Sample records for exoelectrons

  1. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L


    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  2. Observations of exoelectron emission associated with heterogeneous catalysis (United States)

    Hoenig, S. A.; Utter, M. G.


    It is suggested that the exoelectron emission from the catalyst may be used to monitor the rate of oxidation of CO and CH4 over palladium catalysts. Indirect heating of the catalyst and atmospheric pressure have no effect upon this monitoring system. Although the mechanism relating catalysis to exoelectron emission is not clear, it is considered possible that electron emission is triggered by the adsorption-desorption cycle.

  3. Optically stimulated exoelectron emission processes in quartz: comparison of experiment and theory

    DEFF Research Database (Denmark)

    Pagonis, V.; Ankjærgaard, Christina; Murray, A.S.


    Recent experiments have demonstrated that it is possible to measure optically stimulated exoelectron emission (OSE) signals simultaneously with optically stimulated luminescence (OSL) from quartz samples. These experiments provide valuable information on the charge movement in quartz grains. Two...... specific experiments measured the temperature dependence of the OSL and OSE signals on preheat and stimulation temperature. This paper provides a quantitative description of these experiments by using a previously published theoretical model for photostimulated exoelectron emission (PSEE). The experimental...... data yield a value of χ1.2 eV for the work function of quartz. The experimental temperature dependence of the OSE signals is interpreted on the basis of a photo-thermostimulated (PTSEE) process involving the main OSL trap at 320 °C; this process takes place with a thermal assistance energy estimated...

  4. Charge recombination processes in minerals studied using optically stimulated luminescence and time-resolved exo-electrons

    DEFF Research Database (Denmark)

    Tsukamoto, Sumiko; Murray, Andrew; Ankjærgaard, Christina


    on the probability of (1) escape of electrons into the detector gas from the conduction band by overcoming the work function of the material and (2) thermalization of electrons in the conduction band, and subsequent re-trapping/recombination. Thus, we expect the exo-electron signal to reflect the instantaneous...

  5. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)


    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  6. Charge movement in grains of quartz studied using exo-electron emission

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Denby, Phil M.; Murray, A.S.


    movement in luminescence phosphors. Here we show that OSE from natural quartz grains gives an easily detectable, reproducible and light sensitive signal, although it is not as intense as OSL. A single sample of natural quartz grains extracted from a sediment is used to investigate the thermal stability...

  7. The emission of atoms and molecules accompanying fracture of single-crystal MgO (United States)

    Dickinson, J. T.; Jensen, L. C.; Mckay, M. R.; Freund, F.


    The emission of particles due to deformation and fracture of materials has been investigated. The emission of electrons (exoelectron emission), ions, neutral species, photons (triboluminescence), as well as long wavelength electromagnetic radiation was observed; collectively these emissions are referred to as fractoemission. This paper describes measurements of the neutral emission accompanying the fracture of single-crystal MgO. Masses detected are tentatively assigned to the emission of H2, CH4, H2O, CO, O2, CO2, and atomic Mg. Other hydrocarbons are also observed. The time dependencies of some of these emissions relative to fracture are presented for two different loading conditions.

  8. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  9. The radiation defect accumulation in scintillative crystals of caesium halides under intense electron beam irradiation

    CERN Document Server

    Galiy, P V


    The characteristics of defect accumulation and radiolysis at CsI crystals under mean energies of electron irradiation at wide dose rates and ranges of doses have been investigated by such methods: thermostimulated exoelectron emission (TSEE), Auger electron spectroscopy (AES) and optical absorption spectroscopy (OAS). The limit dose rates and absorbed doses of electron irradiation that lead to defects accumulation at room temperature in crystals volume and also surface stoichiometry violation have been evaluated. The doses of electron irradiation that lead to CsI radiolysis, with caesium coagulation in metallic phase have been determined. Some quasi periodic connection of such process with irradiation dose was observed.

  10. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Ulrich [Interdisciplinary Center for the Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nienhaus, Hermann, E-mail: [Faculty of Physics, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstr. 1, 47048 Duisburg (Germany)


    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent. Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.

  11. Electron and ion induced electron emission from metals and insulators

    CERN Document Server

    Steinbatz, M


    gradually exposed to oxygen as an experimental probe. The experimental data are fitted with an analytical model, that is able to describe the observed kinetics. The fit parameters give absolute values of sticking probabilities and of surface reaction rates. During oxidation of aluminum and magnesium also spontaneous emission of electrons (exoelectrons) is observed. This effect is quantitatively studied for different oxygen partial pressures. The experimental data also indicate a significant influence of the surface morphology on the exoemission process. An important consequence of atomic collisions in solids is ionization leading to electron ejection from the target atoms with subsequent migration through the solid. A certain fraction of these electrons finally reaches the surface and is ejected into vacuum. A standard measurement of this phenomenon is the observation of the particle (electron, ion) induced electron emission yield g, defined as the average number of ejected electrons per incoming projectile. ...

  12. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov


    thermoelectrically cooled NIR sensitive PMT (detection window peak at 855 nm, FWHM 27 nm). Software and electronics have been modified to allow standard TL and OSL measurements in the same sequence as RL measurements. Together with a new bleaching source based on a high-power UV LED (395 nm; 700 mW/cm2......), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal.Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when......This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non...

  13. Radiation detector with spodumene

    Energy Technology Data Exchange (ETDEWEB)

    D' Amorim, Raquel Aline P.O.; Lima, Hestia Raissa B.R.; Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Sasaki, Jose M., E-mail: sasaki@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    In this work, {beta}-spodumene potentiality as a radiation detector was evaluated by making use of thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) techniques. The pellets were obtained from the {beta}-spodumene powder mixed with Teflon followed by a sintering process of thermal treatments of 300 deg/30 min and 400 deg/1.5 h. The samples were irradiated in standard gamma radiation beams with doses between 5 Gy and 10 kGy. The TL emission curve showed a prominent peak at 160 deg and in the case of TSEE a prominent peak at 145 Celsius approximately. Initial results show that the material is promising for high-dose dosimetry. (author)

  14. Dosimetry of low-energy beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.


    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy {beta} radiation field were studied and evaluated in this project. The four different techniques included were {beta} spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy {beta} radiation field a moderated spectrum from a {sup 14}C source (E{sub {beta}},{sub max} =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 {mu}m in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for {sup 147}Pm depth-dose profiles is also suitable for {beta} radiation from {sup 14}C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to {beta} radiation for radiation fields with maximum {beta} energies ranging from 67 keV to 2.27 MeV is reported. For maximum {beta} energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a {beta} dose higher than about 10 {mu}Gy can be measured with these dosemeters to within 0 to -20% independently of the {beta}energy for E{sub {beta}},{sub max} values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs.

  15. Non-adiabatic processes in the charge transfer reaction of O{sub 2} molecules with potassium surfaces without dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Krix, David; Nienhaus, Hermann, E-mail: [Faculty of Physics, University of Duisburg-Essen and Center of Nanointegration Duisburg-Essen (CENIDE), Lotharstr. 1, D-47048 Duisburg (Germany)


    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.

  16. Radiation-induced defects, energy storage and release in nitrogen solids (United States)

    Savchenko, E.; Khyzhniy, I.; Uyutnov, S.; Bludov, M.; Barabashov, A.; Gumenchuk, G.; Bondybey, V.


    New trends in the study of radiation effects in nitrogen solids with a focus on the defect-induced processes are presented. An electron beam of subthreshold energy was used to generate radiation defects via electronic subsystem. Experimental techniques developed enabled us to detect neutral and charged defects of both signs. Defect production and desorption were monitored using optical and current emission spectroscopy: cathodoluminescence CL, thermally stimulated luminescence TSL and exoelectron emission TSEE along with the detection of postdesorption. Our results show stabilization and accumulation of radiation defects - ionic centres of both signs (N4 +, N3 +, N3 -), trapped electrons and radicals (N, N3). The neutralization reactions: N4 ++e-→N4 *→N2 *(a‘1Σu -)+N2 *(a‘1Σu -) +ΔE 1 →N2 +N2 +2hν+ΔE 2 and N3 ++e-→N*(2D)+N2(1Σg +)+ΔE 3→N(4S)+N2(1Σg +)+h γ+ΔE 3 are shown to be the basis of defect production and anomalous low-temperature post-desorption ALTpD. The part played by pre-existing and radiation-induced defects in energy storage is discussed.

  17. Defect creation via dissociative recombination of ionic centers in solid Ne matrices

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, E.V.; Khyzhniy, I.V.; Uyutnov, S.A.; Bludov, M.A. [Institute for Low Temperature Physics and Engineering NASU, 61103 Kharkov (Ukraine); Gumenchuk, G.B.; Bondybey, V.E. [Lehrstuhl für Physikalische Chemie II TUM, 85747 Garching (Germany)


    Recombination of the intrinsic ionic centers Ne{sub 2}{sup +} (self-trapped holes) with the detrapped electrons in solid Ne matrices and relaxation channels have been studied. The experiments were performed employing combination of the cathodoluminescence (CL) with current and optical activation spectroscopy techniques. CL spectra were recorded simultaneously in the VUV and visible range. Yields of spectrally resolved thermally and photon-stimulated luminescence (TSL, PSL) and thermally and photon-stimulated exoelectron emission (TSEE, PSEE) were measured in the time-correlated manner. It was found that the recombination reaction proceeds with irreversible dissociation of the transient Ne{sub 2}{sup ∗∗} centers and the dissociative recombination (DR) products exit the matrix cage. Products of the DR reaction are found to be in 3s and 3p states. The detection of “defect” components in the TSL and PSL points to the defect formation via DR in Ne matrices. The temperature range of the electron traps stability is elucidated. A long-lasting “afteremission” of electrons and afterglow of VUV photons observed on switching off the irradiation suggest the accumulation of the uncompensated negative charge.

  18. Photoinduced Effect in -Alumina: Characterization by TSEE Method (United States)

    Iacconi, P.; Lapraz, D.; Bindi, R.; Benabdesselam, M.


    A study of Thermally Stimulated Exoelectron Emission (TSEE) obtained from -alumina samples after X-ray irradiation at 300 K followed by UV excitation at 77 K is reported. The observed results, called photoinduced TSEE (PITSEE) are compared with similar phenomena occurring in thermoluminescence (PITL) and thermally stimulated conductivity (PITSC). Under these conditions, two peaks at about 225 and 270 K are regenerated. The process of regeneration is described in terms of hole transfer and a two-centre Auger mechanism. Lorsque un échantillon d'alumine α est d'abord irradié par rayons X à température ambiante puis refroidi à 77 K et excité par rayons UV, on observe la régénération des pics d'EETS à 225 et 270 K. Ce phénomène, appelé émission exoélectronique thermostimulée photoinduite (PIEETS), est caractérisé et comparé aux phénoménes de thermoluminescence photoinduite (PITL) et de conductivité électrique thermostimulée (PICTS) également présentés par l'alumine α. Le processus de régénération est interprété par un mécanisme de transfert de trous et de transfert d'énergie du type Auger.

  19. Characterization of silicates and calcium carbonates applied to high-dose dosimetry; Caracterizacao de silicatos e carbonatos de calcio aplicados a dosimetria de doses altas

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Gustavo Barreto


    The predominant isomorphous form in the biominerals studied in this work (oyster shell, coral, mother of pearl and shell) was aragonite. The appearance of the calcite phase occurred at 500 deg C at a heating rate of 10 deg {sup C}/s for all samples except for the coral sample, which was 400 deg C, independent of the heating rate. The most abundant element in the biominerals samples was Ca in the CaO form, and in the silicates (tremolite, diopside and rhodonite) Si in the SiO form. The most common trace element observed in the biominerals samples was Fe. The analyses of electron paramagnetic resonance showed lines of Mn{sup 2+} in the coral and mother-of-pearl samples before irradiation. In the case of the irradiated samples, the defects found were CO{sub 2}{sup -}, CO{sub 3}{sup 3-}, CO{sub 3}{sup -} and SO{sub 2}{sup -}, in the g range between 2.0010 and 2.0062. In the analyses by optical absorption of biominerals, transitions due to the presence of Mn in the samples were found. A thermoluminescent (TL) peak at approximately 140 deg C was found for the biominerals and at 180 deg C for silicates, which intensity depends directly on the dose. For samples exposed to different types of radiation, the TL peak occurred at lower temperatures. From the dose-response curves obtained for these materials, it was possible to determine a linear range for which their application in high dose dosimetry becomes possible. Taking into account the radiation type, among biominerals and silicates, the lowest detectable dose (40mGy) to gamma radiation was achieved for oyster shell samples using the measuring technique of optically stimulated luminescence (OSL). Using beta radiation, for diopside and tremolite samples the lowest detectable dose of 60mGy was obtained. For all samples, using the TL, OSL and thermally stimulated exoelectron emission (TSEE) techniques in alpha, beta and gamma radiation beans a good response reproducibility was obtained. Therefore, the samples characterized

  20. Understanding optically stimulated charge movement in quartz and feldspar using time-resolved measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ankjaergaard, C.


    Thermoluminescence (TL) and optically stimulated luminescence (OSL) from quartz and feldspar are widely used in accident dosimetry and luminescence dating. In order to improve already existing methods or to develop new methods towards extending the current limits of the technique, it is important to understand the charge movement within these materials. Earlier studies have primarily focussed on examination of the trap behaviour; however, this only tells half of the story as OSL is a combination of charge stimulation and recombination. By using time-resolved OSL (TR-OSL), one can directly examine the recombination route(s), and thus obtain insight into the other half of the process involved in luminescence emission. This thesis studies the TR-OSL and optically stimulated phosphorescence signals from quartz and feldspars spanning several orders of magnitude in time (few ns to the seconds time scale) in order to identify various charge transport mechanisms in the different time regimes. The techniques employed are time-resolved OSL, continuous-wave OSL, TL, optically stimulated exo-electron (OSE) emission and time-resolved OSE. These different techniques are used in combination with variable thermal or optical stimulation energy. The thesis first delves into three main methodological developments, namely (i) research and development of the equipment for TR-OSL measurements, (ii) finding the best method for multiple-exponential analysis of a TR-OSL curve, and (iii) optimisation of the pulsing configuration for the best separation of quartz OSL from a mixed quarts-feldspar sample. It then proceeds to study the different charge transport mechanisms subsequent to an optical stimulation pulse in quartz and feldspars. The results obtained for quartz conclude that the main lifetime component in quartz represents an excited state lifetime of the recombination centre, and the more slowly decaying components on the millisecond to seconds time scale arise from charge recycling

  1. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Elke


    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent tissue and animal studies, the whole multi-stage process is completed by clinical trials that translate the results of fundamental research into clinical application. In this context, the present dissertation focuses on the establishment of radiobiological in vitro cell experiments at unconventional, but clinical relevant radiation qualities. In the first part of the present work the energy dependent biological effectiveness of photons was studied examining low-energy X-rays (≤ 50 keV), as used for mammography, and high-energy photons (≥ 20 MeV) as proposed for future radiotherapy. Cell irradiation experiments have been performed at conventional X-ray tubes providing low-energy photons and 200 kV reference radiation as well. In parallel, unconventional quasi-monochromatic channeling X-rays and high-energy bremsstrahlung available at the radiation source ELBE of the Forschungszentrum Dresden-Rossendorf were considered for radiobiological experimentation. For their precise dosimetric characterization dosimeters based on the thermally stimulated emission of exoelectrons and on radiochromic films were evaluated, whereas just the latter was found to be suitable for the determination of absolute doses and spatial dose distributions at cell position. Standard ionization chambers were deployed for the online control of cell irradiation experiments. Radiobiological effects were analyzed in human mammary epithelial cells on different subcellular levels revealing an increasing amount