Esther; Bonnefoy, Mickael; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Esposito, Simone; Apai, Dániel; Biller, Beth; Brandner, Wolfgang; Close, Laird; Crepp, Justin R.; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Freedman, Richard; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Lupu, Roxana; Maire, Anne-Lise; Males, Jared R.; Marley, Mark; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Stone, Jordan; Su, Kate; Vaz, Amali; Visscher, Channon; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ˜500 K temperature that bridges the gap between the first directly imaged planets (˜1000 K) and our own solar system's Jupiter (˜130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: Teff = 544 ± 10 K, g Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrophisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  20. Application of Human-Autonomy Teaming (HAT) Patterns to Reduce Crew Operations (RCO)

    Science.gov (United States)

    Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri

    2016-01-01

    Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. This paper applies a methodology for identifying HAT patterns to an advanced cockpit project.

  1. The Discovery of Ellipsoidal Variations in the Kepler Light Curve of HAT-P-7

    OpenAIRE

    Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Fortney, Jonathan J.; Jenkins, Jon; Rowe, Jason F.; Koch, David; Borucki, William J.

    2010-01-01

    We present an analysis of the early Kepler observations of the previously discovered transiting planet HAT-P-7b. The light curve shows the transit of the star, the occultation of the planet, and the orbit phase-dependent light from the planet. In addition, phase-dependent light from the star is present, known as "ellipsoidal variations". The very nearby planet (only 4 stellar radii away) gravitationally distorts the star and results in a flux modulation twice per orbit. The ellipsoidal variat...

  2. A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-07-20

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke and Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ∼10{sup 2} cm{sup −3} for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.

  3. 32 New Exoplanets Found

    Science.gov (United States)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method

  4. Exoplanet habitability.

    Science.gov (United States)

    Seager, Sara

    2013-05-03

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  5. Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)

    Science.gov (United States)

    Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David

    2018-01-01

    Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of

  6. Exoplanet Biosignatures: Future Directions

    OpenAIRE

    Walker, Sara I.; Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y.; Lenardic, Adrian; Reinhard, Christopher T.; Moore, William; Schwieterman, Edward W.; Shkolnik, Evgenya L.; Smith, Harrison B.

    2017-01-01

    Exoplanet science promises a continued rapid accumulation of new observations in the near future, energizing a drive to understand and interpret the forthcoming wealth of data to identify signs of life beyond our Solar System. The large statistics of exoplanet samples, combined with the ambiguity of our understanding of universal properties of life and its signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce a Bayesian framework for guiding future di...

  7. Application of Human-Autonomy Teaming (HAT) Patterns to Reduced Crew Operations (RCO)

    Science.gov (United States)

    Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri

    2016-01-01

    As part of the Air Force - NASA Bi-Annual Research Council Meeting, slides will be presented on recent Reduced Crew Operations (RCO) work. Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. A methodology for identifying HAT patterns to an advanced cockpit project is discussed.

  8. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    Science.gov (United States)

    Hu, Renyu

    2016-01-01

    Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  9. Exoplanet orbital eccentricity: multiplicity relation and the Solar System.

    Science.gov (United States)

    Limbach, Mary Anne; Turner, Edwin L

    2015-01-06

    The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.

  10. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    Science.gov (United States)

    2009-09-01

    measurement for an exoplanet. Both were needed to discover a rocky planet with the same density as the Earth," says co-author Artie Hatzes. CoRoT-7b earns another distinction as the closest known exoplanet to its host star, which also makes it the fastest - it orbits its star at a speed of more than 750 000 kilometres per hour, more than seven times faster than the Earth's motion around the Sun. "In fact, CoRoT-7b is so close that the place may well look like Dante's Inferno, with a probable temperature on its 'day-face' above 2000 degrees and minus 200 degrees on its night face. Theoretical models suggest that the planet may have lava or boiling oceans on its surface. With such extreme conditions this planet is definitively not a place for life to develop," says Queloz. As a further testament to HARPS' sublime precision, the astronomers found from their dataset that CoRoT-7 hosts another exoplanet slightly further away than CoRoT-7b. Designated CoRoT-7c, it circles its host star in 3 days and 17 hours and has a mass about eight times that of Earth, so it too is classified as a super-Earth. Unlike CoRoT-7b, this sister world does not pass in front of its star as seen from Earth, so astronomers cannot measure its radius and thus its density. Given these findings, CoRoT-7 stands as the first star known to have a planetary system made of two short period super-Earths with one that transits its host. Notes [1] The CoRoT mission is a cooperation between France and its international partners: ESA, Austria, Belgium, Brazil, Germany and Spain. [2] We see exactly the same effect in our Solar System when Mercury or Venus transits the solar disc, as Venus did on 8 June 2004. In the past centuries such events were used to estimate the Sun-Earth distance, with extremely useful implications for astrophysics and celestial mechanics. [3] Gliese 581e, also discovered with HARPS, has a minimum mass about twice the Earth's mass (see ESO 15/09), but the exact geometry of the orbit is undefined

  11. A sub-Mercury-sized exoplanet

    NARCIS (Netherlands)

    Barclay, T.; et al., [Unknown; Hekker, S.

    2013-01-01

    Since the discovery of the first exoplanets1, 2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4, 5, and, since last year, to detect planets that are the size of

  12. Exoplanets: A New Era of Comparative Planetology

    Science.gov (United States)

    Meadows, Victoria

    2014-11-01

    We now know of over 1700 planets orbiting other stars, and several thousand additional planetary candidates. These discoveries have the potential to revolutionize our understanding of planet formation and evolution, while providing targets for the search for life beyond the Solar System. Exoplanets display a larger diversity of planetary types than those seen in our Solar System - including low-density, low-mass objects. They are also found in planetary system architectures very different from our own, even for stars similar to our Sun. Over 20 potentially habitable planets are now known, and half of the M dwarfs stars in our Galaxy may harbor a habitable planet. M dwarfs are plentiful, and they are therefore the most likely habitable planet hosts, but their planets will have radiative and gravitational interactions with their star and sibling planets that are unlike those in our Solar System. Observations to characterize the atmospheres and surfaces of exoplanets are extremely challenging, and transit transmission spectroscopy has been used to measure atmospheric composition for a handful of candidates. Frustratingly, many of the smaller exoplanets have flat, featureless spectra indicative of planet-wide haze or clouds. The James Webb Space Telescope and future ground-based telescopes will improve transit transmission characterization, and enable the first search for signs of life in terrestrial exoplanet atmospheres. Beyond JWST, planned next-generation space telescopes will directly image terrestrial exoplanets, allowing surface and atmospheric characterization that is more robust to haze. Until these observations become available, there is a lot that we can do as planetary scientists to inform required measurements and future data interpretation. Solar System planets can be used as validation targets for extrasolar planet observations and models. The rich heritage of planetary science models can also be used to explore the potential diversity of exoplanet

  13. Glowing Hot Transiting Exoplanet Discovered

    Science.gov (United States)

    2003-04-01

    for exoplanets More than 100 planets in orbit around stars other than the Sun have been found so far. These "exoplanets" come in many different sizes and they move in a great variety of orbits at different distances from their central star, some nearly round and others quite elongated. Some planets are five to ten times more massive than the largest one in the solar system, Jupiter - the lightest exoplanets known at this moment are about half as massive as Saturn, i.e. about 50 times more massive than the Earth. Astronomers are hunting exoplanets not just to discover more such objects, but also to learn more about the apparent diversity of planetary systems. The current main research goal is to eventually discover an Earth-like exoplanet, but the available telescopes and instrumentation are still not "sensitive" enough for this daunting task. However, also in this context, it is highly desirable to know not only the orbits of the observable exoplanets, but also their true masses . But this is not an easy task. Masses of exoplanets Virtually all exoplanets detected so far have been found by an indirect method - the measurement of stellar velocity variations . It is based on the gravitational pull of the orbiting planet that causes the central star to move a little back and forth; the heavier the planet, the greater is the associated change in the star's velocity. This technique is rapidly improving: the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) , now being tested on the 3.6-m telescope at the ESO La Silla Observatory , can measure such stellar motions with an unrivalled accuracy of about 1 metre per second (m/s), cf. ESO PR 06/03 . It will shortly be able to search for exoplanets only a few times more massive than the Earth. However, velocity measurements alone do not allow to determine the true mass of the orbiting planet. Because of the unknown inclination of the planetary orbit (to the line-of-sight), they only provide a lower limit to

  14. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    Science.gov (United States)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  15. First Temperate Exoplanet Sized Up

    Science.gov (United States)

    2010-03-01

    (Hawaii), the Isaac Newton Telescope (Roque de los Muchachos Observatory), Wise Observatory (Israel), the Faulkes North Telescope of the Las Cumbres Observatory Global Telescope Network (Hawaii) and the ESO 3.6-metre telescope (Chile). More information This research was presented in a paper published this week in Nature ("A transiting giant planet with a temperature between 250 K and 430 K"), by H. J. Deeg et al. The team is composed of H.J. Deeg, B. Tingley, J.M. Almenara, and M. Rabus (Instituto de Astrofısica de Canarias, Tenerife, Spain), C. Moutou, P. Barge, A. S. Bonomo, M. Deleuil, J.-C. Gazzano, L. Jorda, and A. Llebaria (Laboratoire d'Astrophysique de Marseille, Université de Provence, CNRS, OAMP, France), A. Erikson, Sz. Csizmadia, J. Cabrera, P. Kabath, H. Rauer (Institute of Planetary Research, German Aerospace Center, Berlin, Germany), H. Bruntt, M. Auvergne, A. Baglin, D. Rouan, and J. Schneider (Observatoire de Paris-Meudon, France), S. Aigrain and F. Pont (University of Exeter, UK), R. Alonso, C. Lovis, M. Mayor, F. Pepe, D. Queloz, and S. Udry (Observatoire de l'Université de Genève, Switzerland), M. Barbieri (Università di Padova, Italia), W. Benz (Universität Bern, Switzerland), P. Bordé, A. Léger, M. Ollivier, and B. Samuel (Institut d'Astrophysique Spatiale, Université Paris XI, Orsay, France), F. Bouchy and G. Hébrard (IAP, Paris, France), L. Carone and M. Pätzold (Rheinisches Institut für Umweltforschung an der Universität zu Köln, Germany), S. Carpano, M. Fridlund, P. Gondoin, and R. den Hartog (ESTEC/ESA, Noordwijk, The Netherlands), D. Ciardi (NASA Exoplanet Science Institute/Caltech, USA), R. Dvorak (University of Vienna, Austria), S. Ferraz-Mello (Universidade de São Paulo, Brasil), D. Gandolfi, E. Guenther, A. Hatzes, G. Wuchterl, B. Stecklum (Thüringer Landessternwarte, Tautenburg, Germany), M. Gillon (University of Liège, Belgium), T. Guillot and M. Havel (Observatoire de la Côte d' Azur, Nice, France), M. Hidas, T. Lister

  16. Spin–Orbit Alignment of Exoplanet Systems: Ensemble Analysis Using Asteroseismology

    DEFF Research Database (Denmark)

    Campante, T. L.; Lund, M. N.; Kuszlewicz, James S.

    2016-01-01

    seems to be well aligned with the stellar spin axis ( ##IMG## [http://ej.iop.org/images/0004-637X/819/1/85/apj522683ieqn2.gif] $psi =12rc. 6_-11.0^+6.7$ ). While the latter result is in apparent contradiction with a statement made previously in the literature that the multi-transiting system Kepler-25...... observed with NASA’s Kepler satellite. Our results for i s are consistent with alignment at the 2 σ level for all stars in the sample, meaning that the system surrounding the red-giant star Kepler-56 remains as the only unambiguous misaligned multiple-planet system detected to date. The availability...... of a measurement of the projected spin–orbit angle λ for two of the systems allows us to estimate ψ . We find that the orbit of the hot Jupiter HAT-P-7b is likely to be retrograde ( ##IMG## [http://ej.iop.org/images/0004-637X/819/1/85/apj522683ieqn1.gif] $psi =116rc. 4_-14.7^+30.2$ ), whereas that of Kepler-25c...

  17. Exoplanets Galore!

    Science.gov (United States)

    2000-05-01

    interestingly, a small change with time (a "drift") of the mean velocity variation of HD 83443 has been detected. This drift suggests the possible existence of an additional low-mass companion; earlier measurements show that it cannot be due to a more distant stellar companion. As for all other short-period exoplanets, this "Hot Saturn" offers good chances for future observations of a planetary transit across the disk of the central star, seen when the planetary orbit is (nearly) perpendicular to the sky plane. Precise photometric monitoring of the star has been conducted by a team of Danish astronomers with their 50-cm telescope at La Silla, but has so far failed to reveal any drop of the stellar luminosity. The mass of HD 108147 (of type F9-G0V) is slightly above that of the Sun (1.05 solar mass). The orbit of its low-mass companion is surprisingly eccentric (e = 0.56), despite of its fairly short period of 10.88 days. This star seems to be rather "young" (about 2,000 million years old); this is also corroborated by a comparatively high rotational velocity and a moderate chromospheric activity level. Three Jovian planets with longer periods around HD 52265 [3], HD 82943 and HD 169830 The deduced minimum masses, 1.07, 2.2 and 2.96 times the mass of Jupiter, of the planetary companions to HD 52265 (6.3 mag; G0V; Monoceros constellation - the Unicorn), HD 82943 (6.5 mag; G0; Hydra - the Water-Snake), and HD 169830 (5.9 mag; F8V; Sagittarius - the Archer), respectively, together with the orbital eccentricities (0.38, 0.61 and 0.34) and periods (119, 443 and 230 days) for these systems are rather typical for exoplanets with intermediate periods. Whereas all giant planets in our own solar system (Jupiter, Saturn, Neptune, Uranus) have nearly circular orbits, most of the extra-solar planets that have been discovered with periods of months to years are elongated. The origin of the elongated shape of those planetary orbits is still under debate. Two very low-mass brown

  18. "Work smart, wear your hard hat"

    CERN Multimedia

    2003-01-01

    Falling objects and collisions are frequent occurrences in work sites and hazardous areas. Hard hats can help prevent many types of accident and can even save lives. Just imagine an 800 g spanner falling from a 13 m high scaffold onto the head of someone standing below - a nightmare scenario! The impact to the head is equivalent to that of a 5 kg weight falling from 2 metres. That is just what happened to Gerd Fetchenhauer when he was working on the UA1 experiment. Fortunately, he was wearing a hard hat at the time. "That hat saved my life," he explains. "It punched a hole right through the hat and I was a bit dazed for a couple of hours but otherwise I was OK." Since that day, Gerd Fetchenhauer, now working on CMS, is never seen on a work site without his hard hat on. Work sites have proliferated at CERN with the construction of the LHC and its detectors, and the wearing of hard hats is compulsory (not to mention life-saving). In the underground caverns and experiment halls, where gantry cranes and other h...

  19. The Multiscale Bowler-Hat Transform for Vessel Enhancement in 3D Biomedical Images

    OpenAIRE

    Sazak, Cigdem; Nelson, Carl J.; Obara, Boguslaw

    2018-01-01

    Enhancement and detection of 3D vessel-like structures has long been an open problem as most existing image processing methods fail in many aspects, including a lack of uniform enhancement between vessels of different radii and a lack of enhancement at the junctions. Here, we propose a method based on mathematical morphology to enhance 3D vessel-like structures in biomedical images. The proposed method, 3D bowler-hat transform, combines sphere and line structuring elements to enhance vessel-l...

  20. The Exoplanet Characterization ToolKit (ExoCTK)

    Science.gov (United States)

    Stevenson, Kevin; Fowler, Julia; Lewis, Nikole K.; Fraine, Jonathan; Pueyo, Laurent; Valenti, Jeff; Bruno, Giovanni; Filippazzo, Joseph; Hill, Matthew; Batalha, Natasha E.; Bushra, Rafia

    2018-01-01

    The success of exoplanet characterization depends critically on a patchwork of analysis tools and spectroscopic libraries that currently require extensive development and lack a centralized support system. Due to the complexity of spectroscopic analyses and initial time commitment required to become productive, there are currently a limited number of teams that are actively advancing the field. New teams with significant expertise, but without the proper tools, face prohibitively steep hills to climb before they can contribute. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface focused primarily on atmospheric characterization of exoplanets and exoplanet transit observation planning with JWST. The foundation of these software tools and libraries exist within pockets of the exoplanet community. Our project will gather these seedling tools and grow a robust, uniform, and well maintained exoplanet characterization toolkit.

  1. The P-3 Scheduling Support System (P-3 S 3³)

    OpenAIRE

    Anderson, William B.

    1988-01-01

    Approved for public release; distribution is unlimited. A P-3 Scheduling Support System (P-3 S³ ) is a Management Information System (MIS) that was designed using structured techniques. Structured analysis was used to determine the functionality and data requirements. Computer Assisted Systems Engineering (CASE) tools were used to document the analysis and design. The system was designed to be implemented in dBase III Plus, a data base management tool developed by A...

  2. Hat cycle dynamic simulation

    International Nuclear Information System (INIS)

    Trucco, A.; Corallo, C.; Pini Prato, A.; Porro, S.

    1999-01-01

    Among the innovative cycle recently proposed in literature, the Humid Air Turbine Cycle - Hat better seems to fulfil the main energy market requirements of today: High efficiency in a large power ranger, low pollution, low specific capital cost. The previous results of an analysis at partial load and transient conditions are here presented, where the Hat plant has been simulated using the original model implemented in LEGO environment [it

  3. HATS-43b, HATS-44b, HATS-45b, and HATS-46b: Four Short-period Transiting Giant Planets in the Neptune–Jupiter Mass Range

    Science.gov (United States)

    Brahm, R.; Hartman, J. D.; Jordán, A.; Bakos, G. Á.; Espinoza, N.; Rabus, M.; Bhatti, W.; Penev, K.; Sarkis, P.; Suc, V.; Csubry, Z.; Bayliss, D.; Bento, J.; Zhou, G.; Mancini, L.; Henning, T.; Ciceri, S.; de Val-Borro, M.; Shectman, S.; Crane, J. D.; Arriagada, P.; Butler, P.; Teske, J.; Thompson, I.; Osip, D.; Díaz, M.; Schmidt, B.; Lázár, J.; Papp, I.; Sári, P.

    2018-03-01

    We report the discovery of four short-period extrasolar planets transiting moderately bright stars from photometric measurements of the HATSouth network coupled to additional spectroscopic and photometric follow-up observations. While the planet masses range from 0.26 to 0.90 {M}{{J}}, the radii are all approximately a Jupiter radii, resulting in a wide range of bulk densities. The orbital period of the planets ranges from 2.7 days to 4.7 days, with HATS-43b having an orbit that appears to be marginally non-circular (e = 0.173 ± 0.089). HATS-44 is notable for having a high metallicity ([{Fe}/{{H}}] = 0.320 ± 0.071). The host stars spectral types range from late F to early K, and all of them are moderately bright (13.3 Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  4. Simulating the Exoplanet Yield from the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Barclay, Thomas; Pepper, Joshua; Schlieder, Joshua; Quintana, Elisa

    2018-01-01

    In 2018 NASA will launch the MIT-led Transiting Exoplanet Survey Satellite (TESS) which has a goal of detecting terrestrial-mass planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. We inferred how many exoplanets the TESS mission will detect, the physical properties of these detected planets, and the properties of the stars that those planets orbit, subject to certain assumptions about the mission performance. To make these predictions we use samples of stars that are drawn from the TESS Input Catalog Candidate Target List. We place zero or more planets in orbit around these stars with physical properties following known exoplanet occurrence rates, and use the TESS noise model to predict the derived properties of the detected exoplanets. We find that it is feasible to detect around 1000 exoplanets, including 250 smaller than 2 earth-radii using the TESS 2-min cadence data. We examined alternative noise models and detection models and find in our pessimistic model that TESS will detect just 500 exoplanets. When potential detections in the full-frame image data are included, the number of detected planets could increase by a factor of 4. Perhaps most excitingly, TESS will find over 2 dozen planets orbiting in the habitable zone of bright, nearby cool stars. These planets will make ideal candidates for atmospheric characerization by JWST.

  5. The Habitable Zone Gallery 2.0: The Online Exoplanet System Visualization Suite

    Science.gov (United States)

    Chandler, C. O.; Kane, S. R.; Gelino, D. M.

    2017-11-01

    The Habitable Zone Gallery 2.0 provides new and improved visualization and data analysis tools to the exoplanet habitability community and beyond. Modules include interactive habitable zone plotting and downloadable 3D animations.

  6. Characterising exoplanet atmospheres as part of the LRG-BEASTS survey

    Science.gov (United States)

    Kirk, James; Wheatley, Peter; LRG-BEASTS Collaboration

    2018-01-01

    I will present the latest results from the Low Resolution Ground-Based Exoplanet Atmosphere Survey using Transmission Spectroscopy (LRG-BEASTS, ‘large beasts’). This programme has demonstrated the capabilities of 4-metre class telescopes to produce transmission spectra with precision comparable to HST and 8- and 10-metre class telescopes. LRG-BEASTS has so far revealed a Rayleigh scattering haze in the atmosphere of HAT-P-18b, clouds in the atmosphere of WASP-52b, and ruled out a previously claimed detection of potassium in the atmosphere of WASP-80b. Studies of hot Jupiter atmospheres have revealed a startling diversity between systems, with many showing thick clouds and hazes which mask pressure-broadened absorption features. In the small sample of studied planets to date, no strong correlation has emerged between key planetary parameters and the presence, or absence, of clouds and hazes, although there has been a suggestion that temperature might play a role. In order to characterise this diversity and unravel the underlying physical processes, it is essential that we expand the current sample of studied planets. This is the focus of LRG-BEASTS and my dissertation. Clouds and hazes are not just prominent in giant planet atmospheres but also in the handful of smaller planets characterised in transmission. The knowledge and expertise we will gain from the study of giant planets with surveys such as LRG-BEASTS will inform our understanding of analogous processes in the exciting new generation of planets that will be discovered with TESS.

  7. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets a...

  8. KEPLER'S OPTICAL SECONDARY ECLIPSE OF HAT-P-7b AND PROBABLE DETECTION OF PLANET-INDUCED STELLAR GRAVITY DARKENING

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Brett M.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mandell, Avi M. [Goddard Center for Astrobiology, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-02-20

    We present observations spanning 355 orbital phases of HAT-P-7 observed by Kepler from 2009 May to 2011 March (Q1-9). We find a shallower secondary eclipse depth than initially announced, consistent with a low optical albedo and detection of nearly exclusively thermal emission, without a reflected light component. We find an approximately 10 ppm perturbation to the average transit light curve near phase -0.02 that we attribute to a temperature decrease on the surface of the star, phased to the orbit of the planet. This cooler spot is consistent with planet-induced gravity darkening, slightly lagging the sub-planet position due to the finite response time of the stellar atmosphere. The brightness temperature of HAT-P-7b in the Kepler bandpass is T{sub B} = 2733 {+-} 21 K and the amplitude of the deviation in stellar surface temperature due to gravity darkening is approximately -0.18 K. The detection of the spot is not statistically unequivocal due its small amplitude, though additional Kepler observations should be able to verify the astrophysical nature of the anomaly.

  9. Statistical and dynamical remastering of classic exoplanet systems

    Science.gov (United States)

    Nelson, Benjamin Earl

    The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. In this dissertation, I will review our efforts to improve the statistical analyses of radial velocity (RV) data and their applications to some renown, dynamically complex exoplanet system. In the first project (Chapters 2 and 4), we develop a differential evolution Markov chain Monte Carlo (RUN DMC) algorithm to tackle the aforementioned difficult aspects of data analysis. We test the robustness of the algorithm in regards to the number of modeled planets (model dimensionality) and increasing dynamical strength. We apply RUN DMC to a couple classic multi-planet systems and one highly debated system from radial velocity surveys. In the second project (Chapter 5), we analyze RV data of 55 Cancri, a wide binary system known to harbor five planetary orbiting the primary. We find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet to enter the stellar photosphere through its periastron passage. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50+/-6 10 degrees), but they are not orbiting in a mean-motion resonance. In the third project (Chapters 3, 4, 6), we analyze RV data of Gliese 876, a four planet system with three participating in a multi-body resonance, i.e. a Laplace resonance. From a combined observational and statistical analysis computing Bayes factors, we find a four-planet model is favored over one with three-planets. Conditioned on this preferred model, we meaningfully constrain the three-dimensional orbital

  10. Ground Based Support for Exoplanet Space Missions

    Science.gov (United States)

    Haukka, H.; Hentunen, V.-P.; Salmi, T.; Aartolahti, H.; Juutilainen, J.; Vilokki, H.; Nissinen, M.

    2011-10-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association Warkauden Kassiopeia. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focused to asteroid [1] and exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring [2] and long term monitoring projects [3]. In the early 2011 Europlanet NA1 and NA2 organized "Coordinated Observations of Exoplanets from Ground and Space"-workshop in Graz, Austria. The workshop gathered together proam astronomers who have the equipment to measure the light curves of the exoplanets. Also there were professional scientists working in the exoplanet field who attended to the workshop. The result of the workshop was to organize coordinated observation campaign for follow-up observations of exoplanets (e.g. CoRoT planets). Also coordinated observation campaign to observe stellar CME outbreaks was planned. THO has a lot of experience in field of exoplanet light curve measurements and therefore this campaign is very supported by the research team of the observatory. In next coming observing seasons THO will concentrate its efforts for this kind of campaigns.

  11. THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Leisenring, Jarron; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Apai, Dániel; Close, Laird; Eisner, Josh [Steward Observatory, University of Arizona, 933 North Cherry Ave. Tucson, AZ 85721 (United States); Morley, Caroline V.; Fortney, Jonathan [University of California, Santa Cruz, 1156 High St. Santa Cruz, CA 95064 (United States); Zimmerman, Neil T.; Buenzli, Esther; Bonnefoy, Mickael; Biller, Beth; Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg (Germany); Skrutskie, Michael F. [University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Esposito, Simone [Istituto Nazionale di Astrofisica-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, 50125, Florence (Italy); Crepp, Justin R. [Notre Dame University, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); De Rosa, Robert J. [Arizona State University, 781 South Terrace Rd, Tempe, AZ 85281 (United States); Desidera, Silvano [Istituto Nazionale di Astrofisica-Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, 35122 Padova (Italy); and others

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ∼500 K temperature that bridges the gap between the first directly imaged planets (∼1000 K) and our own solar system's Jupiter (∼130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: T{sub eff} = 544 ± 10 K, g < 600 m s{sup −2}, [M/H] = 0.60 ± 0.12, cloud opacity parameter of f{sub sed} = 2–5, R = 0.96 ± 0.07 R{sub Jup}, and log(L) = −6.13 ± 0.03 L{sub ⊙}, implying a hot start mass of 3–30 M{sub jup} for a conservative age range of 0.1–6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.

  12. TWO EXOPLANETS DISCOVERED AT KECK OBSERVATORY

    International Nuclear Information System (INIS)

    Valenti, Jeff A.; Fischer, Debra; Giguere, Matt; Isaacson, Howard; Marcy, Geoffrey W.; Howard, Andrew W.; Johnson, John A.; Henry, Gregory W.; Wright, Jason T.

    2009-01-01

    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with M sin i = 27.5 M + in a 14.48 days, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m s -1 . HD 73534 is a G5 subgiant with a Jupiter-like planet of M sin i = 1.1 M Jup and K = 16 m s -1 in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m s -1 ), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m s -1 ).

  13. Exploring exoplanet populations with NASA's Kepler Mission.

    Science.gov (United States)

    Batalha, Natalie M

    2014-09-02

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  14. The exoplanet handbook

    National Research Council Canada - National Science Library

    Perryman, M. A. C

    2011-01-01

    .... It treats the many different techniques now available for exoplanet detection and characterisation, the broad range of underlying physics, the overlap with related topics in solar system and Earth sciences, and the concepts underpinning future developments. It emphasises the interconnection between the various topics, and provides extensive refe...

  15. Exoplanet Classification and Yield Estimates for Direct Imaging Missions

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Hébrard, Eric; Belikov, Rus; Batalha, Natalie M.; Mulders, Gijs D.; Stark, Chris; Teal, Dillon; Domagal-Goldman, Shawn; Mandell, Avi

    2018-04-01

    Future NASA concept missions that are currently under study, like the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-violet Optical Infra Red Surveyor, could discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, {{{H}}}2{{O}}, {CO}}2, and {CH}}4. The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky planets (0.5–1.0 R ⊕), super-Earths (1.0–1.75 R ⊕), sub-Neptunes (1.75–3.5 R ⊕), sub-Jovians (3.5–6.0 R ⊕), and Jovians (6–14.3 R ⊕) based on their planet sizes, and “hot,” “warm,” and “cold” based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, η planet, using the community coordinated results of NASA’s Exoplanet Program Analysis Group’s Science Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used to estimate the expected exoplanet yields for direct imaging missions of different telescope diameters.

  16. FINESSE & CASE: Two Proposed Transiting Exoplanet Missions

    Science.gov (United States)

    Zellem, Robert Thomas; FINESSE and CASE Science Team

    2018-01-01

    The FINESSE mission concept and the proposed CASE Mission of Opportunity, both recently selected by NASA’s Explorer program to proceed to Step 2, would conduct the first characterizations of exoplanet atmospheres for a statistically significant population. FINESSE would determine whether our Solar System is typical or exceptional, the key characteristics of the planet formation mechanism, and what establishes global planetary climate by spectroscopically surveying 500 exoplanets, ranging from terrestrials with extended atmospheres to sub-Neptunes to gas giants. FINESSE’s broad, instantaneous spectral coverage from 0.5-5 microns and capability to survey hundreds of exoplanets would enable follow-up exploration of TESS discoveries and provide a broader context for interpreting detailed JWST observations. Similarly, CASE, a NASA Mission of Opportunity contribution to ESA’s dedicated transiting exoplanet spectroscopy mission ARIEL, would observe 1000 warm transiting gas giants, Neptunes, and super-Earths, using visible to near-IR photometry and spectroscopy. CASE would quantify the occurrence rate of atmospheric aerosols (clouds and hazes) and measure the geometric albedos of the targets in the ARIEL survey. Thus, with the selection of either of these two missions, NASA would ensure access to critical data for the U.S. exoplanet science community.

  17. KEPLER OBSERVATIONS OF THREE PRE-LAUNCH EXOPLANET CANDIDATES: DISCOVERY OF TWO ECLIPSING BINARIES AND A NEW EXOPLANET

    International Nuclear Information System (INIS)

    Howell, Steve B.; Rowe, Jason F.; Bryson, Stephen T.; Sherry, William; Von Braun, Kaspar; Ciardi, David R.; Feldmeier, John J.; Horch, Elliott; Van Belle, Gerard T.

    2010-01-01

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R Jupiter in a 3.9 day orbit.

  18. Measurements of the UVR protection provided by hats used at school.

    Science.gov (United States)

    Gies, Peter; Javorniczky, John; Roy, Colin; Henderson, Stuart

    2006-01-01

    The importance of protection against solar ultraviolet radiation (UVR) in childhood has lead to SunSmart policies at Australian schools, in particular primary schools, where children are encouraged and in many cases required to wear hats at school. Hat styles change regularly and the UVR protection provided by some of the hat types currently used and recommended for sun protection by the various Australian state cancer councils had not been previously evaluated. The UVR protection of the hats was measured using UVR sensitive polysulphone film badges attached to different facial sites on rotating headforms. The sun protection type hats included in this study were broad-brimmed hats, "bucket hats" and legionnaires hats. Baseball caps, which are very popular, were also included. The broad-brimmed hats and bucket hats provided the most UVR protection for the six different sites about the face and head. Legionnaires hats also provided satisfactory UVR protection, but the caps did not provide UVR protection to many of the facial sites. The highest measured UVR protection factors for facial sites other than the forehead were 8 to 10, indicating that, while some hats can be effective, they need to be used in combination with other forms of UVR protection.

  19. James J. Gallagher: Man in the White Hat

    Science.gov (United States)

    Jolly, Jennifer L.; Robinson, Ann

    2014-01-01

    In classic Western movies, the good guy could be frequently identified by his trademark white Stetson hat, whereas the bad guy always wore black. James J. Gallagher wore many hats during his career that spanned over six decades; he too would be known as the "man in the white hat,"--trusted to do the right thing. From 1967 to 1970,…

  20. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    International Nuclear Information System (INIS)

    Clanton, Christian; Gaudi, B. Scott

    2014-01-01

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (m p ≳ 1 M Jup ) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (m p ≳ 0.1 M Jup ) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  1. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Christina L. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase activity

  2. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  3. Exploring exoplanet populations with NASA’s Kepler Mission

    Science.gov (United States)

    Batalha, Natalie M.

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  4. Characterizing Gaint Exoplanets through Multiwavelength Transit Observations

    Science.gov (United States)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Observing the characteristics of giant exoplanets is possible with ground-based telescopes and modern observational methods. We are performing characterizations of multiple giant exoplanets based on 85 allotted nights of transit observations with the 2.3 m Wyoming Infrared Observatory using Sloan filters. In particular, constraints can be made on the atmospheres of our targets from the wavelength (in)dependence in the depth of the transit observations. We present early multiwavelength photometric results on the exoplanet HD 189733 b with comparison to literature sources to exemplify the methodology employed. In total, 15 exoplanets were observed across multiple wavelengths. The majority of the observing allotted to the project was completed as part of the 2017 Summer REU at the University of Wyoming. This work will significantly contribute to the growing number of observed atmospheres and influence interpretation of future WFIRST, JWST, and TESS targets. This work is supported by the National Science Foundation under REU grant AST 1560461.

  5. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  6. Leveraging Ensemble Dynamical Properties to Prioritize Exoplanet Follow-Up Observations

    Science.gov (United States)

    Ballard, Sarah

    2017-01-01

    The number of transiting exoplanets now exceeds several thousand, enabling ensemble studies of the dynamical properties of exoplanetary systems. We require a mixture model of dynamical conditions (whether frozen in from formation or sculpted by planet-planet interactions) to recover Kepler's yield of transiting planets. Around M dwarfs, which will be predominate sites of exoplanet follow-up atmospheric study in the next decade, even a modest orbital eccentricity can sterilize a planet. I will describe efforts to link cheap observables, such as number of transiting planets and presence of transit timing variations, to eccentricity and mutual inclination in exoplanet systems. The addition of a second transiting planet, for example, halves the expected orbital eccentricity. For the vast majority of TESS targets, the light curve alone will furnish the sum total of data about the exoplanet. Extracting information about orbital properties from these light curves will help prioritize precious follow-up resources.

  7. Extrasolar Planet Transits Observed at Kitt Peak National Observatory

    Science.gov (United States)

    Sada, Pedro V.; Jennings, Donald E.; Deming, Drake; Jennings, Donald E.; Jackson, Brian; Hamilton, Catrina M.; Fraine, Jonathan; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; hide

    2012-01-01

    We obtained J-, H-, and JH-band photometry of known extrasolar planet transiting systems at the 2.1 m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between 2008 October and 2011 October. From the derived light curves we have extracted the midtransit times, transit depths and transit durations for these events. The precise midtransit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed light curves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1 m infrared observations using CCD z0-band and B-band photometry (plus two H(alpha) filter observations) obtained with the Kitt Peak Visitor Center Telescope, and with four H-band transits observed in 2007 October with the NSO's 1.6 m McMath-Pierce Solar Telescope. The principal highlights of our results are (1) Our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being RpRJ0:0017 0:979RpRvis. (2) We observe starspot crossings during the transit of WASP-11HAT-P-10. (3) We detect starspot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended. (4) We confirm a grazing transit for HAT-P-27WASP-40. In total, we present 57 individual transits of 32 known exoplanet systems.

  8. Are "Habitable" Exoplanets Really Habitable? -A perspective from atmospheric loss

    Science.gov (United States)

    Dong, C.; Huang, Z.; Jin, M.; Lingam, M.; Ma, Y. J.; Toth, G.; van der Holst, B.; Airapetian, V.; Cohen, O.; Gombosi, T. I.

    2017-12-01

    In the last two decades, the field of exoplanets has witnessed a tremendous creative surge. Research in exoplanets now encompasses a wide range of fields ranging from astrophysics to heliophysics and atmospheric science. One of the primary objectives of studying exoplanets is to determine the criteria for habitability, and whether certain exoplanets meet these requirements. The classical definition of the Habitable Zone (HZ) is the region around a star where liquid water can exist on the planetary surface given sufficient atmospheric pressure. However, this definition largely ignores the impact of the stellar wind and stellar magnetic activity on the erosion of an exoplanet's atmosphere. Amongst the many factors that determine habitability, understanding the mechanisms of atmospheric loss is of paramount importance. We will discuss the impact of exoplanetary space weather on climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. For each case, we will demonstrate the importance of the exoplanetary space weather on atmospheric ion loss and habitability.

  9. WASP-121b: An ultrahot gas-giant exoplanet with a stratosphere

    Science.gov (United States)

    Kataria, Tiffany; Evans, Thomas M.; Sing, David; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; PanCET Team

    2018-01-01

    Stratospheres are ubiquitous in the atmospheres of solar system planets, and provide crucial information about an atmosphere’s chemical composition, vertical temperature structure, and energy budget. While it has been suggested that stratospheres could form in highly irradiated exoplanets, the extent to which this occurs has so far been unresolved both theoretically and observationally. Here we present secondary eclipse observations of the ultra-hot (Teq ~ 2500 K) gas giant exoplanet WASP-121b made using HST/WFC3 in spectroscopic mode across the 1.12-1.64 micron wavelength range. The spectrum is inconsistent with an isothermal atmosphere and has spectrally-resolved water features in emission, providing a detection of an exoplanet stratosphere at 5-sigma confidence. WASP-121b is one of the standout exoplanets available for atmospheric characterization, both in transmission and emission, due to its large radius (1.8 Rjup), high temperature, and bright host star (H=9.4mag). As such, we will also discuss follow-up observations of WASP-121b with HST and JWST to probe the longitudinal extent of its stratosphere, and the molecular absorbers that may produce it.

  10. ERRATUM: Work smart, wear your hard hat

    CERN Multimedia

    2003-01-01

    An error appeared in the article «Work smart, wear your hard hat» published in Weekly Bulletin 27/2003, page 5. The impact which pierced a hole in the hard hat worn by Gerd Fetchenhauer was the equivalent of a box weighing 5 kg and not 50 kg.

  11. A SEARCH FOR ADDITIONAL PLANETS IN THE NASA EPOXI OBSERVATIONS OF THE EXOPLANET SYSTEM GJ 436

    International Nuclear Information System (INIS)

    Ballard, Sarah; Christiansen, Jessie L.; Charbonneau, David; Holman, Matthew J.; Fabrycky, Daniel; Deming, Drake; Barry, Richard K.; Kuchner, Marc J.; Livengood, Timothy A.; Hewagama, Tilak; A'Hearn, Michael F.; Wellnitz, Dennis D.; Sunshine, Jessica M.; Hampton, Don L.; Lisse, Carey M.; Seager, Sara; Veverka, Joseph F.

    2010-01-01

    We present time series photometry of the M dwarf transiting exoplanet system GJ 436 obtained with the Extrasolar Planet Observation and Characterization (EPOCh) component of the NASA EPOXI mission. We conduct a search of the high-precision time series for additional planets around GJ 436, which could be revealed either directly through their photometric transits or indirectly through the variations these second planets induce on the transits of the previously known planet. In the case of GJ 436, the presence of a second planet is perhaps indicated by the residual orbital eccentricity of the known hot Neptune companion. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series, we rule out transiting planets larger than 1.5 R + interior to GJ 436b with 95% confidence and larger than 1.25 R + with 80% confidence. Assuming coplanarity of additional planets with the orbit of GJ 436b, we cannot expect that putative planets with orbital periods longer than about 3.4 days will transit. However, if such a planet were to transit, we would rule out planets larger than 2.0 R + with orbital periods less than 8.5 days with 95% confidence. We also place dynamical constraints on additional bodies in the GJ 436 system, independent of radial velocity measurements. Our analysis should serve as a useful guide for similar analyses of transiting exoplanets for which radial velocity measurements are not available, such as those discovered by the Kepler mission. From the lack of observed secular perturbations, we set upper limits on the mass of a second planet as small as 10 M + in coplanar orbits and 1 M + in non-coplanar orbits close to GJ 436b. We present refined estimates of the system parameters for GJ 436. We find P = 2.64389579 ± 0.00000080 d, R * = 0.437 ± 0.016 R sun , and R p = 3.880 ± 0.147 R + . We also report a sinusoidal modulation in the GJ 436 light curve that we attribute to star spots. This signal is

  12. [1012.5676] The Exoplanet Orbit Database

    Science.gov (United States)

    : The Exoplanet Orbit Database Authors: Jason T Wright, Onsi Fakhouri, Geoffrey W. Marcy, Eunkyu Han present a database of well determined orbital parameters of exoplanets. This database comprises parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets

  13. Examining the Potential of LSST to Contribute to Exoplanet Discovery

    Science.gov (United States)

    Lund, Michael B.; Pepper, Joshua; Jacklin, Savannah; Stassun, Keivan G.

    2018-01-01

    The Large Synoptic Survey Telescope (LSST), currently under construction in Chile with scheduled first light in 2019, will be one of the major sources of data in the next decade and is one of the top priorities expressed in the last Decadal Survey. As LSST is intended to cover a range of science questions, and so the LSST community is still working on optimizing the observing strategy of the survey. With a survey area that will cover half the sky in 6 bands providing photometric data on billions of stars from 16th to 24th magnitude, LSST has the ability to be leveraged to help contribute to exoplanet science. In particular, LSST has the potential to detect exoplanets around stellar populations that are not normally usually included in transiting exoplanet searches. This includes searching for exoplanets around red and white dwarfs and stars in the galactic plane and bulge, stellar clusters, and potentially even the Magellanic Clouds. In probing these varied stellar populations, relative exoplanet frequency can be examined, and in turn, LSST may be able to provide fresh insight into how stellar environment can play a role in planetary formation rates.Our initial work on this project has been to demonstrate that even with the limitations of the LSST cadence, exoplanets would be recoverable and detectable in the LSST photometry, and to show that exoplanets indeed worth including in discussions of variable sources that LSST can contribute to. We have continued to expand this work to examine exoplanets around stars in belonging to various stellar populations, both to show the types of systems that LSST is capable of discovering, and to determine the potential exoplanet yields using standard algorithms that have already been implemented in transiting exoplanet searches, as well as how changes to LSST's observing schedule may impact both of these results.

  14. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity

    International Nuclear Information System (INIS)

    Michael, Bindhu; Nair, Amrithraj M.; Datta, Antara; Hiraragi, Hajime; Ratner, Lee; Lairmore, Michael D.

    2006-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13 II and p30 II , which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30 II , a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30 II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30 II , a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30 II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30 II -dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30 II -mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30 II -mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30 II -mediated LTR repression. Collectively, our data indicate that HTLV-1 p30 II modulates viral gene expression in a cooperative manner with p300-mediated acetylation

  15. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  16. Clinical study on HAT and SEDAN score scales and related risk factors for predicting hemorrhagic transformation following thrombolysis in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Heng WEI

    2015-03-01

    Full Text Available Objective To investigate the value of HAT and SEDAN score scales in predicting hemorrhagic transformation (HT following the recombinant tissue-type plasminogen activator (rt-PA intravenous thrombolysis in acute ischemic stroke patients and risk factors affecting HT.  Methods A total of 143 patients with acute ischemic stroke underwent rt-PA intravenous thrombolysis within 4.50 h of onset and their clinical data were collected. According to head CT after thrombolysis, patients were divided into HT group (18 cases and non-HT group (125 cases. Single factor analysis was used to assess differences in HAT and SEDAN score scales and related risk factors of ischemic stroke in 2 groups, and further Logistic regression analysis was used to investigate independent predictors of HT. Receiver operating characteristic (ROC curve was used to evaluate the sensitivity and specificity of HAT and SEDAN score scales in predicting HT.  Results Univariate Logistic regression analysis showed that history of atrial fibrillation (AF, admission systolic blood pressure (SBP, admission blood glucose level, early low density of head CT, thrombolytic time window, National Institute of Health Stroke Scale (NIHSS, HAT and SEDAN scores were all risk factors for HT after thrombolysis (P < 0.05, for all. Multivariate Logistic regression analysis showed that history of AF (OR = 1.677, 95% CI: 1.332-2.111; P = 0.000, admission SBP (OR = 1.102, 95% CI: 1.009-1.204; P = 0.031, admission blood glucose level (OR = 1.870, 95% CI: 1.119-3.125; P = 0.017, thrombolysis time window (OR = 1.030, 95%CI: 1.009-1.052; P = 0.005, NIHSS score (OR = 1.574, 95%CI: 1.186-2.090; P = 0.002, HAT score (OR = 2.515, 95%CI: 1.273-4.970;P = 0.008 and SEDAN score (OR = 2.413, 95%CI: 1.123-5.185; P = 0.024 were risk factors for HT after thrombolysis. ROC curve analysis showed that HAT score could predict HT with 94.40% sensitivity and 41.60% specificity, and area under curve (AUC was 0.70. SEDAN

  17. The Habitable Exoplanet Imaging Mission (HabEx)

    Science.gov (United States)

    Mennesson, B.

    2017-12-01

    The Habitable-Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation for the 2020 Decadal Survey. The HabEx mission concept is a large ( 4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with likely extensions into the near UV and near infrared domains. One of the primary goals of HabEx is to answer fundamental questions in exoplanet science, searching for and characterizing potentially habitable worlds, providing the first complete "family portraits" of planets around our nearest Sun-like neighbors and placing the solar system in the context of a diverse set of exoplanets. We report here on our team's early efforts in defining a scientifically compelling HabEx mission that is technologically executable, and timely for the next decade. In particular, we present preliminary architectures trade study results, quantifying technical requirements and predicting scientific outcome for a small number of design reference missions. We describe here our currently favorite "hybrid" architecture and its expected capabilities in terms of low resolution (R= 70 to 140) reflected light spectroscopic measurements and orbit determination. Results are shown for different types of exoplanets, including potentially habitable exoplanets located within the snow line of nearby main sequence stars. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. Density functional calculations of potential energy surface and charge transfer integrals in molecular triphenylene derivative HAT6

    NARCIS (Netherlands)

    Zbiri, M.; Johnson, M.R.; Kearley, G.J.; Mulder, F.M.

    2009-01-01

    We investigate the effect of structural fluctuations on charge transfer integrals, overlap integrals, and site energies in a system of two stacked molecular 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6), which is a model system for conducting devices in organic photocell applications. A density

  19. Beyond Kepler: Direct Imaging of Exoplanets

    Science.gov (United States)

    Belikov, Ruslan

    2018-01-01

    The exoplanets field has been revolutionizing astronomy over the past 20+ years and shows no signs of stopping. The next big wave of exoplanet science may come from direct imaging of exoplanets. Several (non-habitable) exoplanets have already been imaged from the ground and NASA is planning an instrument for its 2020s flagship mission (WFIRST) to directly image large exoplanets. One of the key goals of the field is the detection and characterization of "Earth 2.0", i.e. a rocky planet with an atmosphere capable of supporting life. This appears possible with several potential instruments in the late 2020s such as WFIRST with a starshade, Extremely Large Telescopes (ELTs) from the ground, or one of NASA possible flagship missions in the 2030s (HabEx or LUVOIR). Also, if an Earth-like planet exists around Alpha Centauri (A or B), it may be possible to directly image it in the next approx. 5 years with a small space mission such as the Alpha Centauri Exoplanet Satellite (ACESat). I will describe the current challenges and opportunities in this exciting field, as well as the work we are doing at the Exoplanet Technologies group to enable this exciting science.

  20. BOT3P - Bologna Transport Analysis Pre-Post-Processors Version 3.0

    International Nuclear Information System (INIS)

    Orsi, Roberto

    2004-01-01

    BOT3P is a set of standard FORTRAN 77 language programs developed at the ENEA-Bologna Nuclear Data Centre. BOT3P Version 1.0 was originally conceived to give the users of the DORT and TORT deterministic transport codes some useful diagnostic tools to prepare and to check their input data files. BOT3P Version 3.0 contains some important additions in the input geometrical model description, such as 'rod' and 'hexagonal' geometrical objects, respecting the exact cross-sectional area value and very suitable to describe a reactor lattice in detail. Moreover, it has extended the possibility to produce the geometrical, material distribution, and fixed neutron source data for the deterministic transport codes TWODANT and THREEDANT of the DANTSYS system and for the PARTISN code too, starting from the same input to BOT3P. When users require X-Y-Z TORT/THREEDANT/PARTISN mesh grids to be generated, BOT3P Version 3.0 produces a geometrical input for the MCNP Monte Carlo transport code also, where the MCNP cells correspond to the X-Y-Z bodies created for TORT.BOT3P Version 3.0 lets users specify areas/volumes of the model where the zone/material distribution can be defined not only by a combinatorial geometry but also by an external source, such as one originated from computerized tomography scan data (only for three-dimensional applications) and from one or more external DORT/TORT input files. BOT3P was developed on a DIGITAL UNIX ALPHA 500/333 workstation and successfully used in some complex neutron shielding and criticality benchmarks. It was also tested on Red Hat Linux 7.1 and is designed to run on most UNIX platforms. All BOT3P versions are publicly available from the Organisation for Economic Co-operation and Development/Nuclear Energy Agency Data Bank (NEA-1627, NEA-1678)

  1. Assessment of efficiency of water supply system in Prince of Songkla University, Hat Yai Campus

    Directory of Open Access Journals (Sweden)

    Chaivisit, P.

    2007-03-01

    Full Text Available Assessment of efficiency of water production system in Prince of Songkla University, Hat Yai Campus, was conducted in this study. Topics covered include 1 quality and quantity of raw water, 2 water productionprocess, 3 management and maintenance of water production system, and 4 quality of finished water. Totally, 494 water samples were collected during the study. All water samples were analyzed for turbidity,pH, temperature, conductivity, TDS, total coliforms, fecal coliforms and residual chlorine. In addition to the mentioned parameters, 30 of these water samples were also analyzed for hardness, chloride, nitratenitrogen,sulfate and heavy metals (manganese, copper, zinc, iron, chromium, cadmium, lead and mercury. All water samples were collected during November, 2004 (rainy season and March, 2005 (summer season.It was found that the quality of the water in the Sritrang reservoir fell into Class 2 of Thailand Surface Water Quality Standard that requires ordinary water treatment processes prior to consumptions.Cadmium, lead and mercury were not detected by Inductively Coupled Plasma (ICP method. There are 2 sets of water production system. The first set consists of 4 pressure filters which could reduce turbidity atvarying efficiencies: 33.83%, 18.26%, 42.76% and 65.67% depending mainly on the extent of chemical dosing control and the maintenance of the filter media. Another system employed sedimentation tank andrapid sand filter, which could remove turbidity at 89.28%. When combined finished water from both systems were analyzed, it was found that removals of manganese, copper, zinc, iron and chromium were 42.65%,30.02%, 19.54%, 56.82% and 15.12%, respectively. Residual chlorine concentration of the finished water was not more than 0.2 mg/L and no total coliforms or fecal coliforms were detected. The plant had sufficientand competent personnel to carry out their normal tasks but occasional negligence and lack of specific water testing or

  2. Criticality in the configuration-mixed interacting boson model (1) $U(5)-\\hat{Q}(\\chi)\\cdot\\hat{Q}(\\chi)$ mixing

    CERN Document Server

    Hellemans, V; De Baerdemacker, S; Heyde, K

    2008-01-01

    The case of U(5)--$\\hat{Q}(\\chi)\\cdot\\hat{Q}(\\chi)$ mixing in the configuration-mixed Interacting Boson Model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for first-order and second-order shape phase transitions can be obtained from binding energies and from critical exponents, respectively.

  3. Kavunda ebeveyn hat ile melezlerinin bazı tohum ve tohum çıkışı özelliklerinin belirlenmesi

    OpenAIRE

    TUR, Ayşegül; SEYMEN, Musa; TÜRKMEN, Önder

    2018-01-01

    Bu çalışma, 2015-2016 yıllarında yürütülmüş ve bitkisel materyal olarak, 13 genotip (SÇ-1: Sel-1-1. SÇ-2: Sel-1-2. SÇ-3: Sel-2. SÇ-4: Sel-3. SÇ-5: Sel-4. SÇ-6: Sel-6-1. SÇ-7: Sel-6-2. SÇ-8: Sel-7. SÇ-9: Sel-8. SÇ-10: Sel-9. SÇ-11: Sel-10. SÇ-12: Sel-11. SÇ-13: Pop. Diyarbakır). 4 ebeveyn hat (EB-1: saf hat-7. EB-2: saf hat-A4. EB-3: saf hat-G22. EB-4: saf hat-136) ve 9 melez (M-1: safhat 7xsafhat-136. M-2: safhat-7xsafhat-A4. M-3: safhat-7xsafhat-G22. M-4: safhat-G22xsafhat-136. M-5: safhat-G...

  4. Requirements and limits for life in the context of exoplanets

    Science.gov (United States)

    McKay, Christopher P.

    2014-09-01

    The requirements for life on Earth, its elemental composition, and its environmental limits provide a way to assess the habitability of exoplanets. Temperature is key both because of its influence on liquid water and because it can be directly estimated from orbital and climate models of exoplanetary systems. Life can grow and reproduce at temperatures as low as -15 °C, and as high as 122 °C. Studies of life in extreme deserts show that on a dry world, even a small amount of rain, fog, snow, and even atmospheric humidity can be adequate for photosynthetic production producing a small but detectable microbial community. Life is able to use light at levels less than 10-5 of the solar flux at Earth. UV or ionizing radiation can be tolerated by many microorganisms at very high levels and is unlikely to be life limiting on an exoplanet. Biologically available nitrogen may limit habitability. Levels of O2 over a few percent on an exoplanet would be consistent with the presence of multicellular organisms and high levels of O2 on Earth-like worlds indicate oxygenic photosynthesis. Other factors such as pH and salinity are likely to vary and not limit life over an entire planet or moon.

  5. Qatar Exoplanet Survey : Qatar-3b, Qatar-4b, and Qatar-5b

    Science.gov (United States)

    Alsubai, Khalid; Mislis, Dimitris; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Buchhave, Lars A.; Esquerdo, Gilbert A.; Bramich, D. M.; Pyrzas, Stylianos; Vilchez, Nicolas P. E.; Mancini, Luigi; Southworth, John; Evans, Daniel F.; Henning, Thomas; Ciceri, Simona

    2017-04-01

    We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey. The three planets belong to the hot Jupiter family, with orbital periods of {P}{{Q}3{{b}}} = 2.50792 days, {P}{{Q}4{{b}}} = 1.80539 days, and {P}{{Q}5{{b}}} = 2.87923 days. Follow-up spectroscopic observations reveal the masses of the planets to be {M}{{Q}3{{b}}} = 4.31 ± 0.47 {M}{{J}}, {M}{{Q}4{{b}}} = 6.10 ± 0.54 {M}{{J}}, and {M}{{Q}5{{b}}} = 4.32 ± 0.18 {M}{{J}}, while model fits to the transit light curves yield radii of {R}{{Q}3{{b}}} = 1.096 ± 0.14 {R}{{J}}, {R}{{Q}4{{b}}} = 1.135 ± 0.11 {R}{{J}}, and {R}{{Q}5{{b}}} = 1.107 ± 0.064 {R}{{J}}. The host stars are low-mass main sequence stars with masses and radii M Q3 = 1.145 ± 0.064 M ⊙, M Q4 = 0.896 ± 0.048 M ⊙, M Q5 = 1.128 ± 0.056 M ⊙ and R Q3 = 1.272 ± 0.14 R ⊙, R Q4 = 0.849 ± 0.063 R ⊙, and R Q5 = 1.076 ± 0.051 R ⊙ for Qatar-3, 4, and 5 respectively. The V magnitudes of the three host stars are V Q3 = 12.88, V Q4 = 13.60, and V Q5 = 12.82. All three new planets can be classified as heavy hot Jupiters (M > 4 M J).

  6. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  7. Atmospheric Seasonality as an Exoplanet Biosignature

    Science.gov (United States)

    Olson, Stephanie L.; Schwieterman, Edward W.; Reinhard, Christopher T.; Ridgwell, Andy; Kane, Stephen R.; Meadows, Victoria S.; Lyons, Timothy W.

    2018-05-01

    Current investigations of exoplanet biosignatures have focused on static evidence of life, such as the presence of biogenic gases like O2 or CH4. However, the expected diversity of terrestrial planet atmospheres and the likelihood of both “false positives” and “false negatives” for conventional biosignatures motivate exploration of additional life detection strategies, including time-varying signals. Seasonal variation in atmospheric composition is a biologically modulated phenomenon on Earth that may occur elsewhere because it arises naturally from the interplay between the biosphere and time-variable insolation. The search for seasonality as a biosignature would avoid many assumptions about specific metabolisms and provide an opportunity to directly quantify biological fluxes—allowing us to characterize, rather than simply recognize, biospheres on exoplanets. Despite this potential, there have been no comprehensive studies of seasonality as an exoplanet biosignature. Here, we provide a foundation for further studies by reviewing both biological and abiological controls on the magnitude and detectability of seasonality of atmospheric CO2, CH4, O2, and O3 on Earth. We also consider an example of an inhabited world for which atmospheric seasonality may be the most notable expression of its biosphere. We show that life on a low O2 planet like the weakly oxygenated mid-Proterozoic Earth could be fingerprinted by seasonal variation in O3 as revealed in its UV Hartley–Huggins bands. This example highlights the need for UV capabilities in future direct-imaging telescope missions (e.g., LUVOIR/HabEx) and illustrates the diagnostic importance of studying temporal biosignatures for exoplanet life detection/characterization.

  8. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (pc) and adolescent (pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle artifacts and provides

  9. A Cubesat Payload for Exoplanet Detection

    Directory of Open Access Journals (Sweden)

    Marcella Iuzzolino

    2017-03-01

    Full Text Available The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE, the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  10. Characterizing Exoplanet Habitability with Emission Spectroscopy

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  11. FACTORS & ELEMENTAL ANALYSIS OF SIX THINKING HATS TECHNIQUE USING ABCD FRAMEWORK

    OpenAIRE

    Dr. P. S. Aithal; V. T. Shailashree; Dr. P. M. Suresh Kumar

    2017-01-01

    De Bono's Six Thinking Hats technique suggests different types of thinking corresponding to six thinking roles for the analyst, associated with hats of six different colors. The technique correlates different thinking styles used in a systematic problem solving procedure with different coloured hats. Alternately, by conceptualizing each type of hat, the person focuses on the style of thinking associated with each colour so that the problem can be analysed from different angles and frame of re...

  12. Exoplanet Peer-Learning Exercises for Introductory Astronomy Courses

    Science.gov (United States)

    Wisniewski, John P.; Larson, A.

    2010-01-01

    While exoplanet research has witnessed explosive growth over the past decade with over 350 exoplanets identified to date (http://exoplanet.eu), few education and public outreach tools capable of bringing the techniques and results of exoplanet science into the classroom have been developed. To help reduce this shortcoming, we have been developing and implementing a series of exoplanet-related active-learning exercises to be used in non-astronomy major introductory settings, including think-pair-share questions and peer-learning activities. We discuss some of these activities which we have field tested in undergraduate classes at the University of Washington. We also discuss our efforts to engage students in these classes in obtaining and analyzing astronomical observations of exoplanet host stars to identify and characterize exoplanet transit events. JPW acknowledges support from NSF Astronomy & Astrophysics Postdoctoral Fellowship AST 08-02230.

  13. 'Nederlandismes' in HAT

    Directory of Open Access Journals (Sweden)

    F. van Houwelingen

    1998-04-01

    Full Text Available Dutch influence in HAT (1994 Although there is consensus among linguists that Afrikaans and Dutch are related languages, and that Afrikaans originated from 17th century Dutch, the differences between present-day varieties of Afrikaans and Dutch serve as proof that we are dealing with two separate languages. These differences should be clearly visible in descriptive as well as normative sources of the two languages. However, the third edition of Verklarende Handewoordeboek van die Afrikaanse Taal (HAT, one of the leading Afrikaans standard monolingual dictionaries, contains headwords as well as microstructural information that do not agree with the reality of the Afrikaans of today. An empirical investigation conducted among Afrikaans-speaking dictionary users has proven that a significant Dutch influence is still prominent - in the micro- as well as the macrostructure of the dictionary. It is believed that the Dutch "thread" of many Afrikaans dictionaries has indirectly contributed towards the creation of a super-standard norm, which is partially responsible for the estrangement between the cultural language and the vernacular.

  14. Open-source Software for Exoplanet Atmospheric Modeling

    Science.gov (United States)

    Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph

    2018-01-01

    I will present a suite of self-standing open-source tools to model and retrieve exoplanet spectra implemented for Python. These include: (1) a Bayesian-statistical package to run Levenberg-Marquardt optimization and Markov-chain Monte Carlo posterior sampling, (2) a package to compress line-transition data from HITRAN or Exomol without loss of information, (3) a package to compute partition functions for HITRAN molecules, (4) a package to compute collision-induced absorption, and (5) a package to produce radiative-transfer spectra of transit and eclipse exoplanet observations and atmospheric retrievals.

  15. Exoplanets and Multiverses (Abstract)

    Science.gov (United States)

    Trimble, V.

    2016-12-01

    (Abstract only) To the ancients, the Earth was the Universe, of a size to be crossed by a god in a day, by boat or chariot, and by humans in a lifetime. Thus an exoplanet would have been a multiverse. The ideas gradually separated over centuries, with gradual acceptance of a sun-centered solar system, the stars as suns likely to have their own planets, other galaxies beyond the Milky Way, and so forth. And whenever the community divided between "just one' of anything versus "many," the "manies" have won. Discoveries beginning in 1991 and 1995 have gradually led to a battalion or two of planets orbiting other stars, very few like our own little family, and to moderately serious consideration of even larger numbers of other universes, again very few like our own. I'm betting, however, on habitable (though not necessarily inhabited) exoplanets to be found, and habitable (though again not necessarily inhabited) universes. Only the former will yield pretty pictures.

  16. Standardizing Exoplanet Analysis with the Exoplanet Characterization Tool Kit (ExoCTK)

    Science.gov (United States)

    Fowler, Julia; Stevenson, Kevin B.; Lewis, Nikole K.; Fraine, Jonathan D.; Pueyo, Laurent; Bruno, Giovanni; Filippazzo, Joe; Hill, Matthew; Batalha, Natasha; Wakeford, Hannah; Bushra, Rafia

    2018-06-01

    Exoplanet characterization depends critically on analysis tools, models, and spectral libraries that are constantly under development and have no single source nor sense of unified style or methods. The complexity of spectroscopic analysis and initial time commitment required to become competitive is prohibitive to new researchers entering the field, as well as a remaining obstacle for established groups hoping to contribute in a comparable manner to their peers. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface including tools that address atmospheric characterization, transit observation planning with JWST, JWST corongraphy simulations, limb darkening, forward modeling, and data reduction, as well as libraries of stellar, planet, and opacity models. The foundation of these software tools and libraries exist within pockets of the exoplanet community, but our project will gather these seedling tools and grow a robust, uniform, and well-maintained exoplanet characterization toolkit.

  17. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    Science.gov (United States)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  18. Exoplanet Biosignatures: Observational Prospects

    OpenAIRE

    Fujii, Yuka; Angerhausen, Daniel; Deitrick, Russell; Domagal-Goldman, Shawn; Grenfell, John Lee; Hori, Yasunori; Kane, Stephen R.; Palle, Enric; Rauer, Heike; Siegler, Nicholas; Stapelfeldt, Karl; Stevenson, Kevin B.

    2017-01-01

    Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including temperate Earth-sized bodies, fueling our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of astrobiologically motivated targets. In this paper, we explore our roadmap toward the comprehensive assessment of temperate terrestrial pla...

  19. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2009-01-01

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H 2 O, CO, CH 4 , and CO 2 . For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H 2 O, CO, CH 4 , and CO 2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a

  20. Monitoring of BTX by passive sampling in Hat Yai

    Directory of Open Access Journals (Sweden)

    Proespichaya Kanatharana

    2004-02-01

    Full Text Available Laboratory-built passive samplers were used for monitoring of trace benzene, toluene and xylene (BTX in Hat Yai from 28 July to 12 August, 2003. Sampler bottles contained activated Tenax TA 60/80 meshand a lab-built thermal well were developed and evaluated for the sampling and analysis of BTX. The sampling was carried out for two weeks before the passive samplers were thermally desorbed, trapped ina sampling loop by a laboratory built purge and trap system and analysed by gas chromatography (GC equipped with a flame ionization detector. After optimization and calibration, the developed method showed high selectivity, a good sensitivity with detection limits for BTX of 0.8, 1.1 and 13.0 µg/m3 respectively and an acceptable precision. Ambient BTX measurements were conducted at many monitoring site i.e. hot spots (high exposure, residential areas/work places (common exposure and park (low exposure. The concentration at hot spots range from 3.2 to 5.4 µg/m3 for benzene, 38.0 to 80.3 µg/m3 for toluene and 29.7 to 66.7 µg/m3 for xylene.The low BTX were found at the city periphery (Tesco-Lotus billboard sampling stations, roof level and in Hat Yai Municipal Park but no absolute background concentration could be defined. The monitoring results showed that at higher level from the street surface, the level of BTX tended to decrease and the BTX pollution built up along a street canyon (Sanehanuson Road according to the wind direction. The highest BTX were found at the underground parking, 23.5 725.1 and 267.9 µg/m3 respectively where both WHO guideline for Benzene (16.3 µg/m3 and Toluene (260 µg/m3 were exceeded.

  1. Extending and Characterizing an Exoplanet System in a Pristine Chain of Resonances

    Science.gov (United States)

    Christiansen, Jessie; Gorjian, Varoujan; Hardegree-Ullman, Kevin; Livingston, John; Dressing, Courtney; Barclay, Thomas; Lintott, Chris; Ciardi, David; Barentson, Geert; Kristiansen, Martti; Crossfield, Ian; Benneke, Bjorn; Howard, Andrew

    2018-01-01

    The K2-138 (EPIC 245950175; 2MASS J23154776-1050590) exoplanet system was recently identified in the K2 mission campaign 12 data (Christiansen et al. 2018). The moderately bright (K=10.3) K1V star hosts at least five sub-Neptune planets (1.6-3.3 Re) in a compact configuration, all with periods shorter than 13 days. The five confirmed planets in the system form an unbroken chain of near first-order mean motion resonances, with each successive pair of planets having close to a 3:2 commensurability; this is the longest such chain as yet discovered. The K2 data contain two additional transits which, if confirmed as due to a sixth planet, could extend the chain even further. Due to the proximity of the K2-138 planets to mean motion resonances, it is an ideal target to search for transit timing variations (TTVs). In order to further both of these time-critical and important science cases, we propose for DDT time to capture a third transit of the candidate sixth planet, and also observe a chance nearby cluster of three transits of planets b, c, and d. (12hr for the 6th planet was approved.)

  2. Exoplanet Observing: From Art to Science

    Science.gov (United States)

    Conti, Dennis M.; Gleeson, Jack

    2017-06-01

    This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  3. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1993-02-01

    This document is a revision of the original Mexiacan Hat Remedial Action Plan (RAP) and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. This RAP has been developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3. 0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 presents the water resources protection strategy. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the on- site workers. Section 7.0 lists the responsibilities of the project participants. Section 8.0 describes the features of the long-term surveillance and maintenance plan

  4. CoRoT-2b: a Tidally Inflated, Young Exoplanet?

    Science.gov (United States)

    Guillot, Tristan; Havel, M.

    2009-09-01

    CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.

  5. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1997-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03. 18 refs., 6 figs., 1 tab

  6. Exoplanet's Figure and Its Interior

    Science.gov (United States)

    Mian, Zhang; Cheng-li, Huang

    2018-01-01

    Along with the development of the observing technology, the observation and study on the exoplanets' oblateness and apsidal precession have achieved significant progress. The oblateness of an exoplanet is determined by its interior density profile and rotation period. Between its Love number k2 and core size exists obviously a negative correlation. So oblateness and k2 can well constrain its interior structure. Starting from the Lane-Emden equation, the planet models based on different polytropic indices are built. Then the flattening factors are obtained by solving the Wavre's integro-differential equation. The result shows that the smaller the polytropic index, the faster the rotation, and the larger the oblateness. We have selected 469 exoplanets, which have simultaneously the observed or estimated values of radius, mass, and orbit period from the NASA (National Aeronautics and Space Administration) Exoplanet Archive, and calculated their flattening factors under the two assumptions: tidal locking and fixed rotation period of 10.55 hours. The result shows that the flattening factors are too small to be detected under the tidal locking assumption, and that 28% of exoplanets have the flattening factors larger than 0.1 under the fixed rotation period of 10.55 hours. The Love numbers under the different polytropic models are solved by the Zharkov's approach, and the relation between k2 and core size is discussed.

  7. THE FREQUENCY OF LOW-MASS EXOPLANETS

    International Nuclear Information System (INIS)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Bailey, J.; Wittenmyer, R. A.; Butler, R. P.; Marcy, G. W.; Carter, B.

    2009-01-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search-an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ∼ -1 (for dN/dM ∝ M α ) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M + .

  8. The Frequency of Low-Mass Exoplanets

    Science.gov (United States)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.; Wittenmyer, R. A.

    2009-08-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search—an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ~ -1 (for dN/dM vprop M α) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M ⊕.

  9. Application of Six Thinking Hats with the Theme „Profession of Sociologist”. Transcript of the Sequence of Green Hat

    Directory of Open Access Journals (Sweden)

    Gheorghe Onuţ

    2009-12-01

    Full Text Available The study is the transcription of the sequence of green hat from the application of the creative technique Six Thinking Hats (Edward de Bono’s creation that I did at the workshop with the theme „Profession of Sociologist”, of the international colloquium of social sciences ACUM 2008. The colloquium ACUM is the most important of the scientific manifestations organized by the Faculty of Law and Sociology of „Transilvania” University of Braşov.

  10. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-01-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics…

  11. Transiting exoplanets: From planet statistics to their physical nature

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections and investigations discussed at this meeting.

  12. Become a CERN WhiteHat

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Discovering CERN's weaknesses is as important as ever. Become a CERN WhiteHat and help us poking around CERN computing services and web applications. All you need is to apply and get the appropriate training...

  13. Fully determined scaling laws for volumetrically heated convective systems, a tool for assessing habitability of exoplanets

    Science.gov (United States)

    Vilella, Kenny; Kaminski, Edouard

    2017-05-01

    The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This ;Hottest Thermal Boundary Layer; (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.

  14. Incidence of Hospital Acquired Thrombosis (HAT) in a Tertiary Care Hospital.

    LENUS (Irish Health Repository)

    Khan, MI

    2017-04-01

    Venous thromboembolism (VTE) is a major cause of preventable morbidity and mortality in hospitalized patients. In spite of guidelines, VTE prophylaxis continues to be underutilised, and hospital acquired thrombosis (HAT) continues to be a problem. This study was conducted to estimate the incidence of HAT in a tertiary referral centre and to examine whether VTE risk assessment and thromboprophylaxis (TP) were implemented. Patients 18 years and above, with a radiologically-confirmed acute VTE during the study period of 15 weeks were included. Acute VTE was diagnosed in 100 patients and HAT was diagnosed in 48. There were 12,024 admissions over the study period, therefore the incidence of HAT was 0.4%. TP was prescribed in only 35% of patients, and 65% did not receive any or appropriate TP. Hospitals without active implementation of a formal risk assessment tool and TP policy are likely to continue to have increased incidence of HAT.

  15. Searching for Exoplanets using Artificial Intelligence

    Science.gov (United States)

    Pearson, Kyle Alexander; Palafox, Leon; Griffith, Caitlin Ann

    2017-10-01

    In the last decade, over a million stars were monitored to detect transiting planets. The large volume of data obtained from current and future missions (e.g. Kepler, K2, TESS and LSST) requires automated methods to detect the signature of a planet. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called ``deep learning'' or ``deep nets'', are a state of the art machine learning technique designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, the deep net learns to characterize the data instead of relying on hand-coded metrics that humans perceive as the most representative. Exoplanet transits have different shapes, as a result of, e.g. the planet's and stellar atmosphere and transit geometry. Thus, a simple template does not suffice to capture the subtle details, especially if the signal is below the noise or strong systematics are present. Current false-positive rates from the Kepler data are estimated around 12.3% for Earth-like planets and there has been no study of the false negative rates. It is therefore important to ask how the properties of current algorithms exactly affect the results of the Kepler mission and, future missions such as TESS, which flies next year. These uncertainties affect the fundamental research derived from missions, such as the discovery of habitable planets, estimates of their occurrence rates and our understanding about the nature and evolution of planetary systems.

  16. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  17. The Search for Exoplanets using Ultra-long Wavelength Radio Astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2017-01-01

    Recent studies on extra solar planets (exoplanets) provide us with a new glimpse into the Milky Way's composition. Exoplanets appear to be very typical around Sunlike stars. Most of these exoplanets are observed via indirect measurements. If a direct radio observation of the exoplanet's signal was

  18. WFIRST: The Exoplanet Microlensing Survey Tells Us Where We Can Find the Cool Planets

    Science.gov (United States)

    Bennett, David; Gaudi, B. Scott; WFIRST Microlensing Science Investigation Team

    2018-01-01

    The WFIRST Exoplanet microlensing survey will complete a demographic survey of all types of planets ranging from ~0.5 AU to planets that have become unbound from the stellar systems of their birth. WFIRST's sensitivity extends down below the mass of Mars (or 0.1 Earth masses,and it is sensitive to analogs of all the planets in the Solar System, except for Mercury. When combined with Kepler's statistical census of hot and warm planets in short period orbits, WFIRST's exoplanet microlensing survey will give us a complete picture the mass and separation distribution of all types of planets. The current plans for this survey are presented, and recent developments relating to the WFIRST exoplanet microlensing survey will be presented, including recent ground-based microlensing results that challenge current theories of planet formation. Opportunities for community involvement in the WFIRST exoplanet microlensing survey will be mentioned.

  19. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  20. Atmospheric Retrievals from Exoplanet Observations and Simulations with BART

    Science.gov (United States)

    Harrington, Joseph

    This project will determine the observing plans needed to retrieve exoplanet atmospheric composition and thermal profiles over a broad range of planets, stars, instruments, and observing modes. Characterizing exoplanets is hard. The dim planets orbit bright stars, giving orders of magnitude more relative noise than for solar-system planets. Advanced statistical techniques are needed to determine what the data can - and more importantly cannot - say. We therefore developed Bayesian Atmospheric Radiative Transfer (BART). BART explores the parameter space of atmospheric chemical abundances and thermal profiles using Differential-Evolution Markov-Chain Monte Carlo. It generates thousands of candidate spectra, integrates over observational bandpasses, and compares to data, generating a statistical model for an atmosphere's composition and thermal structure. At best, it gives abundances and thermal profiles with uncertainties. At worst, it shows what kinds of planets the data allow. It also gives parameter correlations. BART is open-source, designed for community use and extension (http://github.com/exosports/BART). Three arXived PhD theses (papers in publication) provide technical documentation, tests, and application to Spitzer and HST data. There are detailed user and programmer manuals and community support forums. Exoplanet analysis techniques must be tested against synthetic data, where the answer is known, and vetted by statisticians. Unfortunately, this has rarely been done, and never sufficiently. Several recent papers question the entire body of Spitzer exoplanet observations, because different analyses of the same data give different results. The latest method, pixel-level decorrelation, produces results that diverge from an emerging consensus. We do not know the retrieval problem's strengths and weaknesses relative to low SNR, red noise, low resolution, instrument systematics, or incomplete spectral line lists. In observing eclipses and transits, we assume

  1. Exoplanet Observing: from Art to Science (Abstract)

    Science.gov (United States)

    Conti, D. M.; Gleeson, J.

    2017-12-01

    (Abstract only) This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  2. TWO NEARBY SUB-EARTH-SIZED EXOPLANET CANDIDATES IN THE GJ 436 SYSTEM

    International Nuclear Information System (INIS)

    Stevenson, Kevin B.; Harrington, Joseph; Lust, Nate B.; Blecic, Jasmina; Hardy, Ryan A.; Cubillos, Patricio; Campo, Christopher J.; Lewis, Nikole K.; Montagnier, Guillaume; Moses, Julianne I.; Visscher, Channon

    2012-01-01

    We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 ± 0.04 times that of Earth (R ⊕ ). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 ± 8 × 10 –6 days. We also report evidence of a 0.65 ± 0.06 R ⊕ exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed today, UCF-1.01 and UCF-1.02 would be designated GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g cm –3 , we predict both candidates to have similar masses (∼0.28 Earth-masses, M ⊕ , 2.6 Mars-masses) and surface gravities of ∼0.65 g (where g is the gravity on Earth). UCF-1.01's equilibrium temperature (T eq , where emitted and absorbed radiation balance for an equivalent blackbody) is 860 K, making the planet unlikely to harbor life as on Earth. Its weak gravitational field and close proximity to its host star imply that UCF-1.01 is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. We also present additional observations of GJ 436b during secondary eclipse. The 3.6 μm light curve shows indications of stellar activity, making a reliable secondary eclipse measurement impossible. A second non-detection at 4.5 μm supports our previous work in which we find a methane-deficient and carbon monoxide-rich dayside atmosphere.

  3. Two nearby Sub-Earth-sized Exoplanet Candidates in the GJ 436 System

    Science.gov (United States)

    Stevenson, Kevin B.; Harrington, Joseph; Lust, Nate B.; Lewis, Nikole K.; Montagnier, Guillaume; Moses, Julianne I.; Visscher, Channon; Blecic, Jasmina; Hardy, Ryan A.; Cubillos, Patricio; Campo, Christopher J.

    2012-08-01

    We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 ± 0.04 times that of Earth (R ⊕). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 ± 8 × 10-6 days. We also report evidence of a 0.65 ± 0.06 R ⊕ exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed today, UCF-1.01 and UCF-1.02 would be designated GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g cm-3, we predict both candidates to have similar masses (~0.28 Earth-masses, M ⊕, 2.6 Mars-masses) and surface gravities of ~0.65 g (where g is the gravity on Earth). UCF-1.01's equilibrium temperature (T eq, where emitted and absorbed radiation balance for an equivalent blackbody) is 860 K, making the planet unlikely to harbor life as on Earth. Its weak gravitational field and close proximity to its host star imply that UCF-1.01 is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. We also present additional observations of GJ 436b during secondary eclipse. The 3.6 μm light curve shows indications of stellar activity, making a reliable secondary eclipse measurement impossible. A second non-detection at 4.5 μm supports our previous work in which we find a methane-deficient and carbon monoxide-rich dayside atmosphere.

  4. The "Burgundian" hat from Herjolfsnes, Greenland: new discoveries, new dates

    DEFF Research Database (Denmark)

    Smith, Michèle Hayeur; Arneborg, Jette; Smith, Kevin

    2016-01-01

    of the Greenland Norse colony but also its enduring cultural links with continental European fashions, following a comment to this effect published by Nørlund himself. In 1996, the hat was dated to the early fourteenth century by Arneborg, a century earlier than Nørlund’s dating, based on stylistic comparisons...... with European examples. Recent research on North Atlantic textiles led to a re-examination of the hat, with different sections sampled and resubmitted for accelerated mass spectrometry dating. The results suggest that the body of the hat and its crown are of different periods with c. 100 years between them...

  5. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Olson, Stephanie; Catling, David C

    2018-01-01

    Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O 2 , N 2 , and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N 2 , CH 4 , CO 2 , and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH 4 and CO 2 in a habitable exoplanet's atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10 -3 are potentially biogenic, whereas those exceeding 10 -2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario.

  6. NO TIMING VARIATIONS OBSERVED IN THIRD TRANSIT OF SNOW-LINE EXOPLANET KEPLER-421b

    International Nuclear Information System (INIS)

    Dalba, Paul A.; Muirhead, Philip S.

    2016-01-01

    We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler spacecraft only observed two transits of Kepler-421b, leaving the planet’s transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3 m Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b, barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion, and find that a transit model with no TTVs is favored to 3.6 σ confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy. Our investigation emphasizes the difficulties associated with observing long-period exoplanet transits and the consequences that arise from failing to refine transit ephemerides.

  7. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  8. Spitzer Secondary Eclipse Depths with Multiple Intrapixel Sensitivity Correction Methods Observations of WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b

    Science.gov (United States)

    Kilpatrick, Brian M.; Lewis, Nikole K.; Kataria, Tiffany; Deming, Drake; Ingalls, James G.; Krick, Jessica E.; Tucker, Gregory S.

    2017-01-01

    We measure the 4.5 μm thermal emission of five transiting hot Jupiters, WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b using channel 2 of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Significant intrapixel sensitivity variations in Spitzer IRAC data require careful correction in order to achieve precision on the order of several hundred parts per million (ppm) for the measurement of exoplanet secondary eclipses. We determine eclipse depths by first correcting the raw data using three independent data reduction methods. The Pixel Gain Map (PMAP), Nearest Neighbors (NNBR), and Pixel Level Decorrelation (PLD) each correct for the intrapixel sensitivity effect in Spitzer photometric time-series observations. The results from each methodology are compared against each other to establish if they reach a statistically equivalent result in every case and to evaluate their ability to minimize uncertainty in the measurement. We find that all three methods produce reliable results. For every planet examined here NNBR and PLD produce results that are in statistical agreement. However, the PMAP method appears to produce results in slight disagreement in cases where the stellar centroid is not kept consistently on the most well characterized area of the detector. We evaluate the ability of each method to reduce the scatter in the residuals as well as in the correlated noise in the corrected data. The NNBR and PLD methods consistently minimize both white and red noise levels and should be considered reliable and consistent. The planets in this study span equilibrium temperatures from 1100 to 2000 K and have brightness temperatures that require either high albedo or efficient recirculation. However, it is possible that other processes such as clouds or disequilibrium chemistry may also be responsible for producing these brightness temperatures.

  9. SPITZER SECONDARY ECLIPSE DEPTHS WITH MULTIPLE INTRAPIXEL SENSITIVITY CORRECTION METHODS OBSERVATIONS OF WASP-13b, WASP-15b, WASP-16b, WASP-62b, AND HAT-P-22b

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, Brian M.; Tucker, Gregory S. [Department of Physics, Box 1843, Brown University, Providence, RI 02904 (United States); Lewis, Nikole K. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Kataria, Tiffany [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Ingalls, James G.; Krick, Jessica E., E-mail: brian_kilpatrick@brown.edu, E-mail: nlewis@stsci.org, E-mail: tiffany.kataria@jpl.nasa.gov, E-mail: ddeming@astro.umd.edu, E-mail: krick@ipac.caltech.edu [Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States)

    2017-01-01

    We measure the 4.5 μ m thermal emission of five transiting hot Jupiters, WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b using channel 2 of the Infrared Array Camera (IRAC) on the Spitzer Space Telescope . Significant intrapixel sensitivity variations in Spitzer IRAC data require careful correction in order to achieve precision on the order of several hundred parts per million (ppm) for the measurement of exoplanet secondary eclipses. We determine eclipse depths by first correcting the raw data using three independent data reduction methods. The Pixel Gain Map (PMAP), Nearest Neighbors (NNBR), and Pixel Level Decorrelation (PLD) each correct for the intrapixel sensitivity effect in Spitzer photometric time-series observations. The results from each methodology are compared against each other to establish if they reach a statistically equivalent result in every case and to evaluate their ability to minimize uncertainty in the measurement. We find that all three methods produce reliable results. For every planet examined here NNBR and PLD produce results that are in statistical agreement. However, the PMAP method appears to produce results in slight disagreement in cases where the stellar centroid is not kept consistently on the most well characterized area of the detector. We evaluate the ability of each method to reduce the scatter in the residuals as well as in the correlated noise in the corrected data. The NNBR and PLD methods consistently minimize both white and red noise levels and should be considered reliable and consistent. The planets in this study span equilibrium temperatures from 1100 to 2000 K and have brightness temperatures that require either high albedo or efficient recirculation. However, it is possible that other processes such as clouds or disequilibrium chemistry may also be responsible for producing these brightness temperatures.

  10. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, and Binary Stars

    Science.gov (United States)

    Hinkley, Sasha

    2012-04-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)- separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation-information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.

  11. A sub-Mercury-sized exoplanet

    OpenAIRE

    Barclay, Thomas; Ciardi, David; Howard, Andrew W.

    2013-01-01

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the inner...

  12. Ideologiekritik des E-Learnings. Welchen Nutzen hat die Einführung von E-Learning?

    Directory of Open Access Journals (Sweden)

    Katharina Kaiser-Müller

    2015-03-01

    Full Text Available Vor etwa sieben Jahren hat das damalige Bundesministerium für Unterricht, Kunst und Kultur (bm:ukk, das seit 2014 Bundesministerium für Bildung und Frauen (BMBF genannt wird, verschiedene Maßnahmen im Blick auf neuen Medien – insbesondere im Blick auf das E-Learning – gesetzt, um einen Beitrag zur Vorbereitung der Lernenden auf eine Informations- und Wissensgesellschaft zu leisten. E-Learning wurde als Erfolgsfaktor für die Zukunft gesehen und mit der Begründung, es fördere das individuelle und selbst gesteuerte Lernen, gefördert. Die zentrale Frage ist dabei: Welchen Nutzen hat die Einführung von E-Learning? In diesem Artikel wird dahingehend aufgezeigt, dass E-Learning nicht wegen pädagogischem Bedarf, sondern durch ministeriell gesetzte Maßnahmen eingeführt wurde und dadurch – wenn auch nicht bewusst und schon gar nicht als solches kommuniziert – neoliberale Strukturen durchgesetzt wurden. Die Einführung von E-Learning hat somit für deren Akzeptanz gesorgt.

  13. Searching for Exoplanet Effects on the X-ray Spectrum of τ Boo

    Science.gov (United States)

    Wood, Brian; Laming, J. Martin

    2018-01-01

    We study the X-ray spectrum of the exoplanet host star τ Boo A (F7 V), in order to explore the possibility that its very close-in, massive exoplanet (Porb=3.31 days, m sin i=3.9 MJ) may be affecting the coronal emissions of this star. The star was observed recently by Chandra/LETGS for 92 ksec in three pieces between 2017 February 27 and 2017 March 5; and was previously observed by XMM for 65 ksec in 2003 June 24. The new Chandra observations allow us to resolve τ Boo A from its stellar companion, τ Boo B (M2 V), for the first time. The companion accounts for 21% of the system's total X-ray emission at the time of the Chandra observation. Nevertheless, our measurements of τ Boo A emission measures and coronal abundances from Chandra are reasonably consistent with previous measurements from XMM by Maggio et al. (2011, A&A, 527, A144), in which τ Boo A and B are not resolved. Covering planetary orbital phases 0.21-0.31, 0.44-0.49, and 0.69-0.86, the Chandra data show that τ Boo A's coronal X-ray spectrum does not vary significantly with planetary orbital phase. However, our analysis suggests that coronal abundances for τ Boo A are somewhat anomalous, with a significantly weaker "FIP effect" compared to similar stars without close-in exoplanets, particularly π3 Ori (F6 V).

  14. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  15. Thermal Structure and Mantle Dynamics of Rocky Exoplanets

    Science.gov (United States)

    Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.

    2011-12-01

    The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across

  16. Constraining Exoplanet Habitability with HabEx

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    The Habitable Exoplanet Imaging mission, or HabEx, is one of four flagship mission concepts currently under study for the upcoming 2020 Decadal Survey of Astronomy and Astrophysics. The broad goal of HabEx will be to image and study small, rocky planets in the Habitable Zones of nearby stars. Additionally, HabEx will pursue a range of other astrophysical investigations, including the characterization of non-habitable exoplanets and detailed observations of stars and galaxies. Critical to the capability of HabEx to understand Habitable Zone exoplanets will be its ability to search for signs of surface liquid water (i.e., habitability) and an active biosphere. Photometry and moderate resolution spectroscopy, spanning the ultraviolet through near-infrared spectral ranges, will enable constraints on key habitability-related atmospheric species and properties (e.g., surface pressure). In this poster, we will discuss approaches to detecting signs of habitability in reflected-light observations of rocky exoplanets. We will also present initial results for modeling experiments aimed at demonstrating the capabilities of HabEx to study and understand Earth-like worlds around other stars.

  17. Supplement to the UMTRA Project water sampling and analysis plan, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1995-09-01

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Mexican Hat (DOE, 1994). Further, the supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Mexican Hat. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1991) and 60 FR 2854 (1995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Mexican Hat site are the Mexican Hat Long-Term Surveillance Plan (currently in progress), and the Mexican Hat Site Observational Work Plan (currently in progress)

  18. The system La(PO3)3-Ca(PO3)2-P2O5

    International Nuclear Information System (INIS)

    Jungowska, W.; Znamierowska, T.

    1993-01-01

    Ternary system La(PO 3 ) 3 -Ca(PO 3 ) 2 -P 2 O 5 has been studied by means of thermal and roentgenography analysis. The existence of single intermediate compound CaLa(PO 3 ) 5 has been observed. The phase diagrams for the ternary system as well as for two binary systems La(PO 3 ) 3 -Ca(PO 3 ) 2 and CaLa(PO 3 ) 5 -LaP 5 O 11 have been shown. 7 refs, 3 figs

  19. Assessing Ozone Detectability on Weakly Oxygenated Terrestrial Exoplanets

    Science.gov (United States)

    Schwieterman, Edward; Olson, Stephanie; Reinhard, Christopher; Ridgwell, Andy; Kane, Stephen R.; Meadows, Victoria; Lyons, Timothy

    2018-06-01

    Space-based telescope mission concepts currently under development by NASA would be capable of directly imaging exoplanets within the habitable zones of their host stars. The spectroscopic data from such missions could provide an opportunity to detect biosignatures. The strongest remotely detectable signature of life on our planet today is the photosynthetically produced oxygen (O2) in our atmosphere. However, recent studies of Earth’s geochemical proxy record suggest that for all but the last ~500 million years, atmospheric O2 would have been undetectable to a remote observer, a potential false negative for life. During an extended period in Earth’s middle history (2.0 – 0.7 billion years ago, Ga), O2 was likely present but in low concentrations, with pO2 estimates of ~ 0.1 – 1% of present-day levels. Recent biogeochemical modeling results have suggested methane (CH4) was likewise undetectably low during this period. Although O2 has a weak spectral impact in reflected light at abundances consistent with Earth’s middle history, O3 in photochemical equilibrium with that O2 would produce notable spectral features in the UV Hartley-Huggins band (~0.25 µm), with a weaker impact in the mid-IR band near 9.7 µm. Thus, taking Earth history as an informative example, there likely exists a category of exoplanets for which conventional biosignatures can only be identified in the UV. We use simulated observations to emphasize the importance of UV capabilities in the design of future space-based direct imaging telescopes such as HabEx or LUVOIR to detect O3 on planets with weakly oxygenated states. We also show that under low-O2 conditions, seasonal variations in O2 production and consumption by the biosphere could manifest as time-variable O3. Such seasonality in the Hartley-Huggins band provides both an opportunity and a challenge for remote life-detection studies because this biosignature may only be detectable intermittently over a planet’s orbital period

  20. Transit Recovery of Kepler-167e: Providing JWST with an Unprecedented Jupiter-analog Exoplanet Target

    Science.gov (United States)

    Dalba, Paul; Muirhead, Philip; Tamburo, Patrick

    2018-05-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit in the cold outer reaches of their systems, despite their low transit probabilities. Recent work suggests that cold gas giant exoplanet atmospheres are amenable to transmission spectroscopy (the analysis of the transit depth versus wavelength) enabling novel tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-167e, a low-eccentricity Jupiter-analog exoplanet with a 1,071-day orbital period residing well beyond the snow-line. Transmission spectroscopy of Kepler-167e from JWST can reveal the composition of this planet's atmosphere, constrain its heavy-element abundance, and identify atmospheric photochemical processes. JWST characterization also enables unprecedented direct comparison with Jupiter and Saturn, which show a striking diversity in physical properties that is best investigated through comparative exoplanetology. Since Kepler only observed two transits of Kepler-167e, it is not known if this exoplanet exhibits transit timing variations (TTVs). About half of Kepler's long-period exoplanets have TTVs of up to 40 hours. Such a large uncertainty jeopardizes attempts to characterize the atmosphere of this unique Jovian exoplanet with JWST. To mitigate this risk, the upcoming third transit of Kepler-167e must be observed to test for TTVs. We propose a simple 10-hour, single-channel observation to capture ingress or egress of the next transit of Kepler-167e in December 2018. In the absence of TTVs, our observation will reduce the ephemeris uncertainty from an unknown value to approximately 3 minutes, thereby removing the risk in future transit observations with JWST. The excellent photometric precision of Spitzer is sufficient to identify the transit of Kepler-167e. Given the timing and nature of this program, Spitzer is the only observatory--on the ground or in space--that can make this pivotal observation.

  1. Cross-section crushing behaviour of hat-sections (Part II: Analytical modelling)

    NARCIS (Netherlands)

    Hofmeyer, H.

    2005-01-01

    Hat-sections are often used to experimentally investigate building sheeting subject to a concentrated load and bending. In car doors, hat-sections are used for side-impact protection. Their crushing behaviour can partly be explained by only observing their cross-sectional behaviour [1]. This

  2. Epigenetic control of learning and memory in Drosophila by Tip60 HAT action.

    Science.gov (United States)

    Xu, Songjun; Wilf, Rona; Menon, Trisha; Panikker, Priyalakshmi; Sarthi, Jessica; Elefant, Felice

    2014-12-01

    Disruption of epigenetic gene control mechanisms in the brain causes significant cognitive impairment that is a debilitating hallmark of most neurodegenerative disorders, including Alzheimer's disease (AD). Histone acetylation is one of the best characterized of these epigenetic mechanisms that is critical for regulating learning- and memory- associated gene expression profiles, yet the specific histone acetyltransferases (HATs) that mediate these effects have yet to be fully characterized. Here, we investigate an epigenetic role for the HAT Tip60 in learning and memory formation using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that Tip60 is endogenously expressed in the Kenyon cells, the intrinsic neurons of the MB, and in the MB axonal lobes. Targeted loss of Tip60 HAT activity in the MB causes thinner and shorter axonal lobes while increasing Tip60 HAT levels cause no morphological defects. Functional consequences of both loss and gain of Tip60 HAT levels in the MB are evidenced by defects in immediate-recall memory. Our ChIP-Seq analysis reveals that Tip60 target genes are enriched for functions in cognitive processes, and, accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, we find that both learning and immediate-recall memory deficits that occur under AD-associated, amyloid precursor protein (APP)-induced neurodegenerative conditions can be effectively rescued by increasing Tip60 HAT levels specifically in the MB. Together, our findings uncover an epigenetic transcriptional regulatory role for Tip60 in cognitive function and highlight the potential of HAT activators as a therapeutic option for neurodegenerative disorders. Copyright © 2014 by the Genetics Society of America.

  3. Archaeology and direct imaging of exoplanets

    Science.gov (United States)

    Campbell, John B.

    The search for extraterrestrial technology effectively began 45 years ago with Frank Drake's Project Ozma and a radioastronomy start to the search for extraterrestrial intelligence (SETI). Eventually searches began for possible interstellar probes in stable orbits in the Solar System, as well as for infrared excesses from possible Dyson spheres round Sun-like stars. Whilst the Cold War was still underway, some scientists looked for evidence of nuclear waste dumps and nuclear wars elsewhere in the Milky Way. None of this work was carried out by archaeologists, even though by their very nature archaeologists are experts in the detection of ancient technologies. The technologies being searched for would have been partly ancient in age though advanced in techniques and science. The development of ESA's Darwin and NASA's TPF for detection and imaging of Earth-like exoplanets in our galactic neighbourhood represents an opportunity for the testing of techniques for detecting signatures of technological activities. Ideally, both Darwin and TPF might be able to provide spectroscopic data on the chemistry and biochemistry of the atmospheres of Earth-like exoplanets, and thus to detect some of the signs of life. If this can be accomplished successfully, then in theory evidence for pollution and nuclear accidents and wars should be detectable. Some infrared signatures of ETT on or round exoplanets might be detectable. Direct visual imaging of ETT structures will probably not be feasible till we have extremely powerful interstellar telescopes or actually send orbital craft.

  4. Searching for exoplanets using artificial intelligence

    Science.gov (United States)

    Pearson, Kyle A.; Palafox, Leon; Griffith, Caitlin A.

    2018-02-01

    In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called "deep learning" or "deep nets" are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time-series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.

  5. Spectroscopy of Exoplanet Atmospheres with the FINESSE Explorer

    Science.gov (United States)

    Deroo, Pieter; Swain, Mark R.; Green, Robert O.

    2012-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopic Survey Explorer) will provide uniquely detailed information on the growing number of newly discovered planets by characterizing their atmospheric composition and temperature structure. This NASA Explorer mission, selected for a competitive Phase A study, is unique in its breath and scope thanks to broad instantaneous spectroscopy from the optical to the mid-IR (0.7 - 5 micron), with a survey of exoplanets measured in a consistent, uniform way. For 200 transiting exoplanets ranging from Terrestrial to Jovians, FINESSE will measure the chemical composition and temperature structure of their atmospheres and trace changes over time with exoplanet longitude. The mission will do so by measuring the spectroscopic time series for a primary and secondary eclipse over the exoplanet orbital phase curve. With spectrophotometric precision being a key enabling aspect for combined light exoplanet characterization, FINESSE is designed to produce spectrophotometric precision of better than 100 parts-per-million per spectral channel without the need for decorrelation. The exceptional stability of FINESSE will even allow the mission to characterize non-transiting planets, potentially as part of FINESSE's Participating Scientist Program. In this paper, we discuss the flow down from the target availability to observations and scheduling to the analysis and calibration of the data and how it enables FINESSE to be the mission that will truly expand the new field of comparative exoplanetology.

  6. The pinwheel pupil discovery: exoplanet science & improved processing with segmented telescopes

    Science.gov (United States)

    Breckinridge, James Bernard

    2018-01-01

    In this paper, we show that by using a “pinwheel” architecture for the segmented primary mirror and curved supports for the secondary mirror, we can achieve a near uniform diffraction background in ground and space large telescope systems needed for high SNR exoplanet science. Also, the point spread function will be nearly rotationally symmetric, enabling improved digital image reconstruction. Large (>4-m) aperture space telescopes are needed to characterize terrestrial exoplanets by direct imaging coronagraphy. Launch vehicle volume constrains these apertures are segmented and deployed in space to form a large mirror aperture that is masked by the gaps between the hexagonal segments and the shadows of the secondary support system. These gaps and shadows over the pupil result in an image plane point spread function that has bright spikes, which may mask or obscure exoplanets.These telescope artifact mask faint exoplanets, making it necessary for the spacecraft to make a roll about the boresight and integrate again to make sure no planets are missed. This increases integration time, and requires expensive space-craft resources to do bore-sight roll.Currently the LUVOIR and HabEx studies have several significant efforts to develop special purpose A/O technology and to place complex absorbing apodizers over their Hex pupils to shape the unwanted diffracted light. These strong apodizers absorb light, decreasing system transmittance and reducing SNR. Implementing curved pupil obscurations will eliminate the need for the highly absorbing apodizers and thus result in higher SNR.Quantitative analysis of diffraction patterns that use the pinwheel architecture are compared to straight hex-segment edges with a straight-line secondary shadow mask to show a gain of over a factor of 100 by reducing the background. For the first-time astronomers are able to control and minimize image plane diffraction background “noise”. This technology will enable 10-m segmented

  7. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    International Nuclear Information System (INIS)

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J.

    2010-01-01

    the spectral influence of clouds depends more on planet-star separation and hence atmospheric temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H 2 O absorption features near 0.94 μm. While solar system giant planets are well separated by their broadband colors, we find that arbitrary giant exoplanets can have a large range of possible colors and that color alone cannot be relied upon to characterize planet types. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator-to-pole temperature gradients than are found on Jupiter and thus may exhibit differing atmospheric dynamics. These results are useful for future interpretation of direct imaging exoplanet observations as well as for deriving requirements and designing filters for optical direct imaging instrumentation.

  8. A two-tiered approach to assessing the habitability of exoplanets.

    Science.gov (United States)

    Schulze-Makuch, Dirk; Méndez, Abel; Fairén, Alberto G; von Paris, Philip; Turse, Carol; Boyer, Grayson; Davila, Alfonso F; António, Marina Resendes de Sousa; Catling, David; Irwin, Louis N

    2011-12-01

    In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.

  9. Giant Paperclip Necklaces, Soup-Can Rings and Cherry-Pie Hats

    Science.gov (United States)

    Winters, Laurel A.

    2011-01-01

    In this article, the author describes an art project inspired by the wearable sculpture art created by artist Marjorie Schick. Students used wallpaper paste and newspapers to create papier-mache for a mountain hat, a cherry-pie mask/hat, a "dress" shoe and a Cubistic mask. Cardboard was used in many of these things, in addition to being used as…

  10. The Transit Light Curve Project. VIII. Six Occultations of the Exoplanet TrES-3

    OpenAIRE

    Winn, Joshua N.; Holman, Matthew J.; Shporer, Avi; Fernandez, Jose; Mazeh, Tsevi; Latham, David W.; Charbonneau, David; Everett, Mark E.

    2008-01-01

    We present photometry of the exoplanet host star TrES-3 spanning six occultations (secondary eclipses) of its giant planet. No flux decrements were detected, leading to 99%-confidence upper limits on the planet-to-star flux ratio of 0.00024, 0.0005, and 0.00086 in the i, z, and R bands respectively. The corresponding upper limits on the planet's geometric albedo are 0.30, 0.62, and 1.07. The upper limit in the i band rules out the presence of highly reflective clouds, and is only a factor of ...

  11. The WASP-South search for transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2011-02-01

    Full Text Available Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9–13. We present a status report for this ongoing survey.

  12. SETI OBSERVATIONS OF EXOPLANETS WITH THE ALLEN TELESCOPE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Harp, G. R.; Richards, Jon; Tarter, Jill C.; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wilcox, Bethany R.; Wimberly, M. K. R.; Ross, John; Barott, W. C.; Ackermann, R. F.; Blair, Samantha [SETI Institute, Mountain View, CA 94043 (United States)

    2016-12-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7–100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from −0.3 to 0.3 m s{sup −2}. A total of 1.9 × 10{sup 8} unique signals requiring immediate follow-up were detected in observations covering more than 8 × 10{sup 6} star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180–310 × 10{sup −26} W m{sup −2}.

  13. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  14. Exoplanet Searches by Future Deep Space Missions

    Directory of Open Access Journals (Sweden)

    Maccone C.

    2011-02-01

    Full Text Available The search for exoplanets could benefit from gravitational lensing if we could get to 550 AU from the Sun and beyond. This is because the gravitational lens of the Sun would highly intensify there any weak electromagnetic wave reaching the solar system from distant planets in the Galaxy (see Maccone 2009. The gravitational lens of the Sun, however, has a drawback: the solar Corona. Electrons in the Corona make electromagnetic waves diverge and this pushes the focus out to distances higher than 550 AU. Jupiter is the second larger mass in the solar system after the Sun, but in this focal game not only the mass matters: rather, what really matters is the ratio between the radius of the body squared and the mass of the body. In this regard, Jupiter qualifies as the second best choice for a space mission, requiring the spacecraft to reach 6,077 AU. In this paper, we study the benefit of exoplanet searches by deep space missions.

  15. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  16. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  17. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  18. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    DEFF Research Database (Denmark)

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area....... This study evaluates the authors' clinical experience with Top Hat supra-annular aortic valve size selection, and the technical aspects of implantation. METHODS: Between January 1999 and October 2005, a total of 251 consecutive patients underwent 252 aortic valve replacements with Top Hat supra...... required unplanned coronary bypass, and 30-day mortality was 2.0% (5/251), indicating a good safety profile for the valves implanted in this series. CONCLUSION: The general distribution of implant sizes in the US indicates that cardiac surgeons may be under-sizing the Top Hat supra-annular aortic valve...

  19. Qatar Exoplanet Survey

    DEFF Research Database (Denmark)

    Alsubai, Khalid; Mislis, Dimitris; Tsvetanov, Zlatan I.

    2017-01-01

    We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey. The three planets belong to the hot Jupiter family, with orbital periods of PQ3b=2.50792 days, PQ4b=1.80539 days, and PQ5b=2.87923 days. Follow-up spectroscopic......3= 1.145±0.064 Ṁ, MQ4=0.896±0.048Ṁ, MQ5=1.128±0.056 Ṁ and RQ3=1.272±0.14 RṀ, RQ4=0.849±0.063 R , and RQ5=1.076±0.051 Ṙ for Qatar-3, 4, and 5 respectively. The V magnitudes of the three host stars are VQ3=12.88, VQ4=13.60, and VQ5=12.82. All three new planets can be classified as heavy hot Jupiters...

  20. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    Science.gov (United States)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  1. Characterizing Rosetta Stone Exoplanets with JWST Transit Spectroscopy

    Science.gov (United States)

    Lewis, Nikole K.; Clampin, Mark; Seager, Sara; Valenti, Jeff A.; Mountain, Matt; JWST Telescope Scientist GTO Team

    2017-06-01

    JWST will for the first time provide for spectroscopic (R > 100) observation of systems hosting transiting exoplanets over the critical wavelength range from 0.6 to 28.5 microns. Our team will take advantage of JWST's spectral coverage and resolution to characterize a small number of exoplanets in exquisite detail. We plan to focus our efforts on single representative members of the hot-Jupiter, warm-Neptune, and temperate-Earth populations in both transmission and emission over the full wavelength range of JWST. Our JWST observations will hopefully become 'Rosetta Stones' that will serve as benchmarks for further observations of planets within each representative population and a lasting legacy of the JWST mission. Here we will describe our observational plan and how we turned our science goals into an implemented Cycle 1 JWST program.

  2. Super-Earths, Warm-Neptunes, and Hot-Jupiters: Transmission Spectroscopy for Comparative Planetology

    Science.gov (United States)

    Fraine, Jonathan D.; Deming, Drake; Knutson, Heather; Jordán, Andrés

    2014-11-01

    We used the Kepler, Hubble, and Spitzer Space Telescopes to probe the diversity of exoplanetary atmospheres with transmission spectroscopy, constraining atomic and molecular absorption in Jupiter- and Neptune-sized exoplanets. The detections and non-detections of molecular species such as water, methane, and carbon monoxide lead to greater understanding of planet formation and evolution. Recent significant advances in both theoretical and observational discoveries from planets like HD189733b, HD209458b, GJ436, as well as our own work with HAT-P-11b and GJ1214b, have shown that the range of measurable atmospheric properties spans from clear, molecular absorption dominated worlds to opaque worlds, with cloudy, hazy, or high mean molecular weight atmospheres. Characterization of these significant non-detections allows us to infer the existence of cloud compositions at high altitudes, or mean molecular weights upwards of ~1000x solar. Neither scenario was expected from extrapolations of solar system analogs. We present here our published results from GJ1214b and HAT-P-11b, as well as our recent work on HAT-P-7b and HAT-P-13b. We search for evidence of atmospheric hazes and clouds, and place constraints on the relative abundance of water vapor, methane, and carbon monoxide-- in the case of cloud-free atmospheres. We conclude by discussing how our results compare to transmission spectra obtained for other similar planets, and use these combined data to develop a better understanding for the nature of these distant and alien worlds.

  3. Estimating q-hat in Quenched Lattice SU(2) Gauge Theory

    International Nuclear Information System (INIS)

    Majumder, Abhijit

    2013-01-01

    The propagation of a virtual quark in a thermal medium is considered. The non-perturbative jet transport coefficient q -hat is estimated in quark less SU(2) lattice gauge theory. The light like correlator which defines q -hat , defined in the regime where the jet has small virtuality compared to its energy, is analytically related to a series of local operators in the deep Euclidean region, where the jet's virtuality is of the same order as its energy. It is demonstrated that in this region, for temperatures in the range of T=400–600 MeV, and for jet energies above 20 GeV, the leading term in the series is dominant over the next-to-leading term and thus yields an estimate of the value of q -hat . In these proceedings we discuss the details of the numerical calculation

  4. Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    Science.gov (United States)

    Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.

    2017-12-01

    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.

  5. An introduction to planets ours and others : from Earth to exoplanets

    CERN Document Server

    Encrenaz, Thérèse

    2014-01-01

    What is a planet? The answer seems obvious, but nonetheless the definition of a planet has continuously evolved over the centuries, and their number has changed following successive discoveries. The decision endorsed by the International Astronomical Union to remove Pluto from the list of planets in 2006 well illustrates the difficulty associated with their definition. The recent discovery of hundreds of exoplanets around nearby stars of our Galaxy opens a new and spectacular dimension to astrophysics. We presently know very little about the physical nature of exoplanets. In contrast, our knowledge of Solar System planets has made huge progress over the past decades, thanks, especially, to space planetary exploration. The purpose of this book is first to characterize what planets are, in their global properties and in their diversity. Then, this knowledge is used to try to imagine the physical nature of exoplanets, starting from the few parameters we know about them. Throughout this book, as we explore the su...

  6. A new interferometric study of four exoplanet host stars: θ Cygni, 14 Andromedae, υ Andromedae and 42 Draconis

    Science.gov (United States)

    Ligi, R.; Mourard, D.; Lagrange, A. M.; Perraut, K.; Boyajian, T.; Bério, Ph.; Nardetto, N.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-09-01

    Context. Since the discovery of the first exoplanet in 1995 around a solar-type star, the interest in exoplanetary systems has kept increasing. Studying exoplanet host stars is of the utmost importance to establish the link between the presence of exoplanets around various types of stars and to understand the respective evolution of stars and exoplanets. Aims: Using the limb-darkened diameter (LDD) obtained from interferometric data, we determine the fundamental parameters of four exoplanet host stars. We are particularly interested in the F4 main-sequence star, θ Cyg, for which Kepler has recently revealed solar-like oscillations that are unexpected for this type of star. Furthermore, recent photometric and spectroscopic measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic radial velocity of ~150 days. Models of this periodic change in radial velocity predict either a complex planetary system orbiting the star, or a new and unidentified stellar pulsation mode. Methods: We performed interferometric observations of θ Cyg, 14 Andromedae, υ Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount Wilson, California) in several three-telescope configurations. We measured accurate limb darkened diameters and derived their radius, mass and temperature using empirical laws. Results: We obtain new accurate fundamental parameters for stars 14 And, υ And and 42 Dra. We also obtained limb darkened diameters with a minimum precision of ~1.3%, leading to minimum planet masses of Msini = 5.33 ± 0.57, 0.62 ± 0.09 and 3.79 ± 0.29 MJup for 14 And b, υ And b and 42 Dra b, respectively. The interferometric measurements of θ Cyg show a significant diameter variability that remains unexplained up to now. We propose that the presence of these discrepancies in the interferometric data is caused either by an intrinsic variation of the star or an unknown close companion orbiting around it. Based on interferometric observations with the VEGA

  7. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    Science.gov (United States)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  8. Broadband polarimetry of exoplanets : modelling signals of surfaces, hazes and clouds

    NARCIS (Netherlands)

    Karalidi, Theodora

    2013-01-01

    It is less than 20 years since astronomers discovered the first exoplanet orbiting a Sun-like star. In this short period more than 770 confirmed exoplanets have been detected. With so many exoplanets the next step is their characterization. What is their atmosphere made of? Does it contain water

  9. Tip off the HAT- Epigenetic control of learning and memory by Drosophila Tip60.

    Science.gov (United States)

    Xu, Songjun; Elefant, Felice

    2015-01-01

    Disruption of epigenetic gene control mechanisms involving histone acetylation in the brain causes cognitive impairment, a debilitating hallmark of most neurodegenerative disorders. Histone acetylation regulates cognitive gene expression via chromatin packaging control in neurons. Unfortunately, the histone acetyltransferases (HATs) that generate such neural epigenetic signatures and their mechanisms of action remain unclear. Our recent findings provide insight into this question by demonstrating that Tip60 HAT action is critical for morphology and function of the mushroom body (MB), the learning and memory center in the Drosophila brain. We show that Tip60 is robustly produced in MB Kenyon cells and extending axonal lobes and that targeted MB Tip60 HAT loss results in axonal outgrowth disruption. Functional consequences of loss and gain of Tip60 HAT levels in the MB are evidenced by defects in memory. Tip60 ChIP-Seq analysis reveals enrichment for genes that function in cognitive processes and accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, increasing levels of Tip60 in the MB rescues learning and memory deficits resulting from Alzheimer's disease associated amyloid precursor protein (APP) induced neurodegeneration. Our studies highlight the potential of HAT activators as a therapeutic option for cognitive disorders.

  10. The Effect of Stellar Contamination on Transmission Spectra of Low-mass Exoplanets

    Science.gov (United States)

    Rackham, Benjamin V.; Apai, Daniel; Giampapa, Mark S.

    2017-10-01

    of small exoplanets, including those of the TRAPPIST-1 system. Constraining stellar contamination will likely be a limiting factor for detecting atmospheric features in transmission spectra of low-mass exoplanets around late-type stars from TESS.

  11. Illusion and reality in the atmospheres of exoplanets

    Science.gov (United States)

    Deming, L. Drake; Seager, Sara

    2017-01-01

    The atmospheres of exoplanets reveal all their properties beyond mass, radius, and orbit. Based on bulk densities, we know that exoplanets larger than 1.5 Earth radii must have gaseous envelopes and, hence, atmospheres. We discuss contemporary techniques for characterization of exoplanetary atmospheres. The measurements are difficult, because—even in current favorable cases—the signals can be as small as 0.001% of the host star's flux. Consequently, some early results have been illusory and not confirmed by subsequent investigations. Prominent illusions to date include polarized scattered light, temperature inversions, and the existence of carbon planets. The field moves from the first tentative and often incorrect conclusions, converging to the reality of exoplanetary atmospheres. That reality is revealed using transits for close-in exoplanets and direct imaging for young or massive exoplanets in distant orbits. Several atomic and molecular constituents have now been robustly detected in exoplanets as small as Neptune. In our current observations, the effects of clouds and haze appear ubiquitous. Topics at the current frontier include the measurement of heavy element abundances in giant planets, detection of carbon-based molecules, measurement of atmospheric temperature profiles, definition of heat circulation efficiencies for tidally locked planets, and the push to detect and characterize the atmospheres of super-Earths. Future observatories for this quest include the James Webb Space Telescope and the new generation of extremely large telescopes on the ground. On a more distant horizon, NASA's study concepts for the Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/Infrared Surveyor (LUVOIR) missions could extend the study of exoplanetary atmospheres to true twins of Earth.

  12. The HAT Score-A Simple Risk Stratification Score for Coagulopathic Bleeding During Adult Extracorporeal Membrane Oxygenation.

    Science.gov (United States)

    Lonergan, Terence; Herr, Daniel; Kon, Zachary; Menaker, Jay; Rector, Raymond; Tanaka, Kenichi; Mazzeffi, Michael

    2017-06-01

    The study objective was to create an adult extracorporeal membrane oxygenation (ECMO) coagulopathic bleeding risk score. Secondary analysis was performed on an existing retrospective cohort. Pre-ECMO variables were tested for association with coagulopathic bleeding, and those with the strongest association were included in a multivariable model. Using this model, a risk stratification score was created. The score's utility was validated by comparing bleeding and transfusion rates between score levels. Bleeding also was examined after stratifying by nadir platelet count and overanticoagulation. Predictive power of the score was compared against the risk score for major bleeding during anti-coagulation for atrial fibrillation (HAS-BLED). Tertiary care academic medical center. The study comprised patients who received venoarterial or venovenous ECMO over a 3-year period, excluding those with an identified source of surgical bleeding during exploration. None. Fifty-three (47.3%) of 112 patients experienced coagulopathic bleeding. A 3-variable score-hypertension, age greater than 65, and ECMO type (HAT)-had fair predictive value (area under the receiver operating characteristic curve [AUC] = 0.66) and was superior to HAS-BLED (AUC = 0.64). As the HAT score increased from 0 to 3, bleeding rates also increased as follows: 30.8%, 48.7%, 63.0%, and 71.4%, respectively. Platelet and fresh frozen plasma transfusion tended to increase with the HAT score, but red blood cell transfusion did not. Nadir platelet count less than 50×10 3 /µL and overanticoagulation during ECMO increased the AUC for the model to 0.73, suggesting additive risk. The HAT score may allow for bleeding risk stratification in adult ECMO patients. Future studies in larger cohorts are necessary to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. USING SIX THINKING HATS AS A TOOL FOR LATERAL THINKING IN ORGANIZATIONAL PROBLEM SOLVING

    OpenAIRE

    Dr. P. S. Aithal; Dr. P. M. Suresh Kumar

    2016-01-01

    Six thinking hats is recently introduced technique which outlines different thinking styles required by an individual while analysing a given problem in an effective way. The technique correlates different thinking styles used in a systematic problem-solving procedure with different coloured hats. Alternately, by conceptualizing each type of hat, the person focuses on the style of thinking associated with each colour so that the problem can be analysed from different angles and frame of refer...

  14. WFIRST: Exoplanet Data Challenge. Atmospheric retrieval results

    Science.gov (United States)

    Hildebrandt, Sergi; Turnbull, Margaret; Exoplanet Data Challenge Team

    2018-01-01

    We present the results of the Exoplanet Data Challenge for its first 2016/17 cycle and the current cycle 2. Some input spectra for extra-solar systems are processed through the WFIRST IFS instrument model, producing simulated data representative of the flight data. Atmospheric properties are then recovered using complex atmospheric models and multidimensional optimization. The results inform about WFIRST CGI ability to characterize exo-planetray atmospheres.

  15. Analytic Reflected Lightcurves for Exoplanets

    Science.gov (United States)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  16. Results of the astrometry and direct imaging testbed for exoplanet detection

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Pluzhnik, Eugene; Guyon, Olivier; Milster, Thomas; Johnson, Lee; Finan, Emily; Knight, Justin; Rodack, Alexander

    2017-09-01

    Measuring masses of long-period planets around F, G, and K stars is necessary to characterize exoplanets and assess their habitability. Imaging stellar astrometry offers a unique opportunity to solve radial velocity system inclination ambiguity and determine exoplanet masses. The main limiting factor in sparse-field astrometry, besides photon noise, is the non-systematic dynamic distortions that arise from perturbations in the optical train. Even space optics suffer from dynamic distortions in the optical system at the sub-μas level. To overcome this limitation we propose a diffractive pupil that uses an array of dots on the primary mirror creating polychromatic diffraction spikes in the focal plane, which are used to calibrate the distortions in the optical system. By combining this technology with a high-performance coronagraph, measurements of planetary systems orbits and masses can be obtained faster and more accurately than by applying traditional techniques separately. In this paper, we present the results of the combined astrometry and and highcontrast imaging experiments performed at NASA Ames Research Center as part of a Technology Development for Exoplanet Missions program. We demonstrated 2.38x10-5 λ/D astrometric accuracy per axis and 1.72x10-7 raw contrast from 1.6 to 4.5 λ/D. In addition, using a simple average subtraction post-processing we demonstrated no contamination of the coronagraph field down to 4.79x10-9 raw contrast.

  17. Thermal Infrared Imaging of Exoplanets

    International Nuclear Information System (INIS)

    Apai, Daniel

    2009-01-01

    High-contrast imaging remains the only way to search for and study weakly-irradiated giant exoplanets. We review here in brief a new high-contrast imaging technique that operates in the 3-5 μm window and show the exquisite sensitivity that can be reached using this technique. The two key advantages of the L-band high-contrast imaging are the superior image quality and the 2-to 4-magnitude gain in sensitivity provided by the red color of giant planets. Most excitingly, this method can be applied to constrain the yet-unexplored giant planet population at radii between 3 and 30 AU.

  18. Virtual Screening of Phytochemicals to Novel Target (HAT) Rtt109 in Pneumocystis Jirovecii using Bioinformatics Tools.

    Science.gov (United States)

    Sugumar, Ramya; Adithavarman, Abhinand Ponneri; Dakshinamoorthi, Anusha; David, Darling Chellathai; Ragunath, Padmavathi Kannan

    2016-03-01

    Pneumocystis jirovecii is a fungus that causes Pneumocystis pneumonia in HIV and other immunosuppressed patients. Treatment of Pneumocystis pneumonia with the currently available antifungals is challenging and associated with considerable adverse effects. There is a need to develop drugs against novel targets with minimal human toxicities. Histone Acetyl Transferase (HAT) Rtt109 is a potential therapeutic target in Pneumocystis jirovecii species. HAT is linked to transcription and is required to acetylate conserved lysine residues on histone proteins by transferring an acetyl group from acetyl CoA to form e-N-acetyl lysine. Therefore, inhibitors of HAT can be useful therapeutic options in Pneumocystis pneumonia. To screen phytochemicals against (HAT) Rtt109 using bioinformatics tool. The tertiary structure of Pneumocystis jirovecii (HAT) Rtt109 was modeled by Homology Modeling. The ideal template for modeling was obtained by performing Psi BLAST of the protein sequence. Rtt109-AcCoA/Vps75 protein from Saccharomyces cerevisiae (PDB structure 3Q35) was chosen as the template. The target protein was modeled using Swiss Modeler and validated using Ramachandran plot and Errat 2. Comprehensive text mining was performed to identify phytochemical compounds with antipneumonia and fungicidal properties and these compounds were filtered based on Lipinski's Rule of 5. The chosen compounds were subjected to virtual screening against the target protein (HAT) Rtt109 using Molegro Virtual Docker 4.5. Osiris Property Explorer and Open Tox Server were used to predict ADME-T properties of the chosen phytochemicals. Tertiary structure model of HAT Rtt 109 had a ProSA score of -6.57 and Errat 2 score of 87.34. Structure validation analysis by Ramachandran plot for the model revealed 97% of amino acids were in the favoured region. Of all the phytochemicals subjected to virtual screening against the target protein (HAT) Rtt109, baicalin exhibited highest binding affinity towards the

  19. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    Science.gov (United States)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  20. iHAT: interactive Hierarchical Aggregation Table for Genetic Association Data

    Directory of Open Access Journals (Sweden)

    Heinrich Julian

    2012-05-01

    Full Text Available Abstract In the search for single-nucleotide polymorphisms which influence the observable phenotype, genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. We present a methodology for the visual assessment of single-nucleotide polymorphisms using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our tool, the interactive Hierarchical Aggregation Table (iHAT, facilitates the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Different color maps and aggregation strategies as well as filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT relies on the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. We demonstrate iHAT using artificial and real-world datasets for DNA and protein association studies as well as expression Quantitative Trait Locus data.

  1. Space missions to the exoplanets: Will they ever be possible

    Science.gov (United States)

    Genta, Giancarlo

    There is no doubt that the discovery of exoplanets has made interstellar space mission much more interesting than they were in the past. The possible discovery of a terrestrial type plane at a reasonable distance will give a strong impulse in this direction. However, there are doubts that such long range space mission will ever become feasible at all and, in case they will be, it is impossible to forecast a timeframe for them. At present, precursor interstellar missions are planned, but they fall way short from yielding interesting information about exoplanets, except perhaps in the case of missions to the focal line of the Sun’s gravitational lens, whose usefulness in this context is still to be demonstrated. They are anyway an essential step in the roadmap toward interstellar missions. Often the difficulties linked with interstellar missions are considered as related with the huge quantity of energy required for reaching the target star system within a reasonable timeframe. While this may well be a showstopper, it is not the only problem to be solved to make them possible. Two other issues are those linked with the probe’s autonomy and the telecommunications required to transmit large quantities of information at those distances. Missions to the exoplanets may be subdivided in the following categories: 1) robotic missions to the destination system, including flybys; 2) robotic missions including landing on an exoplanet; 3) robotic sample return missions; 4) human missions. The main problem to be solved for missions of type 1 is linked with propulsion and with energy availability, while autonomy (artificial intelligence) and telecommunication problems are more or less manageable with predictable technologies. Missions of type 2 are more demanding for what propulsion is concerned, but above all require a much larger artificial intelligence and also will generate a large amount of data, whose transmission back to Earth may become a problem. The suggestion of

  2. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  3. Long-Period Exoplanets from Photometric Transit Surveys

    Science.gov (United States)

    Osborn, Hugh

    2017-10-01

    Photometric transit surveys on the ground & in space have detected thousands of transiting exoplanets, typically by analytically combining the signals from multiple transits. This technique of exoplanet detection was exploited in K2 to detect nearly 200 candidate planets, and extensive follow-up was able to confirm the planet K2-110b as a 2.6±0.1R⊕, 16.7±3.2M⊙ planet on a 14d orbit around a K-dwarf. The ability to push beyond the time limit set by transit surveys to detect long-period transiting objects from a single eclipse was also studied. This was performed by developing a search technique to search for planets around bright stars in WASP and NGTS photometry, finding NGTS to be marginally better than WASP at detecting such planets with 4.14±0.16 per year compared to 1.43±0.15, and detecting many planet candidates for which follow-up is on-going. This search was then adapted to search for deep, long-duration eclipses in all WASP targets. The results of this survey are described in this thesis, as well as detailed results for the candidate PDS-110, a young T-Tauri star which exhibited ∼20d-long, 30%-deep eclipses in 2008 and 2011. Space-based photometers such as Kepler have the precision to identify small exoplanets and eclipsing binary candidates from only a single eclipse. K2, with its 75d campaign duration and high-precision photometry, is not only ideally suited to detect significant numbers of single-eclipsing objects, but also to characterise them from a single event. The Bayesian transit-fitting tool ("Namaste: An MCMC Analysis of Single Transit Exoplanets") was developed to extract planetary and orbital information from single transits, and was applied to 71 candidate events detected in K2 photometry. The techniques developed in this thesis are highly applicable to future transit surveys such as TESS & PLATO, which will be able to discover & characterise large numbers of long period planets in this way

  4. Amateur observations of exoplanets in Finland: History and recent activities

    Science.gov (United States)

    Mäkelä, V.; Haukka, H.; Oksanen, A.; Kehusmaa, P.; Hentunen, V.-P.

    2017-09-01

    Exoplanet have been observed by Finnish amateur astronomers already 17 years. Recently there are two active observers, but the interest to photometric observations on exoplanet transits is increasing in Finland.

  5. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  6. THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Jacob B., E-mail: jbsimon.astro@gmail.com [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States)

    2016-08-20

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving for the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.

  7. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  8. De-Trending K2 Exoplanet Targets for High Spacecraft Motion

    Science.gov (United States)

    Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory

    2018-01-01

    After the failure of two reaction wheels, the Kepler space telescope lost its fine pointing ability and entered a new phase of observation, K2. Targets observed by K2 have high motion relative to the detector and K2 light curves have higher noise than Kepler observations. Despite the increased noise, systematics removal pipelines such as K2SFF and EVEREST have enabled continued high-precision transiting planet science with the telescope, resulting in the detection of hundreds of new exoplanets. However, as the spacecraft begins to run out of fuel, sputtering will drive large and random variations in pointing that can prevent detection of exoplanets during the remaining 5 campaigns. In general, higher motion will spread the stellar point spread function (PSF) across more pixels during a campaign, which increases the number of degrees of freedom in the noise component and significantly reduces the de-trending power of traditional systematics removal methods. We use a model of the Kepler CCD combined with pixel-level information of a large number of stars across the detector to improve the performance of the EVEREST pipeline at high motion. We also consider the problem of increased crowding for static apertures in the high-motion regime and develop pixel response function (PRF)-fitting techniques to mitigate contamination and maximize the de-trending power. We assess the performance of our code by simulating sputtering events and assessing exoplanet detection efficiency with transit injection/recovery tests. We find that targets with roll amplitudes of up to 8 pixels, approximately 15 times K2 roll, can be de-trended within 2 to 3 factors of current K2 photometric precision for stars up to 14th magnitude. Achieved recovery precision allows detection of small planets around 11th and 12th magnitude stars. These methods can be applied to the light curves of K2 targets for existing and future campaigns to ensure that precision exoplanet science can still be performed

  9. Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65

    DEFF Research Database (Denmark)

    Chaplin, W. J.; Sanchis-Ojeda, R.; Campante, T. L.

    2013-01-01

    Results on the obliquity of exoplanet host stars - the angle between the stellar spin axis and the planetary orbital axis - provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obl...

  10. Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65

    NARCIS (Netherlands)

    Chaplin, W.J.; Sanchis-Ojeda, R.; Campante, T.L.; Handberg, R.; Stello, D.; Winn, J.N.; Basu, S.; Christensen-Dalsgaard, J.; Davies, G.R.; Metcalfe, T.S.; Buchhave, L.A.; Fischer, D.A.; Bedding, T.R.; Cochran, W.D.; Elsworth, Y.; Gilliland, R.L.; Hekker, S.; Huber, D.; Isaacson, H.; Karoff, C.; Kawaler, S.D.; Kjeldsen, H.; Latham, D.W.; Lund, M.N.; Lundkvist, M.; Marcy, G.W.; Miglio, A.; Barclay, T.; Lissauer, J.J.

    2013-01-01

    Results on the obliquity of exoplanet host stars?the angle between the stellar spin axis and the planetary orbital axis?provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity

  11. The CoRoT Exoplanet program: status & results

    Directory of Open Access Journals (Sweden)

    Moutou C.

    2011-02-01

    Full Text Available The CoRoT satellite is the first instrument hunting for planets from space. We will review the status of the CoRoT/Exoplanet program. We will then present the CoRoT exoplanetary systems and how they widen the range of properties of the close-in population and contribute to our understanding of the properties of planets.

  12. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Nielsen, Eric L.; Macintosh, Bruce; Graham, James R.; Barman, Travis S.; Doyon, Rene; Fabrycky, Daniel; Fitzgerald, Michael P.; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marley, Mark S.; Marois, Christian; Patience, Jenny; Perrin, Marshall D.; Oppenheimer, Rebecca; Song, Inseok; GPIES Team

    2017-01-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is one of the largest most sensitive direct imaging searches for exoplanets conducted to date, and having observed more than 300 stars the survey is halfway complete. We present highlights from the first half of the survey, including the discovery and characterization of the young exoplanet 51 Eri b and the brown dwarf HR 2562 B, new imaging of multiple disks, and resolving the young stellar binary V343 Nor for the first time. GPI has also provided new spectra and orbits of previous known planets and brown dwarfs and polarization measurements of a wide range of disks. Finally, we discuss the constraints placed by the first half of the GPIES campaign on the population of giant planets at orbital separations beyond that of Jupiter. Supported by NSF grants AST-0909188 and AST-1313718, AST-1411868, AST 141378, NNX11AF74G, and DGE-1232825, and by NASA grants NNX15AD95G/NEXSS and NNX11AD21G.

  13. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, J.R.

    1985-01-01

    This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.

  14. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; hide

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  15. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  16. CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei; Hu, Yongyun [Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871 China (China); Tian, Feng, E-mail: yyhu@pku.edu.cn [Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084 (China)

    2014-08-10

    Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed by future exoplanet detection missions.

  17. Stargate: An Open Stellar Catalog for NASA Exoplanet Exploration

    Science.gov (United States)

    Tanner, Angelle

    NASA is invested in a number of space- and ground-based efforts to find extrasolar planets around nearby stars with the ultimate goal of discovering an Earth 2.0 viable for searching for bio-signatures in its atmosphere. With both sky-time and funding resources extremely precious it is crucial that the exoplanet community has the most efficient and functional tools for choosing which stars to observe and then deriving the physical properties of newly discovered planets via the properties of their host stars. Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and planetary parameters in the absence of corresponding images and spectra. The mothballed NStED archive was in the process of collecting such data on nearby stars but its course may have changed if it comes back to NASA mission specific targets and NOT a volume limited sample of nearby stars. This means there is void. A void in the available set of tools many exoplanet astronomers would appreciate to create comprehensive lists of the stellar parameters of stars in our local neighborhood. Also, we need better resources for downloading adaptive optics images and published spectra to help confirm new discoveries and find ideal target stars. With so much data being produced by the stellar and exoplanet community we have decided to propose for the creation of an open access archive in the spirit of the open exoplanet catalog and the Kepler Community Follow-up Program. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be updated quickly and have a level of versatility which is necessary in today's fast moving, big data exoplanet community. Here, we propose to develop the Stargate Open stellar catalog for NASA exoplanet exploration.

  18. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  19. Limits on stellar companions to exoplanet host stars with eccentric planets

    International Nuclear Information System (INIS)

    Kane, Stephen R.; Hinkel, Natalie R.; Howell, Steve B.; Horch, Elliott P.; Feng, Ying; Wright, Jason T.; Ciardi, David R.; Everett, Mark E.; Howard, Andrew W.

    2014-01-01

    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars that harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history that transferred angular momentum to the planet. Here we present observations of four exoplanet host stars that utilize the excellent resolving power of the Differential Speckle Survey Instrument on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity >0.5 and whose radial velocity (RV) data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 mag fainter than the host star at passbands of 692 nm and 880 nm. The resolution and field of view of the instrument result in exclusion radii of 0.''05-1.''4, which excludes stellar companions within several AU of the host star in most cases. We further provide new RVs for the HD 4203 system that confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, place constraints on additional planetary companions, and inform the known distribution of multiplicity amongst exoplanet host stars.

  20. Three body dynamics and its applications to exoplanets

    CERN Document Server

    Musielak, Zdzislaw

    2017-01-01

    This brief book provides an overview of the gravitational orbital evolution of few-body systems, in particular those consisting of three bodies. The authors present the historical context that begins with the origin of the problem as defined by Newton, which was followed up by Euler, Lagrange, Laplace, and many others. Additionally, they consider the modern works from the 20th and 21st centuries that describe the development of powerful analytical methods by Poincare and others. The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets. The book includes some of the latest discoveries from the Kepler and now K2 missions, as well as applications to exoplanets discovered via the radial velocity method. Specifically, the authors give a unique perspective in rel...

  1. Exoplanets: The Hunt Continues!

    Science.gov (United States)

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial

  2. Bi-Directional Communication: A Critical Component of HAT

    Science.gov (United States)

    Shively, Robert J.

    2016-01-01

    Known problems with automation include lack of mode awareness, automation brittleness, and risk of miscalibrated trust. Human-Autonomy Teaming (HAT) is essential for improving these problems. This presentation outlines critical components for Human-Autonomy Teaming.

  3. 30 CFR 77.1710-1 - Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats or hard caps... Distinctively colored hard hats or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color from those worn by experienced miners shall be worn at...

  4. Earth as an Exoplanet: Spectral Monitoring of an Inhabited Planet

    Science.gov (United States)

    Caldwell, D. A.; Marchis, F.; Batalha, N. M.; Cabrol, N. A.; Smith, J. C.

    2018-02-01

    We propose a spectrometer for the Deep Space Gateway to monitor Earth as an exoplanet. We will measure the variability with illumination phase, rotation, clouds, and season. Results will inform future searches for biomarkers on distant exoplanets.

  5. The exoplanet-host star {mu} Arae: a new seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, M; Vauclair, S [Laboratoire d' Astrophysique Toulouse-Tarbes - OMP, 14 avenue Edouard Belin, 31400 Toulouse (France)], E-mail: sylvie.vauclair@ast.obs-mip.fr

    2008-10-15

    We present here the detailled modelling of the exoplanet-host star {mu} Arae, which is known to harbour a four-planets system. This star presents a metallicity excess compared to stars without detected planets. Asteroseismology can help determining precisely its internal structure, {mu} Arae was observed with the HARPS spectrograph at La Silla Observatory in June 2004, and 43 p-modes were identified. Using the external parameters provided by spectroscopy and the seismic constraints, we computed new stellar models, in a wider range and more precisely than [1], with various assumptions (overmetallic or accretion scenario, overshooting or not, Y enriched with metals or Y fixed to its solar value). We tried to find which ones give the best fit to the observations.

  6. Equation of state of iron under core conditions of large rocky exoplanets

    Science.gov (United States)

    Smith, Raymond F.; Fratanduono, Dayne E.; Braun, David G.; Duffy, Thomas S.; Wicks, June K.; Celliers, Peter M.; Ali, Suzanne J.; Fernandez-Pañella, Amalia; Kraus, Richard G.; Swift, Damian C.; Collins, Gilbert W.; Eggert, Jon H.

    2018-06-01

    The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses3, representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass-radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets.

  7. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    Science.gov (United States)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  8. New Developments At The Science Archives Of The NASA Exoplanet Science Institute

    Science.gov (United States)

    Berriman, G. Bruce

    2018-06-01

    The NASA Exoplanet Science Institute (NExScI) at Caltech/IPAC is the science center for NASA's Exoplanet Exploration Program and as such, NExScI operates three scientific archives: the NASA Exoplanet Archive (NEA) and Exoplanet Follow-up Observation Program Website (ExoFOP), and the Keck Observatory Archive (KOA).The NASA Exoplanet Archive supports research and mission planning by the exoplanet community by operating a service that provides confirmed and candidate planets, numerous project and contributed data sets and integrated analysis tools. The ExoFOP provides an environment for exoplanet observers to share and exchange data, observing notes, and information regarding the Kepler, K2, and TESS candidates. KOA serves all raw science and calibration observations acquired by all active and decommissioned instruments at the W. M. Keck Observatory, as well as reduced data sets contributed by Keck observers.In the coming years, the NExScI archives will support a series of major endeavours allowing flexible, interactive analysis of the data available at the archives. These endeavours exploit a common infrastructure based upon modern interfaces such as JuypterLab and Python. The first service will enable reduction and analysis of precision radial velocity data from the HIRES Keck instrument. The Exoplanet Archive is developing a JuypterLab environment based on the HIRES PRV interactive environment. Additionally, KOA is supporting an Observatory initiative to develop modern, Python based pipelines, and as part of this work, it has delivered a NIRSPEC reduction pipeline. The ensemble of pipelines will be accessible through the same environments.

  9. NEAT: an astrometric space telescope to search for habitable exoplanets in the solar neighborhood

    Science.gov (United States)

    Crouzier, A.; Malbet, F.; Kern, P.; Feautrier, P.; Preiss, O.; Martin, G.; Henault, F.; Stadler, E.; Lafrasse, S.; Behar, E.; Saintpe, M.; Dupont, J.; Potin, S.; Lagage, P.-O.; Cara, C.; Leger, A.; Leduigou, J.-M.; Shao, M.; Goullioud, R.

    2014-03-01

    The last decade has witnessed a spectacular development of exoplanet detection techniques, which led to an exponential number of discoveries and a great diversity of known exoplanets. However, it must be noted that the quest for the holy grail of astrobiology, i.e. a nearby terrestrial exoplanet in habitable zone around a solar type star, is still ongoing and proves to be very hard. Radial velocities will have to overcome stellar noise if there are to discover habitable planets around stars more massive than M ones. For very close systems, transits are impeded by their low geometrical probability. Here we present an alternative concept: space astrometry. NEAT (Nearby Earth Astrometric Telescope) is a concept of astrometric mission proposed to ESA which goal is to make a whole sky survey of close (less then 20 pc) planetary systems. The detection limit required for the instrument is the astrometric signal of an Earth analog (at 10 pc). Differential astrometry is a very interesting tool to detect nearby habitable exoplanets. Indeed, for F, G and K main sequence stars, the astrophysical noise is smaller than the astrometric signal, contrary to the case for radial velocities. The difficulty lies in the fact that the signal of an exo-Earth around a G type star at 10 pc is a tiny 0.3 micro arc sec, which is equivalent to a coin on the moon, seen from the Earth: the main challenge is related to instrumentation. In order to reach this specification, NEAT consists of two formation flying spacecraft at a 40m distance, one carries the mirror and the other one the focal plane. Thus NEAT has a configuration with only one optical surface: an off-axis parabola. Consequently, beamwalk errors are common to the whole field of view and have a small effect on differential astrometry. Moreover a metrology system projects young fringes on the focal plane, which can characterize the pixels whenever necessary during the mission. NEAT has two main scientific objectives: combined with

  10. A CONSISTENT RETRIEVAL ANALYSIS OF 10 HOT JUPITERS OBSERVED IN TRANSMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Barstow, J. K. [Physics and Astronomy, University College London, London (United Kingdom); Aigrain, S.; Irwin, P. G. J. [Department of Physics, University of Oxford, Oxford (United Kingdom); Sing, D. K., E-mail: j.eberhardt@ucl.ac.uk [School of Physics, University of Exeter, Exeter (United Kingdom)

    2017-01-01

    We present a consistent optimal estimation retrieval analysis of 10 hot Jupiter exoplanets, each with transmission spectral data spanning the visible to near-infrared wavelength range. Using the NEMESIS radiative transfer and retrieval tool, we calculate a range of possible atmospheric states for WASP-6b, WASP-12b, WASP-17b, WASP-19b, WASP-31b, WASP-39b, HD 189733b, HD 209458b, HAT-P-1b, and HAT-P-12b. We find that the spectra of all 10 planets are consistent with the presence of some atmospheric aerosol; WASP-6b, WASP-12b, WASP-17b, WASP-19b, HD 189733b, and HAT-P-12b are all fit best by Rayleigh scattering aerosols, whereas WASP-31b, WASP-39b and HD 209458b are better represented by a gray cloud model. HAT-P-1b has solutions that fall into both categories. WASP-6b, HAT-P-12b, HD 189733b, and WASP-12b must have aerosol extending to low atmospheric pressures (below 0.1 mbar). In general, planets with equilibrium temperatures between 1300 and 1700 K are best represented by deeper, gray cloud layers, whereas cooler or hotter planets are better fit using high Rayleigh scattering aerosol. We find little evidence for the presence of molecular absorbers other than H{sub 2}O. Retrieval methods can provide a consistent picture across a range of hot Jupiter atmospheres with existing data, and will be a powerful tool for the interpretation of James Webb Space Telescope observations.

  11. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-01-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  12. HAT-TR-318-007: A Double-lined M Dwarf Binary with Total Secondary Eclipses Discovered by HATNet and Observed by K2

    Science.gov (United States)

    Hartman, J. D.; Quinn, S. N.; Bakos, G. Á.; Torres, G.; Kovács, G.; Latham, D. W.; Noyes, R. W.; Shporer, A.; Fulton, B. J.; Esquerdo, G. A.; Everett, M. E.; Penev, K.; Bhatti, W.; Csubry, Z.

    2018-03-01

    We report the discovery by the HATNet survey of HAT-TR-318-007, a P=3.34395390+/- 0.00000020 day period detached double-lined M dwarf binary with total secondary eclipses. We combine radial velocity (RV) measurements from TRES/FLWO 1.5 m and time-series photometry from HATNet, FLWO 1.2 m, BOS 0.8 m, and NASA K2 Campaign 5, to determine the masses and radii of the component stars: MA=0.448+/-0.011 M⊙N, MB=0.2721-0.0042+0.0041 M⊙N, RA=0.4548-0.0036+0.0035 R⊙N, and RB=0.2913-0.0024+0.0023 R⊙N. We obtained a FIRE/Magellan near-infrared spectrum of the primary star during a total secondary eclipse, and we use this to obtain disentangled spectra of both components. We determine spectral types of STA=M 3.71+/- 0.69 and STB=M 5.01+/- 0.73 and effective temperatures of Teff, A= 3190+/-110 K and Teff, B=3100+/- 110 K for the primary and secondary star, respectively. We also measure a metallicity of [Fe/H] = +0.298+/- 0.080 for the system. We find that the system has a small, but significant, nonzero eccentricity of 0.0136+/- 0.0026. The K2 light curve shows a coherent variation at a period of 3.41315-0.00032+0.00030 days, which is slightly longer than the orbital period, and which we demonstrate comes from the primary star. We interpret this as the rotation period of the primary. We perform a quantitative comparison between the Dartmouth stellar evolution models and the seven systems, including HAT-TR-318-007, that contain M dwarfs with 0.2 M⊙N< M< 0.5 M⊙N, have metallicity measurements, and have masses and radii determined to better than 5% precision. Discrepancies between the predicted and observed masses and radii are found for three of the systems.

  13. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-04

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  14. ASTEROSEISMIC DETERMINATION OF OBLIQUITIES OF THE EXOPLANET SYSTEMS KEPLER-50 AND KEPLER-65

    International Nuclear Information System (INIS)

    Chaplin, W. J.; Campante, T. L.; Davies, G. R.; Elsworth, Y.; Hekker, S.; Sanchis-Ojeda, R.; Winn, J. N.; Handberg, R.; Christensen-Dalsgaard, J.; Karoff, C.; Stello, D.; Bedding, T. R.; Basu, S.; Fischer, D. A.; Metcalfe, T. S.; Buchhave, L. A.; Cochran, W. D.; Gilliland, R. L.; Huber, D.; Isaacson, H.

    2013-01-01

    Results on the obliquity of exoplanet host stars—the angle between the stellar spin axis and the planetary orbital axis—provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1σ level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.

  15. Radiological audit of remedial action activities at the processing sites Mexican Hat, Utah and Monument Valley, Arizona. Audit date: May 3--7, 1993, Final report

    International Nuclear Information System (INIS)

    1993-05-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing sites in Mexican Hat, Utah, and Monument Valley, Arizona. This audit was conducted May 3--7, 1993, by Bill James and Gerry Simiele of the TAC. Three site-specific findings and four observations were identified during the audit and are presented in this report. The overall conclusion from the audit is that the majority of the radiological aspects of the Mexican Hat, Utah, and Monument Valley, Arizona, remedial action programs are performed adequately. However, the findings identify that there is some inconsistency in following procedures and meeting requirements for contamination control, and a lack of communication between the RAC and the DOE on variances from the published remedial action plan (RAP)

  16. Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  17. DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuhara, M. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tamura, M.; Kandori, R.; Hori, Y.; Suzuki, R.; Suenaga, T.; Takahashi, Y. H.; Kwon, J. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kudo, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Janson, M.; Brandt, T. D.; Spiegel, D.; Burrows, A.; Turner, E. L.; Moro-Martin, A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Thalmann, C. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE, Amsterdam (Netherlands); Biller, B.; Henning, T. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Carson, J. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); McElwain, M. W., E-mail: m.kuzuhara@nao.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2013-09-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160{sup +350}{sub -60} Myr, GJ 504b has an estimated mass of 4{sup +4.5}{sub -1.0} Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of {approx}30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510{sup +30}{sub -20} K) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.

  18. FUNDAMENTAL PARAMETERS OF THE EXOPLANET HOST K GIANT STAR {iota} DRACONIS FROM THE CHARA ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P. J.; Farrington, Christopher D. [Center for High Angular Resolution Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302-3969 (United States); Ridgway, Stephen T., E-mail: ellyn.baines@nrl.navy.mil [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States)

    2011-12-20

    We measured the angular diameter of the exoplanet host star {iota} Dra with Georgia State University's Center for High Angular Resolution Astronomy Array interferometer and, using the star's parallax and photometry from the literature, calculated its physical radius and effective temperature. We then combined our results with stellar oscillation frequencies from Zechmeister et al. and orbital elements from Kane et al. to determine the masses for the star and exoplanet. Our value for the central star's mass is 1.82 {+-} 0.23 M{sub Sun }, which means the exoplanet's minimum mass is 12.6 {+-} 1.1 M{sub Jupiter}. Using our new effective temperature, we recalculated the habitable zone for the system, though it is well outside the star-planet separation.

  19. KMTNet: A Cold Exoplanet Census Through a Global Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Gaudi, B. Scott; Han, Cheongho; Nataf, David; Skowron, Jan; Penny, Matthew; Gould, Andrew

    2015-01-01

    The unique sensitivity of gravitational microlensing to low-mass planets near and beyond the snow line makes it an indispensable tool for understanding the distribution and formation mechanisms of exoplanets. The Korean Microlensing Telescope Network (KMTNet) consists of three 1.6m telescopes each with a 4 deg2 field of view and will be dedicated to monitoring the Galactic Bulge in order to detect exoplanets via gravitational microlensing. With its relatively large aperture, large field of view, high (~10-minute) cadence, and near-complete longitudinal coverage of the Galactic Bulge for 8 months a year, KMTNet is expected to increase the the annual detection rate of exoplanets via microlensing by a factor of ~5 over current surveys, pushing down to the mass of Earth for bound and unbound planets. I will summarize the predicted yields of KMTNet's survey based on detailed simulations, highlighting its sensitivity to low-mass planets and its expected haul of free-floating planets. I will also describe the prospects for characterization of the exoplanetary systems KMTNet will detect, focusing on the variety of techniques current and future high-resolution facilities such as VLT, GMT, and JWST can use to measure the flux from the host stars and ultimately derive planet masses.

  20. Stellar Companions of Exoplanet Host Stars in K2

    Science.gov (United States)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  1. Records of Migration in the Exoplanet Configurations

    Science.gov (United States)

    Michtchenko, Tatiana A.; Rodriguez Colucci, A.; Tadeu Dos Santos, M.

    2013-05-01

    Abstract (2,250 Maximum Characters): When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.

  2. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life

    Science.gov (United States)

    Krissansen-Totton, Joshua; Olson, Stephanie; Catling, David C.

    2018-01-01

    Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O2, N2, and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N2, CH4, CO2, and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH4 and CO2 in a habitable exoplanet’s atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10−3 are potentially biogenic, whereas those exceeding 10−2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario. PMID:29387792

  3. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  4. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  5. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  6. Observing the ExoEarth: Simulating the Retrieval of Exoplanet Parameters Using DSCOVR

    Science.gov (United States)

    Kane, S.; Cowan, N. B.; Domagal-Goldman, S. D.; Herman, J. R.; Robinson, T.; Stine, A.

    2017-12-01

    The field of exoplanets has rapidly expanded from detection to include exoplanet characterization. This has been enabled by developments such as the detection of terrestrial-sized planets and the use of transit spectroscopy to study exoplanet atmospheres. Studies of rocky planets are leading towards the direct imaging of exoplanets and the development of techniques to extract their intrinsic properties. The importance of properties such as rotation, albedo, and obliquity are significant since they inform planet formation theories and are key input parameters for Global Circulation Models used to determine surface conditions, including habitability. Thus, a complete characterization of exoplanets for understanding habitable climates requires the ability to measure these key planetary parameters. The retrieval of planetary rotation rates, albedos, and obliquities from highly undersampled imaging data can be honed using satellites designed to study the Earth's atmosphere. In this talk I will describe how the Deep Space Climate Observatory (DSCOVR) provides a unique opportunity to test such retrieval methods using data for the sunlit hemisphere of the Earth. Our methods use the high-resolution DSCOVR-EPIC images to simulate the Earth as an exoplanet, by deconvolving the images to match a variety of expected exoplanet mission requirements, and by comparing EPIC data with the cavity radiometer data from DSCOVR-NISTAR that views the Earth as a single pixel. Through this methodology, we are creating a grid of retrieval states as a function of image resolution, observing cadence, passband, etc. Our modeling of the DSCOVR data will provide an effective baseline from which to develop tools that can be applied to a variety of exoplanet imaging data.

  7. The TopHat experiment: A balloon-borne instrument for mapping millimeter and submillimeter emission

    DEFF Research Database (Denmark)

    Silverberg, R.F.; Cheng, E.S.; Aguirre, J.E.

    2005-01-01

    The TopHat experiment was designed to measure the anisotropy in the cosmic microwave background radiation on angular scales from 0.degrees 3 to 30 degrees and the thermal emission from both Galactic and extragalactic dust. The balloon-borne instrument had five spectral bands spanning frequencies ...

  8. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    Science.gov (United States)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  9. H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo

    Science.gov (United States)

    Ejlassi-Lassallette, Aïda; Mocquard, Eloïse; Arnaud, Marie-Claire; Thiriet, Christophe

    2011-01-01

    While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail domains in replication-coupled chromatin assembly. We found that the H3/H4 complex lacking the H4 tail domain was not efficiently recovered in nuclei, whereas depletion of the H3 tail domain did not impede nuclear import but chromatin assembly failed. Furthermore, our results revealed that the proper pattern of acetylation on the H4 tail domain is required for nuclear import and chromatin assembly. This is most likely due to binding of Hat1, as coimmunoprecipitation experiments showed Hat1 associated with predeposition histones in the cytoplasm and with replicating chromatin. These results suggest that the type B histone acetyltransferase assists in shuttling the H3/H4 complex from cytoplasm to the replication forks. PMID:21118997

  10. Modeling Multi-wavelength Stellar Astrometry. III. Determination of the Absolute Masses of Exoplanets and Their Host Stars

    Science.gov (United States)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-05-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  11. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. III. DETERMINATION OF THE ABSOLUTE MASSES OF EXOPLANETS AND THEIR HOST STARS

    International Nuclear Information System (INIS)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-01-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  12. A sub-Mercury-sized exoplanet.

    Science.gov (United States)

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  13. A Cloudy View of Exoplanets

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    The lack of absorption features in the transmission spectrum of exoplanet GJ1214b rules out a hydrogen-rich atmosphere for the planet. It is consistent with an atmosphere rich in water vapour or abundant in clouds.

  14. Connecting HL Tau to the observed exoplanet sample

    Science.gov (United States)

    Simbulan, Christopher; Tamayo, Daniel; Petrovich, Cristobal; Rein, Hanno; Murray, Norman

    2017-08-01

    The Atacama Large Millimeter/submilimeter Array (ALMA) recently revealed a set of nearly concentric gaps in the protoplanetary disc surrounding the young star HL Tauri (HL Tau). If these are carved by forming gas giants, this provides the first set of orbital initial conditions for planets as they emerge from their birth discs. Using N-body integrations, we have followed the evolution of the system for 5 Gyr to explore the possible outcomes. We find that HL Tau initial conditions scaled down to the size of typically observed exoplanet orbits naturally produce several populations in the observed exoplanet sample. First, for a plausible range of planetary masses, we can match the observed eccentricity distribution of dynamically excited radial velocity giant planets with eccentricities >0.2. Secondly, we roughly obtain the observed rate of hot Jupiters around FGK stars. Finally, we obtain a large efficiency of planetary ejections of ≈2 per HL Tau-like system, but the small fraction of stars observed to host giant planets makes it hard to match the rate of free-floating planets inferred from microlensing observations. In view of upcoming Gaia results, we also provide predictions for the expected mutual inclination distribution, which is significantly broader than the absolute inclination distributions typically considered by previous studies.

  15. Some properties of Generalized Fibonacci difference bounded and $p$-absolutely convergent sequences

    Directory of Open Access Journals (Sweden)

    Bipan Hazarika

    2018-01-01

    Full Text Available The main objective of this paper is to introduced a new sequence space $l_{p}(\\hat{F}(r,s,$ $ 1\\leq p \\leq \\infty$ by using the band matrix $\\hat{F}(r,s.$ We also establish a few inclusion relations concerning this space and determine its $\\alpha-,\\beta-,\\gamma-$duals. We also characterize some matrix classes on the space $l_{p}(\\hat{F}(r,s$ and examine some geometric properties of this space.

  16. Model-independent Exoplanet Transit Spectroscopy

    Science.gov (United States)

    Aronson, Erik; Piskunov, Nikolai

    2018-05-01

    We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.

  17. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  18. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    International Nuclear Information System (INIS)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.; Greenberg, Richard; Raymond, Sean N.

    2015-01-01

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits

  19. A Test of the Fundamental Physics Underlying Exoplanet Climate Models

    Science.gov (United States)

    Beatty, Thomas; Keating, Dylan; Cowan, Nick; Gaudi, Scott; Kataria, Tiffany; Fortney, Jonathan; Stassun, Keivan; Collins, Karen; Deming, Drake; Bell, Taylor; Dang, Lisa; Rogers, Tamara; Colon, Knicole

    2018-05-01

    A fundamental issue in how we understand exoplanet atmospheres is the assumed physical behavior underlying 3D global circulation models (GCMs). Modeling an entire 3D atmosphere is a Herculean task, and so in exoplanet GCMs we generally assume that there are no clouds, no magnetic effects, and chemical equilibrium (e.g., Kataria et al 2016). These simplifying assumptions are computationally necessary, but at the same time their exclusion allows for a large theoretical lee-way when comparing to data. Thus, though significant discrepancies exist between almost all a priori GCM predictions and their corresponding observations, these are assumed to be due to the lack of clouds, or atmospheric drag, or chemical disequilibrium, in the models (e.g., Wong et al. 2016, Stevenson et al. 2017, Lewis et al. 2017, Zhang et al. 2018). Since these effects compete with one another and have large uncertainties, this makes tests of the fundamental physics in GCMs extremely difficult. To rectify this, we propose to use 88.4 hours of Spitzer time to observe 3.6um and 4.5um phase curves of the transiting giant planet KELT-9b. KELT-9b has an observed dayside temperature of 4600K (Gaudi et al. 2017), which means that there will very likely be no clouds on the day- or nightside, and is hot enough that the atmosphere should be close to local chemical equilibrium. Additionally, we plan to leverage KELT-9b's high temperature to make the first measurement of global wind speed on an exoplanet (Bell & Cowan 2018), giving a constraint on atmospheric drag and magnetic effects. Combined, this means KELT-9b is close to a real-world GCM, without most of the effects present on lower temperature planets. Additionally, since KELT-9b orbits an extremely bright host star these will be the highest signal-to-noise ratio phase curves taken with Spitzer by more than a factor of two. This gives us a unique opportunity to make the first precise and direct investigation into the fundamental physics that are the

  20. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    Science.gov (United States)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  1. HabEx: Finding and characterizing Habitable Exoplanets with a potential future flagship astrophysics mission

    Science.gov (United States)

    Domagal-Goldman, S. D.; Gaudi, B. S.; Seager, S.; Mennesson, B.; Warfield, K.; Cahoy, K.; Feinberg, L. D.; Guyon, O.; Kasdin, N. J.; Mawet, D.; Robinson, T. D.; Rogers, L.; Scowen, P. A.; Somerville, R. S.; Stapelfeldt, K. R.; Stern, D.; Turnbull, M. C.; Marois, C.; Mouillet, D.; Prusti, T.; Quirrenbach, A.; Tamura, M.; Still, M.; Hudgins, D.

    2016-12-01

    HabEx - the Habitable Exoplanet Imager - is one of four flagship missions that NASA is studying in advance of the next Astrophysics Decadal Survey. The primary goal of HabEx will be to directly image and characterize rocky planets in the habitable zones of other stars. Specifically, HabEx aims to search for signs of liquid water oceans and biological activity on such worlds. Additionally, HabEx will also be able to pursue a range of other astrophysics investigations, including the study of non-habitable exoplanets, the study of Solar System objects, and observations of galaxies. The technical drivers for HabEx will be determined by the significant challenges associated with the direct imaging and characterization of potentially habitable exoplanets. This requires a large enough collecting area to collect light from these very dim targets, and the ability to block light from the dramatically brighter host star the planet orbits. There are multiple approaches to these challenges, and the goal of the HabEx study is to demonstrate that at least one can be executed with technologies that can be matured in time for a lunch in the 2030s. In this presentation, we will discuss the top-level exoplanet science goals of HabEx, and how those goals led to basic and preliminary architectural properties such as aperture size, starlight suppression technique, wavelength range, etc. We will then discuss how these architectural properties could allow for the astronomical study of other targets in and beyond the Solar System.

  2. Exoplanet Biosignatures: Observational Prospects

    Science.gov (United States)

    Angerhausen, Daniel; Deitrick, Russell; Domagal-Goldman, Shawn; Grenfell, John Lee; Hori, Yasunori; Kane, Stephen R.; Pallé, Enric; Rauer, Heike; Siegler, Nicholas; Stapelfeldt, Karl; Stevenson, Kevin B.

    2018-01-01

    Abstract Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including Earth-sized bodies, which has fueled our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of potentially habitable planets. In this paper, we review our possibilities and limitations in characterizing temperate terrestrial planets with future observational capabilities through the 2030s and beyond, as a basis of a broad range of discussions on how to advance “astrobiology” with exoplanets. We discuss the observability of not only the proposed biosignature candidates themselves but also of more general planetary properties that provide circumstantial evidence, since the evaluation of any biosignature candidate relies on its context. Characterization of temperate Earth-sized planets in the coming years will focus on those around nearby late-type stars. The James Webb Space Telescope (JWST) and later 30-meter-class ground-based telescopes will empower their chemical investigations. Spectroscopic studies of potentially habitable planets around solar-type stars will likely require a designated spacecraft mission for direct imaging, leveraging technologies that are already being developed and tested as part of the Wide Field InfraRed Survey Telescope (WFIRST) mission. Successful initial characterization of a few nearby targets will be an important touchstone toward a more detailed scrutiny and a larger survey that are envisioned beyond 2030. The broad outlook this paper presents may help develop new observational techniques to detect relevant features as well as frameworks to diagnose planets based on the observables. Key Words: Exoplanets—Biosignatures—Characterization—Planetary atmospheres—Planetary surfaces. Astrobiology 18, 739–778. PMID:29938537

  3. Recovering the colour-dependent albedo of exoplanets with high-resolution spectroscopy: from ESPRESSO to the ELT.

    Science.gov (United States)

    Martins, J. H. C.; Figueira, P.; Santos, N. C.; Melo, C.; Garcia Muñoz, A.; Faria, J.; Pepe, F.; Lovis, C.

    2018-05-01

    The characterization of planetary atmospheres is a daunting task, pushing current observing facilities to their limits. The next generation of high-resolution spectrographs mounted on large telescopes - such as ESPRESSO@VLT and HIRES@ELT - will allow us to probe and characterize exoplanetary atmospheres in greater detail than possible to this point. We present a method that permits the recovery of the colour-dependent reflectivity of exoplanets from high-resolution spectroscopic observations. Determining the wavelength-dependent albedo will provide insight into the chemical properties and weather of the exoplanet atmospheres. For this work, we simulated ESPRESSO@VLT and HIRES@ELT high-resolution observations of known planetary systems with several albedo configurations. We demonstrate how the cross correlation technique applied to theses simulated observations can be used to successfully recover the geometric albedo of exoplanets over a range of wavelengths. In all cases, we were able to recover the wavelength dependent albedo of the simulated exoplanets and distinguish between several atmospheric models representing different atmospheric configurations. In brief, we demonstrate that the cross correlation technique allows for the recovery of exoplanetary albedo functions from optical observations with the next generation of high-resolution spectrographs that will be mounted on large telescopes with reasonable exposure times. Its recovery will permit the characterization of exoplanetary atmospheres in terms of composition and dynamics and consolidates the cross correlation technique as a powerful tool for exoplanet characterization.

  4. Microlens Array/Pinhole Mask to Suppress Starlight for Direct Exoplanet Detection

    Science.gov (United States)

    Zimmerman, Neil

    Direct imaging of habitable exoplanets is a key priority of NASA’s Astrophysics roadmap, “Enduring Quests, Daring Visions.” A coronagraphic starlight suppression system situated on a large space telescope offers a viable path to achieving this goal. This type of instrument is central to both the LUVOIR and HabEx mission concepts currently under study for the 2020 Decadal Survey. To directly image an Earth-like exoplanet, an instrument must be sensitive to objects ten billion times dimmer than their parent star. Advanced coronagraphs are designed to modify the shape of the star’s image so that it does not overwhelm the planet's light. Coronagraphs are complex to design and fabricate, tend to sacrifice a significant portion of the exoplanet light entering the telescope, and are highly sensitive to errors in the telescope. The proposed work reduces the demands on the coronagraph and its sensitivity to errors in the telescope, by changing how we implement optics in the spectrograph following the coronagraph. Through optical analysis and modeling, we have found that a microlens array with a specially arranged pattern of pinholes can suppress residual starlight in the scientific image after the coronagraph by more than two orders of magnitude. This added layer of starlight rejection could be used to relax the extreme observatory stability requirements for exo-Earth imaging applications, for example shifting the wavefront stability requirement from a few picometers to a few nanometers. Ultimately this translates to the instrument detecting and spectrally characterizing more exoplanets than a conventional coronagraph system. This microlens/pinhole concept is also compatible with starshadebased starlight suppression systems. The proposed microlens/pinhole device is entirely passive and augments the performance of existing coronagraph designs, while potentially reducing their cost and risk for mission implementation. Our APRA proposal would support a testbed

  5. Analysis of the exoplanet containing system Kepler-13

    Science.gov (United States)

    Budding, E.; Püsküllü, Ç.; Rhodes, M. D.

    2018-03-01

    We have applied the close binary system analysis program WinFitter, with its physically detailed fitting function, to an intensive study of the complex multiple system Kepler-13 using photometry data from all 13 short cadence quarters downloaded from the NASA Exoplanet Archive (NEA) (http://exoplanetarchive.ipac.caltech.edu). The data-point error of our normalized, phase-sequenced and binned (380 points per bin: 0.00025 phase interval) flux values, at 14 ppm, allows the model's specification for the mean reference flux level of the system to a precision better than 1 ppm. Our photometrically derived values for the mass and radius of KOI13.01 are 6.8±0.6 MJ and 1.44±0.04 RJ. The star has a radius of 1.67±0.05 R_{⊙}. Our modelling sets the mean of the orbital inclination i at 94.35±0.14°, with the star's mean precession angle φp—49.1±5.0° and obliquity θo 67.9 ± 3.0°, though there are known ambiguities about the sense in which such angles are measured. Our findings did not confirm secular variation in the transit modelling parameters greater than their full correlated errors, as argued by previous authors, when each quarter's data was best-fitted with a determinable parameter set without prejudice. However, if we accept that most of the parameters remain the same for each transit, then we could confirm a small but steady diminution in the cosine of the orbital inclination over the 17 quarter timespan. This is accompanied by a slight increase of the star's precession angle (less negative), but with no significant change in the obliquity of its spin axis. There are suggestions of a history of strong dynamical interaction with a highly distorted planet rotating in a 3:2 resonance with its revolution, together with a tidal lag of ˜30 deg. The mean precessional period is derived to be about 1000 y, but at the present time the motion of the star's rotation axis appears to be supporting the gravitational torque, rather than providing the balance against it

  6. The Transiting Exoplanet Community Early Release Science Program for JWST

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Batalha, Natalie M.; Stevenson, Kevin B.; Bean, Jacob; Sing, David K.; Crossfield, Ian; Knutson, Heather; Line, Michael R.; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah; Crouzet, Nicolas; Moses, Julianne I.; Benneke, Björn; Kempton, Eliza; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet Community ERS Team

    2018-06-01

    The James Webb Space Telescope offers astronomers the opportunity to observe the composition, structure, and dynamics of transiting exoplanet atmospheres with unprecedented detail. However, such observations require very precise time-series spectroscopic monitoring of bright stars and present unique technical challenges. The Transiting Exoplanet Community Early Release Science Program for JWST aims to help the community understand and overcome these technical challenges as early in the mission as possible, and to enable exciting scientific discoveries through the creation of public exoplanet atmosphere datasets. With observations of three hot Jupiters spanning a range of host star brightnesses, this program will exercise time-series modes with all four JWST instruments and cover a full suite of transiting planet characterization geometries (transits, eclipses, and phase curves). We designed the observational strategy through an open and transparent community effort, with contributions from an international collaboration of over 100 experts in exoplanet observations, theory, and instrumentation. Community engagement with the project will be centered around open Data Challenge activities using both simulated and real ERS data, for exoplanet scientists to cross-validate and improve their analysis tools and theoretical models. Recognizing that the scientific utility of JWST will be determined not only by its hardware and software but also by the community of people who use it, we take an intentional approach toward crafting an inclusive collaboration and encourage new participants to join our efforts.

  7. Photometric Exoplanet Characterization and Multimedia Astronomy Communication

    Science.gov (United States)

    Cartier, Kimberly M. S.

    The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for

  8. M Dwarf Exoplanet Survey by the Falcon Telescope Network

    Science.gov (United States)

    Carlson, Randall E.

    2016-10-01

    The Falcon Telescope Network (FTN) consists of twelve automated 20-inch telescopes located around the globe. We control it at the US Air Force Academy in Colorado Springs, Colorado from the Cadet Space Operations Center. We have installed 10 of the 12 sites and anticipate full operational capability by the beginning of 2017. The network's worldwide geographic distribution provides advantages. The primary mission of the FTN is Space Situational Awareness and studying Near Earth Objects. However, we are employing the FTN with its 11' x 11' field-of-view for a five-year, M dwarf exoplanet survey. Specifically, we are searching for Earth-radius exoplanets. We describe the FTN, design considerations going into the FTN's M dwarf exoplanet survey including automated operations, and initial results of the survey.

  9. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  10. Post test analysis of TEPSS tests -P2-, -P3-, -P5- and -P7- using the system code RELAP5/MOD 3.2

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.

    2000-01-01

    For the PANDA-Test-Facility (TEPSS configuration) post-test calculations and analyses have been performed for experiment -P2- (Early Start), -P3- (PCC start up), -P5- (Symmetric case, Two PCCs only) and -P7- (Severe Accident). Post test calculations have been performed with the system code RELAP5/Mod 3.2 using two different nodalization of the PANDA facility namely a basis nodalization and a much reduced one. The general trend of the calculations can be summarised: RELAP5/Mod3.2 calculated the general trends of the experiments sufficiently accurate; Using the reduced nodalization the results seem to be slightly more accurate than for the basic nodalization; On the other hand, calculations based on the reduced nodalization are not significantly faster than those with basic nodalization; The mass error is in the order of 200 to 900 kg. (author)

  11. Stellar magnetic activity and exoplanets

    Directory of Open Access Journals (Sweden)

    Vidotto A.A.

    2017-01-01

    Full Text Available It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not act as to enhance the activity of their host stars.

  12. Exoplanets, Exo-Solar Life, and Human Significance

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    With the recent detection of over 500 extrasolar planets, the existence of "other worlds", perhaps even other Earths, is no longer in the realm of science fiction. The study of exoplanets rapidly moved from an activity on the fringe of astronomy to one of the highest priorities of the world's astronomical programs. Actual images of extrasolar planets were revealed over the past two years for the first time. NASA's Hubble Space Telescope is already characterizing the atmospheres of Jupiter-like planets, in other systems. And the recent launch of the NASA Kepler space telescope is enabling the first statistical assessment of how common solar systems like our own really are. As we begin to characterize these "other worlds" and assess their habitability, the question of the significance and uniqueness of life on Earth will impact our society as never before. I will provide a comprehensive overview of the techniques and status of exoplanet detection, followed by reflections as to the societal impact of finding out that Earths are common, or rare. Will finding other potentially habitable planets create another "Copernican Revolution"? Will perceptions of the significance of life on Earth change when we find other Earth-like planets? I will discuss the plans of the scientific community for future telescopes that will be abe to survey our solar neighborhood for Earth-like planets, study their atmospheres, and search for biological signs of life.

  13. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-02-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  14. Relationship between Luminosity, Irradiance and Temperature of star on the orbital parameters of exoplanets

    Directory of Open Access Journals (Sweden)

    Pavel Pintr

    2013-05-01

    Full Text Available For 759 exoplanets detected by radial velocities method we found that distances of exoplanets from central star comply in general Schmidt law and these distances depend on the stellar surface temperature. Every stellar spectral class has a little different distribution. The Luminosity and the Irradiance has not effect on the distribution of distances of exoplanets. We have found the new formulas for calculation of effective temperature of exoplanets for spectral classes F, G, and K. These new formulas we can use for future calculation of habitable planets.

  15. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States)

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  16. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    International Nuclear Information System (INIS)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-01-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions

  17. A search for radio emission from exoplanets around evolved stars

    Science.gov (United States)

    O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.

    2018-04-01

    The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.

  18. A New Spin to Exoplanet Habitability Criteria

    Science.gov (United States)

    Georgoulis, M. K.; Patsourakos, S.

    2017-12-01

    We describe a physically- and statistically-based method to infer the near-Sun magnetic field of coronal mass ejections (CMEs) and then extrapolate it to the inner heliosphere and beyond. Besides a ballpark agreement with in-situ observations of interplanetary CMEs (ICMEs) at L1, we use our estimates to show that Earth does not seem to be at risk of an extinction-level atmospheric erosion or stripping by the magnetic pressure of extreme solar eruptions, even way above a Carrington-type event. This does not seem to be the case with exoplanets, however, at least those orbiting in the classically defined habitability zones of magnetically active dwarf stars at orbital radii of a small fraction of 1 AU. We show that the combination of stellar ICMEs and the tidally locking zone of mother stars, that quite likely does not allow these exoplanets to attain Earth-like magnetic fields to shield themselves, probably render the existence of a proper atmosphere in them untenable. We propose, therefore, a critical revision of habitability criteria in these cases that would limit the number of target exoplanets considered as potential biosphere hosts.

  19. Red-edge position of habitable exoplanets around M-dwarfs.

    Science.gov (United States)

    Takizawa, Kenji; Minagawa, Jun; Tamura, Motohide; Kusakabe, Nobuhiko; Narita, Norio

    2017-08-08

    One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These "two-color" reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.

  20. Natural and artificial spectral edges in exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  1. TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER

    International Nuclear Information System (INIS)

    Traub, Wesley A.

    2012-01-01

    Data from Kepler's first 136 days of operation are analyzed to determine the distribution of exoplanets with respect to radius, period, and host-star spectral type. The analysis is extrapolated to estimate the percentage of terrestrial, habitable-zone (HZ) exoplanets. The Kepler census is assumed to be complete for bright stars (magnitude 0.5 Earth radius and periods β–1 , with β ≅ 0.71 ± 0.08; and an extrapolation to longer periods gives the frequency of terrestrial planets in the HZs of FGK stars as η ⊕ ≅ (34 ± 14)%. Thus about one-third of FGK stars are predicted to have at least one terrestrial, HZ planet.

  2. Exoplanet Population Distribution from Kepler Data

    Science.gov (United States)

    Traub, Wesley A.

    2015-08-01

    The underlying population of exoplanets around stars in the Kepler sample can be inferred by binning the Kepler planets in radius and period, invoking an empirical noise model, assuming a model exoplanet distribution function, randomly assigning planets to each of the Kepler target stars, asking whether each planet’s transit signal could be detected by Kepler, binning the resulting simulated detections, comparing the simulations with the observed data sample, and iterating on the model parameters until a satisfactory fit is obtained. The process is designed to simulate Kepler’s observing procedure. The key assumption is that the distribution function is continuous and the product of separable functions of period and radius. Any additional suspected biases in the sample can be handled by adjusting the noise model. The first advantage of this overall procedure is that the actual detection process is simulated as closely as possible, on a target by target basis, so the resulting estimated population should be closer to the actual population than by any other method of analysis. The second advantage is that the resulting distribution function can be extended to values of period and radius that go beyond the sample space, including, for example, application to estimating eta-sub-Earth, and also estimating the expected science yields of future direct-imaging exoplanet missions such as WFIRST-AFTA.

  3. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    OpenAIRE

    Norio Narita; Takafumi Enomoto; Shigeyuki Masaoka; Nobuhiko Kusakabe

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet ...

  4. Habitable Exoplanet Imager Optical-Mechanical Design and Analysis

    Science.gov (United States)

    Gaskins, Jonathan; Stahl, H. Philip

    2017-01-01

    The Habitable Exoplanet Imager (HabEx) is a space telescope currently in development whose mission includes finding and spectroscopically characterizing exoplanets. Effective high-contrast imaging requires tight stability requirements of the mirrors to prevent issues such as line of sight and wavefront errors. PATRAN and NASTRAN were used to model updates in the design of the HabEx telescope and find how those updates affected stability. Most of the structural modifications increased first mode frequencies and improved line of sight errors. These studies will be used to help define the baseline HabEx telescope design.

  5. Orbital Dynamics and Habitability of Exoplanets

    Science.gov (United States)

    Deitrick, Russell J.

    With the discoveries of thousands of extra-solar planets, a handful of which are terrestrial in size and located within the "habitable zone" of their host stars, the discovery of another instance of life in the universe seems increasingly within our grasp. Yet, a number of difficulties remain--with current and developing technologies, the full characterization of a terrestrial atmosphere and, hence, the detection of biosignatures will be extraordinarily difficult and expensive. Furthermore, observations will be ambiguous, as recent developments have shown that there is no "smoking gun" for the presence of life. Ultimately, the interpretation of observations will depend heavily upon our understanding of life's fundamental properties and the physical context of a planet's observed properties. This thesis is devoted to a development of the latter quantity, physical context, focusing on a topic oft-neglected in theoretical works of habitability: orbital dynamics. I show a number of ways in which orbital dynamics can affect the habitability of exoplanets. This work highlights the crucial role of stability, mutual inclinations, and resonances, demonstrating how these properties influence atmospheric states. Studies of exoplanetary systems tend to assume that the planets are coplanar, however, the large mutual inclination of the planets orbiting upsilon Andromedae suggests that coplanarity is not always a valid assumption. In my study of this system, I show that the large inclination between planets c and d and their large eccentricities lead to dramatic orbital variations. Though there is almost certainly no habitable planet orbiting upsilon And, the existence of this system demonstrates that we should expect other such dynamically "hot" planetary systems, some of which may contain potentially habitable planets. Minute variations in a planet's orbit can lead to changes in the global temperature, and indeed, these variations seem to be intimately connected to Earth

  6. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    Science.gov (United States)

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Toward the detection of exoplanet transits with polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, Sloane J. [NASA Sagan Fellow. (United States); Laughlin, Gregory P., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-11-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the 90° scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio R {sub p}/R {sub *}, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3 m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.

  8. Investigations of solution-processed charge generation unit with low concentration of small molecule doped in p-type/HAT-CN6 for tandem OLED

    International Nuclear Information System (INIS)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B.; Tan, C.Y.; Yap, B.K.

    2016-01-01

    We investigated the charge generation and injection mechanism in solution processed charge generation unit (CGU) used in our high performance tandem organic light emitting diode (OLED) via capacitance–voltage (C–V) and current density–voltage (J–V) measurements. By doping 2 wt% of small molecule 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) into Poly (N-vinylcarbazole) (PVK) as p-type layer of the CGU, we obtained more than two folds improvement in the tandem device efficiency compared to single device. The performance improvement of the TAPC doped CGU could be attributed to low built-in potential, large vacuum level shift as well as high charge density for efficient charge generation. - Highlights: • Charge-generation and injection mechanism in CGU for tandem OLED is investigated. • Small molecule, TAPC doped in p-type/HAT-CN 6 has been used for tandem OLED. • The improvement attributes to the lower V bi and larger ΔV L in doped layer. • Narrower W and high carrier density also contribute to efficiency improvement.

  9. The 'Wow' Signal, Drake Equation and Exoplanet Considerations

    Science.gov (United States)

    Wheeler, E.

    It has been 38 years since the most likely artificial transmission ever recorded from a possible extraterrestrial source was received [1, 2]. Using greatly improved technology, subsequent efforts by the Search for Extraterrestrial Intelligence (SETI) have continued, yet silence from space prevails [3]. This article examines whether the transmission was an artificial signal, and if so why it matters, to include the possibility that the modest technology used by the "Big Ear" receiver could have been accommodated by the source. The transmission and the ensuing long silence may be intended. This paper reconsiders the Drake equation, an estimate for the number of civilizations in our galaxy that may possess technology for interstellar signaling [4, 5], and shows that statement of the current alleged best estimate of two civilizations is not supported [6]. An alternate and original method suggests ~100 civilizations. It importantly relies on experience and detectable events, including recent astronomical evidence about exoplanets as cataloged by the European Exoplanet program and by the National Aeronautics and Space Administration (NASA) Exoplanet Science Institute [7, 8]. In addition it addresses major geological and astronomical occurrences that profoundly affected development of life on Earth and might apply similarly for Extraterrestrial Intelligence (ETI). The alternate approach is not intended to compute ETI precisely but to examine the possibility that, though vastly spread, it likely exists. The discussion anticipates difficulties in communication with an alien civilization, hardly an exercise in science fiction, and explores how international groups can participate in future specific response. One response might be to monitor the electromagnetic radiation spectral line of an element to be determined by consensus.

  10. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...

  11. Predicted Exoplanet Yields for the HabEx Mission Concept

    Science.gov (United States)

    Stark, Christopher; Mennesson, Bertrand; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.

  12. Feasibility study of P2P-type system architecture with 3D medical image data support for medical integrated network systems

    International Nuclear Information System (INIS)

    Noji, Tamotsu; Arino, Masashi; Suto, Yasuzo

    2010-01-01

    We are investigating an integrated medical network system with an electronic letter of introduction function and a 3D image support function operating in the Internet environment. However, the problems with current C/S (client/server)-type systems are inadequate security countermeasures and insufficient transmission availability. In this report, we propose a medical information cooperation system architecture that employs a P2P (peer-to-peer)-type communication method rather than a C/S-type method, which helps to prevent a reduction in processing speed when large amounts of data (such as 3D images) are transferred. In addition, a virtual clinic was created and a feasibility study was conducted to evaluate the P2P-type system. The results showed that efficiency was improved by about 77% in real-time transmission, suggesting that this system may be suitable for practical application. (author)

  13. Thermodynamic studies of a HAT cycle and its components

    International Nuclear Information System (INIS)

    Nyberg, Bjoern; Thern, Marcus

    2012-01-01

    Highlights: → Performance maps for HAT cycles with different complexity are shown. → A suggestion, where to extract cooling air for the turbine is presented. → The influence of the makeup water on total efficiency is shown. → The optimal pressure level for intercooling is described. -- Abstract: The electric power grid contains more and more renewable power production such as wind and solar power. The use of renewable power sources increases the fluctuations in the power grid which increase the demand for highly efficient, fast-starting power-producing units that can cope with sudden production losses. One of the more innovative power plant cycles, that have the potential of competing with conventional combined power plants in efficiency but has a higher availability and faster start up time, is the Evaporative Gas Turbine (EvGT) or Humid Air Turbine (HAT). A thermodynamic evaluation of different HAT cycle layouts has been done in this paper. Each layout is evaluated separately which makes it possible to study different components individual contribution to the efficiency and specific power. The thermodynamic evaluation also shows that it is important to look at different cool-flow extracting positions. The effect of water temperature entering the cycle, called make-up water, and where it is introduced into the cycle has been evaluated. The make-up water temperature also affects the optimal pressure level for intercooling and it is shown that an optimal position can be decided considering design parameters of the compressor and the water circuit.

  14. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    Science.gov (United States)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  15. A Theory of Exoplanet Transits with Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-02-20

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  16. Methods to Directly Image Exoplanets around Alpha Centauri and Other Multi-Star Systems

    Science.gov (United States)

    Belikov, R.; Sirbu, D.; Bendek, E.; Pluzhnik, E.

    2017-12-01

    The majority of FGK stars exist as multi-star star systems, and thus form a potentially rich target sample for direct imaging of exoplanets. A large fraction of these stars have starlight leakage from their companion that is brighter than rocky planets. This is in particular true of Alpha Centauri, which is 2.4x closer and about an order of magnitude brighter than any other FGK star, and thus may be the best target for any direct imaging mission, if the light of both stars can be suppressed. Thus, the ability to suppress starlight from two stars improves both the quantity and quality of Sun-like targets for missions such as WFIRST, LUVOIR, and HabEx. We present an analysis of starlight leak challenges in multi-star systems and techniques to solve those challenges, with an emphasis on imaging Alpha Centauri with WFIRST. For the case of internal coronagraphs, the fundamental problem appears to be independent wavefront control of multiple stars (at least if the companion is close enough or bright enough that it cannot simply be removed by longer exposure times or post-processing). We present a technique called Multi-Star Wavefront Control (MSWC) as a solution to this challenge and describe the results of our technology development program that advanced MSWC to TRL 3. Our program consisted of lab demonstrations of dark zones in two-star systems, validated simulations, as well as simulated predictions demonstrating that with this technology, contrasts needed for Earth-like planets are in principle achievable. We also demonstrate MSWC in Super-Nyquist mode, which allows suppression of multiple stars at separations greater than the spatial Nyquist limit of the deformable mirror.

  17. LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION?

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Ireland, Michael J.

    2012-01-01

    Young and directly imaged exoplanets offer critical tests of planet-formation models that are not matched by radial velocity surveys of mature stars. These targets have been extremely elusive to date, with no exoplanets younger than 10-20 Myr and only a handful of direct-imaged exoplanets at all ages. We report the direct-imaging discovery of a likely (proto)planet around the young (∼2 Myr) solar analog LkCa 15, located inside a known gap in the protoplanetary disk (a 'transitional disk'). Our observations use non-redundant aperture masking interferometry at three epochs to reveal a faint and relatively blue point source (M K ' =9.1±0.2, K' – L' = 0.98 ± 0.22), flanked by approximately co-orbital emission that is red and resolved into at least two sources (M L ' =7.5±0.2, K' – L' = 2.7 ± 0.3; M L ' =7.4±0.2, K' – L' = 1.94 ± 0.16). We propose that the most likely geometry consists of a newly formed (proto)planet that is surrounded by dusty material. The nominal estimated mass is ∼6 M Jup according to the 1 Myr hot-start models. However, we argue based on its luminosity, color, and the presence of circumplanetary material that the planet has likely been caught at its epoch of assembly, and hence this mass is an upper limit due to its extreme youth and flux contributed by accretion. The projected separations (71.9 ± 1.6 mas, 100.7 ± 1.9 mas, and 88.2 ± 1.8 mas) and deprojected orbital radii (16, 21, and 19 AU) correspond to the center of the disk gap, but are too close to the primary star for a circular orbit to account for the observed inner edge of the outer disk, so an alternative explanation (i.e., additional planets or an eccentric orbit) is likely required. This discovery is the first direct evidence that at least some transitional disks do indeed host newly formed (or forming) exoplanetary systems, and the observed properties provide crucial insight into the gas giant formation process.

  18. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  19. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  20. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    International Nuclear Information System (INIS)

    Hu, Renyu; Yung, Yuk L.; Seager, Sara

    2015-01-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH 4 as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10 −3 planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets

  1. Geoengineering on exoplanets

    Science.gov (United States)

    Lockley, Andrew

    2015-04-01

    Solar radiation management (SRM) geoengineering can be used to deliberately alter the Earth's radiation budget, by reflecting sunlight to space. SRM has been suggested as a response to Anthropogenic Global Warming (AGW), to partly or fully balance radiative forcing from AGW [1]. Approximately 22% of sun-like stars have Earth-like exoplanets[2]. Advanced civilisations may exist on these, and may use geoengineering for positive or negative radiative forcing. Additionally, terraforming projects [e.g. 3], may be used to expand alien habitable territory, or for resource management or military operations on non-home planets. Potential observations of alien geoengineering and terraforming may enable detection of technologically advanced alien civilisations, and may help identify widely-used and stable geoengineering technologies. This knowledge may assist the development of safe and stable geoengineering methods for Earth. The potential risks and benefits of possible alien detection of Earth-bound geoengineering schemes must be considered before deployment of terrestrial geoengineering schemes.

  2. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  3. A Research-Informed Approach to Teaching About Exoplanet Detection in STEM Classrooms

    Science.gov (United States)

    Brissenden, Gina; Wallace, C. S.; Prather, E. E.; Traub, W. A.; Greene, W. M.; Biferno, A. A.

    2014-01-01

    JPL’s NASA Exoplanet Exploration Program’s (ExEP) Public Engagement Program, in collaboration with the Center for Astronomy Education (CAE), is engaged in a research and curriculum development program to bring the science of exoplanet detection into STEM classrooms. In recent years, there has been a significant increase in the number of astronomers pursuing research related to exoplanets, along with a significant increase in interest amongst students and the general public regarding the topic of exoplanets. CAE has previously developed a curriculum unit (including Think-Pair-Share questions and a Lecture-Tutorial) to help students develop a deeper understanding of the Doppler method for detecting extrasolar planets. To date, there is a nearly nonexistent research base on students’ conceptual and reasoning difficulties related to the science of the transit and gravitational microlensing methods for detecting extrasolar planets. Appropriate for physical science classrooms from middle school to the introductory college level, the learner-centered active engagement activities we are developing are going through an iterative research and assessment process to ensure that they enable students to achieve increased conceptual understandings and reasoning skills in these areas. In this talk, we will report on our development process for two new Lecture-Tutorials that help students learn about the transit and gravitational microlensing methods for finding exoplanets.

  4. Walking on Exoplanets: Is Star Wars Right?

    Science.gov (United States)

    Ballesteros, Fernando J.; Luque, B.

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties.

  5. Evo-SETI SCALE to measure Life on Exoplanets

    Science.gov (United States)

    Maccone, Claudio

    2016-04-01

    that the GBM exponential may be regarded as the geometric locus of all the peaks of a one-parameter (i.e. the peak time p) family of b-lognormals. Since b-lognormals are pdf-s, the area under each of them always equals 1 (normalization condition) and so, going from left to right on the time axis, the b-lognormals become more and more ;peaky;, and so they last less and less in time. This is precisely what happened in human history: civilizations that lasted millennia (like Ancient Greece and Rome) lasted just centuries (like the Italian Renaissance and Portuguese, Spanish, French, British and USA Empires) but they were more and more advanced in the ;level of civilization;. This ;level of civilization; is what physicists call ENTROPY. Also, in refs. Maccone [3] and [4], this author proved that, for all GBMs, the (Shannon) Entropy of the b-lognormals in his Peak-Locus Theorem grows LINEARLY in time. The Molecular Clock, well known to geneticists since 50 years, shows that the DNA base-substitutions occur LINEARLY in time since they are neutral with respect to Darwinian selection. In simple words: DNA evolved by obeying the laws of quantum physics only (microscopic laws) and not by obeying assumed ;Darwinian selection laws; (macroscopic laws). This is Kimura's neutral theory of molecular evolution. The conclusion is that the Molecular Clock and the b-lognormal Entropy are the same thing. At last, we reach the new, original result justifying the publication of this paper. On exoplanets, molecular evolution is proceeding at about the same rate as it did proceed on Earth: rather independently of the physical conditions of the exoplanet, if the DNA had the possibility to evolve in water initially. Thus, Evo-Entropy, i.e. the (Shannon) Entropy of the generic b-lognormal of the Peak-Locus Theorem, provides the Evo-SETI SCALE to measure the evolution of life on exoplanets.

  6. Subregion-Specific p300 Conditional Knock-Out Mice Exhibit Long-Term Memory Impairments

    Science.gov (United States)

    Oliveira, Ana M. M.; Estevez, Marcel A.; Hawk, Joshua D.; Grimes, Shannon; Brindle, Paul K.; Abel, Ted

    2011-01-01

    Histone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting…

  7. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life.

    Science.gov (United States)

    Schwieterman, Edward W; Kiang, Nancy Y; Parenteau, Mary N; Harman, Chester E; DasSarma, Shiladitya; Fisher, Theresa M; Arney, Giada N; Hartnett, Hilairy E; Reinhard, Christopher T; Olson, Stephanie L; Meadows, Victoria S; Cockell, Charles S; Walker, Sara I; Grenfell, John Lee; Hegde, Siddharth; Rugheimer, Sarah; Hu, Renyu; Lyons, Timothy W

    2018-05-04

    In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets-Biosignatures-Habitability markers-Photosynthesis-Planetary surfaces-Atmospheres-Spectroscopy-Cryptic biospheres-False positives. Astrobiology 18, xxx-xxx.

  8. Using multi-disciplinary optimization and numerical simulation on the transiting exoplanet survey satellite

    Science.gov (United States)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.

  9. Investigations of solution-processed charge generation unit with low concentration of small molecule doped in p-type/HAT-CN{sub 6} for tandem OLED

    Energy Technology Data Exchange (ETDEWEB)

    Talik, N.A., E-mail: azrina_talik@hotmail.com [Low Dimensional Material Research Centre (LDMRC), Physics Dept., Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yeoh, K.H. [Low Dimensional Material Research Centre (LDMRC), Physics Dept., Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Photonics and Advanced Materials Research (CPR), Lee Kong Chian Faculty of Engineering and Science, University Tunku Abdul Rahman, 43000 Kajang, Selangor (Malaysia); Ng, C.Y.B. [Low Dimensional Material Research Centre (LDMRC), Physics Dept., Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tan, C.Y. [Centre of Advanced Manufacturing & Material Processing (AMMP), Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yap, B.K., E-mail: kbyap@uniten.edu.my [Centre of Microelectronic and Nano Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor (Malaysia)

    2016-01-15

    We investigated the charge generation and injection mechanism in solution processed charge generation unit (CGU) used in our high performance tandem organic light emitting diode (OLED) via capacitance–voltage (C–V) and current density–voltage (J–V) measurements. By doping 2 wt% of small molecule 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) into Poly (N-vinylcarbazole) (PVK) as p-type layer of the CGU, we obtained more than two folds improvement in the tandem device efficiency compared to single device. The performance improvement of the TAPC doped CGU could be attributed to low built-in potential, large vacuum level shift as well as high charge density for efficient charge generation. - Highlights: • Charge-generation and injection mechanism in CGU for tandem OLED is investigated. • Small molecule, TAPC doped in p-type/HAT-CN{sub 6} has been used for tandem OLED. • The improvement attributes to the lower V{sub bi} and larger ΔV{sub L} in doped layer. • Narrower W and high carrier density also contribute to efficiency improvement.

  10. High-Cadence Timing Observations of an Exoplanet-Pulsar System, PSR B1257+12

    Science.gov (United States)

    Rivera, Rudy; Wolszczan, Aleksander; Seymour, Andrew

    2016-01-01

    The pulsar B1257+12 was regularly observed and timed by Aleksander Wolszczan from its discovery in 1992 up to 2008. It is the first example of an exoplanet-pulsar system, and is modeled to consist of three planets. At the time, long term timing programs lacked the sensitivity to measure effects that low mass, short orbital period bodies would have on the pulse arrival times (TOA's) and its timing residuals. Newer technology, like the PUPPI backend at Arecibo, allows for the exploration of an untouched planet parameter space. The project consisted of conducting precise timing using PUPPI, taking two hour long observations at 327 MHz, 430 MHz, and L-Band Wide (LBW) frequencies for 25 days. The data is processed in order to obtain standard profiles and TOA's that would be introduced into TEMPO2, allowing data point manipulation by fitting them for known pulsar parameters to acquire post fit residuals with expected precisions below 1 μs. The observations yielded residuals ranging between 0.40 μs and 1.89 μs for 430 MHz and 327 MHz, while LBW resulted in values higher than 4.0 μs, which is attributed to the many radio frequency interference (RFI) bands present in the data. Combining the newly and previously acquired data revealed a decrease in the dispersion measure (DM), from 10.16550 pc/cm3 to 10.15325 pc/cm3, since the pulsar was last observed, which allowed a correction for the effects of interstellar scintillation, which are most noticed at 327 MHz.

  11. False Positives in Exoplanet Detection

    Science.gov (United States)

    Leuquire, Jacob; Kasper, David; Jang-Condell, Hannah; Kar, Aman; Sorber, Rebecca; Suhaimi, Afiq; KELT (Kilodegree Extremely Little Telescope)

    2018-06-01

    Our team at the University of Wyoming uses a 0.6 m telescope at RBO (Red Buttes Observatory) to help confirm results on potential exoplanet candidates from low resolution, wide field surveys shared by the KELT (Kilodegree Extremely Little Telescope) team. False positives are common in this work. We carry out transit photometry, and this method comes with special types of false positives. The most common false positive seen at the confirmation level is an EB (eclipsing binary). Low resolution images are great in detecting multiple sources for photometric dips in light curves, but they lack the precision to decipher single targets at an accurate level. For example, target star KC18C030621 needed RBO’s photometric precision to determine there was a nearby EB causing exoplanet type light curves. Identifying false positives with our telescope is important work because it helps eliminate the waste of time taken by more expensive telescopes trying to rule out negative candidate stars. It also furthers the identification of other types of photometric events, like eclipsing binaries, so they can be studied on their own.

  12. Discovery of a Transiting Adolescent Sub-Neptune Exoplanet in the Cas-Tau Association With K2

    Science.gov (United States)

    Mamajek, Eric; David, Trevor; Bieryla, Allyson; Bristow, Makennah; Ciardi, David; Cody, Ann Marie; Crossfield, Ian; Fulton, Benjamin; Jasmine Gonzales, Erica; Hillenbrand, Lynne; Hirsch, Lea; Howard, Andrew; Isaacson, Howard; Latham, David W.; Petigura, Erik; Rebull, Luisa; Schlieder, Joshua; Stauffer, John; Vanderburg, Andrew; Vasisht, Gautam

    2018-01-01

    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets belonging to coeval stellar populations, young or old, are particularly useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or photo-evaporation, among other mechanisms. Here we report the serendipitous discovery of a transiting sub-Neptune from K2 photometry of a K-type star that is a new candidate member of the nearby young Cas-Tau association. The size of the planet (3.0 +/- 0.5 Earth radii) and its age (~50-90 Myr) make it an intriguing test case for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.

  13. ASTRO 850: Teaching Teachers about Exoplanets

    Science.gov (United States)

    Barringer, Daniel; Palma, Christopher

    2017-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Penn State also offers through its fully online World Campus the opportunity for In-Service science teachers to earn an M.Ed. degree in Earth Science, and we currently offer a required online astronomy course for that program. We have previously presented descriptions of how have incorporated research-based pedagogical practices into ESSP-sponsored workshops for in-service teachers (Palma et al. 2013), a pilot section of introductory astronomy for non-science majors (Palma et al. 2014), and into the design of an online elective course on exoplanets for the M.Ed. in Earth Science (Barringer and Palma, 2016). Here, we present the finished version of that exoplanet course, ASTRO 850. We gratefully acknowledge support from the NSF MSP program award DUE#0962792.

  14. Technology Maturity for the Habitable-zone Exoplanet Imaging Mission (HabEx) Concept

    Science.gov (United States)

    Morgan, Rhonda; Warfield, Keith R.; Stahl, H. Philip; Mennesson, Bertrand; Nikzad, Shouleh; nissen, joel; Balasubramanian, Kunjithapatham; Krist, John; Mawet, Dimitri; Stapelfeldt, Karl; warwick, Steve

    2018-01-01

    HabEx Architecture A is a 4m unobscured telescope optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and also enables a wide range of general astrophysics science. The exoplanet detection and characterization drives the enabling core technologies. A hybrid starlight suppression approach of a starshade and coronagraph diversifies technology maturation risk. In this poster we assess these exoplanet-driven technologies, including elements of coronagraphs, starshades, mirrors, jitter mitigation, wavefront control, and detectors. By utilizing high technology readiness solutions where feasible, and identifying required technology development that can begin early, HabEx will be well positioned for assessment by the community in 2020 Astrophysics Decadal Survey.

  15. VLT Detects First Superstorm on Exoplanet

    Science.gov (United States)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint

  16. A New Window into Escaping Exoplanet Atmospheres: 10830 Å Line of Helium

    Science.gov (United States)

    Oklopčić, Antonija; Hirata, Christopher M.

    2018-03-01

    Observational evidence for escaping exoplanet atmospheres has been obtained for a few exoplanets to date. It comes from strong transit signals detected in the ultraviolet, most notably in the wings of the hydrogen Lyα (Lyα) line. However, the core of the Lyα line is often heavily affected by interstellar absorption and geocoronal emission, limiting the information about the atmosphere that can be extracted from that part of the spectrum. Transit observations in atomic lines that are (a) sensitive enough to trace the rarefied gas in the planetary wind and (b) do not suffer from significant extinction by the interstellar medium could enable more detailed observations, and thus provide better constraints on theoretical models of escaping atmospheres. The absorption line of a metastable state of helium at 10830 Å could satisfy both of these conditions for some exoplanets. We develop a simple 1D model of escaping planetary atmospheres containing hydrogen and helium. We use it to calculate the density profile of helium in the 23S metastable excited state and the expected in-transit absorption at 10830 Å for two exoplanets known to have escaping atmospheres. Our results indicate that exoplanets similar to GJ 436b and HD 209458b should exhibit enhanced transit depths at 10830 Å, with ∼8% and ∼2% excess absorption in the line core, respectively.

  17. Involvement of H2O2 in fluazifop-P-butyl-induced cell death in bristly starbur seedlings.

    Science.gov (United States)

    Luo, Xiaoyong; Liu, Zhihang; Sunohara, Yukari; Matsumoto, Hiroshi; Li, Pingliang

    2017-11-01

    In order to understand the action mechanism of fluazifop-P-butyl (FB) in bristly starbur (Acanthospermum hispidum D.C.), a susceptible plant, the role of active oxygen species (ROS) in herbicide-induced cell death in shoots was investigated. FB-induced phytotoxicity was not reduced by the antioxidants, 1,4-diazabicyclooctane (dabaco), sodium azide, l-tryptophan, d-tryptophan, hydroquinone and dimethyl pyridine N-oxide (DMPO). The activities of superoxide dismutase (SOD) and catalase (CAT), in bristly starbur seedlings were significantly increased by FB at 12 HAT and 24 HAT, while ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased only at 12 HAT. The contents of H 2 O 2 in FB-treated bristly starbur seedlings were significantly higher to that of control between 8 and 24 HAT. According to the analysis of potassium iodide - starch or 3,3-diaminobenzidine, the accumulation of hydrogen peroxide was observed in the apical growing point, stem, petiole and veins of FB-treated bristly starbur seedlings at 24 HAT. The cell viability of bristly starbur seedlings treated by 10μM FB decreased at 18 HAT. These results suggested that FB-induced cell death in bristly starbur shoots may be caused by ROS (O 2 - and H 2 O 2 ) generation and lipid peroxidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Sciences for Exoplanets and Planetary Systems : web sites and E-learning

    Science.gov (United States)

    Roques, F.; Balança, C.; Bénilan, Y.; Griessmeier, J. M.; Marcq, E.; Navarro, T.; Renner, S.; Schneider, J.; Schott, C.

    2015-10-01

    The websites « Sciences pour les Exoplanètes et les Systèmes Planétaires » (SESP) and « Exoplanètes » have been created in the context of the LabEx ESEP (Laboratoire d'excellence Exploration Spatiale des Environnements Planétaires) [1]. They present planetary and exoplanetary sciences with courses, interactive tools, and a didactic catalogue connected to the Encyclopedia http://exoplanet.eu [2]. These resources are directed towards undergraduate level. They will be used as support for face-to-face courses and self-training. In the future, we will translate some contents into English and create e-learning degree courses.

  19. Effectiveness Of Six Thinking Hats Training In Improving The ...

    African Journals Online (AJOL)

    This study investigated the effectiveness of Six Thinking Hats Training in improving the psychological well- being of prisoners. The study consisted of 24 convicted prisoners whose ages ranged from 19-60 years with a mean of 22.50 years. A 2x2 experimental group design was adopted, and subjects were randomly ...

  20. BALTIMORE’S M.S. LEVY AND SONS: Straw Hat Makers to the World, 1870-1960

    Directory of Open Access Journals (Sweden)

    Jessica I. Elfenbein

    2008-01-01

    Full Text Available From 1860 to 1960, Baltimore was an important center of the men’s ready-to- wear clothing industries. German-speaking Jews created many businesses that manufactured and sold underwear, men’s suits, and specialty items like hats and umbrellas. The straw hat making firm started by M.S. Levy is an interesting example of a Baltimore-based, family-owned niche business that existedfor 90 years, through three generations ofa singlefamily. The M.S. Levy and Sons story has two main chapters. The first covers the period from its founding by Michael Simon Levy in the 1870s through his son Julius’ death in 1926. This is the story of ascension. A premonition about the coming popularity of straw hats, together with a small but important technological breakthrough, positioned a family and a small industry for significant expansion. The second period began in 1930 with the introduction of wool felt hats and the death of William, M.S. Levy’s oldest son, and includes the Great Depression, unionization, merger, third generation leadership, and finally, in 1959, the family’s withdrawal from the industry. This later period, as told by grandsons of the founder, is the story of struggle followed by decline.

  1. Gemini Planet Imager Exoplanet Survey: Key Results Two Years Into The Survey

    Science.gov (United States)

    Marchis, Franck; Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Esposito, Thomas; Draper, Zachary H.; Macintosh, Bruce; Graham, James R.; GPIES

    2016-10-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young, nearby stars using the GPI instrument. We report here on recent results obtained with this instrument from our team.Rameau et al. (ApJL, 822 2, L2, 2016) presented astrometric monitoring of the young exoplanet HD 95086 b obtained with GPI between 2013 and 2016. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 AU. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. Additional photometric and spectroscopic measurements reported by de Rosa et al. (2016, apJ, in press) showed that the spectral energy distribution of HD 95086 b is best fit by low temperature (T~800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. Its temperature is typical to L/T transition objects, but the spectral type is poorly constrained. HD 95086 b is an important exoplanet to test our models of atmospheric properties of young extrasolar planets.Direct detections of debris disk are keys to infer the collisional past and understand the formation of planetary systems. Two debris disks were recently studied with GPI:- Draper et al. (submitted to ApJ, 2016) show the resolved circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU using both total and polarized H-band intensity. Structures in the disks such as a large brightness asymmetry and symmetric polarization fraction are seen. Additional data would confirm if a large disruption event from a stellar fly-by or planetary perturbations altered the disk density- Esposito et al. (submitted to ApJ, 2016) combined Keck NIRC2 data taken at 1.2-2.3 microns and GPI 1.6 micron total intensity and polarized light detections that probes down to projected separations less than 10 AU to show that the HD

  2. An abundance of small exoplanets around stars with a wide range of metallicities

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.; Johansen, Anders

    2012-01-01

    of the host stars of 226 small exoplanet candidates discovered by NASAs Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but...

  3. UMTRA project water sampling and analysis plan, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1994-04-01

    The Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site is a former uranium mill that is undergoing surface remediation in the form of on-site tailings stabilization. Contaminated surface materials from the Monument Valley, Arizona, UMTRA Project site have been transported to the Mexican Hat site and are being consolidated with the Mexican Hat tailings. The scheduled completion of the tailings disposal cell is August 1995. Water is found in two geologic units at the site: the Halgaito Shale Formation and the Honaker Trail Formation. The tailings rest on the Halgaito Shale, and water contained in that unit is a result of milling activities and, to a lesser extent, water released from the tailings from compaction during remedial action construction of the disposal cell. Water in the Halgaito Shale flows through fractures and discharges at seeps along nearby arroyos. Flow from the seeps will diminish as water drains from the unit. Ground water in the lower unit, the Honaker Trail Formation, is protected from contamination by an upward hydraulic gradient. There are no nearby water supply wells because of widespread poor background ground water quality and quantity, and the San Juan River shows no impacts from the site. This water sampling and analysis plan (WSAP) recommends sampling six seeps and one upgradient monitor well compared in the Honaker Trail Formation. Samples will be taken in April 1994 (representative of high group water levels) and September 1994 (representative of low ground water levels). Analyses will be performed on filtered samples for plume indicator parameters

  4. Preferred Hosts for Short-Period Exoplanets

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    In an effort to learn more about how planets form around their host stars, a team of scientists has analyzed the population of Kepler-discovered exoplanet candidates, looking for trends in where theyre found.Planetary OccurrenceSince its launch in 2009, Kepler has found thousands of candidate exoplanets around a variety of star types. Especially intriguing is the large population of super-Earths and mini-Neptunes planets with masses between that of Earth and Neptune that have short orbital periods. How did they come to exist so close to their host star? Did they form in situ, or migrate inwards, or some combination of both processes?To constrain these formation mechanisms, a team of scientists led by Gijs Mulders (University of Arizona and NASAs NExSS coalition) analyzed the population of Kepler planet candidates that have orbital periods between 2 and 50 days.Mulders and collaborators used statistical reconstructions to find the average number of planets, within this orbital range, around each star in the Kepler field. They then determined how this planet occurrence rate changed for different spectral types and therefore the masses of the host stars: do low-mass M-dwarf stars host more or fewer planets than higher-mass, main-sequence F, G, or K stars?Challenging ModelsAuthors estimates for the occurrence rate for short-period planets of different radii around M-dwarfs (purple) and around F, G, and K-type stars (blue). [Mulders et al. 2015]The team found that M dwarfs, compared to F, G, or K stars, host about half as many large planets with orbital periods of P 50 days. But, surprisingly, they host significantly more small planets, racking up an average of 3.5 times the number of planets in the size range of 12.8 Earth-radii.Could it be that M dwarfs have a lower total mass of planets, but that mass is distributed into more, smaller planets? Apparently not: the authors show that the mass of heavy elements trapped in short-orbital-period planets is higher for M

  5. Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity

    Science.gov (United States)

    Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie

    2018-06-01

    One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.

  6. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  7. REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa [Spitzer Science Center, California Institute of Technology, 1200 E California Boulevard, Mail Code 314-6, Pasadena, CA 91125 (United States); Buzasi, Derek [Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Diamond-Lowe, Hannah; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Evans, Thomas M. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Morello, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1 E6BT (United Kingdom); Wong, Ian, E-mail: ingalls@ipac.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μ m data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble,  5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  8. KNOW THE STAR, KNOW THE PLANET. II. SPECKLE INTERFEROMETRY OF EXOPLANET HOST STARS

    International Nuclear Information System (INIS)

    Mason, Brian D.; Hartkopf, William I.; Raghavan, Deepak; Subasavage, John P.; Roberts, Lewis C.; Turner, Nils H.; Ten Brummelaar, Theo A.

    2011-01-01

    A study of the host stars to exoplanets is important for understanding their environment. To that end, we report new speckle observations of a sample of exoplanet host primaries. The bright exoplanet host HD 8673 (= HIP 6702) is revealed to have a companion, although at this time we cannot definitively establish the companion as physical or optical. The observing lists for planet searches and for these observations have for the most part been pre-screened for known duplicity, so the detected binary fraction is lower than what would otherwise be expected. Therefore, a large number of double stars were observed contemporaneously for verification and quality control purposes, to ensure that the lack of detection of companions for exoplanet hosts was valid. In these additional observations, 10 pairs are resolved for the first time and 60 pairs are confirmed. These observations were obtained with the USNO speckle camera on the NOAO 4 m telescopes at both KPNO and CTIO from 2001 to 2010.

  9. A research on the postural stability of a person wearing the lower limb exoskeletal robot by the HAT model.

    Science.gov (United States)

    Chang, Minsu; Kim, Yeongmin; Lee, Yoseph; Jeon, Doyoung

    2017-07-01

    This paper proposes a method of detecting the postural stability of a person wearing the lower limb exoskeletal robot with the HAT(Head-Arm-Trunk) model. Previous studies have shown that the human posture is stable when the CoM(Center of Mass) of the human body is placed on the BoS(Base of Support). In the case of the lower limb exoskeletal robot, the motion data, which are used for the CoM estimation, are acquired by sensors in the robot. The upper body, however, does not have sensors in each segment so that it may cause the error of the CoM estimation. In this paper, the HAT(Head-Arm-Trunk) model which combines head, arms, and torso into a single segment is considered because the motion of head and arms are unknown due to the lack of sensors. To verify the feasibility of HAT model, the reflecting markers are attached to each segment of the whole human body and the exact motion data are acquired by the VICON to compare the COM of the full body model and HAT model. The difference between the CoM with full body and that with HAT model is within 20mm for the various motions of head and arms. Based on the HAT model, the XCoM(Extrapolated Center of Mass) which includes the velocity of the CoM is used for prediction of the postural stability. The experiment of making unstable posture shows that the XCoM of the whole body based on the HAT model is feasible to detect the instance of postural instability earlier than the CoM by 20-250 msec. This result may be used for the lower limb exoskeletal robot to prepare for any action to prevent the falling down.

  10. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    Science.gov (United States)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and

  11. Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets

    Science.gov (United States)

    Varakian, Matthew; Deming, Drake

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.

  12. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  13. Magic hat economics: counter-cultural ideals and practices of the Nordic Ting community

    Directory of Open Access Journals (Sweden)

    Janne Juhana Rantala

    2009-01-01

    Full Text Available The author's anthropological study concerns one of today’s communities with no shared belief system, but with a clear spiritualist orientation. The Nordic Ting Community does not have any defined or committing roles, specialized distribution of tasks, entrance fee to their two annual gatherings, membership or any formal hierarchy. This exiguity of structural differentiation could well be understood to represent ‘subjective spirituality’. This thesis refers to the decline of institutional forms of religion with, instead, an increase in subjective experience in spirituality. This presentation shows that at least in the author's field of study, there hardly exists any increase in emphasis on individualism in spirituality. Instead the material indicates a relatively long continuum of a self-organized type of communality which could be understood as neither individualistic nor collectivistic. The type of agency observed in the social action of the studied network-like field is intersubjective. This article focuses on the use of the magic hat and the combination of ideals and practices characteristic to the Ting Community, which the author calls the magic hat economics. It is argued that by looking at these kinds of intermediating objects, the problem of individualization can be seen much more clearly

  14. Conducting Research from Small University Observatories: Investigating Exoplanet Candidates

    Science.gov (United States)

    Moreland, Kimberly D.

    2018-01-01

    Kepler has to date discovered 4,496 exoplanet candidates, but only half are confirmed, and only a handful are thought to be Earth sized and in the habitable zone. Planet verification often involves extensive follow-up observations, which are both time and resource intensive. The data set collected by Kepler is massive and will be studied for decades. University/small observatories, such as the one at Texas State University, are in a good position to assist with the exoplanet candidate verification process. By preforming extended monitoring campaigns, which are otherwise cost ineffective for larger observatories, students gain valuable research experience and contribute valuable data and results to the scientific community.

  15. The Mass of the Candidate Exoplanet Companion to HD 33636 from Hubble Space Telescope Astrometry and High-Precision Radial Velocities

    Science.gov (United States)

    Bean, Jacob L.; McArthur, Barbara E.; Benedict, G. Fritz; Harrison, Thomas E.; Bizyaev, Dmitry; Nelan, Edmund; Smith, Verne V.

    2007-08-01

    We have determined a dynamical mass for the companion to HD 33636 that indicates it is a low-mass star instead of an exoplanet. Our result is based on an analysis of Hubble Space Telescope (HST) astrometry and ground-based radial velocity data. We have obtained high-cadence radial velocity measurements spanning 1.3 yr of HD 33636 with the Hobby-Eberly Telescope at McDonald Observatory. We combined these data with previously published velocities to create a data set that spans 9 yr. We used this data set to search for, and place mass limits on, the existence of additional companions in the HD 33636 system. Our high-precision astrometric observations of the system with the HST Fine Guidance Sensor 1r span 1.2 yr. We simultaneously modeled the radial velocity and astrometry data to determine the parallax, proper motion, and perturbation orbit parameters of HD 33636. Our derived parallax, πabs=35.6+/-0.2 mas, agrees within the uncertainties with the Hipparcos value. We find a perturbation period P=2117.3+/-0.8 days, semimajor axis aA=14.2+/-0.2 mas, and system inclination i=4.1deg+/-0.1deg. Assuming the mass of the primary star to be MA=1.02+/-0.03 Msolar, we obtain a companion mass MB=142+/-11 MJup=0.14+/-0.01 Msolar. The much larger true mass of the companion relative to its minimum mass estimated from the spectroscopic orbit parameters (Msini=9.3 MJup) is due to the nearly face-on orbit orientation. This result demonstrates the value of follow-up astrometric observations to determine the true masses of exoplanet candidates detected with the radial velocity method. Based on data obtained with the NASA/ESA Hubble Space Telescope (HST) and the Hobby-Eberly Telescope (HET). The HST observations were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The HET is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford

  16. Protoplanetary disks and exoplanets in scattered light

    NARCIS (Netherlands)

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  17. Path representation of su-hat (2){sub k} states I: Operators and particles for k=1,2

    Energy Technology Data Exchange (ETDEWEB)

    Lamy-Poirier, Joel, E-mail: jlamypoirier@perimeterinstitute.c [Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, G1K 7P4 (Canada); Mathieu, Pierre, E-mail: pmathieu@phy.ulaval.c [Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, G1K 7P4 (Canada)

    2011-04-11

    This is the first of two articles devoted to the analysis of the path description of the states in su-hat (2){sub k} WZW models, a representation well suited for constructive derivations of the fermionic characters. In this first article, the cases k=1,2 are treated in detail, emphasizing a different description in each case (operators vs particles). For k=1, we first prove, as a side result, the equivalence of two known path representations for the finitized su-hat (2){sub 1} states by displaying an explicit bijection. An immediate offshoot is the gain of a new and simple weighting for the (Kyoto) path representation that generalizes to level k. The bijection also suggests two operator constructions for the su-hat (2){sub 1} paths, a local and a nonlocal one, both interrelated. These are formal operators that map a path to another path, so that any path can be obtained by successive applications of these operators on a simple reference (ground-state) path. The nonlocal operator description is the starting point for a direct and elementary derivation of the su-hat (2){sub 1} spinon character. The second part presents an extensive study of the su-hat (2){sub 2} paths from their particle point of view, where the particles are defined as the path building blocks. The resulting generating functions appear to provide new (at least superficially) fermionic forms of the characters. In particular, a nice relationship between the sum of the j=0,1 characters at k=2 and the two ones at k=1 is unraveled.

  18. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W.; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M.; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2018-01-01

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin–orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  19. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xiao

    Full Text Available Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2, an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG E(2 production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers.

  20. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit K.; Meadows, Victoria S. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  1. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    International Nuclear Information System (INIS)

    Misra, Amit K.; Meadows, Victoria S.

    2014-01-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations

  2. The First Atmospheric Characterization of a Habitable-Zone Exoplanet

    Science.gov (United States)

    Stevenson, Kevin; Bean, Jacob; Charbonneau, David; Desert, Jean-Michel; Fortney, Jonathan; Irwin, Jonathan; Kreidberg, Laura; Line, Michael; Montet, Ben; Morley, Caroline

    2015-10-01

    Exoplanet surveys have recently revealed nearby planets orbiting within stellar habitable zones. This highly-anticipated breakthrough brings us one step closer in our quest to identify cosmic biosignatures, the indicators of extrasolar life. To achieve our goal, we must first study the atmospheres of these temperate worlds to measure their compositions and determine the prevalence of obscuring clouds. Using observations from the K2 mission, Co-I Montet recently announced the discovery of a 2.2 Earth-radii planet within the habitable zone of its relatively bright, nearby M dwarf parent star, K2-18. This temperate world is currently the best habitable-zone target for atmospheric characterization. Congruent with currently planned HST observations, we propose a Spitzer program to measure the transmission spectrum of the first habitable-zone exoplanet. Both telescopes are essential to revealing K2-18b's chemical composition. In a cloud-free, hydrogen-dominated atmosphere, the precision achieved by these measurements will be sufficient to detect methane, ammonia, and water vapor, which are the dominant C, N, and O bearing species at these temperatures. In turn, elemental abundance constraints from a primordial atmosphere can tell us about the composition of a protoplanetary disk in which Earth-like planets could have formed. Conversely, if the atmosphere contains thick clouds then the multi-wavelength observations from K2, HST, and Spitzer will constrain the clouds' properties. Because temperature plays a key role in the formation of clouds, their detection within the atmosphere of this habitable-zone exoplanet would be an important signpost that serves as a guide to future investigations of smaller, rocky exoplanets. As K2 continues discovering more habitable-zone planets, it is imperative that we perform spectral reconnaissance with Spitzer to determine their physical characteristics and begin understanding the prevalence of potentially-obscuring clouds prior to the

  3. Helium discovered in the tail of an exoplanet

    Science.gov (United States)

    Deming, Drake

    2018-05-01

    As the exoplanet WASP-107b orbits its host star, its atmosphere escapes to form a comet-like tail. Helium atoms detected in the escaping gases give astronomers a powerful tool for investigating exoplanetary atmospheres.

  4. The XUV environments of exoplanets from Jupiter-size to super-Earth

    Science.gov (United States)

    King, George W.; Wheatley, Peter J.; Salz, Michael; Bourrier, Vincent; Czesla, Stefan; Ehrenreich, David; Kirk, James; Lecavelier des Etangs, Alain; Louden, Tom; Schmitt, Jürgen; Schneider, P. Christian

    2018-05-01

    Planets that reside close-in to their host star are subject to intense high-energy irradiation. Extreme-ultraviolet (EUV) and X-ray radiation (together, XUV) is thought to drive mass loss from planets with volatile envelopes. We present XMM-Newton observations of six nearby stars hosting transiting planets in tight orbits (with orbital period, Porb < 10 d), wherein we characterise the XUV emission from the stars and subsequent irradiation levels at the planets. In order to reconstruct the unobservable EUV emission, we derive a new set of relations from Solar TIMED/SEE data that are applicable to the standard bands of the current generation of X-ray instruments. From our sample, WASP-80b and HD 149026b experience the highest irradiation level, but HAT-P-11b is probably the best candidate for Ly α evaporation investigations because of the system's proximity to the Solar System. The four smallest planets have likely lost a greater percentage of their mass over their lives than their larger counterparts. We also detect the transit of WASP-80b in the near ultraviolet with the Optical Monitor on XMM-Newton

  5. DIY teleport hats - the consolation of technology

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed

    2009-01-01

    or biking there. This particular set is made in the free-form crochet style: there is no exact pattern to crochet from, instead you crochet in an iterative process alternating between crocheting and trying the hat on for size and pattern adaptations. Disclaimer: It is of course not a functioning device...... but it works well as a gift for someone you miss or someone who misses another person madly as it provides an opportunity to take some kind of action when ordinary options like driving, jetting or biking are not feasible even if the action is only symbolic....

  6. Visible nulling coronagraphy testbed development for exoplanet detection

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker

    2010-07-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 108, 109 and 1010 at an inner working angle of 2*λ/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  7. Habitable Exoplanet Imaging Mission (HabEx): Architecture of the 4m Mission Concept

    Science.gov (United States)

    Kuan, Gary M.; Warfield, Keith R.; Mennesson, Bertrand; Kiessling, Alina; Stahl, H. Philip; Martin, Stefan; Shaklan, Stuart B.; amini, rashied

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) study is tasked by NASA to develop a scientifically compelling and technologically feasible exoplanet direct imaging mission concept, with extensive general astrophysics capabilities, for the 2020 Decadal Survey in Astrophysics. The baseline architecture of this space-based observatory concept encompasses an unobscured 4m diameter aperture telescope flying in formation with a 72-meter diameter starshade occulter. This large aperture, ultra-stable observatory concept extends and enhances upon the legacy of the Hubble Space Telescope by allowing us to probe even fainter objects and peer deeper into the Universe in the same ultraviolet, visible, and near infrared wavelengths, and gives us the capability, for the first time, to image and characterize potentially habitable, Earth-sized exoplanets orbiting nearby stars. Revolutionary direct imaging of exoplanets will be undertaken using a high-contrast coronagraph and a starshade imager. General astrophysics science will be undertaken with two world-class instruments – a wide-field workhorse camera for imaging and multi-object grism spectroscopy, and a multi-object, multi-resolution ultraviolet spectrograph. This poster outlines the baseline architecture of the HabEx flagship mission concept.

  8. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-01-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  9. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  10. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life

    Science.gov (United States)

    Kiang, Nancy Y.; Parenteau, Mary N.; Harman, Chester E.; DasSarma, Shiladitya; Fisher, Theresa M.; Arney, Giada N.; Hartnett, Hilairy E.; Reinhard, Christopher T.; Olson, Stephanie L.; Meadows, Victoria S.; Cockell, Charles S.; Walker, Sara I.; Grenfell, John Lee; Hegde, Siddharth; Rugheimer, Sarah; Hu, Renyu; Lyons, Timothy W.

    2018-01-01

    Abstract In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets—Biosignatures—Habitability markers—Photosynthesis—Planetary surfaces—Atmospheres—Spectroscopy—Cryptic biospheres—False positives. Astrobiology 18, 663–708. PMID:29727196

  11. Six Thinking Hats and Social Workers' Innovative Competence: An Experimental Study

    Science.gov (United States)

    Azeez, Razaq Olugbenga

    2016-01-01

    Employees, no doubt, are the main force in organizations, and their innovative behaviours are vital for outcome efficacy. Innovative organisations, therefore, need creative employees who generate new ideas for product or process of innovation. This study investigated the effect of six thinking hats creativity technique on innovative competence of…

  12. Exoplanet Caught on the Move

    Science.gov (United States)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent

  13. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  14. TYCHO: Simulating Exoplanets Within Stellar Clusters

    Science.gov (United States)

    Glaser, Joseph Paul; Thornton, Jonathan; Geller, Aaron M.; McMillan, Stephen

    2018-01-01

    Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as the two should be indistinguishable given currently accepted theories on how a majority of stars form within the Galaxy. Currently, the existence of this apparent deficit is not fully understood. While detection bias in previous observational surveys certainly contributes to this issue, the dynamical effects of star-star scattering must also be taken into account. However, this effect can only be investigated via computational simulations and current solutions of the multi-scale N-body problem are limited and drastically simplified.To remedy this, we aim to create a physically complete computational solution to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. To achieve this, TYCHO employs a variety of different computational techniques, including: multiple n-body integration methods; close-encounter handling; Monte Carlo scattering experiments; and a variety of observationally-backed initial condition generators. Herein, we discuss the current state of the code's implantation within the AMUSE framework and its applications towards present exoplanet surveys.

  15. Light from Exoplanets: Present and Future

    Science.gov (United States)

    Deming, Leo

    2010-01-01

    Measurements using the Spitzer Space Telescope have revealed thermal emission from planets orbiting very close to solar-type stars, primarily transiting "hot Jupiter" exoplanets. The thermal emission spectrum of these worlds has been measured by exploiting their secondary eclipse. Also, during transit of the planet, absorption signatures from atoms and molecules in the planet's atmosphere are imprinted onto the spectrum of the star. Results to date from transit and eclipse studies show that the hot Jupiters often have significant haze and cloud components in their atmospheres, and the temperature structure can often be inverted, i.e. temperature is rising with height. New and very strongly irradiated examples of hot Jupiters have been found that are being stripped of their atmospheres by tidal forces from the star. In parallel, transiting superEarth exoplanets are being discovered, and their atmospheres should also be amenable to study using transit techniques. The 2014 launch of the James Webb Space Telescope will clarify the physical nature of hot Jupiters, and will extend transit and eclipse studies to superEarths orbiting in the habitable zones of lower main sequence stars.

  16. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lew, Ben W. P., E-mail: yzhou@as.arizona.edu [Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718 (United States)

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.

  17. ON THE ORBIT OF EXOPLANET WASP-12b

    International Nuclear Information System (INIS)

    Campo, Christopher J.; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Nymeyer, Sarah; Lust, Nate B.; Blecic, Jasmina; Britt, Christopher B. T.; Bowman, William C.; Ragozzine, Darin; Anderson, David R.; Hellier, Coel; Maxted, Pierre F. L.; Collier-Cameron, Andrew; Wheatley, Peter J.; Loredo, Thomas J.; Deming, Drake; Hebb, Leslie; Pollaco, Don; West, Richard G.

    2011-01-01

    We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 ± 0.002) implied eccentricity at the 4.5σ level. The spectroscopic orbit of Hebb et al. has eccentricity 0.049 ± 0.015, a 3σ result, implying an eclipse phase of 0.509 ± 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 ± 0.0006 (3.6 and 5.8 μm) and 0.5006 ± 0.0007 (4.5 and 8.0 μm). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 ± +0.007 -0.006 ) is consistent with a circular orbit at better than 2σ. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1σ; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.

  18. A SEARCH FOR LOST PLANETS IN THE KEPLER MULTI-PLANET SYSTEMS AND THE DISCOVERY OF A LONG PERIOD, NEPTUNE-SIZED EXOPLANET KEPLER-150 F.

    Science.gov (United States)

    Schmitt, Joseph R; Jenkins, Jon M; Fischer, Debra A

    2017-04-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a "Swiss cheese"-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or "lost"). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this "Swiss cheesing" may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline's choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f ( P = 637.2 days, R P = 3.86 R ⊕ ) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.

  19. Most sub-arcsecond companions of Kepler exoplanet candidate host stars are gravitationally bound

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.

    2014-01-01

    Using the known detection limits for high-resolution imaging observations and the statistical properties of true binary and line-of-sight companions, we estimate the binary fraction of Kepler exoplanet host stars. Our speckle imaging programs at the WIYN 3.5 m and Gemini North 8.1 m telescopes have observed over 600 Kepler objects of interest and detected 49 stellar companions within ∼1 arcsec. Assuming binary stars follow a log-normal period distribution for an effective temperature range of 3000-10,000 K, then the model predicts that the vast majority of detected sub-arcsecond companions are long period (P > 50 yr), gravitationally bound companions. In comparing the model predictions to the number of real detections in both observational programs, we conclude that the overall binary fraction of host stars is similar to the 40%-50% rate observed for field stars.

  20. An Analytic Model Approach to the Frequency of Exoplanets

    Science.gov (United States)

    Traub, Wesley A.

    2016-10-01

    The underlying population of exoplanets around stars in the Kepler sample can be inferred by a simulation that includes binning the Kepler planets in radius and period, invoking an empirical noise model, assuming a model exoplanet distribution function, randomly assigning planets to each of the Kepler target stars, asking whether each planet's transit signal could be detected by Kepler, binning the resulting simulated detections, comparing the simulations with the observed data sample, and iterating on the model parameters until a satisfactory fit is obtained. The process is designed to simulate the Kepler observing procedure. The key assumption is that the distribution function is the product of separable functions of period and radius. Any additional suspected biases in the sample can be handled by adjusting the noise model or selective editing of the range of input planets. An advantage of this overall procedure is that it is a forward calculation designed to simulate the observed data, subject to a presumed underlying population distribution, minimizing the effect of bin-to-bin fluctuations. Another advantage is that the resulting distribution function can be extended to values of period and radius that go beyond the sample space, including, for example, application to estimating eta-sub-Earth, and also estimating the expected science yields of future direct-imaging exoplanet missions such as WFIRST-AFTA.

  1. BIOSIGNATURE GASES IN H{sub 2}-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Seager, S.; Bains, W.; Hu, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H{sub 2}-dominated atmospheres. We study biosignature gases on exoplanets with thin H{sub 2} atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H{sub 2} atmospheres. In atmospheres with high CO{sub 2} levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H{sub 2} atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH{sub 3}Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH{sub 3} and N{sub 2}O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH{sub 4} and H{sub 2}S, are not effective signs of life in an H{sub 2}-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H{sub 2}-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission

  2. Design Considerations: Falcon M Dwarf Habitable Exoplanet Survey

    Science.gov (United States)

    Polsgrove, Daniel; Novotny, Steven; Della-Rose, Devin J.; Chun, Francis; Tippets, Roger; O'Shea, Patrick; Miller, Matthew

    2016-01-01

    The Falcon Telescope Network (FTN) is an assemblage of twelve automated 20-inch telescopes positioned around the globe, controlled from the Cadet Space Operations Center (CSOC) at the US Air Force Academy (USAFA) in Colorado Springs, Colorado. Five of the 12 sites are currently installed, with full operational capability expected by the end of 2016. Though optimized for studying near-earth objects to accomplish its primary mission of Space Situational Awareness (SSA), the Falcon telescopes are in many ways similar to those used by ongoing and planned exoplanet transit surveys targeting individual M dwarf stars (e.g., MEarth, APACHE, SPECULOOS). The network's worldwide geographic distribution provides additional potential advantages. We have performed analytical and empirical studies exploring the viability of employing the FTN for a future survey of nearby late-type M dwarfs tailored to detect transits of 1-2REarth exoplanets in habitable-zone orbits . We present empirical results on photometric precision derived from data collected with multiple Falcon telescopes on a set of nearby (survey design parameters is also described, including an analysis of site-specific weather data, anticipated telescope time allocation and the percentage of nearby M dwarfs with sufficient check stars within the Falcons' 11' x 11' field-of-view required to perform effective differential photometry. The results of this ongoing effort will inform the likelihood of discovering one (or more) habitable-zone exoplanets given current occurrence rate estimates over a nominal five-year campaign, and will dictate specific survey design features in preparation for initiating project execution when the FTN begins full-scale automated operations.

  3. Mixed Estimates for Degenerate Multilinear Operators Associated to Simplexes

    OpenAIRE

    Kesler, Robert

    2013-01-01

    We prove that the degenerate trilinear operator $C_3^{-1,1,1}$ given by the formula \\begin{eqnarray*} C_3^{-1,1,1}(f_1, f_2, f_3)(x)=\\int_{x_1 < x_2 < x_3} \\hat{f_1}(x_1) \\hat{f_2}(x_2) \\hat{f_3}(x_3) e^{2\\pi i x (-x_1 + x_2 + x_3)} dx_1dx_2 dx_3 \\end{eqnarray*} satisfies the new estimates \\begin{eqnarray*} ||C_3^{-1,1,1}(f_1, f_2, f_3)||_{\\frac{1}{\\frac{1}{p_1}+\\frac{1}{p_2}+\\frac{1}{p_3}}} \\lesssim_{p_1, p_2, p_3} ||\\hat{f}_1||_{p^\\prime_1} ||f_2||_{p_2}||f_3||_{p_3} \\end{eqnarray*} for all...

  4. An integrated payload design for the Exoplanet Characterisation Observatory (EChO)

    DEFF Research Database (Denmark)

    Swinyard, Bruce; Tinetti, Giovanna; Tennyson, Jonathan

    2012-01-01

    by ESA in the context of a medium class mission within the Cosmic Vision programme for launch post 2020. The payload suite is required to provide simultaneous coverage from the visible to the mid-infrared and must be highly stable and effectively operate as a single instrument. In this paper we describe......The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to undertaking spectroscopy of transiting exoplanets over the widest wavelength range possible. It is based around a highly stable space platform with a 1.2 m class telescope. The mission is currently being studied...

  5. Physical constraints on the likelihood of life on exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2018-04-01

    One of the most fundamental questions in exoplanetology is to determine whether a given planet is habitable. We estimate the relative likelihood of a planet's propensity towards habitability by considering key physical characteristics such as the role of temperature on ecological and evolutionary processes, and atmospheric losses via hydrodynamic escape and stellar wind erosion. From our analysis, we demonstrate that Earth-sized exoplanets in the habitable zone around M-dwarfs seemingly display much lower prospects of being habitable relative to Earth, owing to the higher incident ultraviolet fluxes and closer distances to the host star. We illustrate our results by specifically computing the likelihood (of supporting life) for the recently discovered exoplanets, Proxima b and TRAPPIST-1e, which we find to be several orders of magnitude smaller than that of Earth.

  6. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  7. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs

  8. TEN NEW AND UPDATED MULTIPLANET SYSTEMS AND A SURVEY OF EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Wright, J. T.; Upadhyay, S.; Marcy, G. W.; Fischer, D. A.; Ford, Eric B.; Johnson, John Asher

    2009-01-01

    We present the latest velocities for ten multiplanet systems, including a re-analysis of archival Keck and Lick data, resulting in improved velocities that supersede our previously published measurements. We derive updated orbital fits for 10 Lick and Keck systems, including two systems (HD 11964, HD 183263) for which we provide confirmation of second planets only tentatively identified elsewhere, and two others (HD 187123 and HD 217107) for which we provide a major revision of the outer planet's orbit. We compile orbital elements from the literature to generate a catalog of the 28 published multiple-planet systems around stars within 200 pc. From this catalog we find several intriguing patterns emerging: (1) including those systems with long-term radial velocity trends, at least 28% of known planetary systems appear to contain multiple planets; (2) planets in multiple-planet systems have somewhat smaller eccentricities than single planets; and (3) the distribution of orbital distances of planets in multiplanet systems and single planets are inconsistent: single-planet systems show a pileup at P3 days and a jump near 1 AU, while multiplanet systems show a more uniform distribution in log-period. In addition, among all planetary systems we find the following. (1) There may be an emerging, positive correlation between stellar mass and giant-planet semimajor axis. (2) Exoplanets with M sin i > 1 M Jup more massive than Jupiter have eccentricities broadly distributed across 0 < e < 0.5, while lower mass exoplanets exhibit a distribution peaked near e = 0.

  9. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  10. INFLUENCE OF STELLAR FLARES ON THE CHEMICAL COMPOSITION OF EXOPLANETS AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Venot, Olivia; Decin, Leen [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Rocchetto, Marco [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Carl, Shaun; Hashim, Aysha Roshni, E-mail: olivia.venot@kuleuven.be [Department of Quantum Chemistry and Physical Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-20

    More than three thousand exoplanets have been detected so far, and more and more spectroscopic observations of exoplanets are performed. Future instruments ( James Webb Space Telescope ( JWST ), E-ELT, PLATO, Ariel, etc.,) are eagerly awaited, as they will be able to provide spectroscopic data with greater accuracy and sensitivity than what is currently available. This will allow more accurate conclusions to be drawn regarding the chemistry and dynamics of exoplanetary atmospheres, provided that the observational data are carefully processed. One important aspect to consider is temporal stellar atmospheric disturbances that can influence the planetary composition, and hence spectra, and potentially can lead to incorrect assumptions about the steady-state atmospheric composition of the planet. In this paper, we focus on perturbations coming from the host star in the form of flare events that significantly increase photon flux impingement on the exoplanets atmosphere. In some cases, particularly for M stars, this sudden increase may last for several hours. We aim to discover to what extent a stellar flare is able to modify the chemical composition of the planetary atmosphere and, therefore, influence the resulting spectra. We use a one-dimensional thermo-photochemical model to study the neutral atmospheric composition of two hypothetical planets located around the star AD Leo. We place the two planets at different distances from the star, which results in effective atmospheric temperatures of 412 and 1303 K. AD Leo is an active star that has already been observed during a flare. Therefore, we use the spectroscopic data from this flare event to simulate the evolution of the chemical composition of the atmospheres of the two hypothetical planets. We compute synthetic spectra to evaluate the implications for observations. The increase in the incoming photon flux affects the chemical abundances of some important species (such as H and NH{sub 3}), down to altitudes

  11. Scalable Gaussian Processes and the search for exoplanets

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.

  12. The Gemini NICI planet-finding campaign: the orbit of the young exoplanet β Pictoris b

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Eric L.; Liu, Michael C.; Chun, Mark; Ftaclas, Christ [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Wahhaj, Zahed [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Biller, Beth A. [Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Hayward, Thomas L. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Skemer, Andrew J.; Hinz, Philip M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kuchner, Marc J. [Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Toomey, Douglas W. [Mauna Kea Infrared, LLC, 21 Pookela Street, Hilo, HI 96720 (United States)

    2014-10-20

    We present new astrometry for the young (12-21 Myr) exoplanet β Pictoris b taken with the Gemini/NICI and Magellan/MagAO instruments between 2009 and 2012. The high dynamic range of our observations allows us to measure the relative position of β Pic b with respect to its primary star with greater accuracy than previous observations. Based on a Markov Chain Monte Carlo analysis, we find the planet has an orbital semi-major axis of 9.1{sub −0.5}{sup +5.3} AU and orbital eccentricity <0.15 at 68% confidence (with 95% confidence intervals of 8.2-48 AU and 0.00-0.82 for semi-major axis and eccentricity, respectively, due to a long narrow degenerate tail between the two). We find that the planet has reached its maximum projected elongation, enabling higher precision determination of the orbital parameters than previously possible, and that the planet's projected separation is currently decreasing. With unsaturated data of the entire β Pic system (primary star, planet, and disk) obtained thanks to NICI's semi-transparent focal plane mask, we are able to tightly constrain the relative orientation of the circumstellar components. We find the orbital plane of the planet lies between the inner and outer disks: the position angle (P.A.) of nodes for the planet's orbit (211.8 ± 0.°3) is 7.4σ greater than the P.A. of the spine of the outer disk and 3.2σ less than the warped inner disk P.A., indicating the disk is not collisionally relaxed. Finally, for the first time we are able to dynamically constrain the mass of the primary star β Pic to 1.76{sub −0.17}{sup +0.18} M {sub ☉}.

  13. Simulating an Isochronal Scheduled Inspection System for the P-3 Orion

    National Research Council Canada - National Science Library

    Jones, Jeffrey

    1998-01-01

    ...) for the United States Navy's P-3 Orion. Implementation of ISIS, which is based solely upon calendar time, has been proposed to replace the present system of scheduled inspections that are based upon both calendar time and flight hours...

  14. EXO-DAT: AN INFORMATION SYSTEM IN SUPPORT OF THE CoRoT/EXOPLANET SCIENCE

    International Nuclear Information System (INIS)

    Deleuil, M.; Meunier, J. C.; Moutou, C.; Surace, C.; Barbieri, M.; Agneray, F.; Granet, Y.; Guterman, P.; Deeg, H. J.; Almenara, J. M.; Debosscher, J.; Hodgkin, S.

    2009-01-01

    Exo-Dat is a database and an information system created primarily in support of the exoplanet program of the COnvection ROtation and planetary Transits (CoRoT) mission. In the directions of CoRoT pointings, it provides a united interface to several sets of data: stellar published catalogs, photometric and spectroscopic data obtained during the mission preparation, results from the mission and from follow-up observations, and several mission-specific technical parameters. The new photometric data constitute the subcatalog Exo-Cat, and give consistent 4-color photometry of 14.0 million stars with a completeness to 19th magnitude in the r-filter. It covers several zones in the galactic plane around CoRoT pointings, with a total area of 209 deg 2 . This Exo-Dat information system provides essential technical support to the ongoing CoRoT light-curve analyses and ground-based follow-up by supplying additional complementary information such as the prior knowledge of the star's fundamental parameters or its contamination level inside the large CoRoT photometric mask. The database is fully interfaced with VO tools and thus benefits from existing visualization and analysis tools like TOPCAT or ALADIN. It is accessible to the CoRoT community through the Web, and will be gradually opened to the public. It is the ideal tool to prepare the foreseen statistical studies of the properties of the exoplanetary systems. As a VO-compliant system, such analyses could thus benefit from the most up-to-date classifier tools.

  15. The Effect of Starspots on Detectability of Exoplanet Atmospheres

    Science.gov (United States)

    Hofmann, Ryan; Berta-Thompson, Zachory

    2018-01-01

    Transmission spectroscopy is an effective tool for detecting and characterizing the atmospheres of transiting extrasolar planets. However, the presence of cool spots on a planet’s host star can be a source of uncertainty that is difficult to account for. Cool starspots introduce wavelength-dependent features and noise into the transmission spectrum of an orbiting exoplanet. For sufficiently cool stars, especially M dwarfs, this could cause false detections of water and other species in the planet’s atmosphere. To understand the extent of this problem, we use a combination of PHOENIX model spectra and the starspot simulation code MACULA to simulate the effects of starspots on observed transmission spectra for a wide variety of stars and spot configurations. By comparing the simulated DoTV (Depth of Transit Variation) due to starspots with models of the expected DoTV from exoplanet atmospheres with a given composition, we can estimate the level of effect the starspots have on the detectability of various atmospheres. For example, our results indicate for TRAPPIST-1’s planets that while the large amplitude absorption features from a H/He-rich atmosphere should be easily detectable, a pure water atmosphere would be much harder to distinguish from starspot noise. Consequently, proper characterization of exoplanet atmospheres, especially around cool, active host stars, requires a proper understanding of the star’s spot properties and suitable methods for reducing or removing spot-induced brightness fluctuations as a source of noise.

  16. Alpha-tocopherol transfer factor (aTTF) from rat liver mediates the transfer of d-alpha-[3H]-tocopherol from liposomes to human erythrocyte ghosts and exhibits saturation kinetics

    International Nuclear Information System (INIS)

    Verdon, C.P.; Blumberg, J.B.

    1986-01-01

    aTTF was observed to transfer d-alpha-[ 3 H]-tocopherol ( 3 HaT) from egg lecithin liposomes to human erythrocyte ghosts (EG). aTTF may be associated with the 32,000-35,000 MW alpha-Tocopherol Binding Protein previously described to transfer 3 HaT from liposomes to rat liver microsomes and mitochondria prepared by ammonium sulfate precipitation of rat liver cytosol followed by dialysis against 50 mM TRIS-HCl/1 mM EDTA buffer, pH 7.4. Assay for aTTF activity consisted of incubating liposomal 3 HaT and EG in the presence of aTTF or buffer blank for various time periods at 37 0 C, then counting the resulting radioactivity in washed EG after pelleting by centrifugation. Liposomes were prelabeled-with non-exchangable glycerol-[ 14 C]-trioleate to correct for liposomes adhering to pelleted EG. Greater than 50% of the tritium found with the EG pellet was recovered by HPLC as 3 HaT. aTTF activity increased with increasing liposomal 3 HaT concentration before reaching a plateau. aTTF activity was similarly saturated by increasing EG concentrations. The same assay conditions with buffer blank along resulted in negligible transfer activity

  17. ASTEP: Towards the detection and characterization of exoplanets from Dome C

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The ASTEP project (Antarctic Search for Transiting ExoPlanets, aims at testing the quality of the Dome C site in Antarctica for photometry in the visible, as well as detecting and characterizing transiting exoplanets. A dedicated telescope, ASTEP400, has been developped and installed at Concordia. The first campaign took place during the winter 2010, and the telescope functionned nominally during all the winter. A first analysis of the data leads to a precision of 189 and 205 ppm for WASP-19 and WASP-18 respectively, for continuous observations during 1 month. This shows that extremely high precision photometry is achievable from Dome C.

  18. Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Lunine, J; Fischer, D; Hammel, H; Hillenbrand, L; Kasting, J; Laughlin, G; Macintosh, B; Marley, M; Melnick, G; Monet, D; Noecker, C; Peale, S; Quirrenbach, A; Seager, S; Winn, J

    2008-06-02

    This report is a comprehensive study of the search for and study of planets around other stars (exoplanets). The young but maturing field of exoplanets is perhaps one of the most compelling fields of study in science today--both because of the discoveries made to date on giant planets around other stars, and because the detection of planets just like our Earth ('Earth analogs') is at last within reach technologically. In the Report we outline the need for a vigorous research program in exoplanets to understand our place in the cosmos: whether planets like our home Earth are a common or rare outcome of cosmic evolution. The strategy we developed is intended to address the following fundamental questions, in priority order, within three distinct 5-yr long phases, over a 15 year period: (1) What are the physical characteristics of planets in the habitable zones around bright, nearby stars? (2) What is the architecture of planetary systems? (3) When, how and in what environments are planets formed? The Report recommends a two-pronged strategy for the detection and characterization of planets the size of the Earth. For stars much less massive and cooler than our Sun (M-dwarfs), existing ground-based techniques including radial velocity and transit searches, and space-based facilities both existing and under development such as Spitzer and JWST, are adequate for finding and studying planets close to the mass and size of the Earth. Conducted in parallel with the M-dwarf strategy is one for the more challenging observations of the hotter and brighter F, G, and K stars, some of which are very close in properties to our Sun, in which the frequency of Earth-sized planets is assessed with Corot and Kepler, but new space missions are required for detection and study of specific Earth-mass and Earth-sized objects. Our Task Force concludes that the development of a space-based astrometric mission, narrowly-focused to identify specific nearby stars with Earth

  19. Spontaneous breaking of chiral symmetry, and eventually of parity, in a σ-model with two Mexican hats

    International Nuclear Information System (INIS)

    Giacosa, Francesco

    2010-01-01

    A σ-model with two linked Mexican hats is discussed. This scenario could be realized in low-energy QCD when the ground state and the first excited (pseudo)scalar mesons are included, and where not only in the subspace of the ground states, but also in that of the first excited states, a Mexican hat potential is present. This possibility can change some basic features of a low-energy hadronic theory of QCD. It is also shown that spontaneous breaking of parity can occur in the vacuum for some parameter choice of the model. (orig.)

  20. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  1. Wie viel Kapazität hat ein Mobilfunknetz?

    Science.gov (United States)

    Eisenblätter, Andreas; Geerdes, Hans-Florian

    Wer hat das noch nicht erlebt? Der Akku ist aufgeladen und reichlich Guthaben vorhanden, doch das Telefonieren mit dem Handy klappt trotzdem nicht. Meist liegt das daran, dass man sich in einem Funkloch befindet. Aber manchmal ist auch das Netz überlastet. Anders gesagt: das Funknetz des Mobilfunkanbieters, das viele Antennen auf Hausdächern oder Masten umfasst, bietet entweder nicht genügend Abdeckung oder nicht genügend Kapazität. Genau das will der Anbieter natürlich vermeiden. Mathematik hilft, diese Herausforderungen mit einer guten Planung des Mobilfunknetzes zu bewältigen.

  2. Spherical top-hat collapse of a viscous unified dark fluid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [Bohai University, Department of Physics, Jinzhou (China); Dalian University of Technology, Institute of Theoretical Physics, Dalian (China); Xu, Lixin [Dalian University of Technology, Institute of Theoretical Physics, Dalian (China)

    2014-05-15

    In this paper, we test the spherical collapse of a viscous unified dark fluid (VUDF) which has constant adiabatic sound speed and show the nonlinear collapse for VUDF, baryons, and darkmatter, which are important in forming the large-scale structure of our Universe. By varying the values of the model parameters α and ζ{sub 0}, we discuss their effects on the nonlinear collapse of the VUDF model, and we compare its result to the ΛCDM model. The results of the analysis show that, within the spherical top-hat collapse framework, larger values of α and smaller values of ζ{sub 0} make the structure formation earlier and faster, and the other collapse curves are almost distinguished with the curve of ΛCDM model if the bulk viscosity coefficient ζ{sub 0} is less than 10{sup -3}. (orig.)

  3. Optimal Electric Field Estimation for Exoplanet Imaging Observatories in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The discovery and characterization of Earth-like planets around other stars is a high priority in modern astronomy. While over 900 confirmed exoplanets have been...

  4. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.

    Science.gov (United States)

    Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2016-01-07

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.

  5. On the Interior of Carbon-Rich Exoplanets: New Insight from Si-C System at Ultra High Pressure

    Science.gov (United States)

    Miozzi Ferrini, F.; Morard, G.; Antonangeli, D.; Clark, A. N.; Edmund, E.; Fiquet, G.; Mezouar, M.

    2017-12-01

    The variability in the mass/radius ratio of the more than 3200 exoplanets discovered so far, is a direct consequence of the large diversity of their internal composition. Exoplanets with a mass between 1 and 10 times the mass of the Earth are typically referred to as super-Earths, and their mineralogical composition depends on that of the protoplanetary disk. The key variable in determining the chemical makeup of such planets is the C/O ratio. Values of C/O ratio smaller than 0.8 correspond to an interior dominated by silicates (e.g. terrestrial planets), whereas for C/O ratios > 0.8 the interior is enriched in carbon. In these C-rich planets, Si may form carbides instead of silicates (Duffy et al., 2015). The detection of planet 55 Cancri e, with a particularly high C/O ratio, has increased the interest in carbon-rich planets. 55 Cancri e has been modelled as a layered structure made by different assemblages of carbon, silicon and iron (Madhusudan et al., 2012). However, the accuracy of such type of models suffers the lack of experimental data on the Si - C system at extreme conditions of pressure and temperature. Experimental equations of state are limited to 80 GPa (Nisr et al., 2017) and little is known about subsolidus relation, with only one theoretical study from Wilson and Militzer (2004) at multi-megabar pressures. Here we present experiments on SiC samples by synchrotron X-ray diffraction, in laser heated diamond anvil cell between 30-200 GPa and 300-3500 K. The results show evidences of coexistence of SiC with Si or C, without the appearance of intermediate compounds. Moreover, between 60 and 75 GPa, SiC undergoes a phase transition from the zinc blend structure (B3), to the rock salt structure (B1). This phase transition, also reported in previous literature work (e.g. Daviau and Lee, 2017), corresponds to a change in the atoms coordination, and is accompanied by an important volume reduction. Acknowledgements: This work was supported by the ERC Planet

  6. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  7. Relative stellar occurrence of exoplanets in habitable zones of the main sequence F, G, K stars

    Czech Academy of Sciences Publication Activity Database

    Pintr, Pavel; Peřinová, V.; Lukš, A.; Pathak, A.

    2014-01-01

    Roč. 99, sept2014 (2014), s. 1-6 ISSN 0032-0633 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : Exoplanets * Methods: statistical * Stars: planetary systems Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.875, year: 2014 http://www.sciencedirect.com/science/article/pii/S003206331400172X#

  8. KNOW THE STAR, KNOW THE PLANET. V. CHARACTERIZATION OF THE STELLAR COMPANION TO THE EXOPLANET HOST STAR HD 177830

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C. Jr.; Beichman, Charles; Burruss, Rick; Cady, Eric; Lockhart, Thomas G. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109 (United States); Oppenheimer, Rebecca; Brenner, Douglas; Luszcz-Cook, Statia; Nilsson, Ricky [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Dekany, Richard; Hillenbrand, Lynne [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Hinkley, Sasha [School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL (United Kingdom); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road., Cambridge, CB3 OHA (United Kingdom); Pueyo, Laurent [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sivaramakrishnan, Anand; Soummer, Rémi [Department of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Rice, Emily L., E-mail: lewis.c.roberts@jpl.nasa.gov [Department of Engineering Science and Physics, College of Staten Island, City University of New York, Staten Island, NY 10314 (United States); and others

    2015-10-15

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100–200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5–10 years.

  9. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  10. THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Froning, Cynthia S.; Stocke, John T.; Bushinsky, Rachel [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tian, Feng [Center for Earth System Sciences, Tsinghua University, Beijing 100084 (China); Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Mauas, Pablo; Vieytes, Mariela [Instituto de Astronomsica del Espacio (CONICET-UBA), C.C. 67 Sucursal 28, 1428 Buenos Aires (Argentina); Walkowicz, Lucianne M., E-mail: kevin.france@colorado.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2013-02-15

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No 'UV-quiet' M dwarfs are observed. The bright stellar Ly{alpha} emission lines are reconstructed, and we find that the Ly{alpha} line fluxes comprise {approx}37%-75% of the total 1150-3100 A flux from most M dwarfs; {approx}>10{sup 3} times the solar value. We develop an empirical scaling relation between Ly{alpha} and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Ly{alpha}. The intrinsic unreddened flux ratio is F(Ly{alpha})/F(Mg II) = 10 {+-} 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O{sub 2} and O{sub 3}, is shown to be {approx}0.5-3 for all M dwarfs in our sample, >10{sup 3} times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 10{sup 2}-10{sup 3} s timescales. This effect should be taken into account in future UV

  11. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    International Nuclear Information System (INIS)

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy

  12. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

  13. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres

    Science.gov (United States)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.

    2018-05-01

    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  14. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  15. Bayesian estimation inherent in a Mexican-hat-type neural network

    Science.gov (United States)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  16. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhang

    2018-04-01

    Full Text Available ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2, restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  17. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection.

    Science.gov (United States)

    Zhang, Xiao-Yan; Zhao, Tian-Yu; Li, Yuan-Yuan; Xiang, Hai-Ying; Dong, Shu-Wei; Zhang, Zong-Ying; Wang, Ying; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2018-01-01

    ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus , is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3a P18L , abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3a P18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3a P18L were able to self-interact in vivo , however, the mutant P3a P18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  18. Flux and polarisation spectra of water clouds on exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2011-01-01

    Context. A crucial factor for a planet’s habitability is its climate. Clouds play an important role in planetary climates. Detecting and characterising clouds on an exoplanet is therefore crucial when addressing this planet’s habitability. Aims. We present calculated flux and polarisation spectra of

  19. A Search for Lost Planets in the Kepler Multi-Planet Systems and the Discovery of the Long-Period, Neptune-Sized Exoplanet Kepler-150 f

    Science.gov (United States)

    Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.

    2017-01-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a Swiss cheese-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or lost). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this Swiss cheesing may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at approximately 3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipelines choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R earth) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.

  20. Gaia and exoplanets: a revolution in the making

    Science.gov (United States)

    Sozzetti, Alessandro

    2017-09-01

    The Gaia global astrometry mission is now entering its fourth year of routine science operations. With the publication of the first data release in September 2016, it has begun to fulfil its promise for revolutionary science in countless aspects of Galactic astronomy and astrophysics. I briefly review the Gaia mission status of operations and the scenario for the upcoming intermediate data releases, focusing on important lessons learned. Then, I illustrate the Gaia exoplanet science case, and discuss how the field will be revolutionized by the power of microarcsecond (μas) astrometry that is about to be unleashed. I conclude by touching upon some of the synergy elements that will call for combination of Gaia data with other indirect and direct detection and characterization techniques, for much improved understanding of exoplanetary systems.

  1. A Library of ATMO Forward Model Transmission Spectra for Hot Jupiter Exoplanets

    Science.gov (United States)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; hide

    2017-01-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and X(exp 2) maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from approximately 0.56 to approximately 1-1.3 for equilibrium temperatures from approximately 900 to approximately 2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (approximately 460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  2. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets

    Science.gov (United States)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; Nikolov, Nikolay; Manners, James; Chabrier, Gilles; Hebrard, Eric

    2018-03-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and χ2 maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ˜0.56 to ˜1-1.3 for equilibrium temperatures from ˜900 to ˜2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (˜460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  3. Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production.

    Directory of Open Access Journals (Sweden)

    Eric Toussirot

    Full Text Available OBJECTIVE: Acetylation or deacetylation of histone proteins may modulate cytokine gene transcription such as TNF alpha (TNF. We evaluated the balance between histone deacetytlase (HDAC and histone acetyltransferase (HAT in patients with rheumatoid arthritis (RA or ankylosing spondylitis (AS compared to healthy controls (HC and determined the influence of HDAC inhibitors (trichostatin A -TSA- or Sirtinol -Sirt- on these enzymatic activities and on the PBMC production of TNF. METHODS: 52 patients with RA, 21 with AS and 38 HC were evaluated. HAT and HDAC activities were measured on nuclear extracts from PBMC using colorimetric assays. Enzymatic activities were determined prior to and after ex vivo treatment of PBMC by TSA or Sirt. TNF levels were evaluated in PBMC culture supernatants in the absence or presence of TSA or Sirt. RESULTS: HAT and HDAC activities were significantly reduced in AS, while these activities reached similar levels in RA and HC. Ex vivo treatment of PBMC by HDACi tended to decrease HDAC expression in HC, but Sirt significantly reduced HAT in RA. TNF production by PBMC was significantly down-regulated by Sirt in HC and AS patients. CONCLUSION: HAT and HDAC were disturbed in AS while no major changes were found in RA. HDACi may modulate HDAC and HAT PBMC expression, especially Sirt in RA. Sirtinol was able to down regulate TNF production by PBMC in HC and AS. An imbalance between HAT and HDAC activities might provide the rationale for the development of HDACi in the therapeutic approach to inflammatory rheumatic diseases.

  4. Worlds Beyond: Follow-up Observations and Confirmation of K2 Exoplanet Candidates

    Science.gov (United States)

    O'Connor, Rachel; Lowenthal, James; Lowenthal, James D.; Cooper, Olivia; Helou, Elana; Papineau, Emily; Peck, Annie; Stephens, Loren; Walker, Kerry

    2018-06-01

    We present the results of an 8-month follow-up transit photometry campaign focused on exoplanet candidates produced by the K2 mission. Observations were conducted at the McConnell Rooftop Observatory at Smith College in Northampton, MA, with a 16” telescope and CCD. Targets were observed through a 400-700 nm broadband filter at a 1 minute cadence. We attempted to observe the complete duration of the transit plus a minimum one-hour baseline before and after the transit event whenever possible. Our observations typically reach an RMS of 2 millimags for an 11th-magnitude star. Candidates were selected based on a number of factors, including a transit depth of around 10 millimags, a host star magnitude between 10-13, a duration that is observable over the span of a night, and a period shorter than 30 days. There are currently around 700 unconfirmed exoplanets from K2, and these criteria shortened that list to around 20 ideal candidates, many of which were flagged as possible false positives. Our results showcase the capability of small observatories to conduct precise follow-up observations of exoplanet transits.

  5. Chasing Small Exoplanets with Ground-Based Near-Infrared Transit Photometry

    Science.gov (United States)

    Colon, K. D.; Barentsen, G.; Vinicius, Z.; Vanderburg, A.; Coughlin, J.; Thompson, S.; Mullally, F.; Barclay, T.; Quintana, E.

    2017-11-01

    I will present results from a ground-based survey to measure the infrared radius and other properties of small K2 exoplanets and candidates. The survey is preparation for upcoming discoveries from TESS and characterization with JWST.

  6. Spin Triplet Nematic Pairing Symmetry and Superconducting Double Transition in U1-xThxBe13

    Science.gov (United States)

    Machida, Kazushige

    2018-03-01

    Motivated by a recent experiment on U1-xThxBe13 with x = 3%, we develop a theory to narrow down the possible pair symmetry to consistently describe the double transition utilizing various theoretical tools, including group theory and Ginzburg-Landau theory. It is explained in terms of the two-dimensional representation Eu with spin triplet. Symmetry breaking causes the degenerate Tc to split into two. The low-temperature phase is identified as the cyclic p wave: d(k) = \\hat{x}kx + ɛ \\hat{y}ky + ɛ 2\\hat{z}kz with ɛ3 = 1, whereas the biaxial nematic phase: d(k) = √{3} (\\hat{x}kx - \\hat{y}ky) is the high-temperature one. This allows us to simultaneously identify the uniaxial nematic phase: d(k) = 2\\hat{z}kz - \\hat{x}kx - \\hat{y}ky for UBe13, which spontaneously breaks the cubic symmetry of the system. Those pair functions are fully consistent with this description and existing data. We comment on the accidental scenario in addition to this degeneracy scenario and the intriguing topological nature hidden in this long-known material.

  7. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    Science.gov (United States)

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  8. Verifying occulter deployment tolerances as part of NASA's technology development for exoplanet missions

    Science.gov (United States)

    Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Webb, D.; Cady, E.; Marks, G. W.; Lo, A.

    2013-09-01

    An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In support of NASA's Exoplanet Exploration Program and the Technology Development for Exoplanet Missions (TDEM), we recently completed a 2 year study of the manufacturability and metrology of starshade petals. In this paper we review the results of that successful first TDEM which demonstrated an occulter petal could be built and measured to an accuracy consistent with close to 10-10 contrast. We then present the results of our second TDEM to demonstrate the next critical technology milestone: precision deployment of the central truss and petals to the necessary accuracy. We show the deployment of an existing deployable truss outfitted with four sub-scale petals and a custom designed central hub.

  9. Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian

    2018-01-01

    Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.

  10. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S.; Barclay, Thomas; Ma, Bo; Bowler, Brendan P.; Riddle, Reed; Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph; Law, Nicholas M.; Lintott, Chris; Schawinski, Kevin

    2015-01-01

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations

  11. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Ma, Bo [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Bowler, Brendan P.; Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Lintott, Chris [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  12. NEID: A next generation Doppler spectrometer for exoplanet discovery and followup at the WIYN telescope

    Science.gov (United States)

    Bender, C. F.

    2017-12-01

    The field of exoplanet characterization via ground-based radial velocity measurements is entering a golden era as new purpose-built spectrometers come online over the coming few years. These instruments will provide unprecedented RV precision and push into new wavelength regimes. The NEID spectrometer is being constructed by a multi-institutional team under a NASA-NSF collaboration to provide the US exoplanet community with precision Doppler spectroscopic capabilities at the 3.5 m WIYN telescope on Kitt Peak. NEID will provide R 100,000 spectra covering the complete wavelength range from 0.38 - 0.92 microns, with RV precision of 30 cm/s. It will deploy to the WIYN in 2018, and be available for public use in spring 2019, where it will provide support for TESS and carryout a GTO search program to discover Earth-twins. I will provide a general overview of the instrument design and scientific capabilities, and an update on its development status.

  13. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies.

    Science.gov (United States)

    Varga, G; DenBesten, P; Rácz, R; Zsembery, Á

    2017-08-18

    Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  14. New exoplanets from the SuperWASP-North survey

    Directory of Open Access Journals (Sweden)

    Keenan F.

    2011-02-01

    Full Text Available We present the current status of the WASP search for transiting exoplanets, focusing on recent planet discoveries from SuperWASP-North and the joint equatorial region (-20≤Dec≤+20 observed by both WASP telescopes. We report the results of monitoring of WASP planets, and discuss how these contribute to our understanding of planet properties and their diversity.

  15. ESPRESSO: The next European exoplanet hunter

    Science.gov (United States)

    Pepe, F.; Molaro, P.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Dekker, H.; Mégevand, D.; Zerbi, F. M.; Cabral, A.; Di Marcantonio, P.; Abreu, M.; Affolter, M.; Aliverti, M.; Allende Prieto, C.; Amate, M.; Avila, G.; Baldini, V.; Bristow, P.; Broeg, C.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cupani, G.; D'Odorico, V.; De Caprio, V.; Delabre, B.; Dorn, R.; Figueira, P.; Fragoso, A.; Galeotta, S.; Genolet, L.; Gomes, R.; González Hernández, J. I.; Hughes, I.; Iwert, O.; Kerber, F.; Landoni, M.; Lizon, J.-L.; Lovis, C.; Maire, C.; Mannetta, M.; Martins, C.; Monteiro, M.; Oliveira, A.; Poretti, E.; Rasilla, J. L.; Riva, M.; Santana Tschudi, S.; Santos, P.; Sosnowska, D.; Sousa, S.; Spanó, P.; Tenegi, F.; Toso, G.; Vanzella, E.; Viel, M.; Zapatero Osorio, M. R.

    2014-01-01

    The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coudé Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coudé trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm s-1 level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.

  16. The boson and the Mexican hat

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Gilles; Spiro, Michel

    2013-01-01

    This document contains a brief presentation and the table of contents of a book in which the authors who reports the evolutions of the contemporary astrophysics theories, and the scientific, technological and human adventure of the CERN until the discovery of the Higgs boson by means of the LHC. The Mexican hat is the name given to the mechanism by which the boson reports the origin of the elementary particle masses. The first part reports the boson genealogy: the law of universal gravitation, the relativity and the limits of the rational mechanics, quantum mechanics, and particle physics at the end of the 1960's. The second part addresses the necessary existence of the boson: quantum electrodynamics, from the quark model to quantum chromo-dynamics, from intermediate bosons to the Brout, Englert and Higgs boson, the standard cosmology model. The third part deals with the perspectives opened by the existence and evidence of the boson: the search for physics theory and models beyond standard models

  17. Developing a user-friendly photometric software for exoplanets to increase participation in Citizen Science

    Science.gov (United States)

    Kokori, A.; Tsiaras, A.

    2017-09-01

    online software. Also the project "planet hunters" asked people to discover planets in other solar systems using data from large telescopes. HOPS, being in the same direction, could be an effective way of participating in research whether as an amateur astronomer or as a person of the general public that wants to engage with exoplanetary research and data analysis. The software is free of charge under the scope of astronomical research and education. We plan to create an online platform, inspired by HOPS, in the near future. In this platform, everyone will have access by creating an account as a user. Amateur astronomers, who have obtained their own exoplanet observations, will be able to upload and analyse their data. For people who are not familiar with photometric analysis - amateurs or general public users - data, as well as educational video and audio material will be provided.

  18. Study of phase equilibria and glass formation in the CaO-WO3-P2O5 system

    International Nuclear Information System (INIS)

    Bielis, I.Ya.

    1980-01-01

    The method of quenching has been used to investigate the liquidus surface of a portion of the CaO-WO 3 -P 2 O 5 system limited by the Ca(PO 3 ) 2 -W 2 O 3 (PO 4 ) 2 and CaWO 4 -Ca 2 P 2 O 7 cross-sections. The primary crystallization fields on the compounds: WO 3 , W 2 O 3 (PO 4 ) 2 , CaWO 4 , Ca 2 P 7 O 7 , Ca(PO 3 ) 2 are separated. The liquidus surface isotherms at 900, 1000, 1100 and 1200 deg C have been plotted on the concentration triangle plane. It has been found that the cross-sections of W 2 O 3 (PO 4 ) 2 -Ca(PO 3 ) 2 , WO 3 -Ca(PO 3 ) 2 , WO 3 -Ca 2 P 2 O 7 and CaWO 4 -Ca 2 P 2 O 7 are eutectic-type quasi-binary systems. The position of the glass transition region in the CaO-WO 3 -P 2 O 5 system has been determined for the treatment temperatures of 1100, 1200 and 1300 deg C and a correlation between the configuration of the glass transition region and the phase diagram of the system has been demonstrated [ru

  19. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  20. An ultrahot gas-giant exoplanet with a stratosphere.

    Science.gov (United States)

    Evans, Thomas M; Sing, David K; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R; Deming, Drake; Marley, Mark S; Amundsen, David S; Ballester, Gilda E; Barstow, Joanna K; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier des; Lewis, Nikole K; López-Morales, Mercedes; Mandell, Avi M; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-02

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere-where temperature increases with altitude-these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  1. Phase II, Title I engineering assessment of inactive uranium mill tailings, Mexican Hat site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1977-01-01

    An engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at the Mexican Hat millsite in Utah is presented. Topographic maps, data on core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals residing nearby, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions are presented. Radon gas release from the 2,200,000 tons of tailings on the site constitutes the most significant environmental impact. T he six alternative actions presented are directed towards restricting access to the site, returning the windblown tailings to the piles and stabilizing the piles with cover material, and consolidating the two piles into one pile and stabilizing it with cover material. Fencing around the site or the tailings and the decontamination of mill buildings is included in all options. Costs of the options range from $370,000 to $4,390,000

  2. Modeling of exoplanets interiors in the framework of future space missions

    Science.gov (United States)

    Brugger, B.; Mousis, O.; Deleuil, M.

    2017-12-01

    Probing the interior of exoplanets with known masses and radii is possible via the use of models of internal structure. Here we present a model able to handle various planetary compositions, from terrestrial bodies to ocean worlds or carbon-rich planets, and its application to the case of CoRoT-7b. Using the elemental abundances of an exoplanet’s host star, we significantly reduce the degeneracy limiting such models. This further constrains the type and state of material present at the surface, and helps estimating the composition of a secondary atmosphere that could form in these conditions through potential outgassing. Upcoming space missions dedicated to exoplanet characterization, such as PLATO, will provide accurate fundamental parameters of Earth-like planets orbiting in the habitable zone, for which our model is well adapted.

  3. NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science

    Science.gov (United States)

    Hussey, K.

    2014-12-01

    NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.

  4. Treatment efficiency in wastewater treatment plant of Hat Yai Municipality by quantitative removal of microbial indicators

    Directory of Open Access Journals (Sweden)

    Duangporn Kantachote

    2009-11-01

    Full Text Available The efficiency of treatment in a wastewater treatment plant of Hat Yai Municipality through stabilization ponds and constructed wetlands was monitored by using the bacterial indicators, total coliforms (TC, fecal coliforms (FC, Escherichia coli and fecal streptococci (FS, and photosynthetic microbes. The sequence of water flow in the wastewater treatment plant is as follows: primary or anaerobic pond (P, facultative pond (F, maturation pond (M, constructed wetlands (W1, W2 and W3, and an effluent storage pond (S for the treated wastewater. The wastewater treatment plant has an approximate area of 3,264,000 m2 (2,040 rai and its dry weather flow was running at only 40,000 m3/ day. There were 10 sampling times used for all the 7 ponds during July-October, 2006.Statistical analysis using a Two-Factorial Design model, indicated that pond types significantly affected temperature, dissolved oxygen (DO, and pH (p<0.05, whereas the time of sampling during the day had a significant effect (p<0.05 only on the temperature and light intensity available to the ponds. There were also significant different removal efficiencies of the different bacterial indicator groups tested (p<0.05. The overall performance of the wastewater treatment plant effectively removed TC, FC, E. coli, and FS as follows, 99.8%, 99.8%, 75.8% and 98.8%, respectively. The amounts of bacterial indicators, except for E. coli, showed a negative correlation with levels of light intensity and DO, whereas there was no correlation between the pH and the different indicator bacteria. There was a positive middle level correlation between pHand chlorophyll a.There were five different divisions of photosynthetic organisms detected throughout the plant as follows, Cyanophyta, Chlorophyta, Bacillariophyta, Euglenophyta, and Pyrrhophyta. The least diversity was found in the anaerobic pond (P as there were only 15 genera. Euglena, an indicator of dirty water, was detected only in this pond. The

  5. The G-HAT Search for Advanced Extraterrestrial Civilizations: The Reddest Extended WISE Sources

    Science.gov (United States)

    Maldonado, Jessica; Povich, Matthew S.; Wright, Jason; Griffith, Roger; Sigurdsson, Steinn; Mullan, Brendan L.

    2015-01-01

    Freeman Dyson (1960) theorized how to identify possible signatures of advanced extra-terrestrial civilizations by their waste heat, an inevitable byproduct of a civilization using a significant fraction of the luminosity from their host star. If a civilizations could tap the starlight throughout their host galaxy their waste heat would be easily detectable by recent infrared surveys. The Glimpsing Heat from Alien Technologies (G-HAT) pilot project aims to place limits on the existence of extraterrestrial civilizations at pan-galactic scales. We present results from the G-HAT cleaned catalog of 563 extremely red, extended high Galactic latitude (|b| ≥ 10) sources from the WISE All-Sky Catalog. Our catalog includes sources new to the scientific literature along with well-studied objects (e.g. starburst galaxies, AGN, and planetary nebulae) that exemplify extreme WISE colors. Objects of particular interest include a supergiant Be star (48 Librae) surrounded by a resolved, mid-infrared nebula, possibly indicating dust in the stellar wind ejecta, and a curious cluster of seven extremely red WISE sources (associated with IRAS 04287+6444) that have no optical counterparts.

  6. The 4p3(2P) ns, nd configurations of Se I

    International Nuclear Information System (INIS)

    Mazzoni, M.

    1989-01-01

    The photoabsorption spectrum of Se I has been photographed in the 1100-900 A wavelength region, using a flash-pyrolisys system: About twenty lines were observed, most of them for the first time. With the support of Hartree-Fock calculations they have been identified and assigned to the 4p 4 →4p 3 ns 3 P(n=7-14) and 4p 4 →4p 3 nd 3 D (n=5-17) series, both converging on the limit 4p 3 ( 2 P 3/2 ). (orig.)

  7. A New Desalination Pump Helps Define the pH of Ocean Worlds

    Science.gov (United States)

    Levi, A.; Sasselov, D.

    2018-04-01

    We study ocean exoplanets, for which the global surface ocean is separated from the rocky interior by a high-pressure ice mantle. We describe a mechanism that can pump salts out of the ocean, resulting in oceans of very low salinity. Here we focus on the H2O–NaCl system, though we discuss the application of this pump to other salts as well. We find our ocean worlds to be acidic, with a pH in the range of 2–4. We discuss and compare between the conditions found within our studied oceans and the conditions in which polyextremophiles were discovered. This work focuses on exoplanets in the super-Earth mass range (∼2 M ⊕), with water composing at least a few percent of their mass. However, the principle of the desalination pump might extend beyond this mass range.

  8. Thermodynamic Equations of State for Aqueous Solutions Applied to Deep Icy Satellite and Exoplanet Oceans

    Science.gov (United States)

    Vance, S.; Brown, J. M.; Bollengier, O.; Journaux, B.; Sotin, C.; Choukroun, M.; Barnes, R.

    2014-12-01

    Supporting life in icy world or exoplanet oceans may require global seafloor chemical reactions between water and rock. Such interactions have been regarded as limited in larger icy worlds such as Ganymede and Titan, where ocean depths approach 800 km and GPa pressures (>10katm). If the oceans are composed of pure water, such conditions are consistent with the presence of dense ice phases V and VI that cover the rocky seafloor. Exoplanets with oceans can obtain pressures sufficient to generate ices VII and VIII. We have previously demonstrated temperature gradients in such oceans on the order of 20 K or more, resulting from fluid compressibility in a deep adiabatic ocean based on our experimental work. Accounting for increases in density for highly saline oceans leads to the possibility of oceans perched under and between high pressure ices. Ammonia has the opposite effect, instead decreasing ocean density, as reported by others and confirmed by our laboratory measurements in the ammonia water system. Here we report on the completed equation of state for aqueous ammonia derived from our prior measurements and optimized global b-spline fitting methods We use recent diamond anvil cell measurements for water and ammonia to extend the equation of state to 400°C and beyond 2 GPa, temperatures and pressures applicable to icy worlds and exoplanets. Densities show much less temperature dependence but comparabe high-pressure derivatives to previously published ammonia-water properties derived for application to Titan (Croft et al. 1988). Thermal expansion is in better agreement with the more self-consistent equation of state of Tillner-Roth and Friend (1998). We also describe development of a planetary NaCl equation of state using recent measurements of phase boundaries and sound speeds. We examine implications of realistic ocean-ice thermodynamics for Titan and exoplanet interiors using the methodology recently applied to Ganymede for oceans dominated by MgSO4. High

  9. Magnetic fields in Earth-like exoplanets and implications for habitability around M-dwarfs.

    Science.gov (United States)

    López-Morales, Mercedes; Gómez-Pérez, Natalia; Ruedas, Thomas

    2011-12-01

    We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (EPS Lett 250:561-571, 2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M ⊕, for at least part of the planets' lifetime. For slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M [symbol in text]. Applying our calculations to confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~18, 15 and 13 M [symbol in text], respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on rotation rate, but also on their formation history, thermal state, age, composition, and the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of planets in the Habitable Zone of M-dwarfs.

  10. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    Science.gov (United States)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  11. #AltPlanets: Exploring the Exoplanet Catalogue with Neural Networks

    Science.gov (United States)

    Laneuville, M.; Tasker, E. J.; Guttenberg, N.

    2017-12-01

    The launch of Kepler in 2009 brought the number of known exoplanets into the thousands, in a growth explosion that shows no sign of abating. While the data available for individual planets is presently typically restricted to orbital and bulk properties, the quantity of data points allows the potential for meaningful statistical analysis. It is not clear how planet mass, radius, orbital path, stellar properties and neighbouring planets influence one another, therefore it seems inevitable that patterns will be missed simply due to the difficulty of including so many dimensions. Even simple trends may be overlooked if they fall outside our expectation of planet formation; a strong risk in a field where new discoveries have destroyed theories from the first observations of hot Jupiters. A possible way forward is to take advantage of the capabilities of neural network autoencoders. The idea of such algorithms is to learn a representation (encoding) of the data in a lower dimension space, without a priori knowledge about links between the elements. This encoding space can then be used to discover the strongest correlations in the original dataset.The key point is that trends identified by a neural network are independent of any previous analysis and pre-conceived ideas about physical processes. Results can reveal new relationships between planet properties and verify existing trends. We applied this concept to study data from the NASA Exoplanet Archive and while we have begun to explore the potential use of neural networks for exoplanet data, there are many possible extensions. For example, the network can produce a large number of 'alternative planets' whose statistics should match the current distribution. This larger dataset could highlight gaps in the parameter space or indicate observations are missing particular regimes. This could guide instrument proposals towards objects liable to yield the most information.

  12. ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

    OpenAIRE

    Crouzet , Nicolas; Guillot , Tristan; Agabi , Karim; Rivet , Jean-Pierre; Bondoux , Erick; Challita , Zalpha; Fanteï-Caujolle , Yan; Fressin , François; Mékarnia , Djamel; Schmider , François-Xavier; Valbousquet , Franck; Blazit , Alain; Bonhomme , Serge; Abe , Lyu; Daban , Jean-Baptiste

    2009-01-01

    ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread f...

  13. Validation of buoyancy driven spectral tensor model using HATS data

    DEFF Research Database (Denmark)

    Chougule, A.; Mann, Jakob; Kelly, Mark C.

    2016-01-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper....... The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model...

  14. The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP: experimental design and protocols

    Directory of Open Access Journals (Sweden)

    C. Goldblatt

    2017-11-01

    Full Text Available Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.

  15. The Development of New Atmospheric Models for K and M DwarfStars with Exoplanets

    Science.gov (United States)

    Linsky, Jeffrey L.

    2018-01-01

    The ultraviolet and X-ray emissions of host stars play critical roles in the survival and chemical composition of the atmospheres of their exoplanets. The need to measure and understand this radiative output, in particular for K and M dwarfs, is the main rationale for computing a new generation of stellar models that includes magnetically heated chromospheres and coronae in addition to their photospheres. We describe our method for computing semi-empirical models that includes solutions of the statistical equilibrium equations for 52 atoms and ions and of the non-LTE radiative transfer equations for all important spectral lines. The code is an offspring of the Solar Radiation Physical Modelling system (SRPM) developed by Fontenla et al. (2007--2015) to compute one-dimensional models in hydrostatic equilibrium to fit high-resolution stellar X-ray to IR spectra. Also included are 20 diatomic molecules and their more than 2 million spectral lines. Our-proof-of-concept model is for the M1.5 V star GJ 832 (Fontenla et al. ApJ 830, 154 (2016)). We will fit the line fluxes and profiles of X-ray lines and continua observed by Chandra and XMM-Newton, UV lines observed by the COS and STIS instruments on HST (N V, C IV, Si IV, Si III, Mg II, C II, and O I), optical lines (including H$\\alpha$, Ca II, Na I), and continua. These models will allow us to compute extreme-UV spectra, which are unobservable but required to predict the hydrodynamic mass-loss rate from exoplanet atmospheres, and to predict panchromatic spectra of new exoplanet host stars discovered after the end of the HST mission.This work is supported by grant HST-GO-15038 from the Space Telescope Science Institute to the Univ. of Colorado

  16. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    International Nuclear Information System (INIS)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites

  17. Testing Starshade Manufacturing and Deployment Through NASA's Technology Development for Exoplanet Missions Program

    Science.gov (United States)

    Kasdin, N. J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Lo, A.; Macintosh, B.

    2014-01-01

    An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In this poster we report on the results of our two Technology Development for Exoplanet Missions (TDEM) studies. In the first we examined the manufacturability and metrology of starshade petals, successfully constructing a full size petal from flight like materials and showing through precise edge shape measurements that an occulter made with petals consistent with the measured accuracy would achieve close to 10^-10 contrast. Our second TDEM tested the deployment precision of a roughly half-scale starshade. We demonstrated the deployment of an existing deployable truss outfitted with four sub-scale petals and a custom designed central hub. We showed that the system can be deployed multiple times with a repeatable positioning accuracy of the petals better than the requirement of 1.0 mm. The combined results of these two TDEM projects has significantly advanced the readiness level of occulter technology and moved the community closer to a realizable mission.

  18. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    Science.gov (United States)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.

    2017-11-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of

  19. Sampling system for pulsed signals. Study of the radioactive lifetimes of excited 3{sup 2}P1/2 and 3{sup 2}P3/2 states of Na, excited by a tunable dye laser; Sistema de muestreo para senales pulsadas. Estudio de vidas medias de niveles 3{sup 2} P1/2 y 3{sup 2}P3/2 excitados por un laser de colorantes pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P; Campos, J

    1979-07-01

    A system for sampling and averaging repetitive signals in the order of nanoseconds is discussed. The system uses as storage memory a multichannel analyzer operating in multi scaling mode. This instrument is employed for the measurement of atomic level lifetimes using a dye laser to excite the atoms and is applied to the study of lifetimes of the 3{sup 2}P1/2 and 3{sup 2}P3/2 states of sodium. (Author) 32 refs.

  20. Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program

    Science.gov (United States)

    Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Martin, S.; Marchen, L.; Vanderbei, R. J.; Macintosh, B.; Rudd, R. E.; Savransky, D.; Mikula, J.; Lynch, D.

    2012-09-01

    It is likely that the coming decade will see the development of a large visible light telescope with enabling technology for imaging exosolar Earthlike planets in the habitable zone of nearby stars. One such technology utilizes an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight suffciently for detecting and characterizing exoplanets. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. In this paper we present the results of our project to design, manufacture, and measure a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions program. We describe the mechanical design of the starshade and petal, the precision manufacturing tolerances, and the metrology approach. We demonstrate that the prototype petal meets the requirements and is consistent with a full-size occulter achieving better than 10-10 contrast.

  1. Three Point Bending of Top-Hat Stiffened Chopped Short Fibre Ramie/HDPE Thermoplastic Composite Beam

    Science.gov (United States)

    Hadi, Bambang K.; Nuril, Yogie S.

    2018-04-01

    The use of natural fibre and thermoplastic matrices in composite materials increased significantly during the last decade especially in the automotive industries. Ramie is one of these potential natural fibres. In this paper, a three point bending of top-hat beam made of ramie/HDPE (High-Density-Polyethylene) composites was performed. Top-hat stiffened structures were common structures found in the aerospace industries. Nevertheless, these structures are beginning to be applied in automotive structures in the forms of chassis and bumpers. The ramie/HDPE composite was manufactured using hot-press technique. The temperature was set to be 135°C and the pressure was 6 bars. Chopped short ramie fibre was used, due to good drape ability characteristics. The experiments showed that the beams produced a large non-linearity. Linear Finite Element Analysis was carried out to be compared with the experimental data. The differences are reasonable.

  2. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit; Meadows, Victoria [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Crisp, Dave, E-mail: amit0@astro.washington.edu [NAI Virtual Planetary Laboratory, Seattle, WA (United States)

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  3. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    International Nuclear Information System (INIS)

    Misra, Amit; Meadows, Victoria; Crisp, Dave

    2014-01-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  4. TRANSMISSION SPECTRUM OF EARTH AS A TRANSITING EXOPLANET FROM THE ULTRAVIOLET TO THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Betremieux, Y. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, L., E-mail: betremieux@mpia.de, E-mail: kaltenegger@mpia.de [Harvard-Smithsonian Center for Astrophysics, 60 Garden street, Cambridge MA 02138 (United States)

    2013-08-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering, and refraction from 115 to 1000 nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75 km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200 nm, ultraviolet (UV) O{sub 2} absorption increases the effective planetary radius by about 180 km, versus 27 km at 760.3 nm, and 14 km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the UV is an interesting wavelength range for future space missions.

  5. Hatefulle ytringer. Delrapport 2: Forskning på hat og diskriminering

    OpenAIRE

    Eggebø, Helga; Stubberud, Elisabeth

    2016-01-01

    De siste årene har hatefulle ytringer blitt aktualisert som et viktig demokratisk spørsmål på den offentlige og politiske dagsordenen. Likevel finnes det foreløpig lite forskningsbasert kunnskap om hatefulle ytringer i norsk sammenheng. Denne rapporten har som formål å samle, oppsummere og vurdere forskning som belyser sammenhengen mellom hatefulle ytringer og diskriminering, mobbing og vold på den ene siden, og forskning om konsekvenser for samfunnet og for de gruppene som er utsatt på den a...

  6. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-05-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  7. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-03-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  8. Verify Occulter Deployment Tolerances as Part of NASA's Technology Development for Exoplanet Missions

    Science.gov (United States)

    Kasdin, N. J.; Shaklan, S.; Lisman, D.; Thomson, M.; Webb, D.; Cady, E.; Marks, G. W.; Lo, A.

    2013-01-01

    In support of NASA's Exoplanet Exploration Program and the Technology Development for Exoplanet Missions (TDEM), we recently completed a 2 year study of the manufacturability and metrology of starshade petals. An external occult is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. This poster presents the results of our successful first TDEM that demonstrated an occulter petal could be built and measured to an accuracy consistent with close to 10^-10 contrast. We also present the progress in our second TDEM to demonstrate the next critical technology milestone: precision deployment of the central truss and petals to the necessary accuracy. We have completed manufacture of four sub-scale petals and a central hub to fit with an existing deployable truss. We show the plans for repeated stow and deploy tests of the assembly and the metrology to confirm that each deploy repeatably meets the absolute positioning requirements of the petals (better than 1.0 mm).

  9. Emergent Exoplanet Flux: Review of the Spitzer Results

    OpenAIRE

    Deming, Drake

    2008-01-01

    Observations using the Spitzer Space Telescope provided the first detections of photons from extrasolar planets. Spitzer observations are allowing us to infer the temperature structure, composition, and dynamics of exoplanet atmospheres. The Spitzer studies extend from many hot Jupiters, to the hot Neptune orbiting GJ436. Here I review the current status of Spitzer secondary eclipse observations, and summarize the results from the viewpoint of what is robust, what needs more work, and what th...

  10. UMTRA Project Site Observational Work Plan, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    Surface cleanup activities at the Mexican Hat UMTRA processing site are nearing completion. Ground Water contamination at the Mexican Hat site is a result of uranium milling operations. The extent of residual process water has been identified, and it is limited to the uppermost aquifer in the vicinity of the site. Deeper aquifers are not affected because of an upward hydraulic gradient and the presence of a confining unit (the deeper aquifers are protected by hydrogeologic isolation). The uppermost unit is returning to its pre-milling, mainly unsaturated state. The unit that contains the contaminated water is not a ground water resource because it qualifies as Class III (limited use) based on limited yield. Ground water in the uppermost unit is currently not used and is not anticipated to be used as a ground water resource. The nearby San Juan River and a converted oil exploration well provide all of the water needs for the area. There are no current threats to human health or livestock; and, because the zone of contamination does not represent a ground water resource, none are anticipated in the future. There are, however, seeps where contaminated water is exposed at land surface. The seeps create potential exposure pathways for plants and wildlife. It is not known at this time if there is a risk to the environment. Additional investigations are needed and are described in this document to confirm the presence or absence of potential environmental risks. Additional hydrogeologic investigations are not required. The proposed ground water compliance strategy for the site is no remediation, because the ground water in the uppermost aquifer (which is also the zone of contamination) qualifies for supplemental standards based on Class III, limited yield, and because there are no threats to human health. Domestic and agricultural water is pumped from a deeper aquifer that is isolated from the contaminated zone

  11. Assessment of seeps in the vicinity of the Mexican Hat tailings disposal cell

    International Nuclear Information System (INIS)

    1990-10-01

    The Phase II remedial action at the Mexican Hat site began in September 1988, and involved the excavation, transportation, and placement of contaminated materials onto the lower tailings pile. These materials were from the upper tailings pile, portions of the lower tailings pile, off-pile contaminated areas, and demolition material stockpiled at the former-mill site. By December 1989, all of the contaminated soils on the upper tailings pile area and most of the off-pile windblown and waterborne contamination had been removed and placed on the lower pile. Since that time, several seeps have been observed near the site. These seeps and some previously identified seeps may be related to remedial action construction activities or the past disposal of mill tailings at the Mexican Hat site. The objectives of this report are to: summarize the geology and hydrostratigraphy of the site; discuss field investigation of the locations, chronology, and flow rates of the seeps; discuss background groundwater quality, tailings pore fluid characterization, and water quality of the seeps; identify possible sources of the seeps; interpret the data; make recommendations for continued site characterization and assessment

  12. A general maximum entropy framework for thermodynamic variational principles

    International Nuclear Information System (INIS)

    Dewar, Roderick C.

    2014-01-01

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution p-hat, such that Ψ is a minimum at (p-hat) = p. Minimization of Ψ with respect to p-hat thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between p-hat and p. Illustrative examples of min–Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min–Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law

  13. A general maximum entropy framework for thermodynamic variational principles

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, Roderick C., E-mail: roderick.dewar@anu.edu.au [Research School of Biology, The Australian National University, Canberra ACT 0200 (Australia)

    2014-12-05

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution p-hat, such that Ψ is a minimum at (p-hat) = p. Minimization of Ψ with respect to p-hat thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between p-hat and p. Illustrative examples of min–Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min–Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law.

  14. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    Science.gov (United States)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  15. RG domain wall for the general (su)-hat (2) coset models

    Energy Technology Data Exchange (ETDEWEB)

    Stanishkov, Marian [Institute for Nuclear Research and Nuclear Energy,Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria)

    2016-08-16

    We consider a RG flow in a general (su)-hat (2) coset model induced by the least relevant field. This is done using two different approaches. We first compute the mixing coefficients of certain fields in the UV and IR theories using a conformal perturbation theory. The necessary structure constants are computed. The same coefficients can be calculated using the RG domain wall construction of Gaiotto. We compute the corresponding one-point functions and show that the two approaches give the same result in the leading order.

  16. Is There Life on Exoplanet Maja? A Demonstration for Schools

    Science.gov (United States)

    Planinsic, Gorazd; Marshall, Rick

    2012-01-01

    Astronomy and astrophysics are very popular with pupils, but the experimental work they can do tends to be rather limited. The search for life elsewhere in the Universe ("exobiology") has received an enormous boost since the detection of a rapidly increasing number of planets ("exoplanets") orbiting other stars in our galaxy. Recently (March…

  17. High-Throughput Automatic Training System for Odor-Based Learned Behaviors in Head-Fixed Mice

    Directory of Open Access Journals (Sweden)

    Zhe Han

    2018-02-01

    Full Text Available Understanding neuronal mechanisms of learned behaviors requires efficient behavioral assays. We designed a high-throughput automatic training system (HATS for olfactory behaviors in head-fixed mice. The hardware and software were constructed to enable automatic training with minimal human intervention. The integrated system was composed of customized 3D-printing supporting components, an odor-delivery unit with fast response, Arduino based hardware-controlling and data-acquisition unit. Furthermore, the customized software was designed to enable automatic training in all training phases, including lick-teaching, shaping and learning. Using HATS, we trained mice to perform delayed non-match to sample (DNMS, delayed paired association (DPA, Go/No-go (GNG, and GNG reversal tasks. These tasks probed cognitive functions including sensory discrimination, working memory, decision making and cognitive flexibility. Mice reached stable levels of performance within several days in the tasks. HATS enabled an experimenter to train eight mice simultaneously, therefore greatly enhanced the experimental efficiency. Combined with causal perturbation and activity recording techniques, HATS can greatly facilitate our understanding of the neural-circuitry mechanisms underlying learned behaviors.

  18. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    Science.gov (United States)

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  19. A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Muirhead, Philip S.; Dressing, Courtney D.; Mann, Andrew W.; Rojas-Ayala, Bárbara; Lépine, Sébastien; Paegert, Martin; De Lee, Nathan; Oelkers, Ryan

    2018-04-01

    We present a catalog of cool dwarf targets (V-J> 2.7, T eff ≲ 4000 K) and their stellar properties for the upcoming Transiting Exoplanet Survey Satellite (TESS), for the purpose of determining which cool dwarfs should be observed using two minute observations. TESS has the opportunity to search tens of thousands of nearby, cool, late K- and M-type dwarfs for transiting exoplanets, an order of magnitude more than current or previous transiting exoplanet surveys, such as Kepler, K2, and ground-based programs. This necessitates a new approach to choosing cool dwarf targets. Cool dwarfs are chosen by collating parallax and proper motion catalogs from the literature and subjecting them to a variety of selection criteria. We calculate stellar parameters and TESS magnitudes using the best possible relations from the literature while maintaining uniformity of methods for the sake of reproducibility. We estimate the expected planet yield from TESS observations using statistical results from the Kepler mission, and use these results to choose the best targets for two minute observations, optimizing for small planets for which masses can conceivably be measured using follow-up Doppler spectroscopy by current and future Doppler spectrometers. The catalog is available in machine readable format and is incorporated into the TESS Input Catalog and TESS Candidate Target List until a more complete and accurate cool dwarf catalog identified by ESA’s Gaia mission can be incorporated.

  20. Design and evaluation of a foam-filled hat-stiffened panel concept for aircraft primary structural applications

    Science.gov (United States)

    Ambur, Damodar R.

    1995-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.