WorldWideScience

Sample records for exoplanet host stars

  1. Exclusion of Stellar Companions to Exoplanet Host Stars

    Science.gov (United States)

    Wittrock, Justin M.; Kane, Stephen R.; Horch, Elliott P.; Howell, Steve B.; Ciardi, David R.; Everett, Mark E.

    2017-11-01

    Given the frequency of stellar multiplicity in the solar neighborhood, it is important to study the impacts this can have on exoplanet properties and orbital dynamics. There have been numerous imaging survey projects established to detect possible low-mass stellar companions to exoplanet host stars. Here, we provide the results from a systematic speckle imaging survey of known exoplanet host stars. In total, 71 stars were observed at 692 and 880 nm bands using the Differential Speckle Survey Instrument at the Gemini-north Observatory. Our results show that all but two of the stars included in this sample have no evidence of stellar companions with luminosities down to the detection and projected separation limits of our instrumentation. The mass-luminosity relationship is used to estimate the maximum mass a stellar companion can have without being detected. These results are used to discuss the potential for further radial velocity follow-up and interpretation of companion signals.

  2. Stellar Variability of the Exoplanet Hosting Star HD 63454

    OpenAIRE

    {Kane} S.~R.; {Dragomir} D.; {Ciardi} D.~R.; {Lee} J.-W.; {Lo Curto} G.; {Lovis} C.; {Naef} D.; {Mahadevan} S.; {Pilyavsky} G.; {Udry} S.; {Wang} X.; {Wright} J.

    2011-01-01

    Of the hundreds of exoplanets discovered using the radial velocity technique, many are orbiting close to their host stars with periods less than 10 days. One of these, HD 63454, is a young active K dwarf which hosts a Jovian planet in a 2.82 day period orbit. The planet has a 14% transit probability and a predicted transit depth of 1.2%. Here we provide a re-analysis of the radial velocity data to produce an accurate transit ephemeris. We further analyse 8 nights of time series data to search...

  3. Asteroseismology of Exoplanet-Host Stars in the TESS Era

    DEFF Research Database (Denmark)

    Campante, Tiago L.; Schofield, Mathew; Chaplin, William J.

    2015-01-01

    New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology, the study of stars by the observation of their natural, resonant oscillations. Throughout the duration of the Kepler mission, asteroseismology has also played an important role in the char......New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology, the study of stars by the observation of their natural, resonant oscillations. Throughout the duration of the Kepler mission, asteroseismology has also played an important role...... in the characterization of host stars and their planetary systems. Examples include the precise estimation of the fundamental properties of stellar hosts, the obliquity determination of planetary systems, or the orbital eccentricity determination via asterodensity profiling. The Transiting Exoplanet Survey Satellite...... (TESS) will perform a wide-field survey for planets that transit bright host stars. Its excellent photometric precision and long intervals of uninterrupted observations will enable asteroseismology of solar-type stars and their evolved counterparts. Based on existing all-sky simulations of the stellar...

  4. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  5. Model Atmospheres and Spectral Irradiance Library of the Exoplanet Host Stars Observed in the MUSCLES Survey

    Science.gov (United States)

    Linsky, Jeffrey

    2017-08-01

    We propose to compute state-of-the-art model atmospheres (photospheres, chromospheres, transition regions and coronae) of the 4 K and 7 M exoplanet host stars observed by HST in the MUSCLES Treasury Survey, the nearest host star Proxima Centauri, and TRAPPIST-1. Our semi-empirical models will fit theunique high-resolution panchromatic (X-ray to infrared) spectra of these stars in the MAST High-Level Science Products archive consisting of COS and STIS UV spectra and near-simultaneous Chandra, XMM-Newton, and ground-based observations. We will compute models with the fully tested SSRPM computer software incorporating 52 atoms and ions in full non-LTE (435,986 spectral lines) and the 20 most-abundant diatomic molecules (about 2 million lines). This code has successfully fit the panchromatic spectrum of the M1.5 V exoplanet host star GJ 832 (Fontenla et al. 2016), the first M star with such a detailed model, and solar spectra. Our models will (1) predict the unobservable extreme-UV spectra, (2) determine radiative energy losses and balancing heating rates throughout these atmospheres, (3) compute a stellar irradiance library needed to describe the radiation environment of potentially habitable exoplanets to be studied by TESS and JWST, and (4) in the long post-HST era when UV observations will not be possible, the stellar irradiance library will be a powerful tool for predicting the panchromatic spectra of host stars that have only limited spectral coverage, in particular no UV spectra. The stellar models and spectral irradiance library will be placed quickly in MAST.

  6. Tidal synchronization of close-in satellites and exoplanets: II. Spin dynamics and extension to Mercury and exoplanet host stars

    Science.gov (United States)

    Ferraz-Mello, Sylvio

    2015-08-01

    This paper deals with the application of the creep tide theory (Ferraz-Mello, Celest Mech Dyn Astron 116:109, 2013a) to the rotation of close-in satellites, Mercury, close-in exoplanets, and their host stars. The solutions show different behaviors with two extreme cases: close-in giant gaseous planets with fast relaxation (low viscosity) and satellites and Earth-like planets with slow relaxation (high viscosity). The rotation of close-in gaseous planets follows the classical Darwinian pattern: it is tidally driven toward a stationary solution that is synchronized with the orbital motion when the orbit is circular, but if the orbit is elliptical, it has a frequency larger than the orbital mean motion. The rotation of rocky bodies, however, may be driven to several attractors whose frequencies are times the mean motion. The number of attractors increases with the viscosity of the body and with the orbital eccentricity. The final stationary state depends on the initial conditions. The classical example is Mercury, whose rotational period is 2/3 of the orbital period (3/2 attractor). The planet behaves as a molten body with a relaxation that allowed it to cross the 2/1 attractor without being trapped but not to escape being trapped in the 3/2 one. In that case, the relaxation is estimated to lie in the interval (equivalent to a quality factor roughly constrained to the interval ). The stars have a relaxation similar to the hot Jupiters, and their rotation is also driven to the only stationary solution existing in these cases. However, solar-type stars may lose angular momentum due to stellar wind, braking the rotation and displacing the attractor toward larger periods. Old, active host stars with big close-in companions generally have rotational periods larger than the orbital periods of the companions. The paper also includes a study of energy dissipation and the evolution of orbital eccentricity.

  7. Characterization of exoplanet hosts

    Directory of Open Access Journals (Sweden)

    Valenti Jeff A.

    2013-04-01

    Full Text Available Spectroscopic analysis of exoplanet hosts and the stellar sample from which they are drawn provides abundances and other properties that quantitively constrain models of planet formation. The program Spectroscopy Made Easy (SME determines stellar parameters by fitting observed spectra, though line lists must be selected wisely. For giant planets, it is now well established that stars with higher metallicity are more likely to have detected companions. Stellar metallicity does not seem to affect the formation and/or migration of detectable planets less massive than Neptune, especially when considering only the most massive planet in the system. In systems with at least one planet less than 10 times the mass of Earth, the mass of the most massive planet increases dramatically with host star metallicity. This may reflect metallicity dependent timescales for core formation, envelope accretion, and/or migration into the detection zone.

  8. Hubble space telescope high-resolution imaging of Kepler small and cool exoplanet host stars

    Energy Technology Data Exchange (ETDEWEB)

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Wright, Jason T. [Department of Astronomy and Astrophysics, and Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Adams, Elisabeth R. [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Kalas, Paul, E-mail: gillil@stsci.edu [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.

  9. Tidal Synchronization of Close-in Satellites and Exoplanets, Host Stars and Mercury

    Science.gov (United States)

    Ferraz-Mello, Sylvio

    2014-05-01

    This paper deals with an application of the creep tide theory (Ferraz-Mello, Cel. Mech. Dyn. Astron. 116, 109, 2013) to the rotation of close-in satellites, Mercury, close-in exoplanets and their host stars. The solutions show different behaviors in the two extreme cases: low-viscosity close-in gaseous planets and stars (high relaxation factor) and high-viscosity rocky satellites and planets (low relaxation factor). The rotation of close-in gaseous planets follows the classical Darwinian pattern: it is tidally driven towards a synchronous solution when the orbit is circular, but to a super-synchronous solution, with frequency (1+6e^2) times the orbital mean-motion, when the orbit is elliptic. The rotation of rocky bodies, however, may be driven to several attractors whose frequencies are 1/2, 1, 3/2, 2, 5/2,… times the mean-motion. The number of attractors increases with the viscosity of the body and the orbital eccentricity. The final stationary state depends on the initial conditions and on the eccentricity of the orbits. The well-known case of Mercury, whose rotational period is 2/3 of the orbital period (3/2 attractor), is a consequence of the nonzero orbital eccentricity and of the relaxation factor of the planet (large enough to avoid the 2/1 attractor, but small enough to be trapped in the 3/2 one). Mercury's relaxation factor can thus be estimated to lie in the interval 4.6-27 nHz (which allows Q to be roughly constrained to the interval 5stars behave as the hot Jupiters - they have similar relaxation factors - and their rotation is driven to the near synchronous attractor. However, stellar activity also affects the rotation displacing the stationary solution towards smaller frequencies; a host star with big close-in companion is expected to have its rotational period larger than the orbital period of the companion (i.e. sub-synchronous). It is worth stressing that in all studied cases, the stationary solutions were direct consequences of the

  10. Know the Star, Know the Planet. 2. Speckle Interferometry of Exoplanet Host Stars

    Science.gov (United States)

    2011-11-01

    DVA ” is background subtracted through boxcar subtraction and the sharp central peak, which corresponds to the zeroth-order speckles correlating with...them- selves, is clipped. Companions in the resulting DVA are then readily apparent as peaks several sigma above the background. Of the 118 exoplanet...USNO with an ICCD and reduced with the DVA method. Asterisks (N = 11) are those observed by other interferometry groups, and an “X” (N = 292) are

  11. Know the Star, Know the Planet. V. Characterization of the Stellar Companion to the Exoplanet Host Star HD 177830

    Science.gov (United States)

    Roberts, Lewis C., Jr.; Oppenheimer, Rebecca; Crepp, Justin R.; Baranec, Christoph; Beichman, Charles; Brenner, Douglas; Burruss, Rick; Cady, Eric; Luszcz-Cook, Statia; Dekany, Richard; Hillenbrand, Lynne; Hinkley, Sasha; King, David; Lockhart, Thomas G.; Nilsson, Ricky; Parry, Ian R.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Rémi; Rice, Emily L.; Veicht, Aaron; Vasisht, Gautam; Zhai, Chengxing; Zimmerman, Neil T.

    2015-10-01

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.

  12. KNOW THE STAR, KNOW THE PLANET. V. CHARACTERIZATION OF THE STELLAR COMPANION TO THE EXOPLANET HOST STAR HD 177830

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C. Jr.; Beichman, Charles; Burruss, Rick; Cady, Eric; Lockhart, Thomas G. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109 (United States); Oppenheimer, Rebecca; Brenner, Douglas; Luszcz-Cook, Statia; Nilsson, Ricky [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Dekany, Richard; Hillenbrand, Lynne [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Hinkley, Sasha [School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL (United Kingdom); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road., Cambridge, CB3 OHA (United Kingdom); Pueyo, Laurent [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sivaramakrishnan, Anand; Soummer, Rémi [Department of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Rice, Emily L., E-mail: lewis.c.roberts@jpl.nasa.gov [Department of Engineering Science and Physics, College of Staten Island, City University of New York, Staten Island, NY 10314 (United States); and others

    2015-10-15

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100–200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5–10 years.

  13. Exoplanets as probes of the winds of host stars: the case of the M dwarf GJ 436

    Science.gov (United States)

    Vidotto, A. A.; Bourrier, V.

    2017-10-01

    Winds of cool dwarfs are difficult to observe, with only a few M dwarfs presenting observationally derived mass-loss rates (\\dot{M}), which span several orders of magnitude. Close-in exoplanets are conveniently positioned in the inner regions of stellar winds and can, thus, be used to probe the otherwise-unobservable local properties of their host-stars' winds. Here, we use local stellar wind characteristics observationally derived in the studies of atmospheric evaporation of the warm-neptune GJ 436b to derive the global characteristics of the wind of its M-dwarf host. Using an isothermal wind model, we constrain the stellar wind temperature to be in the range (0.36-0.43) MK, with \\dot{M}=(0.5-2.5) × 10^{-15} M_{⊙} yr^{-1}. By computing the pressure balance between the stellar wind and the interstellar medium, we derive the size of the astrophere of GJ 436 to be around 25 au, significantly more compact than the heliosphere. We demonstrate in this paper that transmission spectroscopy, coupled to planetary atmospheric evaporation and stellar wind models, can be a useful tool for constraining the large-scale wind structure of planet-hosting stars. Extending our approach to future planetary systems discoveries will open new perspectives for the combined characterization of planetary exospheres and winds of cool dwarf stars.

  14. Undercover Stars Among Exoplanet Candidates

    Science.gov (United States)

    2005-03-01

    in solar units. The newly determined, precise values of the mass and radius of OGLE-TR-122b are indicated as the red dot. The blue symbols are values for low-mass stars, while the black symbols on the left represent exoplanets. Note that the "hot Jupiters" - exoplanets orbiting very close to their host star - are larger than OGLE-TR-122b. The various lines represent theoretical models from G. Chabrier, I. Baraffe and colleagues, showing a good agreement between theory and observations. The newly found stellar gnome is the companion of OGLE-TR-122, a rather remote star in the Milky Way galaxy, seen in the direction of the southern constellation Carina. The OGLE programme revealed that OGLE-TR-122 experiences a 1.5 per cent brightness dip once every 7 days 6 hours and 27 minutes, each time lasting just over 3 hours (about 188 min). The FLAMES/UVES measurements, made during 6 nights in March 2004, reveal radial velocity variations of this period with an amplitude of about 20 km/s. This is the clear signature of a very low-mass star, close to the Hydrogen-burning limit, orbiting OGLE-TR-122. This companion received the name OGLE-TR-122b. As François Bouchy of the Observatoire Astronomique Marseille Provence (France) explains: "Combined with the information collected by OGLE, our spectroscopic data now allow us to determine the nature of the more massive star in the system, which appears to be solar-like". This information can then be used to determine the mass and radius of the much smaller companion OGLE-TR-122b. Indeed, the depth (brightness decrease) of the transit gives a direct estimate of the ratio between the radii of the two stars, and the spectroscopic orbit provides a unique value of the mass of the companion, once the mass of the larger star is known. The astronomers find that OGLE-TR-122b weighs one-eleventh of the mass of the Sun and has a diameter that is only one-eighth of the solar one. Thus, although the star is still 96 times as massive as Jupiter, it

  15. Extrasolar Planets and their Hosts: why exoplanet science needs X-ray observations

    Science.gov (United States)

    Poppenhaeger, K.

    2014-07-01

    The characterization and detection of exoplanet systems has become one of the most active fields in astronomy. A wide spectrum of observational tools is used for this, from high-precision photometry over optical and near-infrared spectra to microlensing experiments. Observations at short wavelengths are a powerful addition to the exoplaneteer's toolbox. I will discuss how short-wavelength data can enhance our understanding of exoplanets and their host stars; I will cover topics ranging from exoplanet atmospheres to coronal activity of exoplanet hosting stars.

  16. METAL-RICH ACCRETION AND THERMOHALINE INSTABILITIES IN EXOPLANET-HOST STARS: CONSEQUENCES ON THE LIGHT ELEMENTS ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Theado, Sylvie; Vauclair, Sylvie, E-mail: stheado@ast.obs-mip.fr [Institut de Recherches en Astrophysique et Planetologie, Universite de Toulouse, CNRS, 14 avenue Edouard Belin, 31400 Toulouse (France)

    2012-01-10

    The early evolution of planetary systems is expected to depend on various periods of disk matter accretion onto the central star, which may include the accretion of metal-rich matter after the star settles on the main sequence. When this happens, the accreted material is rapidly mixed within the surface convective zone and induces an inverse mean-molecular-weight gradient, unstable for thermohaline convection. The induced mixing, which dilutes the metal excess, may also have important consequences on the light elements abundances. We model and analyze this process, and present the results according to various possible accretion scenarios. We give a detailed discussion of the different ways of treating thermohaline mixing, as proposed by previous authors, and converge on a consistent view, including the most recent numerical simulations. We show how the observations of light elements in stars can be used as tracers of such events.

  17. Metallicity of Sun-like G-stars that have Exoplanets

    Indian Academy of Sciences (India)

    Shashanka R. Gurumath

    2017-06-19

    Jun 19, 2017 ... metallicity of host stars that have exoplanets, we try to understand how the metal content of a stellar neb- ula might have affected the planetary formation, (ii) we examine whether single and multiplanetary systems have similar mechanism of planetary formation or not, and the role of host stars' metallicity in ...

  18. Walking on Exoplanets: Is Star Wars Right?

    Science.gov (United States)

    Ballesteros, Fernando J; Luque, B

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties. Exoplanets-Gravity-Planetary habitability and biosignatures. Astrobiology 16, 325-327.

  19. Walking on Exoplanets: Is Star Wars Right?

    Science.gov (United States)

    Ballesteros, Fernando J.; Luque, B.

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties.

  20. Extrasolar planets and their host stars

    CERN Document Server

    von Braun, Kaspar

    2017-01-01

    This book explores the relations between physical parameters of extrasolar planets and their respective parent stars. Planetary parameters are often directly dependent upon their stellar counterparts. In addition, the star is almost always the only visible component of the system and contains most of the system mass. Consequently, the parent star heavily influences every aspect of planetary physics and astrophysics. Drs. Kaspar von Braun and Tabetha Boyajian use direct methods to characterize exoplanet host starts that minimize the number of assumptions needed to be made in the process. The book provides a background on interferometric techniques for stellar diameter measurements, illustrates the authors' approach on using additional data to fully characterize the stars, provides a comprehensive update on the current state of the field, and examines in detail a number of historically significant and well-studied exoplanetary systems.

  1. An abundance of small exoplanets around stars with a wide range of metallicities

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.; Johansen, Anders

    2012-01-01

    on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.......The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a fossil record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form...... of the host stars of 226 small exoplanet candidates discovered by NASAs Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but...

  2. Exoplanets

    Science.gov (United States)

    Seager, S.

    2010-12-01

    -mass planets and those further from the star. All in all, technology enables slow but sure progress, and this fuels ongoing discovery. Theory, like observations, also takes time to unfold and mature. We can anticipate an "ultimate" planet formation model similar to the "millenimum simulation" for galaxy formation and evolution. In time, incorporating detailed physics as well as being able to reproduce the generic outcome of planet populations (mass, radius, and orbital characteristics, including period) will enable a deeper understanding of planet formation and migration. Similarly, the ideal exoplanet atmosphere code of the future could be a three-dimensional Monte Carlo code that includes radiative transfer with inhomogeneous cloud coverage and surface features, a code that also solves for the temperature structure and combines with a hydrodynamical simulation to calculate the three-dimensional temperature and wind structure. Classical orbital mechanics, already reinvigorated by interesting exoplanet systems (e.g., planets in resonant orbits, hot Jupiter exoplanets that orbit in the direction opposite to the stellar rotation), also has a role to play in explaining fundamental mechanisms of how planetary system configurations came to be. Orbital dynamics modeling is driving the search for moons and other unseen planet companions by their perturbations on transiting planet signatures. Exoplanets is a unique science because it involves so many disciplines within and beyond planetary science and astrophysics. The other disciplines include geophysics, high-pressure mineral physics, quantum mechanics, chemistry, and even microbiology. While exoplanet observations clearly belong under the branch of astronomy, for many years the whole discipline of exoplanets lacked a true home. Physics departments have said "Exoplanets: It's interesting, but is it physics?" Planetary and Earth science departments used to collecting real data in their hands from Earth and in situ measurements from

  3. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  4. Catalogue of Exoplanets in Multiple-Star-Systems

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos; Pilat-Lohinger, Elke

    2017-07-01

    Cataloguing the data of exoplanetary systems becomes more and more important, due to the fact that they conclude the observations and support the theoretical studies. Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia is available at http://exoplanet.eu/ and described at Schneider et al. 2011). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database. Therefore we started to compile a catalogue for binary and multiple star systems. Since 2013 the catalogue can be found at http://www.univie.ac.at/adg/schwarz/multiple.html (description can be found at Schwarz et al. 2016) which will be updated regularly and is linked to the Extrasolar Planets Encyclopaedia. The data of the binary catalogue can be downloaded as a file (.csv) and used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. Every columns of the list can be sorted in two directions: ascending, meaning from the lowest value to the highest, or descending. In addition an introduction and help is also given in the menu bar of the catalogue including an example list.

  5. An abundance of small exoplanets around stars with a wide range of metallicities.

    Science.gov (United States)

    Buchhave, Lars A; Latham, David W; Johansen, Anders; Bizzarro, Martin; Torres, Guillermo; Rowe, Jason F; Batalha, Natalie M; Borucki, William J; Brugamyer, Erik; Caldwell, Caroline; Bryson, Stephen T; Ciardi, David R; Cochran, William D; Endl, Michael; Esquerdo, Gilbert A; Ford, Eric B; Geary, John C; Gilliland, Ronald L; Hansen, Terese; Isaacson, Howard; Laird, John B; Lucas, Philip W; Marcy, Geoffrey W; Morse, Jon A; Robertson, Paul; Shporer, Avi; Stefanik, Robert P; Still, Martin; Quinn, Samuel N

    2012-06-13

    The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.

  6. Habitable zone lifetimes of exoplanets around main sequence stars.

    Science.gov (United States)

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  7. A New Analysis of the Exoplanet Hosting System HD 6434

    OpenAIRE

    Hinkel, Natalie R.; Kane, Stephen R.; Pilyavsky, Genady; Boyajian, Tabetha S.; James, David J.; Naef, Dominique; Fischer, Debra A.; Udry, Stephane

    2015-01-01

    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the Solar System. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, ...

  8. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  9. The Development of New Atmospheric Models for K and M DwarfStars with Exoplanets

    Science.gov (United States)

    Linsky, Jeffrey L.

    2018-01-01

    The ultraviolet and X-ray emissions of host stars play critical roles in the survival and chemical composition of the atmospheres of their exoplanets. The need to measure and understand this radiative output, in particular for K and M dwarfs, is the main rationale for computing a new generation of stellar models that includes magnetically heated chromospheres and coronae in addition to their photospheres. We describe our method for computing semi-empirical models that includes solutions of the statistical equilibrium equations for 52 atoms and ions and of the non-LTE radiative transfer equations for all important spectral lines. The code is an offspring of the Solar Radiation Physical Modelling system (SRPM) developed by Fontenla et al. (2007--2015) to compute one-dimensional models in hydrostatic equilibrium to fit high-resolution stellar X-ray to IR spectra. Also included are 20 diatomic molecules and their more than 2 million spectral lines. Our-proof-of-concept model is for the M1.5 V star GJ 832 (Fontenla et al. ApJ 830, 154 (2016)). We will fit the line fluxes and profiles of X-ray lines and continua observed by Chandra and XMM-Newton, UV lines observed by the COS and STIS instruments on HST (N V, C IV, Si IV, Si III, Mg II, C II, and O I), optical lines (including H$\\alpha$, Ca II, Na I), and continua. These models will allow us to compute extreme-UV spectra, which are unobservable but required to predict the hydrodynamic mass-loss rate from exoplanet atmospheres, and to predict panchromatic spectra of new exoplanet host stars discovered after the end of the HST mission.This work is supported by grant HST-GO-15038 from the Space Telescope Science Institute to the Univ. of Colorado

  10. Observationally Constraining Gas Giant Composition via Their Host Star Abundances

    Science.gov (United States)

    Teske, Johanna; Thorngren, Daniel; Fortney, Jonathan

    2018-01-01

    While the photospheric abundances of the Sun match many rock-forming elemental abundances in the Earth to within 10 mol%, as well as in Mars, the Moon, and meteorites, the Solar System giant planets are of distinctly non-stellar composition — Jupiter's bulk metallicity (inferred from its bulk density, measured from spacecraft data) is ∼ x5-10 solar, and Saturn is ∼ x10-20 solar. This knowledge has led to dramatic advances in understanding models of core accretion, which now match the heavy element enrichment of each of the Solar System's giant planets. However, we have thus far lacked similar data for exoplanets to use as a check for formation and composition models over a much larger parameter space. Here we present a study of the host stars of a sample of cool transiting gas giants with measured bulk metal fractions (as in Thorngren et al. 2016) to better constrain the relation Zplanet/Zstar — giant exoplanet metal enrichment relative to the host star. We add a new dimension of chemical variation, measuring C, O, Mg, Si, Ni, and well as Fe (on which previous Zplanet/Zstar calculations were based). Our analysis provides the best constraints to date on giant exoplanet interior composition and how this relates to formation environment, and make testable predictions for JWST observations of exoplanet atmospheres.

  11. Relationship between Luminosity, Irradiance and Temperature of star on the orbital parameters of exoplanets

    Directory of Open Access Journals (Sweden)

    Pavel Pintr

    2013-05-01

    Full Text Available For 759 exoplanets detected by radial velocities method we found that distances of exoplanets from central star comply in general Schmidt law and these distances depend on the stellar surface temperature. Every stellar spectral class has a little different distribution. The Luminosity and the Irradiance has not effect on the distribution of distances of exoplanets. We have found the new formulas for calculation of effective temperature of exoplanets for spectral classes F, G, and K. These new formulas we can use for future calculation of habitable planets.

  12. Exoplanet habitability.

    Science.gov (United States)

    Seager, Sara

    2013-05-03

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  13. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets...

  14. Twinkle Twinkle Little Star - Speckle Imaging for Exoplanet Characterization

    Science.gov (United States)

    Howell, Steve B.; Scott, Nic; Horch, Elliott

    2016-06-01

    The NASA K2 mission is finding many high-value exoplanets and world-wide follow-up is ensuing. The NASA TESS mission will soon be launched, requiring additional ground-based observations as well. As a part of the NASA-NSFNN-EXPLORE program to enable exoplanet research, our group is building two new speckle interferometry cameras for the Kitt Peak WIYN 3.5-m telescope and the Gemini-N 8-m telescope. Modeled after the successful DSSI visitor instrument that has been used at these telescopes for many years, speckle observations provide the highest resolution images available today from any ground- or space-based single telescope. They are the premier method through which small, rocky exoplanets can be validated. Available for public use in early 2017, WIYNSPKL and GEMSPKL will obtain simultaneous images in two filters with fast EMCCD readout, "speckle" and “wide-field” imaging modes, and user support for proposal writing, observing, and data reduction. We describe the new cameras, their design, and their benefits for exoplanet follow-up, characterization, and validation. Funding for this project comes from the NASA Exoplanet Exploration Program and NASA HQ.

  15. Atmospheric Beacons of Life from Exoplanets Around G and K Stars.

    Science.gov (United States)

    Airapetian, Vladimir S; Jackman, Charles H; Mlynczak, Martin; Danchi, William; Hunt, Linda

    2017-11-02

    The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets "highlighted" by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric "beacons of life" create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.

  16. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...

  17. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  18. Three regimes of extrasolar planet radius inferred from host star metallicities

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.

    2014-01-01

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high......-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find...... that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes...

  19. Advanced Exoplanet Star Tracker for Orbit Self Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal puts forth an innovative star tracker hardware sensor that allows for autonomous calculation of a spacecraft's orbit by employing Doppler Spectroscopy...

  20. Synergies between exoplanet surveys and variable star research

    Directory of Open Access Journals (Sweden)

    Kovacs Geza

    2017-01-01

    Full Text Available With the discovery of the first transiting extrasolar planetary system back in 1999, a great number of projects started to hunt for other similar systems. Because the incidence rate of such systems was unknown and the length of the shallow transit events is only a few percent of the orbital period, the goal was to monitor continuously as many stars as possible for at least a period of a few months. Small aperture, large field of view automated telescope systems have been installed with a parallel development of new data reduction and analysis methods, leading to better than 1% per data point precision for thousands of stars. With the successful launch of the photometric satellites CoRoT and Kepler, the precision increased further by one-two orders of magnitude. Millions of stars have been analyzed and searched for transits. In the history of variable star astronomy this is the biggest undertaking so far, resulting in photometric time series inventories immensely valuable for the whole field. In this review we briefly discuss the methods of data analysis that were inspired by the main science driver of these surveys and highlight some of the most interesting variable star results that impact the field of variable star astronomy.

  1. Synergies between exoplanet surveys and variable star research

    Science.gov (United States)

    Kovacs, Geza

    2017-09-01

    With the discovery of the first transiting extrasolar planetary system back in 1999, a great number of projects started to hunt for other similar systems. Because the incidence rate of such systems was unknown and the length of the shallow transit events is only a few percent of the orbital period, the goal was to monitor continuously as many stars as possible for at least a period of a few months. Small aperture, large field of view automated telescope systems have been installed with a parallel development of new data reduction and analysis methods, leading to better than 1% per data point precision for thousands of stars. With the successful launch of the photometric satellites CoRoT and Kepler, the precision increased further by one-two orders of magnitude. Millions of stars have been analyzed and searched for transits. In the history of variable star astronomy this is the biggest undertaking so far, resulting in photometric time series inventories immensely valuable for the whole field. In this review we briefly discuss the methods of data analysis that were inspired by the main science driver of these surveys and highlight some of the most interesting variable star results that impact the field of variable star astronomy.

  2. Host Star Evolution for Planet Habitability.

    Science.gov (United States)

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-11-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  3. Spectroscopic Analysis of Planetary Host Stars

    Science.gov (United States)

    Rittipruk, P.; Yushchenko, A.; Kang, Y. W.

    2014-08-01

    We observed the high resolution spectra of extra-solar planet host stars. The spectroscopic data of host stars were observed using the CHIRON echelle spectrometer and R-C Spectrograph for magnetic activity on the SMART-1.5 meter telescope at CTIO, Chile. The analysis of spectroscopic data was performed using URAN and SYNTHE programs. These spectra allow us to determine the effective temperatures, surface gravities, microturbulent velocities and, finally, the chemical composition of the hosts was obtained by spectrum synthesis. One of the targets, namely HD 47536, the host of two planets, appeared to be a halo star with overabundances of neutron capture elements. The effective temperature and the surface gravity of this star are 4400 K and log=1.5 respectively, the iron is underabundant by 0.6 dex. The heavy elements (up to thorium, Z=90) show the overabundances with respect to iron. The signs of accretion of interstellar gas are found in the atmosphere of this star.

  4. Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars

    Science.gov (United States)

    Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance

    2010-02-01

    The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.

  5. Three regimes of extrasolar planet radius inferred from host star metallicities.

    Science.gov (United States)

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  6. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  7. Companions in Color: High-Resolution Imaging of Kepler’s Sub-Neptune Host Stars

    Science.gov (United States)

    Ware, Austin; Wolfgang, Angie; Kannan, Deepti

    2018-01-01

    A current problem in astronomy is determining how sub-Neptune-sized exoplanets form in planetary systems. These kinds of planets, which fall between 1 and 4 times the size of Earth, were discovered in abundance by the Kepler Mission and were typically found with relatively short orbital periods. The combination of their size and orbital period make them unusual in relation to the Solar System, leading to the question of how these exoplanets form and evolve. One possibility is that they have been influenced by distant stellar companions. To help assess the influence of these objects on the present-day, observed properties of exoplanets, we conduct a NIR search for visual stellar companions to the stars around which the Kepler Mission discovered planets. We use high-resolution images obtained with the adaptive optics systems at the Lick Observatory Shane-3m telescope to find these companion stars. Importantly, we also determine the effective brightness and distance from the planet-hosting star at which it is possible to detect these companions. Out of the 200 KOIs in our sample, 42 KOIs (21%) have visual companions within 3”, and 90 (46%) have them within 6”. These findings are consistent with recent high-resolution imaging from Furlan et al. 2017 that found at least one visual companion within 4” for 31% of sampled KOIs (37% within 4" for our sample). Our results are also complementary to Furlan et al. 2017, with only 17 visual companions commonly detected in the same filter. As for detection limits, our preliminary results indicate that we can detect companion stars < 3-5 magnitudes fainter than the planet-hosting star at a separation of ~ 1”. These detection limits will enable us to determine the probability that possible companion stars could be hidden within the noise around the planet-hosting star, an important step in determining the frequency with which these short-period, sub-Neptune-sized planets occur within binary star systems.

  8. M Stars as Targets for Terrestrial Exoplanet Searches And Biosignature Detection

    Science.gov (United States)

    Scalo, John; Kaltenegger, Lisa; Segura, Ant Gona; Fridlund, Malcolm; Ribas, Ignasi; Kulikov, Yu. N.; Grenfell, John L.; Rauer, Hieke; Odert, Petra; Leitzinger, Martin; Selsis, F.; Khodachenko, Maxim L.; Eiroa, Carlos; Kasting, Jim; Lammer, Helmut

    2007-02-01

    instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions. Key Words: M star planets-Habitable planets - Life and stellar activity - Spectral biosignatures - Terrestrial planet formation - Exoplanet properties. Astrobiology 7(1), 85 - 166.

  9. Stellar magnetic activity and exoplanets

    Directory of Open Access Journals (Sweden)

    Vidotto A.A.

    2017-01-01

    Full Text Available It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not act as to enhance the activity of their host stars.

  10. Stellar magnetic activity and exoplanets

    Science.gov (United States)

    Vidotto, A. A.

    2017-10-01

    It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not) act as to enhance the activity of their host stars.

  11. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  12. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W.; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M.; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2018-01-01

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin–orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  13. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star.

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2017-12-18

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin-orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  14. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; hide

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  15. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    Science.gov (United States)

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances

  16. Observable Impacts of Exoplanets on Stellar Hosts - An X-Ray Perspective

    Science.gov (United States)

    Wolk, Scott J.; Pillitteri, Ignazio; Poppenhaeger, Katja

    2017-10-01

    Soon after the discovery of hot Jupiters, it was suspected that interaction of these massive bodies with their host stars could give rise to observable signals. We discuss the observational evidence for star-planet interactions (SPI) of tidal and magnetic origin observed in X-rays. Hot Jupiters can significantly impact the activity of their host stars through tidal and magnetic interaction, leading to either increased or decreased stellar activity - depending on the internal structure of the host star and the properties of the hosted planet. We provide several examples of these interactions. In HD 189733, the strongest X-ray flares are preferentially seen in a very restricted range of planetary phases. Hot Jupiters, can also obscure the X-ray signal during planetary transits. Observations of this phenomena have led to the discovery of a thin upper atmospheres in HD 189733A. On the other hand, WASP-18 - an F6 star with a massive hot Jupiter, shows no signs of activity in X-rays or UV. Several age indicators (isochrone fitting, Li abundance) point to a young age (~0.5 - -1.0 Gyr) and thus significant activity was expected. In this system, tidal SPI between the star and the very close-in and massive planet appears to disrupt the surface shear layer and thus nullify the stellar activity.

  17. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    Science.gov (United States)

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  18. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff < 2700 K and has a significant effect on the structure and the spectrum of the atmosphere for Teff < 2400 K. We have compared the synthetic spectra of our models with observed spectra and found that they fit the spectra of mid- to late-type M-dwarfs and early-type L-dwarfs well. The geometrical extension of the atmospheres (at τ = 1) changes with wavelength resulting in a flux variation of 10%. This translates into a change in geometrical extension of the atmosphere of about 50 km, which is the quantitative basis for exoplanetary transit spectroscopy. We also test DRIFT-MARCS for an example exoplanet and demonstrate that our simulations reproduce the Spitzer observations for WASP-19b rather well for Teff = 2600 K, log (g) = 3.2 and solar abundances. Our model points at an exoplanet with a deep cloud-free atmosphere with a substantial

  19. Enabling the Direct Detection of Earth-Sized Exoplanets with the LBTI HOSTS Project: A Progress Report

    Science.gov (United States)

    Danchi, W.; Bailey, V.; Bryden, G.; Defrere, D.; Ertel, S.; Haniff, C.; Hinz, P.; Kennedy, G.; Mennesson, B.; Millan-Gabet, R.; hide

    2016-01-01

    NASA has funded a project called the Hunt for Observable Signatures of Terrestrial Systems (HOSTS) to survey nearby solar type stars to determine the amount of warm zodiacal dust in their habitable zones. The goal is not only to determine the luminosity distribution function but also to know which individual stars have the least amount of zodiacal dust. It is important to have this information for future missions that directly image exoplanets as this dust is the main source of astrophysical noise for them. The HOSTS project utilizes the Large Binocular Telescope Interferometer (LBTI), which consists of two 8.4-m apertures separated by a 14.4-m baseline on Mt. Graham, Arizona. The LBTI operates in a nulling mode in the mid-infrared spectral window (8-13 micrometers), in which light from the two telescopes is coherently combined with a 180 degree phase shift between them, producing a dark fringe at the location of the target star. In doing so the starlight is greatly reduced, increasing the contrast, analogous to a coronagraph operating at shorter wavelengths. The LBTI is a unique instrument, having only three warm reflections before the starlight reaches cold mirrors, giving it the best photometric sensitivity of any interferometer operating in the mid-infrared. It also has a superb Adaptive Optics (AO) system giving it Strehl ratios greater than 98% at 10 micrometers. In 2014 into early 2015 LBTI was undergoing commissioning. The HOSTS. project team passed its Operational Readiness Review (ORR) in April 2015. The team recently published papers on the target sample, modeling of the nulled disk images, and initial results such as the detection of warm dust around eta Corvi. Recently a paper was published on the data pipeline and on-sky performance. An additional paper is in preparation on Beta Leo. We will discuss the scientific and programmatic context for the LBTI project, and we will report recent progress, new results, and plans for the science verification

  20. M stars as targets for terrestrial exoplanet searches and biosignature detection.

    Science.gov (United States)

    Scalo, John; Kaltenegger, Lisa; Segura, Antígona; Segura, Ant Gona; Fridlund, Malcolm; Ribas, Ignasi; Kulikov, Yu N; Grenfell, John L; Rauer, Heike; Odert, Petra; Leitzinger, Martin; Selsis, F; Khodachenko, Maxim L; Eiroa, Carlos; Kasting, Jim; Lammer, Helmut

    2007-02-01

    arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.

  1. Pulsating stars harbouring planets

    Directory of Open Access Journals (Sweden)

    Moya A.

    2013-04-01

    Full Text Available Why bother with asteroseismology while studying exoplanets? There are several answers to this question. Asteroseismology and exoplanetary sciences have much in common and the synergy between the two opens up new aspects in both fields. These fields and stellar activity, when taken together, allow maximum extraction of information from exoplanet space missions. Asteroseismology of the host star has already proved its value in a number of exoplanet systems by its unprecedented precision in determining stellar parameters. In addition, asteroseismology allows the possibility of discovering new exoplanets through time delay studies. The study of the interaction between exoplanets and their host stars opens new windows on various physical processes. In this review I will summarize past and current research in exoplanet asteroseismology and explore some guidelines for the future.

  2. What asteroseismology can do for exoplanets

    Directory of Open Access Journals (Sweden)

    Van Eylen Vincent

    2015-01-01

    Full Text Available We describe three useful applications of asteroseismology in the context of exoplanet science: (1 the detailed characterisation of exoplanet host stars; (2 the measurement of stellar inclinations; and (3 the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 [1]. This is one of the brightest (V = 9.4 Kepler exoplanet host stars, containing a small (2.8 R⊕ transiting planet in a long orbit (17.8 days, and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42 was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  3. SPI-ing Exoplanets

    Science.gov (United States)

    Maggio, A.

    2017-10-01

    Star-Planet Interaction (SPI) is a broad phenomenological term which encompasses a variety of physical effects relevant for the evolution of extra-solar planetary systems, in particular those hosting giant gas planets in close orbits around their parent star. While theoretical expectations of SPI are abundant, observational signatures are still elusive with current instrumentation and adopted observing strategies. In particular, recent X-ray observations provided intriguing indications of different SPI-driven effects, including enhanced coronal emission and flaring activity related to the phase of the planetary orbit, but for a few specific planet hosting stars, while results based on statistical studies are controversial. I will review the state of the art on the matter, and possible future developments with Athena and SKA that will help us for a better characterization of exoplanets and their abitability conditions.

  4. CHEOPS: towards exoplanet characterisation

    Science.gov (United States)

    Fortier, A.; Beck, T.; Benz, W.; Broeg, C.; Cessa, V.; Ehrenreich, D.; Pagano, I.; Peter, G.; Piazza, D.; Plesseria, J.-Y.; Ragazzoni, R.; Ratti, F.; Steller, M.; Szòke, J.; Thomas, N.

    2014-04-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultrahigh precision photometry. It is expected to be launch ready at the end of 2017. CHEOPS will be the first space telescope dedicated to search for transits on bright stars already known to host planets. It will have access to more than 70% of the sky, allowing almost any interesting target to be observed. This will provide the unique capability of determining accurate radii for planets for which the mass has already been estimated from ground-based spectroscopic surveys and for new planets discovered by the next generation ground-based transits surveys (Neptunesize and smaller).

  5. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones.

    Science.gov (United States)

    Lammer, Helmut; Lichtenegger, Herbert I M; Kulikov, Yuri N; Griessmeier, Jean-Mathias; Terada, N; Erkaev, Nikolai V; Biernat, Helfried K; Khodachenko, Maxim L; Ribas, Ignasi; Penz, Thomas; Selsis, Franck

    2007-02-01

    Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances exoplanet is protected by a "magnetic shield" with its boundary located at 1 Earth radius above the surface. Furthermore, our study indicates that magnetic moments of tidally locked Earth-like exoplanets are essential for protecting their expanded upper atmospheres because of intense XUV radiation against CME plasma erosion. Therefore, we suggest that larger and more massive terrestrial-type exoplanets may better protect their atmospheres against CMEs, because the larger cores of such exoplanets would generate stronger magnetic moments and their higher gravitational acceleration would constrain the expansion of their thermosphere-exosphere regions and reduce atmospheric escape.

  6. Forecasting the Impact of Stellar Activity on Transiting Exoplanet Spectra

    OpenAIRE

    Zellem, Robert T.; Swain, Mark R.; Roudier, Gael; Shkolnik, Evgenya L.; Creech-Eakman, Michelle J.; Ciardi, David R.; Line, Michael R.; Iyer, Aishwarya R.; Bryden, Geoffrey; Llama, Joe; Fahy, Kristen A.

    2017-01-01

    Exoplanet host star activity, in the form of unocculted starspots or faculae, alters the observed transmission and emission spectra of the exoplanet. This effect can be exacerbated when combining data from different epochs if the stellar photosphere varies between observations due to activity. Here, we present a method to characterize and correct for relative changes due to stellar activity by exploiting multi-epoch (⩾2 visits/transits) observations to place them in a consistent reference fra...

  7. Lightest exoplanet yet discovered

    Science.gov (United States)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  8. Star-forming AGN host galaxies

    NARCIS (Netherlands)

    Barthel, P

    2001-01-01

    The symbiosis of nuclear activity and star-formation in galaxies, as manifested in their spectral energy distributions (SEDs) is reviewed. Attention is drawn to an Hertzsprung-Russell diagram - equivalent for such objects, as well as to the importance of the SEDs in cosmological context. (C) 2001

  9. Searching for new diagnostics of exoplanet atmospheres

    Science.gov (United States)

    Oklopcic, Antonija; Hirata, Christopher M.; Heng, Kevin

    2017-01-01

    By characterizing the atmospheres of exoplanets we learn about their physical properties and chemical composition. This knowledge will ultimately lead to better understanding of the processes that govern planetary formation and evolution. In the light of upcoming space- and ground-based observatories that will enable remarkable advancement in our observational capabilities, it is important to keep searching for new diagnostic tools that may help us place more robust and reliable constraints on different atmospheric properties. As part of my Ph.D. thesis I investigated new methods for probing the atmospheres of exoplanets. I this talk I will present how observing the spectral signatures of Raman scattering imprinted in the reflected light of gaseous exoplanets at short optical wavelengths can be used to constrain the bulk composition of an exoplanet atmosphere, its temperature, and the presence and/or the altitude of thick clouds. I will discuss the prospects for detecting these signatures in nearby exoplanets using the next generation of observational facilities. I will finish by presenting my recent work on looking for new diagnostics of extended exoplanet atmospheres which may help us to better understand the processes of atmospheric escape and mass loss in exoplanets close to their host stars.

  10. Discovery and Mass Measurements of a Cold, Sub-Neptune Mass Planet and Its Host Star

    Science.gov (United States)

    Barry, Richard K., Jr.

    2011-01-01

    The gravitational microlensing exoplanet detection method is uniquely sensitive to cold, low-mass planets which orbit beyond the snow-line, where the most massive planets are thought to form. The early statistical results from microlensing indicate that Neptune-Saturn mass planets located beyond the snow-line are substantially more common than their counterparts in closer orbits that have found by the Doppler radial velocity method. We present the discovery of the planet MOA-2009-BLG-266Lb, which demonstrates that the gravitational microlensing method also has the capability to measure the masses of cold, low-mass planets. The mass measurements of the host star and the planet are made possible by the detection of the microlensing parallax signal due to the orbital motion or the Earth as well as observations from the EPOXI spacecraft in a Heliocentric orbit. The microlensing light curve indicates a planetary host star mass of M(sun) = 0.54 + / - 0.05M(sun) located at a distance of DL= 2.94 _ 0.21 kpc, orbited by a planet of mass mp= 9.8 +/-1.1M(Earth) with a semi-major axis of a = 3.1(+1.9-0.4)MAU.

  11. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    Energy Technology Data Exchange (ETDEWEB)

    Van Grootel, V.; Gillon, M.; Scuflaire, R. [Institut d' Astrophysique et de Géophysique, Université de Liège, 17 Allée du 6 Août, B-4000 Liège (Belgium); Valencia, D. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4 (Canada); Madhusudhan, N.; Demory, B.-O.; Queloz, D. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Dragomir, D. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr. Suite 102, Goleta, CA 93117 (United States); Howe, A. R.; Burrows, A. S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, D. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Ehrenreich, D.; Lovis, C.; Mayor, M.; Pepe, F.; Segransan, D.; Udry, S. [Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, CH-1290 Sauverny (Switzerland); Seager, S., E-mail: valerie.vangrootel@ulg.ac.be [Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2014-05-01

    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M {sub *} = 0.77 ± 0.05 M {sub ☉}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-High Resolution Echelle Spectrometer (Keck-HIRES) radial velocities and Microvariability and Oscillations of STars (MOST) and Spitzer photometry. HD 97658 b is a massive (M{sub P}=7.55{sub −0.79}{sup +0.83} M{sub ⊕}) and large (R{sub P}=2.247{sub −0.095}{sup +0.098}R{sub ⊕} at 4.5 μm) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, of at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for upcoming space missions such as the Transiting Exoplanet Survey Satellite (TESS), the Characterizing Exoplanet Satellite (CHEOPS), the Planetary Transits and Oscillations of stars (PLATO), and the James Webb Space Telescope to characterize thoroughly its structure and atmosphere.

  12. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  13. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  14. Stargate: An Open Stellar Catalog for NASA Exoplanet Exploration

    Science.gov (United States)

    Tanner, Angelle

    NASA is invested in a number of space- and ground-based efforts to find extrasolar planets around nearby stars with the ultimate goal of discovering an Earth 2.0 viable for searching for bio-signatures in its atmosphere. With both sky-time and funding resources extremely precious it is crucial that the exoplanet community has the most efficient and functional tools for choosing which stars to observe and then deriving the physical properties of newly discovered planets via the properties of their host stars. Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and planetary parameters in the absence of corresponding images and spectra. The mothballed NStED archive was in the process of collecting such data on nearby stars but its course may have changed if it comes back to NASA mission specific targets and NOT a volume limited sample of nearby stars. This means there is void. A void in the available set of tools many exoplanet astronomers would appreciate to create comprehensive lists of the stellar parameters of stars in our local neighborhood. Also, we need better resources for downloading adaptive optics images and published spectra to help confirm new discoveries and find ideal target stars. With so much data being produced by the stellar and exoplanet community we have decided to propose for the creation of an open access archive in the spirit of the open exoplanet catalog and the Kepler Community Follow-up Program. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be updated quickly and have a level of versatility which is necessary in today's fast moving, big data exoplanet community. Here, we propose to develop the Stargate Open stellar catalog for NASA exoplanet exploration.

  15. Natural and artificial spectral edges in exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  16. Exoplanet Update

    Science.gov (United States)

    Johnson, John

    2011-04-01

    In the years since 1995, our knowledge of planetary systems has grown from a sample of one to a diverse collection of more than 500 planets around other stars. Discoveries to date have revealed a surprising diversity of planetary systems, including "hot Jupiters" in 1-day orbits, planets in retrograde orbits, and "super Earths" with masses intermediate to those of the Earth and Neptune. I will present an overview of the motivation behind the study of exoplanets, how astronomers hunt for planets around other stars, and what we have learned about planet formation in general, and the origins of our Solar System in general.

  17. Quenching of Star Formation in Molecular Outflow Host NGC 1266

    NARCIS (Netherlands)

    Alatalo, K.; Nyland, K. E.; Graves, G.; Deustua, S.; Young, L. M.; Davis, T. A.; Crocker, A. F.; Bureau, M.; Bayet, E.; Blitz, L.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; McDermid, R. M.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Wong, Tony; Ott, Jürgen

    We detail the rich molecular story of NGC 1266, its serendipitous discovery within the ATLAS3D survey (Cappellari et al. 2011) and how it plays host to an AGN-driven molecular outflow, potentially quenching all of its star formation (SF) within the next 100 Myr. While major mergers appear to play a

  18. Star Forming Galaxies and AGN Hosts: The Seagull Wings

    Science.gov (United States)

    Stasińska, Grazyna; Cid Fernandes, Roberto; Mateus, Abîlio; Sodré, Laerte; Asari, Natalia V.

    2007-05-01

    We discuss the spectral signatures of normal star forming (NSF) galaxies and of AGN hosts of and present physically motivated techniques to distinguish these two classes of galaxies. We have determined the emission line intensities for a complete sample of galaxies extracted from the Sloan Digital sky Survey, after subtracting the stellar continuum obtained from spectral synthesis. With the help of sequences of photoionization models, we explain why, in the famous [OIII]/Hbeta vs [NII]/Halpha diagram, NSF galaxies and AGN hosts form two separate sequences, which look like the open wings of a seagull. We also examine other techniques to distinguish star forming galaxies from AGN hosts. Finally, we propose a new diagnostic diagram which can be used with optical spectra of galaxies with redshifts up to z=1.3. This new diagram has also the advantage of allowing one to show all the galaxies of a sample in one plot, including passive galaxies.

  19. The Search for Ringed Exoplanets

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    Are planetary rings as common in our galaxy as they are in our solar system? A new study demonstrates how we might search for ringed exoplanets and then possibly finds one!Saturns Elsewhere?Artists illustration of the super ring system around exoplanet J1407b. This is the only exoplanet weve found with rings, but its not at all like Saturn. [Ron Miller]Our solar system is filled with moons and planetary rings, so it stands to reason that exoplanetary systems should exhibit the same features. But though weve been in the planet-hunting game for decades, weve only found one exoplanet thats surrounded by a ring system. Whats more, that system J1407b has enormous rings that are vastly different from the modest, Saturn-like rings that we might expect to be more commonplace.Have we not discovered ringed exoplanets just because theyre hard to identify? Or is it because theyre not out there? A team of scientists led by Masataka Aizawa (University of Tokyo) has set out to answer this question by conducting a systematic search for rings around long-period planet candidates.The transit light curve of KIC 10403228, shown with three models: the best-fitting planet-only model (blue) and the two best-fitting planet+ring models (green and red). [Aizawa et al. 2017]The Hunt BeginsWhy long-period planets? Rings are expected to be unstable as the planet gets closer to the central star. Whats more, the planet needs to be far enough away from the stars warmth for the icy rings to exist. The authors therefore select from the collection of candidate transiting planets 89 long-period candidates that might be able to host rings.Aizawa and collaborators then fit single-planet models (with no rings) to the light curves of these planets and search for anomalies curves that arent fit well by these standard models. Particularly suspicious characteristics include a long ingress/egress as the planet moves across the face of the star, and asymmetry of the transit shape.After applying a series of

  20. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  1. Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exoplanets

    OpenAIRE

    Ramirez, I.; Fish, J. R.; Lambert, D. L.; Prieto, C. Allende

    2012-01-01

    We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (Teff) versus lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence ...

  2. Metallicity of Sun-like G-stars that have Exoplanets

    Indian Academy of Sciences (India)

    Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (≥1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of ∼0.8 Jupiter mass.

  3. Direct imaging of exoplanets.

    Science.gov (United States)

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes.

  4. Exoplanets Detection, Formation, Properties, Habitability

    CERN Document Server

    Mason, John W

    2008-01-01

    This edited, multi-author volume will be an invaluable introduction and reference to all key aspects in the field of exoplanet research. The reviews cover: Detection methods and properties of known exoplanets, Detection of extrasolar planets by gravitational microlensing. The formation and evolution of terrestrial planets in protoplanetary and debris disks. The brown dwarf-exoplanet connection. Formation, migration mechanisms and properties of hot Jupiters. Dynamics of multiple exoplanet systems. Doppler exoplanet surveys. Searching for exoplanets in the stellar graveyard. Formation and habitability of extra solar planets in multiple star systems. Exoplanet habitats and the possibilities for life. Moons of exoplanets: habitats for life. Contributing authors: •Rory Barnes •David P. Bennett •Jian Ge •Nader Haghighipour •Patrick Irwin •Hugh Jones •Victoria Meadows •Stanimir Metchev •I. Neill Reid •George Rieke •Caleb Scharf •Steinn Sigurdsson

  5. Stellar parameters for stars of the CoRoT exoplanet field

    OpenAIRE

    Cortés, C.; Maciel, S. C.; Vieira, S; Lopes, C. E. Ferreira; Leão, I. C.; OLIVEIRA, G. P. de.; Correia, C; Martins, B. L. Canto; Catelan, M.; De Medeiros, J. R.

    2015-01-01

    Aims:To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Method: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard ana...

  6. Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates

    OpenAIRE

    Gautier, Thomas N.; Charbonneau, David; Rowe, Jason F.; Marcy, Geoffrey W.; Isaacson, Howard; Torres, Guillermo; Fressin, Francois; Rogers, Leslie A.; Désert, Jean-Michel; Buchhave, Lars A.; Latham, David Winslow; Quinn, Samuel N.; Ciardi, David R.; Fabrycky, Daniel C.; Ford, Eric B.

    2011-01-01

    We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASS J19104752+4220194. From high-resolution spectroscopy of the star, we find a stellar effective temperature T eff = 5455 ± 100 K, a metallicity of [Fe/H] = 0.01 ± 0.04, and a surface gravity of log g = 4.4 ± 0.1. We combine these estimates with an estimate of the stellar density derived from the...

  7. Hot Jupiters around young stars

    Science.gov (United States)

    Yu, L. F.; Donati, J.-F.

    2017-12-01

    This conference paper presents the results of the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of massive close-in Exoplanets) observation programme, regarding the search for giant exoplanets around weak-line T Tauri stars (wTTS), as of early 2017. The discoveries of two hot Jupiters (hJs), around V830 Tau and TAP 26, sun-like stars of respectively ˜2 Myr and ˜17 Myr, are summarized here. Both exoplanets seem to have undergone type-II migration (planet-disc interaction leading the orbit to narrow around the host) based on their low orbital eccentricity. The methods which were used are given more focus in the paper Stellar activity filtering methods for the detection of exoplanets in the present book.

  8. The mass of the super-Earth orbiting the brightest Kepler planet hosting star

    Science.gov (United States)

    Lopez-Morales, Mercedes; HARPS-N Team

    2016-01-01

    HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.

  9. Stellar parameters for stars of the CoRoT exoplanet field

    Science.gov (United States)

    Cortés, C.; Maciel, S. C.; Vieira, S.; Ferreira Lopes, C. E.; Leão, I. C.; de Oliveira, G. P.; Correia, C.; Canto Martins, B. L.; Catelan, M.; De Medeiros, J. R.

    2015-09-01

    Context. Spectroscopic observations represent a fundamental step in the physical characterization of stars and, in particular, in the precise location of stars in the HR diagram. Rotation is also a key parameter, impacting stellar properties and evolution, which modulates the interior and manifests itself on the surface of stars. To date, the lack of analysis based on large samples has prevented our understanding of the real impact of stellar parameters and rotation on the stellar evolution as well as on the behavior of surface abundances. The space missions, CoRoT and Kepler, are providing us with rotation periods for thousands of stars, thus enabling a robust assessment of the behavior of rotation for different populations and evolutionary stages. For these reasons, the follow-up programs are fundamental to increasing the returns of these space missions. An analysis that combines spectroscopic data and rotation/modulation periods obtained from these space missions provides the basis for establishing the evolutionary behavior of the angular momentum of solar-like stars at different evolutionary stages, and the relation of rotation with other relevant physical and chemical parameters. Aims: To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Methods: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters (Teff, log (g), [Fe/H], vmic, vrad, vsin (i), and A(Li)) for a large sample of CoRoT targets. Results: We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our

  10. Models of very-low-mass stars, brown dwarfs and exoplanets.

    Science.gov (United States)

    Allard, F; Homeier, D; Freytag, B

    2012-06-13

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.

  11. Exoplanets Galore!

    Science.gov (United States)

    2000-05-01

    Eight New Very Low-Mass Companions to Solar-Type Stars Discovered at La Silla The intensive and exciting hunt for planets around other stars ("exoplanets") is continuing with great success in both hemispheres. Today, a team of astronomers of the Geneva Observatory [1] are announcing the discovery of no less than eight new, very-low mass companions to solar-type stars. The masses of these objects range from less than that of planet Saturn to about 15 times that of Jupiter. The new results were obtained by means of high-precision radial-velocity measurements with the CORALIE spectrometer at the Swiss 1.2-m Leonhard Euler telescope at the ESO La Silla Observatory. An earlier account of this research programme is available as ESO Press Release 18/98. Recent views of this telescope and its dome are available below as PR Photos 13a-c/00. This observational method is based on the detection of changes in the velocity of the central star , due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit , in particular the period and the distance from the star, as well as a minimum mass [2]. The characteristics of the new objects are quite diverse. While six of them are most likely bona-fide exoplanets , two are apparently very low-mass brown-dwarfs (objects of sub-stellar mass without a nuclear energy source in their interior). From the first discovery of an exoplanet around the star 51 Pegasi in 1995 (by Michel Mayor and Didier Queloz of the present team), the exoplanet count is now already above 40. "The present discoveries complete and enlarge our still preliminary knowledge of extra-solar planetary systems, as well as the transition between planets and `brown dwarfs'" , say Mayor and Queloz, on behalf of the Swiss team. An overview of the new objects ESO PR Photo 12/00 ESO PR Photo 12/00 [Preview - JPEG: 400 x 242 pix - 76k] [Normal - JPEG

  12. Wandering stars about planets and exo-planets : an introductory notebook

    CERN Document Server

    Cole, George H A

    2006-01-01

    The space vehicle spectaculars of recent years have been revealing the full scope and beauty of our own solar system but have also shown that a growing number of other stars too have planetary bodies orbiting around them. The study of these systems is just beginning. It seems that our galaxy contains untold numbers of planets, and presumably other galaxies will be similar to our own. Our solar system contains life, on Earth: do others as well? Such questions excite modern planetary scientists and astro-biologists. This situation is a far cry from ancient times when the five planets that can be

  13. Search for Exoplanets around Northern Circumpolar Stars. II. The Detection of Radial Velocity Variations in M Giant Stars HD 36384, HD 52030, and HD 208742

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong-Cheol; Jeong, Gwanghui; Han, Inwoo; Lee, Sang-Min; Kim, Kang-Min [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Myeong-Gu; Oh, Hyeong-Il [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Mkrtichian, David E. [National Astronomical Research Institute of Thailand, Chiang Mai 50200 (Thailand); Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg (TLS), Sternwarte 5, D-07778 Tautenburg (Germany); Gu, Shenghong; Bai, Jinming, E-mail: bclee@kasi.re.kr [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-07-20

    We present the detection of long-period RV variations in HD 36384, HD 52030, and HD 208742 by using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) for the precise radial velocity (RV) survey of about 200 northern circumpolar stars. Analyses of RV data, chromospheric activity indicators, and bisector variations spanning about five years suggest that the RV variations are compatible with planet or brown dwarf companions in Keplerian motion. However, HD 36384 shows photometric variations with a period very close to that of RV variations as well as amplitude variations in the weighted wavelet Z-transform (WWZ) analysis, which argues that the RV variations in HD 36384 are from the stellar pulsations. Assuming that the companion hypothesis is correct, HD 52030 hosts a companion with minimum mass 13.3 M {sub Jup} orbiting in 484 days at a distance of 1.2 au. HD 208742 hosts a companion of 14.0 M {sub Jup} at 1.5 au with a period of 602 days. All stars are located at the asymptotic giant branch (AGB) stage on the H–R diagram after undergoing the helium flash and leaving the giant clump.With stellar radii of 53.0 R {sub ⊙} and 57.2 R {sub ⊙} for HD 52030 and HD 208742, respectively, these stars may be the largest yet, in terms of stellar radius, found to host substellar companions. However, given possible RV amplitude variations and the fact that these are highly evolved stars, the planet hypothesis is not yet certain.

  14. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert A., E-mail: rbrown@stsci.edu [Space Telescope Science Institute (United States)

    2015-06-01

    We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. For the coronagraphs, WFIRST-C and EXO-C, the most likely number of good estimators of true mass is currently zero. For the star shades, EXO-S and WFIRST-S, the most likely numbers of good estimators are three and four, respectively, including GJ 676 A b and 16 Cyg B b. We expect that uncertain orbital elements currently undermine all potential programs of direct imaging and spectroscopy of RV exoplanets.

  15. Tidal Timelines: Evolution of Terrestrial Exoplanet Habitability Around Low Mass Stars

    Science.gov (United States)

    Mullins, K.; Barnes, R.

    2009-12-01

    The range of orbits for planetary habitability have traditionally been based on the stellar flux that allows liquid water to persist on a planetary surface. However, when considering terrestrial (rocky) planets close to a low mass star (≤0.35M⊙), tidal effects must be considered because of the additional energy input from tidal heating. Of further interest is the time over which habitable conditions are generated by tidal interaction. Tides cause orbital evolution, during which the heat flux varies, which may cause the planet to migrate in and out of habitable zones and possibly result in sterilization. So, the heating history of a planet should be a consideration when searching for life-supporting planets. We apply heat flux limitations on habitability (based on observations within our solar system) and tidally evolve planets across a range of initial conditions of orbits and masses. Our results provide a visualization of the time a planet has spent with a favorable amount of tidal heat for habitability and/or the amount of time until the heating is no longer conducive to habitability. As a greater number of close in terrestrial planets are found, these results can provide a method for identifying those planets with the highest potential for life.

  16. Recurring sets of recurring starspot occultations on exoplanet host Qatar-2

    Science.gov (United States)

    Močnik, T.; Southworth, J.; Hellier, C.

    2017-10-01

    We announce the detection of recurring sets of recurring starspot occultation events in the short-cadence K2 light curve of Qatar-2, a K dwarf star transited every 1.34 d by a hot Jupiter. In total, we detect 34 individual starspot occultation events, caused by five different starspots, occulted in up to five consecutive transits or after a full stellar rotation. The longest recurring set of recurring starspot occultations spans over three stellar rotations, setting a lower limit for the longest starspot lifetime of 58 d. Starspot analysis provided a robust stellar rotational period measurement of 18.0 ± 0.2 d and indicates that the system is aligned, having a sky-projected obliquity of 0° ± 8°. A pronounced rotational modulation in the light curve has a period of 18.2 ± 1.6 d, in agreement with the rotational period derived from the starspot occultations. We tentatively detect an ellipsoidal modulation in the phase curve, with a semi-amplitude of 18 ppm, but cannot exclude the possibility that this is the result of red noise or imperfect removal of the rotational modulation. We detect no transit-timing and transit-duration variations with upper limits of 15 s and 1 min, respectively. We also reject any additional transiting planets with transit depths above 280 ppm in the orbital period region 0.5-30 d.

  17. First Temperate Exoplanet Sized Up

    Science.gov (United States)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  18. Gaia and WEAVE/WxES: Supporting the PLATO Exoplanet Hunter

    Science.gov (United States)

    Walton, N. A.

    2016-10-01

    This paper briefly describes the powerful linkages between the Gaia and PLATO missions and the potential for WEAVE in the study of exoplanet populations, for instance through the proposed WxES survey. Gaia successfully launched in December 2013, and over the course of its nominal five year mission will discover, via their astrometric signatures, upwards of 20 000 massive Jupiter sized long period planets at distances out to several hundred parsecs around all star types. In addition Gaia will discover up to a thousand short period hot Jupiters around M stars. PLATO, to launch in 2024, will through precision photometry, observe in detail some million host stars, and will detect, via the transit technique, planets down to Earth masses. PLATO will observe two fields of over 2 000 square degrees for 2-3 years each. At least one of these will be in the northern hemisphere. WEAVE has the potential to provide detailed chemical characterization of the host stars of the Gaia and PLATO exoplanet systems. This will enable insights into, for instance, metallicity of the host star correlations against both massive exoplanets (perhaps confirming current relationships), and lower mass exoplanets. We note how the rapid exploitation of such a potential WEAVE survey could be achieved, utilizing the WEAVE processing systems being developed at the IoA, Cambridge, coupled with efficient interfaces to both Gaia and PLATO data products, that are also being generated at the IoA.

  19. Wandering stars. About planets and exo-planets: an introductory notebook

    Science.gov (United States)

    Cole, George H. A.

    pt. I. Observations reveal gravity. 1. Early observations. 1.1. Stars and planets. 1.2. Interpretations of the observations. 1.3. Sun, moon and earth. 1.4. The shapes of the orbits. 1.5. Kepler's laws of planetary motion. 1.6. Galileo's law of inertia: Newton's laws of motion. 1.7. Newton's law of gravitation. 1.8. A passing encounter without capture. 2. A planet and a sun: the role of gravity. 2.1. Specification of an elliptic orbit. 2.2. Equal areas in equal times. 2.3. Consequences of an elliptical path: the inverse square force law. 2.4. The semi-major axis and the period of the orbit: the 3rd law. 2.5. Two immediate consequences. 2.6. The energy in an elliptic orbit. 2.7. Specifying the orbit from observations. 2.8. The different possible orbits -- 3. Several planets: the centre of mass. 3.1. More than one planet. 3.2. Jupiter, Mars and the asteroids. 3.3. The centre of mass: two masses. 3.4. Transfer orbits. 3.5. Tidal forces. 3.6. The Roche limit. 4. The general structure of a planet. 4.1. Several energies. 4.2. Packing atoms together. 4.3. The mass-radius relation. 4.4. Maximum size and mass. 4.5. Defining a planetary body. 4.6. Cosmic bodies. 4.7. Planets and satellites: planetary bodies. 5. Fluid flows and magnetism. 5.1. The fluid state. 5.2. The importance of time scales. 5.3. Specifying fluid behaviour. 5.4. Isothermal insulating fluids. 5.5. Thermal insulating fluid flows. 5.6. Natural convection: volcanic activities. 5.7. Boundary conditions. 5.8. Electrically conducting fluids. 5.9. Application to planetary magnetic fields -- pt. II. General features of the Solar System. 6. The larger members of the Solar System. 6.1. The sun. 6.2. The planets. 6.3. Satellites. 6.4. Planetary rings. 6.5. Angular momentum. 6.6. Magnetism and rotation. 7. Smaller members: asteroids, comets and meteorites. 7.1. Asteriods. 7.2. Comets and meteor showers. 7.3. Meteorites. 7.4. The Edgeworth-Kuiper belt. 7.5. The Oort cloud. 8. The material of the Solar System. 8.1. The

  20. Living with an Old Red Dwarf: X-ray-UV Emissions of Kapteyn’s Star - Effects of X-UV radiation on Habitable Zone Planets hosted by old Red Dwarf Stars

    Science.gov (United States)

    Guinan, Edward F.; Durbin, Allyn J.; Engle, Scott G.

    2015-01-01

    Red dwarfs (dM) stars make up over 75% of the local stellar population and a significant fraction (~40-50%) are older than the Sun. Because of the high frequency of red dwarfs and their longevity (> 50 Gyr), there is a greater possibility of more advanced life in red dwarf-exoplanet systems. MEarths, UVES, SDSS-III, and the upcoming TESS mission are some surveys that are targeting red dwarfs in the search for hosted potentially habitalble planets. As part of Villanova's 'Living with a Red Dwarf' program, we have obtained HST-COS Ultraviolet spectra (1150-3000A) and Chandra X-ray observations of Kapteyn's star (GJ 191; M1 V, V = 8.85 mag , d = 12.76 +/- 0.05 ly). Kapyteyn's Star is important for the study of old red dwarfs because it is the nearest (Pop II) halo star with a radial velocity of +245.2 km/s and an estimated age of 11.2 +/-0.9 Gyrs. Recently Kapteyn's Star was found to host two super-Earth mass planets - one of these is orbiting inside the star's Habitable Zone (Anglada-Escude' 2014: MNRAS 443, L89). In our program, Kapteyn's star is the oldest red dwarf and as such serves as an anchor for our age, rotation, and activity relations. The spectra obtained from HST/COS provide one of the cleanest measurements of the important HI Lyman-alpha 1215.6 A emission flux for red dwarfs. This is due to the large Doppler shift from the high radial velocity, separating the stellar Ly-alpha emission from by the Ly-alpha ISM and local geo-coronal sources. These observations further provide calibrations at the old age/low rotation/low activity extremes for our relations. As the nearest and brightest old red dwarf star, Kapteyn's Star also provides insights into its magnetic properties to investigae coronal x-ray and UV emission for the large population of old, slowly rotating red dwarf stars. Kapteyn's star also serves as a proxy for the numerous metal-poor old disk - Pop II M dwarfs by providing information about X-UV emissions. This information is crucial for

  1. The Effect of Stellar Contamination on Transmission Spectra of Low-mass Exoplanets

    Science.gov (United States)

    Rackham, Benjamin V.; Apai, Daniel; Giampapa, Mark S.

    2017-10-01

    Transmission spectroscopy offers the exciting possibility of studying terrestrial exoplanet atmospheres in the near-term future. The Transiting Exoplanet Survey Satellite (TESS), scheduled for launch next year, is expected to discover thousands of transiting exoplanets around bright host stars, including an estimated twenty habitable zone super-Earths. The brightness of the TESS host stars, combined with refined observational strategies and near-future facilities, will enable searches for atmospheric signatures from smaller and cooler exoplanets. These observations, however, will be increasingly subject to noise introduced by heterogeneities in the host star photospheres, such as star spots and faculae. In short, the transmission spectroscopy method relies on the assumption that the spectrum of the transit chord does not differ from that of the integrated stellar disk or, if it does, the contribution of photospheric heterogeneities to the transmission spectrum can be constrained by variability monitoring. However, any axisymmetric populations of spots and faculae will strongly affect transmission spectra, and their presence cannot be deduced from monitoring efforts. A clear need exists for a more robust understanding of stellar contamination on transmission spectra. Here we summarize our work on the impact of heterogeneous stellar photospheres on transmission spectra and detail implications for atmospheric characterization efforts. By modeling spot and faculae distributions in stellar photospheres, we find that spot-covering fractions extrapolated from observed variability amplitudes are significantly underestimated. Likewise, corrections based on variability monitoring likely fall short of the actual stellar spectral contamination. We provide examples of contamination spectra for typical levels of stellar activity across a range of spectral types. For M dwarfs, molecular absorption features in spots and faculae can imprint apparent features in transmission spectra

  2. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  3. Know the Star, Know the Planet. III. Discovery of the Late-Type Companions to Two Exoplanet Host Stars

    Science.gov (United States)

    2015-03-04

    companion affects the protoplanetary disk by slowing the planetesimals in the disk and allowing the formation of planets. This requires a relatively...1100 K (with an assumed albedo of 0.3). Riddle et al. (2015) imaged a companion to HD 2638 on 2012 September 3 UT. Over the next 13 months, two more

  4. Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)

    Science.gov (United States)

    Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David

    2018-01-01

    Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of

  5. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States)

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  6. Stellar magnetic activity – Star-Planet Interactions

    Directory of Open Access Journals (Sweden)

    Poppenhaeger, K.

    2015-01-01

    Full Text Available Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high-energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. I will review recent theoretical and observational results, as well as outline some avenues for future progress.

  7. Monitoring the High-Energy Radiation Environment of Exoplanets Around Low-mass Stars with SPARCS (Star-Planet Activity Research CubeSat)

    Science.gov (United States)

    Shkolnik, Evgenya L.; Ardila, David; Barman, Travis; Beasley, Matthew; Bowman, Judd D.; Gorjian, Varoujan; Jacobs, Daniel; Jewell, April; Llama, Joe; Meadows, Victoria; Nikzad, Shouleh; Scowen, Paul; Swain, Mark; Zellem, Robert

    2018-01-01

    Roughly seventy-five billion M dwarfs in our galaxy host at least one small planet in the habitable zone (HZ). The stellar ultraviolet (UV) radiation from M dwarfs is strong and highly variable, and impacts planetary atmospheric loss, composition and habitability. These effects are amplified by the extreme proximity of their HZs (0.1–0.4 AU). Knowing the UV environments of M dwarf planets will be crucial to understanding their atmospheric composition and a key parameter in discriminating between biological and abiotic sources for observed biosignatures. The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M stars in the far-UV and near-UV, measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. For each target, SPARCS will observe continuously over at least one complete stellar rotation (5 - 45 days). SPARCS will also advance UV detector technology by flying high quantum efficiency, UV-optimized detectors developed at JPL. These Delta-doped detectors have a long history of deployment demonstrating greater than five times the quantum efficiency of the detectors used by GALEX. SPARCS will pave the way for their application in missions like LUVOIR or HabEx, including interim UV-capable missions. SPARCS will also be capable of ‘target-of-opportunity’ UV observations for the rocky planets in M dwarf HZs soon to be discovered by NASA’s TESS mission, providing the needed UV context for the first habitable planets that JWST will characterize.Acknowledgements: Funding for SPARCS is provided by NASA’s Astrophysics Research and Analysis program, NNH16ZDA001N.

  8. Exploring exoplanet populations with NASA's Kepler Mission.

    Science.gov (United States)

    Batalha, Natalie M

    2014-09-02

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  9. A not so massive cluster hosting a very massive star

    OpenAIRE

    Ramírez Alegría, S.; Chené, A. -N.; Borissova, J.; Kurtev, R.; Navarro, C.; Kuhn, M; Carballo-Bello, J. A.

    2015-01-01

    We present the first physical characterization of the young open cluster VVV CL041. We spectroscopically observed the cluster main-sequence stellar population and a very-massive star candidate: WR62-2. CMFGEN modeling to our near-infrared spectra indicates that WR62-2 is a very luminous (10$^{6.4\\pm0.2} L_{\\odot}$) and massive ($\\sim80 M_{\\odot}$) star.

  10. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-10-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  11. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  12. CHEOPS: CHaracterising ExOPlanets Satellite

    Science.gov (United States)

    Isaak, Kate

    2017-04-01

    CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets, with launch readiness foreseen by the end of 2018. It is also the first S-class mission in ESA's Cosmic Vision 2015-2025. The mission is a partnership between Switzerland and ESA's science programme, with important contributions from 10 other member states. It will provide the unique capability of determining accurate radii for a subset of those planets in the super- Earth to Neptune mass range, for which the mass has already been estimated from ground- based spectroscopic surveys. It will also provide precision radii for new planets discovered by the next generation of ground-based transits surveys (Neptune-size and smaller). The high photometric precision of CHEOPS will be achieved using a photometer covering the 0.35 - 1.1um waveband, designed around a single frame-transfer CCD which is mounted in the focal plane of a 30 cm equivalent aperture diameter, f/5 on-axis Ritchey-Chretien telescope. 20% of the observing time in the 3.5 year nominal mission will be available to Guest Observers from the Community. Proposals will be requested through open calls from ESA that are foreseen to be every year, with the first 6 months before launch. In this poster I will give a scientific and technical overview of the CHEOPS mission.

  13. CHEOPS: CHaracterising ExOPlanet Satellite

    Science.gov (United States)

    Isaak, K. G.

    2015-10-01

    CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. CHEOPS will provide the unique capability of determining radii to ~10% accuracy for a subset of those planets in the super-Earth to Neptune mass range. The high photometric precision of CHEOPS will be achieved using a photometer covering the 0.4 - 1.1um waveband and designed around a single frame-transfer CCD which is mounted in the focal plane of a 30 cm equivalent aperture diameter, f/5 on-axis Ritchey-Chretien telescope. Key to reaching the required performance is rejection of straylight from the Earth that is achieved using a specially designed optical baffle. CHEOPS is the first S-class mission in ESA's Cosmic Vision 2015-2025, and is currently planned to be launch-ready by the end of 2017. The mission is a partnership between Switzerland and ESA's science programme, with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden and the United Kingdom. In this presentation I will give a scientific and technical overview of the mission, as well as an update on the status of the project.

  14. Exoplanet Caught on the Move

    Science.gov (United States)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent

  15. Ammonia, Water Clouds and Methane Abundances of Giant Exoplanets and Opportunities for Super-Earth Exoplanets

    OpenAIRE

    Hu, Renyu

    2014-01-01

    Future direct-imaging exoplanet missions such as WFIRST/AFTA, Exo-C, and Exo-S will measure the reflectivity of exoplanets at visible wavelengths. The exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. We study the science return from direct-imaging exoplanet missions, focusing on the exoplan...

  16. UV star-formation rates of GRB host galaxies

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43......We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43...

  17. Strong H I Lyman-α variations from an 11 Gyr-old host star: a planetary origin?

    Science.gov (United States)

    Bourrier, V.; Ehrenreich, D.; Allart, R.; Wyttenbach, A.; Semaan, T.; Astudillo-Defru, N.; Gracia-Berná, A.; Lovis, C.; Pepe, F.; Thomas, N.; Udry, S.

    2017-06-01

    Kepler-444 provides a unique opportunity to probe the atmospheric composition and evolution of a compact system of exoplanets smaller than the Earth. Five planets transit this bright K star at close orbital distances, but they are too small for their putative lower atmosphere to be probed at optical/infrared wavelengths. We used the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope to search for the signature of the planet's upper atmospheres at six independent epochs in the Lyman-α line. We detect significant flux variations during the transits of both Kepler-444 e and f ( 20%), and also at a time when none of the known planets was transiting ( 40%). Variability in the transition region and corona of the host star might be the source of these variations. Yet, their amplitude over short timescales ( 2-3 h) is surprisingly strong for this old (11.2 ± 1.0 Gyr) and apparently quiet main-sequence star. Alternatively, we show that the in-transit variations could be explained by absorption from neutral hydrogen exospheres trailing the two outer planets (Kepler-444 e and f). They would have to contain substantial amounts of water to replenish hydrogen exospheres such as these, which would reveal them to be the first confirmed ocean planets. The out-of-transit variations, however, would require the presence of an as-yet-undetected Kepler-444 g at larger orbital distance, casting doubt on the planetary origin scenario. Using HARPS-N observations in the sodium doublet, we derived the properties of two interstellar medium clouds along the line of sight toward Kepler-444. This allowed us to reconstruct the stellar Lyman-α line profile and to estimate the extreme-UV (XUV) irradiation from the star, which would still allow for a moderate mass loss from the outer planets after 11.2 Gyr. Follow-up of the system at XUV wavelengths will be required to assess this tantalizing possibility.

  18. Interaction of extra solar planets with their host star

    Science.gov (United States)

    Silva, Douglas; Valio, Adriana

    2017-10-01

    Transit is the passage of the planet in front of its star. During one of these transits, the planet may occult a spot on the photosphere of the star, causing small variations in its light curve. By detecting the same spot in a later transit, it is possible to estimate the stellar rotation period. The comparison between the rotation period of star at the equator and the planets orbital period showed the existence of resonances between these periods. Two types of mechanisms are proposed in the literature: electromagnetic interaction between the stellar and planetary fields and gravitational interaction. Our results have shown that for planets CoRoT-2b, CoRoT-5b and CoRoT-8b, tidal effects seem to dominate, whereas for planets CoRoT-4b and CoRoT-6b electromagnetic interaction dominates over tidal effects. A distinct characteristic of these last two systems is that the orbital period is larger than the rotation period of the star.

  19. 32 New Exoplanets Found

    Science.gov (United States)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method

  20. The LBTI Hunt for Observable Signatures of Terrestrial Systems (HOSTS) Survey: a Key NASA Science Program on the Road to Exoplanet Imaging Missions (SPIE Proceedings 2)

    Science.gov (United States)

    Danchi, William C.; Bailey, V.; Defrere, D.; Haniff, C.; Hinz, P.; Kennedy, G.; Mennesson, B.; Millan-Gabet, R.; Rieke, G.; Roberge, Aki; hide

    2014-01-01

    Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Emission and or scattered light from the exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of terrestrial planets (exo- Earths) around nearby stars. About 20 of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013, AA, 555, A11; Siercho et al. 2014, ApJ, 785, 33). Much less is known about exozodi; current detection limits for individual stars are at best 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We will describe the motivation for the survey and progress on target selection, not only the actual stars likely to be observed by such a mission but also those whose observation will enable sensible extrapolations for stars that will not be observed with LBTI. We briefly describe the detection of the debris disk around Crv, which is the first scientific result from the LBTI coming from the commissioning of the instrument in December 2013, shortly after the first time the fringes were stabilized.

  1. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  2. Illusion and reality in the atmospheres of exoplanets

    Science.gov (United States)

    Deming, L. Drake; Seager, Sara

    2017-01-01

    The atmospheres of exoplanets reveal all their properties beyond mass, radius, and orbit. Based on bulk densities, we know that exoplanets larger than 1.5 Earth radii must have gaseous envelopes and, hence, atmospheres. We discuss contemporary techniques for characterization of exoplanetary atmospheres. The measurements are difficult, because—even in current favorable cases—the signals can be as small as 0.001% of the host star's flux. Consequently, some early results have been illusory and not confirmed by subsequent investigations. Prominent illusions to date include polarized scattered light, temperature inversions, and the existence of carbon planets. The field moves from the first tentative and often incorrect conclusions, converging to the reality of exoplanetary atmospheres. That reality is revealed using transits for close-in exoplanets and direct imaging for young or massive exoplanets in distant orbits. Several atomic and molecular constituents have now been robustly detected in exoplanets as small as Neptune. In our current observations, the effects of clouds and haze appear ubiquitous. Topics at the current frontier include the measurement of heavy element abundances in giant planets, detection of carbon-based molecules, measurement of atmospheric temperature profiles, definition of heat circulation efficiencies for tidally locked planets, and the push to detect and characterize the atmospheres of super-Earths. Future observatories for this quest include the James Webb Space Telescope and the new generation of extremely large telescopes on the ground. On a more distant horizon, NASA's study concepts for the Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/Infrared Surveyor (LUVOIR) missions could extend the study of exoplanetary atmospheres to true twins of Earth.

  3. Exoplanets, extremophiles and habitability

    Science.gov (United States)

    Janot Pacheco, E.; Bernardes, L.

    2012-09-01

    Estimates of the average surface temperature and CO2 partial atmospheric pressure of already discovered exoplanets supposed to be in their Habitable Zone of their stars were surveyed from the Exoplanet Encyclopedia database. Moreover, since planetary surface temperature strongly depends on its albedo and geodynamic conditions, we have been feeding exoplanetary data into a comprehensive model of Earth's atmosphere to get better estimations. We also investigated the possible presence of "exomoons" belonging to giant planets capable of harbour dynamic stability and to retain atmospheric layers and keep geodynamic activity for long time spans. Collected information on biological data of micro-organisms classified as "extremophiles" indicate that such kind of microbial species could dwell in many of them. We thus propose an extension of the more astronomically defined "Habitable Zone" concept into the more astrobiologically "Extremophile Zone", taking into account other refined parameters allowing survival of more robust life forms.

  4. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    Science.gov (United States)

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  5. Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b

    Science.gov (United States)

    de Wit, J.; Gillon, M.; Demory, B.-O.; Seager, S.

    2012-12-01

    Context. Mapping distant worlds is the next frontier for exoplanet infrared (IR) photometry studies. Ultimately, constraining spatial and temporal properties of an exoplanet atmosphere (e.g., its temperature) will provide further insight into its physics. For tidally-locked hot Jupiters that transit and are eclipsed by their host star, the first steps are now possible. Aims: Our aim is to constrain an exoplanet's (1) shape, (2) brightness distribution (BD) and (3) system parameters from its phase curve and eclipse measurements. In particular, we rely on the secondary-eclipse scanning which is obtained while an exoplanet is gradually masked by its host star. Methods: We use archived Spitzer/IRAC 8-μm data of HD 189733 (six transits, eight secondary eclipses, and a phase curve) in a global Markov chain Monte Carlo (MCMC) procedure for mitigating systematics. We also include HD 189733's out-of-transit radial velocity (RV) measurements to assess their incidence on the inferences obtained solely from the photometry. Results: We find a 6σ deviation from the expected occultation of a uniformly-bright disk. This deviation emerges mainly from a large-scale hot spot in HD 189733b's atmosphere, not from HD 189733b's shape. We indicate that the correlation of the exoplanet orbital eccentricity, e, and BD ("uniform time offset") does also depend on the stellar density, ρ⋆, and the exoplanet impact parameter, b ("e-b-ρ⋆-BD correlation"). For HD 189733b, we find that relaxing the eccentricity constraint and using more complex BDs lead to lower stellar/planetary densities and a more localized and latitudinally-shifted hot spot. We, therefore, show that the light curve of an exoplanet does not constrain uniquely its brightness peak localization. Finally, we obtain an improved constraint on the upper limit of HD 189733b's orbital eccentricity, e ≤ 0.011 (95% confidence), when including HD 189733's RV measurements. Conclusions: Reanalysis of archived HD 189733's data

  6. Discovery of a Transiting Adolescent Sub-Neptune Exoplanet in the Cas-Tau Association With K2

    Science.gov (United States)

    Mamajek, Eric; David, Trevor; Bieryla, Allyson; Bristow, Makennah; Ciardi, David; Cody, Ann Marie; Crossfield, Ian; Fulton, Benjamin; Jasmine Gonzales, Erica; Hillenbrand, Lynne; Hirsch, Lea; Howard, Andrew; Isaacson, Howard; Latham, David W.; Petigura, Erik; Rebull, Luisa; Schlieder, Joshua; Stauffer, John; Vanderburg, Andrew; Vasisht, Gautam

    2018-01-01

    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets belonging to coeval stellar populations, young or old, are particularly useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or photo-evaporation, among other mechanisms. Here we report the serendipitous discovery of a transiting sub-Neptune from K2 photometry of a K-type star that is a new candidate member of the nearby young Cas-Tau association. The size of the planet (3.0 +/- 0.5 Earth radii) and its age (~50-90 Myr) make it an intriguing test case for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.

  7. Three body dynamics and its applications to exoplanets

    CERN Document Server

    Musielak, Zdzislaw

    2017-01-01

    This brief book provides an overview of the gravitational orbital evolution of few-body systems, in particular those consisting of three bodies. The authors present the historical context that begins with the origin of the problem as defined by Newton, which was followed up by Euler, Lagrange, Laplace, and many others. Additionally, they consider the modern works from the 20th and 21st centuries that describe the development of powerful analytical methods by Poincare and others. The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets. The book includes some of the latest discoveries from the Kepler and now K2 missions, as well as applications to exoplanets discovered via the radial velocity method. Specifically, the authors give a unique perspective in rel...

  8. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  9. ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI

    NARCIS (Netherlands)

    Silverman, J. D.; Lamareille, F.; Maier, C.; Lilly, S. J.; Mainieri, V.; Brusa, M.; Cappelluti, N.; Hasinger, G.; Zamorani, G.; Scodeggio, M.; Bolzonella, M.; Contini, T.; Carollo, C. M.; Jahnke, K.; Kneib, J. -P.; Le Fevre, O.; Merloni, A.; Bardelli, S.; Bongiorno, A.; Brunner, H.; Caputi, K.; Civano, F.; Comastri, A.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Elvis, M.; Finoguenov, A.; Fiore, F.; Franzetti, P.; Garilli, B.; Gilli, R.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovac, K.; Le Borgne, J. -F.; Le Brun, V.; Mignoli, M.; Pello, R.; Peng, Y.; Montero, E. Perez; Ricciardelli, E.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Vignali, C.; Zucca, E.; Bottini, D.; Cappi, A.; Cassata, P.; Fumana, M.; Griffiths, R.; Kartaltepe, J.; Koekemoer, A.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Oesch, P.; Porciani, C.; Salvato, M.

    2009-01-01

    We present a study of the host galaxies of active galactic nucleus (AGN) selected from the zCOSMOS survey to establish if accretion onto supermassive black holes (SMBHs) and star formation are explicitly linked up to z similar to 1. We identify 152 galaxies that harbor AGN, based on their X-ray

  10. Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies

    NARCIS (Netherlands)

    Labiano, A.; O'Dea, C. P.; Barthel, P. D.; Vries, W. H. de; Baum, S. A.

    2007-01-01

    Abstract: AIMS: Search for star formation regions in the hosts of potentially young radio galaxies (Gigahertz Peaked Spectrum and Compact Steep Spectrum sources). METHODS: Near-UV imaging with the Hubble Space Telescope Advanced Camera for Surveys.} RESULTS: We find near-UV light which could be the

  11. Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies

    NARCIS (Netherlands)

    Labiano, A.; O'Dea, C. P.; Barthel, P. D.; de Vries, W. H.; Baum, S. A.

    Aims. We are searching for star formation regions in the hosts of potentially young radio galaxies (gigahertz peaked spectrum and compact steep spectrum sources). Methods. We used near-UV imaging with the Hubble Space Telescope Advanced Camera for Surveys. Results. We find near-UV light could be the

  12. Testing connections between exo-atmospheres and their host stars. GEMINI-N/GMOS ground-based transmission spectrum of Qatar-1b

    Science.gov (United States)

    von Essen, C.; Cellone, S.; Mallonn, M.; Albrecht, S.; Miculán, R.; Müller, H. M.

    2017-07-01

    Till date, only a handful exo-atmospheres have been well characterized, mostly by means of the transit method. Some classic examples are HD 209458b, HD 189733b, GJ-436b, and GJ-1214b. Data show exoplanet atmospheres to be diverse. However, this is based on a small number of cases. Here we focus our study on the exo-atmosphere of Qatar-1b, an exoplanet that looks much like HD 189733b regarding its host star's activity level, their surface gravity, scale height, equilibrium temperature and transit parameters. Thus, our motivation relied on carrying out a comparative study of their atmospheres, and assess if these are regulated by their environment. In this work we present one primary transit of Qatar-1b obtained during September, 2014, using the 8.1 m GEMINI North telescope. The observations were performed using the GMOS-N instrument in multi-object spectroscopic mode. We collected fluxes of Qatar-1 and six more reference stars, covering the wavelength range between 460 and 746 nm. The achieved photometric precision of 0.18 parts-per-thousand in the white light curve, at a cadence of 165 s, makes this one of the most precise datasets obtained from the ground. We created 12 chromatic transit light curves that we computed by integrating fluxes in wavelength bins of different sizes, ranging between 3.5 and 20 nm. Although the data are of excellent quality, the wavelength coverage and the precision of the transmission spectrum are not sufficient to neither rule out or to favor classic atmospheric models. Nonetheless, simple statistical analysis favors the clear atmosphere scenario. A larger wavelength coverage or space-based data is required to characterize the constituents of Qatar-1b's atmosphere and to compare it to the well known HD 189733b. On top of the similarities of the orbital and physical parameters of both exoplanets, from a long Hα photometric follow-up of Qatar-1, presented in this work, we find Qatar-1 to be as active as HD 189733. The white light curve

  13. Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65

    DEFF Research Database (Denmark)

    Chaplin, W. J.; Sanchis-Ojeda, R.; Campante, T. L.

    2013-01-01

    Results on the obliquity of exoplanet host stars - the angle between the stellar spin axis and the planetary orbital axis - provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar...... arguments to show that coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated....

  14. MOVES - I. The evolving magnetic field of the planet-hosting star HD189733

    Science.gov (United States)

    Fares, R.; Bourrier, V.; Vidotto, A. A.; Moutou, C.; Jardine, M. M.; Zarka, P.; Helling, Ch.; Lecavelier des Etangs, A.; Llama, J.; Louden, T.; Wheatley, P. J.; Ehrenreich, D.

    2017-10-01

    HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) programme, we present a 2-yr monitoring of the large-scale magnetic field of HD189733. The magnetic maps are reconstructed for five epochs of observations, namely 2013 June-July, 2013 August, 2013 September, 2014 September and 2015 July, using Zeeman-Doppler imaging. We show that the field evolves along the five epochs, with mean values of the total magnetic field of 36, 41, 42, 32 and 37 G, respectively. All epochs show a toroidally dominated field. Using previously published data of Moutou et al. and Fares et al., we are able to study the evolution of the magnetic field over 9 yr, one of the longest monitoring campaigns for a given star. While the field evolved during the observed epochs, no polarity switch of the poles was observed. We calculate the stellar magnetic field value at the position of the planet using the potential field source surface extrapolation technique. We show that the planetary magnetic environment is not homogeneous over the orbit, and that it varies between observing epochs, due to the evolution of the stellar magnetic field. This result underlines the importance of contemporaneous multiwavelength observations to characterize exoplanetary systems. Our reconstructed maps are a crucial input for the interpretation and modelling of our MOVES multiwavelength observations.

  15. FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Daniel; Lissauer, Jack J.; Rowe, Jason F. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans; Handberg, Rasmus; Karoff, Christoffer; Lund, Mikkel N.; Lundkvist, Mia [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Fischer, Debra A.; Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Sanchis-Ojeda, Roberto [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Hekker, Saskia [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Latham, David W., E-mail: daniel.huber@nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); and others

    2013-04-20

    We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters or due to planet candidates that may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet-candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.

  16. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    Science.gov (United States)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  17. The NASA Exoplanet Exploration Program

    Science.gov (United States)

    Hudgins, Douglas M.; Blackwood, Gary H.; Gagosian, John S.

    2015-12-01

    The NASA Exoplanet Exploration Program (ExEP) is chartered to implement the NASA space science goals of detecting and characterizing exoplanets and to search for signs of life. The ExEP manages space missions, future studies, technology investments, and ground-based science that either enables future missions or completes mission science. The exoplanet science community is engaged by the Program through Science Definition Teams and through the Exoplanet Program Analysis Group (ExoPAG). The ExEP includes the space science missions of Kepler, K2 , and the proposed WFIRST-AFTA that includes dark energy science, a widefield infrared survey, a microlensing survey for outer-exoplanet demographics, and a coronagraph for direct imaging of cool outer gas- and ice-giants around nearby stars. Studies of probe-scale (medium class) missions for a coronagraph (internal occulter) and starshade (external occulter) explore the trades of cost and science and provide motivation for a technology investment program to enable consideration of missions at the next decadal survey for NASA Astrophysics. Program elements include follow-up observations using the Keck Observatory, which contribute to the science yield of Kepler and K2, and include mid-infrared observations of exo-zodiacal dust by the Large Binocular Telescope Interferometer which provide parameters critical to the design and predicted science yield of the next generation of direct imaging missions. ExEP includes the NASA Exoplanet Science Institute which provides archives, tools, and professional education for the exoplanet community. Each of these program elements contribute to the goal of detecting and characterizing earth-like planets orbiting other stars, and seeks to respond to rapid evolution in this discovery-driven field and to ongoing programmatic challenges through engagement of the scientific and technical communities.

  18. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  19. The Architecture of Exoplanets

    Science.gov (United States)

    Hatzes, Artie P.

    2016-12-01

    Prior to the discovery of exoplanets our expectations of their architecture were largely driven by the properties of our solar system. We expected giant planets to lie in the outer regions and rocky planets in the inner regions. Planets should probably only occupy orbital distances 0.3-30 AU from the star. Planetary orbits should be circular, prograde and in the same plane. The reality of exoplanets have shattered these expectations. Jupiter-mass, Neptune-mass, Superearths, and even Earth-mass planets can orbit within 0.05 AU of the stars, sometimes with orbital periods of less than one day. Exoplanetary orbits can be eccentric, misaligned, and even in retrograde orbits. Radial velocity surveys gave the first hints that the occurrence rate increases with decreasing mass. This was put on a firm statistical basis with the Kepler mission that clearly demonstrated that there were more Neptune- and Superearth-sized planets than Jupiter-sized planets. These are often in multiple, densely packed systems where the planets all orbit within 0.3 AU of the star, a result also suggested by radial velocity surveys. Exoplanets also exhibit diversity along the main sequence. Massive stars tend to have a higher frequency of planets (≈ 20-25 %) that tend to be more massive (M≈ 5-10 M_{Jup}). Giant planets around low mass stars are rare, but these stars show an abundance of small (Neptune and Superearth) planets in multiple systems. Planet formation is also not restricted to single stars as the Kepler mission has discovered several circumbinary planets. Although we have learned much about the architecture of planets over the past 20 years, we know little about the census of small planets at relatively large (a>1 AU) orbital distances. We have yet to find a planetary system that is analogous to our own solar system. The question of how unique are the properties of our own solar system remains unanswered. Advancements in the detection methods of small planets over a wide range of

  20. Characterising exoplanets and their environment with UV transmission spectroscopy

    OpenAIRE

    Fossati, L.; Bourrier, V.; Ehrenreich, D.; Haswell, C. A.; Kislyakova, K. G.; Lammer, H; Lecavelier des Etangs, A.; Alibert, Y.; Ayres, T. R.; Ballester, G. E.; Barnes, J.; Bisikalo, D. V.; Cameron, A. Collier; Czesla, S.; Desert, J. -M.

    2015-01-01

    Exoplanet science is now in its full expansion, particularly after the CoRoT and Kepler space missions that led us to the discovery of thousands of extra-solar planets. The last decade has taught us that UV observations play a major role in advancing our understanding of planets and of their host stars, but the necessary UV observations can be carried out only by HST, and this is going to be the case for many years to come. It is therefore crucial to build a treasury data archive of UV exopla...

  1. High Energy Exoplanet Transits

    Science.gov (United States)

    Llama, Joe; Shkolnik, Evgenya L.

    2017-10-01

    X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

  2. Water in exoplanets.

    Science.gov (United States)

    Tinetti, Giovanna; Tennyson, Jonathan; Griffith, Caitlin A; Waldmann, Ingo

    2012-06-13

    Exoplanets--planets orbiting around stars other than our own Sun--appear to be common. Significant research effort is now focused on the observation and characterization of exoplanet atmospheres. Species such as water vapour, methane, carbon monoxide and carbon dioxide have been observed in a handful of hot, giant, gaseous planets, but cooler, smaller planets such as Gliese 1214b are now analysable with current telescopes. Water is the key chemical dictating habitability. The current observations of water in exoplanets from both space and the ground are reviewed. Controversies surrounding the interpretation of these observations are discussed. Detailed consideration of available radiative transfer models and linelists are used to analyse these differences in interpretation. Models suggest that there is a clear need for data on the pressure broadening of water transitions by H(2) at high temperatures. The reported detections of water appear to be robust, although final confirmation will have to await the better quality observational data provided by currently planned dedicated space missions.

  3. A sub-Mercury-sized exoplanet.

    Science.gov (United States)

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  4. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    Science.gov (United States)

    2009-09-01

    The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. Combined with CoRoT-7b's known radius, which is less than twice that of our terrestrial home, this tells us that the exoplanet's density is quite similar to the Earth's, suggesting a solid, rocky world. The extensive dataset also reveals the presence of another so-called super-Earth in this alien solar system. "This is science at its thrilling and amazing best," says Didier Queloz, leader of the team that made the observations. "We did everything we could to learn what the object discovered by the CoRoT satellite looks like and we found a unique system." In February 2009, the discovery by the CoRoT satellite [1] of a small exoplanet around a rather unremarkable star named TYC 4799-1733-1 was announced one year after its detection and after several months of painstaking measurements with many telescopes on the ground, including several from ESO. The star, now known as CoRoT-7, is located towards the constellation of Monoceros (the Unicorn) at a distance of about 500 light-years. Slightly smaller and cooler than our Sun, CoRoT-7 is also thought to be younger, with an age of about 1.5 billion years. Every 20.4 hours, the planet eclipses a small fraction of the light of the star for a little over one hour by one part in 3000 [2]. This planet, designated CoRoT-7b, is only 2.5 million kilometres away from its host star, or 23 times closer than Mercury is to the Sun. It has a radius that is about 80% greater than the Earth's. The initial set of measurements, however, could not provide the mass of the exoplanet. Such a result requires extremely precise measurements of the velocity of the star, which is pulled a tiny amount by the gravitational tug of the orbiting exoplanet. The problem with CoRoT-7b is that these tiny signals are blurred by stellar activity in the form of

  5. Sating a Voracious Appetite: The Tidal Interaction of Close-in Planets with their Host Stars

    Science.gov (United States)

    Matsakos, Titos; Königl, Arieh

    2015-12-01

    Transit observations of the apparent angle between the stellar spin and the vector normal to the planetary orbital plane suggest that cool stars are preferably aligned systems even as hot stars exhibit a large range of obliquities. In addition, as was demonstrated recently by Mazeh et al., the distribution of planet periods as a function of mass exhibits a dearth of sub-Jupiter--mass planets at space having a roughly conical shape. We suggest that both of these seemingly disparate features are manifestations of the tidal interaction between close-in planets and their host stars. We attribute the dichotomy in the obliquity properties to the effect of an early population of hot Jupiters that got stranded near the inner edge of a primordially misaligned protoplanetary disk and subsequently (on a timescale 1 Gyr) times and become circularized at radii of a few times the Roche limit.

  6. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  7. Exoplanets and Multiverses (Abstract)

    Science.gov (United States)

    Trimble, V.

    2016-12-01

    (Abstract only) To the ancients, the Earth was the Universe, of a size to be crossed by a god in a day, by boat or chariot, and by humans in a lifetime. Thus an exoplanet would have been a multiverse. The ideas gradually separated over centuries, with gradual acceptance of a sun-centered solar system, the stars as suns likely to have their own planets, other galaxies beyond the Milky Way, and so forth. And whenever the community divided between "just one' of anything versus "many," the "manies" have won. Discoveries beginning in 1991 and 1995 have gradually led to a battalion or two of planets orbiting other stars, very few like our own little family, and to moderately serious consideration of even larger numbers of other universes, again very few like our own. I'm betting, however, on habitable (though not necessarily inhabited) exoplanets to be found, and habitable (though again not necessarily inhabited) universes. Only the former will yield pretty pictures.

  8. Biosignatures of Exoplanets

    Science.gov (United States)

    Kiang, Nancy Y.

    2017-01-01

    There was a time during Western civilization when musing about worlds other than Earth could be life-threatening. In 1600 Giordano Bruno was burnt at the stake as a heretic for claiming, amongst other things, that the fixed stars were in fact suns with planets moving around them, and furthermore, that lifeforms similar to those on Earth might exist on these planets. Although these ideas were not the result of scientific observation but rather of philosophical reflexions, Giordano Bruno is today recognized as the father of the idea of exoplanets. The study of planets revolving around distant stars has become one of the most thrilling disciplines in astronomy. As it did 400 years ago, this subject touches on the most profound questions of mankind, including the uniqueness of the planet Earth and even our own uniqueness as an intelligent species. As always in astronomy distance is an issue. While it requires a lot of patience to reach the planets within our own solar system, direct visits to exoplanets will not be feasible in the foreseeable future. Is there an alternative approach to find a second Earth?

  9. VLT Detects First Superstorm on Exoplanet

    Science.gov (United States)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint

  10. STAR FORMATION IN LINER HOST GALAXIES AT z {approx} 0.3

    Energy Technology Data Exchange (ETDEWEB)

    Tommasin, Silvia; Netzer, Hagai; Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Nordon, Raanan; Lutz, Dieter; Berta, Stefano; Magnelli, Benjamin [MPE, Postfach 1312, 85741 Garching (Germany); Bongiorno, Angela [INAF-Oservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone (Roma) (Italy); Le Floc' h, Emeric; Riguccini, Laurie [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Pozzi, Francesca [Dipartimento di Astronomia, Universita degli Studi di Bologna, via Ranzani 1, 40127 Bologna (Italy)

    2012-07-10

    We present the results of a Herschel-PACS study of a sample of 97 low-ionization nuclear emission-line regions (LINERs) at redshift z {approx} 0.3 selected from the zCOSMOS survey. Of these sources, 34 are detected in at least one PACS band, enabling reliable estimates of the far-infrared L{sub FIR} luminosities, and a comparison to the FIR luminosities of local LINERs. Many of our PACS-detected LINERs are also UV sources detected by GALEX. Assuming that the FIR is produced in young dusty star-forming regions, the typical star formation rates (SFRs) for the host galaxies in our sample are {approx}10 M{sub Sun} yr{sup -1}, 1-2 orders of magnitude larger than in many local LINERs. Given stellar masses inferred from optical/NIR photometry of the (unobscured) evolved stellar populations, we find that the entire sample lies close to the star-forming 'main sequence' for galaxies at redshift 0.3. For young star-forming regions, the H{alpha}- and UV-based estimates of the SFRs are much smaller than the FIR-based estimates, by factors {approx}30, even assuming that all of the H{alpha} emission is produced by O-star ionization rather than by the active galactic nuclei (AGNs). These discrepancies may be due to large (and uncertain) extinctions toward the young stellar systems. Alternatively, the H{alpha} and UV emissions could be tracing residual star formation in an older, less obscured population with decaying star formation. We also compare L{sub SF} and L(AGN) in local LINERs and in our sample. Finally, we comment on the problematic use of several line diagnostic diagrams in cases with an estimated obscuration similar to that in the sample under study.

  11. Massive stars formed in atomic hydrogen reservoirs: H i observations of gamma-ray burst host galaxies

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be th......Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed......, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H1-to-H2 conversion is very efficient, which rapidly...

  12. Out-of-transit Refracted Light in the Atmospheres of Transiting and Non-transiting Exoplanets

    Science.gov (United States)

    Dalba, Paul A.

    2017-10-01

    Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage—a distorted secondary image of the host star. I model this phenomenon and the resultant out-of-transit flux increase across a comprehensive exoplanetary parameter space. At visible wavelengths, Rayleigh scattering limits the detectability of stellar mirages in most exoplanetary systems with semimajor axes ≲ 6 {au}. A notable exception is almost any planet orbiting a late M or ultra-cool dwarf star at ≳ 0.5 {au}, where the maximum relative flux increase is >50 parts per million. Based partly on previous work, I propose that the importance of refraction in an exoplanet system is governed by two angles: the orbital distance divided by the stellar radius and the total deflection achieved by a ray in the optically thin portion of the atmosphere. Atmospheric lensing events caused by non-transiting exoplanets, which allow for exoplanet detection and atmospheric characterization, are also investigated. I derive the basic formalism to determine the total signal-to-noise ratio of an atmospheric lensing event, with application to Kepler data. It is unlikely that out-of-transit refracted light signals are clearly present in Kepler data due to Rayleigh scattering and the bias toward short-period exoplanets. However, observations at long wavelengths (e.g., the near-infrared) are significantly more likely to detect stellar mirages. Lastly, I discuss the potential for the Transiting Exoplanet Survey Satellite to detect refracted light and consider novel science cases enabled by refracted light spectra from the James Webb Space Telescope.

  13. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H. Philip

    2017-01-01

    Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image and characterize planetary systems around Sun-like stars. In addition to the search for life on Earth-like exoplanets, HabEx will enable a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. HabEx is one of four mission concepts currently being studied for the 2020 Astrophysics Decadal Survey.

  14. Exploring exoplanet populations with NASA’s Kepler Mission

    Science.gov (United States)

    Batalha, Natalie M.

    2014-01-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  15. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  16. Revealing the Star-Forming Hosts of Luminous Quasars at z~2: A Multi-Wavelength Study

    Science.gov (United States)

    Wethers, Clare; Banerji, Manda; Hewett, Paul; Dark Energy Survey (DES)

    2018-01-01

    Quasars are thought to govern many fundamental processes within galaxies, from quenching star formation to shaping the galaxy itself. In an evolutionary picture of quasars, the most luminous systems (Lbol~1047erg) are thought to evolve from merger-driven starbursts, appearing heavily obscured during their transition to UV-luminous quasars as dust from the decaying starburst is being cleared out of the galaxy. Understanding the connection between dust obscuration, black hole accretion and star formation in luminous quasars undergoing this transition is therefore an important test of such evolutionary models. Host galaxy studies of the most massive and luminous quasars at z>1.5 remain challenging, particularly in the rest-frame UV where a quasar will typically outshine its host galaxy by several orders of magnitude. I will present the first rest-frame UV study for a population of obscured type-1 quasars at z~2 - a peak epoch in both star formation and black hole accretion. By combining deep ground-based imaging from the Dark Energy Survey (DES) with near infra-red observations, I exploit dust obscuration towards the quasar to isolate host galaxy emission, finding obscured quasars to reside in prodigiously star-forming hosts at z~2, with the most actively star-forming galaxies appearing to host the most luminous quasars. Combining these results with new sub-mm observations from SCUBA2, I will present a direct comparison of the unobscured and obscured star formation in this population of dusty quasar hosts.

  17. Three small transiting planets around the M-dwarf host star LP 358-499

    Science.gov (United States)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.

    2018-01-01

    We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a gigayear. The three detected planets K2-133 b, c and d have orbital periods of ca. 3, 4.9 and 11 d and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate EPIC 247887989.01 with a period of 26.6 d and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.

  18. The Transiting Exoplanet Community Early Release Science Program

    Science.gov (United States)

    Batalha, Natalie; Bean, Jacob; Stevenson, Kevin; Alam, M.; Batalha, N.; Benneke, B.; Berta-Thompson, Z.; Blecic, J.; Bruno, G.; Carter, A.; Chapman, J.; Crossfield, I.; Crouzet, N.; Decin, L.; Demory, B.; Desert, J.; Dragomir, D.; Evans, T.; Fortney, J.; Fraine, J.; Gao, P.; Garcia Munoz, A.; Gibson, N.; Goyal, J.; Harrington, J.; Heng, K.; Hu, R.; Kempton, E.; Kendrew, S.; Kilpatrick, B.; Knutson, H.; Kreidberg, L.; Krick, J.; Lagage, P.; Lendl, M.; Line, M.; Lopez-Morales, M.; Louden, T.; Madhusudhan, N.; Mandell, A.; Mansfield, M.; May, E.; Morello, G.; Morley, C.; Moses, J.; Nikolov, N.; Parmentier, V.; Redfield, S.; Roberts, J.; Schlawin, E.; Showman, A.; Sing, D.; Spake, J.; Swain, M.; Todorov, K.; Tsiaras, A.; Venot, O.; Waalkes, W.; Wakeford, H.; Wheatley, P.; Zellem, R.

    2017-11-01

    JWST presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, time-series observations required for such investigations have unique technical challenges, and our prior experience with HST, Spitzer, and Kepler indicates that there will be a steep learning curve when JWST becomes operational. We propose an ERS program to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST. This program will also provide a compelling set of representative datasets, which will enable immediate scientific breakthroughs. We will exercise the time-series modes of all four instruments that have been identified as the consensus highest priority by the community, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The proposed observations were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. The targets have been vetted with previous measurements, will be observable early in the mission, and have exceptional scientific merit. We will engage the community with a two-phase Data Challenge that culminates with the delivery of planetary spectra, time series instrument performance reports, and open-source data analysis toolkits.

  19. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  20. Giant star seismology

    Science.gov (United States)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  1. The MUSCLES Treasury Survey. III. X-Ray to Infrared Spectra of 11 M and K Stars Hosting Planets

    Science.gov (United States)

    Loyd, R. O. P.; France, Kevin; Youngblood, Allison; Schneider, Christian; Brown, Alexander; Hu, Renyu; Linsky, Jeffrey; Froning, Cynthia S.; Redfield, Seth; Rugheimer, Sarah; Tian, Feng

    2016-06-01

    We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 Å -5.5 μm). These SEDs are composites of Chandra or XMM-Newton data from 5-˜50 Å, a plasma emission model from ˜50-100 Å, broadband empirical estimates from 100-1170 Å, Hubble Space Telescope data from 1170-5700 Å, including a reconstruction of stellar Lyα emission at 1215.67 Å, and a PHOENIX model spectrum from 5700-55000 Å. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star’s unattenuated flux (“unshielded” photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star ɛ Eri that shows an edge likely attributable to Si ii recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres.

  2. The California-Kepler Survey. IV. Metal-rich Stars Host a Greater Diversity of Planets

    Science.gov (United States)

    Petigura, Erik A.; Marcy, Geoffrey W.; Winn, Joshua N.; Weiss, Lauren M.; Fulton, Benjamin J.; Howard, Andrew W.; Sinukoff, Evan; Isaacson, Howard; Morton, Timothy D.; Johnson, John Asher

    2018-02-01

    Probing the connection between a star’s metallicity and the presence and properties of any associated planets offers an observational link between conditions during the epoch of planet formation and mature planetary systems. We explore this connection by analyzing the metallicities of Kepler target stars and the subset of stars found to host transiting planets. After correcting for survey incompleteness, we measure planet occurrence: the number of planets per 100 stars with a given metallicity M. Planet occurrence correlates with metallicity for some, but not all, planet sizes and orbital periods. For warm super-Earths having P = 10–100 days and {R}P = 1.0–1.7 {R}\\oplus , planet occurrence is nearly constant over metallicities spanning ‑0.4 to +0.4 dex. We find 20 warm super-Earths per 100 stars, regardless of metallicity. In contrast, the occurrence of warm sub-Neptunes ({R}P = 1.7–4.0 {R}\\oplus ) doubles over that same metallicity interval, from 20 to 40 planets per 100 stars. We model the distribution of planets as {df}\\propto {10}β M{dM}, where β characterizes the strength of any metallicity correlation. This correlation steepens with decreasing orbital period and increasing planet size. For warm super-Earths β = -{0.3}-0.2+0.2, while for hot Jupiters β = +{3.4}-0.8+0.9. High metallicities in protoplanetary disks may increase the mass of the largest rocky cores or the speed at which they are assembled, enhancing the production of planets larger than 1.7 {R}\\oplus . The association between high metallicity and short-period planets may reflect disk density profiles that facilitate the inward migration of solids or higher rates of planet–planet scattering.

  3. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    Science.gov (United States)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  4. The WASP-South search for transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2011-02-01

    Full Text Available Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9–13. We present a status report for this ongoing survey.

  5. Broadband polarimetry of exoplanets : modelling signals of surfaces, hazes and clouds

    NARCIS (Netherlands)

    Karalidi, Theodora

    2013-01-01

    It is less than 20 years since astronomers discovered the first exoplanet orbiting a Sun-like star. In this short period more than 770 confirmed exoplanets have been detected. With so many exoplanets the next step is their characterization. What is their atmosphere made of? Does it contain water

  6. The Death Spiral of the Hot Jupiter Exoplanet HD 189733b

    Science.gov (United States)

    Dowling Jones, Liam; Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    HD 189733 is a quintessential example of hot Jupiter-type exoplanet systems in which a gas giant planet with a mass similar to Jupiter is orbiting extremely close to its host star. HD 189733 is the nearest and brightest hot Jupiter system discovered so far and undergoes transit eclipses. Because of this, HD 189733 is well studied across the electromagnetic spectrum. It consists of a 7.7 mag K1.5 V host star and a Jupiter-size planet orbiting with a period of P =2.22 days, only located only 0.030 AU from its host star.About ten years ago HD 189733 system was discovered to be accompanied by gravitationally-bound red dwarf M4 V star companion (HD 189733 B). It was found previously by Guinan et al. (2017) that the age measurement (~0.7 Gyr) of the K-type star indicated by its 11.95 day rotation period and corresponding moderately high levels of coronal X-ray and chromospheric emissions do not agree with the much older age of ~6 - 9 Gyr indicated from the low X-ray activity of the dM companion star. This age discrepancy is can be resolved by assuming an increase in angular momentum or “spin-up” of the HD 189733A by its hosted planet. It is probable is that this extra angular momentum was acquired from the orbiting exoplanet from the tidal and magnetic interactions of the planet and host star.Photometric observations of the planetary transit eclipses of HD 189733b have been carried out for over 11 years. Using new transit timings that we have obtained with the 1.3-m Robotically Controlled Telescope (RCT) when combined with numerous timings available in the literature, we have discovered a very small decrease in the orbital period of the HD 189733b. The change in period is dP/dt = 0.87 sec/100 yrs. This finding support the transfer of orbital angular momentum of the planet to the host star - thus spinning-up the host star and shrinking the orbit of the planet. At this rate of period decrease, the planet will be tidally disrupted in less than 40 million years. However

  7. Stellar Echo Imaging of Exoplanets

    Science.gov (United States)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  8. A Toolbox for Exoplanet Exploration

    Science.gov (United States)

    Jensen-Clem, Rebecca Marie

    2017-05-01

    In this thesis, I develop a new suite of tools to address two questions in exoplanet science: how common are Earth-mass planets in the habitable zones of Solar-type stars, and can we detect signs of life on other worlds? Answering the first question requires a method for detecting Earth-Sun analogs. Currently, the radial velocity (RV) method of exoplanet detection is one of the most successful tools for probing inner planetary systems. However, degeneracy between a spectrometer's wavelength calibration and the astrophysical RV shift has limited the sensitivity of today's instruments. In my thesis, I address a method for breaking this degeneracy: by combining a traditional spectrometer design with a dynamic interferometer, a fringe pattern is generated at the image plane that is highly sensitive to changes in the radial velocity of the target star. I augmented previous theoretical studies of the method, creating an end-to-end simulation to 1) introduce and recover wavelength calibration errors, and 2) investigate the effects of interferometer position errors on the RV precision. My simulation showed that using this kind of interferometric system, a 5-m class telescope could detect an Earth-Sun analog. Addressing the occurrence rate of Earth twins also requires an understanding of planet formation in multiple star systems, which encompass half of all Solar-type stars. Gravitational interactions between binary components separated by 10-100 astronomical units are predicted to truncate the outer edges of their respective disks, possibly reducing the disks' lifetimes. Consequently, the pool of material and the amount of time available for planet formation may be smaller than in single star systems. The stars' rotational periods provide a fossil record of these events: star-disk magnetic interactions initially prevent a contracting pre-main sequence star from spinning up, and hence a star with a shorter-lived disk is expected to be spinning more quickly when it reaches

  9. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    Directory of Open Access Journals (Sweden)

    Peter Erwin

    2012-01-01

    Full Text Available Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC/M⋆, tot for NSCs in spirals (at least those with Hubble types Sc and later is typically an order of magnitude smaller than the mass ratio MBH/M⋆, bul of SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.

  10. Lightning on exoplanets and brown dwarfs

    OpenAIRE

    Hodosán, Gabriella

    2017-01-01

    Lightning is an important electrical phenomenon, known to exist in several Solar System planets. Amongst others, it carries information on convection and cloud formation, and may be important for pre-biotic chemistry. Exoplanets and brown dwarfs have been shown to host environments appropriate for the initiation of lightning discharges. In this PhD project, I aim to determine if lightning on exoplanets and brown dwarfs can be more energetic than it is known from Solar System planets, what are...

  11. ON THE SURVIVAL OF BROWN DWARFS AND PLANETS ENGULFED BY THEIR GIANT HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Passy, Jean-Claude; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW (Australia)

    2012-11-10

    The recent discovery of two Earth-mass planets in close orbits around an evolved star has raised questions as to whether substellar companions can survive encounters with their host stars. We consider whether these companions could have been stripped of significant amounts of mass during the phase when they orbited through the dense inner envelopes of the giant. We apply the criterion derived by Murray et al. for disruption of gravitationally bound objects by ram pressure to determine whether mass loss may have played a role in the histories of these and other recently discovered low-mass companions to evolved stars. We find that the brown dwarf and Jovian-mass objects circling WD 0137-349, SDSS J08205+0008, and HIP 13044 are most unlikely to have lost significant mass during the common envelope phase. However, the Earth-mass planets found around KIC 05807616 could well be the remnants of one or two Jovian-mass planets that lost extensive mass during the common envelope phase.

  12. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Ma, Bo [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Bowler, Brendan P.; Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Lintott, Chris [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  13. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  14. Exoplanets: The Hunt Continues!

    Science.gov (United States)

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial

  15. PLANETESIMAL COMPOSITIONS IN EXOPLANET SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Torrence V. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Mousis, Olivier [Observatoire THETA, Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, BP 1615, F-25010 Besancon Cedex (France); Lunine, Jonathan I. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Madhusudhan, Nikku, E-mail: torrence.v.johnson@jpl.nasa.gov [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06511 (United States)

    2012-10-01

    We have used recent surveys of the composition of exoplanet host stars to investigate the expected composition of condensed material in planetesimals formed beyond the snow line in the circumstellar nebulae of these systems. Of the major solid-forming elements, C and O abundances (and particularly the C/O abundance ratio) strongly affect the amounts of volatile ices and refractory phases in icy planetesimals formed in these systems. This results from these elements' effects on the partitioning of O among gas, refractory solid and ice phases in the final condensate. The calculations use a self-consistent model for the condensation sequence of volatile ices from the nebula gas after refractory (silicate and metal) phases have condensed. The resultant mass fractions (compared to the total condensate) of refractory phases and ices were calculated for a range of nebular temperature structures and redox conditions. Planetesimals in systems with sub-solar C/O should be water ice-rich, with lower than solar mass fractions of refractory materials, while in super-solar C/O systems planetesimals should have significantly higher mass fractions of refractories, in some cases having little or no water ice. C-bearing volatile ices and clathrates also become increasingly important with increasing C/O depending on the assumed nebular temperatures. These compositional variations in early condensates in the outer portions of the nebula will be significant for the equivalent of the Kuiper Belt in these systems, icy satellites of giant planets, and the enrichment (over stellar values) of volatiles and heavy elements in giant planet atmospheres.

  16. Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes

    Science.gov (United States)

    Stassun, Keivan G.; Collins, Karen A.; Gaudi, B. Scott

    2017-03-01

    We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables—the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release—and thus are virtually model independent, with extinction being the only free parameter. We also determine each star’s mass using our newly determined radius and the stellar density, a virtually model independent quantity itself from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting-planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are 8% and 30%, respectively, and the resulting uncertainties on the planet radii and masses are 9% and 22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of 5% and 6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with a median achieved accuracy of ≈2%. Using our empirical stellar masses we verify that the majority of putative “retired A stars” in the sample are indeed more massive than ˜1.2 {M}⊙ . Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars—with median accuracies of 1.7% and 1.8%, respectively—serve as a fundamental data set to permit the re-determination of transiting-planet radii and masses with the Gaia second data release to ≈3% and ≈5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.

  17. Environmental Dependence of Type Ia Supernova Luminosities from a Sample without a Local–Global Difference in Host Star Formation

    Science.gov (United States)

    Kim, Young-Lo; Smith, Mathew; Sullivan, Mark; Lee, Young-Wook

    2018-02-01

    It is established that there is a dependence of the luminosity of type Ia supernovae (SNe Ia) on environment: SNe Ia in young, star-forming, metal-poor stellar populations appear fainter after light-curve shape corrections than those in older, passive, metal-rich environments. This is accounted for in cosmological studies using a global property of the SN host galaxy, typically the host galaxy stellar mass. However, recent low-redshift studies suggest that this effect manifests itself most strongly when using the local star formation rate (SFR) at the SN location, rather than the global SFR or the stellar mass of the host galaxy. At high-redshift, such local SFRs are difficult to determine; here, we show that an equivalent local correction can be made by restricting the SN Ia sample in globally star-forming host galaxies to a low-mass host galaxy subset (≤1010 M ⊙). Comparing this sample of SNe Ia (in locally star-forming environments) to those in locally passive host galaxies, we find that SNe Ia in locally star-forming environments are 0.081 ± 0.018 mag fainter (4.5σ), consistent with the result reported by Rigault et al., but our conclusion is based on a sample ∼5 times larger over a wider redshift range. This is a larger difference than when splitting the SN Ia sample based on global host galaxy SFR or host galaxy stellar mass. This method can be used in ongoing and future high-redshift SN surveys, where local SN Ia environments are difficult to determine.

  18. Direct Imaging of Giant Exoplanets

    Science.gov (United States)

    Tamura, Motohide

    Since the first detection of exoplanets around a Sun-like star 51 Peg in 1995, their detection and characterization are mainly led by indirect methods such as radial velocity and transit methods. However, recent progresses of observational techniques have finally enabled the direct imaging observations of giant planets of solar-system-scale orbit (with their semi-major axes less than about 50 AU) around A-type stars (e.g., Marois et al. 2008, 2010) and G-type stars (e.g., Kuzuhara et al. 2013). Direct imaging is useful to obtain the physical and atmospheric parameters of exoplanets. In fact not only colors but also a medium-resolution spectroscopy of such planets has been successfully obtained for their atmospheric characterization (Barman et al. 2013). Their masses are typically a few to ~10 Jupiter masses and they orbit at a Saturn- to-Pluto distance. Therefore, like hot-Jupiters and super-Earths they are unlike any solar-system planets, and called wide-orbit giant planets. A recent large search for planets and disk on the Subaru 8.2-m telescope (SEEDS project) has detected a 3-5 Jupiter-masses planet around a Sun-like star GJ 504 (Kuzuhara et al. 2013). It is the coolest planetary companion so far directly imaged and its near-infrared color is “bluer” than that of other directly imaged planets. In this contribution, I will review the recent progresses on direct imaging of exoplanets, highlight the results of the SEEDS project, and discuss the future developments.

  19. Development of Exoplanet database "ExoKyoto" aiming for inter-comparison with different criteria of Habitable zones

    Science.gov (United States)

    Yamashiki, Yosuke; Notsu, Yuta; Sasaki, Takanori; Hosono, Natsuki; Kuroki, Ryusuke; Notsu, Shota; Murashima, Keiya; Takagi, Fuka; Doi, Takao

    2017-05-01

    An integrated database of confirmed exoplanets has been developed and launched as “ExoKyoto,” for the purpose of better comprehension of exoplanetary systems in different star systems. The HOSTSTAR module of the database includes not only host stars for confirmed exoplanets, but also hundreds of thousands of stars existing in the star database listed in (HYG database). Each hoststar can be referred to in the catalogue with its habitable zone calculated, based on the observed/estimated star parameters. For outreach and observation support purpose, ExoKyoto possesses Stellar Windows, developed by the Xlib & Ggd module, and interfaces with GoogleSky for easy comprehension of those celestial bodies on a stellar map. Target stars can be identified and listed by using this database, based on the target magnitude, transit frequency, and photon decrease ratio by its transit.If we interpolate deficient data using assumed functions about the exoplanets that were discovered until now, Sub-Neptune size (1.9-3.1R_Earth) are the most common (971); then Super Earth size (1.2-1.9 R_earth) have been allocated (681).Using the Solar Equivalent Astronomical Unit (SEAU), most of the exoplanets discovered are within a Venus equivalent orbit (3029), and 197 are located within the habitable zone (Venus to Mars equivalent orbit). If we classify them using Kopparapu et al.(2013), within Recent Venus equivalent orbit (3048), there are 130 located in the habitable zone (runaway greenhouse-maximum greenhouse). For example, Kepler-560b is defined as in the habitable zone by its SEAU, but not by Kopparapu et al. (2013). Furthermore, based on an exoplanet's solar revolution, radius, assumed mass (Larsen & Geoffrey, 2014), transit parameters , and main start information (location, class, spectral class, etc.); observation target selection is practical and possible.In addition to the previous habitable zone based on the normal radiation flux from the host star, we'll discuss stellar flares

  20. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    Science.gov (United States)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  1. Every Cloud has a Silver Lining: Synthesizing Spectra for Exoplanets with Inhomogeneous Aerosol Coverage

    Science.gov (United States)

    DiTomasso, Victoria; Kempton, Eliza; Rauscher, Emily; Roman, Michael

    2018-01-01

    In order to learn about exoplanets, we observe the light coming from their host stars. In particular, we can observe a host star while its planet is in transit. During transit, we are able to observe light from the star that has passed through the planet’s atmosphere and isolate that signal in a transmission spectrum. Previous transit observations have suggested that some hot Jupiters have aerosols in their atmospheres. We have calculated the effects that non-uniform aerosol coverage would have on the resulting transmission spectra of hot Jupiters. We used 3D atmospheric models of a planet with varying aerosol coverage to produce synthetic transmission spectra of the planet during full transit. We also produced transmission spectra from the start of transit, ingress, and the end of transit, egress, to determine if we can identify whether atmospheric aerosols are concentrated on the east or west side of the exoplanet. This will help us determine global aerosol structure, as well as indicate whether these planets are dominated by photochemically produced haze or directly condensed clouds. Using these spectra, we will test the feasibility of inferring aerosol coverage on a hot Jupiter using the Hubble Space Telescope.

  2. THE INTERACTION OF VENUS-LIKE, M-DWARF PLANETS WITH THE STELLAR WIND OF THEIR HOST STAR

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Drake, J. J.; Garraffo, C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge, MA 02138 (United States); Ma, Y. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California (United States); Glocer, A. [NASA/GSFC, Code 673 Greenbelt, MD 20771 (United States); Bell, J. M. [Center for Planetary Atmospheres and Flight Sciences, National Institute of Aerospace, Hampton, VA 23666 (United States); Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109 (United States)

    2015-06-10

    We study the interaction between the atmospheres of Venus-like, non-magnetized exoplanets orbiting an M-dwarf star, and the stellar wind using a multi-species MHD model. We focus our investigation on the effect of enhanced stellar wind and enhanced EUV flux as the planetary distance from the star decreases. Our simulations reveal different topologies of the planetary space environment for sub- and super-Alfvénic stellar wind conditions, which could lead to dynamic energy deposition into the atmosphere during the transition along the planetary orbit. We find that the stellar wind penetration for non-magnetized planets is very deep, up to a few hundreds of kilometers. We estimate a lower limit for the atmospheric mass-loss rate and find that it is insignificant over the lifetime of the planet. However, we predict that when accounting for atmospheric ion acceleration, a significant amount of the planetary atmosphere could be eroded over the course of a billion years.

  3. Examining the Potential of LSST to Contribute to Exoplanet Discovery

    Science.gov (United States)

    Lund, Michael B.; Pepper, Joshua; Jacklin, Savannah; Stassun, Keivan G.

    2018-01-01

    The Large Synoptic Survey Telescope (LSST), currently under construction in Chile with scheduled first light in 2019, will be one of the major sources of data in the next decade and is one of the top priorities expressed in the last Decadal Survey. As LSST is intended to cover a range of science questions, and so the LSST community is still working on optimizing the observing strategy of the survey. With a survey area that will cover half the sky in 6 bands providing photometric data on billions of stars from 16th to 24th magnitude, LSST has the ability to be leveraged to help contribute to exoplanet science. In particular, LSST has the potential to detect exoplanets around stellar populations that are not normally usually included in transiting exoplanet searches. This includes searching for exoplanets around red and white dwarfs and stars in the galactic plane and bulge, stellar clusters, and potentially even the Magellanic Clouds. In probing these varied stellar populations, relative exoplanet frequency can be examined, and in turn, LSST may be able to provide fresh insight into how stellar environment can play a role in planetary formation rates.Our initial work on this project has been to demonstrate that even with the limitations of the LSST cadence, exoplanets would be recoverable and detectable in the LSST photometry, and to show that exoplanets indeed worth including in discussions of variable sources that LSST can contribute to. We have continued to expand this work to examine exoplanets around stars in belonging to various stellar populations, both to show the types of systems that LSST is capable of discovering, and to determine the potential exoplanet yields using standard algorithms that have already been implemented in transiting exoplanet searches, as well as how changes to LSST's observing schedule may impact both of these results.

  4. Characterizing Pale Blue Dots Around FGKM Stars

    Science.gov (United States)

    Rugheimer, S.; Kaltenegger, L.; Sasselov, D. D.; Segura, A.

    2015-12-01

    Exoplanet characterization of small rocky worlds will be a main focus in the coming decades. For future telescopes like JWST and UVOIR/HDST, an exoplanet's host star will influence our ability to detect and interpret spectral features, including biosignatures. We present a complete suit of stellar models and a grid of model atmospheres for Earth-like planets at equivalent stages of geological evolution in their HZ for stellar effective temperature from Teff = 2300K to 7000K, sampling the entire FGKM stellar type range. Since M dwarfs are simultaneously the most numerous in the universe, the most active, and the most likely stars to host terrestrial exoplanets, we focus in particular on the range of UV emission possible in each sub M spectral class. The UV emission from a planet's host star dominates the photochemistry and thus the resultant observable spectral features of the planet. Using the latest UV spectra obtained by HST and IUE we model the effect of stellar activity on Earth-like planets. We also model the amount of UV flux reaching the surface for Earth-like planets at various geological epochs ranging from a pre-biotic world through the rise of oxygen and for Earth-like planets orbiting FGKM stars at equivalent stages of evolution. When modeling the remotely detectable spectra of these planets we focus on the primary detectable atmospheric features that indicate habitability on Earth, namely: H2O, CO2, O3, CH4, N2O and CH3Cl. We model the emergent as well as transit spectra of Earth-like planets orbiting our grid of FGKM stars in the VIS/NIR (0.4 - 4 μm) and the IR (5 - 20 μm) range as input for future missions like JWST and concepts like UVOIR/HDST.

  5. Constraining Exoplanet Habitability with HabEx

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    The Habitable Exoplanet Imaging mission, or HabEx, is one of four flagship mission concepts currently under study for the upcoming 2020 Decadal Survey of Astronomy and Astrophysics. The broad goal of HabEx will be to image and study small, rocky planets in the Habitable Zones of nearby stars. Additionally, HabEx will pursue a range of other astrophysical investigations, including the characterization of non-habitable exoplanets and detailed observations of stars and galaxies. Critical to the capability of HabEx to understand Habitable Zone exoplanets will be its ability to search for signs of surface liquid water (i.e., habitability) and an active biosphere. Photometry and moderate resolution spectroscopy, spanning the ultraviolet through near-infrared spectral ranges, will enable constraints on key habitability-related atmospheric species and properties (e.g., surface pressure). In this poster, we will discuss approaches to detecting signs of habitability in reflected-light observations of rocky exoplanets. We will also present initial results for modeling experiments aimed at demonstrating the capabilities of HabEx to study and understand Earth-like worlds around other stars.

  6. SHINE, The SpHere INfrared survey for Exoplanets

    Science.gov (United States)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Feldt, M.; Gratton, R.; Langlois, M.; Cheetham, A.; Bonnefoy, M.; Meyer, M.

    2017-12-01

    The SHINE survey for SPHERE High-contrast ImagiNg survey for Exoplanets, is a large near-infrared survey of 400-600 young, nearby stars and represents a significant component of the SPHERE consortium Guaranteed Time Observations consisting in 200 observing nights. The scientific goals are: i) to characterize known planetary systems (architecture, orbit, stability, luminosity, atmosphere); ii) to search for new planetary systems using SPHERE's unprecedented performance; and finally iii) to determine the occurrence and orbital and mass function properties of the wide-orbit, giant planet population as a function of the stellar host mass and age. Combined, the results will increase our understanding of planetary atmospheric physics and the processes of planetary formation and evolution.

  7. A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134

    Science.gov (United States)

    Johnson, Marshall C.; Endl, Michael; Cochran, William D.; Meschiari, Stefano; Robertson, Paul; MacQueen, Phillip J.; Brugamyer, Erik J.; Caldwell, Caroline; Hatzes, Artie P.; Ramírez, Ivan; Wittenmyer, Robert A.

    2016-04-01

    The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. and Vogt et al. to host several planets, the innermost of which is transiting. We present 27 years of radial velocity (RV) observations of this star from the McDonald Observatory Planet Search program, and 19 years of stellar activity data. We detect a long-period activity cycle measured in the Ca II SHK index, with a period of 4230 ± 100 days (11.7 years), very similar to the 11 year solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al., suggesting that this RV signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our RVs allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer period planets in the system, excluding to 1σ objects with M{sin}I\\gt 0.36{M}J at 12 years (corresponding to the orbital period of Jupiter) and M{sin}I\\gt 0.72{M}J at a period of 16.4 years (assuming a circular orbit for an outer companion).

  8. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    Science.gov (United States)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  9. Atmospheric Circulation of Exoplanets

    OpenAIRE

    Showman, Adam P.; Cho, James Y-K.; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-wate...

  10. Molecular opacities for exoplanets.

    Science.gov (United States)

    Bernath, Peter F

    2014-04-28

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy.

  11. A Model for Astrometric Detection and Characterization of Multi-Exoplanet Systems

    Science.gov (United States)

    April Thompson, Maggie; Spergel, David N.

    2017-01-01

    In this thesis, we develop an approximate linear model of stellar motion in multi- planet systems as an aid to observers using the astrometric method to detect and characterize exoplanets. Recent and near-term advances in satellite and ground-based instruments are on the threshold of achieving sufficient (~10 micro-arcsecond) angular accuracies to allow astronomers to measure and analyze the transverse mo- tion of stars about the common barycenter in single- and multi-planet systems due to the gravitational influence of companion planets. Given the emerging statistics of extrasolar planetary systems and the long observation periods required to assess exoplanet influences, astronomers should find an approximate technique for preliminary estimates of multiple planet numbers, masses and orbital parameters useful in determining the most likely stellar systems for follow-up studies. In this paper, we briefly review the history of astrometry and discuss its advantages and limitations in exoplanet research. In addition, we define the principal astrometric signature and describe the main variables affecting it, highlighting astrometry’s complementary role to radial velocity and photometric transit exoplanet detection techniques. We develop and test a Python computer code using actual data and projections of the Sun’s motion due to the influence of the four gas giants in the solar system. We then apply this model to over 50 hypothetical massive two- and three-exoplanet systems to discover useful general patterns by employing a heuristic examination of key aspects of the host star’s motion over long observation intervals. Finally, we modify the code by incorporating an inverse least-squares fit program to assess its efficiency in identifying the main characteristics of multi-planet systems based on observational records over 5-, 10- and 20-year periods for a variety of actual and hypothetical exoplanetary systems. We also explore the method’s sensitivity to

  12. Risks for life on habitable planets from superflares of their host stars

    OpenAIRE

    Lingam, Manasvi; Loeb, Abraham

    2017-01-01

    We explore some of the ramifications arising from superflares on the evolutionary history of Earth, other planets in the Solar system, and exoplanets. We propose that the most powerful superflares can serve as plausible drivers of extinction events, and that their periodicity could correspond to certain patterns in the terrestrial fossil diversity record. On the other hand, weaker superflares may play a positive role in enabling the origin of life through the formation of key organic compound...

  13. An ultrahot gas-giant exoplanet with a stratosphere

    Science.gov (United States)

    Evans, Thomas M.; Sing, David K.; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; Amundsen, David S.; Ballester, Gilda E.; Barstow, Joanna K.; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A.; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W.; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier Des; Lewis, Nikole K.; López-Morales, Mercedes; Mandell, Avi M.; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-01

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  14. Direct detection of hundreds of exoplanets with a space-based mid-infrared interferometer

    Science.gov (United States)

    Quanz, S. P.; Kammerer, J.

    2017-09-01

    One of the long-term goals of exoplanet research is the (atmospheric) characterization of a sizeable sample of small, terrestrial planets in order to assess their potential habitability. In this context it is important to quantitatively assess the scientific return of various mission concepts in order to derive robust science requirements. While transit and secondary eclipse spectroscopy may provide data on a few systems, it seems questionable whether a larger planet sample can be investigated given that most planets do not transit in front of their host stars. Hence, direct detection methods may be required. Here we predict the exoplanet yield of a space-based mid-infrared nulling interferometer (akin to the Darwin mission concept) using a catalog of nearby stars and the planet occurrence rates found by NASA's Kepler mission. We find that a mission with the technical specifications of Darwin could detect >300 exoplanets (with radii between 0.5 and 6 Earth radii). Roughly 85 planets have radii between 0.5 and 1.75 Earth radii and equilibrium temperatures between 200 and 450 K and are prime targets for spectroscopic follow-up observations in the second phase of the mission investigating their potential habitability. Higher planet yields can be realized by further optimizing the observing strategy. We also compare the baseline planet yield of a space-based mid-infrared interferometer to that of a large space-based optical/IR telescope. We conclude that a Darwin-like mission concept should be put back on the long-term agenda of the exoplanet community and related space agencies.

  15. The Galactic Exoplanet Survey Telescope (GEST) Proposed Discovery Mission

    Science.gov (United States)

    Bennett, D. P.; Bally, J.; Bond, I.; Cheng, E.; Cook, K.; Deming, D.; Garnavich, P.; Griest, K.; Jewitt, D.; Lauer, T.; Lunine, J.; Luppino, G.; Mather, J.; Minniti, D.; Peale, S.; Rhie, S.; Sahu, K.; Schneider, J.; Sonneborn, G.; Stevenson, R.; Tenerelli, D.; Woolf, N.; Yock, P.; Rich, M.

    2003-12-01

    The results of detailed simulations of space and ground based microlensing searches for extra-solar terrestrial planets are presented. These simulations indicate that the proposed Galactic Exoplanet Survey Telescope (GEST) can perform a comprehensive survey of extra-solar planetary systems with sensitivity to planets with masses as low as that of Mars (0.1M⊕ ) in orbits ranging from ˜ 0.7AU to infinity. In contrast, a multi-site ground based survey telescopes similar to VISTA or individual PAN-Stars telescopes, would be unlikely to discover a single Earth-like planet due the inability to resolve Galactic bulge main sequence stars from the ground, and the difficulty of obtaining 24 hour light curve coverage with good observing conditions. A space-based microlensing survey like GEST will be able to measure the abundance of extra-solar planets as a function of planet:star mass ratio and separation. For one third of detected events, the lens star will be detected, and this will allow the determination of the stellar type, mass and distance of the planetary host stars. A space-based microlensing survey is the only proposed method which can measure the abundance of free-floating planets which have been ejected from their parent stars. GEST can be accomplished at low risk with established technology at a cost that is within the cost cap of NASA's Discovery Program, but the prospects for planet detection from a possible future network large wide-field of view telescopes is unlikely to justify the funds necessary to build such s telescope network.

  16. PLATO : PLAnetary Transits and Oscillations of stars

    Energy Technology Data Exchange (ETDEWEB)

    Catala, Claude [Observatoire de Paris, LESIA, 5 place Jules Janssen, Meudon (France); Appourchaux, Thierry, E-mail: claude.catala@obspm.fr, E-mail: thierry.appourchaux@ias.u-psud.fr [Institut d' Astrophysique Spatiale, Universite Paris-Sud, Orsay (France)

    2011-01-01

    PLATO is a M-class candidate in the ESA Cosmic Vision program. PLATO's objective is to characterize exoplanets and their host stars in the solar neighbourhood. While it builds on the heritage from CoRoT and Kepler, the major breakthrough will come from its strong focus on bright targets (m{sub V} {<=} 11). The PLATO targets will also include a large number of very bright (m{sub V} {<=} 8) and nearby stars. The prime science goals of PLATO are: (i) the detection and characterization of exoplanetary systems of all kinds, including both the planets and their host stars, reaching down to small, terrestrial planets in the habitable zone; (ii) the identification of suitable targets for future, more detailed characterization, including a spectroscopic search for bio-markers in nearby habitable exoplanets. These ambitious goals will be reached by ultra-high precision, long (few years), uninterrupted photometric monitoring in the visible of very large samples of bright stars, which can only be done from space. The resulting high quality light curves will be used on the one hand to detect planetary transits, as well as to measure their characteristics, and on the other hand to provide a seismic analysis of the host stars of the detected planets, from which precise measurements of their radii, masses, and ages will be derived. The PLATO space-based data will be complemented by ground-based follow-up observations, in particular very precise radial velocity monitoring, which will be used to confirm the planetary nature of the detected events and to measure the planet masses. The full set of parameters of exoplanetary systems will thus be measured, including all characteristics of the host stars and the orbits, radii, masses, and ages of the planets, allowing us to derive planet mean densities, and estimate their temperature and radiation environment. Finally, the knowledge of the age of the exoplanetary systems will allow us to put them in an evolutionary perspective.

  17. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Hekker, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Amsterdam (Netherlands); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot (France); IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Corsaro, E. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Basu, S. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Kawaler, S. D., E-mail: campante@bison.ph.bham.ac.uk [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); and others

    2014-03-10

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  18. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel, E-mail: mulders@lpl.arizona.edu [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R{sub ⨁}) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R{sub ⨁}) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M{sub ⨁} in F stars to 5 M{sub ⨁} in G and K stars to 7 M{sub ⨁} in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.

  19. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  20. VLT Captures First Direct Spectrum of an Exoplanet

    Science.gov (United States)

    2010-01-01

    By studying a triple planetary system that resembles a scaled-up version of our own Sun's family of planets, astronomers have been able to obtain the first direct spectrum - the "chemical fingerprint" [1] - of a planet orbiting a distant star [2], thus bringing new insights into the planet's formation and composition. The result represents a milestone in the search for life elsewhere in the Universe. "The spectrum of a planet is like a fingerprint. It provides key information about the chemical elements in the planet's atmosphere," says Markus Janson, lead author of a paper reporting the new findings. "With this information, we can better understand how the planet formed and, in the future, we might even be able to find tell-tale signs of the presence of life." The researchers obtained the spectrum of a giant exoplanet that orbits the bright, very young star HR 8799. The system is at about 130 light-years from Earth. The star has 1.5 times the mass of the Sun, and hosts a planetary system that resembles a scaled-up model of our own Solar System. Three giant companion planets were detected in 2008 by another team of researchers, with masses between 7 and 10 times that of Jupiter. They are between 20 and 70 times as far from their host star as the Earth is from the Sun; the system also features two belts of smaller objects, similar to our Solar System's asteroid and Kuiper belts. "Our target was the middle planet of the three, which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius," says team member Carolina Bergfors. "After more than five hours of exposure time, we were able to tease out the planet's spectrum from the host star's much brighter light." This is the first time the spectrum of an exoplanet orbiting a normal, almost Sun-like star has been obtained directly. Previously, the only spectra to be obtained required a space telescope to watch an exoplanet pass directly behind its host star in an "exoplanetary

  1. Integrated Wavefront Correction and Bias Estimation for the High-Contrast Imaging of Exoplanets

    Science.gov (United States)

    Riggs, A. J. Eldorado

    Just over two decades ago the first planet outside our solar system was found, and thousands more have been discovered since. Nearly all these exoplanets were indirectly detected by sensing changes in their host stars' light. However, exoplanets must be directly imaged to determine their atmospheric compositions and the orbital parameters unavailable from only indirect detections. The main challenge of direct imaging is to observe stellar companions much fainter than the star and at small angular separations. Coronagraphy is one method of suppressing stellar diffraction to provide high star-to-planet contrast, but coronagraphs are extremely sensitive to quasi-static aberrations in the optical system. Active correction of the stellar wavefront is performed with deformable mirrors to recover high-contrast regions in the image. Estimation and control of the stellar electric field is performed iteratively in the camera's focal plane to avoid non-common path aberrations arising from a separate pupil sensor. Estimation can thus be quite time consuming because it requires several high-contrast intensity images per correction iteration. This thesis focuses on efficient focal plane wavefront correction (FPWC) for coronagraphy. Time is a precious commodity for a space telescope, so there is a strong incentive to reduce the total exposure time required for focal plane wavefront estimation. Much of our work emphasizes faster, more robust estimation via Kalman filtering, which optimally combines prior data with new measurements. The other main contribution of this thesis is a paradigm shift in the use of estimation images. Time for FPWC has generally been considered to be lost overhead, but we demonstrate that estimation images can be used for the detection and characterization of exoplanets and disks. These science targets are incoherent with their host stars, so we developed and implemented an iterated extended Kalman filter (IEKF) for simultaneous estimation of the stellar

  2. Risks for Life on Habitable Planets from Superflares of Their Host Stars

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-10-01

    We explore some of the ramifications arising from superflares on the evolutionary history of Earth, other planets in the solar system, and exoplanets. We propose that the most powerful superflares can serve as plausible drivers of extinction events, and that their periodicity corresponds to certain patterns in the terrestrial fossil diversity record. On the other hand, weaker superflares may play a positive role in enabling the origin of life through the formation of key organic compounds. Superflares could also prove to be quite detrimental to the evolution of complex life on present-day Mars and exoplanets in the habitable zone of M- and K-dwarfs. We conclude that the risk posed by superflares has not been sufficiently appreciated, and that humanity might potentially witness a superflare event in the next ˜ {10}3 years, leading to devastating economic and technological losses. In light of the many uncertainties and assumptions associated with our analysis, we recommend that these results should be viewed with due caution.

  3. Broadband polarimetry of exoplanets: modelling signals of surfaces, hazes and clouds

    OpenAIRE

    Karalidi, Theodora

    2013-01-01

    It is less than 20 years since astronomers discovered the first exoplanet orbiting a Sun-like star. In this short period more than 770 confirmed exoplanets have been detected. With so many exoplanets the next step is their characterization. What is their atmosphere made of? Does it contain water clouds? Is there water on the planetary surface? Could there be life on these planets? To answer all these questions good and reliable models are necessary for interpreting the signal we observe from ...

  4. The physics of brown dwarfs and exoplanets - JWST/NIRSpec GTO program overview

    Science.gov (United States)

    Birkmann, Stephan; Alves de Oliveira, Catarina; Valenti, Jeff A.; Ferruit, Pierre; NIRSpec GTO Team

    2017-06-01

    The Near Infrared Spectrograph (NIRSpec) is one of the science instruments on the James Webb Space Telescope that is scheduled for launch in October 2018. The NIRSpec guaranteed time observer (GTO) team will use ~70 hours of NIRSpec guaranteed time to carry out spectroscopic observations of brown dwarfs as well as transiting and directly imaged exoplanets with NIRSpec. The instrument offers four distinct observing modes to proposers that will all be exercised by the GTO programs presented here: 1) multi object spectroscopy (MOS) of 10s to 100s of sources in a ~9 arcmin field of view (FOV), 2) integral field spectroscopy (IFS) with a 3” x 3” FOV, 3) high contrast slit spectroscopy of individual objects and 4) time series observations of bright sources, e.g. transiting exoplanets host stars. Seven dispersers are available in all observing modes: a prism covering the wavelength range from 0.6 to 5.3 micron with a spectral resolution R of ~30 to 300, and two sets of three gratings covering 0.7 to 5.2 micron with medium (R~1000) and high (R~2700) spectral resolution.We will present the science goals and targets for the brown dwarf and exoplanet GTO programs and discuss the planned implementation of the observations. The latter might be of particular interest to future JWST/NIRSpec proposers.

  5. A global map of the atmospheric circulation and thermal structure for an ultrahot exoplanet

    Science.gov (United States)

    Evans, Tom; Sing, David; Tiffany, Kataria; Nikolov, Nikolay; Deming, Drake; Lewis, Nikole; Wakeford, Hannah; Marley, Mark; Gibson, Neale; Spake, Jessica; Drummond, Benjamin; Barstow, Joanna; Henry, Gregory; Mayne, Nathan

    2017-10-01

    WASP-121b is one of the standout exoplanets available for atmospheric characterization, both in transmission and emission, due to its large radius (1.8 Jupiter radii), high temperature ( 2700K), and bright host star (H=9.4mag). Recent HST/WFC3 eclipse observations made by our group have revealed the 1.4 micron water band in emission on the dayside hemisphere of WASP-121b, implying that the atmosphere has a thermal inversion. This new development, combined with the favorable system properties, makes it clear that WASP-121b is an ideal target to empirically probe the variation of thermal inversions with longitude. To do this, we propose phase curve measurements of WASP-121b over a full orbital period in each of the Spitzer/IRAC channels. Given the measurement precision demonstrated by our previous IRAC observations of WASP-121b, we anticipate this dataset will be one of the highest signal-to-noise phase curve measurements for an exoplanet to date. It will provide a powerful complement to full-orbit phase curves that have recently been confirmed for shorter wavelengths, to be made by HST/WFC3 and JWST/NIRISS. Combined, this Spitzer+HST+JWST phase curve dataset will produce an unprecedented map of the longitudinally-resolved thermal structure, chemical composition and global circulation of an exoplanet atmosphere, and, in particular, give crucial new insight into the long-standing mystery of thermal inversions in strongly-irradiated gas giants.

  6. RADIAL VELOCITY ECLIPSE MAPPING OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk [Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-07-20

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.

  7. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    Science.gov (United States)

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  8. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  9. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third Laser Interferometer Gravitational Wave Observatory (LIGO) detections (36-29 M⊙ and 32-19 M⊙) suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches ∼90 per cent at ∼0.5 kpc from the galaxy centre, compared to a benchmark value of ∼5 per cent outside the core. The predicted merger rates inside bulges is ∼60 × βIII Gpc-3 yr-1 (βIII is the Pop III binarity fraction). To match the 90 per cent credible range of LIGO merger rates, we obtain: 0.03 < βIII < 0.88. Future advances in GW observatories and the discovery of possible electromagnetic counterparts could allow the localization of such sources within their host galaxies. The preferential concentration of GW events within the bulge of galaxies would then provide an indirect proof for the existence of Pop III stars.

  10. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third LIGO detections, ($36-29 \\, \\mathrm{M_{\\odot}}$ and $32-19 \\, \\mathrm{M_{\\odot}}$), suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches $\\sim 90\\%$ at $\\sim 0.5 \\, \\mathrm{kpc}$ from the galaxy center, compared to a benchmark value of $\\sim 5\\%$ outside the core. The predicted merger rates inside bulges is $\\sim 60 \\times \\beta_{III} \\, \\mathrm{Gpc^{-3} \\, yr^{-1}}$ ($\\beta_{III}$ is the Pop III binarity fraction). To match the $90\\%$ credible range of LIGO merger rates, we obtain: $0.03 < \\beta_{III} < 0.88$. Future advances in GW observatories and the discovery of possible electromagnetic counterparts could allow the localization of such sources within their host galaxies. The preferential concentration of GW events within the bulge of galaxies would then provide an indirect proof for the existence of Pop III stars.

  11. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    Science.gov (United States)

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  12. X-raying CoRoT2a, the most active planet host-star known to date

    Science.gov (United States)

    Schmitt, Jurgen

    2012-10-01

    Stellar activity plays a key role in the evolution of planetary systems. Hot Jupiters around active stars are immersed in intense high-energy radiation fields and particle emission. In particular hydrodynamic blow-off of the outer planetary atmosphere should occur, which leads to larger X-ray radii of hot Jupiters and to deeper eclipse depths at X-ray wavelengths, which should be observable with XMM-Newton. The extrasolar planet system CoRoT-2 harbors the most active planet host-star known to date; its unique properties actually allow to perform sensitive X-ray observations of planetary transits and study such blow-off phenomena. We simultaneously study the X-ray and optical variability of CoRoT-2 by observing 15 transits distributed over almost eight stellar rotations.

  13. The Transiting Exoplanet Survey Satellite (Abstract)

    Science.gov (United States)

    Oelkers, R. J.

    2017-06-01

    (Abstract only) The Transiting Exoplanet Survey Satellite (TESS) will be conducting a nearly all-sky, photometric survey over the course of two years, with a core mission goal to discover small transiting exoplanets orbiting nearby, bright stars. The satellite will obtain 30-minute cadence observations for more than 1 billion objects in the 26 TESS fields of view and 2-minute cadence observations of 200,000 to 400,000 selected stars. The TESS mission is expected to detect 1,500 transiting planet candidates, including 500 Earth-sized objects, over the course of its two-year mission. The choice of which stars to observe at the 2-minute cadence is driven by the need to detect small, transiting planets, leading to the selection of primarily bright, cool dwarfs. These stars will be 10 to 100 times brighter than the stars observed by Kepler, providing a unique opportunity for an amateur-professional collaboration to heavily contribute to candidate follow-up. I describe the TESS science mission, its current status and the mission's photometric and spectroscopic follow-up needs.

  14. Tatooines Future: The Eccentric Response of Keplers Circumbinary Planets to Common-Envelope Evolution of their Host Stars

    Science.gov (United States)

    Kostov, Veselin B.; Moore, Keavin; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A.

    2016-01-01

    Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and common-envelope stages (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the common-envelope phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-common-envelope, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and non-adiabatic) if their host binaries undergo more than one common-envelope stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same common-envelope stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semi-major axis can survive the common envelope evolution of a close binary star with a total mass of 1 Solar Mass.

  15. Searching for exoplanets using artificial intelligence

    Science.gov (United States)

    Pearson, Kyle A.; Palafox, Leon; Griffith, Caitlin A.

    2018-02-01

    In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called "deep learning" or "deep nets" are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time-series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.

  16. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    Science.gov (United States)

    Petigura, Erik Ardeshir

    2015-04-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using optical spectra taken by the California Planet Search. I found a large range in the relative abundance of carbon and oxygen in this sample, including a handful of carbon-rich stars. I also developed a new technique called SpecMatch for extracting fundamental stellar parameters from optical spectra. SpecMatch is particularly applicable to the relatively faint planet-hosting stars discovered by Kepler.

  17. Transiting exoplanets from the CoRoT space mission. XXI. CoRoT-19b: a low density planet orbiting an old inactive F9V-star

    DEFF Research Database (Denmark)

    Guenther, E. W.; Díaz, R. F.; Gazzano, J.-C.

    2012-01-01

    Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets......, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims. The CoRoT space mission allows us to achieve a very high...... photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods. After excluding alternative...

  18. Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star

    DEFF Research Database (Denmark)

    Pätzold, M.; Endl, M.; Csizmadia, Sz.

    2012-01-01

    CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow......-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 ± 0.33 Jupiter masses and 1.30 ± 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 ± 0.0011 AU and an orbital period of 2.72474 ± 0.00014 days...

  19. The fundamental stellar parameters of FGK stars in the SEEDS survey Norman, OK 73071, USA

    Science.gov (United States)

    Rich, Evan A.; Wisniewski, John P.; McElwain, Michael W.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Okamoto, Yoshiko K.; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Cargile, Phillip; Carson, Joseph C.; Currie, Thayne M.; Egner, Sebastian; Feldt, Markus; Fukagawa, Misato; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Hebb, Leslie; Hełminiak, Krzysztof G.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; Mayama, Satoshi; Miyama, Shoken; Momose, Munetake; Morino, Jun-Ichi; Moro-Martin, Amaya; Nakagawa, Takao; Nishimura, Tetsuo; Oh, Daehyeon; Pyo, Tae-Soo; Schlieder, Joshua; Serabyn, Eugene; Sitko, Michael L.; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2017-12-01

    Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from Echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and Temperature Gravity microtrubulent Velocity ITerations to calculate the fundamental parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighbourhood. Additionally, we find the ages of most of our sample are <500 Myr, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The future meta-analysis of the frequency of wide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected comoving companions with the properties of their host stars.

  20. Exploring Exoplanets Out to the Snowline with LCOGT

    Science.gov (United States)

    Street, Rachel

    2015-08-01

    Microlensing is the most efficient technique for the discovery of cool exoplanets between ~2-10 AU from their host stars, and unique in its capacity to detect and characterize objects down to even lunar masses from ground based observations. The field of microlensing is now reaching maturity, with wider field surveys identifying ~2000 events and ~10 planetary systems per year. Continuous, high precision and high cadence photometry is required over many days spanning the peak of an event to ensure the detection of the subtle anomalies caused by terrestrial companions to the lensing star. Until now this has been achieved with a diverse collection of telescope apertures, worldwide. Here we report on the first season of microlensing observations with a new observing facility ideal for this science: the LCOGT 1m network. During 2012-2013, LCOGT deployed 11 x 1m telescopes to 5 sites around the world in both hemispheres, with the majority of the telescopes going to sites in Chile, South Africa and Australia. These homogenous facilities have now completed their first commissioning season of microlensing observations, demonstrating their capability to find and characterize cool terrestrial planets.

  1. WFIRST Microlensing Exoplanet Characterization with HST Follow up

    Science.gov (United States)

    Bhattacharya, Aparna; David Bennett, Jay Anderson, J.P. Beaulieu.

    2018-01-01

    More than 50 planets are discovered with the different ground based telescopes available for microlensing. But the analysis of ground based data fails to provide a complete solution. To fulfill that gap, space based telescopes, like Hubble space telescope and Spitzer are used. My research work focuses on extracting the planet mass, host star mass, their separation and their distance in physical units from HST Follow-up observations. I will present the challenges faced in developing this method.This is the primary method to be used for NASA's top priority project (according to 2010 decadal survey) Wide Field InfraRed Survey Telescope (WFIRST) Exoplanet microlensing space observatory, to be launched in 2025. The unique ability of microlensing is that with WFIRST it can detect sub-earth- mass planets beyond the reach of Kepler at separation 1 AU to infinity. This will provide us the necessary statistics to study the formation and evolution of planetary systems. This will also provide us with necessary initial conditions to model the formation of planets and the habitable zones around M dwarf stars.

  2. ASTEROSEISMIC DETERMINATION OF OBLIQUITIES OF THE EXOPLANET SYSTEMS KEPLER-50 AND KEPLER-65

    Energy Technology Data Exchange (ETDEWEB)

    Chaplin, W. J.; Campante, T. L.; Davies, G. R.; Elsworth, Y.; Hekker, S. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanchis-Ojeda, R.; Winn, J. N. [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Handberg, R.; Christensen-Dalsgaard, J.; Karoff, C. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Stello, D.; Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Basu, S.; Fischer, D. A. [Department and Astronomy, Yale University, New Haven, CT 06520 (United States); Metcalfe, T. S. [White Dwarf Research Corporation, Boulder, CO 80301 (United States); Buchhave, L. A. [Niels Bohr Institute, Copenhagen University, DK-2100 Copenhagen (Denmark); Cochran, W. D. [McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Isaacson, H. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2013-04-01

    Results on the obliquity of exoplanet host stars-the angle between the stellar spin axis and the planetary orbital axis-provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1{sigma} level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.

  3. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    Science.gov (United States)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.

    2017-11-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of cost

  4. Using Exoplanets to Engage Students in Physics

    Science.gov (United States)

    Charbonneau, David

    2011-05-01

    A hundred planets transiting bright stars are now known, ensuring that at any particular site at least one transit is visible on any given night. Most of these worlds were discovered with 4-inch telescopes, and so the modest telescopes that nest atop the physics buildings of many college campuses are more than adequate to pursue the transit events. Fueled by results from the NASA Kepler Mission and the promise of Earth-like worlds, exoplanets offer an enormous opportunity to engage first-year college students in physics. The simple geometric nature of these systems permits the direct application of introductory mechanics to deduce the basic properties of some planets orbiting other stars. Moreover, by gathering and analyzing their own data, students can understand the fundamentals of experimental science and data analysis. I will discuss the opportunities to engage students in physics through transiting exoplanets, with specific examples drawn from a first-year undergraduate course at Harvard University. I will also review the practical aspects, including software and hardware, of establishing an exoplanet observing lab appropriate for college students.

  5. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    Science.gov (United States)

    Hu, Renyu

    2016-01-01

    Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  6. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  7. The Exoplanet Cloud Atlas

    Science.gov (United States)

    Gao, Peter; Marley, Mark S.; Morley, Caroline; Fortney, Jonathan J.

    2017-10-01

    Clouds have been readily inferred from observations of exoplanet atmospheres, and there exists great variability in cloudiness between planets, such that no clear trend in exoplanet cloudiness has so far been discerned. Equilibrium condensation calculations suggest a myriad of species - salts, sulfides, silicates, and metals - could condense in exoplanet atmospheres, but how they behave as clouds is uncertain. The behavior of clouds - their formation, evolution, and equilibrium size distribution - is controlled by cloud microphysics, which includes processes such as nucleation, condensation, and evaporation. In this work, we explore the cloudy exoplanet phase space by using a cloud microphysics model to simulate a suite of cloud species ranging from cooler condensates such as KCl/ZnS, to hotter condensates like perovskite and corundum. We investigate how the cloudiness and cloud particle sizes of exoplanets change due to variations in temperature, metallicity, gravity, and cloud formation mechanisms, and how these changes may be reflected in current and future observations. In particular, we will evaluate where in phase space could cloud spectral features be observable using JWST MIRI at long wavelengths, which will be dependent on the cloud particle size distribution and cloud species.

  8. Light from Exoplanets: Present and Future

    Science.gov (United States)

    Deming, Leo

    2010-01-01

    Measurements using the Spitzer Space Telescope have revealed thermal emission from planets orbiting very close to solar-type stars, primarily transiting "hot Jupiter" exoplanets. The thermal emission spectrum of these worlds has been measured by exploiting their secondary eclipse. Also, during transit of the planet, absorption signatures from atoms and molecules in the planet's atmosphere are imprinted onto the spectrum of the star. Results to date from transit and eclipse studies show that the hot Jupiters often have significant haze and cloud components in their atmospheres, and the temperature structure can often be inverted, i.e. temperature is rising with height. New and very strongly irradiated examples of hot Jupiters have been found that are being stripped of their atmospheres by tidal forces from the star. In parallel, transiting superEarth exoplanets are being discovered, and their atmospheres should also be amenable to study using transit techniques. The 2014 launch of the James Webb Space Telescope will clarify the physical nature of hot Jupiters, and will extend transit and eclipse studies to superEarths orbiting in the habitable zones of lower main sequence stars.

  9. Exoplanets finding, exploring, and understanding alien worlds

    CERN Document Server

    Kitchin, Chris

    2012-01-01

    Since 1992 there has been an explosion in the discovery of planets orbiting stars other than the Sun. There are now around 600 alien planets that we know about and that number is likely to break through the 1,000 ‘barrier’ within a couple of years. The recent launch of the Kepler space telescope specifically to look for new worlds opens the prospect of hundreds, maybe thousands, of further exoplanets being found. Many of these planets orbits stars that are not too different from the Sun, but they are so close in to their stars that their surfaces could be flooded with seas of molten lead – or even molten iron. Others orbit so far from their stars that they might as well be alone in interstellar space. A planet closely similar to the Earth has yet to be detected, but that (to us) epoch-making discovery is just a matter of time. Could these alien worlds could provide alternative homes for humankind, new supplies of mineral resources and might they might already be homes to alien life? Exoplanets: Finding,...

  10. SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope.

    Science.gov (United States)

    Tamura, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.

  11. Statistical Signatures of Panspermia in Exoplanet Surveys

    Science.gov (United States)

    Lin, Henry W.; Loeb, Abraham

    2015-09-01

    A fundamental astrobiological question is whether life can be transported between extrasolar systems. We propose a new strategy to answer this question based on the principle that life which arose via spreading will exhibit more clustering than life which arose spontaneously. We develop simple statistical models of panspermia to illustrate observable consequences of these excess correlations. Future searches for biosignatures in the atmospheres of exoplanets could test these predictions: a smoking gun signature of panspermia would be the detection of large regions in the Milky Way where life saturates its environment interspersed with voids where life is very uncommon. In a favorable scenario, detection of as few as ∼25 biologically active exoplanets could yield a 5σ detection of panspermia. Detectability of position-space correlations is possible unless the timescale for life to become observable once seeded is longer than the timescale for stars to redistribute in the Milky Way.

  12. Observing Exoplanets in the Mid-Ultraviolet

    Science.gov (United States)

    Heap. Sara

    2008-01-01

    There are good reasons for pushing the spectral range of observation to shorter wavelengths than currently envisaged for terrestrial planet-finding missions utilizing with a 4-m, diffraction-limited, optical telescope: (1) The angular resolution is higher, so the image of an exoplanet is better separated from that of the much brighter star. (2) The exozodiacal background per resolution element is smaller, so exposure times are reduced for the same incident flux. (3) Most importantly, the sensitivity to the ozone biomarker is increased by several hundred-fold by access to the ozone absorption band at 250-300 nm. These benefits must be weighed against challenges arising from the faintness of exoplanets in the mid-UV. We will evaluate both the technical and cost challenges including image quality of large telescopes, advanced mirror coatings and innovative designs for enhanced optical throughput, and CCD detectors optimized for 250-400 nm.

  13. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z <~ 1 and Consistency with Typical Star-forming Galaxies

    Science.gov (United States)

    Michałowski, M. J.; Kamble, A.; Hjorth, J.; Malesani, D.; Reinfrank, R. F.; Bonavera, L.; Castro Cerón, J. M.; Ibar, E.; Dunlop, J. S.; Fynbo, J. P. U.; Garrett, M. A.; Jakobsson, P.; Kaplan, D. L.; Krühler, T.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; van der Horst, A. J.; Watson, D.; Wiersema, K.

    2012-08-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z 500 M ⊙ yr-1. For the undetected hosts the mean radio flux (~ 88% of the z <~ 1 GRB hosts have ultraviolet dust attenuation A UV < 6.7 mag (visual attenuation AV < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A UV of GRB hosts are consistent with those of Lyman break galaxies, Hα emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z <~ 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Programme 177.A-0591), the Australian Telescope Compact Array, the Giant Metrewave Radio Telescope, the Very Large Array, and the Westerbork Synthesis Radio Telescope.

  14. Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    Science.gov (United States)

    Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.

    2017-12-01

    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.

  15. Is There Life on Exoplanet Maja? A Demonstration for Schools

    Science.gov (United States)

    Planinsic, Gorazd; Marshall, Rick

    2012-01-01

    Astronomy and astrophysics are very popular with pupils, but the experimental work they can do tends to be rather limited. The search for life elsewhere in the Universe ("exobiology") has received an enormous boost since the detection of a rapidly increasing number of planets ("exoplanets") orbiting other stars in our galaxy. Recently (March…

  16. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    Science.gov (United States)

    Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.

    2013-01-01

    Abstract Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO2 in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global

  17. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    Science.gov (United States)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  18. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II. Star formation rates and metallicities at z < 1

    Science.gov (United States)

    Japelj, J.; Vergani, S. D.; Salvaterra, R.; D'Avanzo, P.; Mannucci, F.; Fernandez-Soto, A.; Boissier, S.; Hunt, L. K.; Atek, H.; Rodríguez-Muñoz, L.; Scodeggio, M.; Cristiani, S.; Le Floc'h, E.; Flores, H.; Gallego, J.; Ghirlanda, G.; Gomboc, A.; Hammer, F.; Perley, D. A.; Pescalli, A.; Petitjean, P.; Puech, M.; Rafelski, M.; Tagliaferri, G.

    2016-05-01

    Aims: Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (zextinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M⋆. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M⋆ relations) are compared to samples of field star-forming galaxies. Results: We find that LGRB hosts at zmass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 zmasses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies. Based on observations at ESO, Program IDs: 077.D-0425, 177.A-0591, 080.D-0526, 081.A-0856, 082.D-0276, 083.D-0069, 084.A-0303, 084.A-0260, 086.A-0644, 086.B-0954, 089.A-0868, 090.A-0760, 095.D-0560.The reduced spectra are available in the ESO archive as Phase 3 data products and in the GTC archive.

  19. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z {approx}< 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Michalowski, M. J.; Dunlop, J. S. [SUPA (Scottish Universities Physics Alliance), Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Kamble, A.; Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Kruehler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Reinfrank, R. F. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Bonavera, L. [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, E-39005 Santander (Spain); Castro Ceron, J. M. [Department of Radio Astronomy, Madrid Deep Space Communications Complex (INTA-NASA/INSA), Ctra. M-531, km. 7, E-28.294 Robledo de Chavela (Madrid) (Spain); Ibar, E. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Garrett, M. A. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Massardi, M. [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Pal, S. [ICRAR, University of Western Australia, 35 Stirling Highway, Crawley, WA (Australia); Sollerman, J. [Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-10691 Stockholm (Sweden); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Van der Horst, A. J., E-mail: mm@roe.ac.uk [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); and others

    2012-08-20

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of {approx}825 M{sub Sun} yr{sup -1}, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least {approx}63% of GRB hosts have SFR < 100 M{sub Sun} yr{sup -1} and at most {approx}8% can have SFR > 500 M{sub Sun} yr{sup -1}. For the undetected hosts the mean radio flux (<35 {mu}Jy 3{sigma}) corresponds to an average SFR < 15 M{sub Sun} yr{sup -1}. Moreover, {approx}> 88% of the z {approx}< 1 GRB hosts have ultraviolet dust attenuation A{sub UV} < 6.7 mag (visual attenuation A{sub V} < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A{sub UV} of GRB hosts are consistent with those of Lyman break galaxies, H{alpha} emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z {approx}< 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought.

  20. Density is not Destiny: Characterizing Terrestrial Exoplanet Geology from Stellar Compositional Abundances

    Science.gov (United States)

    Unterborn, Cayman T.

    2018-01-01

    A planet’s mass-radius relationship alone is not a good indicator for its potential to be "Earth-like." While useful in coarse characterizations for distinguishing whether an exoplanet is water/atmosphere- or rock/iron-dominated, there is considerable degeneracy in using the mass-radius relation to determine the mineralogy and structure of a purely terrestrial planet like the Earth. The chemical link between host-stars and rocky planets and the utility of this connection in breaking the degeneracy in the mass-radius relationship is well documented. Given the breadth of observed stellar compositions, modeling the complex effects of these compositional variations on a terrestrial planet’s mineralogy, structure and temperature profile, and the potential pitfalls therein, falls within the purview of the geosciences.I will demonstrate here, the utility in adopting the composition of a terrestrial planet’s host star for contextualizing individual systems (e.g. TRAPPIST-1), as well as for the more general case of quantifying the geophysical consequences of stellar compositional diversity. This includes the potential for a host-star to produce planets able to undergo mantle convection, surface-to-interior degassing and long-term plate tectonics. As we search for truly “Earth-like” planets, we must move away from the simple density-driven definition of “Earth-like” and towards a more holistic view that includes both geochemistry and geophysics. Combining geophysical models and those of planetary formation with host-star abundance data, then, is of paramount importance. This will aid not only in our understanding of the mass-radius relationship but also provide foundational results necessary interpreting future atmospheric observations through the lens of surface-interior interactions (e.g. volcanism) and planetary evolution as a whole.

  1. The exoplanet handbook

    National Research Council Canada - National Science Library

    Perryman, M. A. C

    2011-01-01

    .... It treats the many different techniques now available for exoplanet detection and characterisation, the broad range of underlying physics, the overlap with related topics in solar system and Earth sciences, and the concepts underpinning future developments. It emphasises the interconnection between the various topics, and provides extensive refe...

  2. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  3. A Cubesat Payload for Exoplanet Detection

    Science.gov (United States)

    Iuzzolino, M.; Accardo, D.; Rufino, G.; Oliva, E.; Tozzi, A.; Schipani, P.

    2017-03-01

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to 0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  4. Exoplanet Science in the National Science Olympiad

    Science.gov (United States)

    Komacek, Thaddeus D.; Young, Donna

    2015-11-01

    The National Science Olympiad is one of the United States' largest science competitions, reaching over 6,000 schools in 48 states. The Olympiad includes a wide variety of events, stretching a full range of potential future STEM careers, from biological sciences to engineering to earth and space sciences. The Astronomy event has been a mainstay at the high school level for well over a decade, and nominally focuses on aspects of stellar evolution. For the 2014-2015 competition season, the event focus was aligned to include exoplanet discovery and characterization along with star formation. Teams studied both the qualitative features of exoplanets and exoplanetary systems and the quantitative aspects behind their discovery and characterization, including basic calculations with the transit and radial velocity methods. Students were also expected to have a qualitative understanding of stellar evolution and understand the differences between classes of young stars including T Tauri and FU Orionis variables, and Herbig Ae/Be stars. Based on the successes of this event topic, we are continuing this event into the 2015-2016 academic year. The key modification is the selection of new exoplanetary systems for students to research. We welcome feedback from the community on how to improve the event and the related educational resources that are created for Science Olympiad students and coaches. We also encourage any interested community members to contact your regional or state Science Olympiad tournament directors and volunteer to organize competitions and supervise events locally.

  5. A Cubesat Payload for Exoplanet Detection

    Directory of Open Access Journals (Sweden)

    Marcella Iuzzolino

    2017-03-01

    Full Text Available The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE, the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  6. A Cubesat Payload for Exoplanet Detection.

    Science.gov (United States)

    Iuzzolino, Marcella; Accardo, Domenico; Rufino, Giancarlo; Oliva, Ernesto; Tozzi, Andrea; Schipani, Pietro

    2017-03-02

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  7. Atmospheric Circulation of Exoplanets

    Science.gov (United States)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.

    2010-12-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  8. Possible climates on terrestrial exoplanets.

    Science.gov (United States)

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  9. PLATO: a multiple telescope spacecraft for exo-planets hunting

    Science.gov (United States)

    Ragazzoni, Roberto; Magrin, Demetrio; Rauer, Heike; Pagano, Isabella; Nascimbeni, Valerio; Piotto, Giampaolo; Piazza, Daniele; Levacher, Patrick; Schweitzer, Mario; Basso, Stefano; Bandy, Timothy; Benz, Willy; Bergomi, Maria; Biondi, Federico; Boerner, Anko; Borsa, Francesco; Brandeker, Alexis; Brändli, Mathias; Bruno, Giordano; Cabrera, Juan; Chinellato, Simonetta; De Roche, Thierry; Dima, Marco; Erikson, Anders; Farinato, Jacopo; Munari, Matteo; Ghigo, Mauro; Greggio, Davide; Gullieuszik, Marco; Klebor, Maximilian; Marafatto, Luca; Mogulsky, Valery; Peter, Gisbert; Rieder, Martin; Sicilia, Daniela; Spiga, Daniele; Viotto, Valentina; Wieser, Matthias; Heras, Ana Maria; Gondoin, Philippe; Bodin, Pierre; Catala, Claude

    2016-07-01

    PLATO stands for PLAnetary Transits and Oscillation of stars and is a Medium sized mission selected as M3 by the European Space Agency as part of the Cosmic Vision program. The strategy behind is to scrutinize a large fraction of the sky collecting lightcurves of a large number of stars and detecting transits of exo-planets whose apparent orbit allow for the transit to be visible from the Earth. Furthermore, as the transit is basically able to provide the ratio of the size of the transiting planet to the host star, the latter is being characterized by asteroseismology, allowing to provide accurate masses, radii and hence density of a large sample of extra solar bodies. In order to be able to then follow up from the ground via spectroscopy radial velocity measurements these candidates the search must be confined to rather bright stars. To comply with the statistical rate of the occurrence of such transits around these kind of stars one needs a telescope with a moderate aperture of the order of one meter but with a Field of View that is of the order of 50 degrees in diameter. This is achieved by splitting the optical aperture into a few dozens identical telescopes with partially overlapping Field of View to build up a mixed ensemble of differently covered area of the sky to comply with various classes of magnitude stars. The single telescopes are refractive optical systems with an internally located pupil defined by a CaF2 lens, and comprising an aspheric front lens and a strong field flattener optical element close to the detectors mosaic. In order to continuously monitor for a few years with the aim to detect planetary transits similar to an hypothetical twin of the Earth, with the same revolution period, the spacecraft is going to be operated while orbiting around the L2 Lagrangian point of the Earth-Sun system so that the Earth disk is no longer a constraints potentially interfering with such a wide field continuous uninterrupted survey.

  10. An extreme planetary system around HD 219828. One long-period super Jupiter to a hot-Neptune host star

    Science.gov (United States)

    Santos, N. C.; Santerne, A.; Faria, J. P.; Rey, J.; Correia, A. C. M.; Laskar, J.; Udry, S.; Adibekyan, V.; Bouchy, F.; Delgado-Mena, E.; Melo, C.; Dumusque, X.; Hébrard, G.; Lovis, C.; Mayor, M.; Montalto, M.; Mortier, A.; Pepe, F.; Figueira, P.; Sahlmann, J.; Ségransan, D.; Sousa, S. G.

    2016-07-01

    Context. With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. This wide diversity provides fundamental clues to the processes of planet formation and evolution. Aims: We present a full investigation of the HD 219828 system, a bright metal-rich star for which a hot Neptune has previously been detected. Methods: We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD 219828. The spectra were used to characterise the star and its chemical abundances, as well as to check for spurious, activity induced signals. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. Results: We announce the discovery of a long period (P = 13.1 yr) massive (m sini = 15.1 MJup) companion (HD 219828 c) in a very eccentric orbit (e = 0.81). The same data confirms the existence of a hot Neptune, HD 219828 b, with a minimum mass of 21 M⊕ and a period of 3.83 days. The dynamical analysis shows that the system is stable, and that the equilibrium eccentricity of planet b is close to zero. Conclusions: The HD 219828 system is extreme and unique in several aspects. First, ammong all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like HD 219828, with a hot Neptune and a long-period massive companion are more frequent than similar systems with a hot Jupiter instead. This suggests that the formation of hot Neptunes follows a different path than the formation of their hot jovian counterparts. The high mass, long period, and eccentricity of HD 219828 c also make it a good target for Gaia astrometry as well as a potential target for atmospheric characterisation, using direct imaging or high-resolution spectroscopy. Astrometric observations will allow us to derive its real mass and orbital configuration. If a transit of HD 219828 b is detected

  11. A Four-Star Lightweight

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    An important part of exoplanet studies is the attempt to understand how planets and solar systems form. New measurements of the lowest-mass quadruple star system ever discovered are now confirming an intriguing theory: in addition to other channels, large gas planets may form in the same way that stars do.Formation ChannelsExoplanets have been found in an enormous variety of configurations, from hot Jupiters only 0.01 AU away from their host star, to planetary-mass companions that orbit at a whopping distance of 1,000 AU.Formation of these gas giants could occur via a number of different theorized pathways, such as growth from rocky cores close to host star, or fragmentation from instabilities far out in the protoplanetary disk. But given that the line between giant planets and brown dwarfs is somewhat fuzzy, another theory has come under consideration as well: could gas giants form out of the collapse and fragmentation of a molecular cloud, in the same way that stars form?In a recent study, Brendan Bowler and Lynne Hillenbrand (California Institute of Technology) argue that one star system, 2M0441+2301 AabBab, might actually be evidence that this channel works. 2M0441+2301 AabBab is a young (less than 3 million years old) quadruple system in the Taurus star-forming region, previously identified through imaging. Since photometry alone isnt enough to be sure of the masses of the components, Bowler and Hillenbrand used the OSIRIS instrument on the Keck I telescope to obtain the first resolved spectra of each component of this system, verifying the systems intriguing properties.Pair of PairsNear-IR spectra of 2M0441+2301 Aa, Ab, Ba, and Bb. The insets shows the unresolved 2MASS image of the system and the Keck/NIRC2 images of each binary subsystem. Click for a better look! [BowlerHillenbrand 2015]2M0441+2301 AabBab is whats known as a hierarchical quadruple system: it consists of a pair of close-binary star systems that orbit each other at an enormous distance of at

  12. GRB 980425 host: [C II], [O I], and CO lines reveal recent enhancement of star formation due to atomic gas inflow

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Castro Cerón, J. M.; Wardlow, J. L.

    2016-01-01

    Context. Accretion of gas from the intergalactic medium is required to fuel star formation in galaxies. We have recently suggested that this process can be studied using host galaxies of gamma-ray bursts (GRBs). Aims. Our aim is to test this possibility by studying in detail the properties of gas...

  13. Exoplanet Transits of Stellar Active Regions

    Science.gov (United States)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  14. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, ME; Galbany, L.; López-Sánchez, ÁR; Mollá, M.; González-Gaitán, S.; Vílchez, JM; Carnero, A.

    2018-01-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve (LC) parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SNe Survey at intermediate redshift, by measuring their emission line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR vs oxygen abundance shows a slope of -0.186±0.123 mag dex-1 (1.52σ), in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  15. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. H. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China); Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut Astrophysique de Paris, F-75014 Paris (France)

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  16. Qatar Exoplanet Survey

    DEFF Research Database (Denmark)

    Alsubai, Khalid; Mislis, Dimitris; Tsvetanov, Zlatan I.

    2017-01-01

    We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey. The three planets belong to the hot Jupiter family, with orbital periods of PQ3b=2.50792 days, PQ4b=1.80539 days, and PQ5b=2.87923 days. Follow-up spectroscopic obse...... (M > 4 MJ)....

  17. Host redshifts from gravitational-wave observations of binary neutron star mergers

    CERN Document Server

    Messenger, Chris; Gossan, Sarah; Rezzolla, Luciano; Sathyaprakash, B S

    2013-01-01

    Inspiralling compact binaries as standard sirens will soon become an invaluable tool for cosmology when advanced interferometric gravitational-wave detectors begin their observations in the coming years. However, a degeneracy in the information carried by gravitational waves between the total rest-frame mass $M$ and the redshift $z$ of the source implies that neither can be directly extracted from the signal, but only the combination $M(1+z)$, the redshifted mass. Recent work has shown that for binary neutron star systems, a tidal correction to the gravitational-wave phase in the late-inspiral signal that depends on the rest-frame source mass could be used to break the mass-redshift degeneracy. We propose here to use the signature encoded in the post-merger signal to deduce the redshift to the source. This will allow an accurate extraction of the intrinsic rest-frame mass of the source, in turn permitting the determination of source redshift and luminosity distance solely from gravitational-wave observations....

  18. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  19. WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization

    Science.gov (United States)

    Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry

    2018-01-01

    We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.

  20. Characterizing Exoplanet Atmospheres with the James Webb Space Telescope

    Science.gov (United States)

    Greene, Tom

    2017-01-01

    The James Webb Space Telescope (JWST) will have numerous modes for acquiring photometry and spectra of stars, planets, galaxies, and other astronomical objects over wavelengths of 0.6 - 28 microns. Several of these modes are well-suited for observing atomic and molecular features in the atmospheres of transiting or spatially resolved exoplanets. I will present basic information on JWST capabilities, highlight modes that are well-suited for observing exoplanets, and give examples of what may be learned from JWST observations. This will include simulated spectra and expected retrieved chemical abundance, composition, equilibrium, and thermal information and uncertainties. JWST Cycle 1 general observer proposals are expected to be due in March 2018 with launch in October 2018, and the greater scientific community is encouraged to propose investigations to study exoplanet atmospheres and other topics.

  1. Predicted Exoplanet Yields for the HabEx Mission Concept

    Science.gov (United States)

    Stark, Christopher; Mennesson, Bertrand; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.

  2. Qatar Exoplanet Survey: Qatar-6b—A Grazing Transiting Hot Jupiter

    Science.gov (United States)

    Alsubai, Khalid; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Esquerdo, Gilbert A.; Mislis, Dimitris; Pyrzas, Stylianos; Foxell, Emma; McCormac, James; Baranec, Christoph; Vilchez, Nicolas P. E.; West, Richard; Esamdin, Ali; Dang, Zhenwei; Dalee, Hani M.; Al-Rajihi, Amani A.; Al-Harbi, Abeer Kh.

    2018-02-01

    We report the discovery of Qatar-6b, a new transiting planet identified by the Qatar Exoplanet Survey (QES). The planet orbits a relatively bright (V = 11.44), early-K main-sequence star at an orbital period of P ∼ 3.506 days. An SED fit to available multi-band photometry, ranging from the near-UV to the mid-IR, yields a distance of d = 101 ± 6 pc to the system. From a global fit to follow-up photometric and spectroscopic observations, we calculate the mass and radius of the planet to be M P = 0.67 ± 0.07 M J and R P = 1.06 ± 0.07 R J, respectively. We use multi-color photometric light curves to show that the transit is grazing, making Qatar-6b one of the few exoplanets known in a grazing transit configuration. It adds to the short list of targets that offer the best opportunity to look for additional bodies in the host planetary system through variations in the transit impact factor and duration.

  3. Community Targets for JWST's Early Release Science Program: Evaluation of Transiting Exoplanet WASP-63b.

    Science.gov (United States)

    Kilpatrick, Brian; Cubillos, Patricio; Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin B.; Wakeford, Hannah; Blecic, Jasmina; Burrows, Adam Seth; Deming, Drake; Heng, Kevin; Line, Michael R.; Madhusudhan, Nikku; Morley, Caroline; Waldmann, Ingo P.; Transiting Exoplanet Early Release Science Community (Stevenson et al. 2016)

    2017-06-01

    We present observations of the Hubble Space Telescope (HST) ``A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science" for WASP-63b, one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. A large collaboration of transiting exoplanet scientists identified a set of ``community targets" which meet a certain set of criteria for ecliptic latitude, period, host star brightness, well constrained orbital parameters, and strength of spectroscopic features. WASP-63b was one of the targets identified as a potential candidate for the ERS program. It is presented as an inflated planet with a large signal. It will be accessible to JWST approximately six months after the planned start of Cycle 1/ERS in April 2019 making it an ideal candidate should there be any delays in the JWST timetable. Here, we observe WASP-63b to evaluate its suitability as the best target to test the capabilities of JWST. Ideally, a clear atmosphere will be best suited for bench marking the instruments ability to detect spectroscopic features. We can use the strength of the water absorption feature at 1.4 μm as a way to determine the presence of obscuring clouds/hazes. The results of atmospheric retrieval are presented along with a discussion on the suitability of WASP-63b as the best target to be observed during the ERS Program.

  4. The role of space telescopes in the characterization of transiting exoplanets.

    Science.gov (United States)

    Hatzes, Artie P

    2014-09-18

    Characterization studies now have a dominant role in the field of exoplanets. Such studies include the measurement of an exoplanet's bulk density, its brightness temperature and the chemical composition of its atmosphere. The use of space telescopes has played a key part in the characterization of transiting exoplanets. These facilities offer astronomers data of exquisite precision and temporal sampling as well as access to wavelength regions of the electromagnetic spectrum that are inaccessible from the ground. Space missions such as the Hubble Space Telescope, Microvariability and Oscillations of Stars (MOST), Spitzer Space Telescope, Convection, Rotation and Planetary Transits (CoRoT), and Kepler have rapidly advanced our knowledge of the physical properties of exoplanets and have blazed a trail for a series of future space missions that will help us to understand the observed diversity of exoplanets.

  5. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, Copenhagen (Denmark); Fruchter, A.; Kalirai, J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Silverman, J. M., E-mail: dperley@astro.caltech.edu [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  6. Subaru SEEDS Survey of Exoplanets and Disks

    Science.gov (United States)

    McElwain, Michael W.

    2012-01-01

    The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already produced exciting new results for the protoplanetary disk AB Aur, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru Telescope

  7. A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations

    Science.gov (United States)

    Cantiello, Michele; Jensen, J. B.; Blakeslee, J. P.; Berger, E.; Levan, A. J.; Tanvir, N. R.; Raimondo, G.; Brocato, E.; Alexander, K. D.; Blanchard, P. K.; Branchesi, M.; Cano, Z.; Chornock, R.; Covino, S.; Cowperthwaite, P. S.; D’Avanzo, P.; Eftekhari, T.; Fong, W.; Fruchter, A. S.; Grado, A.; Hjorth, J.; Holz, D. E.; Lyman, J. D.; Mandel, I.; Margutti, R.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.

    2018-02-01

    The joint detection of gravitational waves (GWs) and electromagnetic radiation from the binary neutron star (BNS) merger GW170817 has provided unprecedented insight into a wide range of physical processes: heavy element synthesis via the r-process; the production of relativistic ejecta; the equation of state of neutron stars and the nature of the merger remnant; the binary coalescence timescale; and a measurement of the Hubble constant via the “standard siren” technique. In detail, all of these results depend on the distance to the host galaxy of the merger event, NGC 4993. In this Letter we measure the surface brightness fluctuation (SBF) distance to NGC 4993 in the F110W and F160W passbands of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). For the preferred F110W passband we derive a distance modulus of (m-M) =33.05+/- 0.08+/- 0.10 mag, or a linear distance d = 40.7 ± 1.4 ± 1.9 Mpc (random and systematic errors, respectively); a virtually identical result is obtained from the F160W data. This is the most precise distance to NGC 4993 available to date. Combining our distance measurement with the corrected recession velocity of NGC 4993 implies a Hubble constant H 0 = 71.9 ± 7.1 km s‑1 Mpc‑1. A comparison of our result to the GW-inferred value of H 0 indicates a binary orbital inclination of i ≳ 137°. The SBF technique can be applied to early-type host galaxies of BNS mergers to ∼100 Mpc with HST and possibly as far as ∼300 Mpc with the James Webb Space Telescope, thereby helping to break the inherent distance-inclination degeneracy of the GW data at distances where many future BNS mergers are likely to be detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Program #15329 (PI: E

  8. One or more bound planets per Milky Way star from microlensing observations.

    Science.gov (United States)

    Cassan, A; Kubas, D; Beaulieu, J-P; Dominik, M; Horne, K; Greenhill, J; Wambsganss, J; Menzies, J; Williams, A; Jørgensen, U G; Udalski, A; Bennett, D P; Albrow, M D; Batista, V; Brillant, S; Caldwell, J A R; Cole, A; Coutures, Ch; Cook, K H; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Hill, K; Kains, N; Kane, S; Marquette, J-B; Martin, R; Pollard, K R; Sahu, K C; Vinter, C; Warren, D; Watson, B; Zub, M; Sumi, T; Szymański, M K; Kubiak, M; Poleski, R; Soszynski, I; Ulaczyk, K; Pietrzyński, G; Wyrzykowski, L

    2012-01-11

    Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

  9. Understanding Young Exoplanet Analogs with WISE

    Science.gov (United States)

    Rice, Emily

    , the results of our work will improve our understanding of objects at the intersection of stars and planets and be directly applicable to understanding the atmospheres of directly-imaged exoplanets. The assembled investigators are the absolute best team to accomplish this work. They have extensive and diverse observational experience in astrometry, photometry, and spectroscopy from the optical through the mid-IR, spanning nearly the entire spectral energy distribution of young brown dwarfs and encompassing their most fundamental observational properties. They have considerable experience mining large photometric catalogs and identifying low-gravity very low mass objects. The team maintains collaborations with two groups actively modelling brown dwarf and exoplanet atmospheres and interior evolution. The proposed research organically combines several ongoing projects into a cohesive program that will efficiently incorporate WISE data to disentangle the ambiguous and interdependent physical properties of young brown dwarfs. As a result of the team's previous observational projects, we have assembled a dataset that positions us to best interpret WISE observations brown dwarfs and identify new young brown dwarfs in the WISE archive. A significant parallax program is ongoing, and all of the computing resources and many of the analysis tools are already in place, including several well-tested pipelines for data reduction and analysis and model comparisons. The team will incorporate undergraduate students in the project through an existing NSF-funded REU program.

  10. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    Science.gov (United States)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  11. The potential feasibility of chlorinic photosynthesis on exoplanets.

    Science.gov (United States)

    Haas, Johnson R

    2010-11-01

    The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.

  12. The GAPS Programme with HARPS-N at TNG. XIII. The orbital obliquity of three close-in massive planets hosted by dwarf K-type stars: WASP-43, HAT-P-20 and Qatar-2

    Science.gov (United States)

    Esposito, M.; Covino, E.; Desidera, S.; Mancini, L.; Nascimbeni, V.; Zanmar Sanchez, R.; Biazzo, K.; Lanza, A. F.; Leto, G.; Southworth, J.; Bonomo, A. S.; Suárez Mascareño, A.; Boccato, C.; Cosentino, R.; Claudi, R. U.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Sozzetti, A.; Affer, L.; Anderson, D. R.; Andreuzzi, G.; Benatti, S.; Bignamini, A.; Borsa, F.; Borsato, L.; Ciceri, S.; Damasso, M.; di Fabrizio, L.; Giacobbe, P.; Granata, V.; Harutyunyan, A.; Henning, T.; Malavolta, L.; Maldonado, J.; Martinez Fiorenzano, A.; Masiero, S.; Molaro, P.; Molinaro, M.; Pedani, M.; Rainer, M.; Scandariato, G.; Turner, O. D.

    2017-05-01

    Context. The orbital obliquity of planets with respect to the rotational axis of their host stars is a relevant parameter for the characterization of the global architecture of planetary systems and a key observational constraint to discriminate between different scenarios proposed to explain the existence of close-in giant planets. Aims: In the framework of the GAPS project, we conduct an observational programme aimed at determinating the orbital obliquity of known transiting exoplanets. The targets are selected to probe the obliquity against a wide range of stellar and planetary physical parameters. Methods: We exploit high-precision radial velocity (RV) measurements, delivered by the HARPS-N spectrograph at the 3.6 m Telescopio Nazionale Galileo, to measure the Rossiter-McLaughlin (RM) effect in RV time-series bracketing planet transits, and to refine the orbital parameters determinations with out-of-transit RV data. We also analyse new transit light curves obtained with several 1-2 m class telescopes to better constrain the physical fundamental parameters of the planets and parent stars. Results: We report here on new transit spectroscopic observations for three very massive close-in giant planets: WASP-43 b, HAT-P-20 b and Qatar-2 b (Mp = 2.00, 7.22, 2.62 MJ; a = 0.015, 0.036, 0.022 AU, respectively) orbiting dwarf K-type stars with effective temperature well below 5000 K (Teff = 4500 ± 100, 4595 ± 45, 4640 ± 65 K respectively). These are the coolest stars (except for WASP-80) for which the RM effect has been observed so far. We find λ = 3.5 ± 6.8 deg for WASP-43 b and λ = -8.0 ± 6.9 deg for HAT-P-20 b, while for Qatar-2, our faintest target, the RM effect is only marginally detected, though our best-fit value λ = 15 ± 20 deg is in agreement with a previous determination. In combination with stellar rotational periods derived photometrically, we estimate the true spin-orbit angle, finding that WASP-43 b is aligned while the orbit of HAT-P-20 b

  13. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    Science.gov (United States)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  14. Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control

    Science.gov (United States)

    Sirbu, D.; Thomas, S.; Belikov, R.

    2017-01-01

    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance).

  15. Ultraviolet Observations of Star-planet Interactions - Current Status and Future Directions

    Science.gov (United States)

    France, Kevin

    2017-05-01

    Interactions between exoplanets and their host stars are the dominant factors in determining the composition, chemical state, and stability of planetary atmospheres. In this talk, I will discuss the various forms that these Star-Planet Interactions (SPI) can take, and in particular how these processes are traced with ultraviolet (90 - 320 nm) observations. I will first address stellar inputs into exoplanetary atmospheres, focusing on how the high-energy radiation and particle environments influence atmospheric photochemistry and escape, on both rocky and gas giant planets. I will then consider magnetic interactions between planets and their host stars, and discuss how ultraviolet stellar observations may be used to infer the presence of exoplanetary magnetic fields. I will discuss these SPIs in the context of recent observations made by the Hubble Space Telescope and present future observational directions using small satellites, Hubble, and large missions such as LUVOIR and HabEx.

  16. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.

    Science.gov (United States)

    Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-06-18

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.

  17. Climate and Water Contents on Rocky Planets Near the Inner Boundary of Habitable Zones (IHZ) Around Low Mass Star

    Science.gov (United States)

    Bin, Jiayu; Tian, Feng

    2017-04-01

    Exoplanets around low mass stars are the focus of the search for habitable exoplanets. Previous general circulation models (GCM) studied the locations of the IHZ around stars with effective temperature from 3300 to 4500K (Yang et al. 2014, Kopparapu et al. 2016). However, water vapor mixing ratios at 3 hPa pressure level do not satisfy what is required for scenarios of rapid water loss in the "last converged solution" for stars cooler than 4000 K. In this work we use the Community Earth System Model (CESM) to investigate the IHZ problem for low mass stars. The model includes atmospheres with 1 bar of N2, 1 ppm of CO2, and slab oceans with thermodynamic sea ice. Rotation period is determined by the mass and luminosity of the star and planet orbital distance. Black body spectra of low mass stars are used to obtain top-of-atmosphere incident short wavelength radiation. Our model results are qualitatively consistent but quantitatively different from those in earlier works. Specifically, water vapor mixing ratios required by rapid water loss are found at 3 hPa for hosts star warmer than 3650 K.

  18. Hunting for hot Jupiters around young stars

    Science.gov (United States)

    Yu, Louise; MaTYSSE Collaboration

    2017-10-01

    This conference paper reports the recent discoveries of two hot Jupiters (hJs) around weak-line T Tauri stars (wTTS) V830 Tau and TAP 26, through the analysis of spectropolarimetric data gathered within the Magnetic Topologies of Young Stars and the Survival of massive close-in Exoplanets (MaTYSSE) observation programme. HJs are thought to form in the outskirts of protoplanetary discs, then migrate inwards close to their host stars as a result of either planet-disc type II migration or planet-planet scattering. Looking for hJs around young forming stars provides key information on the nature and time scale of such migration processes, as well as how their migration impacts the subsequent architecture of their planetary system. Young stars are however extremely active, to the point that their radial velocity (RV) jitter is around an order of magnitude larger than the potential signatures of close-in gas giants, making them difficult to detect with velocimetry. Three techniques to filter out this activity jitter are presented here, two using Zeeman Doppler Imaging (ZDI) and one using Gaussian Process Regression (GPR).

  19. An Introduction to Exoplanets and the Kepler Mission

    Science.gov (United States)

    Lissauer, Jack

    2014-01-01

    A quarter century ago, the only planets known to humanity were the familiar objects that orbit our Sun. But improved observational techniques allowed astronomers to begin detecting planets around other stars in the 1990s. The first extrasolar planets (often referred to as exoplanets) to be discovered were quite exotic and unfamiliar objects. Most were giant objects that are hundreds of times as massive as the Earth and orbit so close to their star that they are hotter than pizza ovens. But as observational capabilities improved, smaller and cooler planets were found. The most capable planet-hunting tool developed to date is NASA's Kepler telescope, which was launched in 2009. Kepler has found that planets similar in size to our Earth are quite abundant within our galaxy. Results of Kepler's research will be summarized and placed into context within the new and growing discipline of exoplanet studies.

  20. Exploring the Effects of Stellar Multiplicity on Exoplanet Occurrence Rates

    Science.gov (United States)

    Barclay, Thomas; Shabram, Megan

    2017-06-01

    Determining the frequency of habitable worlds is a key goal of the Kepler mission. During Kepler's four year investigation it detected thousands of transiting exoplanets with sizes varying from smaller than Mercury to larger than Jupiter. Finding planets was just the first step to determining frequency, and for the past few years the mission team has been modeling the reliability and completeness of the Kepler planet sample. One effect that has not typically been built into occurrence rate statistics is that of stellar multiplicity. If a planet orbits the primary star in a binary or triple star system then the transit depth will be somewhat diluted resulting in a modest underestimation in the planet size. However, if a detected planet orbits a fainter star then the error in measured planet radius can be very significant. We have taken a hypothetical star and planet population and passed that through a Kepler detection model. From this we have derived completeness corrections for a realistic case of a Universe with binary stars and compared that with a model Universe where all stars are single. We report on the impact that binaries have on exoplanet population statistics.

  1. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  2. Investigating Planet Formation and Evolution with KELT-11b: An Extremely Inflated Planet Transiting a Metal-Rich Subgiant Star

    Science.gov (United States)

    Colon, Knicole D.; KELT Collaboration

    2017-10-01

    KELT-11b is a recently discovered transiting planet orbiting a bright, metal-rich, subgiant star. The planet has a mass of just 0.2 Jupiter masses and a radius of 1.4 Jupiter radii, making it one of the most inflated planets known to date. We will review the discovery process for this unique exoplanet and present observations from the Spitzer Space Telescope that were used to refine the properties of the system. The high-precision photometry from Spitzer was also used to demonstrate the precision with which we can measure stellar and planetary parameters, when used in conjunction with to-be-released precise parallax measurements from Gaia. Such measurements are critical for detailed studies of exoplanets, such as our upcoming program to use the Hubble Space Telescope to study the atmosphere of KELT-11b via transmission spectroscopy. We will describe our upcoming Hubble program, which we anticipate will not only provide one of the first water abundance measurements for a sub-Saturn-mass planet but will also probe the metallicity of a planet with a metal-rich and evolved host star for the first time. We expect that the Hubble observations will enable meaningful comparison with objects in the Solar System as well as with the other few exoplanets known in the sub-Saturn population. Furthermore, such Hubble observations can be used to test predictions from planet formation models of inflated exoplanets. With such unique attributes, the KELT-11 system is poised to become a benchmark for the study of inflated exoplanets around evolved stars.

  3. How Does the Shape of the Stellar Spectrum Affect the Raman Scattering Features in the Albedo of Exoplanets?

    Science.gov (United States)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin

    2017-09-01

    The diagnostic potential of the spectral signatures of Raman scattering, imprinted in planetary albedo spectra at short optical wavelengths, has been demonstrated in research on planets in the solar system, and has recently been proposed as a probe of exoplanet atmospheres, complementary to albedo studies at longer wavelengths. Spectral features caused by Raman scattering offer insight into the properties of planetary atmospheres, such as the atmospheric depth, composition, and temperature, as well as the possibility of detecting and spectroscopically identifying spectrally inactive species, such as H2 and N2, in the visible wavelength range. Raman albedo features, however, depend on both the properties of the atmosphere and the shape of the incident stellar spectrum. Identical planetary atmospheres can produce very different albedo spectra depending on the spectral properties of the host star. Here we present a set of geometric albedo spectra calculated for atmospheres with H2/He, N2, and CO2 composition, irradiated by different stellar types ranging from late A to late K stars. Prominent albedo features caused by Raman scattering appear at different wavelengths for different types of host stars. We investigate how absorption due to the alkali elements sodium and potassium may affect the intensity of Raman features, and we discuss the preferred strategies for detecting Raman features in future observations.

  4. Refractory Abundances of Terrestrial Planets and Their Stars: Testing [Si/Fe] Correlations with TESS and PLATO

    Science.gov (United States)

    Wolfgang, Angie; Fortney, Jonathan

    2018-01-01

    In standard models for planet formation, solid material in protoplanetary disks coagulate and collide to form rocky bodies. It therefore seems reasonable to assume that their chemical composition will follow the abundances of refractory elements, such as Si and Fe, in the host star, which has also accreted material from the disk. Backed by planet formation simulations which validate this assumption, planetary internal structure models have begun to use stellar abundances to break degeneracies in low-mass planet compositions inferred only from mass and radius. Inconveniently, our own Solar System contradicts this approach, as its terrestrial bodies exhibit a range of rock/iron ratios and the Sun's [Si/Fe] ratio is offset from the mean planetary [Si/Fe]. In this work, we explore what number and quality of observations we need to empirically measure the exoplanet-star [Si/Fe] correlation, given future transit missions, RV follow-up, and stellar characterization. Specifically, we generate synthetic datasets of terrestrial planet masses and radii and host star abundances assuming that the planets’ bulk [Si/Fe] ratio exactly tracks that of their host stars. We assign measurement uncertainties corresponding to expected precisions for TESS, PLATO, Gaia, and future RV instrumentation, and then invert the problem to infer the planet-star [Si/Fe] correlation given these observational constraints. Comparing the result to the generated truth, we find that 1% precision on the planet radii is needed to test whether [Si/Fe] ratios are correlated between exoplanet and host star. On the other hand, lower precisions can test for systematic offsets between planet and star [Si/Fe], which can constrain the importance of giant impacts for extrasolar terrestrial planet formation.

  5. Searching for Exoplanets using Artificial Intelligence

    Science.gov (United States)

    Pearson, Kyle Alexander; Palafox, Leon; Griffith, Caitlin Ann

    2017-10-01

    In the last decade, over a million stars were monitored to detect transiting planets. The large volume of data obtained from current and future missions (e.g. Kepler, K2, TESS and LSST) requires automated methods to detect the signature of a planet. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called ``deep learning'' or ``deep nets'', are a state of the art machine learning technique designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, the deep net learns to characterize the data instead of relying on hand-coded metrics that humans perceive as the most representative. Exoplanet transits have different shapes, as a result of, e.g. the planet's and stellar atmosphere and transit geometry. Thus, a simple template does not suffice to capture the subtle details, especially if the signal is below the noise or strong systematics are present. Current false-positive rates from the Kepler data are estimated around 12.3% for Earth-like planets and there has been no study of the false negative rates. It is therefore important to ask how the properties of current algorithms exactly affect the results of the Kepler mission and, future missions such as TESS, which flies next year. These uncertainties affect the fundamental research derived from missions, such as the discovery of habitable planets, estimates of their occurrence rates and our understanding about the nature and evolution of planetary systems.

  6. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    Science.gov (United States)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the

  7. The science of exoplanets and their systems.

    Science.gov (United States)

    Lammer, Helmut; Blanc, Michel; Benz, Willy; Fridlund, Malcolm; Foresto, Vincent Coudé du; Güdel, Manuel; Rauer, Heike; Udry, Stephane; Bonnet, Roger-Maurice; Falanga, Maurizio; Charbonneau, David; Helled, Ravit; Kley, Willy; Linsky, Jeffrey; Elkins-Tanton, Linda T; Alibert, Yann; Chassefière, Eric; Encrenaz, Therese; Hatzes, Artie P; Lin, Douglas; Liseau, Rene; Lorenzen, Winfried; Raymond, Sean N

    2013-09-01

    A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.

  8. Structure of exoplanets.

    Science.gov (United States)

    Spiegel, David S; Fortney, Jonathan J; Sotin, Christophe

    2014-09-02

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems--from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth.

  9. It's Far, It's Small, It's Cool: It's an Icy Exoplanet!

    Science.gov (United States)

    2006-01-01

    -Sun distance away from their host. "OGLE-2005-BLG-390Lb is only the third extra-solar planet discovered so far through microlensing searches ", said Jean-Philippe Beaulieu (Institut d'Astrophysique de Paris, France), the lead author. "While the other two microlensing planets have masses of a few times that of Jupiter, the discovery of a 5 Earth mass planet - though much harder to detect than more massive ones - is a strong hint that these lower-mass objects are very common. " Contrary to most exoplanets discovered, OGLE-2005-BLG-390Lb was indeed found using the 'microlensing' technique, based on an effect noted by Albert Einstein in 1912. "With this method, we let the gravity of a dim, intervening star act as a giant natural telescope for us, magnifying a more distant star, which then temporarily looks brighter ", explained team member Andrew Williams (Perth Observatory, Australia). "A small 'defect' in the brightening reveals the existence of a planet around the lens star. We don't see the planet, or even the star that it's orbiting, we just see the effect of their gravity. " Such an intervening star causes a characteristic brightening that lasts about a month. Any planets orbiting this star can produce an additional signal, lasting days for giant planets down to hours for Earth-mass planets. In order to be able to catch and characterize these planets, nearly-continuous round-the-clock high-precision monitoring of ongoing microlensing events is required. This is achieved by the PLANET network of 1m-class telescopes consisting of the ESO 1.54m Danish at La Silla (Chile), the Canopus Observatory 1.0m (Hobart, Tasmania, Australia), the Perth 0.6m (Bickley, Western Australia), the Boyden 1.5m (South Africa), and the SAAO 1.0m (Sutherland, South Africa). Since 2005, PLANET operates a common campaign with RoboNet, a UK operated network of 2m fully robotic telescopes currently comprising the Liverpool Telescope (Roque de Los Muchachos, La Palma, Spain) and the Faulkes Telescope

  10. A Cloudy View of Exoplanets

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    The lack of absorption features in the transmission spectrum of exoplanet GJ1214b rules out a hydrogen-rich atmosphere for the planet. It is consistent with an atmosphere rich in water vapour or abundant in clouds.

  11. SETI OBSERVATIONS OF EXOPLANETS WITH THE ALLEN TELESCOPE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Harp, G. R.; Richards, Jon; Tarter, Jill C.; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wilcox, Bethany R.; Wimberly, M. K. R.; Ross, John; Barott, W. C.; Ackermann, R. F.; Blair, Samantha [SETI Institute, Mountain View, CA 94043 (United States)

    2016-12-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7–100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from −0.3 to 0.3 m s{sup −2}. A total of 1.9 × 10{sup 8} unique signals requiring immediate follow-up were detected in observations covering more than 8 × 10{sup 6} star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180–310 × 10{sup −26} W m{sup −2}.

  12. Novel Optical SETI Observations of Three Exoplanets

    Science.gov (United States)

    Welsh, Barry; Vallerga, John; Kotze, Marissa; Wheatley, Jonathan

    2018-01-01

    We report on observations of three nearby stars (Trappist-1, GJ 422 and Wolf 1061) that possess exoplanets located in their respective habitable zones to search for optical signals generated by an advanced alien civilization. Using the photon data collected with the Berkeley Visible Image Tube attached to the 10m Southern African Large Telescope, we searched for very high amplitude events in the pulse height distributions that statistically could only be produced by non-astrophysical means such as an optical laser used for communications purposes.Assuming that a purported ET civilization has access to an orbiting 10m mirror and an optical laser to send signals over the three sight-lines to Earth, we derive upper limits to the output power of their l lasers which might be used for inter-stellar communication.

  13. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  14. Characterizing K2 Candidate Planetary Systems Orbiting Low-Mass Stars. I. Classifying Low-Mass Host Stars Observed During Campaigns 1-7

    Science.gov (United States)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua E.; Charbomeau, David; Krutson, Heather A.; Vanderburg, Andrew; Sinukoff, Evan

    2017-01-01

    We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 solar radius (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.

  15. Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. I. Classifying Low-mass Host Stars Observed during Campaigns 1-7

    Science.gov (United States)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua E.; Charbonneau, David; Knutson, Heather A.; Vanderburg, Andrew; Sinukoff, Evan

    2017-02-01

    We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 {R}⊙ (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.

  16. The Dependence of Type Ia Supernova Luminosity on Host Galaxy Properties from a Sample without the Local-Global Difference in Star Formation

    Science.gov (United States)

    Kim, Younglo; Smith, Mathew; Sullivan, Mark; Lee, Young-Wook

    2018-01-01

    Recent studies suggest that the difference between local and global properties of galaxies might play an important role in the Type Ia supernova (SN Ia) host galaxy studies. Obtaining local spectroscopic measurements for hosts at high redshift, however, is difficult. Here we will introduce a more efficient way to infer the local properties from global galaxy measurements. We find that when the globally star-forming galaxies are restricted to a low-mass subset (≤ 10^10 M⊙), a sample without the local-global difference in star formation is efficiently selected. From this sample, we confirm that SNe Ia in locally star-forming environments are 0.080 ± 0.018 mag fainter (4.4 σ) than those in locally passive environments. Our results are, however, statistically more significant than previous results, because of ~5 times larger sample across a wider redshift range. Considering the significant difference in the mean stellar population age between these environments, the result would imply a possible luminosity evolution of SNe Ia.

  17. Is this a Brown Dwarf or an Exoplanet?

    Science.gov (United States)

    2005-04-01

    Since the discovery in 1995 of the first planet orbiting a normal star other than the Sun, there are now more than 150 candidates of these so-called exoplanets known. Most of them are detected by indirect methods, based either on variations of the radial velocity or the dimming of the star as the planet passes in front of it (see ESO PR 06/03, ESO PR 11/04 and ESO PR 22/04). Astronomers would, however, prefer to obtain a direct image of an exoplanet, allowing them to better characterize the object's physical nature. This is an exceedingly difficult task, as the planet is generally hidden in the "glare" of its host star. To partly overcome this problem, astronomers study very young objects. Indeed, sub-stellar objects are much hotter and brighter when young and therefore can be more easily detected than older objects of similar mass. Based on this approach, it might well be that last year's detection of a feeble speck of light next to the young brown dwarf 2M1207 by an international team of astronomers using the ESO Very Large Telescope (ESO PR 23/04) is the long-sought bona-fide image of an exoplanet. A recent report based on data from the Hubble Space Telescope seems to confirm this result. The even more recent observations made with the Spitzer Space Telescope of the warm infrared glows of two previously detected "hot Jupiter" planets is another interesting result in this context. This wealth of new results, obtained in the time span of a few months, illustrates perfectly the dynamic of this field of research. Tiny Companion ESO PR Photo 10a/05 ESO PR Photo 10a/05 The Sub-Stellar Companion to GQ Lupi (NACO/VLT) [Preview - JPEG: 400 x 429 pix - 22k] [Normal - JPEG: 800 x 875 pix - 132k] [Full Res - JPEG: 1042 x 1116 pix - 241k] Caption: ESO PR Photo 10a/05 shows the VLT NACO image, taken in the Ks-band, of GQ Lupi. The feeble point of light to the right of the star is the newly found cold companion. It is 250 times fainter than the star itself and it located 0

  18. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    Science.gov (United States)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  19. Variable stars with the Kepler space telescope

    OpenAIRE

    Molnár, László; Szabó, Róbert; Plachy, Emese

    2016-01-01

    The Kepler space telescope has revolutionised our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars and to peer into the insides of red giants and massive stars. But many discoveries have been made about cla...

  20. A rocky planet transiting a nearby low-mass star.

    Science.gov (United States)

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  1. An Earth-sized planet in the habitable zone of a cool star.

    Science.gov (United States)

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  2. The Diversity of Chemical Composition: The Impact of Stellar Abundances on the Evolution of Stars and Habitable Zones

    Science.gov (United States)

    Truitt, Amanda R.; Young, Patrick A.

    2018-01-01

    I have investigated how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of a “classical” HZ, the range of distances from a star over which liquid water could exist on a planet's surface. This is determined by the host star's luminosity and spectral characteristics; in order to gauge the habitability potential of a given system, both the evolutionary history and the detailed chemical characterization of the host star must be considered. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a better understanding of what factors play a role in creating “habitable” conditions of a planet. I will discuss how stellar evolution is integral to how we define the HZ, and how this work will apply to the search for Earth-like planets in the future.I have developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities (Z) of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements, not just total Z, impacts stellar lifetime. Time-dependent HZ boundaries are calculated for each track. I have also created a grid of M-dwarfs, and I am currently working to estimate stellar activity vs. age for each model.This catalog is meant to characterize potential host stars of interest. I have explored how to use existing observational data (i.e. Hypatia Catalog) for a more robust comparison to my grid of theoretical models, and I will discuss a new statistical analysis of the catalog to further refine our definition of “continuous” habitability. This work is an important step to assess whether a planet

  3. X-ray and Hubble/COS UV Measures of Kapteyn's Star: A Crucial Proxy of X-UV Irradiances for Old Red Dwarf Stars that May Host Habitable Zone Planets

    Science.gov (United States)

    Durbin, Allyn J.; Guinan, E. F.; Engle, S. G.

    2014-01-01

    Red dwarfs (dM) stars make up over 80% of the local stellar population and a significant fraction of them are old (age > 4 Gyr). Because of the high frequency of red dwarfs and their longevity, there is a greater possibility of more advanced life in red dwarf planet systems. MEarths, UVES, SDSS-III, and the upcoming TESS mission are some surveys that are targeting these objects. As part of Villanova’s Living with a Red Dwarf program, we have obtained HST/COS spectra and Chandra X-ray observations of Kapteyn's star (M1V, V = 8.853, d = 12.76 +/- 0.05 ly, P_rot = 195 days). This star is crucial to the study of old red dwarfs as it is the nearest halo star with a radial velocity of +245.2 km/s and an estimated age of 10-12 Gyr. In our program, Kapteyn's star is the oldest red dwarf and as such serves as an anchor for our age, rotation, and activity relations. The spectra obtained from HST/COS provide one of the cleanest measurements of Lyman-alpha emission for red dwarfs. This is due to Doppler shift from the high radial velocity, separating the Lyman-alpha line from emission produced by the ISM and geocoronal sources. These observations further provide calibration at the old age/low rotation/low activity extremes for our relations. They also provide insights into the magnetic properties as investigating coronal x-ray and UV emission in very old, slowly rotating dM stars. Kapteyn’s star also serves as a proxy for metal-poor old disk/Pop II M dwarfs by providing information about X-UV emissions. This information is crucial for determining X-UV irradiances of possible habitable zone planets hosted by old red dwarfs. We gratefully acknowledge the support from NSF/RUI Grant AST-1009903, NASA/Chandra Grants GO1-12124X and GO2-13020X, and HST-GO-13020.

  4. Orbital Scattering of Protoplanets Around low-Mass Stars in Stellar Clusters

    Science.gov (United States)

    Ip, Wing-Huen; Cao, Yojng-Sin

    2010-05-01

    A large proportion of stars are formed in star clusters which will disperse as a result of the strong mass loss process driven by massive stars. During the period of planet formation, the star clusters should still be quite compact and close encounters at low relative speed (~ 3-5 km s-1) within a distance of a few hundred AU could still be frequent enough that some protoplanets in outer regions surrounding their host stars could be subject to strong orbital perturbation changing their near-circular orbits to highly elliptical ones, or even being ejected into interstellar space. In this work, we will report on the statistical results of probable destruction and transformation of first-generation planetary systems of low-eccentricity and low-inclination in M- and K-type stars to planetary systems in chaotic orbits via gravitational interaction with passing stars. Such scenario might have interesting implications on the dynamical origin and evolution of exoplanets around low-mass stars.

  5. Nearby supernova host galaxies from the CALIFA Survey. I. Sample, data analysis, and correlation to star-forming regions

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; García-Benito, R.; Mast, D.; Mendoza, M. A.; Sánchez, S. F.; Badenes, C.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Falcón-Barroso, J.; García-Lorenzo, B.; Gomes, J. M.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; López-Sánchez, A. R.; de Lorenzo-Cáceres, A.; Marino, R. A.; Meidt, S.; Mollá, M.; Papaderos, P.; Pérez-Torres, M. A.; Rosales-Ortega, F. F.; van de Ven, G.

    2014-01-01

    We use optical integral field spectroscopy (IFS) of nearby supernova (SN) host galaxies (0.005 2.4 Gyr, respectively) than the massive SN Ia hosts (0.04%, 2.01%, and 97.95% in these intervals). We estimate that the low-mass galaxies produce ten times fewer SNe Ia and three times fewer CC SNe than

  6. The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model

    Science.gov (United States)

    Penn, James; Vallis, Geoffrey K.

    2017-06-01

    Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension of the well-studied Matsuno-Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.

  7. Patterns in exoplanet count and eccentricity distributions

    Science.gov (United States)

    Taylor, Stuart F.

    2018-01-01

    The distribution of exoplanets of contains an unexpected level of features, starting with an unexpected gap the splits the main pileup of much of the planet population. In the population of planets of metal-rich sunlike single stars (SLSS objects), which comprises 40% of planets found by the radial velocity method, when counting logarithmic periods the main pileup of planets with periods longer than 100 days is split into two peaks separated by a significant gap. There is a wide region which has so few planets that none are found in the current data set. We show that this gap is extremely unlikely to occur by random. Because this gap is well-filled among planets of low surface gravity and low metallicity stars with 31 objects, it is unlikely that the bimodal nature of the metal rich SLSS population is due to observational effects. Comparisons of eccentricity of the metal-rich and metal-poor SLSS populations depend strongly on the two-peak-gap structure of counts of the metal-rich SLSS (rSLSS) population. Consideration of these features is essential to properly study the correlations of eccentricity with other planet-system parameters given how the eccentricity of rSLSS objects is highest in the two peaks of the rSLSS population.

  8. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (adolescent (view of the nature of wide-orbit planetary companions, informing our knowledge of solar system formation to guide future NASA planet hunting missions, while simultaneously offering a real- world program using the techniques - from integral field spectroscopy to advanced coronagraphy - that will someday be used to directly image Earthlike planets from space.

  9. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.

    2017-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stellar...... of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune-sized planets should be detectable around low-luminosity red giant branch stars....

  10. Infrared Flares from M Dwarfs: a Hinderance to Future Transiting Exoplanet Studies

    OpenAIRE

    Davenport, James R. A.

    2017-01-01

    Many current and future exoplanet missions are pushing to infrared (IR) wavelengths where the flux contrast between the planet and star is more favorable (Deming et al. 2009), and the impact of stellar magnetic activity is decreased. Indeed, a recent analysis of starspots and faculae found these forms of stellar activity do not substantially impact the transit signatures or science potential for FGKM stars with JWST (Zellem et al. 2017). However, this is not true in the case of flares, which ...

  11. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-16

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at $\\gtrsim 10$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$_{\\odot}$ yr$^{-1}$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $11.2^{+0.7}_{-1.4}$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $\\approx 4.5$ R$_{\\odot}$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$r_{e}$) from the center of NGC 4993 and to place a limit of $M_{r} \\gtrsim -7.2$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $\\sim 200$ km s$^{-1}$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.

  12. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Science.gov (United States)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳ 10 {Gyr} ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 {M}⊙ yr-1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of {11.2}-1.4+0.7 Gyr, with a 90% confidence range of 6.8{--}13.6 {Gyr}. This in turn indicates an initial binary separation of ≈ 4.5 {R}⊙ , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of {M}r≳ -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ˜200 km s-1. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.

  13. MASS-RADIUS RELATIONSHIPS FOR EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, CA 94550 (United States); Nettelmann, N. [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany); Ackland, G. J. [Centre for Science at Extreme Conditions, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2012-01-01

    For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass-radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently 'Earth-like', likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H{sub 2}O and CH{sub 4}, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H{sub 2}O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5{sup +1.2}{sub -1.0} TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These

  14. PynPoint code for exoplanet imaging

    Science.gov (United States)

    Amara, A.; Quanz, S. P.; Akeret, J.

    2015-04-01

    We announce the public release of PynPoint, a Python package that we have developed for analysing exoplanet data taken with the angular differential imaging observing technique. In particular, PynPoint is designed to model the point spread function of the central star and to subtract its flux contribution to reveal nearby faint companion planets. The current version of the package does this correction by using a principal component analysis method to build a basis set for modelling the point spread function of the observations. We demonstrate the performance of the package by reanalysing publicly available data on the exoplanet β Pictoris b, which consists of close to 24,000 individual image frames. We show that PynPoint is able to analyse this typical data in roughly 1.5 min on a Mac Pro, when the number of images is reduced by co-adding in sets of 5. The main computational work, the calculation of the Singular-Value-Decomposition, parallelises well as a result of a reliance on the SciPy and NumPy packages. For this calculation the peak memory load is 6 GB, which can be run comfortably on most workstations. A simpler calculation, by co-adding over 50, takes 3 s with a peak memory usage of 600 MB. This can be performed easily on a laptop. In developing the package we have modularised the code so that we will be able to extend functionality in future releases, through the inclusion of more modules, without it affecting the users application programming interface. We distribute the PynPoint package under GPLv3 licence through the central PyPI server, and the documentation is available online (http://pynpoint.ethz.ch).

  15. SEEDS — Strategic explorations of exoplanets and disks with the Subaru Telescope —

    Science.gov (United States)

    TAMURA, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years. PMID:26860453

  16. In the Crosshair: Astrometric Exoplanet Detection with WFIRST's Diffraction Spikes

    Science.gov (United States)

    Melchior, Peter; Spergel, David; Lanz, Arianna

    2018-02-01

    WFIRST will conduct a coronagraphic program that characterizes the atmospheres of planets around bright nearby stars. When observed with the WFIRST Wide Field Camera, these stars will saturate the detector and produce very strong diffraction spikes. In this paper, we forecast the astrometric precision that WFIRST can achieve by centering on the diffraction spikes of highly saturated stars. This measurement principle is strongly facilitated by the WFIRST H4RG detectors, which confine excess charges within the potential well of saturated pixels. By adopting a simplified analytical model of the diffraction spike caused by a single support strut obscuring the telescope aperture, integrated over the WFIRST pixel size, we predict the performance of this approach with the Fisher-matrix formalism. We discuss the validity of the model and find that 10 μ {as} astrometric precision is achievable with a single 100 s exposure of an {R}{AB}=6 or a {J}{AB}=5 star. We discuss observational limitations from the optical distortion correction and pixel-level artifacts, which need to be calibrated at the level of 10{--}20 μ {as} so as to not dominate the error budget. To suppress those systematics, we suggest a series of short exposures, dithered by at least several hundred pixels, to reach an effective per-visit astrometric precision better than 10 μ {as}. If this can be achieved, a dedicated WFIRST GO program will be able to detect Earth-mass exoplanets with orbital periods of ≳ 1 {year} around stars within a few pc as well as Neptune-like planets with shorter periods or around more massive or distant stars. Such a program will also enable mass measurements of many anticipated direct-imaging exoplanet targets of the WFIRST coronagraph and a “starshade” occulter.

  17. The Galactic Plane Exoplanet Survey (GPX) - an Amateur Designed Transiting Exoplanet Wide-Field Search (Abstract)

    Science.gov (United States)

    Benni, P.

    2017-06-01

    (Abstract only) GPX is designed to search high density star fields where other surveys, such as WASP, HATNet, XO, and KELT would find challenging due to blending of transit like events. Using readily available amateur equipment, a survey telescope (Celestron RASA, 279 mm f/2.2, based in Acton, Massachusetts) was configured first with a SBIG ST-8300M camera then later upgraded to an FLI ML16200 camera and tested under different sampling scenarios with multiple image fields to obtain a 9- to 11-minute cadence per field. The resultant image resolution of GPX is about 2 arcsec/pixel compared to 13.7±23 arcsec/pixel of the aforementioned surveys and the future TESS space telescope exoplanet survey.

  18. A Wide Dispersion in Star Formation Rate and Dynamical Mass of 108 Solar Mass Black Hole Host Galaxies at Redshift 6

    Science.gov (United States)

    Willott, Chris J.; Bergeron, Jacqueline; Omont, Alain

    2017-11-01

    Atacama Large Millimeter Array [C II] line and continuum observations of five redshift z> 6 quasars are presented. This sample was selected to probe quasars with lower black hole mass than most previous studies. We find a wide dispersion in properties with CFHQS J0216-0455, a low-luminosity quasar with absolute magnitude {M}1450=-22.2, remaining undetected implying a limit on the star formation rate in the host galaxy of ≲ 10 {M}⊙ {{yr}}-1, whereas other host galaxies have star formation rates up to hundreds of solar masses per year. Two other quasars have particularly interesting properties. VIMOS2911 is one of the least luminous z> 6 quasars known with {M}1450=-23.1, yet its host galaxy is experiencing a very powerful starburst. PSO J167-13 has a broad and luminous [C II] line and a neighboring galaxy a projected distance of 5 kpc away that is also detected in the [C II] line and continuum. Combining with similar observations from the literature, we study the ratio of the [C II] line to the far-infrared luminosity, finding that this ratio increases at high redshift at a fixed far-infrared luminosity, likely due to lower dust content, lower metallicity and/or higher gas masses. We compile a sample of 21 high-redshift quasars with dynamical masses and investigate the relationship between black hole mass and dynamical mass. The new observations presented here reveal dynamical masses consistent with the relationship defined by local galaxies. However, the full sample shows a very wide scatter across the black hole mass-dynamical mass plane, whereas both the local relationship and simulations of high-redshift quasars show a much lower dispersion in dynamical mass.

  19. The Drifting Star

    Science.gov (United States)

    2008-04-01

    temperature is 6150 K, its mass is 1.25 times that of the Sun, and its age is 625 million years. Moreover, the star is found to be more metal-rich than the Sun by about 50%. ESO PR Photo 09b/08 ESO PR Photo 09b/08 Constellations "These results show the power of asteroseismology when using a very precise instrument such as HARPS," says Vauclair. "It also shows that Iota Horologii has the same metal abundance and age as the Hyades cluster and this cannot be a coincidence." The Hyades is an ensemble of stars that is seen with the unaided eye in the Northern constellation Taurus ("The Bull"). This open cluster, located 151 light-years away, contains stars that were formed together 625 million years ago. The star Iota Horologii must have thus formed together with the stars of the Hyades cluster but must have slowly drifted away, being presently more than 130 light-years away from its original birthplace. This is an important result to understand how stars move on the galactic highways of the Milky Way. This also means that the amount of metals present in the star is due to the original cloud from which it formed and not because it engulfed planetary material. "The chicken and egg question of whether the star got planets because it is metal-rich, or whether it is metal-rich because it made planets that were swallowed up is at least answered in one case," says Vauclair. More information The astronomers' study is being published as a Letter to the Editor in Astronomy and Astrophysics ("The exoplanet-host star iota Horologii: an evaporated member of the primordial Hyades cluster", by S. Vauclair et al.). The team is composed of Sylvie Vauclair, Marion Laymand, Gérard Vauclair, Alain Hui Bon Hoa, and Stéphane Charpinet (LATT, Toulouse, France), François Bouchy (IAP, Paris, France), and Michaël Bazot (University of Porto, Portugal).

  20. RISE: a fast-readout imager for exoplanet transit timing

    OpenAIRE

    Steele, IA; Bates, SD; Gibson, N.; Keenan, F.; Meaburn, J.; Mottram, CJ; Pollacco, D.; Todd, I.

    2008-01-01

    By the precise timing of the low amplitude (0.005 - 0.02 magnitude) transits of exoplanets around their parent star it should be possible to infer the presence of other planetary bodies in the system down to Earth-like masses. We describe the design and construction of RISE, a fast-readout frame transfer camera for the Liverpool Telescope designed to carry out this experiment. The results of our commissioning tests are described as well as the data reduction procedure necessary. We present li...

  1. WASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b and WASP-142b

    Science.gov (United States)

    Hellier, C.; Anderson, D. R.; Cameron, A. Collier; Delrez, L.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; Wagg, T.; West, R. G.

    2017-03-01

    We describe seven exoplanets transiting stars of brightness V = 10.1-12.4. WASP-130b is a 'warm Jupiter' having an orbital period of 11.6 d around a metal-rich G6 star. Its mass and radius (1.23 ± 0.04 MJup and 0.89 ± 0.03 RJup) support the trend that warm Jupiters have smaller radii than hot Jupiters. WASP-131b is a bloated Saturn-mass planet (0.27 MJup and 1.22 RJup). Its large scaleheight and bright (V = 10.1) host star make it a good target for atmospheric characterization. WASP-132b (0.41 MJup and 0.87 RJup) is among the least irradiated and coolest of WASP planets, having a 7.1-d orbit around a K4 star. WASP-139b is a 'super-Neptune' akin to HATS-7b and HATS-8b, being the lowest mass planet yet found by WASP (0.12 MJup and 0.80 RJup). The metal-rich K0 host star appears to be anomalously dense, akin to HAT-P-11. WASP-140b is a 2.4-MJup planet in an eccentric (e = 0.047 ± 0.004) 2.2-d orbit. The planet's radius is large (1.4 RJup), but uncertain owing to the grazing transit (b = 0.93). The 10.4-d rotation period of the K0 host star suggests a young age, and the time-scale for tidal circularization is likely to be the lowest of all known eccentric hot Jupiters. WASP-141b (2.7 MJup, 1.2 RJup and P = 3.3 d) and WASP-142b (0.84 MJup, 1.53 RJup and P = 2.1 d) are typical hot Jupiters orbiting metal-rich F stars. We show that the period distribution within the hot-Jupiter bulge does not depend on the metallicity of the host star.

  2. The Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)

    Science.gov (United States)

    Defrère, D.; Hinz, P.; Bryden, G.; Danchi, W. C.; Mennesson, B.; Millan-Gabet, R.; Skemer, A.; Stapeldfeld, K.; Weinberger, A.; Wyatt, M.; Absil, O.; Bailey, V.; Beichman, C.; Downey, E.; Grenz, P.; Haniff, C.; Hoffmann, W.; Kennedy, G.; Lebreton, J.; Leisenring, J.; Marion, L.; Mahon, T. M.; Montoya, M.; Rieke, G.; Roberge, A.; Serabyn, E.; Su, K.; Vaitheeswaran, V.; Vaz, A.

    2014-03-01

    The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented.

  3. Biosignatures of Exoplanets

    Science.gov (United States)

    Kiang, Nancy Y.

    2017-01-01

    Are we alone? Ancient astronomers across the continents knew the existence of five Solar System planets visible to the naked eye. They could tell that these celestial wanderers were unlike stars in that they only reflected light from the Sun. In the early 1600s, Galileo developed the first telescopes able to observe spots moving across the Sun and the passage of moons across the face of Jupiter. He verified the theory of Aristarchus (3rd c. BC), and refined by Nicolaus Copernicus (mid 16th c.) and Johannes Kepler (late 16th c.), that the Earth and the other planets, in fact, orbit the Sun and not the other way around. Around the same time, Dominican friar Giordano Bruno wondered about the possibility of life on other worlds orbiting other suns (and was burned at the stake for this and other heresies).

  4. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  5. Magnetically Controlled Flows in Planetary Outflows and Star/Planet Interactions

    Science.gov (United States)

    Adams, Fred C.

    2017-05-01

    This talk considers two related problems involving magnetically controlled flows in star formation, young stellar objects, and exoplanets. [1] First we consider magnetic field effects on outflows from exoplanets, which have now been observed. For typical parameters, the magnetic field pressure dominates the ram pressure of the outflow by many orders of magnitude. Magnetically controlled outflows differ significantly from previous spherical models: The outflow rates are somewhat smaller, and the flow is launched primarily from the polar regions of the planet. [2] Next we consider the V773 system as an analog of star/planet interactions. This system is an interacting T Tauri binary with a 51 day eccentric orbit, where the two magnetospheres overlap and produce a burst of synchrotron radiation near periastron. In our model, the observed emission arises from the change in energy stored in the composite magnetic field of the system. We describe the fields using the leading order (dipole) components, and show that this picture is consistent with current observations. Finally, we show how Hot Jupiter magnetospheres can interact with their host stars in an analogous manner.

  6. Bayesian Model Testing of Ellipsoidal Variations on Stars due to Hot Jupiters

    Science.gov (United States)

    Gai, Anthony D.; Knuth, Kevin H.

    2018-01-01

    A massive planet closely orbiting its host star creates tidal forces that distort the typically spherical stellar surface. These distortions, known as ellipsoidal variations, result in changes in the photometric flux emitted by the star, which can be detected within the data from the Kepler Space Telescope. Currently, there exist several models describing such variations and their effect on the photometric flux. By using Bayesian model testing in conjunction with the Bayesian-based exoplanet characterization software package EXONEST, the most probable representation for ellipsoidal variations was determined for synthetic data and the confirmed hot Jupiter exoplanet Kepler-13A b. The most preferred model for ellipsoidal variations observed in the Kepler-13 light curve was determined to be EVIL-MC. Among the trigonometric models, the Modified Kane & Gelino model provided the best representation of ellipsoidal variations for the Kepler-13 system and may serve as a fast alternative to the more computationally intensive EVIL-MC. The computational feasibility of directly modeling the ellipsoidal variations of a star are examined and future work is outlined. Providing a more accurate model of ellipsoidal variations is expected to result in better planetary mass estimations.

  7. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  8. THE CURIOUS CASE OF ELEMENTAL ABUNDANCE DIFFERENCES IN THE DUAL HOT JUPITER HOSTS WASP-94A AND B

    Energy Technology Data Exchange (ETDEWEB)

    Teske, Johanna K. [Carnegie Department of Terrestrial Magnetism, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Khanal, Sandhya; Ramírez, Ivan, E-mail: jteske@carnegiescience.edu [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1402, Austin, TX 78712-1205 (United States)

    2016-03-01

    Binary stars provide an ideal laboratory for investigating the potential effects of planet formation on stellar composition. Assuming that the stars formed in the same environment/from the same material, any compositional anomalies between binary components might indicate differences in how material was sequestered in planets, or accreted by the star in the process of planet formation. We present here a study of the elemental abundance differences between WASP-94A and B, a pair of stars that each host a hot Jupiter exoplanet. The two stars are very similar in spectral type (F8 and F9), and their ∼2700 au separation suggests that their protoplanetary disks were likely not influenced by stellar interactions, but WASP-94Ab’s orbit—misaligned with the host star spin axis and likely retrograde—points toward a dynamically active formation mechanism, perhaps different from that of WASP-94Bb, which is not misaligned and has a nearly circular orbit. Based on our high-quality spectra and strictly relative abundance analysis, we detect a depletion of volatiles (∼−0.02 dex, on average) and enhancement of refractories (∼0.01 dex) in WASP-94A relative to B (standard errors are ∼0.005 dex). This is different from every other published case of binary host star abundances, in which either no significant abundance differences are reported or there is some degree of enhancement in all elements, including volatiles. Several scenarios that may explain the abundance trend are discussed, but none can be definitively accepted or rejected. Additional high-contrast imaging observations to search for companions that may be dynamically affecting the system, as well as a larger sample of binary host star studies, are needed to better understand the curious abundance trends we observe in WASP-94A and B.

  9. The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    OpenAIRE

    Johnson, John Asher; Petigura, Erik A.; Fulton, Benjamin J.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Hebb, Leslie; Cargile, Phillip A.; Morton, Timothy D.; Weiss, Lauren M.; Winn, Joshua N.; Rogers, Leslie A.; Sinukoff, Evan; Hirsch, Lea A.

    2017-01-01

    We present stellar and planetary properties for 1305 Kepler Objects of Interest (KOIs) hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the ...

  10. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b.

    Science.gov (United States)

    Knutson, Heather A; Benneke, Björn; Deming, Drake; Homeier, Derek

    2014-01-02

    GJ 436b is a warm--approximately 800 kelvin--exoplanet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a ratio of methane to carbon monoxide that is 10(5) times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet's atmosphere is significantly enhanced in elements heavier than hydrogen and helium. Here we report observations of GJ 436b's atmosphere obtained during transit. The data indicate that the planet's transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ. The measured spectrum is consistent with either a layer of high cloud located at a pressure level of approximately one millibar or with a relatively hydrogen-poor (three per cent hydrogen and helium mass fraction) atmospheric composition.

  11. Enabling Future Large Searches for Exoplanet Auroral Emission with the EPIC Correlator Architecture

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Extrasolar planets are expected to emit strong ``auroral'' emission at radio frequencies generated by the interaction of the host star's stellar winds with the planet's magnetosphere through electron-cyclotron maser emission. This transient emission lasts a few seconds to days and is almost fully circularly polarized. Detecting this emission in exoplanets is a critical probe of their magnetospheres and thus their interior compositions and habitability. The intensity and detectability of the emission depends on the suitability of many factors to the observing parameters such as the strength of the stellar wind power, the planetary magnetosphere cross-section, the highly beamed and coherent nature of electron-cyclotron emission, and narrow ranges of the planet's orbital phase. Large areas of sky must be surveyed continuously to high sensitivity to detect auroral emission. Next-generation radio telescopes with wide fields of view, large collecting areas and high efficiency are needed for these searches. This poses challenges to traditional correlator architectures whose computational cost scales as the square of the number of antennas. I will present a novel radio aperture synthesis imaging architecture - E-field Parallel Imaging Correlator (EPIC) - whose all-sky and full Stokes imaging capabilities will not only address the aforementioned factors preventing detection but also solve the computational challenges posed by large arrays. Compared to traditional imaging, EPIC is inherently fast and thus presents the unique advantage of probing transient timescales ranging orders of magnitude from tens of microseconds to days at no additional cost.

  12. An introduction to planets ours and others : from Earth to exoplanets

    CERN Document Server

    Encrenaz, Thérèse

    2014-01-01

    What is a planet? The answer seems obvious, but nonetheless the definition of a planet has continuously evolved over the centuries, and their number has changed following successive discoveries. The decision endorsed by the International Astronomical Union to remove Pluto from the list of planets in 2006 well illustrates the difficulty associated with their definition. The recent discovery of hundreds of exoplanets around nearby stars of our Galaxy opens a new and spectacular dimension to astrophysics. We presently know very little about the physical nature of exoplanets. In contrast, our knowledge of Solar System planets has made huge progress over the past decades, thanks, especially, to space planetary exploration. The purpose of this book is first to characterize what planets are, in their global properties and in their diversity. Then, this knowledge is used to try to imagine the physical nature of exoplanets, starting from the few parameters we know about them. Throughout this book, as we explore the su...

  13. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  14. HOMES - Holographic Optical Method for Exoplanet Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope designed for exoplanet discovery. Its double dispersion architecture employs a...

  15. Coronagraphic Imaging of Exoplanets from a High Altitude Balloon Platform

    Science.gov (United States)

    Unwin, S.

    2012-04-01

    Direct imaging of exoplanets orbiting nearby stars is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. Such a system could image and characterize the atmospheres of exoplanets, and also observe exozodiacal dust within the exoplanetary system. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology as well as performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper, we show how progress in key technologies leads to a balloon experiment as a logical future step toward a space mission. The HCIT testbed has shown ultra-high contrast using small optics in a vacuum testbed. A recent ground-based experiment has demonstrated the ability to control three active optics in series - a lightweight controllable primary mirror, and two deformable mirrors - to achieve close to the best wavefront correction possible with large optics in an in-air testbed. We briefly describe the Wallops Arcsecond Pointer (WASP), which as had a very successful first flight, showing the capability of a balloon platform to stably point to the accuracy required for a coronagraph payload experiment. A balloon-borne coronagraph mission would incorporate all of these advances in an instrument that verifies each one in a space-like environment, and enabling forefront science. Such an experiment would be a step toward mitigating the technical risks of a major space-based exoplanet coronagraph. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2012. California Institute of Technology. Government sponsorship acknowledged.

  16. The Young Exoplanet Transit Initiative (YETI)

    Science.gov (United States)

    Neuhäuser, R.; Errmann, R.; Berndt, A.; Maciejewski, G.; Takahashi, H.; Chen, W. P.; Dimitrov, D. P.; Pribulla, T.; Nikogossian, E. H.; Jensen, E. L. N.; Marschall, L.; Wu, Z.-Y.; Kellerer, A.; Walter, F. M.; Briceño, C.; Chini, R.; Fernandez, M.; Raetz, St.; Torres, G.; Latham, D. W.; Quinn, S. N.; Niedzielski, A.; Bukowiecki, Ł.; Nowak, G.; Tomov, T.; Tachihara, K.; Hu, S. C.-L.; Hung, L. W.; Kjurkchieva, D. P.; Radeva, V. S.; Mihov, B. M.; Slavcheva-Mihova, L.; Bozhinova, I. N.; Budaj, J.; Vaňko, M.; Kundra, E.; Hambálek, Ľ.; Krushevska, V.; Movsessian, T.; Harutyunyan, H.; Downes, J. J.; Hernandez, J.; Hoffmeister, V. H.; Cohen, D. H.; Abel, I.; Ahmad, R.; Chapman, S.; Eckert, S.; Goodman, J.; Guerard, A.; Kim, H. M.; Koontharana, A.; Sokol, J.; Trinh, J.; Wang, Y.; Zhou, X.; Redmer, R.; Kramm, U.; Nettelmann, N.; Mugrauer, M.; Schmidt, J.; Moualla, M.; Ginski, C.; Marka, C.; Adam, C.; Seeliger, M.; Baar, S.; Roell, T.; Schmidt, T. O. B.; Trepl, L.; Eisenbeiß, T.; Fiedler, S.; Tetzlaff, N.; Schmidt, E.; Hohle, M. M.; Kitze, M.; Chakrova, N.; Gräfe, C.; Schreyer, K.; Hambaryan, V. V.; Broeg, C. H.; Koppenhoefer, J.; Pandey, A. K.

    2011-07-01

    We present the Young Exoplanet Transit Initiative (YETI), in which we use several 0.2 to 2.6-m telescopes around the world to monitor continuously young (≤100 Myr), nearby (≤1 kpc) stellar clusters mainly to detect young transiting planets (and to study other variability phenomena on time-scales from minutes to years). The telescope network enables us to observe the targets continuously for several days in order not to miss any transit. The runs are typically one to two weeks long, about three runs per year per cluster in two or three subsequent years for about ten clusters. There are thousands of stars detectable in each field with several hundred known cluster members, e.g. in the first cluster observed, Tr-37, a typical cluster for the YETI survey, there are at least 469 known young stars detected in YETI data down to R=16.5 mag with sufficient precision of 50 millimag rms (5 mmag rms down to R=14.5 mag) to detect transits, so that we can expect at least about one young transiting object in this cluster. If we observe ˜10 similar clusters, we can expect to detect ˜10 young transiting planets with radius determinations. The precision given above is for a typical telescope of the YETI network, namely the 60/90-cm Jena telescope (similar brightness limit, namely within ± 1 mag, for the others) so that planetary transits can be detected. For targets with a periodic transit-like light curve, we obtain spectroscopy to ensure that the star is young and that the transiting object can be sub-stellar; then, we obtain Adaptive Optics infrared images and spectra, to exclude other bright eclipsing stars in the (larger) optical PSF; we carry out other observations as needed to rule out other false positive scenarios; finally, we also perform spectroscopy to determine the mass of the transiting companion. For planets with mass and radius determinations, we can calculate the mean density and probe the internal structure. We aim to constrain planet formation models and

  17. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  18. ARIEL: Atmospheric Remote-Sensing Infrared Exoplanet Large-survey

    Science.gov (United States)

    Tinetti, Giovanna

    2015-11-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS will increase the number of known systems to tens of thousands.Of all these exoplanets we know very little, i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet’s thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail.A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over mission life-time.The ESA-M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution.The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the consortium is open and invites new

  19. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  20. Enabling Participation In Exoplanet Science

    Science.gov (United States)

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  1. THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Leisenring, Jarron; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Apai, Dániel; Close, Laird; Eisner, Josh [Steward Observatory, University of Arizona, 933 North Cherry Ave. Tucson, AZ 85721 (United States); Morley, Caroline V.; Fortney, Jonathan [University of California, Santa Cruz, 1156 High St. Santa Cruz, CA 95064 (United States); Zimmerman, Neil T.; Buenzli, Esther; Bonnefoy, Mickael; Biller, Beth; Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg (Germany); Skrutskie, Michael F. [University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Esposito, Simone [Istituto Nazionale di Astrofisica-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, 50125, Florence (Italy); Crepp, Justin R. [Notre Dame University, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); De Rosa, Robert J. [Arizona State University, 781 South Terrace Rd, Tempe, AZ 85281 (United States); Desidera, Silvano [Istituto Nazionale di Astrofisica-Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, 35122 Padova (Italy); and others

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ∼500 K temperature that bridges the gap between the first directly imaged planets (∼1000 K) and our own solar system's Jupiter (∼130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: T{sub eff} = 544 ± 10 K, g < 600 m s{sup −2}, [M/H] = 0.60 ± 0.12, cloud opacity parameter of f{sub sed} = 2–5, R = 0.96 ± 0.07 R{sub Jup}, and log(L) = −6.13 ± 0.03 L{sub ⊙}, implying a hot start mass of 3–30 M{sub jup} for a conservative age range of 0.1–6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.

  2. A Hubble space telescope search for a sub-Earth-sized exoplanet in the GJ 436 system

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Kevin B. [NASA Sagan Fellow. (United States); Bean, Jacob L.; Fabrycky, Daniel; Kreidberg, Laura, E-mail: kbs@uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-11-20

    The detection of small planets orbiting nearby stars is an important step toward the identification of Earth twins. In previous work using the Spitzer Space Telescope, we found evidence to support at least one sub-Earth-sized exoplanet orbiting the nearby mid-M dwarf star GJ 436. As a follow up, here we used the Hubble Space Telescope (HST) to investigate the existence of one of these candidate planets, UCF-1.01, by searching for two transit signals as it passed in front of its host star. Interpretation of the data hinges critically on correctly modeling and removing the Wide Field Camera 3 (WFC3) instrument systematics from the light curves. Building on previous HST work, we demonstrate that WFC3 analyses need to explore the use of a quadratic function to fit a visit-long time-dependent systematic. This is important for establishing absolute transit and eclipse depths in the white light curves of all transiting systems. The work presented here exemplifies this point by putatively detecting the primary transit of UCF-1.01 with the use of a linear trend. However, using a quadratic trend, we achieve a better fit to the white light curves and a reduced transit depth that is inconsistent with previous Spitzer measurements. Furthermore, quadratic trends with or without a transit model component produce comparable fits to the available data. Using extant WFC3 transit light curves for GJ 436b, we further validate the quadratic model component by achieving photon-limited model fit residuals and consistent transit depths over multiple epochs. We conclude that, when we fit for a quadratic trend, our new data contradict the prediction of a sub-Earth-sized planet orbiting GJ 436 with the size, period, and ephemeris posited from the Spitzer data by a margin of 3.1σ.

  3. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  4. Exoplanet Community Report on Direct Optical Imaging

    Science.gov (United States)

    Soummer, Remi; Levine, M.; Exoplanet Forum Direct Optical Imaging Group

    2009-01-01

    Direct Optical Imaging is necessary to characterize exoplanets spectroscopically in most cases (non-transiting planets), and to address the habitability of terrestrial planets around sun like stars. The chapter studies the science objectives, observatory architectures, and needed technology developments as a function of mission scale. Possible architectures can be based on internal coronagraphs or external occulters. The Optical Imaging chapter details the association between Astrometry or RV and imaging in space, expanding on the ExoPTF recommendations for flagship and probe-scale missions. Indirect methods (astrometry or radial velocities) are necessary to obtain a direct measurement of the masses, orbital parameters, and planet "addresses". Careful Design Reference Mission (DRM) development over the next several years will articulate the tradeoffs in cost and performance between imaging missions with and without astrometric precursors. In the short term a probe-scale direct imaging mission can be combined with existing and future Radial Velocities and ground-based Astrometry for the characterization of mature giant planets, Neptunes, and super Earths. A probe scale will also detect and characterize exozodiacal disks, a problem ExoPTF identified as critical for future terrestrial planet imaging missions. This strategy is independent from a space astrometric mission both in terms of scientific goals and timing sequence. The chapter also identifies the critical technologies for the various imaging architectures, for which the maturity is linked to flight requirements ranging from probe-scale to flagship. The chapter provides a brief overview of each technology and its state-of the-art.

  5. A hot Jupiter around the very active weak-line T Tauri star TAP 26

    Science.gov (United States)

    Yu, L.; Donati, J.-F.; Hébrard, E. M.; Moutou, C.; Malo, L.; Grankin, K.; Hussain, G.; Collier Cameron, A.; Vidotto, A. A.; Baruteau, C.; Alencar, S. H. P.; Bouvier, J.; Petit, P.; Takami, M.; Herczeg, G.; Gregory, S. G.; Jardine, M.; Morin, J.; Ménard, F.; Matysse Collaboration

    2017-05-01

    We report the results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star TAP 26, carried out within the Magnetic Topologies of Young Stars and the Survival of close-in massive Exoplanets (MaTYSSE) programme with the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimeter at the 3.6-m Canada-France-Hawaii Telescope. Applying Zeeman-Doppler Imaging (ZDI) to our observations, concentrating in 2015 November and 2016 January and spanning 72 d in total, 16 d in 2015 November and 13 d in 2016 January, we reconstruct surface brightness and magnetic field maps for both epochs and demonstrate that both distributions exhibit temporal evolution not explained by differential rotation alone. We report the detection of a hot Jupiter (hJ) around TAP 26 using three different methods, two using ZDI and one Gaussian-process regression (GPR), with a false-alarm probability smaller than 6 × 10-4. However, as a result of the aliasing related to the observing window, the orbital period cannot be uniquely determined; the orbital period with highest likelihood is 10.79 ± 0.14 d followed by 8.99 ± 0.09 d. Assuming the most likely period, and that the planet orbits in the stellar equatorial plane, we obtain that the planet has a minimum mass Msin i of 1.66 ± 0.31 MJup and orbits at 0.0968 ± 0.0032 au from its host star. This new detection suggests that disc type II migration is efficient at generating newborn hJs, and that hJs may be more frequent around young T Tauri stars than around mature stars (or that the MaTYSSE sample is biased towards hJ-hosting stars).

  6. Analysis of the Gaia RVS Region in ESPaDOnS Spectra of Asteroseismic Calibration Stars

    Science.gov (United States)

    Vesa, Oana; Huber, Daniel; Gaidos, Eric

    2018-01-01

    While surface gravity can be measured from asteroseismology, asteroseismology cannot be applied to every star. Surface gravity is a critical stellar parameter because it can be used to calculate the radii of stars, which is important in the characterization of host stars of exoplanets. Here we present spectroscopic observations from ESPaDOnS on the Canada-France-Hawaii Telescope of 172 benchmark “gold standard” stars observed by the NASA Kepler Mission for which densities and surface gravities have been precisely measured using asteroseismology. The goal is to discover an empirical correlation between the equivalent width of the spectral lines in the infrared Ca II triplet region (from 8470 to 8710 angstroms) against surface gravity and other stellar parameters, such as effective temperature and metallicity. The Mg I line at 8736 angstroms has the best potential to be an indicator of surface gravity so far out of the spectral lines in this region with equivalent width increasing slightly as a function of surface gravity; however, degeneracies with effective temperature and metallicity need to be explored further. If a true indicator for surface gravity can be found, then it can to be applied to the R~11000 Gaia radial velocity spectra, which will be released for millions of stars over the coming years.

  7. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    Energy Technology Data Exchange (ETDEWEB)

    Willott, Chris J. [Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Rd, Victoria, BC V9E 2E7 (Canada); Omont, Alain; Bergeron, Jacqueline, E-mail: chris.willott@nrc.ca [UPMC Univ Paris 06 and CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  8. The automated data processing architecture for the GPI Exoplanet Survey

    Science.gov (United States)

    Wang, Jason J.; Perrin, Marshall D.; Savransky, Dmitry; Arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Millar-Blanchaer, Maxwell A.; Marois, Christian; Rameau, Julien; Wolff, Schuyler G.; Shapiro, Jacob; Ruffio, Jean-Baptiste; Graham, James R.; Macintosh, Bruce

    2017-09-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index all data related to the survey uniformly. An automated and flexible data processing framework, which we term the GPIES Data Cruncher, combines multiple data reduction pipelines together to intelligently process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human intervention, fully reduced and calibrated data products are available less than an hour after the data are taken to expedite follow-up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as improvements are made to our data reduction pipelines. A backend MySQL database indexes all files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with GPIES. To help observers, quicklook displays show reduced data as they are processed in real-time, and chatbots on Slack post observing information as well as reduced data products. Together, the GPIES automated data processing architecture reduces our workload, provides real-time data reduction, optimizes our observing strategy, and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance.

  9. Simulating the exoplanet yield of a space-based mid-infrared interferometer based on Kepler statistics

    Science.gov (United States)

    Kammerer, Jens; Quanz, Sascha P.

    2018-01-01

    Aims: We predict the exoplanet yield of a space-based mid-infrared nulling interferometer using Monte Carlo simulations. We quantify the number and properties of detectable exoplanets and identify those target stars that have the highest or most complete detection rate. We investigate how changes in the underlying technical assumptions and uncertainties in the underlying planet population impact the scientific return. Methods: We simulated 2000 exoplanetary systems, based on planet occurrence statistics from Kepler with randomly orientated orbits and uniformly distributed albedos around each of 326 nearby (dworlds.

  10. Isotope Geochemistry for Comparative Planetology of Exoplanets

    Science.gov (United States)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  11. Astrology in the Era of Exoplanets

    CERN Document Server

    Lund, Michael B

    2016-01-01

    The last two decades have seen the number of known exoplanets increase from a small handful to nearly 2000 known exoplanets, thousands more planet candidates, and several upcoming missions that are expected to further increase the population of known exoplanets. Beyond the strictly scientific questions that this has led to regarding planet formation and frequency, this has also led to broader questions such as the philosophical implications of life elsewhere in the universe and the future of human civilization and space exploration. One additional realm that hasn't been adequately considered, however, is that this large increase in exoplanets would also impact claims regarding astrology. In this paper we look at the distribution of planets across the sky and along the Ecliptic, as well as the current and future implications of this planet distribution.

  12. Spectra as windows into exoplanet atmospheres.

    Science.gov (United States)

    Burrows, Adam S

    2014-09-02

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  13. Is This Speck of Light an Exoplanet?

    Science.gov (United States)

    2004-09-01

    VLT Images and Spectra of Intriguing Object near Young Brown Dwarf [1] Summary Is this newly discovered feeble point of light the long-sought bona-fide image of an exoplanet? A research paper by an international team of astronomers [2] provides sound arguments in favour, but the definitive answer is now awaiting further observations. On several occasions during the past years, astronomical images revealed faint objects, seen near much brighter stars. Some of these have been thought to be those of orbiting exoplanets, but after further study, none of them could stand up to the real test. Some turned out to be faint stellar companions, others were entirely unrelated background stars. This one may well be different. In April of this year, the team of European and American astronomers detected a faint and very red point of light very near (at 0.8 arcsec angular distance) a brown-dwarf object, designated 2MASSWJ1207334-393254. Also known as "2M1207", this is a "failed star", i.e. a body too small for major nuclear fusion processes to have ignited in its interior and now producing energy by contraction. It is a member of the TW Hydrae stellar association located at a distance of about 230 light-years. The discovery was made with the adaptive-optics supported NACO facility [3] at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory (Chile). The feeble object is more than 100 times fainter than 2M1207 and its near-infrared spectrum was obtained with great efforts in June 2004 by NACO, at the technical limit of the powerful facility. This spectrum shows the signatures of water molecules and confirms that the object must be comparatively small and light. None of the available observations contradict that it may be an exoplanet in orbit around 2M1207. Taking into account the infrared colours and the spectral data, evolutionary model calculations point to a 5 jupiter-mass planet in orbit around 2M1207. Still, they do not yet allow a clear-cut decision about the real

  14. Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System

    Science.gov (United States)

    Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan

    2018-01-01

    To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http://exoplanet

  15. RISE: a fast-readout imager for exoplanet transit timing

    Science.gov (United States)

    Steele, I. A.; Bates, S. D.; Gibson, N.; Keenan, F.; Meaburn, J.; Mottram, C. J.; Pollacco, D.; Todd, I.

    2008-07-01

    By the precise timing of the low amplitude (0.005 - 0.02 magnitude) transits of exoplanets around their parent star it should be possible to infer the presence of other planetary bodies in the system down to Earth-like masses. We describe the design and construction of RISE, a fast-readout frame transfer camera for the Liverpool Telescope designed to carry out this experiment. The results of our commissioning tests are described as well as the data reduction procedure necessary. We present light curves of two objects, showing that the desired timing and photometric accuracy can be obtained providing that autoguiding is used to keep the target on the same detector pixel for the entire (typically 4 hour) observing run.

  16. Statistical studies of superflares on G-, K-, M- type stars from Kepler data

    Science.gov (United States)

    Notsu, Yuta; Maehara, Hiroyuki; Honda, Satoshi; Notsu, Shota; Namekata, Kosuke; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-05-01

    Flares are thought to be sudden releases of magnetic energy stored around starspots. Recent space high-precision photometry shows “superflares”, 10-104 times more energetic than the largest solar flares, occur on many G, K, M-type stars (e.g., Maehara+2012 Nature). Harmful UV/X-ray radiation and high-energy particles such as protons are caused by such superflares. This may suggest that exoplanet host stars have severe effects on the physical and chemical evolution of exoplanetary atmospheres (cf. Segura+2010 Astrobiology, Takahashi+2016 ApJL).We here present statistical properties of superflares on G, K, M-type stars on the basis of our analyses of Kepler photometric data (Maehara+2012 Nature, Shibayama+2013 ApJS, Notsu+2013 ApJ, Canderaresi+2014 ApJ, Maehara+2015 EPS, Maehara+2017 PASJ). We found more than 5000 superflares on 800 G, K, M-type main-sequence stars, and the occurrence frequency (dN/dE) of superflares as a function of flare energy (E) shows the power-law distribution with the index of -1.8 -1.9. This power-law distribution is consistent with that of solar flares.Flare frequency increases as stellar temperature decreases. As for M-type stars, energy of the largest flares is smaller compared with G,K-type stars, but more frequent “hazardous” flares for the habitable planets since the habitable zone around M-type stars is much smaller compared with G, K-type stars.Rotation period and starspot coverage can be estimated from the quasi-periodic brightness variation of the superflare stars. The intensity of Ca II 8542 line of superflare stars, which is measured from spectroscopic observations with Subaru Telescope, has a well correlation with the brightness variation amplitude (Notsu+2015a&b PASJ).Flare frequency has a correlation with rotation period, and this suggests young rapidly-rotating stars (like “young Sun”) have more severe impacts of flares on the planetary atmosphere (cf. Airapetian+2016 ApJL). Flare energy and frequency also depends

  17. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    Science.gov (United States)

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  18. Habitable Exoplanet Imaging Mission (HabEx): Architecture of the 4m Mission Concept

    Science.gov (United States)

    Kuan, Gary M.; Warfield, Keith R.; Mennesson, Bertrand; Kiessling, Alina; Stahl, H. Philip; Martin, Stefan; Shaklan, Stuart B.; amini, rashied

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) study is tasked by NASA to develop a scientifically compelling and technologically feasible exoplanet direct imaging mission concept, with extensive general astrophysics capabilities, for the 2020 Decadal Survey in Astrophysics. The baseline architecture of this space-based observatory concept encompasses an unobscured 4m diameter aperture telescope flying in formation with a 72-meter diameter starshade occulter. This large aperture, ultra-stable observatory concept extends and enhances upon the legacy of the Hubble Space Telescope by allowing us to probe even fainter objects and peer deeper into the Universe in the same ultraviolet, visible, and near infrared wavelengths, and gives us the capability, for the first time, to image and characterize potentially habitable, Earth-sized exoplanets orbiting nearby stars. Revolutionary direct imaging of exoplanets will be undertaken using a high-contrast coronagraph and a starshade imager. General astrophysics science will be undertaken with two world-class instruments – a wide-field workhorse camera for imaging and multi-object grism spectroscopy, and a multi-object, multi-resolution ultraviolet spectrograph. This poster outlines the baseline architecture of the HabEx flagship mission concept.

  19. Observational Constraints on the Chemistry and Dynamics of Exoplanet Atmospheres

    Science.gov (United States)

    Charbonneau, David

    2008-09-01

    The observational study of the atmospheres of exoplanets is now well underway, despite the fact that astronomers have not yet imaged these bodies directly. These advances are enabled by the discovery of planetary systems that are viewed nearly edge-on to our line-of-sight, such that the star and planet undergo periodic mutual eclipses. When the planet transits in front of the star, starlight passing through the outer scale heights of the atmosphere is attenuated in a wavelength-dependent fashion that encodes information about the atoms, molecules, and condensates that are present. Observations spanning times of secondary eclipse, when the planet passes out of view behind the star, permit the direct study of the planetary thermal emission and estimates of the dayside temperatures. Furthermore, by inverting the time-dependent changes in brightness as features on the planet rotate in and out of view, we have constructed longitudinally-resolved temperature maps. I will review these various rich datasets, which challenge our understanding of the atmospheres of Jovian planets under strong irradiation.

  20. De-Trending K2 Exoplanet Targets for High Spacecraft Motion

    Science.gov (United States)

    Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory

    2018-01-01

    After the failure of two reaction wheels, the Kepler space telescope lost its fine pointing ability and entered a new phase of observation, K2. Targets observed by K2 have high motion relative to the detector and K2 light curves have higher noise than Kepler observations. Despite the increased noise, systematics removal pipelines such as K2SFF and EVEREST have enabled continued high-precision transiting planet science with the telescope, resulting in the detection of hundreds of new exoplanets. However, as the spacecraft begins to run out of fuel, sputtering will drive large and random variations in pointing that can prevent detection of exoplanets during the remaining 5 campaigns. In general, higher motion will spread the stellar point spread function (PSF) across more pixels during a campaign, which increases the number of degrees of freedom in the noise component and significantly reduces the de-trending power of traditional systematics removal methods. We use a model of the Kepler CCD combined with pixel-level information of a large number of stars across the detector to improve the performance of the EVEREST pipeline at high motion. We also consider the problem of increased crowding for static apertures in the high-motion regime and develop pixel response function (PRF)-fitting techniques to mitigate contamination and maximize the de-trending power. We assess the performance of our code by simulating sputtering events and assessing exoplanet detection efficiency with transit injection/recovery tests. We find that targets with roll amplitudes of up to 8 pixels, approximately 15 times K2 roll, can be de-trended within 2 to 3 factors of current K2 photometric precision for stars up to 14th magnitude. Achieved recovery precision allows detection of small planets around 11th and 12th magnitude stars. These methods can be applied to the light curves of K2 targets for existing and future campaigns to ensure that precision exoplanet science can still be performed

  1. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

    Science.gov (United States)

    Shallue, Christopher J.; Vanderburg, Andrew

    2018-02-01

    NASA’s Kepler Space Telescope was designed to determine the frequency of Earth-sized planets orbiting Sun-like stars, but these planets are on the very edge of the mission’s detection sensitivity. Accurately determining the occurrence rate of these planets will require automatically and accurately assessing the likelihood that individual candidates are indeed planets, even at low signal-to-noise ratios. We present a method for classifying potential planet signals using deep learning, a class of machine learning algorithms that have recently become state-of-the-art in a wide variety of tasks. We train a deep convolutional neural network to predict whether a given signal is a transiting exoplanet or a false positive caused by astrophysical or instrumental phenomena. Our model is highly effective at ranking individual candidates by the likelihood that they are indeed planets: 98.8% of the time it ranks plausible planet signals higher than false-positive signals in our test set. We apply our model to a new set of candidate signals that we identified in a search of known Kepler multi-planet systems. We statistically validate two new planets that are identified with high confidence by our model. One of these planets is part of a five-planet resonant chain around Kepler-80, with an orbital period closely matching the prediction by three-body Laplace relations. The other planet orbits Kepler-90, a star that was previously known to host seven transiting planets. Our discovery of an eighth planet brings Kepler-90 into a tie with our Sun as the star known to host the most planets.

  2. Li depletion in solar analogues with exoplanets Extending the sample

    OpenAIRE

    Mena, E. Delgado; Israelian, G.; Hernandez, J. I. Gonazlez; Sousa, S. G.; Mortier, A.; Santos, N. C.; Adibekyan, V. Zh.; Fernandes, J.; Rebolo, R.; Udry, S.; Mayor, M.

    2014-01-01

    We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. In this work we present new determinations of lithium abundances for 326 Main Sequence stars with and without planets in the T$_\\mathrm{eff}$ range 5600-5900 K. 277 stars come from the HARPS sample, the remaining targets have been observed with a variety of high resolution spectrographs. We confirm significant differences in the Li distribution of solar twins (T...

  3. The CARMENES search for exoplanets around M dwarfs. HD147379 b: A nearby Neptune in the temperate zone of an early-M dwarf

    Science.gov (United States)

    Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.; Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga, M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.; Aceituno, J.; Béjar, V. J. S.; Guàrdia, J.; Guenther, E. W.; Hagen, H.-J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.; Cortés-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Eiff, M. Ammler-von; Antona, R.; Anglada-Escudé, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; del Burgo, C.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González Hernández, J. I.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, Th.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Kürster, M.; Labarga, F.; Lamert, A.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; López del Fresno, M.; López-González, M. J.; López-Puertas, M.; López Salas, J. F.; López-Santiago, J.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schöfer, P.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Ulbrich, R.-G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2018-02-01

    We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M⊙), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s-1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M⊕, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/L5

  4. Stellar atmospheres behind transiting exoplanets

    Science.gov (United States)

    Dravins, D.; Ludwig, H.-G.; Dahlén, E.; Gustavsson, M.; Pazira, H.

    2017-09-01

    Stellar surfaces are covered with brighter and darker structures, just like on the Sun. While solar surface details can be easily studied with telescopes, stellar surfaces cannot thus be resolved. However, one can use planets that happen to pass in front of distant stars as "shades" that successively block out small portions of the stellar surface behind. By measuring how the light from the star changes during such a transit, one can deduce stellar surface properties. Knowing those is required not only to study the star as such, but also to deduce the chemical composition of the planet that is passing in front of it, where some of the detected starlight has been filtered through the planet's atmosphere.

  5. EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 R{sub Circled-Plus} PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Sarah; Charbonneau, David; Fressin, Francois; Torres, Guillermo; Irwin, Jonathan; Newton, Elisabeth [University of Washington, Seattle, WA 98195 (United States); Desert, Jean-Michel; Crepp, Justin R.; Shporer, Avi [California Institute of Technology, Pasadena, CA 91125 (United States); Mann, Andrew W. [Institute for Astronomy, University of Hawai' i, Honolulu, HI 96822 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Henze, Christopher E.; Bryson, Stephen T.; Howell, Steven B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); Everett, Mark E., E-mail: sarahba@uw.edu [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States)

    2013-08-20

    We present the validation and characterization of Kepler-61b: a 2.15 R{sub Circled-Plus} planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15 {+-} 0.13 R{sub Circled-Plus} and an equilibrium temperature of 273 {+-} 13 K (given its period of 59.87756 {+-} 0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby ''proxy'' stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.

  6. Amateur observations of exoplanets in Finland: History and recent activities

    Science.gov (United States)

    Mäkelä, V.; Haukka, H.; Oksanen, A.; Kehusmaa, P.; Hentunen, V.-P.

    2017-09-01

    Exoplanet have been observed by Finnish amateur astronomers already 17 years. Recently there are two active observers, but the interest to photometric observations on exoplanet transits is increasing in Finland.

  7. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1.

    Science.gov (United States)

    Gillon, Michaël; Triaud, Amaury H M J; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M; Lederer, Susan M; de Wit, Julien; Burdanov, Artem; Ingalls, James G; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R; Carey, Sean J; Chaushev, Aleksander; Copperwheat, Chris M; Delrez, Laetitia; Fernandes, Catarina S; Holdsworth, Daniel L; Kotze, Enrico J; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-02-22

    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

  8. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

    Science.gov (United States)

    Gillon, Michaël; Triaud, Amaury H. M. J.; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M.; Lederer, Susan M.; de Wit, Julien; Burdanov, Artem; Ingalls, James G.; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N.; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R.; Carey, Sean J.; Chaushev, Aleksander; Copperwheat, Chris M.; Delrez, Laetitia; Fernandes, Catarina S.; Holdsworth, Daniel L.; Kotze, Enrico J.; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-01-01

    One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star just 8% the mass of the Sun 12 parsecs away1. Indeed, the transiting configuration of these planets combined with the Jupiter-like size of their host star - named TRAPPIST-1 - makes possible in-depth studies of their atmospheric properties with current and future astronomical facilities1,2,3. Here we report the results of an intensive photometric monitoring campaign of that star from the ground and with the Spitzer Space Telescope. Our observations reveal that at least seven planets with sizes and masses similar to the Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.21, 12.35 days) are near ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inward4,5. The seven planets have equilibrium temperatures low enough to make possible liquid water on their surfaces6,7,8. PMID:28230125

  9. FINESSE & CASE: Two Proposed Transiting Exoplanet Missions

    Science.gov (United States)

    Zellem, Robert Thomas; FINESSE and CASE Science Team

    2018-01-01

    The FINESSE mission concept and the proposed CASE Mission of Opportunity, both recently selected by NASA’s Explorer program to proceed to Step 2, would conduct the first characterizations of exoplanet atmospheres for a statistically significant population. FINESSE would determine whether our Solar System is typical or exceptional, the key characteristics of the planet formation mechanism, and what establishes global planetary climate by spectroscopically surveying 500 exoplanets, ranging from terrestrials with extended atmospheres to sub-Neptunes to gas giants. FINESSE’s broad, instantaneous spectral coverage from 0.5-5 microns and capability to survey hundreds of exoplanets would enable follow-up exploration of TESS discoveries and provide a broader context for interpreting detailed JWST observations. Similarly, CASE, a NASA Mission of Opportunity contribution to ESA’s dedicated transiting exoplanet spectroscopy mission ARIEL, would observe 1000 warm transiting gas giants, Neptunes, and super-Earths, using visible to near-IR photometry and spectroscopy. CASE would quantify the occurrence rate of atmospheric aerosols (clouds and hazes) and measure the geometric albedos of the targets in the ARIEL survey. Thus, with the selection of either of these two missions, NASA would ensure access to critical data for the U.S. exoplanet science community.

  10. Physical and Chemical Toeholds for Exoplanet Bioastronomy

    Science.gov (United States)

    Hoehler, Tori

    2013-01-01

    If a search for exoplanet life were mounted today, the likely focus would be to detect oxygen (or ozone) in the atmosphere of a water-bearing rocky planet orbiting roughly 1AU from a G-type star. This appropriately conservative and practical default is necessary in large part because biological input on the question of where and how to look for life has progressed little beyond a purely empirical reliance on the example of terrestrial biology. However, fundamental physical and chemical considerations may impose significant yet universal constraints on biological potential. The liquid water + oxygen paradigm will be considered as an example, with a focus on the question, is liquid water a prerequisite for life? . Life requires a solvent to mediate interactions among biological molecules. A key class of these interactions is molecular recognition with high specificity, which is essential for high fidelity catalysis and (especially) information processing. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity greater than 10(exp 7):1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in

  11. Advances in Exoplanet Observing by Amateur Astronomers (Abstract)

    Science.gov (United States)

    Conti, D. M.

    2017-06-01

    (Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

  12. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets.

    Science.gov (United States)

    Griffith, Caitlin A

    2014-04-28

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here, we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of 'hot Jupiter' exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly four atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius of the planet at a reference pressure. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius and mass causes an uncertainty of a factor of approximately 100-10,000 in the derived gas mixing ratios. The degree of sensitivity depends on how the line strength increases with the optical depth (i.e. the curve of growth) and the atmospheric scale height. Temperature degeneracies in the solutions of the primary transit data, which manifest their effects through the scale height and absorption coefficients, are smaller. We argue that these challenges can be partially surmounted by a combination of selected wavelength sampling of optical and infrared measurements and, when possible, the joint analysis of transit and secondary eclipse data of exoplanets. However, additional work is needed to constrain other effects, such as those owing to planetary clouds and star spots. Given the current range of open questions in the field, both observations and theory, there is a need for detailed measurements with space-based large mirror platforms (e.g. James web space telescope) and smaller broad survey

  13. Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets

    Science.gov (United States)

    Tennyson, Jonathan; Yurchenko, Sergei N.

    2017-09-01

    The majority of stars are now thought to support exoplanets. Many of those exoplanets discovered thus far are categorized as rocky objects with an atmosphere. Most of these objects are however hot due to their short orbital period. Models suggest that water is the dominant species in their atmospheres. The hot temperatures are expected to turn these atmospheres into a (high pressure) steam bath containing remains of melted rock. The spectroscopy of these hot rocky objects will be very different from that of cooler objects or hot gas giants. Molecules suggested to be important for the spectroscopy of these objects are reviewed together with the current status of the corresponding spectroscopic data. Perspectives of building a comprehensive database of linelist/cross sections applicable for atmospheric models of rocky super-Earths as part of the ExoMol project are discussed. The quantum-mechanical approaches used in linelist productions and their challenges are summarized.

  14. EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri [Department of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology (MIT) Cambridge, MA (United States); Marley, Mark [NASA Ames Research Center, Moffett Field, CA (United States); Morley, Caroline; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-05-10

    We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to consider the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly half of

  15. A near-infrared interferometric survey of debris-disc stars. VI. Extending the exozodiacal light survey with CHARA/JouFLU

    Science.gov (United States)

    Nuñez, P. D.; Scott, N. J.; Mennesson, B.; Absil, O.; Augereau, J.-C.; Bryden, G.; ten Brummelaar, T.; Ertel, S.; Coudé du Foresto, V.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; Turner, N. J.; Turner, N. H.

    2017-12-01

    We report the results of high-angular-resolution observations that search for exozodiacal light in a sample of main sequence stars and sub-giants. Using the "jouvence" of the fiber linked unit for optical recombination (JouFLU) at the center for high angular resolution astronomy (CHARA) telescope array, we have observed a total of 44 stars. Out of the 44 stars, 33 are new stars added to the initial, previously published survey of 42 stars performed at CHARA with the fiber linked unit for optical recombination (FLUOR). Since the start of the survey extension, we have detected a K-band circumstellar excess for six new stars at the 1% level or higher, four of which are known or candidate binaries, and two for which the excess could be attributed to exozodiacal dust. We have also performed follow-up observations of 11 of the stars observed in the previously published survey and found generally consistent results. We do however detect a significantly larger excess on three of these follow-up targets: Altair, υ And and κ CrB. Interestingly, the last two are known exoplanet host stars. We perform a statistical analysis of the JouFLU and FLUOR samples combined, which yields an overall exozodi detection rate of . We also find that the K-band excess in FGK-type stars correlates with the existence of an outer reservoir of cold (≲100 K) dust at the 99% confidence level, while the same cannot be said for A-type stars.

  16. Precisely measuring the density of small transiting exoplanets with particular emphasis on longer period planet using the HARPS-N spectrograph

    Science.gov (United States)

    Buchhave, Lars A.

    2015-08-01

    The majority of exoplanets discovered by the Kepler Mission have sizes that range between 1-4 Earth radii, populating a regime of planets with no Solar System analogues. This regime is critical for understanding the frequency of potentially habitable worlds and to help inform planet formation theories, because it contains the transition from lower-density planets with extended H/He envelopes to higher-density rocky planets with compact atmospheres. HARPS-N is an ultra-stable high-resolution spectrograph optimized for the measurement of precise radial velocities, yielding precise planetary masses and thus densities of small transiting exoplanets. In this talk, I will review the progress to populate the mass-radius parameter space with precisely measured densities of small planets. I will in particular focus on the latest HARPS-N results and their implication for our understanding of these super-Earth and small Neptune type planets.Additionally, I will discuss our progress to measure the masses of longer period sub-Neptune sized planets. In Buchhave el al. 2014, we found suggestive observational evidence that the transition from rocky to gaseous planets might depend on the orbital period, such that larger planets further away from their host star could be massive planets without a large gaseous envelope. To test this hypothesis, we have used HARPS-N to observe longer period planet candidates to determine whether they are in fact massive rocky planets or if they have extended H/He envelopes and thus lower bulk densities.HARPS-N at the Telescopio Nazionale Galileo, La Palma is an international collaboration and was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, and the Italian National Astrophysical Institute, University of St. Andrews, Queens University Belfast, and University of Edinburgh.

  17. Space missions to the exoplanets: Will they ever be possible

    Science.gov (United States)

    Genta, Giancarlo

    There is no doubt that the discovery of exoplanets has made interstellar space mission much more interesting than they were in the past. The possible discovery of a terrestrial type plane at a reasonable distance will give a strong impulse in this direction. However, there are doubts that such long range space mission will ever become feasible at all and, in case they will be, it is impossible to forecast a timeframe for them. At present, precursor interstellar missions are planned, but they fall way short from yielding interesting information about exoplanets, except perhaps in the case of missions to the focal line of the Sun’s gravitational lens, whose usefulness in this context is still to be demonstrated. They are anyway an essential step in the roadmap toward interstellar missions. Often the difficulties linked with interstellar missions are considered as related with the huge quantity of energy required for reaching the target star system within a reasonable timeframe. While this may well be a showstopper, it is not the only problem to be solved to make them possible. Two other issues are those linked with the probe’s autonomy and the telecommunications required to transmit large quantities of information at those distances. Missions to the exoplanets may be subdivided in the following categories: 1) robotic missions to the destination system, including flybys; 2) robotic missions including landing on an exoplanet; 3) robotic sample return missions; 4) human missions. The main problem to be solved for missions of type 1 is linked with propulsion and with energy availability, while autonomy (artificial intelligence) and telecommunication problems are more or less manageable with predictable technologies. Missions of type 2 are more demanding for what propulsion is concerned, but above all require a much larger artificial intelligence and also will generate a large amount of data, whose transmission back to Earth may become a problem. The suggestion of

  18. Transiting Exoplanets: Discovery from the Ground, Characterization from Space

    Science.gov (United States)

    Nutzman, Philip Andrew

    This work considers the prospects for detecting Earth-like, habitable planets from the ground by targeting nearby M dwarf stars. I perform design studies for ground-based transit surveys seeking habitable, Earth-like planets. By studying a list of proper-motion selected M dwarfs, I determine observational requirements on a star-by-star basis. A survey using 10 40 cm telescopes to target 2000 late, northern M dwarfs could yield 27 x etaM,⊕ habitable, sub-Neptune sized planets in less than three years of observations, where etaM,⊕ is the occurrence rate of super-Earths in the habitable zones of late M dwarfs. By extending to the Southern hemisphere, and incorporating a special narrow filter to avoid telluric water vapor bands, a survey using 10 40 cm telescopes in the North and 10 40 cm telescopes in the South could find 30 x eta M,⊕ habitable planets smaller than 1.5 R ⊕, in 5 years of operations. I present space-based observations of the exoplanet systems HD 149026 and HD 17156, with which I vastly improve upon previously existing estimates of stellar and planetary properties. I present Spitzer 8 mum transit observations obtained for the exoplanet HD 149026b. By observing at this wavelength, one can reduce the effects of limb darkening and thereby simplify the modeling of shallow transit events. I find Rp = 0.755 +/- 0.040RJ. I also present the first joint analysis of transit and asteroseismology observations. Using observations obtained with the Fine Guidance Sensors (FGS) on board the Hubble Space Telescope, I analyze 3 transits of the HD 17156 system. By incorporating a stellar mean density constraint obtained from asteroseismology observations, I improve the determination of planetary properties by an order of magnitude versus previous studies. I find a planetary radius of Rp = 1.0870 +/- 0.0066RJ, which is modestly consistent with theoretical models of solar-composition gas giants.

  19. Star-planet interactions and dynamical evolution of exoplanetary systems

    Directory of Open Access Journals (Sweden)

    Damiani Cilia

    2015-01-01

    Full Text Available The dynamical evolution of planetary systems, after the evaporation of the accretion disk, is the result of the competition between tidal dissipation and the net angular momentum loss of the system. The description of the diversity of orbital configurations, and correlations between parameters of the observed system (e.g. in the case of hot jupiters, is still limited by our understanding of the transport of angular momentum within the stars, and its effective loss by magnetic braking. After discussing the challenges of modelling tidal evolution for exoplanets, I will review recent results showing the importance of tidal interactions to test models of planetary formation. This kind of studies rely on the determination of stellar radii, masses and ages. Major advances will thus be obtained with the results of the PLATO 2.0 mission, selected as the next M-class mission of ESA’s Cosmic Vision plan, that will allow the complete characterisation of host stars using asteroseismology.

  20. Space Telescope Sensitivity and Controls for Exoplanet Imaging

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark

    2012-01-01

    Herein we address design considerations and outline requirements for space telescopes with capabilities for high contrast imaging of exoplanets. The approach taken is to identify the span of potentially detectable Earth-sized terrestrial planets in the habitable zone of the nearest stars within 30 parsecs and estimate their inner working angles, flux ratios, SNR, sensitivities, wavefront error requirements and sensing and control times parametrically versus aperture size. We consider 1, 2, 4, 8 and 16-meter diameter telescope apertures. The achievable science, range of telescope architectures, and the coronagraphic approach are all active areas of research and are all subject to change in a rapidly evolving field. Thus, presented is a snapshot of our current understanding with the goal of limiting the choices to those that appear currently technically feasible. We describe the top-level metrics of inner working angle, contrast and photometric throughput and explore how they are related to the range of target stars. A critical point is that for each telescope architecture and coronagraphic choice the telescope stability requirements have differing impacts on the design for open versus closed-loop sensing and control.

  1. Bayesian analysis on gravitational waves and exoplanets

    Science.gov (United States)

    Deng, Xihao

    -Torun planet group at the Hobby Eberly Telescope. It analyzes 116 observations of the star's radial velocity. However, the stellar p-mode oscillation also contributes to the radial velocity data, challenging the search for the planets around the star. The Bayesian method models the stellar oscillation effect and the potential exoplanet signal together, simultaneously inferring their parameters from the data. Consequently, the method removes the ambiguities of the presence of two Jupiter mass planets around the K0 giant and as a bonus, it also characterizes the strength and the frequency of the stellar oscillation. (Abstract shortened by UMI.).

  2. The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life

    Science.gov (United States)

    Gale, Joseph; Wandel, Amri

    2017-01-01

    We review the latest findings on extra-solar planets and their potential of having environmental conditions that could support Earth-like life. Focusing on planets orbiting red dwarf (RD) stars, the most abundant stellar type in the Milky Way, we show that including RDs as potential life supporting host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbour by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing habitability and the abundance of biotic exoplanets, in particular RDs in such systems. Early considerations indicated that conditions on RD planets would be inimical to life, as their habitable zones would be so close to the host star as to make planets tidally locked. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has also been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for oxygenic photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400-700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around

  3. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  4. A New Model for Exoplanet Transmission Spectroscopy

    Science.gov (United States)

    Rustamkulov, Zafar; Robinson, Tyler; Morley, Caroline; Fortney, Jonathan

    2018-01-01

    The recent boom in exoplanet characterization has prompted the need for robust theoretical models to measure the properties of their atmospheres. High resolution infrared spectroscopic instruments such as CRIRES and ESPRESSO on the VLT, and the future MIRI and NIRSpec instruments aboard JWST, present astronomers the opportunity to study exoplanets in great detail. The structural and compositional properties of exoplanet atmospheres are imprinted in their spectra, allowing for constraints on their formation and evolution. In this study we build a novel radiative transfer model to create theoretical transmission spectra of exoplanet atmospheres. The model expands on a previously validated opacity code and an analytic geometric path length distribution prescription to produce high resolution spectra spanning the near and mid-infrared range. The model’s flexibility allows for rapid iterations through many atmospheric and planetary parameters given initial pressure-temperature and abundance profiles and simple cloud profiles. The model outputs show good agreement with other models for terrestrial and Jovian planets alike. The code has already been used to model the spectra of the TRAPPIST-1 system and to help make a precise determination of the sodium abundance in a hot Saturn planet.

  5. A sub-Mercury-sized exoplanet

    NARCIS (Netherlands)

    Barclay, T.; et al., [Unknown; Hekker, S.

    2013-01-01

    Since the discovery of the first exoplanets1, 2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4, 5, and, since last year, to detect planets that are the size of

  6. Protoplanetary disks and exoplanets in scattered light

    NARCIS (Netherlands)

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  7. Professional / Amateur collaborations in exoplanet science

    Science.gov (United States)

    Santerne, A.

    2014-04-01

    In this presentation, I will present the niches in exoplanet science where amateur astronomers can substantially contribute. These niches require either highprecision photometry or spectroscopy that are now within reach of amateur facilities. I will also discuss the perspective for future professional / amateur collaborations in the context of the upcoming TESS and PLATO space missions.

  8. Discovery, Characterization, and Dynamics of Transiting Exoplanets

    DEFF Research Database (Denmark)

    Van Eylen, Vincent

    2015-01-01

    results of this study, constraining the masses and bulk compositions of three planets. The second part of this thesis focuses on dynamics of exoplanets. All the solar system planets orbit in nearly the same plane, and that plane is also aligned with the equatorial plane of the Sun. That is not true...

  9. Project Blue: Optical Coronagraphic Imaging Search for Terrestrial-class Exoplanets in Alpha Centauri

    Science.gov (United States)

    Morse, Jon; Project Blue team

    2018-01-01

    Project Blue is a coronagraphic imaging space telescope mission designed to search for habitable worlds orbiting the nearest Sun-like stars in the Alpha Centauri system. With a 45-50 cm baseline primary mirror size, Project Blue will perform a reconnaissance of the habitable zones of Alpha Centauri A and B in blue light and one or two longer wavelength bands to determine the hue of any planets discovered. Light passing through the off-axis telescope feeds into a coronagraphic instrument that forms the heart of the mission. Various coronagraph designs are being considered, such as phase induced amplitude apodization (PIAA), vector vortex, etc. Differential orbital image processing techniques will be employed to analyze the data for faint planets embedded in the residual glare of the parent star. Project Blue will advance our knowledge about the presence or absence of terrestrial-class exoplanets in the habitable zones and measure the brightness of zodiacal dust around each star, which will aid future missions in planning their observational surveys of exoplanets. It also provides on-orbit demonstration of high-contrast coronagraphic imaging technologies and techniques that will be useful for planning and implementing future space missions by NASA and other space agencies. We present an overview of the science goals, mission concept and development schedule. As part of our cooperative agreement with NASA, the Project Blue team intends to make the data available in a publicly accessible archive.

  10. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b.

    Science.gov (United States)

    Ehrenreich, David; Bourrier, Vincent; Wheatley, Peter J; des Etangs, Alain Lecavelier; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-06-25

    Exoplanets orbiting close to their parent stars may lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to the suggestion that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start about two hours before, and end more than three hours after the approximately one hour optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of about 10(8)-10(9) grams per second, which is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.

  11. Detectability of Trojan and Co-orbital Exoplanets

    Science.gov (United States)

    Dobrovolskis, Anthony R.

    2010-10-01

    By now there have been many papers on the possibility of Trojan companions to planets of other stars. The purpose is of this work is to point out that radial velocity measurements can seriously misjudge the masses of planets in such systems. In a Trojan system, where two exoplanets of similar mass share the same orbit, but are separated by 60 degrees of longitude, the radial velocity method gives a sinusoidal signal 1.73 times as great as that of each individual planet, but only 0.83 times as great as that of a single planet with the combined mass of both. In principle, any number of planets can share the same orbit. Salo and Yoder (A & A 205, 309-327, 1988) have shown that more than 8 planets of equal mass sharing a circular orbit must be equally spaced for dynamical stability. In contrast, less than 7 equal-mass planets are stable only in a configuration where all of the planets remain on the same side of their parent star. In the intermediate cases of 7 or 8 equal-mass planets, both the equally- and unequally-spaced configurations are stable. If they indeed exist, the lopsided "Salo systems" will produce a greater radial velocity signal than a single such planet would, but a smaller signal than if all of the planets were combined into one. In fact, such systems with 7 or 8 planets induce Doppler shifts almost 4 times as great as an individual planet, but only about half as great as their combined mass would. By symmetry, it is clear that equally-spaced Salo systems will produce no reflex motion or radial velocity signal at all in their parent stars. This could lead to their being overlooked entirely, unless they happen to be detected by the transit method.

  12. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    Science.gov (United States)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  13. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); Eymet, Vincent [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France); Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-03-10

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO{sub 2} atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H{sub 2}O and CO{sub 2} absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T{sub eff} {approx}< 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest

  14. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    Science.gov (United States)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in

  15. Carbon and Oxygen in Nearby Stars: Keys to Protoplanetary Disk Chemistry

    Science.gov (United States)

    Petigura, Erik A.; Marcy, Geoffrey W.

    2011-07-01

    We present carbon and oxygen abundances for 941 FGK stars—the largest such catalog to date. We find that planet-bearing systems are enriched in these elements. We self-consistently measure NC /NO , which is thought to play a key role in planet formation. We identify 46 stars with NC /NO >= 1.00 as potential hosts of carbon-dominated exoplanets. We measure a downward trend in [O/Fe] versus [Fe/H] and find distinct trends in the thin and thick disks, supporting the work of Bensby et al. Finally, we measure sub-solar NC /NO = 0.40+0.11 - 0.07, for WASP-12, a surprising result as this star is host to a transiting hot Jupiter whose dayside atmosphere was recently reported to have NC /NO >= 1 by Madhusudhan et al. Our measurements are based on 15,000 high signal-to-noise spectra taken with the Keck 1 telescope as part of the California Planet Search. We derive abundances from the [O I] and C I absorption lines at λ = 6300 and 6587 Å using the SME spectral synthesizer. Based in part on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  17. Exoplanet Observations in SOFIA's Cycle 1

    Science.gov (United States)

    Angerhausen, Daniel

    2013-06-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micron photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in the field of characterization of the physical properties of exoplanets: parallel optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments and possible future dedicated instrumentation. Here we present spectrophotometric exoplanet observations that were or will be conducted in SOFIA's cycle 1.

  18. Deciphering spectral fingerprints of habitable exoplanets.

    Science.gov (United States)

    Kaltenegger, Lisa; Selsis, Frank; Fridlund, Malcolm; Lammer, Helmut; Beichman, Charles; Danchi, William; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M(Earth)) (so-called "super Earths"), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context.

  19. Infrared spectroscopy of exoplanets: observational constraints.

    Science.gov (United States)

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations.

  20. ASTRO 850: Teaching Teachers about Exoplanets

    Science.gov (United States)

    Barringer, Daniel; Palma, Christopher

    2017-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Penn State also offers through its fully online World Campus the opportunity for In-Service science teachers to earn an M.Ed. degree in Earth Science, and we currently offer a required online astronomy course for that program. We have previously presented descriptions of how have incorporated research-based pedagogical practices into ESSP-sponsored workshops for in-service teachers (Palma et al. 2013), a pilot section of introductory astronomy for non-science majors (Palma et al. 2014), and into the design of an online elective course on exoplanets for the M.Ed. in Earth Science (Barringer and Palma, 2016). Here, we present the finished version of that exoplanet course, ASTRO 850. We gratefully acknowledge support from the NSF MSP program award DUE#0962792.

  1. Hide and Seek: Radial-velocity searches for planets around active stars

    Science.gov (United States)

    Haywood, Raphaelle

    2017-01-01

    The ultimate obstacle to determining the masses of small, rocky exoplanets through radial-velocity (RV) monitoring is the intrinsic variability of the host stars themselves. For my PhD, I developed an intuitive and robust data analysis framework in which the activity-induced variations are modelled with a Gaussian process that has the frequency structure of the stellar magnetic activity. This allowed me to determine precise and accurate masses of the planets in the CoRoT-7, Kepler-78 and Kepler-10 systems. In parallel, I explored the physical origin of activity-induced RV variations of our best-known star: the Sun. I conducted the first systematic RV campaign of the Sun seen as an exoplanet host star using the 3.6m/HARPS spectrograph, by observing sunlight reflected off the bright asteroid 4/Vesta. I used images from the Solar Dynamics Observatory to reconstruct the RV signals incurred by individual surface features such as sunspots, faculae and granulation. I found that the activity-induced RV variations are driven by the suppression of convective blueshift arising dominantly from the presence of faculae. I also identified the full-disc magnetic flux as an excellent proxy for activity-induced RV variations.I am now pursuing my solar investigations using Sun-as-a-star RV observations acquired with the new solar telescope feed at HARPS-N. In particular, I am investigating the impact of magnetic surface features on the shapes of the spectral line profiles, rather than on the RVs themselves (which are a single moment of these lines). This work is key to developing physically-driven, better-tailored models for activity-induced RV variations, in preparation for the potentially habitable, Earth-like planets to be discovered and characterised in the coming years with TESS and GMT/G-CLEF.This work was funded by the Science and Technology Facilities Council in the United Kingdom and the John Templeton Foundation.

  2. Tidally driven evolution of differentiated terrestrial exoplanets

    Science.gov (United States)

    Walterova, M.; Behounkova, M.

    2017-09-01

    We present a numerical model of tidally driven orbital evolution based on the solution of continuum mechanics equations for a differentiated spherical body, whose mantle is governed by either the Maxwell or the Andrade viscoelastic rheology. The model enables generally heterogeneous structure of the mantle, making thus possible the analysis of coupling between the internal and the orbital evolution of terrestrial exoplanets or icy moons.

  3. THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ehlmann, Bethany L., E-mail: hury@mit.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-06-10

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 {mu}m and 15-25 {mu}m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A{sub g}(K) - A{sub g}(J)): A{sub g}(K) - A{sub g}(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A{sub g}(K) - A{sub g}(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.

  4. The DEdicated MONitor of EXotransits and Transients (DEMONEXT): a Robotic Observatory for Follow-Up of Transiting Exoplanets, Transients, and Time-Series Photometry

    Science.gov (United States)

    Villanueva, Steven; Gaudi, B. Scott; Pogge, Richard; Stassun, Keivan G.; Eastman, Jason; Trueblood, Mark; Trueblood, Pat

    2018-01-01

    The DEdicated MONitor of EXotransits and Transients (DEMONEXT) is a 20 inch (0.5-m) robotic telescope that has been in operation since May 2016. Fully automated, DEMONEXT has observed over 150 transits of exoplanet candidates for the KELT survey, including confirmation observations of KELT-20b. DEMONEXT achieves 2-4 mmag precision with unbinned, 20-120 second exposures, on targets orbiting V<13 host stars. Millimagnitude precision can be achieved by binning the transits on 5-6 minute timescales. During observations of 8 hours with hundreds of consecutive exposures, DEMONEXT maintains sub-pixel (<0.5 pixels) target position stability on the CCD during good observing conditions, with degraded performance during poor observing conditions (<1 pixel). DEMONEXT achieves 1% photometry on targets with V<17 in 5 minute exposures, with detection limits of V~21. In addition to the 150 transits observed by DEMONEXT, 50 supernovae and transients haven been observed for the ASAS-SN supernovae group, as well as time-series observations of Galactic microlensing, active galactic nuclei, stellar variability, and stellar rotation.

  5. MASCARA-1 b. A hot Jupiter transiting a bright mV = 8.3 A-star in a misaligned orbit

    Science.gov (United States)

    Talens, G. J. J.; Albrecht, S.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Van Eylen, V.; Van Winckel, H.; Pollacco, D.; McCormac, J.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G.

    2017-10-01

    We report the discovery of MASCARA-1 b, which is the first exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA). This exoplanet is a hot Jupiter orbiting a bright mV = 8.3, rapidly rotating (vsini⋆ > 100 km s-1) A8 star with a period of 2.148780 ± 8 × 10-6 days. The planet has a mass and radius of 3.7 ± 0.9 MJup and 1.5 ± 0.3 RJup, respectively. As with most hot Jupiters transiting early-type stars, we find a misalignment between the planet orbital axis and the stellar spin axis, which may be a signature of the formation and migration histories of this family of planets. MASCARA-1 b has a mean density of 1.5 ± 0.9 g cm-3 and an equilibrium temperature of 2570+50-30K, that is one of the highest temperatures known for a hot Jupiter to date. The system is reminiscent of WASP-33, but the host star lacks apparent delta-scuti variations, making the planet an ideal target for atmospheric characterization. We expect this to be the first of a series of hot Jupiters transiting bright early-type stars that will be discovered by MASCARA. Tables of the photometry and the reduced spectra as FITS files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A73

  6. Instrumentation for the detection and characterization of exoplanets.

    Science.gov (United States)

    Pepe, Francesco; Ehrenreich, David; Meyer, Michael R

    2014-09-18

    In no other field of astrophysics has the impact of new instrumentation been as substantial as in the domain of exoplanets. Before 1995 our knowledge of exoplanets was mainly based on philosophical and theoretical considerations. The years that followed have been marked, instead, by surprising discoveries made possible by high-precision instruments. Over the past decade, the availability of new techniques has moved the focus of research from the detection to the characterization of exoplanets. Next-generation facilities will produce even more complementary data that will lead to a comprehensive view of exoplanet characteristics and, by comparison with theoretical models, to a better understanding of planet formation.

  7. Pulsating stars in SuperWASP

    Science.gov (United States)

    Holdsworth, Daniel L.

    2017-09-01

    SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  8. Improving Transit Predictions of Known Exoplanets with TERMS

    Directory of Open Access Journals (Sweden)

    Mahadevan S.

    2011-02-01

    Full Text Available Transiting planet discoveries have largely been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parameters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project that is monitoring these host stars at predicted transit times.

  9. Polarimetry of Cool Atmospheres: From the Sun to Exoplanets

    Science.gov (United States)

    Berdyugina, S. V.

    2011-04-01

    This is a review of a decades-long effort to develop novel tools for exploring magnetism in cold astrophysical media and to establish a new field of molecular spectropolarimetry since Berdyugina et al. (2000). It is most directly applicable to the Sun, cool stars, substellar objects, planets and other minor bodies as well as interstellar and circumstellar matter. It is close to being a mature field with developed theoretical tools poised to uncover new insights into the magnetic structures in cooler environments. Here I attempt a broad description of the literature and present some recent exciting results. In particular, following my programmatic review at SPW3, I discuss advances in molecular magnetic diagnostics which are based on the modeling of about a dozen diatomic molecules with various electronic transitions and states, including the most challenging - FeH. The applications stretch from sunspots to starspots, small-scale and turbulent solar magnetic fields, red and white dwarfs, and spin-offs such as polarimetry of protoplanetary disks and exoplanets.

  10. Finding Exoplanets Using Point Spread Function Photometry on Kepler Data

    Science.gov (United States)

    Amaro, Rachael Christina; Scolnic, Daniel; Montet, Ben

    2018-01-01

    The Kepler Mission has been able to identify over 5,000 exoplanet candidates using mostly aperture photometry. Despite the impressive number of discoveries, a large portion of Kepler’s data set is neglected due to limitations using aperture photometry on faint sources in crowded fields. We present an alternate method that overcomes those restrictions — Point Spread Function (PSF) photometry. This powerful tool, which is already used in supernova astronomy, was used for the first time on Kepler Full Frame Images, rather than just looking at the standard light curves. We present light curves for stars in our data set and demonstrate that PSF photometry can at least get down to the same photometric precision as aperture photometry. As a check for the robustness of this method, we change small variables (stamp size, interpolation amount, and noise correction) and show that the PSF light curves maintain the same repeatability across all combinations for one of our models. We also present our progress in the next steps of this project, including the creation of a PSF model from the data itself and applying the model across the entire data set at once.

  11. Toward the detection of exoplanet transits with polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, Sloane J. [NASA Sagan Fellow. (United States); Laughlin, Gregory P., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-11-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the 90° scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio R {sub p}/R {sub *}, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3 m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.

  12. TWINKLE - A Low Earth Orbit Visible and Infrared Exoplanet Spectroscopy Observatory

    Science.gov (United States)

    Tessenyi, M.; Savini, G.; Tinetti, G.; Tennyson, J.; Dhesi, M.; Joshua, M.

    2017-07-01

    Twinkle is a space mission designed for visible and near-IR spectroscopic observations of extrasolar planets. Twinkle's highly stable instrument will allow the photometric and spectroscopic observation of a wide range of planetary classes around different types of stars, with a focus on bright sources close to the ecliptic. The planets will be observed through transit and eclipse photometry and spectroscopy, as well as phase curves, eclipse mapping and multiple narrow-band time-series. The targets observed by Twinkle will be composed of known exoplanets mainly discovered by existing and upcoming ground surveys in our galaxy and will also feature new discoveries by space observatories (K2, GAIA, Cheops, TESS). Twinkle is a small satellite with a payload designed to perform high-quality astrophysical observations while adapting to the design of an existing Low Earth Orbit commercial satellite platform. The SSTL-300 bus, to be launched into a low-Earth sun-synchronous polar orbit by 2019, will carry a half-meter class telescope with two instruments (visible and near-IR spectrographs - between 0.4 and 4.5μm - with resolving power R˜300 at the lower end of the wavelength scale) using mostly flight proven spacecraft systems designed by Surrey Satellite Technology Ltd and a combination of high TRL instrumentation and a few lower TRL elements built by a consortium of UK institutes. The Twinkle design will enable the observation of the chemical composition and weather of at least 100 exoplanets in the Milky Way, including super-Earths (rocky planets 1-10 times the mass of Earth), Neptunes, sub-Neptunes and gas giants like Jupiter. It will also allow the follow-up photometric observations of 1000+ exoplanets in the visible and infrared, as well as observations of Solar system objects, bright stars and disks.

  13. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Energy Technology Data Exchange (ETDEWEB)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Nielsen, Eric L.; Czekala, Ian; Bailey, Vanessa P.; Follette, Katherine B. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA, 94305 (United States); Wang, Jason J.; Rosa, Robert J. De; Duchêne, Gaspard [Astronomy Department, University of California, Berkeley CA, 94720 (United States); Pueyo, Laurent [Space Telescope Science Institute, Baltimore, MD, 21218 (United States); Marley, Mark S. [NASA Ames Research Center, Mountain View, CA, 94035 (United States); Arriaga, Pauline; Fitzgerald, Michael P. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Barman, Travis [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ, 85721 (United States); Bulger, Joanna [Subaru Telescope, NAOJ, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON, M5S 3H4 (Canada); Cotten, Tara [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States); Doyon, Rene [Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal QC, H3C 3J7 (Canada); Gerard, Benjamin L. [University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Goodsell, Stephen J., E-mail: jruffio@stanford.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI, 96720 (United States); and others

    2017-06-10

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  14. SCIENCE PARAMETRICS FOR MISSIONS TO SEARCH FOR EARTH-LIKE EXOPLANETS BY DIRECT IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert A., E-mail: rbrown@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-01-20

    We use N{sub t} , the number of exoplanets observed in time t, as a science metric to study direct-search missions like Terrestrial Planet Finder. In our model, N has 27 parameters, divided into three categories: 2 astronomical, 7 instrumental, and 18 science-operational. For various ''27-vectors'' of those parameters chosen to explore parameter space, we compute design reference missions to estimate N{sub t} . Our treatment includes the recovery of completeness c after a search observation, for revisits, solar and antisolar avoidance, observational overhead, and follow-on spectroscopy. Our baseline 27-vector has aperture D = 16 m, inner working angle IWA = 0.039'', mission time t = 0-5 yr, occurrence probability for Earth-like exoplanets η = 0.2, and typical values for the remaining 23 parameters. For the baseline case, a typical five-year design reference mission has an input catalog of ∼4700 stars with nonzero completeness, ∼1300 unique stars observed in ∼2600 observations, of which ∼1300 are revisits, and it produces N {sub 1} ∼ 50 exoplanets after one year and N {sub 5} ∼ 130 after five years. We explore offsets from the baseline for 10 parameters. We find that N depends strongly on IWA and only weakly on D. It also depends only weakly on zodiacal light for Z < 50 zodis, end-to-end efficiency for h > 0.2, and scattered starlight for ζ < 10{sup –10}. We find that observational overheads, completeness recovery and revisits, solar and antisolar avoidance, and follow-on spectroscopy are all important factors in estimating N.

  15. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Science.gov (United States)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Wang, Jason J.; Pueyo, Laurent; Nielsen, Eric L.; De Rosa, Robert J.; Czekala, Ian; Marley, Mark S.; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Rajan, Abhijith; Rameau, Julien; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-06-01

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  16. The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    Science.gov (United States)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-07-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.

  17. Water Vapor Emission Reveals a Highly Obscured, Star-forming Nuclear Region in the QSO Host Galaxy APM 08279+5255 at z = 3.9

    NARCIS (Netherlands)

    van der Werf, Paul P.; Berciano Alba, A.; Spaans, M.; Loenen, A. F.; Meijerink, Rowin; Riechers, D. A.; Cox, P.; Weiß, A.; Walter, F.

    2011-01-01

    We present the detection of four rotational emission lines of water vapor, from energy levels E-u/k = 101-454 K, in the gravitationally lensed z = 3.9 QSO host galaxy APM 08279+5255. While the lowest H2O lines are collisionally excited in clumps of warm, dense gas (density of hydrogen nuclei n(H) =

  18. Flight Integral Field Spectrograph (IFS) Optical Design for WFIRST Coronagraphic Exoplanet Demonstration

    Science.gov (United States)

    Gong, Qian; Groff, Tyler D.; Zimmerman, Neil; Mandell, Avi; McElwain, Michael; Rizzo, Maxime; Saxena, Prabal

    2017-01-01

    Based on the experience from Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST, we have moved to the flight instrument design phase. The specifications for flight IFS have similarities and differences from the prototype. This paper starts with the science and system requirement, discusses a number of critical trade-offs: such as IFS type selection, lenslet array shape and layout versus detector pixel accuracy, how to accommodate the larger Field Of View (FOV) and wider wavelength band for a potential add-on StarShade occulter. Finally, the traditional geometric optical design is also investigated and traded: reflective versus refractive, telecentric versus non-telecentric relay. The relay before the lenslet array controls the chief angle distribution on the lenslet array. Our previous paper has addressed how the relay design combined with lenslet arraypinhole mask can further compress the residual star light and increase the contrast. Finally, a complete phase A IFS optical design is presented.

  19. Kepler and K2: Spawning a Revolution in Astrophysics from Exoplanets to Supernovae (Abstract)

    Science.gov (United States)

    Ciardi, D.

    2017-06-01

    (Abstract only) Launched in 2009, the Kepler Mission helped to redefine our understanding of the extra-solar planets and began a revolution in how we view our own Solar System. But Kepler was more than an exoplanet finding mission, Kepler helped to redefine how we looked at stars and greatly improved upon our knowledge of how stars work and evolve. After Kepler suffered a mechanical failure which nearly ended the mission, Kepler was reborn at K2. Unlike Kepler which just stared at spot on the sky, K2 has pointed at 11 different areas of the galaxy and has enabled studies not previously possible with Kepler including supernovae studies and searches for planets with microlensing events. I present an overview of the results of Kepler and K2 and how this is leading us to the future with TESS.

  20. DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science

    Science.gov (United States)

    Kuchner, Marc J.

    2016-01-01

    The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!

  1. Terrestrial exo-planet science by nulling interferometry: instrument design and scientific performance

    Science.gov (United States)

    Wallner, Oswald; Ergenzinger, Klaus; Johann, Ulrich

    2008-07-01

    The detection of terrestrial exo-planets in the habitable zone of Sun-like stars as well as the proof of biomarkers is one of the most exciting goals in Astrophysics today. A nulling interferometer operated in the mid-infrared wavelength regime allows for overcoming the obstacles of huge contrast ratio and small angular separation between star and planet. Dedicated missions, as ESA's DARWIN or NASA's TPF-I, are implemented as a closely controlled formation of free-flying spacecraft which carry the distributed payload. We discuss various implementation alternatives and present an optimized design of the DARWIN instrument including the science payload and the formation-flying subsystem. We analyze the achievable scientific performance of the DARWIN instrument by taking into account the target properties and the instrument performance. We show that the DARWIN mission is feasible and that the mission goals can be fulfilled.

  2. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    Science.gov (United States)

    Miles, Brittany E.; Shkolnik, Evgenya L.

    2017-08-01

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope. These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer (GALEX) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771-2831 Å) and far-ultraviolet (FUV; 1344-1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.

  3. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Brittany E. [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Road, Tempe, AZ 85281 (United States)

    2017-08-01

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV; 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.

  4. The Impact of Stars on Moons

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    In other solar systems, the radiation streaming from the central star can have a destructive impact on the atmospheres of the stars close-in planets. A new study suggests that these exoplanets may also have a much harder time keeping their moons.Where Are the Exomoons?Moons are more common in our solar system than planets by far (just look at Jupiters enormous collection of satellites!) and yet we havent made a single confirmed discovery of a moon around an planet outside of our solar system. Is this just because moons have smaller signals and are more difficult to detect? Or might there also be a physical reason for there to be fewer moons around the planets were observing?Led by Ming Yang, a team of scientists from Nanjing University in China have explored one mechanism that could limit the number of moons we might find around exoplanets: photoevaporation.Artists illustration of the process of photoevaporation, in which the atmosphere of a planet is stripped by radiation from its star. [NASA Goddard SFC]Effects of RadiationPhotoevaporation is a process by which the harsh high-energy radiation from a star blasts a close-in planet, imparting enough energy to the atoms of the planets atmosphere for those atoms to escape. As the planets atmosphere gradually erodes, significant mass loss occurs on timescales of tens or hundreds of millions of years.How might this process affect such a planets moons? To answer this question, Yang and collaborators used an N-body code called MERCURY to model solar systems in which a Neptune-like planet at 0.1 AU gradually loses mass. The planet starts out with a large system of moons, and the team tracks the moons motions to determine their ultimate fates.Escaping BodiesEvolution of the planet mass (top) in a simulation containing 500 small moons. The evolution of the semimajor axes of the moons (middle) and their eccentricities (bottom) are shown, with three example moons, starting at different radii, highlighted in blue, red and green

  5. Time-resolved UVES observations of a stellar flare on the planet host HD 189733 during primary transit

    Science.gov (United States)

    Klocová, T.; Czesla, S.; Khalafinejad, S.; Wolter, U.; Schmitt, J. H. M. M.

    2017-11-01

    Context. HD 189733 is an exoplanetary system consisting of a transiting hot Jupiter and an active K2V-type main sequence star. Rich manifestations of a stellar activity, like photometric spots or chromospheric flares were repeatedly observed in this system in optical, UV and X-rays. Aims: We aim to use VLT/UVES high resolution (R = 60 000) echelle spectra to study a stellar flare. Methods: We have performed simultaneous analyses of the temporal evolution in several chromospheric stellar lines, namely, the Ca ii H & K lines (3933, 3968 Å), H α (6563 Å), H β (4861 Å), H γ (4341 Å), H δ (4102 Å), H ɛ (3970 Å), the Ca ii infrared triplet lines (8498, 8542 and 8662 Å), and He i D3 (5875.6 Å). Observations were carried out with a time resolution of approximately 1 min for a duration of four hours, including a complete planetary transit. Results: We determine the energy released during the flare in all studied chromospheric lines combined to be about 8.7 × 1031 erg, which puts this event at the upper end of flare energies observed on the Sun. Our analysis does not reveal any significant delay of the flare peak observed in the Balmer and Ca ii H & K lines, although we find a clear difference in the temporal evolution of these lines. The He i D3 shows additional absorption possibly related to the flare event. Based on the flux released in Ca ii H & K lines during the flare, we estimate the soft X-ray flux emission to be 7 × 1030 erg. Conclusions: The observed flare can be ranked as a moderate flare on a K-type star and confirms a rather high activity level of HD 189733 host star. The cores of the studied chromospheric lines demonstrate the same behavior and let us study the flare evolution. We demonstrate that the activity of an exoplanet host star can play an important role in the detection of exoplanet atmospheres, since these are frequently discovered as an additional absorption in the line cores. A possible star-planet interaction responsible for a flare

  6. New Exoplanet Surveys in the Canadian High Arctic at 80 Degrees North

    Science.gov (United States)

    Law, Nicholas M.; Sivanandam, Suresh; Murowinski, Richard; Carlberg, Raymond; Ngan, Wayne; Salbi, Pegah; Ahmadi, Aida; Steinbring, Eric; Halman, Mark; Graham, James

    2012-09-01

    Observations from near the Eureka station on Ellesmere Island, in the Canadian High Arctic at 80° North, benefit from 24-hour darkness combined with dark skies and long cloud-free periods during the winter. Our first astronomical surveys conducted at the site are aimed at transiting exoplanets; compared to mid-latitude sites, the continuous darkness during the Arctic winter greatly improves the survey’s detection effciency for longer-period transiting planets. We detail the design, construction, and testing of the first two instruments: a robotic telescope, and a set of very wide-field imaging cameras. The 0.5m Dunlap Institute Arctic Telescope has a 0.8-square-degree field of view and is designed to search for potentially habitable exoplanets around low-mass stars. The very wide field cameras have several-hundred-square-degree fields of view pointed at Polaris, are designed to search for transiting planets around bright stars, and were tested at the site in February 2012. Finally, we present a conceptual design for the Compound Arctic Telescope Survey (CATS), a multiplexed transient and transit search system which can produce a 10,000-square-degree snapshot image every few minutes throughout the Arctic winter.

  7. Using Final Kepler Catalog Completeness and Reliability Products in Exoplanet Occurrence Rate Estimates

    Science.gov (United States)

    Bryson, Steve; Burke, Christopher; Batalha, Natalie Marie; Thompson, Susan E.; Coughlin, Jeffrey; Christiansen, Jessie; Mullally, Fergal; Shabram, Megan; Kepler Team

    2018-01-01

    Burke et. al. 2015 presented an exoplanet occurrence rate estimate based on the Q1-Q16 Kepler Planet Candidate catalog. That catalog featured uniform planet candidate vetting and analytic approximations to the detection completeness (the fraction of true planets that would be detected) for each target star. We present an extension of that occurrence rate work using the final DR25 Kepler Planet Candidate catalog products, which uses higher-accuracy detection completeness data for each target star, and adds estimates of vetting completeness (the fraction of detected true planets correctly identified as planet candidates) and vetting reliability (the fraction of planet candidates that are true planets). These completeness and reliability products are based on synthetic manipulations of Kepler data, including transit injection, data scrambling, and inversion. We describe how each component is incorporated into the occurrence rate estimate, and how they impact the occurrence rate estimate both individually and in combination. We discuss the strengths and weaknesses of the completeness and reliability products and how they impact our confidence in the occurrence rate values uncertainties. This work is an example of how the community can use the DR25 completeness and reliability products, which are publicly available at the NASA Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu) and the Mikulski Archive for Space Telescopes (http://archive.stsci.edu/kepler).

  8. ARIEL - The Atmospheric Remote-sensing Infrared Exoplanet Large-survey

    Science.gov (United States)

    Eccleston, P.; Tinetti, G.

    2015-10-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS, plus ground based surveys, will increase the number of known systems to tens of thousands. Of all these exoplanets we know very little; i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet's thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail. A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over 3.5 years. The ESA Cosmic Vision M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution. The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the

  9. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  10. Coronagraphic imaging of circumstellar material around evolved massive stars

    Science.gov (United States)

    Lomax, Jamie R.; Levesque, Emily; Wisniewski, John

    2018-01-01

    While many astronomical subfields (e.g. the solar, exoplanet, and disk communities) have been using coronagraphy to combat contrast ratio problems for years, the use of coronagraphic imaging techniques to probe the circumstellar environments of massive stars has been surprisingly underutilized. While current extreme adaptive optics coronagraphic imaging systems (e.g. GPI on Gemini South, SPHERE at the VLT, and SCExAO at Subaru) were built for the sole purpose of detecting exoplanets, their ability to provide large contrast ratios and small inner working angles means they can detect gas, dust, and companions that are closer to the central star than ever before. In this poster we present pilot studies of evolved massive stars using several coronagraphic imaging systems and summarize potential science gains this technique might provide.

  11. Characterization of Transiting Exoplanets by Way of Differential Photometry

    Science.gov (United States)

    Cowley, Michael; Hughes, Stephen

    2014-01-01

    This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including size, orbital radius and…

  12. The Exoplanet Characterization ToolKit (ExoCTK)

    Science.gov (United States)

    Stevenson, Kevin; Fowler, Julia; Lewis, Nikole K.; Fraine, Jonathan; Pueyo, Laurent; Valenti, Jeff; Bruno, Giovanni; Filippazzo, Joseph; Hill, Matthew; Batalha, Natasha E.; Bushra, Rafia

    2018-01-01

    The success of exoplanet characterization depends critically on a patchwork of analysis tools and spectroscopic libraries that currently require extensive development and lack a centralized support system. Due to the complexity of spectroscopic analyses and initial time commitment required to become productive, there are currently a limited number of teams that are actively advancing the field. New teams with significant expertise, but without the proper tools, face prohibitively steep hills to climb before they can contribute. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface focused primarily on atmospheric characterization of exoplanets and exoplanet transit observation planning with JWST. The foundation of these software tools and libraries exist within pockets of the exoplanet community. Our project will gather these seedling tools and grow a robust, uniform, and well maintained exoplanet characterization toolkit.

  13. Lightning chemistry on Earth-like exoplanets

    Science.gov (United States)

    Ardaseva, Aleksandra; Rimmer, Paul B.; Waldmann, Ingo; Rocchetto, Marco; Yurchenko, Sergey N.; Helling, Christiane; Tennyson, Jonathan

    2017-09-01

    We present a model for lightning shock-induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ≈10-3 at 40 km and NO2 ≈10-4 below 40 km, with O3 reduced to trace quantities (≪10-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2 and predict a significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The chemical effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ˜3.4 and ˜6.2 μm. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with the James Webb Space Telescope. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.

  14. Density Estimation for Projected Exoplanet Quantities

    Science.gov (United States)

    Brown, Robert A.

    2011-05-01

    Exoplanet searches using radial velocity (RV) and microlensing (ML) produce samples of "projected" mass and orbital radius, respectively. We present a new method for estimating the probability density distribution (density) of the unprojected quantity from such samples. For a sample of n data values, the method involves solving n simultaneous linear equations to determine the weights of delta functions for the raw, unsmoothed density of the unprojected quantity that cause the associated cumulative distribution function (CDF) of the projected quantity to exactly reproduce the empirical CDF of the sample at the locations of the n data values. We smooth the raw density using nonparametric kernel density estimation with a normal kernel of bandwidth σ. We calibrate the dependence of σ on n by Monte Carlo experiments performed on samples drawn from a theoretical density, in which the integrated square error is minimized. We scale this calibration to the ranges of real RV samples using the Normal Reference Rule. The resolution and amplitude accuracy of the estimated density improve with n. For typical RV and ML samples, we expect the fractional noise at the PDF peak to be approximately 80 n -log 2. For illustrations, we apply the new method to 67 RV values given a similar treatment by Jorissen et al. in 2001, and to the 308 RV values listed at exoplanets.org on 2010 October 20. In addition to analyzing observational results, our methods can be used to develop measurement requirements—particularly on the minimum sample size n—for future programs, such as the microlensing survey of Earth-like exoplanets recommended by the Astro 2010 committee.

  15. Terrestrial exoplanets: diversity, habitability and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Selsis, Franck [CRAL: Centre de Recherche Astrophysique de Lyon (CNRS), Universite de Lyon, Ecole Normale Superieure de Lyon, 46 allee d' Italie, F-69007 Lyon (France); Kaltenegger, Lisa [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Paillet, Jimmy [ESTEC SCI-SA, Keplerlaan 1, PO Box 299, 2200AG Noordwijk (Netherlands)], E-mail: franck.selsis@ens-lyon.fr, E-mail: lkaltene@cfa.harvard.edu, E-mail: jpaillet@rssd.esa.int

    2008-08-15

    After a decade rich in giant exoplanet detections, observation techniques have now reached the sensitivity to gain information on the physical structure and chemical content of some of the detected planets and also to find planets of less than 10 M{sub +}. The detection and characterization of Earth-like planets is approaching rapidly and dedicated space observatories are already in operation (CoRoT) or in the development phase (Kepler, Darwin and TPF-I/C). In this paper, we explore the domain of terrestrial planets, emphasizing habitable worlds. We discuss the possibility of performing a spectral characterization of their properties using the next generation of astronomical instruments.

  16. A Multi-object Exoplanet Detecting Technique

    Science.gov (United States)

    Zhang, K.

    2011-05-01

    Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in

  17. A sub-Mercury-sized exoplanet

    OpenAIRE

    Barclay, Thomas; Ciardi, David; Howard, Andrew W.

    2013-01-01

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the inner...

  18. Massive star archeology in globular clusters

    Science.gov (United States)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2015-01-01

    Globular clusters are among the oldest structures in the Universe and they host today low-mass stars and no gas. However, there has been a time when they formed as gaseous objects hosting a large number of short-lived, massive stars. Many details on this early epoch have been depicted recently through unprecedented dissection of low-mass globular cluster stars via spectroscopy and photometry. In particular, multiple populations have been identified, which bear the nucleosynthetic fingerprints of the massive hot stars disappeared a long time ago. Here we discuss how massive star archeology can be done through the lense of these multiple populations.

  19. Optical Detection of Life on Exoplanets

    Science.gov (United States)

    Heap, Sara

    2009-01-01

    We describe what is known about the atmospheric properties (Teff, lob g, [FelH]) and fundamental properties (mass, age, and metal content) of nearby stars and how they influence the habitable zones and habitable eras of these stars. We then take an observer's point of view to assess the ability of optical telescopes to detect photosynthetic or methanogenic life on planets orbiting these stars.

  20. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    Energy Technology Data Exchange (ETDEWEB)

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J. [University of Bristol, School of Physics, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Teanby, Nick A. [University of Bristol, School of Earth Sciences, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2016-03-20

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.

  1. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  2. Metalicidad de estrellas con exoplanetas y discos de polvo

    Science.gov (United States)

    Petrucci, R.; Saffe, C.; Jofré, E.

    We present an uniform comparison among three different kind of objects: cool-Jupiter exoplanet host-stars, stars with dust disks and exoplanet host- stars with dust disks. The goal of this contribution was to determine why stellar objects originally surrounded by planetesimals evolve to different final configurations, from stars with planets to stars with debris disks. FULL TEXT IN SPANISH

  3. Exoplanet Searches by Future Deep Space Missions

    Directory of Open Access Journals (Sweden)

    Maccone C.

    2011-02-01

    Full Text Available The search for exoplanets could benefit from gravitational lensing if we could get to 550 AU from the Sun and beyond. This is because the gravitational lens of the Sun would highly intensify there any weak electromagnetic wave reaching the solar system from distant planets in the Galaxy (see Maccone 2009. The gravitational lens of the Sun, however, has a drawback: the solar Corona. Electrons in the Corona make electromagnetic waves diverge and this pushes the focus out to distances higher than 550 AU. Jupiter is the second larger mass in the solar system after the Sun, but in this focal game not only the mass matters: rather, what really matters is the ratio between the radius of the body squared and the mass of the body. In this regard, Jupiter qualifies as the second best choice for a space mission, requiring the spacecraft to reach 6,077 AU. In this paper, we study the benefit of exoplanet searches by deep space missions.

  4. Processing and Managing the Kepler Mission's Treasure Trove of Stellar and Exoplanet Data

    Science.gov (United States)

    Jenkins, Jon M.

    2016-01-01

    The Kepler telescope launched into orbit in March 2009, initiating NASAs first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for 160,000 target stars at a time over its four-year mission, identifying over 4700 planet candidates, 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long term, ultra- high photometric precision measurements it achieved made it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyraes. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, from achieving an unprecedented photometric precision of 20 parts per million (ppm) on 6.5-hour timescales, supporting the science operations, management, processing, and repeated reprocessing of the accumulating data stream. This paper describes how the design of the SOC meets these varied challenges, discusses the architecture of the SOC and how the SOC pipeline is operated and is run on the NAS Pleiades supercomputer, and summarizes the most important pipeline features addressing the multiple computational, image and signal processing challenges posed by Kepler.

  5. Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction

    Science.gov (United States)

    Sun, He; Kasdin, N. Jeremy

    2018-01-01

    Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.

  6. Massive stars in young VVV clusters

    Science.gov (United States)

    Ramírez Alegría, S.; Borissova, J.; Chené, A.-N.

    2017-11-01

    The role of massive stars in the Galactic evolution is crucial. During their lifetime these stars change the kinematics around them through stellar winds, affect the formation of new stars, ionise and chemically enrich the media with the final supernova explosion. But the census of both massive stars and their host clusters is still poor. We expect that still ~100 of galactic massive stellar clusters remains unknown (Hanson & Popescu, 2008).

  7. The formation and early evolution of stars from dust to stars and planets

    CERN Document Server

    Schulz, Norbert S

    2012-01-01

    Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high r...

  8. Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Lunine, J; Fischer, D; Hammel, H; Hillenbrand, L; Kasting, J; Laughlin, G; Macintosh, B; Marley, M; Melnick, G; Monet, D; Noecker, C; Peale, S; Quirrenbach, A; Seager, S; Winn, J

    2008-06-02

    This report is a comprehensive study of the search for and study of planets around other stars (exoplanets). The young but maturing field of exoplanets is perhaps one of the most compelling fields of study in science today--both because of the discoveries made to date on giant planets around other stars, and because the detection of planets just like our Earth ('Earth analogs') is at last within reach technologically. In the Report we outline the need for a vigorous research program in exoplanets to understand our place in the cosmos: whether planets like our home Earth are a common or rare outcome of cosmic evolution. The strategy we developed is intended to address the following fundamental questions, in priority order, within three distinct 5-yr long phases, over a 15 year period: (1) What are the physical characteristics of planets in the habitable zones around bright, nearby stars? (2) What is the architecture of planetary systems? (3) When, how and in what environments are planets formed? The Report recommends a two-pronged strategy for the detection and characterization of planets the size of the Earth. For stars much less massive and cooler than our Sun (M-dwarfs), existing ground-based techniques including radial velocity and transit searches, and space-based facilities both existing and under development such as Spitzer and JWST, are adequate for finding and studying planets close to the mass and size of the Earth. Conducted in parallel with the M-dwarf strategy is one for the more challenging observations of the hotter and brighter F, G, and K stars, some of which are very close in properties to our Sun, in which the frequency of Earth-sized planets is assessed with Corot and Kepler, but new space missions are required for detection and study of specific Earth-mass and Earth-sized objects. Our Task Force concludes that the development of a space-based astrometric mission, narrowly-focused to identify specific nearby stars with Earth

  9. Detection of the Atmosphere of the 1.6 M ⊕ Exoplanet GJ 1132 b

    Science.gov (United States)

    Southworth, John; Mancini, Luigi; Madhusudhan, Nikku; Mollière, Paul; Ciceri, Simona; Henning, Thomas

    2017-04-01

    Detecting the atmospheres of low-mass, low-temperature exoplanets is a high-priority goal on the path to ultimately detecting biosignatures in the atmospheres of habitable exoplanets. High-precision HST observations of several super-Earths with equilibrium temperatures below 1000 K have to date all resulted in featureless transmission spectra, which have been suggested to be due to high-altitude clouds. We report the detection of an atmospheric feature in the atmosphere of a 1.6 {M}\\oplus transiting exoplanet, GJ 1132 b, with an equilibrium temperature of ˜600 K and orbiting a nearby M dwarf. We present observations of nine transits of the planet obtained simultaneously in the griz and JHK passbands. We find an average radius of 1.43 ± 0.16 {R}\\oplus for the planet, averaged over all the passbands, and a radius of 0.255 ± 0.023 {R}⊙ for the star, both of which are significantly greater than previously found. The planet radius can be decomposed into a “surface radius” at ˜1.375 {R}\\oplus overlaid by atmospheric features that increase the observed radius in the z and K bands. The z-band radius is 4σ higher than the continuum, suggesting a strong detection of an atmosphere. We deploy a suite of tests to verify the reliability of the transmission spectrum, which are greatly helped by the existence of repeat observations. The large z-band transit depth indicates strong opacity from H2O and/or CH4 or a hitherto-unconsidered opacity. A surface radius of 1.375 ± 0.16 {R}\\oplus allows for a wide range of interior compositions ranging from a nearly Earth-like rocky interior, with ˜70% silicate and ˜30% Fe, to a substantially H2O-rich water world.

  10. The KELT-11b Opportunity: Measuring the Atmospheric Water Abundance for a Sub-Saturn-Mass Planet around a Metal-Rich Star

    Science.gov (United States)

    Colon, Knicole

    2017-08-01

    Measurements of exoplanet atmosphere composition provide an unparalleled window into planetary nature and origins. Water in particular is an important tracer of the planet formation process because it is a dominant component by mass of icy planetesimals. Exoplanets provide the opportunity to measure water abundance over a wide range of planet masses and thereby test predictions of planet population synthesis models. So far, however, precise constraints on water abundance have been limited to Jupiter-mass objects. Here we propose to measure the transmission spectrum of the recently discovered low density sub-Saturn KELT-11b with HST/WFC3. We will use this measurement to determine the planet's atmospheric water abundance. KELT-11b is one of the few Saturn-mass planets for which we can obtain constraints on the water abundance with a modest amount of telescope time. Our results will enable meaningful comparison with both objects in the Solar System and with the other few planets in the sub-Saturn population. This program will also be the first investigation of the metal enhancement of a planet with a metal-rich host star. Even if the atmosphere is cloudy, our data will be sufficiently precise to detect water above a 1 mbar cloud-deck, and will constrain cloud physics in a new regime of surface gravity. These measurements will set the stage for comparative planetology that will be possible with JWST.

  11. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  12. The Host Galaxies of X-Ray Selected Active Galactic Nuclei to z - 2.5: Structure, Star-Formation and Their Relationships from CANDELS and Herschel/Pacs

    Science.gov (United States)

    Rosario, D.J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; hide

    2014-01-01

    We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z is approximately 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z greater than 1.5. At z less than 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift towards a minor role for mergers and interactions at z greater than 15

  13. TRANSMISSION SPECTRUM OF EARTH AS A TRANSITING EXOPLANET FROM THE ULTRAVIOLET TO THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Betremieux, Y. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, L., E-mail: betremieux@mpia.de, E-mail: kaltenegger@mpia.de [Harvard-Smithsonian Center for Astrophysics, 60 Garden street, Cambridge MA 02138 (United States)

    2013-08-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering, and refraction from 115 to 1000 nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75 km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200 nm, ultraviolet (UV) O{sub 2} absorption increases the effective planetary radius by about 180 km, versus 27 km at 760.3 nm, and 14 km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the UV is an interesting wavelength range for future space missions.

  14. Detecting Exoplanets using Bayesian Object Detection

    Science.gov (United States)

    Feroz, Farhan

    2015-08-01

    Detecting objects from noisy data-sets is common practice in astrophysics. Object detection presents a particular challenge in terms of statistical inference, not only because of its multi-modal nature but also because it combines both the parameter estimation (for characterizing objects) and model selection problems (in order to quantify the detection). Bayesian inference provides a mathematically rigorous solution to this problem by calculating marginal posterior probabilities of models with different number of sources, but the use of this method in astrophysics has been hampered by the computational cost of evaluating the Bayesian evidence. Nonetheless, Bayesian model selection has the potential to improve the interpretation of existing observational data. I will discuss several Bayesian approaches to object detection problems, both in terms of their theoretical framework and also the practical details about carrying out the computation. I will also describe some recent applications of these methods in the detection of exoplanets.

  15. The Galactic Exoplanet Survey Telescope (GEST)

    Science.gov (United States)

    Bennett, David P.; Bally, John; Bond, I.; Cheng, Ed; Cook, Kem; Deming, Drake; Garnavich, P.; Griest, Kim; Jewitt, David; Kaiser, Nick; Lauer, Tod R.; Lunine, Jonathan; Luppino, Gerard; Mather, John C.; Minniti, Dante; Peale, Stanton J.; Rhie, Sun H.; Rhodes, Jason; Schneider, Jean; Sonneborn, George; Stevenson, Robert; Stubbs, Christopher; Tenerelli, Domenick; Woolf, Neville; Yock, Phillip

    2003-02-01

    The Galactic Exoplanet Survey Telescope (GEST) will observe a 2 square degree field in the Galactic bulge to search for extra-solar planets using a gravitational lensing technique. This gravitational lensing technique is the only method employing currently available technology that can detect Earth-mass planets at high signal-to-noise, and can measure the abundance of terrestrial planets as a function of Galactic position. GEST's sensitivity extends down to the mass of Mars, and it can detect hundreds of terrestrial planets with semi-major axes ranging from 0.7 AU to infinity. GEST will be the first truly comprehensive survey of the Galaxy for planets like those in our own Solar System.

  16. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  17. Kepler's Rocky Exoplanets: Born Rocky or Stripped Sub-Neptunes?

    Science.gov (United States)

    Lopez, E. D.

    2017-11-01

    I will review the current evidence for the role of photo-evaporation in shaping the known exoplanet population and the impact this may have on our current estimates of eta-Earth. I will then discuss observational paths forward.

  18. The exoplanet population revealed by K2

    Science.gov (United States)

    Barentsen, Geert; Dotson, Jessie; Colon, Knicole; Hedges, Christina; Team K2

    2018-01-01

    NASA's K2 survey has expanded the legacy of the Kepler mission by using the repurposed spacecraft to probe short-period planets around a more diverse population of stars: probing nearby dwarfs through distant giants; young pre-main sequence stars through evolved white dwarfs; halo stars through bulge members. I will review the star and planet population sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.

  19. Star clusters

    NARCIS (Netherlands)

    Gieles, M.

    2006-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of

  20. Hybrid stars

    Indian Academy of Sciences (India)

    from two classes of EOS's and discuss their implications. Keywords. Neutron stars; phase transition. It is generally believed that the evolutionary journey of a star after it has exhausted all its fuel culminates into the formation of a compact object in the form of a white dwarf, a neutron star or a black hole depending on its mass.

  1. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  2. Observing Exoplanets with the James Webb Space Telescope

    Science.gov (United States)

    Clampin Mark

    2011-01-01

    The search for exoplanets and characterization of their properties has seen increasing success over the last few years. In excess of 500 exoplanets are known and Kepler has approx. 1000 additional candidates. Recently, progress has been made in direct imaging planets, both from the ground and in space. This presentation will discuss the history and current state of technology used for such discoveries, and highlight the new capabilities that will be enabled by the James Webb Space Telescope.

  3. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    OpenAIRE

    Norio Narita; Takafumi Enomoto; Shigeyuki Masaoka; Nobuhiko Kusakabe

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet ...

  4. Observations of exoplanets in time-evolving habitable zones of pre-main-sequence M dwarfs

    Science.gov (United States)

    Tian, Feng

    2015-09-01

    It is recently proposed that planets in the habitable zones (HZ) of pre-main-sequence (PMS) M dwarfs are good targets for the detection of habitable environments. In this note we show that future ground-based telescopes will be able to observe planets in time-evolving HZ of PMS M dwarfs with duration 10-100 Myrs. Based on X-ray measurements, there are >18 M0-M4 PMS stars within 10 pc, the characterization of potentially habitable exoplanets around which could provide highly valuable information regarding the evolution of habitable environments. There are tens of M dwarfs within 10 pc with X-ray to total luminosity ratios similar to that of the young Sun, the observations of potential planets around which could significantly improve our understanding of the physical states of early Solar System rocky planets.

  5. The Earth Through Time: Implications for Searching for Habitability and Life on Exoplanets

    Science.gov (United States)

    Pilcher, Carl B.

    2016-01-01

    The Earth has been both a habitable and inhabited planet for around 4 billion years, yet distant observers studying Earth at different epochs in our history would have detected substantially different and probably varying conditions. Understanding Earth's history thus has much to tell us about how to interpret observations of potentially habitable exoplanets. In this talk I will review the history of life on Earth, from the earliest microbial biosphere living under a relatively methane-rich atmosphere to the modern world of animals, plants, and atmospheric oxygen, with a focus on how observable conditions on Earth changed as the planet and its biosphere evolved. I'll discuss the implications of this history for assessing the habitability of-or presence of life on-planets around other stars.

  6. 1st Advanced School on Exoplanetary Science : Methods of Detecting Exoplanets

    CERN Document Server

    Mancini, Luigi; Sozzetti, Alessandro

    2016-01-01

    In this book, renowned scientists describe the various techniques used to detect and characterize extrasolar planets, or exoplanets, with a view to unveiling the “tricks of the trade” of planet detection to a wider community. The radial velocity method, transit method, microlensing method, and direct imaging method are all clearly explained, drawing attention to their advantages and limitations and highlighting the complementary roles that they can play in improving the characterization of exoplanets’ physical and orbital properties. By probing the planetary