WorldWideScience

Sample records for exoelectrogenic bacterium ochrobactrum

  1. Isolation and identification of a novel alginate-degrading bacterium, Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Xiao-wei Zhao

    2008-03-01

    Full Text Available An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou Isles in the East China Sea. The strain, designated WZUH09-1, is a short rod, gram-negative, obligatory aerobic, grows under the following conditions: 5-40oC, pH 3-9, and 0-2 times of the seawater concentration, and is able to depolymerize alginates with higher enzyme activity than that of others reported so far.

  2. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic of plant growth promotion activity and environmental adaptation of SA148.

  3. The electric picnic: synergistic requirements for exoelectrogenic microbial communities

    KAUST Repository

    Kiely, Patrick D

    2011-06-01

    Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the different microbial populations present in these exoelectrogenic biofilms. Rapid utilization of fermentation end products by exoelectrogens (typically Geobacter species) relieves feedback inhibition for the fermentative consortia, allowing for rapid metabolism of organics. Identification of specific syntrophic processes and the communities characteristic of these anodic biofilms will be a valuable aid in improving the performance of BESs. © 2011 Elsevier Ltd.

  4. Ochrobactrum intermedium infection after liver transplantation

    NARCIS (Netherlands)

    Moller, LVM; Arends, JP; Harmsen, HJM; Talens, A; Terpstra, P; Slooff, MJH

    A case of bacteremia due to Ochrobactrum intermedium, with concomitant liver abscesses, in an orthotopic liver transplant recipient is presented. Identical microorganisms were isolated from fecal specimens and from an aspirate of a liver abscess that was indicative of invasion of the graft by

  5. Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems

    KAUST Repository

    Sun, D.

    2014-07-22

    © 2014 IUMS. A previously isolated exoelectrogenic bacterium, strain SD-1(T), was further characterized and identified as a representative of a novel species of the genus Geobacter. Strain SD-1(T) was Gram-negative, aerotolerant, anaerobic, non-spore-forming, non-fermentative and non-motile. Cells were short, curved rods (0.8-1.3 µm long and 0.3 µm in diameter). Growth of strain SD-1(T) was observed at 15-42 °C and pH 6.0-8.5, with optimal growth at 30-35 °C and pH 7. Analysis of 16S rRNA gene sequences indicated that the isolate was a member of the genus Geobacter, with the closest known relative being Geobacter sulfurreducens PCA(T) (98% similarity). Similar to other members of the genus Geobacter, strain SD-1(T) used soluble or insoluble Fe(III) as the sole electron acceptor coupled with the oxidation of acetate. However, SD-1(T) could not reduce fumarate as an electron acceptor with acetate oxidization, which is an important physiological trait for G. sulfurreducens. Moreover, SD-1(T) could grow in media containing as much as 3% NaCl, while G. sulfurreducens PCA(T) can tolerate just half this concentration, and this difference in salt tolerance was even more obvious when cultivated in bioelectrochemical systems. DNA-DNA hybridization analysis of strain SD-1(T) and its closest relative, G. sulfurreducens ATCC 51573(T), showed a relatedness of 61.6%. The DNA G+C content of strain SD-1(T) was 58.9 mol%. Thus, on the basis of these characteristics, strain SD-1(T) was not assigned to G. sulfurreducens, and was instead classified in the genus Geobacter as a representative of a novel species. The name Geobacter anodireducens sp. nov. is proposed, with the type strain SD-1(T) ( = CGMCC 1.12536(T) = KCTC 4672(T)).

  6. Multilocus sequence typing of Ochrobactrum spp. isolated from gastric niche.

    Science.gov (United States)

    Kulkarni, Girish; Gohil, Kushal; Misra, Vatsala; Kakrani, Arjun L; Misra, Sri P; Patole, Milind; Shouche, Yogesh; Dharne, Mahesh

    The human stomach is colonized by diverse bacterial species. The presence of non-Helicobacter pylori bacteria in urease-positive biopsies of individuals has been reported. Bacteria belonging to the Ochrobactrum genus have been documented in the human gastric niche. The co-occurrence of Ochrobactrum spp. with H. pylori was previously reported in an antral biopsy of a non-ulcer dyspeptic (NUD) subject from Northern India. There is no information on the genetic diversity of Ochrobactrum spp. isolated from the gastric niche in the stomach. We aimed to study the species distribution and diversity of Ochrobactrum spp. with and without H. pylori in urease-positive biopsies across three different geographical regions in India. Sixty-two Ochrobactrum isolates recovered from patients with an upper gastric disorder (n=218) were subjected to molecular identification and multilocus sequence typing. H. pylori DNA was found in the majority of biopsies, which had a variable degree of Ochrobactrum spp present. Interestingly, some of the urease-positive biopsies only had Ochrobactrum without any H. pylori DNA. Based on phylogenetic analysis, the Ochrobactrum isolates were distributed into the O. intermedium, O. anthropi and O. oryzae groups. This indicates there are multiple species in the gastric niche irrespective of the presence or absence of H. pylori. Antibiotyping based on colistin and polymyxin B could differentiate between O. intermedium and O. anthropi without revealing the resistance-driven diversity. Considering the prevalence of multiple Ochrobactrum spp. in the human gastric niche, it is important to evaluate the commensal and/or pathogenic nature of non-H. pylori bacteria with respect to their geographical distribution, lifestyle and nutrition needs. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  7. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination

    Directory of Open Access Journals (Sweden)

    Guey-Horng Wang

    2016-08-01

    Full Text Available Fast hexavalent chromium (Cr(VI determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI concentration and voltage output for various Cr(VI concentration ranges (0.0125–0.3 mg/L and 0.3–5 mg/L. The MFC biosensor is a simple device that can accurately measure Cr(VI concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%. The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI determination even if O. anthropi YC152 is a possible opportunistic pathogen.

  8. Identification of Ochrobactrum oryzae in Bloodstream Primary Infection in a Dialysis Patient: Can it be an Emerging Pathogen?

    Directory of Open Access Journals (Sweden)

    Luciana S Borges, Jussimara N Monteiro, Lisia Miglioli

    2016-09-01

    Full Text Available Ochrobactrum spp is a gram-negative bacillus currently considered an emerging and opportunistic infection, rare in humans, and generally associated with indwelling foreign bodies. We report a case of primary bloodstream infection related to a dialysis catheter, caused by Ochrobactrum oryzae misidentified as Ochrobactrum anthropi. J Microbiol Infect Dis 2016; 6(3: 128-131

  9. Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery.

    Science.gov (United States)

    Haavisto, Johanna M; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2018-01-02

    Starting up a microbial fuel cell (MFC) requires often a long-term culture enrichment period, which is a challenge after process upsets. The purpose of this study was to develop low cost storage for microbial fuel cell enrichment culture to enable prompt process recovery after upsets. Anolyte of an operating xylose-fed MFC was stored at different temperatures and for different time periods. Storing the anolyte for one week or one month at +4 °C did not significantly affect power production, but lag time for power production was increased from 2 days to 3 or 5 days, respectively. One month storing at -20 °C increased the lag time to 7 days. The average power density in these MFCs varied between 1.2 and 1.7 W/m3. The share of dead cells (measured by live/dead staining) increased with storing time. After six-month storage the power production was insignificant. However, xylose removal remained similar in all cultures (99-100%) whilst volatile fatty acids production varied. The results indicate that fermentative organisms tolerated the long storage better than the exoelectrogens. As storing at +4 °C is less energy intensive compared to freezing, anolyte storage at +4 °C for maximum of one month is recommended as start-up seed for MFC after process failure to enable efficient process recovery.

  10. Characterization of a versatile rhizospheric organism from cucumber identified as Ochrobactrum haematophilum.

    Science.gov (United States)

    Zhao, Lei; Teng, Songshan; Liu, Yanping

    2012-04-01

    Several rhizobacteria play a vital role in promoting plant growth and protecting plants against fungal diseases and degrading pesticides in the environment. In this study, a bacterial strain, designated H10, was isolated from the rhizosphere at Laixi in Shandong Province, China, and was identified as Ochrobactrum haematophilum based on API 20 NE tests and 16S rRNA gene sequence analysis. The plant growth-promoting characteristics of the strain were further characterized, and the results showed that strain H10 produces siderophore, indol-3-acetic (IAA) and solubilized phosphate but lacks 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Inoculation with the strain was found to significantly increase (p pesticides chlorpyrifos, β-cypermethrin and imidacloprid, respectively, within 60 h in liquid culture. The inoculation of strain H10 into soil treated with 100 mg kg(-1) of the three pesticides accordingly resulted in a higher degradation rate than in noninoculated soils. These results highlight the potential of this bacterium for use as a biofertilizer and biopesticide and suggest that it may provide an alternative to the use of chemical fertilizers and pesticides in agriculture. Additionally, it may represent a bioremediation agent that can remove contaminating chemical pesticide residues from the environment. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bacteriemia relacionada a catéter por Ochrobactrum anthropi Catheter-associated bacteremia caused by Ochrobactrum anthropi

    Directory of Open Access Journals (Sweden)

    Rolando Soloaga

    2009-12-01

    Full Text Available Ochrobactrum anthtropi es un bacilo gram negativo aeróbico, no fermentador de la glucosa, anteriormente conocido como Achromobacter sp o CDC grupo Vd. Ha sido aislado del medio ambiente y de infecciones en seres humanos que generalmente presentaban algún tipo de inmunocompromiso. Las infecciones por este microorganismo fueron bacteriemias relacionadas a catéteres y en ocasiones endoftalmitis, infecciones urinarias, meningitis, endocarditis, absceso hepático, osteocondritis, absceso pelviano y absceso pancreático. Se presenta el caso de un paciente de sexo masculino, de 69 años de edad, que consultó a la guardia por hipotensión sostenida y síndrome febril de cuatro días de evolución, escalofrío, sudoración profusa y deterioro del sensorio. El paciente tenía diabetes de tipo 2 y antecedente de accidente cerebrovascular. Debido a insuficiencia renal crónica presentaba un catéter de doble lumen para la diálisis. Se documentó una bacteriemia relacionada a catéter por cultivo de sangre a través de catéter y de vena periférica, utilizando el sistema automatizado de hemocultivos Bact-Alert y la metodología de tiempo diferencial (>120min. La confirmación se realizó, una vez removido el catéter, por la técnica semicuantitativa de Maki (> 15 UFC. El microorganismo fue identificado por API 20NE y Vitek 1 como Ochrobactrum anthropi.Ochrobactrum anthropi is a non-glucose fermentative, aerobic gram-negative bacillus, formerly known as Achromobacter sp or CDC group Vd. It has been isolated from the environment and from infections in usually immunocompromised human beings. The documented infections frequently involved catheter related bacteremia whereas endophthalmitis, urinary infections, meningitis, endocarditis, hepatic abscess, osteochondritis, pelvic abscess and pancreatic abscess were rarely involved. Here it is presented the case of a male patient aged 69 years with sustained hypotension, four day febrile syndrome, chill, lavish

  12. Microbial degradation of acetamiprid by Ochrobactrum sp. D-12 isolated from contaminated soil.

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    Full Text Available Neonicotinoid insecticides are one of the most important commercial insecticides used worldwide. The potential toxicity of the residues present in environment to humans has received considerable attention. In this study, a novel Ochrobactrum sp. strain D-12 capable of using acetamiprid as the sole carbon source as well as energy, nitrogen source for growth was isolated and identified from polluted agricultural soil. Strain D-12 was able to completely degrade acetamiprid with initial concentrations of 0-3000 mg · L(-1 within 48 h. Haldane inhibition model was used to fit the special degradation rate at different initial concentrations, and the parameters q max, K s and K i were determined to be 0.6394 (6 h(-1, 50.96 mg · L(-1 and 1879 mg · L(-1, respectively. The strain was found highly effective in degrading acetamiprid over a wide range of temperatures (25-35 °C and pH (6-8. The effects of co-substrates on the degradation efficiency of acetamiprid were investigated. The results indicated that exogenously supplied glucose and ammonium chloride could slightly enhance the biodegradation efficiency, but even more addition of glucose or ammonium chloride delayed the biodegradation. In addition, one metabolic intermediate identified as N-methyl-(6-chloro-3-pyridylmethylamine formed during the degradation of acetamiprid mediated by strain D-12 was captured by LC-MS, allowing a degradation pathway for acetamiprid to be proposed. This study suggests the bacterium could be a promising candidate for remediation of environments affected by acetamiprid.

  13. Microbial degradation of acetamiprid by Ochrobactrum sp. D-12 isolated from contaminated soil.

    Science.gov (United States)

    Wang, Guangli; Chen, Xiao; Yue, Wenlong; Zhang, Hui; Li, Feng; Xiong, Minghua

    2013-01-01

    Neonicotinoid insecticides are one of the most important commercial insecticides used worldwide. The potential toxicity of the residues present in environment to humans has received considerable attention. In this study, a novel Ochrobactrum sp. strain D-12 capable of using acetamiprid as the sole carbon source as well as energy, nitrogen source for growth was isolated and identified from polluted agricultural soil. Strain D-12 was able to completely degrade acetamiprid with initial concentrations of 0-3000 mg · L(-1) within 48 h. Haldane inhibition model was used to fit the special degradation rate at different initial concentrations, and the parameters q max, K s and K i were determined to be 0.6394 (6 h)(-1), 50.96 mg · L(-1) and 1879 mg · L(-1), respectively. The strain was found highly effective in degrading acetamiprid over a wide range of temperatures (25-35 °C) and pH (6-8). The effects of co-substrates on the degradation efficiency of acetamiprid were investigated. The results indicated that exogenously supplied glucose and ammonium chloride could slightly enhance the biodegradation efficiency, but even more addition of glucose or ammonium chloride delayed the biodegradation. In addition, one metabolic intermediate identified as N-methyl-(6-chloro-3-pyridyl)methylamine formed during the degradation of acetamiprid mediated by strain D-12 was captured by LC-MS, allowing a degradation pathway for acetamiprid to be proposed. This study suggests the bacterium could be a promising candidate for remediation of environments affected by acetamiprid.

  14. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  15. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025

  16. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula.

    Science.gov (United States)

    Shehab, Noura A; Ortiz-Medina, Juan F; Katuri, Krishna P; Hari, Ananda Rao; Amy, Gary; Logan, Bruce E; Saikaly, Pascal E

    2017-09-01

    Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8±2.1A/m2-anode in MECs operated at a set anode potential of +0.2V vs. Ag/AgCl (+0.405V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula

    KAUST Repository

    Chehab, Noura A.

    2017-05-03

    Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8 ± 2.1 A/m2-anode in MECs operated at a set anode potential of +0.2 V vs. Ag/AgCl (+0.405 V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool.

  18. Mushroom tumor: a new disease on Flammulina velutipes caused by Ochrobactrum pseudogrignonense.

    Science.gov (United States)

    Wu, Zhipeng; Peng, Weihong; He, Xiaolan; Wang, Bo; Gan, Bingcheng; Zhang, Xiaoping

    2016-01-01

    Mushroom tumor on Flammulina velutipes has become the main disease during the off-season cultivation of F. velutipes while the causal organism has remained unknown. The present study was aimed at identifying the pathogen confirming its pathogenisity following Koch's Postulates, characterizing it using morphological, physiological, biochemical and molecular features, and studying its current distribution. We determined that mushroom tumor is a new bacterial infection disease caused by Ochrobactrum pseudogrignonense. It produces tumor-like structures on the surface of the substrate, and inhibits the formation of primordia and fruiting of F. velutipes. The molecular studies showed that this new pathogen is closely related to Ochrobactrum based on 16S rRNA sequences. This is the first time that Ochrobactrum has been shown to be a pathogen of a mushroom. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Prevalence, Host Range, and Comparative Genomic Analysis of Temperate Ochrobactrum Phages

    Directory of Open Access Journals (Sweden)

    Claudia Jäckel

    2017-06-01

    Full Text Available Ochrobactrum and Brucella are closely related bacteria that populate different habitats and differ in their pathogenic properties. Only little is known about mobile genetic elements in these genera which might be important for survival and virulence. Previous studies on Brucella lysogeny indicated that active phages are rare in this genus. To gain insight into the presence and nature of prophages in Ochrobactrum, temperate phages were isolated from various species and characterized in detail. In silico analyses disclosed numerous prophages in published Ochrobactrum genomes. Induction experiments showed that Ochrobactrum prophages can be induced by various stress factors and that some strains released phage particles even under non-induced conditions. Sixty percent of lysates prepared from 125 strains revealed lytic activity. The host range and DNA similarities of 19 phages belonging to the families Myoviridae, Siphoviridae, or Podoviridae were determined suggesting that they are highly diverse. Some phages showed relationship to the temperate Brucella inopinata phage BiPB01. The genomic sequences of the myovirus POA1180 (41,655 bp and podovirus POI1126 (60,065 bp were analyzed. Phage POA1180 is very similar to a prophage recently identified in a Brucella strain isolated from an exotic frog. The POA1180 genome contains genes which may confer resistance to chromate and the ability to take up sulfate. Phage POI1126 is related to podoviruses of Sinorhizobium meliloti (PCB5, Erwinia pyrifoliae (Pep14, and Burkholderia cenocepacia (BcepIL02 and almost identical to an unnamed plasmid of the Ochrobactrum intermedium strain LMG 3301. Further experiments revealed that the POI1126 prophage indeed replicates as an extrachromosomal element. The data demonstrate for the first time that active prophages are common in Ochrobactrum and suggest that atypical brucellae also may be a reservoir for temperate phages.

  20. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants.

    Science.gov (United States)

    Sipahutar, Merry Krisdawati; Vangnai, Alisa S

    2017-05-05

    Triclocarban (TCC) is an emerging and persistent pollutant once released into environment. In this study, TCC-degrading Ochrobactrum sp. MC22, was isolated and characterized. This is the first report on plant-growth promoting bacterium with versatile capability of TCC degradation under aerobic and anaerobic conditions. The aerobic degradation of TCC occurred completely of which the kinetic analysis revealed a non-self-inhibitive substrate effect, and broad-concentration-range degradation efficiency (ranging from 0.16-30mgL -1 ). Anaerobic TCC degradation was feasible, but was significantly enhanced up to 40-50% when ferric, or acetate was provided as electron donor, or acceptor, respectively. TCC biodegradation under both conditions was proposed to initially occur through hydrolysis leading to transient accumulation of chloroanilines, which could be completely metabolized and detoxified. With concern on TCC adverse effect to plants, role of MC22 on toxicity mitigation was investigated using two legume plants: Vigna radiata and Glycine max (L.) Merr. Upon TCC exposure, damage of both plant structures, especially root system was observed, but was substantially mitigated by MC22 bioaugmentation. This study not only provides thorough TCC degradation characteristic and kinetics of MC22, but also suggests a potential role of this bacterial strain for a rhizoremediation in crop area with TCC contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao

    2014-08-05

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  2. Analysis of Exoelectrogenic Bacterial Communities Present in Different Brine Pools of the Red Sea

    KAUST Repository

    Ortiz Medina, Juan F.

    2014-05-01

    One contemporary issue experienced worldwide is the climate change due to the combustion of fossil fuels. Microbial Electrochemical Systems pose as an alternative for energy generation. In this technology, microorganisms are primarily responsible for electricity production. To improve the performance it is reasonable to think that bacteria from diverse environments, such as the brine pools of the Red Sea, can be utilized in these systems. Samples from three brine pools: Atlantis II, Valdivia, and Kebrit Deeps, were analyzed using Microbial Electrochemical Cells, with a poised potential at +0.2 V (vs. Ag/AgCl) and acetate as electron donor, to evaluate the exoelectrogenic activity by the present microorganisms. Only samples from Valdivia Deep were able to produce a noticeable current of 6 A/m2. This result, along with acetate consumption and changes on the redox activity measured with cyclic voltammetry, provides arguments to con rm the presence of exoelectrogenic bacteria in this environment. Further characterization using microscopy and molecular biology techniques is required, to obtain the most amount of information about these microorganisms and their potential use in bioelectrochemical technologies.

  3. Isolation and characterization of a high-efficiency erythromycin A-degrading Ochrobactrum sp. strain.

    Science.gov (United States)

    Zhang, Weiwei; Qiu, Lina; Gong, Aijun; Yuan, Xiaotao

    2017-01-30

    In this work, Erythromycin A(EA)- degrading bacteria was isolated from the contaminated soil obtained from a pharmaceutical factory in China. The isolate designated as strain WX-J1 was identified as Ochrobactrum sp. by sequence analysis of its 16S rDNA gene. It can grow in a medium containing EA as the sole source of carbon and its optimal growth pH and temperature were 6.5 and 32°C, respectively. Under these conditions, when the initial Erythromycin A concentration was 100mg·L-1, 97% of Erythromycin A has been degraded. HPLC-MS analyses indicated that Erythromycin A degradation produced intermediates contained the following three substances: 3-depyranosyloxy erythromycin A, 7,12-dyhydroxy-6-deoxyerythronolide B, 6-deoxyerythronolide B and propionaldehyde. Since Erythromycin A-degrading Ochrobactrum sp. strain rapidly degraded Erythromycin A, this strain might be useful for bioremediation purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov.

    Science.gov (United States)

    Trujillo, Martha E; Willems, Anne; Abril, Adriana; Planchuelo, Ana-María; Rivas, Raúl; Ludeña, Dolores; Mateos, Pedro F; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2005-03-01

    The nodulation of legumes has for more than a century been considered an exclusive capacity of a group of microorganisms commonly known as rhizobia and belonging to the alpha-Proteobacteria. However, in the last 3 years four nonrhizobial species, belonging to alpha and beta subclasses of the Proteobacteria, have been described as legume-nodulating bacteria. In the present study, two fast-growing strains, LUP21 and LUP23, were isolated from nodules of Lupinus honoratus. The phylogenetic analysis based on the 16S and 23S rRNA gene sequences showed that the isolates belong to the genus Ochrobactrum. The strains were able to reinfect Lupinus plants. A plasmid profile analysis showed the presence of three plasmids. The nodD and nifH genes were located on these plasmids, and their sequences were obtained. These sequences showed a close resemblance to the nodD and nifH genes of rhizobial species, suggesting that the nodD and nifH genes carried by strain LUP21T were acquired by horizontal gene transfer. A polyphasic study including phenotypic, chemotaxonomic, and molecular features of the strains isolated in this study showed that they belong to a new species of the genus Ochrobactrum for which we propose the name Ochrobactrum lupini sp. nov. Strain LUP21T (LMG 20667T) is the type strain.

  5. Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov.

    Science.gov (United States)

    Trujillo, Martha E.; Willems, Anne; Abril, Adriana; Planchuelo, Ana-María; Rivas, Raúl; Ludeña, Dolores; Mateos, Pedro F.; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2005-01-01

    The nodulation of legumes has for more than a century been considered an exclusive capacity of a group of microorganisms commonly known as rhizobia and belonging to the α-Proteobacteria. However, in the last 3 years four nonrhizobial species, belonging to α and β subclasses of the Proteobacteria, have been described as legume-nodulating bacteria. In the present study, two fast-growing strains, LUP21 and LUP23, were isolated from nodules of Lupinus honoratus. The phylogenetic analysis based on the 16S and 23S rRNA gene sequences showed that the isolates belong to the genus Ochrobactrum. The strains were able to reinfect Lupinus plants. A plasmid profile analysis showed the presence of three plasmids. The nodD and nifH genes were located on these plasmids, and their sequences were obtained. These sequences showed a close resemblance to the nodD and nifH genes of rhizobial species, suggesting that the nodD and nifH genes carried by strain LUP21T were acquired by horizontal gene transfer. A polyphasic study including phenotypic, chemotaxonomic, and molecular features of the strains isolated in this study showed that they belong to a new species of the genus Ochrobactrum for which we propose the name Ochrobactrum lupini sp. nov. Strain LUP21T (LMG 20667T) is the type strain. PMID:15746334

  6. Characterization of Electricity Generated by Soil in Microbial Fuel Cells and the Isolation of Soil Source Exoelectrogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Yun-Bin Jiang

    2016-11-01

    Full Text Available Soil has been used to generate electrical power in microbial fuel cells (MFCs and exhibited several potential applications. This study aimed to reveal the effect of soil properties on the generated electricity and the diversity of soil source exoelectrogenic bacteria. Seven soil samples were collected across China and packed into air-cathode MFCs to generate electricity over a 270 d period. The Fe(III-reducing bacteria in soil were enriched and sequenced by Illumina pyrosequencing. Culturable strains of Fe(III-reducing bacteria were isolated and identified phylogenetically. Their exoelectrogenic ability was evaluated by polarization measurement. The results showed that soils with higher organic carbon content but lower soil pH generated higher peak voltage and charge. The sequencing of Fe(III-reducing bacteria showed that Clostridia were dominant in all soil samples. At the family level, Clostridiales Family XI. incertae sedis were dominant in soils with lower organic carbon content but higher pH (>8, while Clostridiaceae, Lachnospiraceae and Planococcaceae were dominant in soils with higher organic carbon content but lower pH. The isolated culturable strains were allied phylogenetically to fifteen different species, of which eleven were Clostridium. The others were Robinsoniella peoriensis, Hydrogenoanaerobacterium saccharovorans, Eubacterium contortum and Oscillibacter ruminantium. The maximum power density generated by the isolates in the MFCs ranged from 16.4 to 28.6 mW m-2. We concluded that soil organic carbon content had the most important effect on power generation and that the Clostridiaceae were the dominant exoelectrogenic bacterial group in soil. This study might lead to the discovery of more soil source exoelectrogenic bacteria species.

  7. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  8. [Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10].

    Science.gov (United States)

    Chen, Xiao-Hua; Wei, Gang; Liu, Si-Yuan; Sun, Jiang-Man; Wang, Fang-Fang; Li, Hao-Yuan; Liu, Yu-Jun

    2012-11-01

    The strain Ochrobactrum sp. CH10 was a highly efficient phenol degrading bacterial strain isolated from soil in a constructed wetland in Yuan Dynasty Capital City Wall Relics in Beijing. Growth and biodegradation were investigated in details with phenol as the sole carbon and energy source. The best growth and most efficient phenol biodegradation occurred when the strain was cultured in medium containing 400 mg x L(-1) phenol at initial pH of 7.0 and 30 degrees C, with 5% inoculation volume. The phenol degradation rate was around 100% , 92.3 and 82.2% with an initial concentration of 400, 900 and 1 000 mg x L(-1) phenol in 24, 44 and 48 h, respectively. Phenol degradation kinetic studies indicated that the strain followed Haldane's model, and the parameters were: upsilon(max) (maximum specific rate) = 0.126 h(-1), K(s) (half-saturation constant) = 23.53 mg x L(-1) and K(I) (inhibition constant) = 806.1 mg x L(-1). The phenol-limited growth kinetics of CH10 by Andrews's model also followed a similar trend to that of phenol degradation. Among all the strains belonging to Ochrobactrum genus, this strain is the most efficient at present. The strain has a good application potential for the phenolic wastewater treatment.

  9. Exoelectrogens Leading to Precise Reduction of Graphene Oxide by Flexibly Switching Their Environment during Respiration.

    Science.gov (United States)

    Bansal, Prerna; Doshi, Sejal; Panwar, Ajay S; Bahadur, Dhirendra

    2015-09-23

    Reduced graphene oxide (RGO) has been prepared by a simple, cost-effective, and green route. In this work, graphene oxide (GO) has been reduced using Gram-negative facultative anaerobe S. dysenteriae, having exogenic properties of electron transfer via electron shuttling. Apparently, different concentrations of GO were successfully reduced with almost complete mass recovery. An effective role of lipopolysaccharide has been observed while comparing RGO reduced by S. dysenteriae and S. aureus. It was observed that the absence of lipopolysaccharide in Gram-positive S. aureus leads to a disrupted cell wall and that S.aureus could not survive in the presence of GO, leading to poor and inefficient reduction of GO, as shown in our results. However, S. dysenteriae having an outer lipopolysaccharide layer on its cell membrane reduced GO efficiently and the reduction process was extracellular for it. RGO prepared in our work has been characterized by X-ray diffraction, ζ potential, X-ray photoelectron spectroscopy, and Raman spectroscopy techniques, and the results were found to be in good agreement with those of chemically reduced GO. As agglomeration of RGO is the major issue to overcome while chemically reducing GO, we observed that RGO prepared by a bacterial route in our work has ζ potential value of -26.62 mV, good enough to avoid restacking of RGO. The role of exoelectrogens in electron transfer in the extracellular space has been depicted. Toxin released extracellularly during the process paves the way for reduction of GO due to its affinity towards oxygen.

  10. A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium.

    Science.gov (United States)

    Ngom, Amy; Nakagawa, Yasuyoshi; Sawada, Hiroyuki; Tsukahara, Junzo; Wakabayashi, Shiro; Uchiumi, Toshiki; Nuntagij, Achara; Kotepong, Somsak; Suzuki, Akihiro; Higashi, Shiro; Abe, Mikiko

    2004-02-01

    Ten strains of root nodule bacteria were isolated from the nodules of Acacia mangium grown in the Philippines and Thailand. Partial sequences (approx. 300 bp) of the 16S rRNA gene of each isolate were analyzed. The nucleotide sequences of strain DASA 35030 indicated high homology (>99%) with members of the genus Ochrobactrum in Brucellaceae, although the sequences of other isolates were homologous to those of two distinct genera Bradyrhizobium and Rhizobium. The strain DASA 35030 was strongly suggested to be a strain of Ochrobactrum by full length sequences of the 16S rRNA gene, fatty acids composition, G+C contents of the DNA, and other physiological characteristics. Strain DASA 35030 induced root nodules on A. mangium, A. albida and Paraserianthes falcataria. The nodules formed by strain DASA 35030 fixed nitrogen and the morphology of the nodules is the same as those of nodules formed by the other isolates. This is the first report that the strain of Ochrobactrum possesses complete symbiotic ability with Acacia.

  11. Ochrobactrum anthropi Keratitis with Focal Descemet’s Membrane Detachment and Intracorneal Hypopyon

    Directory of Open Access Journals (Sweden)

    Nandini Venkateswaran

    2016-01-01

    Full Text Available Purpose. To describe a unique case of O. anthropi keratitis associated with a rare manifestation of Descemet’s membrane detachment and intracorneal hypopyon and to discuss challenges in diagnosis and management. Methods. Best-corrected visual acuity was measured with Snellen letters. Corneal scrapings were performed and aerobic, viral, herpetic, acid-fast bacilli, Acanthamoeba, and fungal stains and cultures were obtained. Following evisceration, tissue was evaluated for histologic features and again stained for bacteria, mycobacteria, Acanthamoeba, fungi, and viral particles. Results. Initial presentation to our institute was notable for a corneal ulcer, focal Descemet’s membrane detachment, and intracorneal hypopyon. Speciation of initial corneal scrapes revealed Ochrobactrum anthropi and initial management included fortified tobramycin. Despite medical therapy, the patient developed a corneal perforation and required subsequent evisceration. Conclusion. O. anthropi is an emerging ocular pathogen that has not been previously reported in cases of keratitis. As this pathogen becomes increasingly recognized as a source of ocular infections, it is important to identify and treat aggressively to avoid vision-threatening disease.

  12. Cadmium biosorption properties of the metal-resistant ochrobactrum cytisi Azn6.2

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Llorente, Ignacio D.; Gamane, Djamila; Lafuente, Alejandro; Dary, Mohammed; El Hamdaoui, Abdelaziz; Delgadillo, Julian; Doukkali, Bouchra; Caviedes, Miguel A.; Pajuelo, Eloisa [Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, Sevilla (Spain)

    2010-02-15

    The aim of this work was to establish the conditions for using Ochrobactrum cytisi Azn6.2 as a metal biosorbent. Azn6.2 is a novel strain from the legume symbiont O. cytisi that has been isolated from nodules of Medicago polymorpha plants grown on heavy metal-polluted soils. Compared with the strain ESC1, Azn6.2 showed some biochemical differences, as well as antibiotic susceptibility, Azn6.2 was multi-resistant to heavy metals, such as Cu, Cd and Zn, and bacterial pellets were able to biosorb high amounts of Cd and Zn. As shown by scanning electron microscopy coupled to energy dispersive X-ray, most of Cd was attached to the cell surface. Optimal conditions for Cd biosorption were established, being 1 mM Cd ions in solution and 2 h of contact with the biosorbent at room temperature. At these conditions, maximal Cd loading capacity reached 32-34 mg/g. Cd desorption from bacterial pellets was achieved after washing with EDTA or, at higher efficiency, at pH 1.0. These results indicated that biosorption/desorption on O. cytisi Azn6.2 biomass should be a cost-effective method for Cd recovery from contaminated solutions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Enhanced Biotransformation of Triclocarban by Ochrobactrum sp. TCC-1 Under Anoxic Nitrate Respiration Conditions.

    Science.gov (United States)

    Yun, Hui; Liang, Bin; Kong, Deyong; Li, Zhiling; Qi, Guoshu; Wang, Aijie

    2017-04-01

    Antimicrobial triclocarban (3,4,4'-trichlorocarbanilide, TCC) is frequently detected in soils and sediments for the widely reclaim of sewage sludge or biosolid in recent decades. This resulted from a weak removal of TCC during wastewater treatment, and most of it adsorbed onto sewage sludge. As the toxicity and persistence of TCC in the environment, the elimination of TCC from the source of output is of great importance, particularly in anoxic process. In this study, the biotransformation of TCC by a newly isolated TCC-degrading strain Ochrobactrum sp. TCC-1 under anoxic conditions was investigated. By testing different carbon nitrogen ratios (C/N), it showed that nitrate could support the growth of strain TCC-1 and enhance the hydrolysis of TCC to more biodegradable chloroanilines, especially with a higher C/N of 10 and under anaerobic conditions. In wastewater sewage sludge, strain TCC-1 colonized and maintained the TCC-hydrolyzing activity under the nitrate respiration mode. These results would lay a basic foundation for the potential bioremediation of TCC-contaminated anoxic sites with TCC-degrading strain.

  14. The extent of fermentative transformation of phenolic compounds in the bioanode controls exoelectrogenic activity in a microbial electrolysis cell.

    Science.gov (United States)

    Zeng, Xiaofei; Collins, Maya A; Borole, Abhijeet P; Pavlostathis, Spyros G

    2017-02-01

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in the highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed

  15. Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture.

    Science.gov (United States)

    Ortega-González, Diana K; Cristiani-Urbina, Eliseo; Flores-Ortíz, César M; Cruz-Maya, Juan A; Cancino-Díaz, Juan C; Jan-Roblero, J

    2015-01-01

    Fluoranthene and pyrene are polycyclic aromatic hydrocarbons of high molecular weight that are recalcitrant and toxic to humans; therefore, their removal from the environment is crucial. From hydrocarbon-contaminated soil, 25 bacteria and 12 filamentous fungi capable of growth on pyrene and fluoranthene as the sole carbon and energy source were isolated. From these isolates, Ochrobactrum anthropi BPyF3 and Fusarium sp. FPyF1 were selected and identified because they grew quickly and abundantly in both hydrocarbons. Furthermore, O. anthropi BPyF3 and Fusarium sp. FPyF1 were most efficient at removing pyrene (50.39 and 51.32 %, respectively) and fluoranthene (49.85 and 49.36 %, respectively) from an initial concentration of 50 mg L(-1) after 7 days of incubation. Based on this and on the fact that there was no antagonism between the two microorganisms, a coculture composed of O. anthropi BPyF3 and Fusarium sp. FPyF1 was formed to remove fluoranthene and pyrene at an initial concentration of 100 mg L(-1) in a removal kinetic assay during 21 days. Fluoranthene removal by the coculture was higher (87.95 %) compared with removal from the individual cultures (68.95 % for Fusarium sp. FPyF1 and 64.59 % for O. anthropi BPyF3). In contrast, pyrene removal by the coculture (99.68 %) was similar to that obtained by the pure culture of Fusarium sp. FPyF1 (99.75 %). The kinetics of removal for both compounds was adjusted to a first-order model. This work demonstrates that the coculture formed by Fusarium sp. FPyF1 and O. anthropi BPyF3 has greater potential to remove fluoranthene than individual cultures; however, pyrene can be removed efficiently by Fusarium sp. FPyF1 alone.

  16. Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil.

    Science.gov (United States)

    Mishra, Shashank Kumar; Khan, Mohammad Haneef; Misra, Sankalp; Dixit, Vijay Kant; Khare, Praveen; Srivastava, Suchi; Chauhan, Puneet Singh

    2017-02-01

    Soil bacteria may have properties of plant growth promotion but not be sufficiently beneficial for plants under stress conditions. This challenge has led researchers to extend their searches into extreme environments for potential soil bacteria with multiple plant beneficial traits as well as abiotic stress tolerance abilities. In the current study, an attempt was made to evaluate soil bacteria from an extreme environment, volcano soils, based on plant growth promoting and abiotic stress mitigating characteristics. The screening led to the isolation of eight (NBRISH4, NBRISH6, NBRISH10, NBRISH11, NBRISH13, NBRISH14, NBRISH16 and NBRISH26) bacterial isolates capable of withstanding stresses, namely temperature (up to 45 °C), salt (up to 2 M NaCl) and drought (up to 60% Poly Ethylene Glycol 6000) in vitro. Further, the selected isolates were notable for their in vitro temporal performance with regards to survival (in terms of colony count), phosphate solubilisation, biofilm formation, auxin, alginate and exo-polysaccharide production abilities under abiotic stresses i.e. 40 °C temperature; 500 mM NaCl salt and drought (PEG) conditions. In vivo seed treatments of individual selected bacteria to maize plants resulted into significant enhancement in root and shoot length, root and shoot fresh and dry weight and number of leaves per plant. Overall, the plant growth promoting and abiotic stress tolerance ability was most evident for bacterial isolate NBRISH6 which was identified as an Ochrobactrum sp. using 16S rRNA based phylogenetic analysis.

  17. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    KAUST Repository

    Liu, Jia

    2014-09-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  18. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    Science.gov (United States)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors

  19. Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load.

    Directory of Open Access Journals (Sweden)

    Cuijie Feng

    Full Text Available Microorganisms capable of generating electricity in microbial fuel cells (MFCs have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu shock load by Hungate roll-tube technique with solid ferric (III oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load and B4B2 (after Cu shock load were chosen for further analysis. B4B2 is resistant to 200 mg L-1 of Cu(II while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m-2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density.

  20. Identification and Characterization of a High Efficiency Aniline Resistance and Degrading Bacterium MC-01.

    Science.gov (United States)

    Yang, Liu; Ying, Chen; Fang, Ni; Zhong, Yao; Zhao-Xiang, Zhong; Yun, Sun

    2017-05-01

    Biodegradation is one of the important methods for the treatment of industrial wastewater containing aniline. In this paper, a degrading bacterium named MC-01, which could survive in high concentration aniline wastewater, was screened from industrial wastewater containing aniline and sludge. MC-01 was preliminarily identified as Ochrobactrum sp. based on the amplified 16S rDNA gene sequence and Biolog system identification. MC-01 was highly resistant to aniline. After 24-h culture under aniline concentration of 6500 mg/L, the amount of bacterium survived still remained 0.05 × 10(6) CFU/mL. Experiments showed that there was no coupling expression between the growth of MC-01 and aniline degradation. The optimum growth conditions in LB culture were pH 6.0, 30 °C of temperature, and 4% of incubation amount, respectively. And the optimum conditions of aniline degradation of MC-01 were pH 7.0, 45 °C of temperature, and 3.0% of salt concentration, respectively. The degradation rate of MC-01 (48 h) in different aniline concentrations (200~1600 mg/L) was stable under the optimum conditions, which could reach more than 75%.

  1. Role of a serine-type D-alanyl-D-alanine carboxypeptidase on the survival of Ochrobactrum sp. 11a under ionic and hyperosmotic stress.

    Science.gov (United States)

    Príncipe, Analía; Jofré, Edgardo; Alvarez, Florencia; Mori, Gladys

    2009-06-01

    The plant growth-promoting rhizobacterium, Ochrobactrum sp. 11a displays a high intrinsic salinity tolerance and has been used in this work to study the molecular basis of bacterial responses to high concentrations of NaCl. A collection of Ochrobactrum sp. 11a mutants was generated by Tn5-B21 mutagenesis and screened for sensitivity to salinity. One clone, designated PBP and unable to grow on glutamate mannitol salt agar medium supplemented with 300 mM NaCl was selected and further characterized. The PBP mutant carries a single transposon insertion in a gene showing a high degree of identity to the serine-type d-alanyl-d-alanine carboxypeptidase gene of Ochrobactrum anthropi. Interestingly, the expression of this gene was shown to be upregulated by salt in the PBP mutant. Moreover, evidence is presented for the requirement of the gene product for adaptation to high-salt conditions as well as to overcome the toxicity of LiCl, KCl, sucrose, polyethylene glycol (PEG), AlCl(3), CuSO(4), and ZnSO(4). In addition to the altered tolerance to both ionic and osmotic stresses, the PBP mutant exhibited changes in colony and cell morphology, exopolysaccharide production, and an increased sensitivity to detergents.

  2. Improvement of Glyphosate Resistance through Concurrent Mutations in Three Amino Acids of the Ochrobactrum 5-Enopyruvylshikimate-3-Phosphate Synthase ▿

    Science.gov (United States)

    Tian, Yong-Sheng; Xu, Jing; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Peng, Ri-He; Yao, Quan-Hong

    2011-01-01

    A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops. PMID:21948846

  3. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  4. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T

    Directory of Open Access Journals (Sweden)

    Chung Ana-Paula

    2008-06-01

    Full Text Available Abstract Background Arsenic (As is a natural metalloid, widely used in anthropogenic activities, that can exist in different oxidation states. Throughout the world, there are several environments contaminated with high amounts of arsenic where many organisms can survive. The most stable arsenical species are arsenate and arsenite that can be subject to chemically and microbiologically oxidation, reduction and methylation reactions. Organisms surviving in arsenic contaminated environments can have a diversity of mechanisms to resist to the harmful effects of arsenical compounds. Results The highly metal resistant Ochrobactrum tritici SCII24 was able to grow in media with arsenite (50 mM, arsenate (up to 200 mM and antimonite (10 mM. This strain contains two arsenic and antimony resistance operons (ars1 and ars2, which were cloned and sequenced. Sequence analysis indicated that ars1 operon contains five genes encoding the following proteins: ArsR, ArsD, ArsA, CBS-domain-containing protein and ArsB. The ars2 operon is composed of six genes that encode two other ArsR, two ArsC (belonging to different families of arsenate reductases, one ACR3 and one ArsH-like protein. The involvement of ars operons in arsenic resistance was confirmed by cloning both of them in an Escherichia coli ars-mutant. The ars1 operon conferred resistance to arsenite and antimonite on E. coli cells, whereas the ars2 operon was also responsible for resistance to arsenite and arsenate. Although arsH was not required for arsenate resistance, this gene seems to be important to confer high levels of arsenite resistance. None of ars1 genes were detected in the other type strains of genus Ochrobactrum, but sequences homologous with ars2 operon were identified in some strains. Conclusion A new strategy for bacterial arsenic resistance is described in this work. Two operons involved in arsenic resistance, one giving resistance to arsenite and antimonite and the other giving resistance

  5. Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Marilyn Sumayo

    2013-06-01

    Full Text Available The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA, 1-hexadecene and linoleic acid (LA, as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.

  6. Biodegradation of used engine oil by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 isolated from oil-contaminated soil.

    Science.gov (United States)

    Ibrahim, Haytham M M

    2016-12-01

    Used engine oil (UEO) constitutes a serious environmental problem due to the difficulty of disposal off or reuse. Ten bacterial strains with biodegradation potential were isolated from UEO-contaminated soil sample using enrichment technique. Two strains which exhibited the highest degradation %, 51 ± 1.2 and 48 ± 1.5, respectively, were selected. Based on the morphological, biochemical characteristics and 16S rRNA sequence analysis, they were identified as Ochrobactrum anthropi HM-1 (accession no: KR360745) and Citrobacter freundii HM-2 (accession no: KR360746). The different conditions which may influence their biodegradation activity, including UEO concentration (1-6 %, v/v), inoculum size (0.5-4 %, v/v), initial pH (6-8), incubation temperature (25-45 °C), and rotation speed (0-200 rpm), were evaluated. The optimum conditions were found to be 2 % UEO, 2 % inoculum size, pH 7.5, incubation temperature 37 °C, and 150 rpm. Under the optimized conditions, strains HM-1, HM-2, and their mixture efficiently degraded UEO, they achieved 65 ± 2.2, 58 ± 2.1, and 80 ± 1.9 %, respectively, after 21 days of incubation. Biodegradation of UEO was confirmed by employing gas chromatography analysis. Gamma radiation (1.5 kGy) enhanced the degradation efficiency of irradiated bacterial mixture (95 ± 2.1 %) as compared to non-irradiated (79 ± 1.6 %). Therefore, strains HM-1 and HM-2 can be employed to develop a cost-effective method for bioremediation of used engine-oil-polluted soil.

  7. Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities.

    Science.gov (United States)

    Pasupuleti, Suresh Babu; Srikanth, Sandipam; Venkata Mohan, S; Pant, Deepak

    2015-11-01

    Single chamber membrane-free microbial electrolysis cell (MEC) was operated for the assessment of exoelectrogenic bacteria (EB) growth at carbon felt anode and resultant hydrogen (H2) production at abiotic cathodes, made using cold rolling (VITO-CoRE™) and casting (VITO-CASE™) methods. Progressive enrichment of EB was observed on anode during 70 days of operation at an applied potential of +0.2V vs Ag/AgCl, and a maximum current density (CD) of 330.59 mA/m(2) (1.38 mA) was recorded. H2 production at selected abiotic cathodes was observed, when the enriched bioanode was coupled to them in galvanostat mode between 0.1 and 1.0 mA current range for 10 min each. Higher H2 production of 114.46±3.75 mL/m(2) was documented with VITO-CoRE™ at 0.6 mA, while 102.76±3.75 mL/m(2) was recorded with VITO-CASE™ at 0.8 mA of current application. This study demonstrates the feasibility of H2 production on abiotic cathodes using enriched bioanode at low current densities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  9. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites.

    Science.gov (United States)

    Chen, Chen; Lei, Wenrui; Lu, Min; Zhang, Jianan; Zhang, Zhou; Luo, Chunling; Chen, Yahua; Hong, Qing; Shen, Zhenguo

    2016-04-01

    Soil that is co-contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) is difficult to bioremediate due to the ability of toxic metals to inhibit PAH degradation by bacteria. We demonstrated the resistance mechanisms to Cu(II) and Cd(II) of two newly isolated strains of Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and further tested their potential application in the bioremediation of HM-phenanthrene (PhA) co-contaminated sites. The PHE-SPH and PHE-OCH strains tolerated 4.63 and 4.34 mM Cu(II) and also showed tolerance to 0.48 and 1.52 mM Cd(II), respectively. Diverse resistance patterns were detected between the two strains. In PHE-OCH cells, the maximum accumulation of Cu(II) occurred in the cell wall, while the maximum accumulation was in the cytoplasm of PHE-SPH cells. This resulted in a sudden suppression of growth in PHE-OCH and a gradual inhibition in PHE-SPH as the concentration of Cu(II) increased. Organic acid production was markedly higher in PHE-OCH than in PHE-SPH, which may also have a role in the resistance mechanisms, and contributes to the higher Cd(II) tolerance of PHE-OCH. The factors involved in the absorption of Cu(II) or Cd(II) in PHE-SPH and PHE-OCH were identified as proteins and carbohydrates by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, both strains showed the ability to efficiently degrade PhA and maintained this high degradation efficiency under HM stress. The high tolerance to HMs and the PhA degradation capacity make Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH excellent candidate organisms for the bioremediation of HM-PhA co-contaminated sites.

  10. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3.

    Science.gov (United States)

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-03-01

    A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility.

  11. Characterization of a new feather-degrading bacterium from Calotes ...

    African Journals Online (AJOL)

    A total of 842 spore-forming strains were isolated from 221 animal feces samples, in which a new feather-degrading bacterium identified as Bacillus sp. 50-3 based on morphological, biochemical and 16S rDNA tests was isolated from Calotes versicolor (an agamid lizard) feces. The bacterium can degrade native feather ...

  12. Screening and characterization of petroleum-degrading bacterium ...

    African Journals Online (AJOL)

    ... in 250 ml flask, shaking at 150 r/min and 32°C, petroleum-degrading rate was 75 to 77%. The petroleum-degrading bacterium might be a useful resource for bioremediation of oil-contaminated soils and biotreatment of oil wastewater. Key words: Petroleum-degrading bacterium, screening, Bacillus cereus, bioremediation.

  13. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.

    2009-03-30

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  14. Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium.

    Science.gov (United States)

    Muller, Daniel; Simeonova, Diliana D; Riegel, Philippe; Mangenot, Sophie; Koechler, Sandrine; Lièvremont, Didier; Bertin, Philippe N; Lett, Marie-Claire

    2006-08-01

    An arsenite-oxidizing bacterium, designated strain ULPAs1(T), was isolated from industrial sludge heavily contaminated with arsenic. Cells of this isolate were Gram-negative, curved rods, motile by means of a polar flagellum. The strain was positive for oxidase and catalase activities, was able to reduce nitrate to nitrite, used acetate, lactate and peptone as organic carbon sources under aerobic conditions and was able to oxidize arsenite (As[III]) to arsenate (As[V]). 16S rRNA gene sequence analysis and the absence of dodecanoic fatty acids suggested that this strain represents a member of the genus Herminiimonas of the family Oxalobacteraceae, order Burkholderiales in the Betaproteobacteria. Genomic DNA-DNA hybridization between strain ULPAs1(T) and Herminiimonas fonticola S-94(T) and between strain ULPAs1(T) and Herminiimonas aquatilis CCUG 36956(T) revealed levels of relatedness of <10 %, well below the recommended 70 % species cut-off value. Thus, strain ULPAs1(T) (=CCM 7303(T)=DSM 17148(T)=LMG 22961(T)) is the type strain of a novel species of Herminiimonas, for which the name Herminiimonas arsenicoxydans sp. nov. is proposed.

  15. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  16. A bacterium that degrades and assimilates poly(ethylene terephthalate)

    National Research Council Canada - National Science Library

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-01-01

    .... By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source...

  17. A bacterium that degrades and assimilates polyethylene terephthalate

    National Research Council Canada - National Science Library

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenj i; Kimura, Yoshiharu; Oda, Kohei

    2016-01-01

    .... By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source...

  18. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  19. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  20. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  1. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  2. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-06-04

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  3. Amylase activity of a yellow pigmented bacterium isolated from ...

    African Journals Online (AJOL)

    This study investigated the amylase activity of a yellow pigmented bacterium isolated from cassava wastes obtained from a dumpsite near a gari processing factory in Ibadan, Nigeria. Isolate was grown in nutrient broth containing 1% starch and then centrifuged at 5,000 rpm. Amylase activity was assayed using the DNSA ...

  4. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina ...

    Indian Academy of Sciences (India)

    In this paper, we report the intracellular synthesis of silver nanoparticles (SNPs) by the highly silver-tolerant marine bacterium, Idiomarina sp. PR58-8 on exposure to 5mM silver nitrate. SNPs were characterized by UV-visible spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission ...

  5. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  6. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  7. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.

    Science.gov (United States)

    Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław

    2010-09-01

    The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Engineering a wild fast-growing Mycoplasma bacterium to generate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... To develop a fast growing CCPP vaccine for cheaper production and long term protection, cutting edge synthetic biotechnology tools will be used to delete harmful and nonessential genes from a fast growing bacterium isolated from wild goats. These genes will be replaced by CCPP protective vaccine ...

  9. Antagonistic bioactivity of an endophytic bacterium H-6

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... lower compared to P. capsici-inoculated and H-6-treated plants, which is an added advantage of the strain used as potential biocontrol agent in future. Key words: Endophytic bacterium, 16S rDNA gene, antagonistic activity, Huperzia serrata. INTRODUCTION. Soil-borne diseases are a serious concern in ...

  10. Control of magnetotactic bacterium in a micro-fabricated maze

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Pichel, M.P.; Reefman, B.A.; Sardan Sukas, Ö.; Abelmann, Leon; Misra, Sarthak

    2013-01-01

    We demonstrate the closed-loop control of a magnetotactic bacterium (MTB), i.e., Magnetospirillum magnetotacticum, within a micro-fabricated maze using a magneticbased manipulation system. The effect of the channel wall on the motion of the MTB is experimentally analyzed. This analysis is done by

  11. Isolation and characterization of a new keratinolytic bacterium that ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... These results suggest potential biotechnological applications of this bacterium that involve ... useful protein and amino acids, they have limited use as ... Protease-producing bacteria that formed clear haloes were selected. They were transferred subsequently at frequent intervals to feather meal broth.

  12. Antagonistic bioactivity of an endophytic bacterium H-6

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... growth in vitro of 6 plant pathogenic fungi, especially of Phytophthora capsici, Fusarium graminearumt ... Key words: Endophytic bacterium, 16S rDNA gene, antagonistic activity, Huperzia serrata. ..... Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis.

  13. Rhodococcus opacus strain RW, a resorcinol-degrading bacterium ...

    African Journals Online (AJOL)

    The isolate is a rod-shaped bacterium that exhibited evolutionary relatedness with the genus Rhodococcus, as determined by phenotypic traits and physiological tests, and a 16S rRNA gene sequence similarity value of 99.6% to the closest Rhodococcus opacus strain. On the basis of these results isolate RW is proposed as ...

  14. Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation

    OpenAIRE

    Nguyen, Hung; Le, Ly; Ho, Tu Bao

    2014-01-01

    Antarctic bacterium antifreeze proteins (AFPs) protect and support the survival of cold-adapted organisms by binding and inhibiting the growth of ice crystals. The mechanism of the anti-freezing process in a water environment at low temperature of Antarctic bacterium AFPs remains unclear. In this research, we study the effects of Antarctic bacterium AFPs by coarse grained simulations solution at a temperature range from 262 to 273K. The results indicated that Antarctic bacterium AFPs were ful...

  15. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  16. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii

    Science.gov (United States)

    van Schaik, Erin J.; Chen, Chen; Mertens, Katja; Weber, Mary M.; Samuel, James E.

    2014-01-01

    The agent of Q fever, Coxiella burnetii, is an obligate intracellular bacterium that causes acute and chronic infections. The study of C. burnetii pathogenesis has benefited from two recent fundamental advances: improved genetic tools and the ability to grow the bacterium in extracellular media. In this Review, we describe how these recent advances have improved our understanding of C. burnetii invasion and host cell modulation, including the formation of replication-permissive Coxiella-containing vacuoles. Furthermore, we describe the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system, which is used by C. burnetii to secrete a range of effector proteins into the host cell, and we discuss the role of these effectors in remodelling the host cell. PMID:23797173

  17. Delta8(14)-steroids in the bacterium Methylococcus capsulatus.

    Science.gov (United States)

    Bouvier, P; Rohmer, M; Benveniste, P; Ourisson, G

    1976-01-01

    The 4,4-dimethyl and 4alpha-methyl sterols of the bacterium Methylococcus capsulatus were identified as 4,4-dimethyl- and 4alpha-methyl-5alpha-cholest-8(14)-en-3beta-ol and 4,4-dimethyl- and 4alpha-methyl-5alpha-cholesta-8(14),24-dien-3beta-ol. Sterol biosynthesis is blocked at the level of 4alpha-methyl delta8(14)-sterols. PMID:999649

  18. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  19. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    OpenAIRE

    Songcan Chen; Xiaomin Li; Guoxin Sun; Yingjiao Zhang; Jianqiang Su; Jun Ye

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of...

  20. Mutation of Bacterium Vibrio gazogenes for Selective Preparation of Colorants

    OpenAIRE

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D.; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples show...

  1. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  2. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  3. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    Science.gov (United States)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  4. Liver abscess associated with an oral flora bacterium Streptococcus anginosus

    Directory of Open Access Journals (Sweden)

    Hava Yılmaz

    2012-03-01

    Full Text Available Viridans group Streptococcus, a bacterium of the oral flora has a low-virulence and rarely causes liver abscess. A 40-yearoldmale patient was admitted to the hospital complaining of high fever and malaise. A physical examination revealedpoor oral hygiene; there were caries on many teeth, and he had hepatomegaly. A hepatic abscess was identified inhis abdominal tomography. Streptococcus anginosus was isolated from the drainage material, and the bile ducts werenormal in his MRI cholangiography. An immunocompetent case of liver abscess caused by Streptococcus anginosusoriginated most probably from oral flora is presented here. J Microbiol Infect Dis 2012; 2(1:33-35

  5. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  6. A deep-sea bacterium with unique nitrifying property

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    cember 2000 A deep - sea bacterium with unique n i trifying property A. S. Pradeep Ram, P. A. Loka Bharathi*, Shanta Nair and D. Chandramohan Department of Microbiology, National Institute of Oceanography, Dona Paula, Goa 403 004...) or sodium nitrite at 0.5 mM (final concentration) as e n ergy source and incubated for a period of 45 days at < 10?C. The colonies were enumerated and expressed as colony for m ing units (cfu) per gram dry weight sediment. Repre - sentatives from...

  7. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  8. Genetic transformation of the bacterium Bacillus firmus for GFP expression and confocal laser microscopy analysis

    OpenAIRE

    Beltran Anadon, Daniel

    2017-01-01

    Bacillus firmus I-1582 is a bacterium with nematicidal effects on root-knot nematodes, a group of plant parasites pertaining to the genus Meloidogyne. This bacterium is able to colonize the plant rhizosphere of some economically important crops and protect them from nematode parasites by reducing their juvenile hatching, their only infective stage. In this final degree project B.firmus was transformed with a green fluorescent protein gene. To transform the bacterium it was necessary the previ...

  9. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus

    National Research Council Canada - National Science Library

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff S; Hauser, Loren J; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Samuel; Pierson, Beverly K; Blankenship, Robert E

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions...

  10. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    Directory of Open Access Journals (Sweden)

    S. A. Ahmad

    2013-01-01

    Full Text Available A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue. Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.

  11. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  12. Pathogenesis of helicobacter pylori infection: Bacterium and host relationship

    Directory of Open Access Journals (Sweden)

    Sokić-Milutinović Aleksandra

    2004-01-01

    Full Text Available Helicobacter pylori (H. pylori colonizes the gastric mucosa of a half of the mankind. Duodenal ulcer is found in 15-25%, t gastric ulcer in 13%, while gastric adenocarcinoma develops in 1% of all infected individuals. Pathogenesis of H. pylori infection is related to the virulence factors of the bacterium, environmental (dietary habits, hygiene, stress and host factors (age, sex, blood type. Colonization of the gastric mucosa is related to the motility of the bacterium, presence of lipopolysacharide (LPS and various bacterial enzymes. Gastric mucosal injury is the result of H. pylori LPS, vacuolization cytotoxin (vacA, cytotoxin associated protein (cagA, heat shock proteins and factors responsible for neutrophil chemotaxis and activity. H. pylori colonizes the gastric mucosa and zones of ectopic gastric epithelium. H. pylori infection is transmitted via oral-oral, fecal-oral and iatrogenic way (during endoscopy. Higher prevalence of the infection is associated with lower socioeconomic level, lack of drinking water, and living in a community. Acute H. pylori gastritis is superficial pangastritis progressing into the chronic phase after 7-10 days. Gastric mucosal atrophy and intestinal metaplasia can develop during the course of H. pylori infection. Clearly defined factors that influence the outcome of H. pylori infection include bacterial strain, distribution of gastritis, acid secretion and gastric mucosal atrophy.

  13. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action.

    Science.gov (United States)

    Kostygov, Alexei Y; Dobáková, Eva; Grybchuk-Ieremenko, Anastasiia; Váhala, Dalibor; Maslov, Dmitri A; Votýpka, Jan; Lukeš, Julius; Yurchenko, Vyacheslav

    2016-03-15

    We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, "Candidatus Pandoraea novymonadis" sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. The parasitic trypanosomatid protist Novymonas esmeraldas gen. nov., sp. nov. entered into endosymbiosis with the bacterium "Ca. Pandoraea novymonadis" sp. nov. This novel and rather unstable interaction shows several signs of relatively recent establishment, qualifying it as a potentially unique transient stage in the increasingly complex range of eukaryotic-prokaryotic relationships. Copyright © 2016 Kostygov et al.

  14. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  15. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  16. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  17. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum.

    Science.gov (United States)

    Kimura, Yuuka; Kawakami, Tomoaki; Yu, Long-Jiang; Yoshimura, Miku; Kobayashi, Masayuki; Wang-Otomo, Zheng-Yu

    2015-07-08

    Quinone distributions in the thermophilic purple sulfur bacterium Thermochromatium tepidum have been investigated at different levels of the photosynthetic apparatus. Here we show that, on average, the intracytoplasmic membrane contains 18 ubiquinones (UQ) and 4 menaquinones (MQ) per reaction center (RC). About one-third of the quinones are retained in the light-harvesting-reaction center core complex (LH1-RC) with a similar ratio of UQ to MQ. The numbers of quinones essentially remains unchanged during crystallization of the LH1-RC. There are 1-2 UQ and 1 MQ associated with the RC-only complex in the purified solution sample. Our results suggest that a large proportion of the quinones are confined to the core complex and at least five UQs remain invisible in the current LH1-RC crystal structure. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Porphyrobacter algicida sp. nov., an algalytic bacterium isolated from seawater.

    Science.gov (United States)

    Kristyanto, Sylvia; Lee, Sang Don; Kim, Jaisoo

    2017-11-01

    A novel Gram-stain-negative, yellow-pigmented, catalase- and oxidase-positive, non-endospore-forming, flagellated bacterium, designated strain Yeonmyeong 2-22 T , was isolated from surface seawater of Geoje Island, Republic of Korea. Strain Yeonmyeong 2-22 T showed algalytic activity against the seven strains tested: Cochlodinium polykrikoides, Chattonella marina, Heterosigma akashiwo, Scrippsiella trochoidea, Heterocapsa triquetra, Prorocentrum minimum and Skeletonema costatum. A taxonomic study was carried out based on a polyphasic approach to characterize the exact taxonomic position of strain Yeonmyeong 2-22 T . The bacterium was able to grow at 10-40 °C, at salinities from 0 to 9 %, at pH from 4.0 to 9.0 and was not able to degrade gelatin or casein. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain Yeonmyeong 2-22 T was considered to represent a novel species of the genus Porphyrobacter, which belongs to the family Erythrobacteraceae, and was related most closely to Porphyrobacter dokdonensis DSW-74 T with 97.23 % 16S rRNA gene sequence similarity. The dominant cellular fatty acids of strain Yeonmyeong 2-22 T were C18 : 1ω7c (49.7 %), C16 : 0 (12.0 %) and 11-methyl C18 : 1ω7c (11.5 %), and ubiquinone-10 (Q-10) was the predominant respiratory lipoquinone. The genomic DNA G+C content of strain Yeonmyeong 2-22 T was calculated to be 63.0 mol%. Phenotypic characteristics of the novel strain also differed from other members of the genus Porphyrobacter. On the basis of polyphasic taxonomic data, strain Yeonmyeong 2-22 T represents as a novel species of the genus Porphyrobacter, for which the name of Porphyrobacter algicida sp. nov. is proposed. The type strain is Yeonmyeong 2-22 T (=KEMB 9005-328 T =JCM 31499 T ).

  19. Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z.

    Science.gov (United States)

    Vuilleumier, Stéphane; Khmelenina, Valentina N; Bringel, Françoise; Reshetnikov, Alexandr S; Lajus, Aurélie; Mangenot, Sophie; Rouy, Zoé; Op den Camp, Huub J M; Jetten, Mike S M; Dispirito, Alan A; Dunfield, Peter; Klotz, Martin G; Semrau, Jeremy D; Stein, Lisa Y; Barbe, Valérie; Médigue, Claudine; Trotsenko, Yuri A; Kalyuzhnaya, Marina G

    2012-01-01

    Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic bacterium of known genome sequence for which a plasmid has been reported.

  20. [Colonization of silicate bacterium strain NBT in wheat roots].

    Science.gov (United States)

    Sheng, Xiafang

    2003-11-01

    The strain NBT of silicate bacterium was labelled with streptomycin, and a stable streptomycin resistance strain NBT was obtained. Its colonization dynamics and affecting factors in wheat rhizosphere were studied in agar plates and greenhouse pots were studied by counting the method with selective medium. The results of pot culture experiment showed that strain NBT could successfully colonize in the rhizosphere of wheat. In pot cultures of sterile soil, the highest colonization level (3.4 x 10(7) cfu.g-1 root soil) was reached on 9th day after seeds sown; at 54th day, the population of strain NBT tended to stable, and decreased to 1.4 x 10(4) cfu.g-1 root soil. In pot cultures of unsterile soil, the highest colonization level (3.8 x 10(7) cfu.g-1 root soil) was reached at 9th day, and the population of strain NBT tended to a stationary state at 60th day, with the numbers being 1.4 x 10(4) cfu.g-1 root soil. Some biological and abiotic factors could greatly influence the colonization of the beneficial microorganism.

  1. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    Science.gov (United States)

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)).

  2. Isolation, identification, and characterization of a feather-degrading bacterium.

    Science.gov (United States)

    Williams, C M; Richter, C S; Mackenzie, J M; Shih, J C

    1990-06-01

    A feather-degrading culture was enriched with isolates from a poultry waste digestor and adapted to grow with feathers as its primary source of carbon, sulfur, and energy. Subsequently, a feather-hydrolytic, endospore-forming, motile, rod-shaped bacterium was isolated from the feather-degrading culture. The organism was Gram stain variable and catalase positive and demonstrated facultative growth at thermophilic temperatures. The optimum rate of growth in nutrient broth occurred at 45 to 50 degrees C and at pH 7.5. Electron microscopy of the isolate showed internal crystals. The microorganism was identified as Bacillus licheniformis PWD-1. Growth on hammer-milled-feather medium of various substrate concentrations was determined by plate colony count. Maximum growth (approximately 10 cells per ml) at 50 degrees C occurred 5 days postinoculation on 1% feather substrate. Feather hydrolysis was evidenced as free amino acids produced in the medium. The most efficient conditions for feather fermentation occurred during the incubation of 1 part feathers to 2 parts B. licheniformis PWD-1 culture (10 cells per ml) for 6 days at 50 degrees C. These data indicate a potential biotechnique for degradation and utilization of feather keratin.

  3. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    Science.gov (United States)

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  4. Mutation of Bacterium Vibrio gazogenes for Selective Preparation of Colorants

    Science.gov (United States)

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D.; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples showed that two new main colorants as well as three previously found ones were produced. Liquid chromatography electro spray ionization mass spectrometry (LC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic techniques were used to elucidate the structures of the newly produced colorants. Mass measurements revealed that the colorants C1, C2, C3, C4 have molecular masses of 321, 323, 351, and 295 Da. One unstable colorant C5 with molecular mass of 309 Da was detected as well. The mutated bacteria strains increased the yield of pigment production by about 81% and produced prodigiosin in 97% purity. The antibiotic activities of pure colorants are discussed as well. Based on their bio-activity and excellent dyeing capabilities, these colorants could be employed in cosmetic and textile industries. PMID:19902486

  5. Mutation of bacterium Vibrio gazogenes for selective preparation of colorants.

    Science.gov (United States)

    Alihosseini, Farzaneh; Lango, Jozsef; Ju, Kou-San; Hammock, Bruce D; Sun, Gang

    2010-01-01

    A novel marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool, silk and synthetic fabrics such as polyester and polyacrylic and also show antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria on the dyed products. Methyl nitrosoguanidine was used as a mutation agent to increase the genetic diversity and the production yield of the bacteria of the family of Vibrio gazogenes. The analysis of the mutated samples showed that two new main colorants as well as three previously found ones were produced. Liquid chromatography electro spray ionization mass spectrometry (LC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic techniques were used to elucidate the structures of the newly produced colorants. Mass measurements revealed that the colorants C1, C2, C3, C4 have molecular masses of 321, 323, 351, and 295 Da. One unstable colorant C5 with molecular mass of 309 Da was detected as well. The mutated bacteria strains increased the yield of pigment production by about 81% and produced prodigiosin in 97% purity. The antibiotic activities of pure colorants are discussed as well. Based on their bio-activity and excellent dyeing capabilities, these colorants could be employed in cosmetic and textile industries.

  6. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    Science.gov (United States)

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  7. Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus.

    Science.gov (United States)

    Psencík, Jakub; Collins, Aaron M; Liljeroos, Lassi; Torkkeli, Mika; Laurinmäki, Pasi; Ansink, Hermanus M; Ikonen, Teemu P; Serimaa, Ritva E; Blankenship, Robert E; Tuma, Roman; Butcher, Sarah J

    2009-11-01

    The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.

  8. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  9. SIMULTANEOUS PHOTOTROPHIC AND CHEMOTROPIC GROWTH IN THE PURPLE SULFUR BACTERIUM THIOCAPSA-ROSEOPERSICINA M1

    NARCIS (Netherlands)

    SCHAUB, BEM; VANGEMERDEN, H

    The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h

  10. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23

    National Research Council Canada - National Science Library

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-01-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23...

  11. Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans

    NARCIS (Netherlands)

    Kluskens, L.D.; Voorhorst, W.G.; Siezen, R.J.; Schwerdfeger, R.M.; Antranikian, G.; Oost, van der J.; Vos, de W.M.

    2002-01-01

    The fls gene encoding fervidolysin, a keratin-degrading proteolytic enzyme from the thermophilic bacterium Fervidobacterium pennivorans, was isolated using degenerate primers combined with Southern hybridization and inverse polymerase chain reaction. Further sequence characterization demonstrated

  12. First evidence for the presence of a hydrogenase in the sulfur-reducing bacterium Desulfuromonas acetoxidans.

    Science.gov (United States)

    Brugna, M; Nitschke, W; Toci, R; Bruschi, M; Giudici-Orticoni, M T

    1999-09-01

    Hydrogenases, which are ubiquitous in sulfate-reducing bacteria, were previously thought to be absent from Desulfuromonas acetoxidans. For the first time, a hydrogenase from the strict anaerobic sulfur-respiring bacterium D. acetoxidans, grown on ethanol-malate, was detected and enriched. To assay the role of the hydrogenase in the energetic metabolism of D. acetoxidans, we examined the reactivity of the enzyme with polyheme cytochromes from the same bacterium.

  13. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacter......A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...

  14. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena

    Science.gov (United States)

    Sun, Jinchun; Jin, Jinshan; Beger, Richard D.; Cerniglia, Carl E.; Yang, Maocheng; Chen, Huizhong

    2017-01-01

    The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the argininenitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511

  15. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  16. Virgibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    Science.gov (United States)

    Oh, Young Joon; Jang, Ja-Young; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Kim, NamHee; Shin, Mi-Young; Park, Hyo Kyeong; Seo, Myung-Ji; Choi, Hak-Jong

    2017-12-01

    A Gram-stain-positive, halophilic, rod-shaped, non-motile, spore forming bacterium, strain NKC1-2 T , was isolated from kimchi, a Korean fermented food. Comparative analysis based on 16S rRNA gene sequence demonstrated that the isolated strain was a species of the genus Virgibacillus. Strain NKC1-2 T exhibited high level of 16S rRNA gene sequence similarity with the type strains of Virgibacillus xinjiangensis SL6-1 T (96.9%), V. sediminis YIM kkny3 T (96.8%), and V. salarius SA-Vb1 T (96.7%). The isolate grew at pH 6.5-10.0 (optimum, pH 8.5-9.0), 0.0-25.0% (w/v) NaCl (optimum, 10-15% NaCl), and 15-50°C (optimum, 37°C). The major menaquinone in the strain was menaquinone-7, and the main peptidoglycan of the strain was meso-diaminopimelic acid. The predominant fatty acids of the strain were iso-C 14:0 , anteisio-C 15:0 , iso- C 15:0 , and iso-C 16:0 (other components were < 10.0%). The polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G + C content of NKC1-2 T was 42.5 mol%. On the basis of these findings, strain NKC1-2 T is proposed as a novel species in the genus Virgibacillus, for which the name Virgibacillus kimchii sp. nov. is proposed (=KACC 19404 T =JCM 32284 T ). The type strain of Virgibacillus kimchii is NKC1-2T.

  17. Phenotypic variation in the plant pathogenic bacterium Acidovorax citrulli.

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    Full Text Available Acidovorax citrulli causes bacterial fruit blotch (BFB of cucurbits, a disease that threatens the cucurbit industry worldwide. Despite the economic importance of BFB, little is known about pathogenicity and fitness strategies of the bacterium. We have observed the phenomenon of phenotypic variation in A. citrulli. Here we report the characterization of phenotypic variants (PVs of two strains, M6 and 7a1, isolated from melon and watermelon, respectively. Phenotypic variation was observed following growth in rich medium, as well as upon isolation of bacteria from inoculated plants or exposure to several stresses, including heat, salt and acidic conditions. When grown on nutrient agar, all PV colonies possessed a translucent appearance, in contrast to parental strain colonies that were opaque. After 72 h, PV colonies were bigger than parental colonies, and had a fuzzy appearance relative to parental strain colonies that are relatively smooth. A. citrulli colonies are generally surrounded by haloes detectable by the naked eye. These haloes are formed by type IV pilus (T4P-mediated twitching motility that occurs at the edge of the colony. No twitching haloes could be detected around colonies of both M6 and 7a1 PVs, and microscopy observations confirmed that indeed the PVs did not perform twitching motility. In agreement with these results, transmission electron microscopy revealed that M6 and 7a1 PVs do not produce T4P under tested conditions. PVs also differed from their parental strain in swimming motility and biofilm formation, and interestingly, all assessed variants were less virulent than their corresponding parental strains in seed transmission assays. Slight alterations could be detected in some DNA fingerprinting profiles of 7a1 variants relative to the parental strain, while no differences at all could be seen among M6 variants and parental strain, suggesting that, at least in the latter, phenotypic variation is mediated by slight genetic

  18. Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus.

    Science.gov (United States)

    Park, Hyun-Woo; Bideshi, Dennis K; Federici, Brian A

    2010-09-01

    Strains of Bacillus sphaericus exhibit varying levels of virulence against mosquito larvae. The most potent strain, B. sphaericus 2362, which is the active ingredient in the commercial product VectoLex®, together with another well-known larvicide Bacillus thuringiensis subsp. israelensis, are used to control vector and nuisance mosquito larvae in many regions of the world. Although not all strains of B. sphaericus are mosquitocidal, lethal strains produce one or two combinations of three different types of toxins. These are (1) the binary toxin (Bin) composed of two proteins of 42 kDa (BinA) and 51 kDa (BinB), which are synthesized during sporulation and co-crystallize, (2) the soluble mosquitocidal toxins (Mtx1, Mtx2 and Mtx3) produced during vegetative growth, and (3) the two-component crystal toxin (Cry48Aa1/Cry49Aa1). Non-mosquitocidal toxins are also produced by certain strains of B. sphaericus, for examples sphaericolysin, a novel insecticidal protein toxic to cockroaches. Larvicides based on B. sphaericus-based have the advantage of longer persistence in treated habitats compared to B. thuringiensis subsp. israelensis. However, resistance is a much greater threat, and has already emerged at significant levels in field populations in China and Thailand treated with B. sphaericus. This likely occurred because toxicity depends principally on Bin rather than various combinations of crystal (Cry) and cytolytic (Cyt) toxins present in B. thuringiensis subsp. israelensis. Here we review both the general characteristics of B. sphaericus, particularly as they relate to larvicidal isolates, and strategies or considerations for engineering more potent strains of this bacterium that contain built-in mechanisms that delay or overcome resistance to Bin in natural mosquito populations.

  19. A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

    Science.gov (United States)

    Burd, Genrich I.; Dixon, D. George; Glick, Bernard R.

    1998-01-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel. PMID:9758782

  20. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Burd, G.I.; Dixon, D.G.; Glick, B.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  1. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  2. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  3. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    OpenAIRE

    Brett L. Mellbye; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhi...

  4. Draft genome sequence of a denitrifying bacterium Paracoccus marcusii PAMC 22219 isolated from Arctic marine sediment.

    Science.gov (United States)

    Cha, In-Tae; Song, Eun-Ji; Seok, Yoon Ji; Lee, Hyunjin; Park, Inhye; Lee, Yoo Kyung; Roh, Seong Woon; Choi, Hak-Jong; Nam, Young-Do; Seo, Myung-Ji

    2015-06-01

    A denitrifying bacterium, Paracoccus marcusii PAMC 22219, was isolated from Arctic marine sediment in Svalbard, Norway. The obtained contigs were 265 with genome size of 4.0Mb and G+C content of 66.1%. This bacterial genome revealed that it had nitrate and nitrite ammonification genes involved in the denitrification process, suggesting that P. marcusii PAMC 22219 is a denitrifying bacterium. This is the first genome that has been sequenced in the genus Paracoccus, isolated from an Arctic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Active efflux systems in the solvent-tolerant bacterium Pseudomonas putida S12

    NARCIS (Netherlands)

    Kieboom, J.

    2002-01-01

    The aim of the research presented in this thesis was to study the molecular mechanisms of organic solvent tolerance in Pseudomonas putida S12. This bacterium is capable of growth at saturated solvent concentrations, which are lethal to normal bacteria. Organic

  6. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  7. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Nupur; Bhumika, V.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain N1 sup(T), was isolated from a marine water sample collected from the sea shore, Bay of Bengal, Visakhapatnam, India. The strain was positive for starch hydrolysis, nitrate...

  8. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

    NARCIS (Netherlands)

    Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J.; Klotz, Martin G.; Laanbroek, Hendrikus J.; Suwa, Yuichi; Stein, Lisa Y.; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one

  9. The sponge-associated bacterium Bacillus licheniformis SAB1: A source of antimicrobial compounds

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wahidullah, S.; Rodrigues, C.; DeSouza, L.

    -coated with silica gel 60 F254 (Merk KgaA, Damstadt, Germany, Cat No. 1.05554). All the solvents used were glass distilled. 4. Conclusions The marine bacterium, Bacillus licheniformis SAB1, isolated from a Halichondria sp. sponge and identified by its 16S r...

  10. Marinilabilia nitratireducens sp. nov., a lipolytic bacterium of the family Marinilabiliaceae isolated from marine solar saltern

    Digital Repository Service at National Institute of Oceanography (India)

    Shalley, S.; PradipKumar; Srinivas, T.N.R.; Suresh, K.; AnilKumar, P.

    A Gram-negative, rod shaped, motile bacterium, was isolated from a marine solar saltern sample collected from Kakinada, India. Strain AK2 sup(T) was determined to be positive for nitrate reduction, catalase, Ala-Phe-Pro-arylamidase, beta...

  11. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  12. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans.

    Science.gov (United States)

    Agapov, A A; Kulbachinskiy, A V

    2015-10-01

    The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.

  13. Draft Genome Sequence of the Moderately Halophilic Bacterium Marinobacter lipolyticus Strain SM19

    Science.gov (United States)

    Papke, R. Thane; de la Haba, Rafael R.; Infante-Domínguez, Carmen; Pérez, Dolores; Sánchez-Porro, Cristina; Lapierre, Pascal

    2013-01-01

    Marinobacter lipolyticus strain SM19, isolated from saline soil in Spain, is a moderately halophilic bacterium belonging to the class Gammaproteobacteria. Here, we report the draft genome sequence of this strain, which consists of a 4.0-Mb chromosome and which is able to produce the halophilic enzyme lipase LipBL. PMID:23814106

  14. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Grob, Harald [University of Bonn, Germany; Morin, Emmanuelle [INRA, Nancy, France; Karpinets, Tatiana V [ORNL; Utturkar, Sagar M [ORNL; Mehnaz, Samina [University of the Punjab, Pakistan; Kurz, Sven [University of Bonn, Germany; Martin, Francis [INRA, Nancy, France; Frey-Klett, Pascale [INRA, Nancy, France; Labbe, Jessy L [ORNL

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  15. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit

  16. First Insights into the Genome of the Amino Acid-Metabolizing Bacterium Clostridium litorale DSM 5388

    Science.gov (United States)

    Poehlein, Anja; Alghaithi, Hamed S.; Chandran, Lenin; Chibani, Cynthia M.; Davydova, Elena; Dhamotharan, Karthikeyan; Ge, Wanwan; Gutierrez-Gutierrez, David A.; Jagirdar, Advait; Khonsari, Bahar; Nair, Kamal Prakash P. R.

    2014-01-01

    Clostridium litorale is a Gram-positive, rod-shaped, and spore-forming bacterium, which is able to use amino acids such as glycine, sarcosine, proline, and betaine as single carbon and energy sources via Stickland reactions. The genome consists of a circular chromosome (3.41 Mb) and a circular plasmid (27 kb). PMID:25081264

  17. Modeling of Cd Uptake and Efflux Kinetics in Metal-Resistant Bacterium Cupriavidus metallidurans

    NARCIS (Netherlands)

    Hajdu, R.; Pinheiro, J.P.; Galceran, J.; Slaveykova, V.I.

    2010-01-01

    The Model of Uptake with Instantaneous Adsorption and Efflux, MUIAE, describing and predicting the overall Cd uptake by the metal-resistant bacterium Cupriavidus metallidurans CH34, is presented. MUIAE takes into account different processes at the bacteria-medium interface with specific emphasis on

  18. Draft Whole-Genome Sequence and Annotation of the Entomopathogenic Bacterium Xenorhabdus khoisanae Strain MCB.

    Science.gov (United States)

    Naidoo, Stephanie; Featherston, Jonathan; Gray, Vincent M

    2015-08-06

    We report here the draft genome sequence of Xenorhabdus khoisanae strain MCB, a Gram-negative bacterium and symbiont of a Steinernema entomopathogenic nematode. The genome assembly consists of 266 contigs covering 4.68 Mb. Genome annotation revealed 3,869 protein-coding sequences, with a G+C content of 43.5%. Copyright © 2015 Naidoo et al.

  19. The Bacterium That Got Infected by a Cow!-Horizontal Gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. The Bacterium That Got Infected by a Cow! - Horizontal Gene Transfer and Evolution. Saurabh Dhawan Tomás John Ryan. General Article Volume 12 Issue 1 January 2007 pp 49-59 ...

  20. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    NARCIS (Netherlands)

    Balk, M.; Mehboob, F.; Gelder, van A.H.; Rijpstra, I.; Sinninghe-Damsté, J.S.; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells

  1. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    ’ which affects various fish species in seawater during cold periods (Lunder et al. 1995). The bacterium is mainly a problem for farmed salmonid species, such as Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but has also been isolated from other fish species, including Atlantic...

  2. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium

    NARCIS (Netherlands)

    Plugge, C.M.; Balk, M.; Stams, A.J.M.

    2002-01-01

    From granular sludge from a laboratory-scale upflow anaerobic sludge bed reactor operated at 55 degrees C with a mixture of volatile fatty acids as feed, a novel anaerobic, moderately thermophilic, syntrophic, spore-forming bacterium, strain TPO, was enriched on propionate in co-culture with

  3. Proteomic data on enzyme secretion and activity in the bacterium Chitinophaga pinensis

    Directory of Open Access Journals (Sweden)

    Johan Larsbrink

    2017-04-01

    Full Text Available The secretion of carbohydrate-degrading enzymes by a bacterium sourced from a softwood forest environment has been investigated by mass spectrometry. The findings are discussed in full in the research article “Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis” in Journal of Proteomics by Larsbrink et al. ([1], doi: 10.1016/j.jprot.2017.01.003. The bacterium was grown on three carbon sources (glucose, glucomannan, and galactomannan which are likely to be nutrient sources or carbohydrate degradation products found in its natural habitat. The bacterium was grown on solid agarose plates to mimic the natural behaviour of growth on a solid surface. Secreted proteins were collected from the agarose following trypsin-mediated hydrolysis to peptides. The different carbon sources led to the secretion of different numbers and types of proteins. Most carbohydrate-degrading enzymes were found in the glucomannan-induced cultures. Several of these enzymes may have biotechnological potential in plant cell wall deconstruction for biofuel or biomaterial production, and several may have novel activities. A subset of carbohydrate-active enzymes (CAZymes with predicted activities not obviously related to the growth substrates were also found in samples grown on each of the three carbohydrates. The full dataset is accessible at the PRIDE partner repository (ProteomeXchange Consortium with the identifier PXD004305, and the full list of proteins detected is given in the supplementary material attached to this report.

  4. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  5. Exo- and surface proteomes of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Svensson, Birte

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-known probiotic bacterium extensively studied for its beneficial health effects. Exoproteome (proteins exported into culture medium) and surface proteome (proteins attached to S-layer) of this probiotic were identified by using 2DE followed by MALDI TOF MS...

  6. Draft Genome Sequence of the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Strain CP76.

    Science.gov (United States)

    de la Haba, Rafael R; Sánchez-Porro, Cristina; León, María José; Papke, R Thane; Ventosa, Antonio

    2013-05-23

    Pseudoalteromonas ruthenica strain CP76, isolated from a saltern in Spain, is a moderately halophilic bacterium belonging to the Gammaproteobacteria. Here we report the draft genome sequence, which consists of a 4.0-Mb chromosome, of this strain, which is able to produce the extracellular enzyme haloprotease CPI.

  7. Draft Genome Sequence of the Moderately Halophilic Bacterium Marinobacter lipolyticus Strain SM19.

    Science.gov (United States)

    Papke, R Thane; de la Haba, Rafael R; Infante-Domínguez, Carmen; Pérez, Dolores; Sánchez-Porro, Cristina; Lapierre, Pascal; Ventosa, Antonio

    2013-06-27

    Marinobacter lipolyticus strain SM19, isolated from saline soil in Spain, is a moderately halophilic bacterium belonging to the class Gammaproteobacteria. Here, we report the draft genome sequence of this strain, which consists of a 4.0-Mb chromosome and which is able to produce the halophilic enzyme lipase LipBL.

  8. High-level production of diacetyl in a metabolically engineered lactic acid bacterium

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention provides a genetically modified lactic acid bacterium capable of producing diacetyl under aerobic conditions. Additionally the invention provides a method for producing diacetyl using the genetically modified lactic acid bacterium under aerobic conditions in the presence of .......C. 1.1.1.4/1.1.1.-) and alcohol dehydrogenase (E.C. 1.2.1.10) activity. The invention provides for use of the genetically modified lactic acid bacterium for the production of diacetyl and a food product....... of a source of iron-containing porphyrin and a metal ion selected from Fe3+, Fe2+ and Cu2+. The lactic acid bacterium is genetically modified by deletion of those genes in its genome that encode polypeptides having lactate dehydrogenase (E.C 1.1.1.27/E.C.1.1.1.28); α-acetolactate decarboxylase (E.C 4.......1.1.5); water-forming NADH oxidase (E.C. 1.6.3.4); phosphotransacetylase (E.C.2.3.1.8) activity; and optionally devoid of or deleted for genes encoding polypeptides having diacetyl reductase ((R)-acetoin forming; EC: 1.1.1.303); D-acetoin reductase; butanediol dehydrogenase ((R,R)-butane-2,3-diol forming; E...

  9. Pseudomonas chloritidismutans sp. nov., a non-denitrifying chlorate-reducing bacterium

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.; Jonker, A.B.; Kengen, S.W.M.; Stams, A.J.M.

    2002-01-01

    A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate-reducing bacterium, strain AW-1(T), was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100␜equence similarity to Pseudomonas stutzeri DSM 50227 and

  10. Hydrogen Production by Co-cultures of Rhizopus oryzae and a Photosynthetic Bacterium, Rhodobacter sphaeroides RV

    Science.gov (United States)

    Asada, Yasuo; Ishimi, Katsuhiro; Nagata, Yoko; Wakayama, Tatsuki; Miyake, Jun; Kohno, Hideki

    Hydrogen production with glucose by using co-immobilized cultures of a fungus, Rhizopus oryzae NBRC5384, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. The co-immobilized cultures converted glucose to hydrogen via lactate in a high molar yield of about 8moles of hydrogen per glucose at a maximum under illuminated conditions.

  11. The construction of an engineered bacterium to remove cadmium from wastewater.

    Science.gov (United States)

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  12. Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions

    NARCIS (Netherlands)

    SPEELMANS, G; POOLMAN, B; ABEE, T; KONINGS, WN

    1993-01-01

    The thermophilic, peptidolytic, anaerobic bacterium Clostridium fervidus is unable to generate a pH gradient in the range of 5.5-8.0, which limits growth of the organism to a narrow pH range (6.3-7.7). A significant membrane potential (DELTApsi almost-equal-to -60 mV) and chemical gradient of Na+

  13. The F- or V-Type Na+-ATPase of the Thermophilic Bacterium Clostridium fervidus

    NARCIS (Netherlands)

    SPEELMANS, G; POOLMAN, B; ABEE, T; KONINGS, WN

    Clostridium fervidus is a thermophilic, anaerobic bacterium which uses solely Na+ as a coupling ion for energy transduction. Important features of the primary Na+ pump (ATPase) that generates the sodium motive force are presented. The advantage of using a sodium rather than a proton motive force at

  14. Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum limnaeum DSM 1677T

    DEFF Research Database (Denmark)

    Tank, Marcus; Liu, Zhenfeng; Frigaard, Niels-Ulrik

    2017-01-01

    Chlorobaculum limnaeum DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll e and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism...

  15. Studying the Symbiotic Bacterium Xenorhabdus nematophila in Individual, Living Steinernema carpocapsae Nematodes Using Microfluidic Systems.

    Science.gov (United States)

    Stilwell, Matthew D; Cao, Mengyi; Goodrich-Blair, Heidi; Weibel, Douglas B

    2018-01-01

    Animal-microbe symbioses are ubiquitous in nature and scientifically important in diverse areas, including ecology, medicine, and agriculture. Steinernema nematodes and Xenorhabdus bacteria compose an established, successful model system for investigating microbial pathogenesis and mutualism. The bacterium Xenorhabdus nematophila is a species-specific mutualist of insect-infecting Steinernema carpocapsae nematodes. The bacterium colonizes a specialized intestinal pocket within the infective stage of the nematode, which transports the bacteria between insects that are killed and consumed by the pair for reproduction. Current understanding of the interaction between the infective-stage nematode and its bacterial colonizers is based largely on population-level, snapshot time point studies on these organisms. This limitation arises because investigating temporal dynamics of the bacterium within the nematode is impeded by the difficulty of isolating and maintaining individual living nematodes and tracking colonizing bacterial cells over time. To overcome this challenge, we developed a microfluidic system that enables us to spatially isolate and microscopically observe individual, living Steinernema nematodes and monitor the growth and development of the associated X. nematophila bacterial communities-starting from a single cell or a few cells-over weeks. Our data demonstrate, to our knowledge, the first direct, temporal, in vivo visual analysis of a symbiosis system and the application of this system to reveal continuous dynamics of the symbiont population in the living host animal. IMPORTANCE This paper describes an experimental system for directly investigating population dynamics of a symbiotic bacterium, Xenorhabdus nematophila, in its host-the infective stage of the entomopathogenic nematode Steinernema carpocapsae. Tracking individual and groups of bacteria in individual host nematodes over days and weeks yielded insight into dynamic growth and topology changes

  16. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  17. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  18. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  19. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  20. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  1. Framing in the Spanish press about the health crisis because of the E. coli bacterium

    Directory of Open Access Journals (Sweden)

    Paloma López Villafranca

    2013-12-01

    Full Text Available This research article analyses  the approach made by press media and other institutional advertising about the E. coli bacterium, most commonly known as cucumber crisis in Spain. While in the rest of Europe this crisis receives the same treatment as A Flu or mad cow disease in this country it is treated as a crisis that affects to the spanish economy and not to the health of the citizen. Economic interests prevail over public health and this is due to official information given. An analysis of contents of the most popular journals in Spain, according to OJD, is made to prove this hypothesis, El Pais, El Mundo and ABC, as well as a study of the main institutional advertising made about E. coli bacterium by official spanish organizations and the media.

  2. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  3. Methanogenesis from acetate: a nonmethanogenic bacterium from an anaerobic acetate enrichment.

    Science.gov (United States)

    Ward, D M; Mah, R A; Kaplan, I R

    1978-06-01

    A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate.

  4. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium.

    Science.gov (United States)

    Begemann, Matthew B; Mormile, Melanie R; Sitton, Oliver C; Wall, Judy D; Elias, Dwayne A

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  5. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Science.gov (United States)

    Begemann, Matthew B.; Mormile, Melanie R.; Sitton, Oliver C.; Wall, Judy D.; Elias, Dwayne A.

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources. PMID:22509174

  6. The primary structure of cytochrome c-554 from the green photosynthetic bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Dracheva, S.; Williams, J.C.; Blankenship, R.E. (Arizona State Univ., Tempe (United States)); Van Driessche, G.; Van Beeumen, J.J. (State Univ., Ghent (Belgium))

    1991-12-03

    The complete nucleotide sequence of the cytochrome c-554 gene from the green photosynthetic bacterium Chloroflexus aurantiacus has been determined. The derived amino acid sequence showed that the cytochrome precursor protein consists of 414 residues and contains 4-Cys-X-X-Cys-His- heme binding motifs. The only regions of the cytochrome c-554 sequence that were found to be significantly similar to the sequences of cytochromes from other organisms were the heme binding sites. The highest similarity was found with the heme binding segments in the four-heme reaction center cytochrome subunit from the purple photosynthetic bacterium Rhodopseudomonas viridis. The importance of this similarity for the evolutionary relationship between Chloroflexus and the purple bacteria is discussed.

  7. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  8. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  9. High-quality genome sequence of the radioresistant bacterium Deinococcus ficus KS 0460

    OpenAIRE

    Matrosova, Vera Y.; Gaidamakova, Elena K.; Makarova, Kira S.; Grichenko, Olga; Klimenkova, Polina; Volpe, Robert P.; Tkavc, Rok; Ertem, G?zen; Conze, Isabel H.; Brambilla, Evelyne; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha

    2017-01-01

    The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus K...

  10. Complete genome sequence of Bifidobacterium animalis RH, a probiotic bacterium producing exopolysaccharides.

    Science.gov (United States)

    Liu, Lei; Qin, Yuxuan; Wang, Yang; Li, Hui; Shang, Nan; Li, Pinglan

    2014-11-10

    Bifidobacterium animalis RH is a probiotic bacterium producing exopolysaccharides, which was isolated from the feces of Bama centenarians in Guangxi, China. The genome consists of one chromosome (1,931,057 bp) with no plasmid. The genomic sequence indicated that this strain includes a gene cluster involved in exopolysaccharides (EPS) biosynthesis. Genome sequencing information provides the basis for analysis of molecular mechanisms responsible for regulation of production of EPS. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  12. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae. The bacterium is the presumed causal agent of huanglongbing (HLB, one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4% during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees.

  13. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  14. Polyphosphate Storage during Sporulation in the Gram-Negative Bacterium Acetonema longum

    OpenAIRE

    Tocheva, Elitza I.; Dekas, Anne E.; McGlynn, Shawn E.; Morris, Dylan; Victoria J. Orphan; Jensen, Grant J.

    2013-01-01

    Using electron cryotomography, we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes high-density storage granules at the leading edges of engulfing membranes. The granules appear in the prespore and increase in size and number as engulfment proceeds. Typically, a cluster of 8 to 12 storage granules closely associates with the inner spore membrane and ultimately accounts for ∼7% of the total volume in mature spores. Energy-dispersive X-ray spectroscopy (EDX) analys...

  15. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  16. Nematode-Bacterium Symbioses - Cooperation and Conflict Revealed in the 'Omics' Age

    OpenAIRE

    Murfin, Kristen E.; Dillman, Adler R.; Foster, Jeremy M.; Bulgheresi, Silvia; Slatko, Barton E.; Sternberg, Paul W.; Goodrich-Blair, Heidi

    2012-01-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for investigating host associations with bacteria because all nematodes have inter...

  17. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    Science.gov (United States)

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-08-28

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons. Copyright © 2014 Thiel et al.

  18. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola.

    OpenAIRE

    Lou, J.; Dawson, K A; Strobel, H J

    1996-01-01

    In bacteria, cellobiose and cellodextrins are usually degraded by either hydrolytic or phosphorolytic cleavage. Prevotella ruminicola B(1)4 is a noncellulolytic ruminal bacterium which has the ability to utilize the products of cellulose degradation. In this organism, cellobiose hydrolytic cleavage activity was threefold greater than phosphorolytic cleavage activity (113 versus 34 nmol/min/mg of protein), as measured by an enzymatic assay. Cellobiose phosphorylase activity (measured as the re...

  20. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium

    Science.gov (United States)

    Solano, F.; Garcia, E.; Perez, De; Sanchez-Amat, A.

    1997-01-01

    A novel marine melanogenic bacterium, strain MMB-1, was isolated from the Mediterranean Sea. The taxonomic characterization of this strain indicated that it belongs to the genus Alteromonas. Under in vivo conditions, L-tyrosine was the specific monophenolic precursor for melanin synthesis. This bacterium contained all types of activities associated with polyphenol oxidases (PPOs), cresolase (EC 1.18.14.1), catecholase (EC 1.10.3.1), and laccase (EC 1.10.3.2). These activities were due to the presence of two different PPOs. The first one showed all the enzymatic activities, but it was not involved in melanogenesis in vivo, since amelanogenic mutant strains obtained by nitrosoguanidine treatment contained levels of this PPO similar to that of the wild-type MMB-1 strain. The second PPO showed cresolase and catecholase activities but no laccase, and it was involved in melanogenesis, since this enzyme was lost in amelanogenic mutant strains. This PPO was strongly activated by sodium dodecyl sulfate below the critical micelle concentration, and it is a tyrosinase-like enzyme showing a lag period in its tyrosine hydroxylase activity that could be avoided by small amounts of L-dopa. This is the first report of a bacterium that contains two PPOs and also the first report of a pluripotent PPO showing all types of oxidase activities. The bacterium and the pluripotent PPO may be useful models for exploring the roles of PPOs in cellular physiology, aside from melanin formation. On the other hand, the high oxidizing capacity of the PPO for a wide range of substrates could make possible its application in phenolic biotransformations, food processing, or the cosmetic industry, where fungal and plant PPOs are being used. PMID:16535688

  1. Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium

    OpenAIRE

    Kleindienst, Sara; Higgins, Steven A.; Tsementzi, Despina; Konstantinos T Konstantinidis; Mack, E. Erin; L?ffler, Frank E.

    2016-01-01

    An anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18?21?43.9?, longitude ?65?46?8.4?). The draft genome sequence is 2.1?Mb and has a G+C content of 43.5%.

  2. Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium.

    Science.gov (United States)

    Kleindienst, Sara; Higgins, Steven A; Tsementzi, Despina; Konstantinidis, Konstantinos T; Mack, E Erin; Löffler, Frank E

    2016-03-03

    An anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21'43.9″, longitude -65°46'8.4″). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%. Copyright © 2016 Kleindienst et al.

  3. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  4. The Soil Bacterium Methylococcus capsulatus Bath Interacts with Human Dendritic Cells to Modulate Immune Function.

    Science.gov (United States)

    Indrelid, Stine; Kleiveland, Charlotte; Holst, René; Jacobsen, Morten; Lea, Tor

    2017-01-01

    The prevalence of inflammatory bowel disease (IBD) has increased in Western countries during the course of the twentieth century, and is evolving to be a global disease. Recently we showed that a bacterial meal of a non-commensal, non-pathogenic methanotrophic soil bacterium, Methylococcus capsulatus Bath prevents experimentally induced colitis in a murine model of IBD. The mechanism behind the effect has this far not been identified. Here, for the first time we show that M. capsulatus, a soil bacterium adheres specifically to human dendritic cells, influencing DC maturation, cytokine production, and subsequent T cell activation, proliferation and differentiation. We characterize the immune modulatory properties of M. capsulatus and compare its immunological properties to those of another Gram-negative gammaproteobacterium, the commensal Escherichia coli K12, and the immune modulatory Gram-positive probiotic bacterium, Lactobacillus rhamnosus GG in vitro. M. capsulatus induces intermediate phenotypic and functional DC maturation. In a mixed lymphocyte reaction M. capsulatus-primed monocyte-derived dendritic cells (MoDCs) enhance T cell expression of CD25, the γ-chain of the high affinity IL-2 receptor, supports cell proliferation, and induce a T cell cytokine profile different from both E. coli K12 and Lactobacillus rhamnosus GG. M. capsulatus Bath thus interacts specifically with MoDC, affecting MoDC maturation, cytokine profile, and subsequent MoDC directed T cell polarization.

  5. In search of an uncultured human-associated TM7 bacterium in the environment.

    Directory of Open Access Journals (Sweden)

    Jorge M Dinis

    Full Text Available We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities.

  6. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    Science.gov (United States)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  7. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges.

    Science.gov (United States)

    Lavy, Adi; Keren, Ray; Yu, Ke; Thomas, Brian C; Alvarez-Cohen, Lisa; Banfield, Jillian F; Ilan, Micha

    2017-12-01

    Sponges are benthic filter feeders that play pivotal roles in coupling benthic-pelagic processes in the oceans that involve transformation of dissolved and particulate organic carbon and nitrogen into biomass. While the contribution of sponge holobionts to the nitrogen cycle has been recognized in past years, their importance in the sulfur cycle, both oceanic and physiological, has only recently gained attention. Sponges in general, and Theonella swinhoei in particular, harbor a multitude of associated microorganisms that could affect sulfur cycling within the holobiont. We reconstructed the genome of a Chromatiales (class Gammaproteobacteria) bacterium from a metagenomic sequence dataset of a T. swinhoei-associated microbial community. This relatively abundant bacterium has the metabolic capability to oxidize sulfide yet displays reduced metabolic potential suggestive of its lifestyle as an obligatory symbiont. This bacterium was detected in multiple sponge orders, according to similarities in key genes such as 16S rRNA and polyketide synthase genes. Due to its sulfide oxidation metabolism and occurrence in many members of the Porifera phylum, we suggest naming the newly described taxon Candidatus Porisulfidus. This article is protected by copyright. All rights reserved. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709–AM260713. Genome-to-Genome Distance (GGDC showed high similarity to Pseudoalteromonas haloplanktis (X67024. The generated unique Quick Response (QR codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates using MEGA6 software. Principal Component Analysis (PCA was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification.

  9. In search of an uncultured human-associated TM7 bacterium in the environment.

    Science.gov (United States)

    Dinis, Jorge M; Barton, David E; Ghadiri, Jamsheed; Surendar, Deepa; Reddy, Kavitha; Velasquez, Fernando; Chaffee, Carol L; Lee, Mei-Chong Wendy; Gavrilova, Helen; Ozuna, Hazel; Smits, Samuel A; Ouverney, Cleber C

    2011-01-01

    We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like) was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities.

  10. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.

    Science.gov (United States)

    Johnson, Ethan T; Baron, Daniel B; Naranjo, Belén; Bond, Daniel R; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A

    2010-07-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.

  11. Dyella-like bacterium isolated from an insect as a potential biocontrol agent against grapevine yellows.

    Science.gov (United States)

    Iasur-Kruh, Lilach; Zahavi, Tirtza; Barkai, Roni; Freilich, Shiri; Zchori-Fein, Einat; Naor, Vered

    2017-10-09

    Yellows diseases, caused by phytopathogenic bacteria of the genus Phytoplasma, are a major threat to grapevines worldwide. Because conventional applications against this pathogen are inefficient, and disease management is highly challenging, the use of beneficial bacteria has been suggested as a biocontrol solution. A Dyella-like bacterium (DLB), isolated from the Israeli insect vector of grapevine yellows Hyalesthes obsoletus, was suggested to be an endophyte. To test this hypothesis, the bacterium was introduced by spraying the plant leaves, and it had no apparent phytotoxicity to grapevine. Fluorescent in situ hybridization (FISH) analysis showed that DLB is colonizing grapevine phloem. Since phytoplasmas inhabit the same niche, DLB interactions with this phytopathogen were examined. When the isolate was introduced to phytoplasma-infected Chardonnay plantlets, morphological disease symptoms were markedly reduced. The mode of DLB action was then tested using bioinformatics and system biology tools. DLB genome analysis suggested that the ability to reduce phytoplasma symptoms is related to inhibition of the pathogenic bacterium. These results provide the first step in examining the potential of DLB as a biological control agent against phytoplasmas in grapevine, and possibly other agricultural crops.

  12. Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland

    DEFF Research Database (Denmark)

    Habicht, Kirsten S.; Miller, Mette; Cox, Raymond P.

    2011-01-01

    Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3...

  13. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice.

    Science.gov (United States)

    Tamura, Motoi; Hori, Sachiko; Nakagawa, Hiroyuki; Yamauchi, Satoshi; Sugahara, Takuya

    2016-07-01

    Equol is a metabolite of daidzein that is produced by intestinal microbiota. The oestrogenic activity of equol is stronger than daidzein. Equol-producing bacteria are believed to play an important role in the gut. The rod-shaped and Gram-positive anaerobic equol-producing intestinal bacterium Slackia TM-30 was isolated from healthy human faeces and its effects on urinary phyto-oestrogen, plasma and faecal lipids were assessed in adult mice. The urinary amounts of equol in urine were significantly higher in mice receiving the equol-producing bacterium TM-30 (BAC) group than in the control (CO) group (P equol-producing bacterium TM-30 affected the urinary amounts of phyto-oestrogens and the faecal lipid contents of mice. The equol-producing bacterium TM-30 likely influences the metabolism of phyto-oestrogen via changes in the gastrointestinal environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Optimization of Production Xylanase from Marine Bacterium Bacillus safensis P20 on Sugarcane Baggase by Submerged Fermentation

    National Research Council Canada - National Science Library

    Nanik Rahmani; Nadia Ulfa Jabbar Robbani; Irma Herawati Suparto; Yopi Yopi

    2014-01-01

    ....  In this study, optimization of fermentation condition extracellular xylanase from marine bacterium, Bacillus safensis P20 has been conducted by using sugarcane bagasse as carbon source under sub merged fermentation (SMF...

  15. Genome sequence of Kosakonia radicincitans UMEnt01/12, a bacterium associated with bacterial wilt diseased banana plant.

    Science.gov (United States)

    Suhaimi, Nurul Shamsinah Mohd; Yap, Kien-Pong; Ajam, Noni; Thong, Kwai-Lin

    2014-09-01

    Kosakonia radicincitans (formerly known as Enterobacter radicincitans), an endophytic bacterium was isolated from the symptomatic tissues of bacterial wilt diseased banana (Musa spp.) plant in Malaysia. The total genome size of K. radicincitans UMEnt01/12 is 5 783 769 bp with 5463 coding sequences (CDS), 75 tRNAs, and 9 rRNAs. The annotated draft genome of the K. radicincitans UMEnt01/12 strain might shed light on its role as a bacterial wilt-associated bacterium.

  16. A Literature Review of the Bacterium Klebsiella spp.: Grays Harbor and Chehalis River Improvements to Navigation Environmental Studies,

    Science.gov (United States)

    1981-04-01

    including soil, vegetation, and aqua- tic habitats. It is also now considered to be the dominant microorgan - ism in treatment ponds of pulp and paper...described it as a microorganism characteristic of human contamination. In 1884, Escherich4_/ isolated a bacterium (Bacillus coli or Escherichia coli) from the...Stream Improvement (NGASI) (1971) and Knittel (1975). In the 1960’s a saprophytic (soil) nonpathgenic bacterium Aerobacter aerogenes, considered to be

  17. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa

    Directory of Open Access Journals (Sweden)

    FF. Campos

    Full Text Available Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  18. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa).

    Science.gov (United States)

    Campos, F F; Garcia, J E; Luna-Finkler, C L; Davolos, C C; Lemos, M V F; Pérez, C D

    2015-05-01

    Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  19. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    Science.gov (United States)

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  20. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio).

    Science.gov (United States)

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  1. Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense.

    Science.gov (United States)

    Yang, Xiaoru; Li, Xinyi; Zhou, Yanyan; Zheng, Wei; Yu, Changping; Zheng, Tianling

    2014-06-01

    Algicidal bacteria may play a major role in controlling harmful algal blooms (HABs) dynamics. Bacterium DH77-1 was isolated with high algicidal activity against the toxic dinoflagellate Alexandrium tamarense and identified as Joostella sp. DH77-1. The results showed that DH77-1 exhibited algicidal activity through indirect attack, which excreted active substance into the filtrate. It had a relatively wide host range and the active substance of DH77-1 was relatively stable since temperature, pH and storage condition had no obvious effect on the algicidal activity. The algicidal compound from bacterium DH77-1 was isolated based on activity-guided bioassay and the molecular weight was determined to be 125.88 by MALDI-TOF mass spectrometer, however further identification via nuclear magnetic resonance (NMR) spectra is ongoing. The physiological responses of algal cells after exposure to the DH77-1 algicidal substances were as follows: the antioxidant system of A. tamarense responded positively in self-defense; total protein content decreased significantly as did the photosynthetic pigment content; superoxide dismutase, peroxidase enzyme and malondialdehyde content increased extraordinarily and algal cell nucleic acid leaked seriously ultimately inducing cell death. Furthermore, DH77-1 is the first record of a Joostella sp. bacterium being algicidal to the harmful dinoflagellate A. tamarense, and the bacterial culture and the active compounds might be potentially used as a bio-agent for controlling harmful algal blooms. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus"

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2011-03-07

    Concerns have been raised about our recent study describing a bacterium that can grow using arsenic (As) instead of phosphorus (P). Our data suggested that As could act as a substitute for P in major biomolecules in this organism. Although the issues raised are of investigative interest, we contend that they do not invalidate our conclusions. We argue that while no single line of evidence we presented was sufficient to support our interpretation of the data, taken as an entire dataset we find no plausible alternative to our conclusions. Here we reply to the critiques and provide additional arguments supporting the assessment of the data we reported.

  3. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  4. Complete genome sequence of Lactobacillus helveticus MB2-1, a probiotic bacterium producing exopolysaccharides.

    Science.gov (United States)

    Li, Wei; Xia, Xiudong; Chen, Xiaohong; Rui, Xin; Jiang, Mei; Zhang, Qiuqin; Zhou, Jianzhong; Dong, Mingsheng

    2015-09-10

    Lactobacillus helveticus MB2-1 is a probiotic bacterium producing exopolysaccharides (EPS), which was isolated from traditional Sayram ropy fermented milk in southern Xinjiang, China. The genome consists of a circular 2,084,058bp chromosome with no plasmid. The genome sequence indicated that this strain includes a 15.20kb gene cluster involved in EPS biosynthesis. Genome sequencing information has provided the basis for understanding the potential molecular mechanism behind the EPS production. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  6. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes

    Science.gov (United States)

    Cossart, Pascale

    2011-01-01

    Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed. PMID:22114192

  7. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium.

    Science.gov (United States)

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains.

  8. Supramolecular organization of photosynthetic membrane proteins in the chlorosome-containing bacterium Chloroflexus aurantiacus.

    Science.gov (United States)

    Bína, David; Gardian, Zdenko; Vácha, František; Litvín, Radek

    2014-10-01

    The arrangement of core antenna complexes (B808-866-RC) in the cytoplasmic membrane of filamentous phototrophic bacterium Chloroflexus aurantiacus was studied by electron microscopy in cultures from different light conditions. A typical nearest-neighbor center-to-center distance of ~18 nm was found, implying less protein crowding compared to membranes of purple bacteria. A mean RC:chlorosome ratio of 11 was estimated for the occupancy of the membrane directly underneath each chlorosome, based on analysis of chlorosome dimensions and core complex distribution. Also presented are results of single-particle analysis of core complexes embedded in the native membrane.

  9. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kuo-Hsiang [Washington University, St. Louis; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Honchak, Barbara M [Washington University, St. Louis; Karbach, Lauren E [Washington University, St. Louis; Land, Miriam L [ORNL; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Larimer, Frank W [ORNL; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Pierson, Beverly K [University of Puget Sound, Tacoma, WA

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  10. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen.

    Science.gov (United States)

    Dolfing, J; Zeyer, J; Binder-Eicher, P; Schwarzenbach, R P

    1990-01-01

    A bacterium tentatively identified as a Pseudomonas sp. was isolated from a laboratory aquifer column in which toluene was degraded under denitrifying conditions. The organism mineralized toluene in pure culture in the absence of molecular oxygen. In carbon balance studies using [ring-UL-14C]toluene, more than 50% of the radioactivity was recovered as 14CO2. Nitrate and nitrous oxide served as electron acceptors for toluene mineralization. The organism was also able to degrade m-xylene, benzoate, benzaldehyde, p-cresol, p-hydroxy-benzaldehyde, p-hydroxybenzoate and cyclohexanecarboxylic acid in the absence of molecular oxygen.

  11. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...... revealed 10 open reading frames (ORFs). The two largest of these, namely Orf21 and Orf41, showed similarity to a Bacillus plasmid recombinase and a Pseudoalteromonas plasmid replication protein, respectively. A sequence with homology to double stranded replication origins from rolling circle plasmids...

  12. Changes in fine structure and polypeptide pattern during development of Holospora obtusa, a bacterium infecting the macronucleus of Paramecium caudatum.

    Science.gov (United States)

    Görtz, H D; Lellig, S; Miosga, O; Wiemann, M

    1990-01-01

    The development of the bacterium Holospora obtusa, which infects the macronucleus of Paramecium caudatum, was investigated in the course of a new infection from the infectious form into the reproductive form and vice versa. In parallel with a complete structural reorganization of the bacterium, the protein pattern changed gradually in this development. During the differentiation of the infectious form into the reproductive form, the voluminous periplasm was gradually reduced and the cytoplasm expanded, until the entire bacterium was filled by the cytoplasm. At this stage the long cell divided into five to seven short cells and thereby established the reproductive form, the main stage of the bacterium being maintained and multiplying in the host nucleus. In parallel with the reduction of the periplasm, some of the main proteins of the infectious form gradually disappeared in the electrophoresis pattern; some proteins disappeared earlier than others. Simultaneously, other proteins appeared and gradually became more prominent in the pattern of the developing reproductive form. In the reverse development, when the reproductive form differentiated into the infectious form, the bacterium grew longer, the cytoplasm was condensed, and electron-dense material was deposited in the extending periplasmic space. In parallel with this morphological development, the polypeptide pattern reverted to that of the infectious form. Images PMID:2211504

  13. INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium.

    Science.gov (United States)

    Araujo Granda, Pablo; Gras, Anna; Ginovart, Marta; Moulton, Vincent

    2016-08-21

    We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva

    Science.gov (United States)

    Bustamam, A.; Fitria, I.; Umam, K.

    2017-07-01

    Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.

  15. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296

    Directory of Open Access Journals (Sweden)

    Larissa Balabanova

    2016-09-01

    Full Text Available Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296 genome (“The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853” [1] providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites.

  16. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae.

    Science.gov (United States)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi

    2012-11-01

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae.

  18. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-11-15

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae. (orig.)

  19. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    Science.gov (United States)

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    Science.gov (United States)

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Proteomics of early and late cold shock stress on thermophilic bacterium, Thermus sp. GH5.

    Science.gov (United States)

    Yousefi-Nejad, Masoumeh; Manesh, Hossein Naderi-; Khajeh, Khosro

    2011-09-06

    Thermus sp. GH5 is an aerobic thermophilic bacterium with optimal growth at 70-75°C isolated from a hot spring in Ardabil, North West province of Iran. Due to industrial and biotechnological applications of thermophils, it is very important to know more about their proteomes and metabolomes. Since thermophils live in stressful environments it will be very useful to study their survival mechanisms. There are many reports on stress induced proteins, particularly the well characterized heat shock proteins, but little is known about the functions of proteins induced after a decrease in temperature. In this study, the proteomes of the thermophilic bacterium after a temperature down shift from 75°C to 45°C for 2h and 5h were investigated. We also compared protein profiles of early and late cold shock processes to that of cells grown at 75°C and identified a set of proteins, some of which are involved in metabolic processes such as fatty acid synthesis, pentose phosphate pathway, aromatic component degradation and signal transduction. Our data showed this organism could be tolerating the stress conditions by changing its metabolism and physiology. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    Science.gov (United States)

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  3. Economic game theory to model the attenuation of virulence of an obligate intracellular bacterium

    Directory of Open Access Journals (Sweden)

    Damian Tago

    2016-08-01

    Full Text Available Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host’s defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g. with Ehrlichia ruminantium, there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  4. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon.

    Science.gov (United States)

    Jucker, B A; Harms, H; Zehnder, A J

    1996-01-01

    Medical implants are often colonized by bacteria which may cause severe infections. The initial step in the colonization, the adhesion of bacteria to the artificial solid surface, is governed mainly by long-range van der Waals and electrostatic interactions between the solid surface and the bacterial cell. While van der Waals forces are generally attractive, the usually negative charge of bacteria and solid surfaces leads to electrostatic repulsion. We report here on the adhesion of a clinical isolate, Stenotrophomonas maltophilia 70401, which is, at physiological pH, positively charged. S. maltophilia has an electrophoretic mobility of +0.3 x 10(-8) m2 V-1 s-1 at pH 7 and an overall surface isoelectric point at pH 11. The positive charge probably originates from proteins located in the outer membrane. For this bacterium, both long-range forces involved in adhesion are attractive. Consequently, adhesion of S. maltophilia to negatively charged surfaces such as glass and Teflon is much favored compared with the negatively charged bacterium Pseudomonas putida mt2. While adhesion of negatively charged bacteria is impeded in media of low ionic strength because of a thick negatively charged diffuse layer, adhesion of S. maltophilia was particularly favored in dilute medium. The adhesion efficiencies of S. maltophilia at various ionic strengths could be explained in terms of calculated long-range interaction energies between S. maltophilia and glass or Teflon. PMID:8808938

  5. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    Science.gov (United States)

    Sunkar, Swetha; Nachiyar, C Valli

    2012-01-01

    Objective To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity. PMID:23593575

  6. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Directory of Open Access Journals (Sweden)

    Magali Boutard

    2014-11-01

    Full Text Available Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme assays, RNA sequencing (RNA-seq, and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  7. Involvement of a novel fermentative bacterium in acidification in a thermophilic anaerobic digester.

    Science.gov (United States)

    Hori, Tomoyuki; Akuzawa, Masateru; Haruta, Shin; Ueno, Yoshiyuki; Ogata, Atsushi; Ishii, Masaharu; Igarashi, Yasuo

    2014-12-01

    Acidification results from the excessive accumulation of volatile fatty acids and the breakthrough of buffering capacity in anaerobic digesters. However, little is known about the identity of the acidogenic bacteria involved. Here, we identified an active fermentative bacterium during acidification in a thermophilic anaerobic digester by sequencing and phylogenetic analysis of isotopically labeled rRNA. The digestion sludge retrieved from the beginning of pH drop in the laboratory-scale anaerobic digester was incubated anaerobically at 55 °C for 4 h during which 13C-labeled glucose was supplemented repeatedly. 13CH4 and 13CO2 were produced after substrate addition. RNA extracts from the incubated sludge was density-separated by ultracentrifugation, and then bacterial communities in the density fractions were screened by terminal restriction fragment length polymorphism and clone library analyses based on 16S rRNA transcripts. Remarkably, a novel lineage within the genus Thermoanaerobacterium became abundant with increasing the buoyant density and predominated in the heaviest fraction of RNA. The results in this study indicate that a thermoacidophilic bacterium exclusively fermented the simple carbohydrate glucose, thereby playing key roles in acidification in the thermophilic anaerobic digester. © 2014 Federation of European Microbiological Societies.

  8. A cambialistic superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus.

    Science.gov (United States)

    Lancaster, Vanessa L; LoBrutto, Russell; Selvaraj, Fabiyola M; Blankenship, Robert E

    2004-06-01

    Superoxide dismutase from the thermophilic anoxygenic photosynthetic bacterium Chloroflexus aurantiacus was cloned, purified, and characterized. This protein is in the manganese- and iron-containing family of superoxide dismutases and is able to use both manganese and iron catalytically. This appears to be the only soluble superoxide dismutase in C. aurantiacus. Iron and manganese cofactors were identified by using electron paramagnetic resonance spectroscopy and were quantified by atomic absorption spectroscopy. By metal enrichment of growth media and by performing metal fidelity studies, the enzyme was found to be most efficient with manganese incorporated, yet up to 30% of the activity was retained with iron. Assimilation of iron or manganese ions into superoxide dismutase was also found to be affected by the growth conditions. This enzyme was also found to be remarkably thermostable and was resistant to H2O2 at concentrations up to 80 mM. Reactive oxygen defense mechanisms have not been previously characterized in the organisms belonging to the phylum Chloroflexi. These systems are of interest in C. aurantiacus since this bacterium lives in a hyperoxic environment and is subject to high UV radiation fluxes.

  9. Detection of a novel bacterium associated with spores of the arbuscular mycorrhizal fungus Gigaspora margarita.

    Science.gov (United States)

    Long, Liangkun; Yao, Qing; Ai, Yuncan; Deng, Mingrong; Zhu, Honghui

    2009-06-01

    With PCR-denaturing gradient gel electrophoresis analysis, two bacterial 16S rRNA gene V3 region sequences, 7A and 7B, were detected in association with the crushed spores of the arbuscular mycorrhizal fungus Gigaspora margarita W.N. Becker & I.R. Hall 1976 MAFF520054. DNA sequencing and phylogenetic analysis revealed that 7B was mostly related to the documented cytoplasm endosymbiotic bacterium Candidatus Glomeribacter gigasporarum of G. margarita, but 7A could not be confidently assigned to a known taxon. Further characterization of 7A was conducted by obtaining its almost complete 16S rRNA gene sequence via PCR amplification and sequencing. BLAST search indicates that the 16S rRNA gene sequence did not match any identified species sequences in the GenBank database. Further detection revealed that 7A was also associated with the clean G. margarita MAFF520054 spores that were obtained by the surface-sterilized method or dual culture with Ri T-DNA transformed carrot roots. Many ellipse-shaped or egg-shaped bacterium-like organisms were clustered in layer 3 of the fungal spore wall by transmission electron microscopy observation. Our results indicate that 7A represents a novel bacterial population associated with G. margarita MAFF520054 spores, and its doubtless location (wall or cytoplasm) remains unclear based on the present data.

  10. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  11. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  12. Interface-mediated synthesis of monodisperse ZnS nanoparticles with sulfate-reducing bacterium culture.

    Science.gov (United States)

    Liang, Zhanguo; Mu, Jun; Mu, Ying; Shi, Jiaming; Hao, Wenjing; Dong, Xuewei; Yu, Hongquan

    2013-12-01

    We have created a new method of ZnS nanospheres synthesis. By interface-mediated precipitation method (IMPM), monodisperse ZnS nanoparticles was synthesized on the particle surface of sulfate-reducing bacterium nutritious agar culture. Sulfate-reducing bacterium (SRB) was used as a sulfide producer because of its dissimilatory sulfate reduction capability, meanwhile produced a variety of amino acids acting as templates for nanomaterials synthesis. Then zinc acetate was dispersed into nutritious agar plate. Subsequently agar plate was broken into particles bearing much external surface, which successfully mediated the synthesis of monodisperse ZnS nanoparticles. The morphology of monodisperse ZnS nanospheres and SRB were examined by scanning electron microscopy (SEM), and the microstructure was investigated by X-ray diffraction (XRD). The thermostability of ZnS nanoparticles was determined by thermo gravimetric-differential thermo gravimetric (TG-DTG). The maximum absorption wavelengh was analysed with an ultraviolet-visible spectrophotometer within a range of 199-700 nm. As a result, monodisperse ZnS nanoparticles were successfully synthesized, with an average diameter of 80 nm. Maximum absorption wavelengh was 228 nm, and heat decomposed temperature of monodisperse ZnS nanoparticles was 596°C. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    Science.gov (United States)

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere. © 2014 John Wiley & Sons Ltd.

  14. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  15. Enzymatic properties of chitinase-producing antagonistic bacterium Paenibacillus chitinolyticus with various substrates.

    Science.gov (United States)

    Song, Yong-Su; Seo, Dong-Jun; Ju, Wan-Taek; Lee, Yong-Seong; Jung, Woo-Jin

    2015-12-01

    Various chitin substrates were used to investigate the properties of enzymes produced from the chitinase-producing bacterium Paenibacillus chitinolyticus MP-306 against phytopathogens. The MP-306 bacterium was incubated in nine culture media [crab shell powder chitin (CRS), chitin-protein complex powder (CPC), carboxymethyl-chitin powder (CMC), yeast extract only (YE), LB (Trypton, NaCl, and yeast extract), GT (Trypton, NaCl, and glucose), crab shell colloidal chitin (CSC), squid pen powder chitin (SPC), and cicada slough powder chitin (CSP)] at 30 °C for 3 days. Chitinase isozymes in CPC medium were expressed strongly as CN1, CN2, CN3, CN4, CN5, and CN6 bands on native-PAGE gels. Chitinase isozymes in CPC and CMC medium were expressed as 13 bands (CS1-CS13) on SDS-PAGE gels. Chitinase isozymes were expressed strongly on SDS-PAGE gels as two bands (CS6 and CS8) on YE and LB medium and 13 bands (CS1-CS13) on SPC medium. In crude enzyme, chitinase isozymes at pH 7 and pH 9 in chitin media appeared strongly on SDS-PAGE gels. Partial purified enzyme indicated high stability of enzyme activity at various temperatures and pHs in chitin medium, while these enzymes indicated low activity staining of enzyme on electrophoresis gels at various temperatures and pHs condition of chitin medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    Directory of Open Access Journals (Sweden)

    Min Liu

    Full Text Available In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  17. Removal of corper(II Ions from aqueous solution by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    M. Yilmaz

    2010-06-01

    Full Text Available Enterococcus faecium, a lactic acid bacterium (LAB, was evaluated for its ability to remove copper(II ions from water. The effects of the pH, contact time, initial concentration of copper(II ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II ions used to determine the maximum amount of biosorbed copper(II ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attained at pH 5.0 and 6.0. Temperature variation between 20°C and 40°C did not affect the biosorption capacity of the bacterial biomass. The highest copper(II ion removal capacity was 106.4 mg per g dry biomass. The correlation regression coefficients show that the biosorption process can be well defined by the Freundlich equation. The change in biosorption capacity with time was found to fit a pseudo-second-order equation.

  18. Characterization of acetonitrile-tolerant marine bacterium Exiguobacterium sp. SBH81 and its tolerance mechanism.

    Science.gov (United States)

    Kongpol, Ajiraporn; Kato, Junichi; Tajima, Takahisa; Vangnai, Alisa S

    2012-01-01

    A Gram-positive marine bacterium, Exiguobacterium sp. SBH81, was isolated as a hydrophilic organic-solvent tolerant bacterium, and exhibited high tolerance to various types of toxic hydrophilic organic solvents, including acetonitrile, at relatively high concentrations (up to 6% [v/v]) under the growing conditions. Investigation of its tolerance mechanisms illustrated that it does not rely on solvent inactivation processes or modification of cell surface characteristics, but rather, increase of the cell size lowers solvent partitioning into cells and the extrusion of solvents through the efflux system. A test using efflux pump inhibitors suggested that secondary transporters, i.e. resistance nodulation cell division (RND) and the multidrug and toxic compound extrusion (MATE) family, are involved in acetonitrile tolerance in this strain. In addition, its acetonitrile tolerance ability could be stably and significantly enhanced by repetitive growth in the presence of toxic acetonitrile. The marked acetonitrile tolerance of Exiguobacterium sp. SBH81 indicates its potential use as a host for biotechnological fermentation processes as well as bioremediation.

  19. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  20. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  1. Joseph Lister: first use of a bacterium as a 'model organism' to illustrate the cause of infectious disease of humans.

    Science.gov (United States)

    Santer, Melvin

    2010-03-20

    Joseph Lister's goal was to show that a pure culture of Bacterium lactis, normally present in milk, uniquely caused the lactic acid fermentation of milk. To demonstrate this fact he devised a procedure to obtain a pure clonal population of B. lactis, a result that had not previously been achieved for any microorganism. Lister equated the process of fermentation with infectious disease and used this bacterium as a model organism, demonstrating its role in fermentation; from this result he made the inductive inference that infectious diseases of humans are the result of the growth of specific, microscopic, living organisms in the human host.

  2. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium ¤Burkholderia cepacia¤

    DEFF Research Database (Denmark)

    Ravnskov, S.; Larsen, J.; Jakobsen, I.

    2002-01-01

    The biocontrol bacterium Burkholderia cepacia is known to suppress a broad range of root pathogenic fungi, while its impact on other beneficial non-target organisms such as arbuscular mycorrhizal (AM) fungi is unknown. Direct interactions between five B. cepacia strains and the AM fungus, Glomus...... (NLFAs), respectively. Hyphal P transport was also unaffected by the biocontrol bacterium, which either stimulated, reduced or had no effect on length of the external mycelium of G. intraradices. The cyclic PLFAs cy17:0 and cy19:0 were suggested to be useful markers for estimation of biomass of B...

  3. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio.

    Directory of Open Access Journals (Sweden)

    Sascha Knauf

    Full Text Available The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum, yaws (ssp. pertenue, and endemic syphilis (ssp. endemicum in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90% baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560 versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7. Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication

  4. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    Directory of Open Access Journals (Sweden)

    Arora Pankaj

    2012-11-01

    Full Text Available Abstract Background Chloronitrophenols (CNPs are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP and 2-aminophenol (2AP as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii the bioremediation of 4C2NP by any bacterium.

  5. Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols

    NARCIS (Netherlands)

    Gerritse, J; Renard, [No Value; Gomes, TMP; Lawson, PA; Collins, MD; Gottschal, JC

    A strictly anaerobic bacterium, strain PCE1, was isolated from a tetrachloroethene-dechlorinating enrichment culture. Cells of the bacterium were motile curved rods, with approximately four lateral flagella. They possessed a gram-positive type of cell wall and contained cytochrome c. Optimum growth

  6. Biochemical Characterization and Relative Expression Levels of Multiple Carbohydrate Esterases of the Xylanolytic Rumen Bacterium Prevotella ruminicola 23 Grown on an Ester-Enriched Substrate

    NARCIS (Netherlands)

    Kabel, M.A.; Yeoman, C.J.; Han, Y.; Dodd, D.; Abbas, C.A.; Bont, de J.A.M.; Morrison, M.; Cann, I.K.O.; Mackie, R.I.

    2011-01-01

    We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P.

  7. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration

    NARCIS (Netherlands)

    Holliger, C; Hahn, D; Harmsen, H; Ludwig, W; Schumacher, W; Tindall, B; Vazquez, F; Weiss, N; Zehnder, AJB

    The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It

  8. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding......, and galactomannan. The method is a fermentation process performed under strict anaerobic conditions....

  9. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.

    Science.gov (United States)

    Pohlmann, Anne; Fricke, Wolfgang Florian; Reinecke, Frank; Kusian, Bernhard; Liesegang, Heiko; Cramm, Rainer; Eitinger, Thomas; Ewering, Christian; Pötter, Markus; Schwartz, Edward; Strittmatter, Axel; Voss, Ingo; Gottschalk, Gerhard; Steinbüchel, Alexander; Friedrich, Bärbel; Bowien, Botho

    2006-10-01

    The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's ability to produce and store large amounts of poly[R-(-)-3-hydroxybutyrate] and other polyesters could be harnessed to make biodegradable plastics. Here we report the complete genome sequence of the two chromosomes of R. eutropha H16. Together, chromosome 1 (4,052,032 base pairs (bp)) and chromosome 2 (2,912,490 bp) encode 6,116 putative genes. Analysis of the genome sequence offers the genetic basis for exploiting the biotechnological potential of this organism and provides insights into its remarkable metabolic versatility.

  10. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  11. A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei.

    Science.gov (United States)

    Alimolaei, Mojtaba; Golchin, Mehdi

    2017-01-01

    There are few practical protocols to extract efficient plasmid DNA from the difficult-to-lyse bacterium, Lactobacillus casei. This is related to production of a large amount of exopolysaccharide coat and its special physiological characteristics. In this study, we optimized a protocol to extract efficient plasmid DNA from a recombinant L. casei strain. Different extraction methods were evaluated in three classes of conventional, kit-based, and combined protocols. The quantity and quality of the extracted plasmid DNA were determined by spectrophotometry, agarose gel electrophoresis, and PCR. Results revealed that the yield of the extracted plasmids differed for each protocol and conventional protocols showed higher plasmid yields. We suggested an effective, inexpensive protocol to extract plasmid DNA from the recombinant L. casei for downstream biological processes. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  12. New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans.

    Science.gov (United States)

    Farci, Domenica; Bowler, Matthew W; Kirkpatrick, Joanna; McSweeney, Sean; Tramontano, Enzo; Piano, Dario

    2014-07-01

    We have analyzed the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Unexpectedly, the bacterial envelope appears to be organized in different complexes of high molecular weight. Each complex is composed of several proteins, most of which are coded by genes of unknown function and the majority are constituents of the inner/outer membrane system. One of the most abundant complexes is constituted by the gene DR_0774. This protein is a type of secretin which is a known subunit of the homo-oligomeric channel that represents the main bulk of the type IV piliation family. Finally, a minor component of the pink envelope consists of several inner-membrane proteins. The implications of these findings are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree.

    Science.gov (United States)

    Rivas, Raúl; Trujillo, Martha E; Mateos, P F; Martínez-Molina, E; Velázquez, Encarna

    2004-03-01

    A Gram-positive, aerobic, non-motile bacterium was isolated from a decayed elm tree. Phylogenetic analysis based on 16S rDNA sequences revealed 99.0 % similarity to Cellulomonas humilata. Chemotaxonomic data that were determined for this isolate included cell-wall composition, fatty acid profiles and polar lipids; the results supported the placement of strain XIL11(T) in the genus Cellulomonas. The DNA G+C content was 73 mol%. The results of DNA-DNA hybridization with C. humilata ATCC 25174(T), in combination with chemotaxonomic and physiological data, demonstrated that isolate XIL11(T) should be classified as a novel Cellulomonas species. The name Cellulomonas xylanilytica sp. nov. is proposed, with strain XIL11(T) (=LMG 21723(T)=CECT 5729(T)) as the type strain.

  14. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  15. Exopolysaccharide of Antarctic bacterium Pseudoaltermonas sp. S-5 induces apoptosis in K562 cells.

    Science.gov (United States)

    Chen, Guochuang; Qian, Wen; Li, Jing; Xu, Yanghui; Chen, Kaoshan

    2015-05-05

    The aim of this study was to investigate the anticancer activity of exopolysaccharide (PEP) of Antarctic bacterium Pseudoaltermonas sp. S-5 and elucidate the underlying molecular mechanisms. PEP significantly inhibited the growth of human leukemia K562 cells. Results of morphological characterization showed that PEP-treated cells displayed typical morphological characteristics of apoptosis such as condensation of chromatin and formation of apoptotic bodies. Flow cytometry analyses and colorimetric assay demonstrated that PEP induced collapse of mitochondrial membrane potential and activation of caspase-9, which indicated that intrinsic apoptotic signaling pathway was involved in apoptosis induced by PEP in K562 cells. Western blot analysis showed that PEP increased the ratio of Bax/Bcl-2. In addition, calcium signal might contribute to the cytotoxicity of PEP against K562 cells. These findings suggest that PEP may be potentially effective drug against human leukemia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    Science.gov (United States)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  17. Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium.

    Science.gov (United States)

    Wu, Ming L; van Teeseling, Muriel C F; Willems, Marieke J R; van Donselaar, Elly G; Klingl, Andreas; Rachel, Reinhard; Geerts, Willie J C; Jetten, Mike S M; Strous, Marc; van Niftrik, Laura

    2012-01-01

    "Candidatus Methylomirabilis oxyfera" is a newly discovered denitrifying methanotroph that is unrelated to previously known methanotrophs. This bacterium is a member of the NC10 phylum and couples methane oxidation to denitrification through a newly discovered intra-aerobic pathway. In the present study, we report the first ultrastructural study of "Ca. Methylomirabilis oxyfera" using scanning electron microscopy, transmission electron microscopy, and electron tomography in combination with different sample preparation methods. We observed that "Ca. Methylomirabilis oxyfera" cells possess an atypical polygonal shape that is distinct from other bacterial shapes described so far. Also, an additional layer was observed as the outermost sheath, which might represent a (glyco)protein surface layer. Further, intracytoplasmic membranes, which are a common feature among proteobacterial methanotrophs, were never observed under the current growth conditions. Our results indicate that "Ca. Methylomirabilis oxyfera" is ultrastructurally distinct from other bacteria by its atypical cell shape and from the classical proteobacterial methanotrophs by its apparent lack of intracytoplasmic membranes.

  18. Deciphering the evolution and metabolism of an anammox bacterium from a community genome.

    Science.gov (United States)

    Strous, Marc; Pelletier, Eric; Mangenot, Sophie; Rattei, Thomas; Lehner, Angelika; Taylor, Michael W; Horn, Matthias; Daims, Holger; Bartol-Mavel, Delphine; Wincker, Patrick; Barbe, Valérie; Fonknechten, Nuria; Vallenet, David; Segurens, Béatrice; Schenowitz-Truong, Chantal; Médigue, Claudine; Collingro, Astrid; Snel, Berend; Dutilh, Bas E; Op den Camp, Huub J M; van der Drift, Chris; Cirpus, Irina; van de Pas-Schoonen, Katinka T; Harhangi, Harry R; van Niftrik, Laura; Schmid, Markus; Keltjens, Jan; van de Vossenberg, Jack; Kartal, Boran; Meier, Harald; Frishman, Dmitrij; Huynen, Martijn A; Mewes, Hans-Werner; Weissenbach, Jean; Jetten, Mike S M; Wagner, Michael; Le Paslier, Denis

    2006-04-06

    Anaerobic ammonium oxidation (anammox) has become a main focus in oceanography and wastewater treatment. It is also the nitrogen cycle's major remaining biochemical enigma. Among its features, the occurrence of hydrazine as a free intermediate of catabolism, the biosynthesis of ladderane lipids and the role of cytoplasm differentiation are unique in biology. Here we use environmental genomics--the reconstruction of genomic data directly from the environment--to assemble the genome of the uncultured anammox bacterium Kuenenia stuttgartiensis from a complex bioreactor community. The genome data illuminate the evolutionary history of the Planctomycetes and allow us to expose the genetic blueprint of the organism's special properties. Most significantly, we identified candidate genes responsible for ladderane biosynthesis and biological hydrazine metabolism, and discovered unexpected metabolic versatility.

  19. Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, B.K.; Keith, L.M.; Leovy, J.G.

    1984-07-01

    Mutants deficient in the production of bateriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus, Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions. 11 references, 4 figures, 3 tables.

  20. Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Savikhin, S.; Struve, W.S. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States); Zhu, Y.; Blankenship, R.E. [Arizona State Univ., Tempe, AZ (United States)

    1996-02-29

    Energy transfers between the bacteriochlorophyll c and a antennae in light-harvesting chlorosomes from the green bacterium Chloroflexus aurantiacus have been studied in two-color pump-probe experiments with improved sensitivity and wavelength versatility. The BChl c {yields} BChl a energy transfers are well simulated with biexponential kinetics, with lifetimes of 2-3 and 11 ps. They do not exhibit an appreciable subpicosecond component. In the context of a kinetic model for chlorosomes, these lifetimes suggest that both internal BChl c processes and the BChl c {yields} BChl a energy-transfer step contribute materially to the empirical rod-to-baseplate energy-transfer kinetics. 11 refs., 2 figs., 1 tab.

  1. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  2. The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K.

    Science.gov (United States)

    Chaillou, Stéphane; Champomier-Vergès, Marie-Christine; Cornet, Monique; Crutz-Le Coq, Anne-Marie; Dudez, Anne-Marie; Martin, Véronique; Beaufils, Sophie; Darbon-Rongère, Emmanuelle; Bossy, Robert; Loux, Valentin; Zagorec, Monique

    2005-12-01

    Lactobacillus sakei is a psychotrophic lactic acid bacterium found naturally on fresh meat and fish. This microorganism is widely used in the manufacture of fermented meats and has biotechnological potential in biopreservation and food safety. We have explored the 1,884,661-base-pair (bp) circular chromosome of strain 23K encoding 1,883 predicted genes. Genome sequencing revealed a specialized metabolic repertoire, including purine nucleoside scavenging that may contribute to an ability to successfully compete on raw meat products. Many genes appear responsible for robustness during the rigors of food processing--particularly resilience against changing redox and oxygen levels. Genes potentially responsible for biofilm formation and cellular aggregation that may assist the organism to colonize meat surfaces were also identified. This genome project is an initial step for investigating new biotechnological approaches to meat and fish processing and for exploring fundamental aspects of bacterial adaptation to these specific environments.

  3. Brevibacterium rufescens nov. comb. , a facultative anaerobic methylotrophic bacterium from oil-bearing strata

    Energy Technology Data Exchange (ETDEWEB)

    Nazina, T.N.

    1981-03-01

    The paper presents the results of studying the bacterial population from the microaerophilic zone of oil-bearing strata of the Apsheron Peninsula. The incidence of bacteria capable of growing at the account of organic substances present in stratal water could reach dozens of thousands of cells in 1 ml. A bacterium predominant in the bacterial cenosis of the microaerophilic zone was islated as a pure culture. A new combination, Brevibacterium rufescens nov. comb. was created on the basis of morphological, physiologo-biochemical properties and the GC content in the DNA of the organism under study. The microorganism is adapted to its habitat in a number of properties. The necessity of recreating the genus Brevibacterium is discussed.

  4. Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions.

    Science.gov (United States)

    Wanner, U; Kemmler, J; Weilenmann, H U; Egli, T; el-Banna, T; Auling, G

    1990-01-01

    A Gram-negative bacterium was isolated from river sediment which was able to grow with nitrilotriacetic acid as a combined carbon, nitrogen and energy source in the absence of molecular oxygen using nitrate as the terminal electron acceptor. Batch growth parameters and mass balances are reported for growth under both aerobic and denitrifying conditions. The strain was characterized with respect to its substrate spectrum and other physiological properties. This denitrifying isolate is serologically unrelated to the comprehensively described Gram-negative obligately aerobic NTA-degrading bacteria all of which belong to the alpha-subclass of Proteobacteria. Chemotaxonomic characterization, which revealed the presence of spermidine as the main polyamine and ubiquinone Q-8, excludes the new isolate from the phylogenetically redefined genus Pseudomonas and indicates a possible location within the gamma-subclass of Proteobacteria close to, but separate from the genus Xanthomonas.

  5. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...... were polyhydroxyalkanoates (PHAs) produced naturally by Pseudomonas putida and Cupriavidus necator, or by recombinant Escherichia coli strains. B. bacteriovorus with a mutated PHA depolymerase gene to prevent the unwanted breakdown of the bio-product allowed the recovery of up to 80......% of that accumulated by the prey bacteria, even at high biomass concentrations. This innovative downstream process highlights how B. bacteriovorus can be used as a novel, biological lytic agent for the inexpensive, industrial scale recovery of intracellular products from different Gram-negative prey cultures....

  6. Identification of ceramide phosphorylethanolamine and ceramide phosphorylglycerol in the lipids of an anaerobic bacterium.

    Science.gov (United States)

    LaBach, J P; White, D C

    1969-09-01

    Nearly half the phospholipids isolated from the anerobic bacterium Bacteroides melaninogenicus are phosphosphingolipids. The two major phosphosphingolipids have been characterized as ceramide phosphorylethanolamine and ceramide phosphorylglycerol. The long-chain bases of these phosphosphingolipids appear to have branched and normal saturated carbon chains of 17, 18, and 19 atoms; the phosphate is at the 1-position of the long-chain base. The composition of the amide-linked fatty acids of the phosphosphingolipids differs from that of the ester-linked fatty acids of the diacylphosphoglycerides in having a higher percentage of 14:0, 17:0, and 18:0 acids as well as containing nearly all the monoenoic fatty acids found in the bacterial lipids. The finding of phosphosphingolipids in bacteria is exceedingly rare and to our knowledge ceramide phosphorylglycerol has not been previously found in nature.

  7. Novel Poly[(R-3-Hydroxybutyrate]-Producing Bacterium Isolated from a Bolivian Hypersaline Lake

    Directory of Open Access Journals (Sweden)

    María Soledad Marqués-Calvo

    2013-01-01

    Full Text Available Poly[(R-3-hydroxybutyrate] (PHB constitutes a biopolymer synthesized from renewable resources by various microorganisms. This work focuses on finding a new PHB-producing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, strain S29 was selected and used in a fed-batch fermentation to generate a biopolymer. This biopolymer was recovered and identified as PHB homopolymer. Surprisingly, it featured several fractions of different molecular masses, and thermal properties unusual for PHB. Hence, the microorganism S29, genetically identified as a new strain of Bacillus megaterium, proved to be interesting not only due to its growth and PHB accumulation kinetics under the investigated cultivation conditions, but also due to the thermal properties of the produced PHB.

  8. Tyrosine binding and promiscuity in the arginine repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis.

    Science.gov (United States)

    Mariutti, Ricardo Barros; Ullah, Anwar; Araujo, Gabriela Campos; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy

    2016-07-08

    The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  10. Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity

    Science.gov (United States)

    Raatz, M.; Hintsche, M.; Bahrs, M.; Theves, M.; Beta, C.

    2015-07-01

    The natural habitat of many bacterial swimmers is dominated by interfaces and narrow interstitial spacings where they frequently interact with the fluid boundaries in their vicinity. To quantify these interactions, we investigated the swimming behavior of the soil bacterium Pseudomonas putida in a variety of confined environments. Using microfluidic techniques, we fabricated structured microchannels with different configurations of cylindrical obstacles. In these environments, we analyzed the swimming trajectories for different obstacle densities and arrangements. Although the overall swimming pattern remained similar to movement in the bulk fluid, we observed a change in the turning angle distribution that could be attributed to collisions with the cylindrical obstacles. Furthermore, a comparison of the mean run length of the bacteria to the mean free path of a billiard particle in the same geometry indicated that, inside a densely packed environment, the trajectories of the bacterial swimmers are efficiently guided along the open spacings.

  11. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  12. Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.

    Science.gov (United States)

    Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C

    2014-12-01

    This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.

  13. Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology

    Science.gov (United States)

    Knabe, Nicole; Siedler, Frank; Scheffer, Beatrix; Pflüger-Grau, Katharina; Pfeiffer, Friedhelm; Oesterhelt, Dieter; Marin-Sanguino, Alberto

    2017-01-01

    Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential. PMID:28081159

  14. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.

    Science.gov (United States)

    Del Giudice, Immacolata; Limauro, Danila; Pedone, Emilia; Bartolucci, Simonetta; Fiorentino, Gabriella

    2013-10-01

    Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20mM and 15mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram+bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2×10(4)M(-1)s(-1). It also exhibited weak phosphatase activity with a kcat/KM value of 2.7×10(-4)M(-1)s(-1). The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural-functional characterization of a thermophilic arsenate reductase. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. [Purification and structural elucidation of exoploysaccharide from a new marine bacterium Lentibacter algarum ZXM100T].

    Science.gov (United States)

    Li, Peipei; Chen, Xuechang; Zhang, Yurong; Zhang, Xiaojun; Mei, Guangming; Guo, Yuanming

    2014-03-01

    Exopolysaccharide La0.1-1 was extracted from the broth of a marine bacterium Lentibacter algarum ZXM100T isolated from the seawater in the coastal region of Qingdao and purified by Q Sepharose Fast Flow ion-exchange chromatography and Superdex 75 gel-permeation chromatography. Its physiochemical properties and primary structural characters were investigated by chemical analysis together with high performance liquid chromatography (HPLC), high performance gel permeation chromatography (HPGPC) and gas chromatography and mass spectrometry (GC-MS). The results show that the total sugar content of the exoploysaccharide La0.1-1 was about 66% with an average molecular weight at 12.0 kDa. La0.1-1 is mainly composed of Gal, Man, GlcN at the ratio of 1.35:1.1:1.0. Results of GC-MS and NMR demonstrate that the exopolysaccharide La0.1-1 mainly exists with the beta configuration. The primary linkage styles are --> 2)-Manp(1 --> and --> 3)-Galp(1 --> with a small amount of --> 4)-Galp(--> 1 and --> 4)-Manp(1 --> linkages. The linkage mode of GlcN is --> 4)GlcN(1 --> and terminal linkage. The exopolysaccharide has mainly a linear sructure with a few branches linked to 0-6 of --> 2)-Manp(1 --> and 0-4 or 0-6 of --> 3)-Galp(1 -->. 1D-NMR data also revealed that La0.1-1 is substituted by certain acetyl; the acetyl is mainly linked to N-2 of GlcN. The exopolysaccharides of the bacterium of Lentibacter genus is reported for the first time, and an exopolysaccharide with novel structure was obtained, which enriched marine polysaccharide resources.

  16. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources.

    Science.gov (United States)

    Jebeli, Mohammad Ahmadi; Maleki, Afshin; Amoozegar, Mohammad Ali; Kalantar, Enayatollah; Izanloo, Hassan; Gharibi, Fardin

    2017-02-01

    A total of 14 arsenic-resistant bacteria were isolated from an arsenic-contaminated travertine spring water in the central district of Qorveh county, Kurdistan Province, Iran. One of strains designated As-12 was selected for further investigation because of its ability to transform arsenic. The strain was identified by cultural, morphological and biochemical tests, and 16S rRNA gene sequencing. Finally, the growth characteristics of the isolate were investigated in a chemically defined medium which included varied ranges of environmental factors such as pH, temperature and salinity. Moreover, the resistance of this strain to some heavy metals was evaluated. The bacterium was a Gram-positive, endospore-forming with all other characteristics of the genus Bacillus. It revealed maximum similarity at the 16S rRNA gene level with Bacillus flexus. The optimum growth of the strain was observed at 38 °C, pH 9 and 2% salinity. This strain was resistant to heavy metals such as zinc, chromium, lead, nickel, copper, mercuric and cadmium at concentrations of 15 mM, 15.5 mM, 11.5 mM, 12 mM, 11 mM, 5.5 mM, and 1 mM, respectively. The isolated bacterium was able to reduce As (V) to As (III) (about 28%) and oxidize As (III) to As (V) (about 45%) after 48 h of incubation at 37 °C. In conclusion, Bacillus flexus strain As-12, was identified as an arsenic transformer, for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638.

    Directory of Open Access Journals (Sweden)

    Safiyh Taghavi

    2010-05-01

    Full Text Available Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpaxdeltoides cv. H11-11, a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1. Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots, root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis, colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase, plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol, and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further

  18. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Fitness Effects of Spontaneous Mutations Nearly Unseen by Selection in a Bacterium with Multiple Chromosomes.

    Science.gov (United States)

    Dillon, Marcus M; Cooper, Vaughn S

    2016-11-01

    Mutation accumulation (MA) experiments employ the strategy of minimizing the population size of evolving lineages to greatly reduce effects of selection on newly arising mutations. Thus, most mutations fix within MA lines independently of their fitness effects. This approach, more recently combined with genome sequencing, has detailed the rates, spectra, and biases of different mutational processes. However, a quantitative understanding of the fitness effects of mutations virtually unseen by selection has remained an untapped opportunity. Here, we analyzed the fitness of 43 sequenced MA lines of the multi-chromosome bacterium Burkholderia cenocepacia that had each undergone 5554 generations of MA and accumulated an average of 6.73 spontaneous mutations. Most lineages exhibited either neutral or deleterious fitness in three different environments in comparison with their common ancestor. The only mutational class that was significantly overrepresented in lineages with reduced fitness was the loss of the plasmid, though nonsense mutations, missense mutations, and coding insertion-deletions were also overrepresented in MA lineages whose fitness had significantly declined. Although the overall distribution of fitness effects was similar between the three environments, the magnitude and even the sign of the fitness of a number of lineages changed with the environment, demonstrating that the fitness of some genotypes was environmentally dependent. These results present an unprecedented picture of the fitness effects of spontaneous mutations in a bacterium with multiple chromosomes and provide greater quantitative support for the theory that the vast majority of spontaneous mutations are neutral or deleterious. Copyright © 2016 by the Genetics Society of America.

  20. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-02-17

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  1. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1.

    Science.gov (United States)

    Choi, Mi Hee; Jeong, Sun-Wook; Shim, Ha Eun; Yun, Seong-Jae; Mushtaq, Sajid; Choi, Dae Seong; Jang, Beom-Su; Yang, Jung Eun; Choi, Yong Jun; Jeon, Jongho

    2017-04-04

    We herein report a new bioremediation method using a radiation-resistant bacterium. Biogenic gold nanomaterial-containing Deinococcus radiodurans R1 showed excellent capability for the removal of radioactive iodine (>99%) in several aqueous solutions. These observations demonstrated that our remediation system would be efficiently applied to the treatment of radioactive wastes.

  2. Note: Physiological aspects of the growth of the lactic acid bacterium Tetragenococcus halophila during Indonesian soy sauce

    NARCIS (Netherlands)

    Roling, W.F.M.; Prasetyo, A.B.; Stouthamer, A.H.; van Verseveld, H.W.

    1999-01-01

    The lactic acid bacterium Tetragenococcus halophila is the dominant species in Indonesian soy mash. Tetragenococcus halophila growing in continuous and retention cultures under defined glucose-limited conditions showed a switch from homolactic (only lactate produced) to mixed acid fermentation (two

  3. Genome Sequence of Nitrosomonas communis Strain Nm2, a Mesophilic Ammonia-Oxidizing Bacterium Isolated from Mediterranean Soil.

    Science.gov (United States)

    Kozlowski, Jessica A; Kits, K Dimitri; Stein, Lisa Y

    2016-01-14

    The complete genome sequence of Nitrosomonas communis strain Nm2, a mesophilic betaproteobacterial ammonia oxidizer isolated from Mediterranean soils in Corfu, Greece, is reported here. This is the first genome to describe a cluster 8 Nitrosomonas species and represents an ammonia-oxidizing bacterium commonly found in terrestrial ecosystems. Copyright © 2016 Kozlowski et al.

  4. Genome Sequence of Nitrosomonas communis Strain Nm2, a Mesophilic Ammonia-Oxidizing Bacterium Isolated from Mediterranean Soil

    OpenAIRE

    Kozlowski, Jessica A.; Kits, K. Dimitri; Stein, Lisa Y.

    2016-01-01

    The complete genome sequence of Nitrosomonas communis strain Nm2, a mesophilic betaproteobacterial ammonia oxidizer isolated from Mediterranean soils in Corfu, Greece, is reported here. This is the first genome to describe a cluster 8 Nitrosomonas species and represents an ammonia-oxidizing bacterium commonly found in terrestrial ecosystems.

  5. Adhesion forces of the sea-water bacterium Paracoccus seriniphilus on titanium: Influence of microstructures and environmental conditions.

    Science.gov (United States)

    Davoudi, Neda; Huttenlochner, Katharina; Chodorski, Jonas; Schlegel, Christin; Bohley, Martin; Müller-Renno, Christine; Aurich, Jan C; Ulber, Roland; Ziegler, Christiane

    2017-11-06

    The bacterial attachment to surfaces is the first step of biofilm formation. This attachment is governed by adhesion forces which act between the bacterium and the substrate. Such forces can be measured by single cell force spectroscopy, where a single bacterium is attached to a cantilever of a scanning force microscope, and force-distance curves are measured. For the productive sea-water bacterium Paracoccus seriniphilus, pH dependent measurements reveal the highest adhesion forces at pH 4. Adhesion forces measured at salinities between 0% and 4.5% NaCl are in general higher for higher salinity. However, there is an exception for 0.9% where a higher adhesion force was measured than expected. These results are in line with zeta potential measurements of the bacterium, which also show an exceptionally low zeta potential at 0.9% NaCl. In the absence of macromolecular interactions, the adhesion forces are thus governed by (unspecific) electrostatic interactions, which can be adjusted by pH and ionic strength. It is further shown that microstructures on the titanium surface increase the adhesion force. Growth medium reduces the interaction forces dramatically, most probably through macromolecular bridging.

  6. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.; Lucas, S.; Pitluck, S.; Pennacchio, L.; Nolan, M.; Land, M.L.; Huntemann, M.; Deshpande, S.; Han, C.; Chen, A.; Kyrpides, N.; Mavromatis, K.; Markowitz, V.; Szeto, E.; Ivanova, N.; Mikhailova, N.; Pagani, I.; Pati, A.; Peters, L.; Ovchinnikova, G.; Goodwin, L.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production

  7. Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah

    DEFF Research Database (Denmark)

    Fogh Møller, Mette; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2010-01-01

    A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15T, was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl...

  8. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed

    Science.gov (United States)

    Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants. PMID:25720680

  9. Draft Genome Sequence of Aquitalea magnusonii Strain H3, a Plant Growth-Promoting Bacterium of Duckweed (Lemna minor).

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Ike, Michihiko

    2017-08-17

    Aquitalea magnusonii strain H3 is a promising plant growth-promoting bacterium for duckweed. Here, we report the draft genome sequence of strain H3 comprising 4,750,601 bp in 73 contigs. Several genes associated with plant root colonization were identified. Copyright © 2017 Ishizawa et al.

  10. Lactobacillus diolivorans sp nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage

    NARCIS (Netherlands)

    Krooneman, J; Faber, F; Alderkamp, AC; Elferink, SJHWO; Driehuis, F; Cleenwerck, [No Value; Swings, J; Gottschal, JC; Vancanneyt, M

    Inoculation of maize silage with Lactobacillus buchneri (5 x 10(5) c.f.u. g(-1) of maize silage) prior to ensiling results in the formation of aerobically stable silage. After 9 months, lactic acid bacterium counts are approximately 10(10) c.f.u. g(-1) in these treated silages. An important

  11. Multiple, stochastic factors can determine acquisition success of the foregut-borne bacterium, Xylella fastidiosa, by a sharpshooter vector

    Science.gov (United States)

    Xylella fastidiosa is a phytopathogenic foregut-borne bacterium whose vectors are sharpshooter leafhoppers. Despite several decades of study, the mechanisms of transmission (acquisition and inoculation) of X. fastidiosa still are not fully understood. Studies of the inoculation mechanism depend upon...

  12. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus)

    Science.gov (United States)

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  13. Biosynthetic controls on the 13C-contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Meer, M.T.J. van der; Schouten, S.; Dongen, B.E. van; Rijpstra, W.I.C.; Fuchs, G.; Leeuw, J.W. de; Ward, D.M.

    2001-01-01

    To assess the effects related to known and proposed biosynthetic pathways on the 13C content of lipids and storage products of the photoautotrophic bacterium Chloroflexus aurantiacus, the isotopic compositions of bulk cell material, alkyl and isoprenoid lipids, and storage products such as glycogen

  14. Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus

    DEFF Research Database (Denmark)

    Sakuragi, Y; Frigaard, N-U; Shimada, K

    1999-01-01

    The protein assumed to be associated with bacteriochlorophyll (BChl) a in chlorosomes from the photosynthetic green filamentous bacterium Chloroflexus aurantiacus was investigated by alkaline treatment, proteolytic digestion and a new treatment using 1-hexanol, sodium cholate and Triton X-100. Upon...

  15. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Hansen, Morten Ejby; Majumder, Avishek

    2016-01-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after...

  16. The Haloprotease CPI Produced by the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Is Secreted by the Type II Secretion Pathway▿ †

    Science.gov (United States)

    Sánchez-Porro, Cristina; Mellado, Encarnación; Pugsley, Anthony P.; Francetic, Olivera; Ventosa, Antonio

    2009-01-01

    The gene (cpo) encoding the extracellular protease CPI produced by the moderately halophilic bacterium Pseudoalteromonas ruthenica CP76 was cloned, and its nucleotide sequence was analyzed. The cpo gene encodes a 733-residue protein showing sequence similarity to metalloproteases of the M4 family. The type II secretion apparatus was shown to be responsible for secretion of the haloprotease CPI. PMID:19376897

  17. The use of fluorescent probes to assess viability of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis by flow cytometry

    NARCIS (Netherlands)

    Chitarra, L.G.; Breeuwer, P.; Abee, T.; Bulk, van den R.W.

    2006-01-01

    Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter

  18. Microbacter margulisiae gen. nov., sp. nov., a novel propionigenic bacterium isolated from sediments of an acid rock drainage pond

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Luis Sanz, J.; Stams, A.J.M.

    2014-01-01

    A novel anaerobic propionigenic bacterium, strain ADRIT, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6 x 1-1.7 µm), non-motile and non-spore forming rods. Cells possessed a Gram-negative cell wall structure and were vancomycin

  19. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  20. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus

    Science.gov (United States)

    Ganuza, Eneko; Sellers, Charles E.; Bennett, Braden W.; Lyons, Eric M.; Carney, Laura T.

    2016-01-01

    The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The “crash” of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The p

  1. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus.

    Science.gov (United States)

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff S; Hauser, Loren J; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Samuel; Pierson, Beverly K; Blankenship, Robert E

    2011-06-29

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the

  2. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake.

    Science.gov (United States)

    Mehrshad, Maliheh; Amoozegar, Mohammad Ali; Didari, Maryam; Bagheri, Maryam; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-08-01

    A novel Gram-stain-positive, moderately halophilic bacterium, designated strain E33(T), was isolated from water of the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain E33(T) were motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain E33(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-25 % (w/v), with optimum growth occurring at 5-15 % (w/v) NaCl. The optimum temperature and pH for growth were 40 °C and pH 7.5-8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain E33(T) was shown to belong to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity with the species Bacillus niabensis 4T19(T) (99.2 %), Bacillus herbersteinensis D-1-5a(T) (97.3 %) and Bacillus litoralis SW-211(T) (97.2 %). The DNA G+C content of the type strain of the novel species was 42.6 mol%. The major cellular fatty acids of strain E33(T) were anteiso-C15 : 0 and iso-C15 : 0, and the polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids, an unknown lipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (97 %), MK-6 (2 %) and MK-8 (0.5 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate E33(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed low levels of relatedness between strain E33(T) and Bacillus niabensis IBRC-M 10590(T) (22 %), Bacillus herbersteinensis CCM 7228(T) (38 %) and Bacillus litoralis DSM 16303(T) (19 %). On the basis of polyphasic evidence from this study, a novel species of the genus Bacillus, Bacillus halosaccharovorans sp. nov. is proposed, with strain E33(T) (= IBRC-M 10095(T) = DSM 25387(T)) as the type strain.

  3. Bacillus persicus sp. nov., a halophilic bacterium from a hypersaline lake.

    Science.gov (United States)

    Didari, Maryam; Amoozegar, Mohammad Ali; Bagheri, Maryam; Mehrshad, Maliheh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-04-01

    A novel gram-positive, slightly halophilic bacterium, designated strain B48(T), was isolated from soil around the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain B48(T) were non-motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain B48(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-10.0 % (w/v), with optimum growth occurring at 2.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.5-8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain B48(T) was shown to belong to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity to the species Bacillus foraminis CV53(T) (97.4 %) and Bacillus purgationiresistens DS22(T) (96.9 %). The DNA G+C content of this new isolate was 40.1 mol%. The major cellular fatty acids of strain B48(T) were iso-C15 : 0 and anteiso-C15 : 0, and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminophospholipid and two unknown phospholipids. The only quinone present was menaquinone 7 (MK-7). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate B48(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed a low level of relatedness between strain B48(T) and Bacillus foraminis IBRC-M 10625(T) (8.1 %). On the basis of polyphasic evidence from this study, a new species of the genus Bacillus, Bacillus persicus sp. nov., is proposed, with strain B48(T) ( = IBRC-M 10115(T) = DSM 25386(T) = CECT 8001(T)) as the type strain.

  4. Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake.

    Science.gov (United States)

    Amoozegar, Mohammad Ali; Bagheri, Maryam; Didari, Maryam; Shahzedeh Fazeli, Seyed Abolhassan; Schumann, Peter; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-01-01

    A novel Gram-positive, moderately halophilic bacterium, designated strain X4B(T), was isolated from soil around the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain X4B(T) were motile rods and formed ellipsoidal endospores at a terminal or subterminal position in swollen sporangia. Strain X4B(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-22.5 % (w/v), with optimum growth occurring at 7.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.0. Analysis of 16S rRNA gene sequence revealed that strain X4B(T) is a member of the family Bacillaceae, constituting a novel phyletic lineage within this family. Highest sequence similarities were obtained with the 16S rRNA gene sequences of the type strains of Sediminibacillus albus (96.0 %), Paraliobacillus ryukyuensis (95.9 %), Paraliobacillus quinghaiensis (95.8 %) and Sediminibacillus halophilus (95.7 %), respectively. The DNA G+C content of this novel isolate was 35.2 mol%. The major cellular fatty acids of strain X4B(T) were anteiso-C(15 : 0) and anteiso-C(17 : 0) and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two aminolipids, an aminophospholipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (89 %) and MK-6 (11 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain X4B(T) represents a novel species in a new genus in the family Bacillaceae, order Bacillales for which the name Saliterribacillus persicus gen. nov., sp. nov. is proposed. The type strain of the type species (Saliterribacillus persicus) is X4B(T) ( = IBRC-M 10629(T) = KCTC 13827(T)).

  5. Evaluation of dna extraction methods of the Salmonella sp. bacterium in artificially infected chickens eggs

    Directory of Open Access Journals (Sweden)

    Ana Cristina dos Reis Ferreira

    2015-06-01

    Full Text Available ABSTRACT. Ferreira A.C.dosR. & dos Santos B.M. [Evaluation of dna extraction methods of the Salmonella sp. bacterium in artificially infected chickens eggs.] Avaliação de três métodos de extração de DNA de Salmonella sp. em ovos de galinhas contaminados artificialmente. Revista Brasileira de Medicina Veterinária, 37(2:115-119, 2015. Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Av. Peter Henry Rolfs, s/n, Viçosa, MG 36571-000, Brasil. E-mail: bmsantos@ufv.br The present study evaluated the efficiency of different protocols for the genomic DNA extraction of Salmonella bacteria in chicken eggs free of specific pathogens – SPF. Seventy-five eggs were used and divided into five groups with fifteen eggs each. Three of the five groups of eggs were inoculated with enteric Salmonella cultures. One of the five groups was inoculated with Escherichia coli bacterium culture. And another group of eggs was the negative control that received saline solution 0.85% infertile. The eggs were incubated on a temperature that varied from 20 to 25°C during 24, 48 and 72 hours. Five yolks of each group were collected every 24 hours. These yolks were homogenized and centrifuged during 10 minutes. The supernatant was rejected. After the discard, PBS ph 7.2 was added and centrifuged again. The sediment obtained of each group was used for the extraction of bacterial genomic DNA. Silica particles and a commercial kit were utilized as the extraction methods. The extracted DNA was kept on a temperature of 20°C until the evaluation through PCR. The primers utilized were related with the invA gene and they were the following: 5’ GTA AAA TTA TCG CCA CGT TCG GGC AA 3’ and 5’ TCA TCG CAC CGT CAA AGG AAC C 3’. The amplification products were visualized in transilluminator with ultraviolet light. The obtained results through the bacterial DNA extractions demonstrated that the extraction method utilizing silica particles was

  6. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus

    Directory of Open Access Journals (Sweden)

    Larimer Frank W

    2011-06-01

    Full Text Available Abstract Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII, auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl

  7. Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici.

    Science.gov (United States)

    Someya, Nobutaka; Tsuchiya, Kenichi; Yoshida, Takanobu; Noguchi, Masako T; Akutsu, Katsumi; Sawada, Hiroyuki

    2007-03-01

    The antifungal compound 2,4-diacetylphloroglucinol-producing bacterium, Pseudomonas fluorescens strain LRB3W1, inhibits the growth of Fusarium oxysporum f. sp. lycopersici, and controls Fusarium wilt of tomato caused by F. oxysporum f. sp. lycopersici. On the other hand, Serratia marcescens strain B2, which produces cell wall-degrading enzyme chitinases, did not inhibit fungal growth and the suppressive effect of strain B2 against tomato Fusarium wilt was less than that of strain LRB3W1. Combined inoculation of strain LRB3W1 with strain B2 was more effective than treatment with strain LRB3W1 alone. When 2,4-diacetylphloroglucinol and the chitinolytic enzymes were applied in combination, a synergistic inhibitory effect against the pathogen was observed. It was possible that bacteria which produce cell wall-degrading enzymes enhanced the biocontrol effect of the antibiotic-producing bacterium against tomato Fusarium wilt.

  8. A putative twin-arginine translocation system in the phytopathogenic bacterium Xylella fastidiosa.

    Science.gov (United States)

    Ciapina, Luciane Prioli; Picchi, Simone Cristina; Lacroix, Jean-Marie; Lemos, Eliana Gertrudes de Macedo; Ödberg-Ferragut, Carmen

    2011-02-01

    The twin-arginine translocation (Tat) pathway of the xylem-limited phytopathogenic bacterium Xylella fastidiosa strain 9a5c, responsible for citrus variegated chlorosis, was explored. The presence of tatA, tatB, and tatC in the X. fastidiosa genome together with a list of proteins harboring 2 consecutive arginines in their signal peptides suggested the presence of a Tat pathway. The functional Tat dependence of X. fastidiosa OpgD was examined. Native or mutated signal peptides were fused to the β-lactamase. Expression of fusion with intact signal peptides mediated high resistance to ampicillin in Escherichia coli tat+ but not in the E. coli tat null mutant. The replacement of the 2 arginines by 2 lysines prevented the export of β-lactamase in E. coli tat+, demonstrating that X. fastidiosa OpgD carries a signal peptide capable of engaging the E. coli Tat machinery. RT-PCR analysis revealed that the tat genes are transcribed as a single operon. tatA, tatB, and tatC genes were cloned. Complementation assays in E. coli devoid of all Tat or TatC components were unsuccessful, whereas X. fastidiosa Tat components led to a functional Tat translocase in E. coli TatB-deficient strain. Additional experiments implicated that X. fastidiosa TatB component could form a functional heterologous complex with the E. coli TatC component.

  9. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  10. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum.

    Science.gov (United States)

    Tugarova, Anna V; Mamchenkova, Polina V; Dyatlova, Yulia A; Kamnev, Alexander A

    2018-03-05

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250nm; their zeta potential was measured to be minus 18.5mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500cm-1 down to 150cm-1) showed a single very strong band with a maximum at 250cm-1 which, in line with its increased width (ca. 30cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Partial characterization of an extracellular polysaccharide produced by the moderately halophilic bacterium Halomonas xianhensis SUR308.

    Science.gov (United States)

    Biswas, Jhuma; Ganguly, J; Paul, A K

    2015-01-01

    A moderately halophilic bacterium, Halomonas xianhensis SUR308 (Genbank Accession No. KJ933394) was isolated from a multi-pond solar saltern at Surala, Ganjam district, Odisha, India. The isolate produced a significant amount (7.87 g l(-1)) of extracellular polysaccharides (EPS) when grown in malt extract-yeast extract medium supplemented with 2.5% NaCl, 0.5% casein hydrolysate and 3% glucose. The EPS was isolated and purified following the conventional method of precipitation and dialysis. Chromatographic analysis (paper, GC and GC-MS) of the hydrolyzed EPS confirmed its heteropolymeric nature and showed that it is composed mainly of glucose (45.74 mol%), galactose (33.67 mol %) and mannose (17.83 mol%). Fourier-transform infrared spectroscopy indicated the presence of methylene and carboxyl groups as characteristic functional groups. In addition, its proton nuclear magnetic resonance spectrum revealed functional groups specific for extracellular polysaccharides. X-ray diffraction analysis revealed the amorphous nature (CIxrd, 0.56) of the EPS. It was thermostable up to 250 °C and displayed pseudoplastic rheology and remarkable stability against pH and salts. These unique properties of the EPS produced by H. xianhensis indicate its potential to act as an agent for detoxification, emulsification and diverse biological activities.

  12. Efficiency of light harvesting in a photosynthetic bacterium adapted to different levels of light.

    Science.gov (United States)

    Timpmann, Kõu; Chenchiliyan, Manoop; Jalviste, Erko; Timney, John A; Hunter, C Neil; Freiberg, Arvi

    2014-10-01

    In this study, we use the photosynthetic purple bacterium Rhodobacter sphaeroides to find out how the acclimation of photosynthetic apparatus to growth conditions influences the rates of energy migration toward the reaction center traps and the efficiency of charge separation at the reaction centers. To answer these questions we measured the spectral and picosecond kinetic fluorescence responses as a function of excitation intensity in membranes prepared from cells grown under different illumination conditions. A kinetic model analysis yielded the microscopic rate constants that characterize the energy transfer and trapping inside the photosynthetic unit as well as the dependence of exciton trapping efficiency on the ratio of the peripheral LH2 and core LH1 antenna complexes, and on the wavelength of the excitation light. A high quantum efficiency of trapping over 80% was observed in most cases, which decreased toward shorter excitation wavelengths within the near infrared absorption band. At a fixed excitation wavelength the efficiency declines with the LH2/LH1 ratio. From the perspective of the ecological habitat of the bacteria the higher population of peripheral antenna facilitates growth under dim light even though the energy trapping is slower in low light adapted membranes. The similar values for the trapping efficiencies in all samples imply a robust photosynthetic apparatus that functions effectively at a variety of light intensities. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis.

    Directory of Open Access Journals (Sweden)

    Megan Woolfit

    Full Text Available Wolbachia pipientis is an endosymbiotic bacterium that induces a wide range of effects in its insect hosts, including manipulation of reproduction and protection against pathogens. Little is known of the molecular mechanisms underlying the insect-Wolbachia interaction, though it is likely to be mediated via the secretion of proteins or other factors. There is an increasing amount of evidence that bacteria regulate many cellular processes, including secretion of virulence factors, using small non-coding RNAs (sRNAs, but sRNAs have not previously been described from Wolbachia. We have used two independent approaches, one based on comparative genomics and the other using RNA-Seq data generated for gene expression studies, to identify candidate sRNAs in Wolbachia. We experimentally characterized the expression of one of these candidates in four Wolbachia strains, and showed that it is differentially regulated in different host tissues and sexes. Given the roles played by sRNAs in other host-associated bacteria, the conservation of the candidate sRNAs between different Wolbachia strains, and the sex- and tissue-specific differential regulation we have identified, we hypothesise that sRNAs may play a significant role in the biology of Wolbachia, and in particular in its interactions with its host.

  14. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice.

    Science.gov (United States)

    Zhang, De-Chao; Yu, Yong; Xin, Yu-Hua; Liu, Hong-Can; Zhou, Pei-Jin; Zhou, Yu-Guang

    2008-08-01

    A novel psychrotolerant, Gram-negative, aerobic bacterium, designated strain 537T, was isolated from sea-ice samples from the Arctic. Strain 537T was able to grow at 4-26 degrees C, with optimum growth occurring at 20-21 degrees C. Strain 537T had Q-8 as the major respiratory quinone and contained iso-C15:0 2-OH and/or C16:1 omega7c (22.95 %), C15:1 (17.64 %) and C17:1 omega8c (13.74 %) as the predominant cellular fatty acids. The genomic DNA G+C content was 38.9 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 537T formed a coherent cluster within the genus Colwellia. The highest level of 16S rRNA gene sequence similarity (97.5 %) exhibited by strain 537T was obtained with respect to the type strain of Colwellia aestuarii. On the basis of phenotypic, chemotaxonomic and phylogenetic properties and DNA-DNA relatedness data, strain 537T represents a novel species of the genus Colwellia, for which the name Colwellia polaris sp. nov. is proposed. The type strain is 537T (=CGMCC 1.6132T =JCM 13952T).

  15. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Alvaro Banderas

    2013-08-01

    Full Text Available The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS, we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.

  16. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea

    DEFF Research Database (Denmark)

    Machado, Henrique; Giubergia, Sonia; Mateiu, Ramona Valentina

    2015-01-01

    A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence data placed strain S2753T in the genus Photobacterium with the closest relative being Photobacterium halotolerans...... DSM 18316T (97.7 % 16S rRNA gene similarity). Strain S2753T was able to grow from 15 to 40 °C and in NaCl concentrations of 0.5 to 9 % (w/v). The predominant fatty acids were 16 : 1ω7c/16 : 1ω6c (27.9 %), 16 : 0 (22.1 %) and 18 : 1ω7c/8 : 1ω6c (21.4 %). The genomic DNA G+C mol content was 49.5 mol%. Based...

  17. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost.

    Science.gov (United States)

    Kang, Myung-Suk; Im, Wan-Taek; Jung, Hae-Min; Kim, Myung Kyum; Goodfellow, Michael; Kim, Kwang Kyu; Yang, Hee-Chan; An, Dong-Shan; Lee, Sung-Taik

    2007-06-01

    A bacterial strain, TR7-06(T), which has cellulase and beta-glucosidase activities, was isolated from compost at a cattle farm near Daejeon, Republic of Korea. It was a Gram-positive, aerobic or facultatively anaerobic, non-motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus Cellulomonas, with highest sequence similarity to Cellulomonas uda DSM 20107(T) (98.5 %). Cell wall analysis revealed the presence of type A4beta, L-orn-D-Glu peptidoglycan. The cell-wall sugars detected were mannose and glucose. The predominant menaquinone was MK-9(H(4)); MK-8(H(4)) was detected in smaller quantities. The major fatty acids were anteiso-C(15 : 0), C(16 : 0), C(14 : 0) and C(18 : 0). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that TR7-06(T) represents a novel species. The combined genotypic and phenotypic data show that strain TR7-06(T) (=KCTC 19030(T)=NBRC 100758(T)) merits description as the type strain of a novel Cellulomonas species, Cellulomonas composti sp. nov.

  18. Modeling the toxicity of polar and nonpolar narcotic compounds to luminescent bacterium Shk1.

    Science.gov (United States)

    Ren, Shijin; Frymier, Paul D

    2002-12-01

    Luminescent bacterium Shk1 was created for the purpose of testing and screening the toxicity of activated sludge wastewater treatment plant influent to avoid toxic shock to the wastewater treatment plant microorganisms. The toxicity of a number of organic compounds was tested using an assay employing Shk1. Because these compounds exhibit toxicity by mechanisms of both polar and nonpolar narcosis, their toxicity cannot be properly modeled together using a quantitative structure-activity relationship model based on the logarithm of the octanol-water partition coefficient (log K(ow)). A solvation parameter model was developed to describe and predict the nonspecific (i.e., polar and nonpolar narcosis) toxicity of organic compounds to Shk1, which does not depend on the discrimination between polar and nonpolar narcotic compounds. The statistically significant model descriptors were the McGowan's characteristic volume (V(x)) and the hydrogen-bond basicity (sigmabetaH). The model was similar to the solvation parameter model developed for Vibrio fischeri, but it did not include an excess molar refraction (R) term.

  19. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium

    Directory of Open Access Journals (Sweden)

    Nathan Zelyas

    2016-01-01

    Full Text Available Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates’ identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making.

  20. Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@epfl.c [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland); Parthasarathy, Nalini [Department of Inorganic, Analytic and Applied Chemistry, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, 1211 Geneva 4 (Switzerland); Dedieu, Karine; Toescher, Denis [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland)

    2010-08-15

    The role of bacterially derived compounds in Cd(II) complexation and uptake by bacterium Sinorhizobium meliloti wild type (WT) and genetically modified ExoY-mutant, deficient in exopolysaccharide production, was explored combining chemical speciation measurements and assays with living bacteria. Obtained results demonstrated that WT- and ExoY-strains excreted siderophores in comparable amounts, while WT-strain produced much higher amount of exopolysaccharides and less exoproteins. An evaluation of Cd(II) distribution in bacterial suspensions under short term exposure conditions, showed that most of the Cd is bound to bacterial surface envelope, including Cd bound to the cell wall and to the attached extracellular polymeric substances. However, the amount of Cd bound to the dissolved extracellular compounds increases at high Cd(II) concentrations. The implications of these findings to more general understanding of the Cd(II) fate and cycling in the environment is discussed. - Bacterial excreted extracellular compounds play minor role in Cd(II) sequestration relative to bacteria.

  1. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying

    2014-01-24

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  2. The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum.

    Science.gov (United States)

    Berger, Beatrice; Baldermann, Susanne; Ruppel, Silke

    2017-11-01

    Production and the quality of tomato fruits have a strong economic relevance. Microorganisms such as the plant growth-promoting bacterium (PGPB) Kosakonia radicincitans (DSM 16656) have been demonstrated to improve shoot and root growth of young tomato plants, but data on yield increase and fruit quality by K. radicincitans are lacking. This study investigated how K. radicincitans affects tomato fruits. After inoculation of tomato seeds with K. radicincitans or a sodium chloride buffer control solution, stalk length, first flowering and the amount of ripened fruits produced by inoculated and non-inoculated plants were monitored over a period of 21 weeks. Inoculation of tomato seeds with K. radicincitans accelerated flowering and ripening of tomato fruits. Sugars, acidity, amino acids, volatile organic compounds and carotenoids in the fruits were also analyzed. It was found that the PGPB K. radicincitans affected the amino acid, sugar and volatile composition of ripened fruits, contributing to a more pleasant-tasting fruit without forfeiting selected quality indicators. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Identification and characterization of a core fucosidase from the bacteriumElizabethkingia meningoseptica.

    Science.gov (United States)

    Li, Tiansheng; Li, Mengjie; Hou, Linlin; Guo, Yameng; Wang, Lei; Sun, Guiqin; Chen, Li

    2018-01-26

    All reported α-l-fucosidases catalyze the removal of nonreducing terminal l-fucoses from oligosaccharides or their conjugates, while having no capacity to hydrolyze core fucoses in glycoproteins directly. Here, we identified an α-fucosidase from the bacterium Elizabethkingia meningoseptica with catalytic activity against core α-1,3-fucosylated substrates, and we named it core fucosidase I (cFase I). Using site-specific mutational analysis, we found that three acidic residues (Asp-242, Glu-302, and Glu-315) in the predicted active pocket are critical for cFase I activity, with Asp-242 and Glu-315 acting as a pair of classic nucleophile and acid/base residues and Glu-302 acting in an as yet undefined role. These findings suggest a catalytic mechanism for cFase I that is different from known α-fucosidase catalytic models. In summary, cFase I exhibits glycosidase activity that removes core α-1,3-fucoses from substrates, suggesting cFase I as a new tool for glycobiology, especially for studies of proteins with core fucosylation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Experimental infection and detection of necrotizing hepatopancreatitis bacterium in the American lobster Homarus americanus.

    Science.gov (United States)

    Avila-Villa, Luz A; Gollas-Galván, Teresa; Martínez-Porchas, Marcel; Mendoza-Cano, Fernando; Hernández-López, Jorge

    2012-01-01

    Necrotizing hepatopancreatitis bacterium (NHPB) is an obligated intracellular bacteria causing severe hepatopancreatic damages and mass mortalities in penaeid shrimp. The worldwide distribution of penaeid shrimp as alien species threatens the life cycle of other crustacean species. The aim of the experiment was to evaluate the possibility of experimentally infecting the American lobster (Homarus americanus) with NHPB extracted from shrimp hepatopancreas. Homogenates from infected shrimp were fed by force to lobsters. Other group of lobsters was fed with homogenates of NHPB-free hepatopancreas. After the 15th day from initial inoculation, the presence of NHPB was detected by polymerase chain reaction in feces and hepatopancreas from lobsters inoculated with infected homogenates. Necrotized spots were observed in the surface of lobster hepatopancreas. In contrast, lobsters fed on NHPB-free homogenates resulted negative for NHPB. Evidence suggests the plasticity of NHPB which can infect crustacean from different species and inhabiting diverse latitudes. Considering the results, the American lobster could be a good candidate to maintain available NHPB in vivo.

  6. Experimental Infection and Detection of Necrotizing Hepatopancreatitis Bacterium in the American Lobster Homarus americanus

    Directory of Open Access Journals (Sweden)

    Luz A. Avila-Villa

    2012-01-01

    Full Text Available Necrotizing hepatopancreatitis bacterium (NHPB is an obligated intracellular bacteria causing severe hepatopancreatic damages and mass mortalities in penaeid shrimp. The worldwide distribution of penaeid shrimp as alien species threatens the life cycle of other crustacean species. The aim of the experiment was to evaluate the possibility of experimentally infecting the American lobster (Homarus americanus with NHPB extracted from shrimp hepatopancreas. Homogenates from infected shrimp were fed by force to lobsters. Other group of lobsters was fed with homogenates of NHPB-free hepatopancreas. After the 15th day from initial inoculation, the presence of NHPB was detected by polymerase chain reaction in feces and hepatopancreas from lobsters inoculated with infected homogenates. Necrotized spots were observed in the surface of lobster hepatopancreas. In contrast, lobsters fed on NHPB-free homogenates resulted negative for NHPB. Evidence suggests the plasticity of NHPB which can infect crustacean from different species and inhabiting diverse latitudes. Considering the results, the American lobster could be a good candidate to maintain available NHPB in vivo.

  7. Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1.

    Science.gov (United States)

    Khan, Sana; Malik, Abdul

    2016-03-01

    The textile and dye industries are considered as one of the major sources of environmental pollution. The present study was conducted to investigate the degradation of the azo dye Reactive Black 5 (RB 5) using a bacterium isolated from soil samples collected around a textile industry. The bacterial strain BS1 capable of degrading RB 5 was isolated and identified as Pseudomonas entomophila on the basis of 16S rDNA sequencing. The effects of different parameters on the degradation of RB 5 were studied to find out the optimal conditions required for maximum degradation, which was 93% after 120 h of incubation. Static conditions with pH in the range of 5-9 and a temperature of 37 °C were found to be optimum for degrading RB 5. Enzyme assays demonstrated that P. entomophila possessed azoreductase, which played an important role in degradation. The enzyme was dependent on flavin mononucleotide and NADH for its activity. Furthermore, a possible degradation pathway of the dye was proposed through gas chromatography - mass spectrometry analysis, which revealed that the metabolic products were naphthalene-1,2-diamine and 4-(methylsulfonyl) aniline. Thus the ability of this indigenous bacterial isolate for simultaneous decolorization and degradation of the azo dye signifies its potential application for treatment of industrial wastewaters containing azo dyes.

  8. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    Science.gov (United States)

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J

    2015-03-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei.

  9. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis.

    Science.gov (United States)

    Park, Jin-Soo; Joe, Inseong; Rhee, Paul Dong; Jeong, Choon-Soo; Jeong, Gajin

    2017-04-01

    Some species of lactic acid bacteria have been shown to be beneficial in inflammatory bowel disease (IBD). In the present study, a strain of lactic acid bacterium (Lactobacillus paracasei LS2) was isolated from the Korean food, kimchi, and was shown to inhibit the development of experimental colitis induced by dextran sulfate sodium (DSS). To investigate the role of LS2 in IBD, mice were fed DSS in drinking water for seven days along with LS2 bacteria which were administered intragastrically to some of the mice, while phosphate-buffered saline (PBS) was administered to others (the controls). The administration of LS2 reduced body weight loss and increased survival, and disease activity indexes (DAI) and histological scores indicated that the severity of colitis was significantly reduced. The production of inflammatory cytokines and myeloperoxidase (MPO) activity also decreased. Flow cytometry analysis showed that the number of Th1 (IFN-γ) population cells was significantly reduced in the LS2-administered mice compared with the controls. The administration of LS2 induced the increase of CD4 + FOXP3 + Treg cells, which are responsible for IL-10. Numbers of macrophages (CD11b + F4/80 + ), and neutrophils (CD11b + Gr-1 + ) among lamina propria lymphocytes (LPL) were also reduced. These results indicate that LS2 has an anti-inflammatory effect and ameliorates DSS-induced colitis.

  10. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  11. Isolation and Characterization of a Novel Electrogenic Bacterium, Dietzia sp. RNV-4.

    Directory of Open Access Journals (Sweden)

    Natalia J Sacco

    Full Text Available Electrogenic bacteria are organisms that can transfer electrons to extracellular electron acceptors and have the potential to be used in devices such as bioelectrochemical systems (BES. In this study, Dietzia sp. RNV-4 bacterium has been isolated and identified based on its biochemical, physiological and morphological characteristics, as well as by its 16S rRNA sequence analysis. Furthermore, the current density production and electron transfer mechanisms were investigated using bioelectrochemical methods. The chronoamperometric data showed that the biofilm of Dietzia sp. RNV-4 grew as the current increased with time, reaching a maximum of 176.6 ± 66.1 mA/m2 at the end of the experiment (7 d; this highly suggests that the current was generated by the biofilm. The main electron transfer mechanism, indicated by the cyclic voltammograms, was due to secreted redox mediators. By high performance liquid chromatography, canthaxanthin was identified as the main compound involved in charge transfer between the bacteria and the solid electrodes. Dietzia sp. RNV-4 was used as biological material in a microbial fuel cell (MFC and the current density production was 299.4 ± 40.2 mA/m2. This is the first time that Dietzia sp. RNV-4 has been electrochemically characterized and identified as a new electrogenic strain.

  12. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk.

    Science.gov (United States)

    Wang, Jicheng; Wu, Rina; Zhang, Wenyi; Sun, Zhihong; Zhao, Wenjing; Zhang, Heping

    2013-09-01

    Soy milk is regarded as a substitute for milk and has become popular in varied diets throughout the world. It has been shown that a newly characterized probiotic bacterium (Lactobacillus casei Zhang) actually grows faster in soy milk than in bovine milk. To elucidate the mechanism involved, we carried out a proteomic analysis to characterize bacterial proteins that varied upon growth in soy milk and bovine milk at 3 different growth phases, and compare their expression under these conditions. A total of 104 differentially expressed spots were identified from different phases using a peptide mass fingerprinting assay. Functional analysis revealed that a major part of these identified proteins is associated with transport and metabolism of carbohydrates, nucleotides, and amino acids as well. The results from our proteomic analysis were clarified by real-time quantitative PCR assay, which showed that Lb. casei Zhang loci involved in purine and pyrimidine biosynthesis were transcriptionally enhanced during growth in soy milk at lag phase (pH 6.4), whereas the loci involved in carbohydrate metabolism were upregulated in bovine milk. Particularly, our results showed that l-glutamine might play an important role in the growth of Lb. casei Zhang in soy milk and bovine milk, perhaps by contributing to purine, pyrimidine, and amino sugar metabolism. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Hydrolysis of Fucoidan by Fucoidanase Isolated from the Marine Bacterium, Formosa algae

    Directory of Open Access Journals (Sweden)

    Artem S. Silchenko

    2013-07-01

    Full Text Available Intracellular fucoidanase was isolated from the marine bacterium, Formosa algae strain KMM 3553. The first appearance of fucoidan enzymatic hydrolysis products in a cell-free extract was detected after 4 h of bacterial growth, and maximal fucoidanase activity was observed after 12 h of growth. The fucoidanase displayed maximal activity in a wide range of pH values, from 6.5 to 9.1. The presence of Mg2+, Ca2+ and Ba2+ cations strongly activated the enzyme; however, Cu2+ and Zn2+ cations had inhibitory effects on the enzymatic activity. The enzymatic activity of fucoidanase was considerably reduced after prolonged (about 60 min incubation of the enzyme solution at 45 °C. The fucoidanase catalyzed the hydrolysis of fucoidans from Fucus evanescens and Fucus vesiculosus, but not from Saccharina cichorioides. The fucoidanase also did not hydrolyze carrageenan. Desulfated fucoidan from F. evanescens was hydrolysed very weakly in contrast to deacetylated fucoidan, which was hydrolysed more actively compared to the native fucoidan from F. evanescens. Analysis of the structure of the enzymatic products showed that the marine bacteria, F. algae, synthesized an α-l-fucanase with an endo-type action that is specific for 1→4-bonds in a polysaccharide molecule built up of alternating three- and four-linked α-l-fucopyranose residues sulfated mainly at position 2.

  14. [Isolation, identification and characterization of a microcystin-degrading bacterium Paucibacter sp. strain CH].

    Science.gov (United States)

    You, Di-Jie; Chen, Xiao-Guo; Xiang, Hui-Yi; Ouyang, Liao; Yang, Bing

    2014-01-01

    A bacterium capable of degrading microcystin (MC), strain CH, was isolated from the sediment of Lake Chaohu, China. Strain CH was tentatively identified as Paucibacter sp. based on the analysis of 16S rRNA gene sequences. Paucibacter sp. strain CH can use microcystin LR (MCLR) as the sole carbon and energy sources, and 11.6 microg x mL(-1) of MCLR was degraded to below the detection limit within 10 hours with the first-order reaction rate constant of 0.242 h(-1). The optimum temperature and initial pH for MC degradation were 25-30 degrees C and pH 6-9, respectively. A novel intermediate product containing the Adda residue was detected during the degradation of MCLR, which is different from those produced by strain ACM-3962, and Adda was recognized as the final product of the degradation process. Furthermore, no homologue to any of the four genes, mlrA, mlrB, mlrC and mlrD previously associated with the degradation of MCLR by strain ACM-3962 was found in strain CH. These findings suggest that Paucibacter sp. strain CH mighe degrade MC through a different pathway from that of strain ACM-3962.

  15. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium.

    Science.gov (United States)

    Singh, Rahul; Grigg, Jason C; Qin, Wei; Kadla, John F; Murphy, Michael E P; Eltis, Lindsay D

    2013-04-19

    DypB, a dye-decolorizing peroxidase from the lignolytic soil bacterium Rhodococcus jostii RHA1, catalyzes the peroxide-dependent oxidation of divalent manganese (Mn(2+)), albeit less efficiently than fungal manganese peroxidases. Substitution of Asn246, a distal heme residue, with alanine increased the enzyme's apparent k(cat) and k(cat)/K(m) values for Mn(2+) by 80- and 15-fold, respectively. A 2.2 Å resolution X-ray crystal structure of the N246A variant revealed the Mn(2+) to be bound within a pocket of acidic residues at the heme edge, reminiscent of the binding site in fungal manganese peroxidase and very different from that of another bacterial Mn(2+)-oxidizing peroxidase. The first coordination sphere was entirely composed of solvent, consistent with the variant's high K(m) for Mn(2+) (17 ± 2 mM). N246A catalyzed the manganese-dependent transformation of hard wood kraft lignin and its solvent-extracted fractions. Two of the major degradation products were identified as 2,6-dimethoxybenzoquinone and 4-hydroxy-3,5-dimethoxybenzaldehyde, respectively. These results highlight the potential of bacterial enzymes as biocatalysts to transform lignin.

  16. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    Science.gov (United States)

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)).

  17. Polyphosphate storage during sporulation in the gram-negative bacterium Acetonema longum.

    Science.gov (United States)

    Tocheva, Elitza I; Dekas, Anne E; McGlynn, Shawn E; Morris, Dylan; Orphan, Victoria J; Jensen, Grant J

    2013-09-01

    Using electron cryotomography, we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes high-density storage granules at the leading edges of engulfing membranes. The granules appear in the prespore and increase in size and number as engulfment proceeds. Typically, a cluster of 8 to 12 storage granules closely associates with the inner spore membrane and ultimately accounts for ∼7% of the total volume in mature spores. Energy-dispersive X-ray spectroscopy (EDX) analyses show that the granules contain high levels of phosphorus, oxygen, and magnesium and therefore are likely composed of polyphosphate (poly-P). Unlike the Gram-positive Bacilli and Clostridia, A. longum spores retain their outer spore membrane upon germination. To explore the possibility that the granules in A. longum may be involved in this unique process, we imaged purified Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Clostridium sporogenes spores. Even though B. cereus and B. thuringiensis contain the ppk and ppx genes, none of the spores from Gram-positive bacteria had granules. We speculate that poly-P in A. longum may provide either the energy or phosphate metabolites needed for outgrowth while retaining an outer membrane.

  18. A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Chen Juanni; Wang Xiuping; Han Heyou, E-mail: hyhan@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology (China)

    2013-05-15

    Xanthomonas oryzae pv. oryzae (Xoo) is one representative phytopathogenic bacterium causing bacteria infections in rice. The antibacterial activity of graphene suspended in different dispersants against Xoo was first investigated. Bacteriological test data, fluorescence microscope and transmission electron microscopy images are provided, which yield insight into the antibacterial action of the nanoscale materials. Surprisingly, the results showed graphene oxide (GO) exhibits superior bactericidal effect even at extremely low dose in water (250 {mu}g/mL), almost killing 94.48% cells, in comparison to common bactericide bismerthiazol with only 13.3% mortality. The high efficiency in inactivating the bacteria on account of considerable changes in the cell membranes caused by the extremely sharp edges of graphene oxide and generation of reactive oxygen species, which may be the fatal factor for bacterial inactivation. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced with low cost, we expect a new application could be developed as bactericide for controlling plant disease, which may be a matter of great importance for agricultural development.

  19. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species.

    Science.gov (United States)

    Duponnois, R; Plenchette, C

    2003-04-01

    The aims of this study were to test the effects of a mycorrhiza helper bacterium (MHB), Pseudomonas monteilii strain HR13 on the mycorrhization of (1) an Australian Acacia, A. holosericea, by several ectomycorrhizal fungi or one endomycorrhizal fungus Glomus intraradices, and (2) several Australian Acacia species by Pisolithus alba strain IR100 under glasshouse conditions. Bacterial inoculant HR13 significantly promoted ectomycorrhizal colonization for all the Acacia species, from 45.8% ( A. mangium) to 70.3% ( A. auriculiformis). A stimulating effect of HR13 on the ectomycorrhizal establishment was recorded with all the fungal isolates (strains of Pisolithus and Scleroderma). The same effect of bacteria on the frequency of endomycorrhizal colonization of A. holosericea seedlings by G. intraradices with vesicles and hyphae frequencies was recorded. The stimulation of saprophytic fungal growth by MHB is usually the main mechanism that could explain this bacterial effect on mycorrhizal establishment. MHB could stimulate the production of phenolic compounds such as hypaphorine and increase the aggressiveness of the fungal symbiont. However, no significant effect of MHB on fungal growth was recorded with Scleroderma isolates under axenic conditions but positive bacterial effects were observed with Pisolithus strains. From a practical viewpoint, it appears that MHB could stimulate the mycorrhizal colonization of Australian Acacia species with ectomycorrhizal or endomycorrhizal fungi, and could also facilitate controlled mycorrhization in nursery practices where Acacia species are grown for forestation purposes.

  20. Sulfuriflexusmobilis gen. nov., sp. nov., a sulfur-oxidizing bacterium isolated from a brackish lake sediment.

    Science.gov (United States)

    Kojima, Hisaya; Fukui, Manabu

    2016-09-01

    A chemolithotrophic sulfur-oxidizing bacterium, strain aks1T, was isolated from sediment of a brackish lake in Japan. The cells were curved rod-shaped and Gram-stain-negative. The G+C content of the genomic DNA was 53 mol%. The major components in the cellular fatty acid profile were C16 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). As electron donor for chemolithoautotrophic growth, strain aks1T oxidized thiosulfate, sulfide, and elemental sulfur. The strain could utilize oxygen and nitrate as an electron acceptor for thiosulfate oxidation. Growth was observed at a temperature range of 5-34 °C, with optimum growth at 30-32 °C. Growth of the strain was observed at a pH range of 6.4-8.7. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain is related to members of the family Granulosicoccaceae within the order Chromatiales, with sequence similarities around 92 %. On the basis of phylogenetic and phenotypic properties, strain aks1T represents a novel species of a new genus, for which the name Sulfuriflexus mobilis gen. nov., sp. nov. is proposed. The type strain of the type species is aks1T (=DSM 102939T=NBRC 111889T).

  1. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge.

    Science.gov (United States)

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-01

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Complete genome of the marine bacterium Wenzhouxiangella marina KCTC 42284(T).

    Science.gov (United States)

    Lee, Sang-Heon; Choe, Hanna; Kim, Byung Kwon; Nasir, Arshan; Kim, Kyung Mo

    2015-12-01

    Wenzhouxiangella marina is an obligatory aerobic, Gram-negative, non-motile, rod-shaped bacterium that was isolated from the culture broth of marine microalgae, Picochlorum sp. 122. Here we report the 3.67 MB complete genome (65.26 G+C%) of W. marina KCTC 42284(T) encoding 3,016 protein-coding genes, 43 tRNAs and one rRNA operon. The genomic information supports multiple horizontal gene transfer (HGT) events in the history of W. marina, possibly with other marine bacteria co-existing in marine habitats. Evaluation of genomic signatures revealed 19 such HGT-derived genomic islands. Of these, eight were also supported by "genomic context" that refers to the existence of integrases, transposases and tmRNA genes either inside or in near vicinity to the island. The addition of W. marina genome expands the repertoire of marine bacterial genomic diversity, especially because the strain represents the sole genomic resource of a novel taxonomic family in the bacterial order Chromatiales. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium.

    Science.gov (United States)

    Gardan, L; Dauga, C; Prior, P; Gillis, M; Saddler, G S

    2000-01-01

    The bacterial leaf-spot of anthurium emerged during the 1980s, in the French West Indies and Trinidad. This new bacterial disease is presently wide spread and constitutes a serious limiting factor for commercial anthurium production. Twenty-nine strains isolated from leaf-spots of naturally infected anthurium were characterized and compared with reference strains belonging to the Comamonadaceae family, the genera Ralstonia and Burkholderia, and representative fluorescent pseudomonads. From artificial inoculations 25 out of 29 strains were pathogenic on anthurium. Biochemical and physiological tests, fatty acid analysis, DNA-DNA hybridization, 16S rRNA gene sequence analysis, DNA-16S RNA hybridization were performed. The 25 pathogenic strains on anthurium were clustered in one phenon closely related to phytopathogenic strains of the genus Acidovorax. Anthurium strains were 79-99% (deltaTm range 0.2-1.6) related to the strain CFBP 3232 and constituted a discrete DNA homology group indicating that they belong to the same species. DNA-rRNA hybridization, 16S rRNA sequence and fatty acid analysis confirmed that this new species belongs to the beta-subclass of Proteobacteria and to rRNA superfamily III, to the family of Comamonadaceae and to the genus Acidovorax. The name Acidovorax anthurii is proposed for this new phytopathogenic bacterium. The type strain has been deposited in the Collection Française des Bactéries Phytopathogènes as CFBP 3232T.

  4. Relationship between ion requirements for respiration and membrane transport in a marine bacterium.

    Science.gov (United States)

    Khanna, G; DeVoe, L; Brown, L; Niven, D F; MacLeod, R A

    1984-01-01

    Intact cells of the marine bacterium Alteromonas haloplanktis 214 oxidized NADH, added to the suspending medium, by a process which was stimulated by Na+ or Li+ but not K+. Toluene-treated cells oxidized NADH at three times the rate of untreated cells by a mechanism activated by Na+ but not by Li+ or K+. In the latter reaction, K+ spared the requirement for Na+. Intact cells of A. haloplanktis oxidized ethanol by a mechanism stimulated by either Na+ or Li+. The uptake of alpha-aminoisobutyric acid by intact cells of A. haloplanktis in the presence of either NADH or ethanol as an oxidizable substrate required Na+, and neither Li+ nor K+ could replace it. The results indicate that exogenous and endogenous NADH and ethanol are oxidized by A. haloplanktis by processes distinguishable from one another by their requirements for alkali metal ions and from the ion requirements for membrane transport. Intact cells of Vibrio natriegens and Photobacterium phosphoreum oxidized NADH, added externally, by an Na+-activated process, and intact cells of Vibrio fischeri oxidized NADH, added externally, by a K+-activated process. Toluene treatment caused the cells of all three organisms to oxidize NADH at much faster rates than untreated cells by mechanisms which were activated by Na+ and spared by K+. PMID:6690427

  5. Crystal structure determination of a flavoprotein FP390 from a luminescent bacterium, Photobacterium phosphoreum.

    Science.gov (United States)

    Kita, A; Kasai, S; Miki, K

    1995-03-01

    The three-dimensional structure of a flavoprotein, FP390, purified from a luminescent bacterium, Photobacterium phosphoreum, has been determined at 3 A resolution by X-ray crystallography. Crystallographic refinements of the structural model have led to an R-factor of 0.24 for the intensity data between 6 to 3 A resolution collected with synchrotron radiation. It was found that a homodimer of the FP390 molecules related by a non-crystallographic 2-fold axis is comprised in the asymmetric unit. Two homodimers are arranged around a crystallographic 2-fold axis to form a tetrameric assembly. The monomer molecule of FP390, to which two molecules of the flavin cofactor (Q-flavin) are bound, consists of a seven-stranded parallel beta-sheet which forms a half of the beta-barrel structure and seven alpha-helices which surround one side of the beta-barrel. We suggest that the reason why the Q-flavin sample prepared from FP390 is always a mixture of two components is connected with the fact that the monomer molecules has two flavin binding sites, at the dimer interface and at the molecular surface.

  6. Eubacterium aggreganssp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor.

    Science.gov (United States)

    Mechichi, T; Labat, M; Woo, T H; Thomas, P; Garcia, J L; Patel, B K

    1998-12-01

    A strictly anaerobic, homoacetogenic, gram-positive, non spore-forming bacterium, designated strain SR12(T) (T = type strain), was isolated from an anaerobic methanogenic digestor fed with olive mill wastewater. Yeast extract was required for growth but could also be used as sole carbon and energy source. Strain SR12(T) utilized a few carbohydrates (glucose, fructose and sucrose), organic compounds (lactate, crotonate, formate and betaine), alcohols (methanol), the methoxyl group of some methoxylated aromatic compounds, and H2 + CO2. The end-products of carbohydrate fermentation were acetate, formate, butyrate, H2 and CO2. End-products from lactate and methoxylated aromatic compounds were acetate and butyrate. Strain SR12(T) was non-motile, formed aggregates, had a G+C content of 55 mol % and grew optimally at 35 degrees C and pH 7.2 on a medium containing glucose. Phylogenetically, strain SR12(T) was related to Eubacterium barkeri, E. callanderi, and E. limosum with E. barkeri as the closest relative (similarity of 98%) with which it bears little phenotypic similarity or DNA homology (60%). On the basis of its phenotypic, genotypic, and phylogenetic characteristics, we propose to designate strain SR12(T) as Eubacterium aggregans sp. nov. The type strain is SR12(T) (= DSM 12183).

  7. Isolation, Identification, and Characterization of a Feather-Degrading Bacterium

    Science.gov (United States)

    Williams, C. M.; Richter, C. S.; MacKenzie, J. M.; Shih, Jason C. H.

    1990-01-01

    A feather-degrading culture was enriched with isolates from a poultry waste digestor and adapted to grow with feathers as its primary source of carbon, sulfur, and energy. Subsequently, a feather-hydrolytic, endospore-forming, motile, rod-shaped bacterium was isolated from the feather-degrading culture. The organism was Gram stain variable and catalase positive and demonstrated facultative growth at thermophilic temperatures. The optimum rate of growth in nutrient broth occurred at 45 to 50°C and at pH 7.5. Electron microscopy of the isolate showed internal crystals. The microorganism was identified as Bacillus licheniformis PWD-1. Growth on hammer-milled-feather medium of various substrate concentrations was determined by plate colony count. Maximum growth (approximately 109 cells per ml) at 50°C occurred 5 days postinoculation on 1% feather substrate. Feather hydrolysis was evidenced as free amino acids produced in the medium. The most efficient conditions for feather fermentation occurred during the incubation of 1 part feathers to 2 parts B. licheniformis PWD-1 culture (107 cells per ml) for 6 days at 50°C. These data indicate a potential biotechnique for degradation and utilization of feather keratin. Images PMID:16348199

  8. Propionate-Degrading Bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from Methanogenic Ecosystems

    Science.gov (United States)

    Boone, David R.; Bryant, Marvin P.

    1980-01-01

    A new genus and species of a nonmotile gram-negative rod, Syntrophobacter wolinii, is the first bacterium described which degrades propionate only in coculture with an H2-using organism and in the absence of light or exogenous electron acceptors such as O2, sulfate, or nitrate. It was isolated from methanogenic enrichments from an anaerobic municipal sewage digestor, using anaerobic roll tubes containing a medium with propionate as the energy source in association with an H2-using, sulfate-reducing Desulfovibrio sp. which cannot utilize fatty acids other than formate. S. wolinii produced acetate and, presumably, CO2 and H2 (or formate) from propionate. In media without sulfate and with Methanospirillum hungatei, a methanogen that uses only H2-CO2 or formate as an energy source, acetate, methane, and, presumably, CO2 were produced from propionate and only small amounts of Desulfovibrio sp. were present. Isolation in coculture with the methanogen was not successful. S. wolinii does not use other saturated fatty acids as energy sources. Images PMID:16345640

  9. Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil.

    Science.gov (United States)

    Cao, Yan-Ru; Wang, Qian; Jin, Rong-Xian; Tang, Shu-Kun; Jiang, Yi; He, Wen-Xiang; Lai, Hang-Xian; Xu, Li-Hua; Jiang, Cheng-Lin

    2011-03-01

    A Gram-negative, pink-pigmented, non-spore-forming rod shaped, methanol-utilizing bacterium, strain YIM 48816(T), was isolated from forest soil collected from Sichuan province, China. Strain YIM 48816(T) can grow at 4-37 °C, pH 5.0-7.0 and 0% NaCl (w/v). Based on 16S rRNA gene sequence similarity studies, it belonged to the genus Methylobacterium, and formed a phyletic line. The 16S rRNA gene sequence similarities were 96.2% to Methylobacterium mesophilicum DSM 1708(T) and 96.0% to Methylobacterium brachiatum DSM 19569(T), and the phylogenetic similarities to all other Methylobacterium species with validly published names were less than 96.0%. The major menaquinones detected were Q-10 (97.14%) and Q-9 (2.86%). The major fatty acids were C18:1 ω7c (80.84%). The DNA G + C content was 66.2 mol%. It is apparent from the genotypic and phenotypic data that strain YIM 48816(T) belongs to a novel species of the genus Methylobacterium, for which the name Methylobacterium soli sp. nov. is proposed. The type strain is YIM 48816(T) (CCTCC AA 208027(T) = KCTC 22810(T)).

  10. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    Science.gov (United States)

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  11. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    Science.gov (United States)

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  12. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng.

    Science.gov (United States)

    Zhang, Meng-Yue; Cheng, Juan; Cai, Ying; Zhang, Tian-Yuan; Wu, Ying-Ying; Manikprabhu, Deene; Li, Wen-Jun; Zhang, Yi-Xuan

    2017-08-01

    A Gram-stain-positive, rod-shaped, motile bacterium designated as SYP-B691T was isolated from rhizospheric soil of Panax notoginseng. Phylogenetic analysis indicated that SYP-B691T clearly represented a member of the genus Bacillus and showed 16S rRNA gene similarity lower than 97.0 % with the type strains of species of the genus Bacillus, which indicates that it should be considered as a candidate novel species within this genus. The optimum growth of the strain was found to occur at 37 °C and pH 7.0-9.0. The genomic DNA G+C content was determined to be 45.2 mol%. It contained meso-2,6-diaminopimelic acid in the cell-wall peptidoglycan. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. MK-7 was the only menaquinone identified. The major cellular fatty acids of SYP-B691T were identified as iso-C15 : 0 and anteiso-C15 : 0. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, SYP-B691T merits recognition as a representative of a novel species of the genus Bacillus, for which the name Bacillus notoginsengisoli sp. nov. is proposed, with SYP-B691T(=DSM 29196T=JCM 30743T) as the type strain.

  13. Suggested alternative starch utilization system from the human gut bacterium Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Chaudet, Marcia M; Rose, David R

    2016-06-01

    The human digestive system is host to a highly populated ecosystem of bacterial species that significantly contributes to our assimilation of dietary carbohydrates. Bacteroides thetaiotaomicron is a member of this ecosystem, and participates largely in the role of the gut microbiome by breaking down dietary complex carbohydrates. This process of acquiring glycans from the colon lumen is predicted to rely on the mechanisms of proteins that are part of a classified system known as polysaccharide utilization loci (PUL). These loci are responsible for binding substrates at the cell outer membrane, internalizing them, and then hydrolyzing them within the periplasm into simple sugars. Here we report our investigation into specific components of a PUL, and suggest an alternative starch utilization system in B. thetaiotaomicron. Our analysis of an outer membrane binding protein, a SusD homolog, highlights its contribution to this PUL by acquiring starch-based sugars from the colon lumen. Through our structural characterization of two Family GH31 α-glucosidases, we reveal the flexibility of this bacterium with respect to utilizing a range of starch-derived glycans with an emphasis on branched substrates. With these results we demonstrate the predicted function of a gene locus that is capable of contributing to starch hydrolysis in the human colon.

  14. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2016-01-01

    Full Text Available The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD with prominent diffraction peaks at 2θ which can be indexed to the (111, (200, (220, and (311 reflections of face centered cubic structure (fcc of metallic silver. Transmission electron microscopy (TEM revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles.

  15. Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice.

    Science.gov (United States)

    Liu, Qing; Liu, Hong-Can; Zhang, Jian-Li; Zhou, Yu-Guang; Xin, Yu-Hua

    2015-09-01

    A Gram-stain-negative, rod-shaped, orange bacterium (strain MDB1-A(T)) was isolated from ice samples collected from Midui glacier in Tibet, south-west China. Cells were aerobic and psychrotolerant (growth occurred at 0-25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that it was a member of the genus Sphingomonas, with its closest relative being Sphingomonas glacialis C16y(T) (98.9% similarity). Q-10 was the predominant ubiquinone. C17 : 1ω6c and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) were the major cellular fatty acids. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and sphingoglycolipid. The polyamines detected were sym-homospermidine, spermidine and spermine. The G+C content of the genomic DNA was 63.6%. Based on data from this polyphasic analysis, strain MDB1-A(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas psychrolutea sp. nov. is proposed. The type strain is MDB1-A(T) ( = CGMCC 1.10106(T) = NBRC 109639(T)).

  16. Exopolysaccharides play a role in the swarming of the benthic bacterium Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Ang eLiu

    2016-04-01

    Full Text Available Most marine bacteria secrete exopolysaccharide (EPS, which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913 by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria.

  17. [Symbiosis between the nodule bacterium Sinorhizobium meliloti and alfalfa (Medicago sativa) under salinization conditions].

    Science.gov (United States)

    Ibragimova, M V; Rumiantseva, M L; Onishchuk, O P; Belova, V S; Kurchak, O N; Andronov, E E; Dziubenko, N I; Simarov, B V

    2006-01-01

    Two hundred forty-three isolates of alfalfa nodule bacteria (Sinorhizobium meliloti) were obtained from legume nodules and soils sampled in the northern Aral region, experiencing secondary salinization. Isolates obtained from nodules (N isolates) were significantly more salt-tolerant than those from soils (S isolates) when grown in a liquid medium with 3.5% NaCl. It was found that wild species of alfalfa, melilot, and trigonella preferably formed symbioses with salt-tolerant nodule bacteria in both salinized and nonsalinized soils. Only two alfalfa species, Medicago falcata and M. trautvetteri, formed efficient symbioses in soils contrasting in salinity. The formation of efficient symbiosis with alfalfa in the presence of 0.6% NaCl was studied in 36 isolates (N and S) differing in salt tolerance and symbiotic efficiency. Fifteen isolates formed efficient symbioses in the presence of salt. The increase in the dry weight of the plants was 25-68% higher than in the control group. The efficiency of symbiotic interaction under salinization conditions depended on the efficiency of the isolates under standard conditions but did not correlate with the source of nodule bacteria (soil or nodule) or their salt tolerance. The results indicate that nodule bacterium strains forming efficient symbioses under salinization conditions can be found.

  18. A vaccine and diagnostic target for Clostridium bolteae, an autism-associated bacterium.

    Science.gov (United States)

    Pequegnat, Brittany; Sagermann, Martin; Valliani, Moez; Toh, Michael; Chow, Herbert; Allen-Vercoe, Emma; Monteiro, Mario A

    2013-06-10

    Constipation and diarrhea are common in autistic patients. Treatment with antibiotics against bacteria appears to partially alleviate autistic-related symptoms. Clostridium bolteae is a bacterium that has been shown to be overabundant in the intestinal tract of autistic children suffering from gastric intestinal ailments, and as such is an organism that could potentially aggravate gastrointestinal symptoms. We set out to investigate the cell-wall polysaccharides of C. bolteae in order to evaluate their structure and immunogenicity. Our explorations revealed that C. bolteae produces a conserved specific capsular polysaccharide comprised of rhamnose and mannose units: [→3)-α-D-Manp-(1→4)-β-d-Rhap-(1→], which is immunogenic in rabbits. These findings are the first description of a C. bolteae immunogen and indicate the prospect of using this polysaccharide as a vaccine to reduce or prevent C. bolteae colonization of the intestinal tract in autistic patients, and as a diagnostic marker for the rapid detection of C. bolteae in a clinical setting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum

    Science.gov (United States)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.

    2018-03-01

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  20. The cutaneous bacterium Janthinobacterium lividum inhibits the growth of Trichophyton rubrum in vitro.

    Science.gov (United States)

    Ramsey, Jeremy P; Mercurio, Albert; Holland, Jessica A; Harris, Reid N; Minbiole, Kevin P C

    2015-02-01

    Tinea pedis (athlete's foot) is a fungal infection that is both widespread and challenging to treat. Standard treatments consist of topical and systemic therapies of antifungal agents, such as miconazole, itraconazole, and terbinafine. The extended nature of topical therapy and the toxicity of long-term systemic therapy limit the utility of current treatments. An alternate approach relies on an understanding of bacterial-fungal interactions. Specifically, a probiotic antifungal bacterium such as Janthinobacterium lividum can counter infection; Janthinobacterium is a major constituent of the human skin microbiota. Janthinobacterium lividum has been shown to ameliorate the effects of the cutaneous fungal disease chytridiomycosis in a vertebrate species (Rana muscosa). Dual-culture plate challenge assays were performed using J. lividum and Trichophyton rubrum, the leading cause of athlete's foot. In all cases, T. rubrum colonies grew significantly smaller when co-cultured with J. lividum. These in vitro results suggest that J. lividum merits further investigation as a human cutaneous probiotic. © 2013 The International Society of Dermatology.

  1. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat.

    Science.gov (United States)

    Kalita, Debajit; Joshi, S R

    2017-12-01

    Lead released from manufacturing factories, recycling plants, automobile company and landfill leachate is abundantly found in wastewater. An efficient bioremediating agent for lead removal from wastewater is expected to ease the ever increasing problem. The present study reports Pseudomonas sp. W6 isolated from extreme habitat of hot water spring of North-East India evaluated for its Lead biosorption property. The bacterium showed capacity to resist 1.0 mM lead in both solid and liquid minimal media. Epifluorescence microscopy reveal the viability of bacterial cells under metal stress condition. ICP-MS analysis revealed 65% and 61.2% removal of lead from the Synthetic Bangladesh Ground Water medium in batch culture and column study respectively which was higher when compared to biosorption capacity of P. aeruginosa MTCC 2474, P. alcaligenes MJ7 from forest soil and P. ficuserectae PKRS11 from uranium rich soil. Exopolysaccharide released by the isolate which influenced biosorption revealed the presence of ligands assayed using microbial hydrophobicity and FTIR. The extremophilic isolate is proposed as a choice for efficient bioremediation of lead contaminated wastewater.

  2. Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat

    Directory of Open Access Journals (Sweden)

    Debajit Kalita

    2017-12-01

    Full Text Available Lead released from manufacturing factories, recycling plants, automobile company and landfill leachate is abundantly found in wastewater. An efficient bioremediating agent for lead removal from wastewater is expected to ease the ever increasing problem. The present study reports Pseudomonas sp. W6 isolated from extreme habitat of hot water spring of North–East India evaluated for its Lead biosorption property. The bacterium showed capacity to resist 1.0 mM lead in both solid and liquid minimal media. Epifluorescence microscopy reveal the viability of bacterial cells under metal stress condition. ICP-MS analysis revealed 65% and 61.2% removal of lead from the Synthetic Bangladesh Ground Water medium in batch culture and column study respectively which was higher when compared to biosorption capacity of P. aeruginosa MTCC2474, P. alcaligenes MJ7 from forest soil and P. ficuserectae PKRS11 from uranium rich soil. Exopolysaccharide released by the isolate which influenced biosorption revealed the presence of ligands assayed using microbial hydrophobicity and FTIR. The extremophilic isolate is proposed as a choice for efficient bioremediation of lead contaminated wastewater. Keywords: Extremophile, Pseudomonas, Lead bioremediation, Epifluorescence microscopy, ICP-MS, FTIR

  3. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125.

    Science.gov (United States)

    Médigue, Claudine; Krin, Evelyne; Pascal, Géraldine; Barbe, Valérie; Bernsel, Andreas; Bertin, Philippe N; Cheung, Frankie; Cruveiller, Stéphane; D'Amico, Salvino; Duilio, Angela; Fang, Gang; Feller, Georges; Ho, Christine; Mangenot, Sophie; Marino, Gennaro; Nilsson, Johan; Parrilli, Ermenegilda; Rocha, Eduardo P C; Rouy, Zoé; Sekowska, Agnieszka; Tutino, Maria Luisa; Vallenet, David; von Heijne, Gunnar; Danchin, Antoine

    2005-10-01

    A considerable fraction of life develops in the sea at temperatures lower than 15 degrees C. Little is known about the adaptive features selected under those conditions. We present the analysis of the genome sequence of the fast growing Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. We find that it copes with the increased solubility of oxygen at low temperature by multiplying dioxygen scavenging while deleting whole pathways producing reactive oxygen species. Dioxygen-consuming lipid desaturases achieve both protection against oxygen and synthesis of lipids making the membrane fluid. A remarkable strategy for avoidance of reactive oxygen species generation is developed by P. haloplanktis, with elimination of the ubiquitous molybdopterin-dependent metabolism. The P. haloplanktis proteome reveals a concerted amino acid usage bias specific to psychrophiles, consistently appearing apt to accommodate asparagine, a residue prone to make proteins age. Adding to its originality, P. haloplanktis further differs from its marine counterparts with recruitment of a plasmid origin of replication for its second chromosome.

  4. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Science.gov (United States)

    Bielen, Abraham A. M.; Verhaart, Marcel R. A.; van der Oost, John; Kengen, Servé W. M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus. PMID:25371332

  5. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas.

  6. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment

    Science.gov (United States)

    Finster, K.; Coates, J.D.; Liesack, W.; Pfennig, N.

    1997-01-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27(T), was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27(T) is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27(T) belongs to the Desulfuromonas cluster in the recently proposed family 'Geobacteraceae' in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27(T) represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27(T) in this paper.

  7. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw.

    Science.gov (United States)

    Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui

    2015-03-01

    The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Isolation and Bioaugmentation of an Estradiol-Degrading Bacterium and Its Integration into a Mature Biofilm▿

    Science.gov (United States)

    Iasur-Kruh, Lilach; Hadar, Yitzhak; Minz, Dror

    2011-01-01

    Bioaugmentation can alter the potential activity as well as the composition of the naturally occurring microbial biota during bioremediation of a contaminated site. The focus of the current study is the pollutant 17β-estradiol (E2), which can cause endocrine effects and is potentially harmful to aquatic biota and to public health. The community composition and function of biofilms, originating from a wetland system, as affected by augmentation of an estradiol-degrading bacterium (EDB-LI1) under different conditions, were investigated. EDB-LI1 inoculation into biofilm from two wetland ponds representing early and advanced water treatment stages, respectively, yielded three significant observations, as follows: (i) EDB-LI1, enriched from a biofilm of a constructed wetland wastewater treatment system, was detected (by quantitative PCR [qPCR] analysis) in this environment in the augmented biofilm only; (ii) the augmented biofilm acquired the ability to remove estradiol; and (iii) the bacterial community composition (analyzed by PCR-denaturing gradient gel electrophoresis [DGGE]) of the augmented biofilm differed from that of the control biofilm. Furthermore, EDB-LI1 bioaugmentation showed a higher level of removal of estradiol with biofilms that originated from the advanced-treatment-stage wetland pond than those from the early-treatment-stage pond. Hence, the bioaugmentation efficiency of EDB-LI1 depends on both the quality of the feed water and the microbial community composition in the pond. PMID:21478310

  9. Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, Jamila; Magnin, Jean-Pierre [Grenoble Institute of Technology, LEPMI, UMR 5631 (CNRS-INPG-UJF), BP 75, 38402 St Martin d' Heres (France); Flaus, Jean-Marie; Adrot, Olivier [Grenoble Institute of Technology, Laboratoire des sciences pour la conception, l' optimisation et la production, 46, avenue Felix Viallet, 38031 Grenoble (France); Willison, John C. [Laboratoire de Chimie et Biologie des Metaux (UMR 5249 CEA-CNRS-UJF), iRTSV/LCBM, CEA-Grenoble, 38054 Grenoble (France); Zlatev, Roumen [Autonomous University of Baja California, Institute of Engineering, Mexicali, Baja California (Mexico)

    2009-01-15

    The photosynthetic bacterium, Rhodobacter capsulatus, produces hydrogen under nitrogen-limited, anaerobic, photosynthetic culture conditions, using various carbon substrates. In the present study, the relationship between light intensity and hydrogen production has been modelled in order to predict both the rate of hydrogen production and the amount of hydrogen produced at a given time during batch cultures of R. capsulatus. The experimental data were obtained by investigating the effect of different light intensities (6000-50,000 lux) on hydrogen-producing cultures of R. capsulatus grown in a batch photobioreactor, using lactate as carbon and hydrogen source. The rate of hydrogen production increased with increasing light intensity in a manner that was described by a static Baly model, modified to include the square of the light intensity. In agreement with previous studies, the kinetics of substrate utilization and growth of R. capsulatus was represented by the classical Monod or Michaelis-Menten model. When combined with a dynamic Leudekong-Piret model, the amount of hydrogen produced as a function of time was effectively predicted. These results will be useful for the automatization and control of bioprocesses for the photoproduction of hydrogen. (author)

  10. Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Savikhin, S.; Struve, W.S. (Iowa State Univ., Ames, IA (United States) Ames Lab., IA (United States)); Zhu, Yinwen; Lin, Su; Blankenship, R.E. (Arizona State Univ., Tempe, AZ (United States))

    1994-10-06

    The antenna kinetics of bacteriochlorophyll (BChl) c- and a-containing chromosomes from the thermophilic filamentous green photosynthetic bacterium Chloroflexus aurantiacus were investigated using two independent pump-probe techniques with subpicosecond resolution. Isotropic one- and two-color absorption difference experiments using probe wavelengths between 710 and 770 nm reveal BChl c photobleaching (PB) and stimulated emission (SE) decay kinetics with major lifetime components of 50-100 fs, 1-2 ps, and 7-10 ps. Two-color PB.SE profiles pumped at 770 nm and probed at 800 nm (where BChl a pigments absorb) exhibit no detectable rise time. However, two-color experiments using 790 and 820 nm pump and probe wavelengths, respectively, yield PB/SE rise components of 100 fs, 2 ps, and 10 ps. Upon excitation at 720 nm, the BCHl c PB/SE spectrum observed using a broad-band probe continuum displays surprisingly little spectral evolution during the first 2 ps. 65 refs., 13 figs., 3 tabs.

  11. Structure of Chlorosomes from the Green Filamentous Bacterium Chloroflexus aurantiacus▿ †

    Science.gov (United States)

    Pšenčík, Jakub; Collins, Aaron M.; Liljeroos, Lassi; Torkkeli, Mika; Laurinmäki, Pasi; Ansink, Hermanus M.; Ikonen, Teemu P.; Serimaa, Ritva E.; Blankenship, Robert E.; Tuma, Roman; Butcher, Sarah J.

    2009-01-01

    The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae. PMID:19717605

  12. Gliding motility driven by individual cell-surface movements in a multicellular filamentous bacterium Chloroflexus aggregans.

    Science.gov (United States)

    Fukushima, Shun-Ichi; Morohoshi, Sho; Hanada, Satoshi; Matsuura, Katsumi; Haruta, Shin

    2016-04-01

    Chloroflexus aggregans is an unbranched multicellular filamentous bacterium having the ability of gliding motility. The filament moves straightforward at a constant rate, ∼3 μm sec(-1) on solid surface and occasionally reverses the moving direction. In this study, we successfully detected movements of glass beads on the cell-surface along long axis of the filament indicating that the cell-surface movement was the direct force for gliding. Microscopic analyses found that the cell-surface movements were confined to a cell of the filament, and each cell independently moved and reversed the direction. To understand how the cellular movements determine the moving direction of the filament, we proposed a discrete-time stochastic model; sum of the directions of the cellular movements determines the moving direction of the filament only when the filament pauses, and after moving, the filament keeps the same directional movement until all the cells pause and/or move in the opposite direction. Monte Carlo simulation of this model showed that reversal frequency of longer filaments was relatively fixed to be low, but the frequency of shorter filaments varied widely. This simulation result appropriately explained the experimental observations. This study proposed the relevant mechanism adequately describing the motility of the multicellular filament in C. aggregans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Secreted protease mediates interspecies interaction and promotes cell aggregation of the photosynthetic bacterium Chloroflexus aggregans.

    Science.gov (United States)

    Morohoshi, Sho; Matsuura, Katsumi; Haruta, Shin

    2015-01-01

    Interspecies interactions were studied in hot spring microbial mats where diverse species of bacterial cells are densely packed. The anoxygenic photosynthetic bacterium, Chloroflexus aggregans, has been widely found in the microbial mats as a major component in terrestrial hot springs in Japan at the temperature from 50 to 70°C. C. aggregans shows cellular motility to form a microbial mat-like dense cell aggregate. The aggregating ability of C. aggregans was affected by another bacterial species, strain BL55a (related to Bacillus licheniformis) isolated from the microbial mats containing C. aggregans. Cell aggregation rate of C. aggregans was promoted by the addition of culture supernatants of strain BL55a. Similar effects were also detected from other bacterial isolates, specifically Geobacillus sp. and Aeribacillus sp. Protease activity was detected from the culture supernatants from all of these isolates. The promoting effect of strain BL55a was suppressed by a serine protease inhibitor, phenylmethylsulfonyl fluoride. A purified serine protease, subtilisin obtained from B. licheniformis, showed a promoting effect on the cell aggregation. These results suggest that an extracellular protease, secreted from co-existing bacterial species promoted the aggregating motility of C. aggregans. This is the first report that exogenous protease affects bacterial cellular motility. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Complete genome sequence of the gliding freshwater bacterium Fluviicola taffensis type strain (RW262T)

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Mwirichia, Romano [Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Fluviicola taffensis O'Sullivan et al. 2005 belongs to the monotypic genus Fluviicola within the family Cryomorphaceae. The species is of interest because of its isolated phylogenetic location in the genome-sequenced fraction of the tree of life. Strain RW262 T forms a monophyletic lineage with uncultivated bacteria represented in freshwater 16S rRNA gene libraries. A similar phylogenetic differentiation occurs between freshwater and marine bacteria in the family Flavobacteriaceae, a sister family to Cryomorphaceae. Most remarkable is the inability of this freshwater bacterium to grow in the presence of Na + ions. All other genera in the family Cryomorphaceae are from marine habitats and have an absolute requirement for Na + ions or natural sea water. F. taffensis is the first member of the family Cryomorphaceae with a completely sequenced and publicly available genome. The 4,633,577 bp long genome with its 4,082 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Regulation of phagocytosis against bacterium by Rab GTPase in shrimp Marsupenaeus japonicus.

    Science.gov (United States)

    Zong, Rongrong; Wu, Wenlin; Xu, Jianyang; Zhang, Xiaobo

    2008-09-01

    Rab GTPases, members of the Ras superfamily, play important roles in phagosome formation and maturation. However, the involvement of Rab protein in phagocytosis against invading pathogens in crustacean remains unknown. In the present study, the RNAi and mRNA overexpression assays were conducted to elucidate the function of shrimp Rab gene (designated as PjRab) in hemocytic phagocytosis against bacterium. The results indicated that the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were significantly decreased when the PjRab gene was silenced by sequence-specific siRNA, suggesting that the PjRab protein was essential in hemocytic phagocytosis. On the other hand, the overexpression of PjRab gene leaded to the increase of phagocytic percentage and phagocytic index. The findings indicated that the PjRab protein was involved in the regulation of hemocytic phagocytosis of shrimp. Our report on the regulation of phagocytosis by Rab GTPase would contribute a better clue to realize the still poorly understood molecular events involved in shrimp as well as crustacean immune response.

  16. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1.

    Science.gov (United States)

    Ruan, Juanfang; Kato, Takayuki; Santini, Claire-Lise; Miyata, Tomoko; Kawamoto, Akihiro; Zhang, Wei-Jia; Bernadac, Alain; Wu, Long-Fei; Namba, Keiichi

    2012-12-11

    The bacterial flagellum is a motility organelle that consists of a rotary motor and a helical propeller. The flagella usually work individually or by forming a loose bundle to produce thrust. However, the flagellar apparatus of marine bacterium MO-1 is a tight bundle of seven flagellar filaments enveloped in a sheath, and it has been a mystery as to how the flagella rotate smoothly in coordination. Here we have used electron cryotomography to visualize the 3D architecture of the sheathed flagella. The seven filaments are enveloped with 24 fibrils in the sheath, and their basal bodies are arranged in an intertwined hexagonal array similar to the thick and thin filaments of vertebrate skeletal muscles. This complex and exquisite architecture strongly suggests that the fibrils counter-rotate between flagella in direct contact to minimize the friction of high-speed rotation of individual flagella in the tight bundle within the sheath to enable MO-1 cells to swim at about 300 µm/s.

  17. Crochelins: Siderophores with an Iron-Chelating Moiety from the Nitrogen-Fixing Bacterium Azotobacter chroococcum.

    Science.gov (United States)

    Baars, Oliver; Zhang, Xinning; Gibson, Marcus I; Stone, Alan T; Morel, François M M; Seyedsayamdost, Mohammad R

    2017-11-14

    Microbes use siderophores to access essential iron resources in the environment. Over 500 siderophores are known, but they utilize a small set of common moieties to bind iron. Azotobacter chroococcum expresses iron-rich nitrogenases, with which it reduces N2 . Though an important agricultural inoculant, the structures of its iron-binding molecules remain unknown. Here, the "chelome" of A. chroococcum is examined using small molecule discovery and bioinformatics. The bacterium produces vibrioferrin and amphibactins as well as a novel family of siderophores, the crochelins. Detailed characterization shows that the most abundant member, crochelin A, binds iron in a hexadentate fashion using a new iron-chelating γ-amino acid. Insights into the biosynthesis of crochelins and the mechanism by which iron may be removed upon import of the holo-siderophore are presented. This work expands the repertoire of iron-chelating moieties in microbial siderophores. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Clostridium amazonense sp. nov. an obliqately anaerobic bacterium isolated from a remote Amazonian community in Peru.

    Science.gov (United States)

    O'Neal, Lindsey; Obregón-Tito, Alexandra J; Tito, Raul Y; Ozga, Andrew T; Polo, Susan I; Lewis, Cecil M; Lawson, Paul A

    2015-10-01

    A strictly anaerobic Gram-stain positive, spore-forming, rod-shaped bacterium designated NE08V(T), was isolated from a fecal sample of an individual residing in a remote Amazonian community in Peru. Phylogenetic analysis based on the 16S rRNA gene sequence showed the organism belonged to the genus Clostridium and is most closely related to Clostridium vulturis (97.4% sequence similarity) and was further characterized using biochemical and chemotaxonomic methods. The major cellular fatty acids were anteiso C13:0 and C16:0 with a genomic DNA G + C content of 31.6 mol%. Fermentation products during growth with PYG were acetate and butyrate. Based on phylogenetic, phenotypic and chemotaxonomic information, strain NE08V was identified as representing a novel species of the genus Clostridium, for which the name Clostridium amazonense sp. nov. is proposed. The type strain is NE08V(T) (DSM 23598(T) = CCUG 59712(T)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water.

    Science.gov (United States)

    Abildgaard, Lone; Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2006-05-01

    A novel alkalitolerant, sulphate-reducing bacterium (strain RT2T) was isolated from alkaline district heating water. Strain RT2T was a motile vibrio (0.5-0.8 microm wide and 1.4-1.9 microm long) and grew at pH 6.9-9.9 (optimum at pH 9.0-9.4) and at 16-47 degrees C (optimum at 43 degrees C). The genomic DNA G+C content was 64.7 mol%. A limited number of compounds were used as electron donors with sulphate as electron acceptor, including lactate, pyruvate, formate and hydrogen/acetate. Sulphite and thiosulphate also served as electron acceptors. Based on physiological and genotypic properties, the isolate was considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio alkalitolerans sp. nov. is proposed. The type strain is RT2T (=DSM 16529T=JCM 12612T). The strain is the first alkali-tolerant member of the genus Desulfovibrio to be described.

  20. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  1. Evaluation of lactic acid bacterium from chilli waste as a potential antifungal agent for wood products.

    Science.gov (United States)

    O'Callahan, D R; Singh, T; McDonald, I R

    2012-03-01

    The aim of this study was to isolate lactic acid bacteria from chilli waste and evaluate metabolites produced for the ability to arrest wood decay. Using an optical density screening method, one bacterium (isolate C11) was identified as having pronounced antifungal properties against Oligoporus placenta. This isolate was identified as Lactobacillus brevis by 16S rRNA gene sequencing. To determine antifungal activity in wood, Pinus radiata blocks were impregnated with Lact. brevis [C11] cell-free supernatant and exposed to brown rot fungi O. placenta, Antrodia xantha and Coniophora puteana. The treated timber demonstrated resistance to degradation from all fungi. The antifungal metabolites were heat stable and not affected by proteinase K, but were affected by neutralization with NaOH suggesting the metabolites were of an acidic nature. The presence of lactic and acetic acid was confirmed by HPLC analysis. Lactobacillus brevis [C11] produced acidic metabolites that were able to inhibit the growth of wood decay fungi and subsequent wood decay. Traditional wood treatments are becoming an environmental issue as the public demands more benign options. The use of lactic acid bacteria which are considered safe for general use is a potential alternative to the conventional heavy metal chemicals currently in use. © 2011 Scion. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm.

    Science.gov (United States)

    Kim, Kwang Kyu; Park, Hye Yoon; Park, Wooshin; Kim, In S; Lee, Sung-Taik

    2005-09-01

    A novel xylan-degrading bacterium, S3-E(T), was isolated from the biofilm of a membrane bioreactor. The cells of this strain were Gram-positive, non-motile, non-spore-forming rods, produced primary branches and formed yellow colonies on nutrient agar. The strain had chemotaxonomic markers that were consistent with classification in the genus Microbacterium, i.e. MK-12, MK-11 and MK-13 as the major menaquinones, predominant iso- and anteiso-branched cellular fatty acids, glucose and galactose as the cell-wall sugars, peptidoglycan-type B2beta with glycolyl residues and a DNA G+C content of 69.7 mol%. Phylogenetic analysis, based on 16S rRNA gene sequencing, showed that strain S3-E(T) is most similar to Microbacterium hominis IFO 15708(T) and Microbacterium foliorum DSM 12966(T) (97.6 and 97.4% sequence similarity, respectively), and that it forms a separate lineage with M. hominis in the genus Microbacterium. DNA-DNA hybridization results and phenotypic properties showed that strain S3-E(T) could be distinguished from all known Microbacterium species and represented a novel species, for which the name Microbacterium xylanilyticum sp. nov. is proposed; the type strain is S3-E(T) (=DSM 16914(T)=KCTC 19079(T)).

  3. Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai.

    Science.gov (United States)

    Hyun, Dong-Wook; Shin, Na-Ri; Kim, Min-Soo; Kim, Pil Soo; Kim, Joon Yong; Whon, Tae Woong; Bae, Jin-Woo

    2014-02-01

    A novel, Gram-staining-positive, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain WL80(T), was isolated from the gut of an abalone, Haliotis discus hannai, collected from the northern coast of Jeju in Korea. Optimal growth occurred at 30 °C, pH 7-8 and with 1% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain WL80(T) fell within the cluster of the genus Actinomyces, with highest sequence similarity to the type strains of Actinomyces radicidentis (98.8% similarity) and Actinomyces urogenitalis (97.0% similarity). The major cellular fatty acids were C18 : 1ω9c and C16 : 0. Menaquinone-10 (H4) was the major respiratory quinone. The genomic DNA G+C content of the isolate was 70.4 mol%. DNA-DNA hybridization values with closely related strains indicated less than 7.6% genomic relatedness. The results of physiological, biochemical, chemotaxonomic and genotypic analyses indicated that strain WL80(T) represents a novel species of the genus Actinomyces, for which the name Actinomyces haliotis sp. nov. is proposed. The type strain is WL80(T) ( = KACC 17211(T) = JCM 18848(T)).

  4. [Screening and identification of a bacterium capable of converting agar to neoagaro oligosaccharides].

    Science.gov (United States)

    Han, Junping; Huang, Yayan; Ye, Jing; Xiao, Meitian

    2015-09-04

    To screen and identify a bacterium capable of converting agar to neoagaro oligosaccharides. We took samples of porphyra haitanensis and nearby seawater, and then used the medium containing 1 per thousand agar to enrich the target bacteria. The target isolates were obtained by dilution-plate method, of which crude enzymes were further obtained by liquid culture. We adopted DNS method to determine the target bacteria which can convert agar to neoagaro oligosaccharides. The phylogenetics was identified by analyzing 16S rDNA sequence and combining the strain's morphological and bacterial colonial physiological biochemical characteristics. We isolated a gram-negative bacterial strain HJPHYXJ-1 capable of transforming agar to neoagaro oligosaccharides. Basic Local Alignment Search Tool (BLAST) search of HJPHYXJ-1's 16S rDNA sequence on GenBank suggested that the similarity between this strain and Vibrio natriegens reached 99% . In addition, the morphological and physiological biochemical characteristics of HJPHYXJ-1 also showed highly similarity to Vibrio natriegens. So we identified HJPHYXJ-1 as Vibrio natriegens. The results of HPLC suggested that the metabolite of enzymatic degradation was neoagaro oligosaccharides. HJPHYXJ-1 or the new isolate of Vibrio natriegens was capable of converting agar to neoagaro oligosaccharides.

  5. Discovery of a Marine Bacterium Producing 4-Hydroxybenzoate and Its Alkyl Esters, Parabens

    Science.gov (United States)

    Peng, Xue; Adachi, Kyoko; Chen, Choryu; Kasai, Hiroaki; Kanoh, Kaneo; Shizuri, Yoshikazu; Misawa, Norihiko

    2006-01-01

    Chemically synthesized 4-hydroxybenzoate (4HBA) is widely used in the chemical and electrical industries as a material for producing polymers such as those of the liquid crystal type. Its alkyl esters, called parabens, have been the most widely used preservatives by the food and cosmetic industries. We report here for the first time a microorganism, a marine bacterium, which biosynthesizes these petrochemical products. The marine bacterial strain, A4B-17, which was found to belong to the genus Microbulbifer on the basis of its rRNA and gyrB sequences, was isolated from an ascidian in the coastal waters of Palau. Strain A4B-17 was, surprisingly, found to produce 10 mg/liter of 4HBA, together with its butyl (24 mg/liter), heptyl (0.4 mg/liter), and nonyl (6 mg/liter) esters. We therefore characterized 23 other marine bacteria belonging to the genus Microbulbifer, which our institute had previously isolated from various marine environments, and found that these bacteria also produced 4HBA, although with low production levels (less than one-fifth of that produced by A4B-17). We also show that the alkyl esters of 4HBA produced by strain A4B-17 were effective in preventing the growth of yeasts, molds, and gram-positive bacteria. PMID:16885309

  6. Tuwongella immobilis gen. nov., sp. nov., a novel non-motile bacterium within the phylum Planctomycetes.

    Science.gov (United States)

    Seeger, Christian; Butler, Margaret K; Yee, Benjamin; Mahajan, Mayank; Fuerst, John A; Andersson, Siv G E

    2017-10-31

    A gram-negative, budding, catalase negative, oxidase positive and non-motile bacterium (MBLW1(T)) with a complex endomembrane system has been isolated from a freshwater lake in southeast Queensland, Australia. Phylogeny based on 16S rRNA gene sequence analysis places the strain within the family Planctomycetaceae, related to Zavarzinella formosa (93.3 %), Telmatocola sphagniphila (93.3 %) and Gemmata obscuriglobus (91.9 %). Phenotypic and chemotaxonomic analysis demonstrates considerable differences to the type strains of the related genera. MBLW1(T) displays modest salt tolerance and grows optimally at pH values of 7.5-8.0 and at temperatures of 32-36 °C. Transmission electron microscopy analysis demonstrates the presence of a complex endomembrane system, however, without the typically condensed nucleoid structure found in related genera. The major fatty acids are 16 : 1 ω5c, 16 : 0 and 18 : 0. Based on discriminatory results from 16S rRNA gene sequence analysis, phenotypic, biochemical and chemotaxonomic analysis, MBLW1(T) should be considered as a new genus and species, for which the name Tuwongella immobilis gen. nov., sp. nov. is proposed. The type strain is MBLW1(T) (=CCUG 69661(T)=DSM 105045(T)).

  7. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1.

    Science.gov (United States)

    Xiao, Xiang; Ma, Xiao-Bo; Yuan, Hang; Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui; Du, Dao-Lin; Sun, Jian-Fan; Feng, Yu-Jie

    2015-05-15

    Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H2S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV-vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bioremediation of polluted beaches with PAHs by using biosurfactant produced by bacterium isolated from Persian Gulf

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2016-07-01

    Full Text Available Background: PAHs was producted from incomplete combustion of fossil fuels and due to nature of publishing, it was categorized as the soil and beaches pollutant. These compounds are considered in pollutants which have priority, carcinogenic and certain mutagenic. The main difficulty of clearing contaminated areas to PAHs is the nature of highly water repellent of these pollutants and a strong attraction to the soil texture. The main objective of this current study was to determine the efficiency of phenanthrene removal from contaminated soil and beaches by using biosurfactant produced by a bacterium isolated from Persian Gulf. Materials & Methods: with primary screening, a Bacillus sp strain with surfactin production capability was isolated and purified in laboratory. A mixed bacterial consortium isolated which was consists of three bacterial species with of capable of metabolism of phenanthrene from Khark contaminated beaches and was used as a microbial seed. The synthetic soil samples with initial phenanthrene concentration of 100 mg/kg and also natural contaminated samples were subjected to bioremediation during 9 weeks. Results: The phenanthrene removal efficiency in the samples containing biosurfactants and with artificial and natural pollution were 82% and 39% respectively. The removal efficiency for samples without biosurfactant was 11%. Conclusion: The bioremediation process is considered an efficient, eco-friendly and operational for remediation of beache and soil polluted by petroleum hydrocarbons by using bacterial biosurfactant.

  9. Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov.

    Science.gov (United States)

    Behrendt, Undine; Kämpfer, Peter; Glaeser, Stefanie P; Augustin, Jürgen; Ulrich, Andreas

    2016-06-01

    In the context of studying the bacterial community involved in nitrogen transformation processes in arable soils exposed to different extents of erosion and sedimentation in a long-term experiment (CarboZALF), a strain was isolated that reduced nitrate to nitrous oxide without formation of molecular nitrogen. The presence of the functional gene nirK, encoding the respiratory copper-containing nitrite reductase, and the absence of the nitrous oxide reductase gene nosZ indicated a truncated denitrification pathway and that this bacterium may contribute significantly to the formation of the important greenhouse gas N2O. Phylogenetic analysis based on the 16S rRNA gene sequence and the housekeeping genes recA and atpD demonstrated that the investigated soil isolate belongs to the genus Rhizobium. The closest phylogenetic neighbours were the type strains of Rhizobium. subbaraonis and Rhizobium. halophytocola. The close relationship with R. subbaraonis was reflected by similarity analysis of the recA and atpD genes and their amino acid positions. DNA-DNA hybridization studies revealed genetic differences at the species level, which were substantiated by analysis of the whole-cell fatty acid profile and several distinct physiological characteristics. Based on these results, it was concluded that the soil isolate represents a novel species of the genus Rhizobium, for which the name Rhizobium azooxidifex sp. nov. (type strain Po 20/26T=DSM 100211T=LMG 28788T) is proposed.

  10. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Directory of Open Access Journals (Sweden)

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  11. Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4.

    Science.gov (United States)

    Sawabe, T; Ohtsuka, M; Ezura, Y

    1997-10-28

    A bacterium Alteromonas sp. strain H-4 isolated from Laminaria fronds produced extra- and intra-cellular alginate lyases and utilized alginate as its sole carbon source. An extracellular alginate lyase was purified from the culture supernatant of the strain and its substrate specificity was characterized. The estimated molecular mass of the enzyme was 32 kDa and the isoelectric point was 4.7. Both polyM and polyG block degrading activities were observed using the substrate-containing gel overlay technique after isoelectric focusing of the enzyme. By analyzing the reaction products from the polyM block, polyG block, MG random block and intact alginate, three major peaks containing unsaturated tri-uronide through octa-uronide were detected for each substrate. The results indicate that the enzyme of Alteromonas sp. H-4 can degrade both polyM and polyG blocks with a K(m) in mg/mL 20-times higher for the polyM block.

  12. Purification and Characterization of Catalase from Marine Bacterium Acinetobacter sp. YS0810

    Directory of Open Access Journals (Sweden)

    Xinhua Fu

    2014-01-01

    Full Text Available The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability.

  13. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    Science.gov (United States)

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

  14. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    Science.gov (United States)

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  15. Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum.

    Science.gov (United States)

    Hori, Manabu; Fujii, Kimiko; Fujishima, Masahiro

    2008-01-01

    The bacterium Holospora is an endonuclear symbiont of the ciliate Paramecium. Previously, we reported that paramecia bearing the macronuclear-specific symbiont Holospora obtusa survived better than symbiont-free paramecia, even under high temperatures unsuitable for growth. The paramecia with symbionts expressed high levels of hsp70 mRNAs even at 25 degrees C, a usual growth temperature. We report herein that paramecia bearing the micronuclear-specific symbiont Holospora elegans also acquire the heat-shock resistance. Even after the removal of the bacteria from the hosts by treatment with penicillin, the resulting aposymbiotic paramecia nevertheless maintained their heat shock-resistant nature for over 1 yr. Like symbiotic paramecia, these aposymbiotic paramecia also expressed high levels of both hsp60 and hsp70 mRNAs even at 25 degrees C. Moreover, analysis by fluorescent in situ hybridization with a probe specific for Holospora 16S rRNA revealed that the 16S rRNA of H. elegans was expressed around the nucleoli of the macronucleus in the aposymbiotic cells. This result suggests the possible transfer of Holospora genomic DNA from the micronucleus into the macronucleus in symbiotic paramecia. Perhaps this exogenous DNA could trigger the aposymbiotic paramecia to induce a stress response, inducing higher expression of Hsp60 and Hsp70, and thus conferring heat-shock resistance.

  16. The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum.

    Science.gov (United States)

    Hori, Manabu; Fujishima, Masahiro

    2003-01-01

    The bacterium Holospora obtusa is a macronuclear-specific symbiont of the ciliate Paramecium caudatum. H. obtusa-bearing paramecia could survive even after the cells were quickly heated from 25 degrees C to 35 degrees C. To determine whether infection with H. obtusa confers heat shock resistance on its host, we isolated genes homologous to the heat shock protein genes hsp60 and hsp70 from P. caudatum. The deduced amino acid sequences of both cDNAs were highly homologous to hsp family sequences from other eukaryotes. Competitive PCR showed that H. obtusa-free paramecia expressed only trace amounts of hsp60 and hsp70 mRNA at 25 degrees C, but that expression of hsp70 was enhanced immediately after the cells were transferred to 35 degrees C. H. obtusa-bearing paramecia expressed high levels of hsp7O mRNA even at 25 degrees C and the level was further enhanced when the cells were incubated at 35 degrees C. In contrast, the expression pattern of hsp60 mRNA was the same in H. obtusa-bearing as in H. obtusa-free paramecia. These results indicate that infection with its endosymbiont can confer a heat-shock resistant nature on its host cells.

  17. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal

    Science.gov (United States)

    Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2000-10-01

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.

  18. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    Sergio de Oliveira Procópio

    2014-10-01

    Full Text Available The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], glyphosate, MSMA e 2,4-D were tested in their respective commercial doses regarding their impact on the growth of the bacteria in liquid medium DIGs. For this, we determined the duration of lag phase, generation time and maximum cell density of H. seropedicae, calculated from optical density data obtained at regular intervals during the incubation of cultures for 33 h at 32oC. We also evaluated the impact of herbicides on nitrogenase activity of H. seropedicae grown in semi-solid N-free JNFb medium. The effects of herbicides on the growth variables and the ARA were compared with the untreated control by Dunnett test. A completely randomized design was used. The herbicides paraquat, imazapyr, ametryne, glyphosate and oxyfluorfen inhibited the growth of H. seropedicae in vitro. Ametryne, oxyfluorfen and glyphosate caused a small reduction in the duration of the lag phase of diazotrophic bacteria H. seropedicae. Oxyfluorfen, ametryne and imazapyr resulted in increased the generation time by H. seropedicae. Glyphosate promoted drastic reduction in biological nitrogen fixation in vitro by H. seropedicae. The other tested herbicides did not affect the growth or the same BNF by H. seropedicae.

  19. Genome reduction in an abundant and ubiquitous soil bacterium 'Candidatus Udaeobacter copiosus'.

    Science.gov (United States)

    Brewer, Tess E; Handley, Kim M; Carini, Paul; Gilbert, Jack A; Fierer, Noah

    2016-10-31

    Although bacteria within the Verrucomicrobia phylum are pervasive in soils around the world, they are under-represented in both isolate collections and genomic databases. Here, we describe a single verrucomicrobial group within the class Spartobacteria that is not closely related to any previously described taxa. We examined more than 1,000 soils and found this spartobacterial phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, particularly in grasslands, where it was typically the most abundant. We reconstructed a nearly complete genome of this phylotype from a soil metagenome for which we propose the provisional name 'Candidatus Udaeobacter copiosus'. The Ca. U. copiosus genome is unusually small for a cosmopolitan soil bacterium, estimated by one measure to be only 2.81 Mbp, compared to the predicted effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic reconstruction suggests that Ca. U. copiosus is an aerobic heterotroph with numerous putative amino acid and vitamin auxotrophies. The large population size, relatively small genome and multiple putative auxotrophies characteristic of Ca. U. copiosus suggest that it may be undergoing streamlining selection to minimize cellular architecture, a phenomenon previously thought to be restricted to aquatic bacteria. Although many soil bacteria need relatively large, complex genomes to be successful in soil, Ca. U. copiosus appears to use an alternative strategy, sacrificing metabolic versatility for efficiency to become dominant in the soil environment.

  20. Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola.

    Science.gov (United States)

    Lou, J; Dawson, K A; Strobel, H J

    1996-05-01

    In bacteria, cellobiose and cellodextrins are usually degraded by either hydrolytic or phosphorolytic cleavage. Prevotella ruminicola B(1)4 is a noncellulolytic ruminal bacterium which has the ability to utilize the products of cellulose degradation. In this organism, cellobiose hydrolytic cleavage activity was threefold greater than phosphorolytic cleavage activity (113 versus 34 nmol/min/mg of protein), as measured by an enzymatic assay. Cellobiose phosphorylase activity (measured as the release of P(i)) was found in cellobiose-, mannose-, xylose-, lactose-, and cellodextrin-grown cells (> 92 nmol of P(i)/min/mg of protein), but the activity was reduced by more than 74% for cells grown on fructose, L-arabinose, sucrose, maltose, or glucose. A small amount of cellodextrin phosphorylase activity (19 nmol/min/mg of protein) was also detected, and both phosphorylase activities were located in the cytoplasm. Degradation involving phosphorolytic cleavage conserves more metabolic energy than simple hydrolysis, and such degradation is consistent with substrate-limiting conditions such as those often found in the rumen.

  1. A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae

    Science.gov (United States)

    Chen, Juanni; Wang, Xiuping; Han, Heyou

    2013-05-01

    Xanthomonas oryzae pv. oryzae ( Xoo) is one representative phytopathogenic bacterium causing bacteria infections in rice. The antibacterial activity of graphene suspended in different dispersants against Xoo was first investigated. Bacteriological test data, fluorescence microscope and transmission electron microscopy images are provided, which yield insight into the antibacterial action of the nanoscale materials. Surprisingly, the results showed graphene oxide (GO) exhibits superior bactericidal effect even at extremely low dose in water (250 μg/mL), almost killing 94.48 % cells, in comparison to common bactericide bismerthiazol with only 13.3 % mortality. The high efficiency in inactivating the bacteria on account of considerable changes in the cell membranes caused by the extremely sharp edges of graphene oxide and generation of reactive oxygen species, which may be the fatal factor for bacterial inactivation. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced with low cost, we expect a new application could be developed as bactericide for controlling plant disease, which may be a matter of great importance for agricultural development.

  2. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.; Fukunaga, N.; Sasaki, S. (Hokkaido Univ., Sapporo (Japan))

    1989-08-01

    Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. (1-{sup 14}C)palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. (1-{sup 14}C)stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. (1-{sup 14}C)lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from (1-{sup 14}C)acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released {sup 14}CO{sub 2}, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.

  3. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  4. The Lipid A from the Haloalkaliphilic Bacterium Salinivibrio sharmensis Strain BAGT

    Directory of Open Access Journals (Sweden)

    Maria Michela Corsaro

    2013-01-01

    Full Text Available Lipid A is a major constituent of the lipopolysaccharides (or endotoxins, which are complex amphiphilic macromolecules anchored in the outer membrane of Gram-negative bacteria. The glycolipid lipid A is known to possess the minimal chemical structure for LPSs endotoxic activity, able to cause septic shock. Lipid A isolated from extremophiles is interesting, since very few cases of pathogenic bacteria have been found among these microorganisms. In some cases their lipid A has shown to have an antagonist activity, i.e., it is able to interact with the immune system of the host without triggering a proinflammatory response by blocking binding of substances that could elicit such a response. However, the relationship between the structure and the activity of these molecules is far from being completely clear. A deeper knowledge of the lipid A chemical structure can help the understanding of these mechanisms. In this manuscript, we present our work on the complete structural characterization of the lipid A obtained from the lipopolysaccharides (LPS of the haloalkaliphilic bacterium Salinivibrio sharmensis. Lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different number of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of electrospray ionization Fourier transform ion cyclotron (ESI FT-ICR mass spectrometry and chemical analysis.

  5. Vibrio parahaemolyticus a causative bacterium for tail rot disease in ornamental fish, Amphiprion sebae

    Directory of Open Access Journals (Sweden)

    Thangapandi Marudhupandi

    2017-11-01

    Full Text Available The present study was performed to identify the tail rot disease causing bacterium in marine ornamental fish, Amphiprion sebae. Bacteria were isolated from the infected immune organs and tail region of A. sebae. Five different bacterial isolates (S1-S5 with different shape, size and colour were chosen for the infection study. The isolated strains were individually challenged with A. sebae at a constant dose of 1 × 107 CFU/fish. The virulent strain was found to be S-3, which showed maximum reproducing ability in A. sebae by causing typical tail rot disease and mortality. Furthermore, S-3 strain was identified as Vibrio parahaemolyticus by 16S rRNA gene sequencing (KF738005, biochemical analysis and amplification of tox R gene. Subsequently, extracellular products (ECPs of V. parahaemolyticus were prepared by cellophane overlay method. The LD50 value of V. parahaemolyticus and its ECPS were found to be 1 × 105 CFU and 5 μg/fish. The histology results revealed that V. parahaemolyticus and its ECPS are the major cause of tail rot disease in A. sebae.

  6. Directed Binding of Gliding Bacterium, Mycoplasma mobile, Shown by Detachment Force and Bond Lifetime

    Directory of Open Access Journals (Sweden)

    Akihiro Tanaka

    2016-06-01

    Full Text Available Mycoplasma mobile, a fish-pathogenic bacterium, features a protrusion that enables it to glide smoothly on solid surfaces at a velocity of up to 4.5 µm s−1 in the direction of the protrusion. M. mobile glides by a repeated catch-pull-release of sialylated oligosaccharides fixed on a solid surface by hundreds of 50-nm flexible “legs” sticking out from the protrusion. This gliding mechanism may be explained by a possible directed binding of each leg with sialylated oligosaccharides, by which the leg can be detached more easily forward than backward. In the present study, we used a polystyrene bead held by optical tweezers to detach a starved cell at rest from a glass surface coated with sialylated oligosaccharides and concluded that the detachment force forward is 1.6- to 1.8-fold less than that backward, which may be linked to a catch bond-like behavior of the cell. These results suggest that this directed binding has a critical role in the gliding mechanism.

  7. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium.

    Science.gov (United States)

    An, Young Jun; Rowland, Sara E; Na, Jung-Hyun; Spigolon, Dario; Hong, Seung Kon; Yoon, Yeo Joon; Lee, Jung-Hyun; Robb, Frank T; Cha, Sun-Shin

    2017-10-10

    The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers. Group I CPNs have a bacterial ancestry, whereas Group II CPNs are archaeal in origin. Here we describe open and closed crystal structures representing a new phylogenetic branch of CPNs. These Group III CPNs are divergent in sequence and structure from extant CPNs, but are closed by a built-in lid like Group II CPNs. A nucleotide-sensing loop, present in both Group I and Group II CPNs, is notably absent. We identified inter-ring pivot joints that articulate during ring closure. These Group III CPNs likely represent a relic from the ancestral CPN that formed distinct bacterial and archaeal branches.Chaperonins (CPNs) are ATP-dependent protein-folding machines. Here the authors present the open and closed crystal structures of a Group III CPN from the thermophilic bacterium Carboxydothermus hydrogenoformans, discuss its mechanism and structurally compare it with Group I and II CPNs.

  8. In situ light responses of the proteorhodopsin-bearing Antarctic sea-ice bacterium, Psychroflexus torques.

    Science.gov (United States)

    Burr, David J; Martin, Andrew; Maas, Elizabeth W; Ryan, Ken G

    2017-09-01

    Proteorhodopsin (PR) is a wide-spread protein found in many marine prokaryotes. PR allows for the potential conversion of solar energy to ATP, possibly assisting in cellular growth and survival during periods of high environmental stress. PR utilises either blue or green light through a single amino acid substitution. We incubated the PR-bearing bacterium Psychroflexus torquis 50 cm deep within Antarctic sea ice for 13 days, exposing cultures to diurnal fluctuations in light and temperature. Enhanced growth occurred most prominently in cultures incubated under irradiance levels of ∼50 μmol photons m-2 s-1, suggesting PR provides a strong selective advantage. In addition, cultures grown under blue light yielded over 5.5 times more live cells per photon compared to green-light incubations. Because P. torquis expresses an apparently 'green-shifted' PR gene variant, this finding infers that the spectral tuning of PR is more complex than previously thought. This study supports the theory that PR provides additional energy to bacteria under sub-optimal conditions, and raises several points of interest to be addressed by future research.

  9. Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans strain 2-40

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ronald M [University of Maryland; TaylorII, Larry E [University of Maryland; Henrissat, Bernard [Universite d' Aix-Marseille I & II; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Coutinho, Pedro M [Universite d' Aix-Marseille I & II; Rancurel, Corinne [Universite d' Aix-Marseille I & II; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Longmire, Atkinson G [University of Maryland; Zhang, Haitao [University of Maryland; Bayer, Ed [Weizmann Institute of Science, Rehovot, Israel; Gilbert, Harry J [University of Newcastle upon Tyne; Larimer, Frank W [ORNL; Zhulin, Igor B [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Ekborg, Nathan A. [University of Maryland; Lamed, Raphael [Tel Aviv University; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Borovok, Ilya [Tel Aviv University; Hutcheson, Steven [University of Maryland

    2008-05-01

    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides (CP). We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 CP. Not only is this an extraordinary range of catabolic capability, but many of the enzymes contain domains and features - some unusual, others unique - that are believed to facilitate depolymerization of CP. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well characterized in the marine environment.

  10. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T.

    Directory of Open Access Journals (Sweden)

    Ronald M Weiner

    2008-05-01

    Full Text Available The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40 is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment.

  11. Roles of dental pulp fibroblasts in the recognition of bacterium-related factors and subsequent development of pulpitis

    Directory of Open Access Journals (Sweden)

    Tadashi Nakanishi

    2011-08-01

    Full Text Available As caries-related bacteria invade deeply into dentin and come into close proximity to the pulp, inflammatory cells (such as lymphocytes, macrophages and neutrophils infiltrate into the bacterium-invaded area and consequently pulpitis develops. Many types of cytokines and adhesion molecules are responsible for the initiation and progression of pulpitis. Dental pulp fibroblasts, a major cell type in the dental pulp, also have capacity to produce pro-inflammatory cytokines and express adhesion molecules in response to pathogen-associated molecular patterns (PAMPs, including lipopolysaccharide. The innate immune system senses microbial infection using pattern recognition receptors, such as Toll-like receptors (TLRs and nucleotide-binding oligomerization domain (NOD, for PAMPs. In this review, we summarize the roles of dental pulp fibroblasts in the recognition of invaded bacterium-related factors via TLR and NOD pathways, and the subsequent pulpal immune responses, leading to progressive pulpitis.

  12. A bacterium capable of using phytol as its sole carbon source, isolated from algal sediment of Mud Lake, Florida.

    Science.gov (United States)

    Hoag, K B; Bradley, W H; Tousimis, A J; Price, D L

    1969-07-01

    A species of Flavobacterium that consistently attacks pure phytol and can use it as a sole source of carbon has been isolated from the blue-green algal sediment of Mud Lake, Florida. Biochemical tests demonstrate that this bacterium also readily uses various other organic compounds. This bacterium may account for the degradation products of chlorophyll and its side chain phytol, which have been found in the Mud Lake algal sediment. Phytol and its degradation products play a role in Refsum's disease, but phytol is also the most promising precursor of the isoprenoid hydrocarbons found in oil shale of the Green River Formation (Eocene) of Colorado, Utah, and Wyoming. The discovery of this species of Flavobacterium is a significant product of a protracted study of the bacteriology, phycology, zoology, and geochemistry of the algal sediment forming in Mud Lake, which is believed to be a modern analogue of the kind of algal sediment that, through geologic time, became oil shale.

  13. Stereochemical course of hydrolytic reaction catalyzed by alpha-galactosidase from cold adaptable marine bacterium of genus Pseudoalteromonas

    Science.gov (United States)

    Bakunina, Irina; Balabanova, Larissa; Golotin, Vasiliy; Slepchenko, Lyubov; Isakov, Vladimir; Rasskazov, Valeriy

    2014-10-01

    The recombinant α-galactosidase of the marine bacterium (α-PsGal) was synthesized with the use of the plasmid 40Gal, consisting of plasmid pET-40b (+) (Novagen) and the gene corresponding to the open reading frame of the mature α-galactosidase of marine bacterium Pseudoalteromonas sp. KMM 701, transformed into the E. coli Rosetta(DE3) cells. In order to understand the mechanism of action, the stereochemistry of hydrolysis of 4-nitrophenyl α-D-galactopyranoside (4-NPGP) by α-PsGal was measured by 1H NMR spectroscopy. The kinetics of formation of α- and β-anomer of galactose showed that α-anomer initially formed and accumulated, and then an appreciable amount of β-anomer appeared as a result of mutarotation. The data clearly show that the enzymatic hydrolysis of 4-NPGP proceeds with the retention of anomeric configuration, probably, due to a double displacement mechanism of reaction.

  14. Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan

    Directory of Open Access Journals (Sweden)

    Pilla Sankara Krishna

    2015-12-01

    Full Text Available We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000.

  15. Stereochemical course of hydrolytic reaction catalyzed by alpha-galactosidase from cold adaptable marine bacterium of genus Pseudoalteromonas

    Directory of Open Access Journals (Sweden)

    Irina Yu Bakunina

    2014-10-01

    Full Text Available The recombinant α-galactosidase of the marine bacterium (α-PsGal was synthesized with the use of the plasmid 40Gal, consisting of plasmid pET-40b (+ (Novagen and the gene corresponding to the open reading frame of the mature α-galactosidase of marine bacterium Pseudoalteromonas sp. KMM 701, transformed into the E. coli Rosetta(DE3 cells. In order to understand the mechanism of action, the stereochemistry of hydrolysis of 4-nitrophenyl α-D-galactopyranoside (4-NPGP by α-PsGal was measured by 1H NMR spectroscopy. The kinetics of formation of α- and β-anomer of galactose showed that α-anomer initially formed and accumulated, and then an appreciable amount of β-anomer appeared as a result of mutarotation. The data clearly show that the enzymatic hydrolysis of 4-NPGP proceeds with the retention of anomeric configuration, probably, due to a double displacement mechanism of reaction.

  16. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens

    OpenAIRE

    Rumah, Kareem R.; Vartanian, Timothy K.; Fischetti, Vincent A.

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain...

  17. Characterization of bornite (Cu5FeS4) electrodes in the presence of the bacterium Acidithiobacillus ferrooxidans

    OpenAIRE

    Bevilaqua,Denise; Diéz-Perez,Ismael; Fugivara,Cecílio S.; Sanz,Fausto; Garcia Jr.,Oswaldo; Benedetti,Assis V.

    2003-01-01

    Bornite electrodes were characterized in the absence or in the presence of Acidithiobacillus ferrooxidans, which is an important microorganism involved in metal bioleaching processes. The presence of the bacterium modified the mineral/electrolyte interface, increasing the corrosion rate, as revealed by interferometric, AEM, ICP and EIS analyses. As a consequence of bacterial activity the electrode became porous, increasing its surface heterogeneity. This behavior was correlated with the evolu...

  18. Draft Genome Sequence of Natranaerobius trueperi DSM 18760T, an Anaerobic, Halophilic, Alkaliphilic, Thermotolerant Bacterium Isolated from a Soda Lake

    OpenAIRE

    Guo, Xiaomeng; Liao, Ziya; Holtzapple, Mark; Hu, Qingping; Zhao, Baisuo

    2017-01-01

    ABSTRACT The anaerobic, halophilic, alkaliphilic, thermotolerant bacterium Natranaerobius trueperi was isolated from a soda lake in Wadi An Natrun, Egypt. It grows optimally at 3.7?M Na+, pH?9.5, and 43?C. The draft genome consists of 2.63?Mb and is composed of 2,681 predicted genes. Genomic analysis showed that various genes are potentially involved in the adaptation mechanisms for osmotic stress, pH homeostasis, and high temperatures.

  19. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...... the 3p orbital of the Cys sulfur atom. A semi-quantitative tool for extracting structural information from relaxation time measurements is proposed....

  20. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    OpenAIRE

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromos...

  1. The Protective Roles of the Antioxidant Enzymes Superoxide Dismutase and Catalase in the Green Photosynthetic Bacterium Chloroflexus Aurantiacus

    Science.gov (United States)

    Blankenship, Robert E.; Rothschild, Lynn (Technical Monitor)

    2004-01-01

    The purpose of this study was to examine the biochemical response of the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus to oxidative stress. Lab experiments focused primarily on characterizing the antioxidant enzyme superoxide dismutase and the response of this organism to oxidative stress. Experiments in the field at the hotsprings in Yellowstone National Park focused on the changes in the level of these enzymes during the day in response to oxidants and to the different types of ultraviolet radiation.

  2. Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi).

    Science.gov (United States)

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Schuster, Stephan C; Ward, David M; Bryant, Donald A

    2014-09-04

    The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons. Copyright © 2014 Thiel et al.

  3. Regulation of lux Genes in Vibrio fischeri: Control of Symbiosis-Related Gene Expression System in a Marine Bacterium

    Science.gov (United States)

    1989-11-04

    RR04106 411d019 11 TITLE (Include Security Classification) U. Regulation of lux Genes in Vibrio fischeri : Control of a Symbiosis-Related Gene Expression...communication - - 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The lux genes of Vibrio fischeri encode the ability of this...Regulation of lux Genes in Vibrio fischeri : Control of a Symbiosis-related Gene Expression System in a Marine Bacterium START DATE: 15 August 1988

  4. Complete Genome Sequence of Magnetospirillum sp. ME-1, a Novel Magnetotactic Bacterium Isolated from East Lake, Wuhan, China.

    Science.gov (United States)

    Ke, Linfeng; Liu, Pengming; Liu, Shan; Gao, Meiying

    2017-08-24

    A novel spiral magnetotactic bacterium, Magnetospirillum sp. ME-1, was isolated from East Lake in China. Here we report the complete genome of ME-1, which contains a 4,551,873-bp circular chromosome and a 5,222-bp circular plasmid. The magnetosome biogenesis-specific genes are located in a 97,664-bp magnetosome genomic island. Copyright © 2017 Ke et al.

  5. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2017-03-01

    Full Text Available In the present study, the antibacterial potential of a phosphate solubilizing bacterium isolated from the river Ganga, West Bengal, India was investigated. Experimental studies found that the strain KUPSB12 was effective in phosphate solubilization with phosphate solubilization index of 2.85 in Pikovskaya's agar plates along with very high soluble phosphate production of 219.64 ± 0.330 μg mL−1 in liquid medium. The phosphate solubilizing bacterium was identified using physiological, morphological and biochemical characters as well as 16S rRNA gene sequencing. The phosphate solubilizing bacterium was identified as a strain of Pseudomonas aeruginosa. The antibacterial activity of the cell-free filtrates of this isolate was evaluated against three Gram negative bacteria (Escherichia coli MTCC 443, Shigella flexneri MTCC 1457 and Vibrio cholerae MTCC 3904 and three Gram positive bacteria (Bacillus subtilis MTCC 441, Micrococcus luteus MTCC 1538 and Staphylococcus aureus MTCC 3160. P. aeruginosa KUPSB12 strain showed the wide inhibitory spectrum against all tested pathogenic bacterial stains. Among the bacteria tested M. luteus MTCC 1538 was found to be most susceptible (19.33 ± 0.33 mm to the cell-free filtrates of this isolate. These findings suggest that the identified strain may be utilized for screening the antibacterial substances to formulate new treatments for infections caused by pathogenic bacteria.

  6. Acute toxicity evaluation of explosive wastewater by bacterial bioluminescence assays using a freshwater luminescent bacterium, Vibrio qinghaiensis sp. Nov.

    Science.gov (United States)

    Ye, Zhengfang; Zhao, Quanlin; Zhang, Mohe; Gao, Yuchen

    2011-02-28

    The compositions of explosive wastewater generated from TNT (2,4,6-trinitrotoluene) purification stage were characterized by using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), high performance liquid chromatograph (HPLC) and gas chromatograph/mass spectroscopy (GC/MS). The acute toxicity was evaluated by bacterium bioluminescence assay using a freshwater luminescent bacterium (Vibrio qinghaiensis sp. Nov.) and a marine luminescent bacterium (Photobacterium phosphoreum). The results showed that the wastewater's biodegradability was poor due to the high amount of chemical oxygen demand (COD). The main organic components were dinitrotoluene sulfonates (DNTS) with small amount of TNT, dinitrotoluene (DNT), mononitrotoluene (MNT) and other derivatives of nitrobenzene. It was highly toxic to luminescent bacteria P. phosphoreum and V. qinghaiensis sp. Nov. After reaction time of 15 min, the relative concentration of toxic pollutants (expressed as reciprocal of dilution ratio of wastewater) at 50% of luminescence inhibition ratio was 5.32×10(-4) for P. phosphoreu, while that was 4.34×10(-4) for V. qinghaiensis. V. qinghaiensis is more sensitive and suitable for evaluating the wastewater's acute toxicity than P. phosphoreum. After adsorption by resin, the acute toxicity can be greatly reduced, which is helpful for further treatment by biological methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, gram-negative, sulfate-reducing bacterium.

    Science.gov (United States)

    Tanaka, K; Stackebrandt, E; Tohyama, S; Eguchi, T

    2000-03-01

    A novel, mesophilic, Gram-negative bacterium was isolated from an anaerobic digestor for municipal wastewater. The bacterium degraded adipate in the presence of sulfate, sulfite, thiosulfate and elemental sulfur. (E)-2-Hexenedioate accumulated transiently in the degradation of adipate. (E)-2-Hexenedioate, (E)-3-hexenedioate, pyruvate, lactate, C1-C12 straight-chain fatty acids and C2-C10 straight-chain primary alcohols were also utilized as electron donors. 3-Phenylpropionate was oxidized to benzoate. The G + C content of the DNA was 60 mol%. 16S rDNA sequence analysis revealed that the new isolate clustered with species of the genus Syntrophobacter and Desulforhabdus amnigenus. Strain TsuAS1T resembles Desulforhabdus amnigenus DSM 10338T with respect to the ability to utilize acetate as an electron donor and the inability to utilize propionate without sulfate in co-culture with Methanospirillum hungatei DSM 864. Strains TsuAS1T and DSM 10338T form a 'non-syntrophic subcluster' within the genus Syntrophobacter. Desulfovirga adipica gen. nov., sp. nov. is proposed for the newly isolated bacterium, with strain TsuAS1T (= DSM 12016T) as the type strain.

  8. Antimicrobial activity against Xanthomonas albilineans and fermentation kinetics of a lactic acid bacterium isolated from the sugar cane crop

    Directory of Open Access Journals (Sweden)

    Liliana Serna-Cock

    2013-09-01

    Full Text Available Xanthomonas albilineans is a pathogen that causes leaf scald disease in sugarcane (Saccharum officinarum L. This disease causes the death of seedlings and consequently results in economic losses for sugarcane growers. The objective of this work was to isolate a lactic acid bacterium with antimicrobial activity against X. albilineans from sugarcane crops and to evaluate its antimicrobial activity and its lactic acid production kinetics, biomass yield, and substrate consumption in three different fermentation substrates. To isolate the lactic acid bacterium, samples were collected from different parts of infected and non-infected sugarcane plants of var. CC85-92. Lactococcus lactis ssp. lactis was isolated from the leaves of healthy crops, and showed in vitro antimicrobial activity against the pathogen. Batch fermentations of this isolate (at 32 °C, agitation of 100 rpm, and pH 6 were performed using a commercial substrate (MRS, a commercial substrate supplemented with glucose (MRSG, and a substrate produced from agricultural crop residues (ACR. The highest antimicrobial activity was 5.83 mm in the ACR substrate after 6 h of fermentation. The maximum biomass production of 3.37 g L-1 and the maximum lactic acid production of 12.1 g L-1 were obtained in the MRSG substrate. The lactic acid production did not show any significant differences between the substrates. This lactic acid bacterium showed antimicrobial activity against X. albilineans and is thus a biological alternative for the control of leaf scald disease in sugarcane.

  9. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air.

    Directory of Open Access Journals (Sweden)

    M Tanweer Khan

    Full Text Available The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precluded its clinical application in the treatment of patients with inflammatory bowel diseases. The present studies were therefore aimed at developing a strategy to keep F. prausnitzii alive at ambient air. Our previous research showed that F. prausnitzii can survive in moderately oxygenized environments like the gut mucosa by transfer of electrons to oxygen. For this purpose, the bacterium exploits extracellular antioxidants, such as riboflavin and cysteine, that are abundantly present in the gut. We therefore tested to what extent these antioxidants can sustain the viability of F. prausnitzii at ambient air. The present results show that cysteine can facilitate the survival of F. prausnitzii upon exposure to air, and that this effect is significantly enhanced the by addition of riboflavin and the cryoprotectant inulin. The highly oxygen-sensitive gut bacterium F. prausnitzii can be kept alive at ambient air for 24 h when formulated with the antioxidants cysteine and riboflavin plus the cryoprotectant inulin. Improved formulations were obtained by addition of the bulking agents corn starch and wheat bran. Our present findings pave the way towards the biomedical exploitation of F. prausnitzii in redox-based therapeutics for treatment of dysbiosis-related inflammatory disorders of the human gut.

  10. Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteriodetes/Chlorobi group.

    Directory of Open Access Journals (Sweden)

    Vitaly V Kadnikov

    Full Text Available Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2(T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi.

  11. Isolation and identification of an agar-liquefying marine bacterium and some properties of its extracellular agarases

    Directory of Open Access Journals (Sweden)

    FATURRAHMAN

    2011-10-01

    Full Text Available Faturrahman, Meryandini A, Junior MZ, Rusmana I (2011 Isolation and identification of an agar-liquefying marine bacterium and some properties of its extracellular agarases. Biodiversitas 12: 192-197. A new agar-liquefying bacterium, designated Alg3.1, was isolated from Gracilaria samples collected from the Kuta Coast at Central Lombok in West Nusa Tenggara and was identified as Aeromonas sp. on the basis of morphology, biochemical-physiological character and 16S rDNA gene sequencing. The bacterium appeared capable of liquifying agar in nutrient agar-plate within 48 hours of incubation and the agar was completely liquefied after l5 days at 29oC. When the isolate was grown in basal salts solution medium B supplemented with peptone and yeast extract, produced extracellular agarases within a short period of time (4-16 h and the maximum agarase activity was 0.489 nkat/mL at 36h after incubation.

  12. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland.

    Science.gov (United States)

    Gaisin, Vasil A; Ivanov, Timophey M; Kuznetsov, Boris B; Gorlenko, Vladimir M; Grouzdev, Denis S

    2016-07-21

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain's ecological role as a phototrophic bacterium within the bacterial community. Copyright © 2016 Gaisin et al.

  13. Characterization and Identification of Strain Km221, a Novel Mcpa Herbicide-degrading Bacterium Isolated From Coral Surface, Menjangan Kecil Island, Karimunjawa

    OpenAIRE

    Sabdono, Agus; Radjasa, Ocky Karna; Soedarsono, Joedoro

    2003-01-01

    In this study, bacterial strain KM221 was isolated from coral tissue in Menjangan Kecil Island, Karimunjawa, Indonesia. This strain is facultative anaerobic with MCPA (2-methyl-4-chlorophenoxy acetic acid) serving as the only known energy sources. Microscopy of isolate revealed that strain KM221 is gram-positive, catalase-positive, rod, spore-forming bacterium, motile, opaque, hair-like outgrowth and unpigmented colonies. The bacterium could not be identified on the basis of its carbo...

  14. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    Science.gov (United States)

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium

  15. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    production, competition mechanisms or induction of plant resistance. Its use as a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. [i]P. agglomerans[/i] strains associated with both rhizosphere and plant tissues (as endophytes efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, [i]P. agglomerans[/i] is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the [i]Pantoea[/i] strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. [i]P. agglomerans[/i] prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of [i]P. agglomerans[/i] in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of [i]Pantoea [/i]genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the [i]Pantoea[/i] biopreparations are maintained.

  16. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    Science.gov (United States)

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  17. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    Science.gov (United States)

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Paenibacillus populi sp. nov., a novel bacterium isolated from the rhizosphere of Populus alba.

    Science.gov (United States)

    Han, Tong-Yan; Tong, Xiao-Mei; Wang, Yan-Wei; Wang, Hui-Min; Chen, Xiao-Rong; Kong, De-Long; Guo, Xiang; Ruan, Zhi-Yong

    2015-09-01

    A novel aerobic bacterium, designated strain LAM0705(T), was isolated from the rhizosphere of Populus alba in the Peking University Third Hospital. Cells of strain LAM0705(T) were observed to be Gram-stain positive, motile, spore-forming and rod-shaped. The optimal temperature and pH for growth were found to be 30 °C and pH 7.5, respectively. Strain LAM0705(T) was found to be able to grow in the presence 0-5 % NaCl (w/v) (optimum 1.0 %). The major fatty acids of strain LAM0705(T) were identified as anteiso-C15:0, C16:0 and iso-C16:0. The dominant polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The cell wall peptidoglycan of strain LAM0705(T) was found to contain meso-diaminopimelic acid. The predominant menaquinone was identified as MK-7. The G+C content of genomic DNA was found to be 48 mol% when determined by the T m method. The 16S rRNA gene sequence similarity analysis indicated that strain LAM0705(T) is closely related to Paenibacillus agaridevorans DSM 1355(T) and Paenibacillus thailandensis KCTC 13043(T) with 97.8 and 96.1 % sequence similarity, respectively. The DNA-DNA hybridization value between strain LAM0705(T) and P. agaridevorans DSM 1355(T) was 47 ± 0.8 %. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0705(T) is concluded to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus populi sp. nov. is proposed. The type strain is LAM0705(T) (=ACCC 06427(T) = JCM 19843(T)).

  19. Bacillus capparidis sp. nov., an endophytic bacterium isolated from roots of Capparis spinosa L.

    Science.gov (United States)

    Wang, Hong-Fei; Li, Qiu-Li; Zhang, Yong-Guang; Xiao, Min; Zhou, Xing-Kui; Guo, Jian-Wei; Duan, Yan-Qing; Li, Wen-Jun

    2017-02-01

    A novel endophytic bacterium, designated strain EGI 6500252T, was isolated from the surface-sterilized roots of a medicinal plant (Capparis spinosa L.) collected from Urumqi city, Xinjiang, north-west China. Cells were Gram-stain-positive, non-motile, aerobic, catalase- and oxidase-positive, rod-shaped and did not display spore formation. Strain EGI 6500252T grew at 10-40 °C (optimum 25-30 °C), at pH 6.0-8.0 (optimum pH 7.0) and in the presence of 0-10 % (w/v) NaCl (optimum 0-3 %). The major cellular fatty acids (>10 %) were identified as iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and summed feature 4. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, four unknown phospholipids, one unknown glycolipid and one unknown lipid. The dominant isoprenoid quinone was menaquinone 7 (MK-7). The DNA G+C content was 39.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain EGI 6500252T belonged to the genus Bacillus, and exhibited a highest 16S rRNA gene sequence similarity (96.2 %) that was lower than the suggested threshold (97.0 %) for separating bacterial species. On the basis of the phylogenetic analysis, chemotaxonomic data and physiological characteristics, strain EGI 6500252T represents a novel species of the genus Bacillus, for which the name Bacillus capparidis sp. nov. is proposed. The type strain is EGI 6500252T (=CGMCC 1.12820T=KCTC 33514T).

  20. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L.

    Science.gov (United States)

    Hameed, Asif; Hung, Mei-Hua; Lin, Shih-Yao; Hsu, Yi-Han; Liu, You-Cheng; Shahina, Mariyam; Lai, Wei-An; Huang, Hsin-Chieh; Young, Li-Sen; Young, Chiu-Chung

    2013-08-01

    A Gram-positive, spore-forming, aerobic, rod-shaped, xylanolytic bacterium designated strain CC-Alfalfa-35(T) was isolated from the rhizosphere of Medicago sativa L. in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain CC-Alfalfa-35(T) was affiliated to the genus Cohnella. Strain CC-Alfalfa-35(T) shared 95.3 % pairwise 16S rRNA gene sequence similarity to the type strain of the type species of the genus Cohnella (Cohnella thermotolerans DSM 17683(T)) besides showing a similarity of 97.4-93.6 % with other recognized species of the genus Cohnella. The DNA-DNA hybridization value between CC-Alfalfa-35(T) and Cohnella thailandensis KCTC 22296(T) was 37.7 % ± 1.7 % (reciprocal value, 55.7 % ± 3.0 %). Predominant cellular fatty acids were iso-C16 : 0 and anteiso-C15 : 0. The polar lipid profile constituted diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, lysyl-phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. The major respiratory quinone was MK-7 and the DNA G+C content was 58.3 mol%. Strain CC-Alfalfa-35(T) contained meso-diaminopimelic acid as the major diamino acid in the cell-wall peptidoglycan. Based on the polar lipid and fatty acid profiles, which were in line with those of C. thermotolerans DSM 17683(T), coupled with additional distinguishing genotypic, phenotypic and chemotaxonomic features, strain CC-Alfalfa-35(T) is proposed to represent a novel species within the genus Cohnella, for which the name Cohnella formosensis sp. nov. is proposed. The type strain is CC-Alfalfa-35(T) ( = JCM 18405(T) = BCRC 80428(T)).

  1. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101.

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    Full Text Available Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101 not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a

  2. Bacillus endozanthoxylicus sp. nov., an endophytic bacterium isolated from Zanthoxylum bungeanum Maxim leaves.

    Science.gov (United States)

    Ma, Li; Xi, Jia-Qin; Cao, Yong-Hong; Wang, Xiao-Yan; Zheng, Shuai-Chao; Yang, Cheng-Gang; Yang, Ling-Ling; Mi, Qi-Li; Li, Xue-Mei; Zhu, Ming-Liang; Mo, Ming-He

    2017-10-01

    A Gram-stain-positive, rod-shaped, motile bacterium, designated as 1404 T , was isolated from leaves of Chinese red pepper (Huajiao) (Zanthoxylum bungeanum Maxim) collected from Gansu, north-west China. Spores were not observed under a range of conditions. Strain 1404 T was observed to grow at 15-45 °C and pH 6.0-10.0 and in presence of 0-5 % (w/v) NaCl concentration. The cell wall of strain 1404 T was found to contain meso-diaminopimelic acid, and the predominant respiratory quinone was identified as MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as well as three unidentified polar lipids. The major fatty acids profile of strain 1404 T consisted of iso-C15 : 0 (25.6 %), anteiso-C15 : 0 (18.4 %) and iso-C14 : 0 (12.1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1404 T was affiliated to the genus Bacillus and was closely related to Bacillusoryzisoli 1DS3-10 T , Bacillusbenzoevorans DSM 5391 T and Bacilluscirculans DSM 11 T with sequence similarity of 98.3, 98.2 and 96.9 %, respectively. The G+C content of the genomic DNA was determined to be 39.4 mol%. DNA-DNA hybridization values indicated that relatedness between strain 1404 T and the type strains of closely related species of the genus Bacillus was below 41 %. Therefore, on the basis of the data from the polyphasic taxonomic study presented, strain 1404 T represents a novel species of the genus Bacillus, for which the name proposed is Bacillus endozanthoxylicus sp. nov. The type strain is 1404 T (=CCTCC AB 2017021 T =KCTC 33827 T ).

  3. A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov.

    Science.gov (United States)

    Zaar, Annette; Fuchs, Georg; Golecki, Jochen R; Overmann, Jörg

    2003-03-01

    A new strain of purple sulfur bacterium was isolated from a marine microbial mat sampled in Great Sippewissett Salt Marsh at the Atlantic coast (Woods Hole, Mass., USA). Single cells of strain AZ1 were coccus-shaped, highly motile by means of a single flagellum, and did not contain gas vesicles. Intracellular membranes were of the vesicular type. However, additional concentric membrane structures were present. The photosynthetic pigments were bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series, with rhodopin as the dominant carotenoid. Hydrogen sulfide (up to 11 mM), sulfur, thiosulfate, and molecular hydrogen were used as electron donors during anaerobic phototrophic growth. During growth on sulfide, elemental sulfur globules were transiently stored inside the cells. Strain AZ1 is much more versatile than most other Chromatiaceae with respect to electron donor and organic substrates. In the presence of CO(2), it is capable of assimilating C(1)-C(5) fatty acids, alcohols, and intermediates of the tricarboxylic acid cycle. Strain AZ1 could also grow photoorganotrophically with acetate as the sole photosynthetic electron donor. Chemotrophic growth in the dark under microoxic conditions was not detected. Optimum growth occurred at pH 6.5-6.7, 30-35 degrees C, > or =50 micro mol quanta m(-2) s(-1), and 2.4-2.6% NaCl. The DNA base composition was 64.5 mol% G+C. Comparative sequence analysis of the 16S rRNA gene confirmed that the isolate is a member of the family Chromatiaceae. Sequence similarity to the most closely related species, Thiorhodococcus minor DSMZ 11518(T), was 97.8%; however, the value for DNA-DNA hybridization between both strains was only 20%. Because of the low genetic similarity and since strain AZ1 physiologically differs considerably from all other members of the Chromatiaceae, including Trc. minor, the new isolate is described as a new species of the genus Thiorhodococcus, Thiorhodococcus drewsii sp. nov.

  4. Phage-driven loss of virulence in a fish pathogenic bacterium.

    Directory of Open Access Journals (Sweden)

    Elina Laanto

    2012-12-01

    Full Text Available Parasites provide a selective pressure during the evolution of their hosts, and mediate a range of effects on ecological communities. Due to their short generation time, host-parasite interactions may also drive the virulence of opportunistic bacteria. This is especially relevant in systems where high densities of hosts and parasites on different trophic levels (e.g. vertebrate hosts, their bacterial pathogens, and virus parasitizing bacteria co-exist. In farmed salmonid fingerlings, Flavobacterium columnare is an emerging pathogen, and phage that infect F. columnare have been isolated. However, the impact of these phage on their host bacterium is not well understood. To study this, four strains of F. columnare were exposed to three isolates of lytic phage and the development of phage resistance and changes in colony morphology were monitored. Using zebrafish (Danio rerio as a model system, the ancestral rhizoid morphotypes were associated with a 25-100% mortality rate, whereas phage-resistant rough morphotypes that lost their virulence and gliding motility (which are key characteristics of the ancestral types, did not affect zebrafish survival. Both morphotypes maintained their colony morphologies over ten serial passages in liquid culture, except for the low-virulence strain, Os06, which changed morphology with each passage. To our knowledge, this is the first report of the effects of phage-host interactions in a commercially important fish pathogen where phage resistance directly correlates with a decline in bacterial virulence. These results suggest that phage can cause phenotypic changes in F. columnare outside the fish host, and antagonistic interactions between bacterial pathogens and their parasitic phage can favor low bacterial virulence under natural conditions. Furthermore, these results suggest that phage-based therapies can provide a disease management strategy for columnaris disease in aquaculture.

  5. Toxicity of Phenol and Salt on the Phenol-Degrading Pseudomonas aeruginosa Bacterium

    Directory of Open Access Journals (Sweden)

    Samaei

    2016-08-01

    Full Text Available Background Phenolic compounds, phenol and phenol derivatives are environmental contaminants in some industrial effluents. Entrance of such substances into the environment causes severe environmental pollution, especially pollution of water resources. Biological treatment is a method that uses the potential of microorganisms to clean up contaminated environments. Among microorganisms, bacteria play an important role in treating wastewater contaminated with phenol. Objectives This study aimed to examine the effects of Pseudomonas aeruginosa on degradation of phenol in wastewater contaminated with this pollutant. Methods In this method, the growth rate of P. aeruginosa bacteria was investigated using different concentrations of salt and phenol. This is an experimental study conducted as a pilot in a batch reactor with different concentrations of phenol (25, 50, 100, 150, 300 and 600 mg L-1 and salt (0%, 0.5%, 1%, 2.5% and 5% during 9, 12 and 15 hours. During three days, from 5 experimental and 3 control samples, 18 samples were taken a day forming a sample size of 54 samples for each phenol concentration. Given the number of phenol concentrations (n = 6, a total of 324 samples were analyzed using a spectrophotometer at a wavelength of 600 nm. Results The phenol concentration of 600 mg L-1 was toxic for P. aeruginosa. However, at a certain concentration, it acts as a carbon source for P. aeruginosa. During investigations, it was found that increasing the concentration of phenol increases the rate of bacteria growth. The highest bacteria growth rate occurred was at the salt concentration of zero and phenol concentration of 600 mg L-1. Conclusions The findings of the current study indicate that at high concentrations of salt, the growth of bacteria reduces so that it stops at a concentration of 50 mg L-1 (5%. Thus, the bacterium is halotolerant or halophilic. With an increase in phenol concentration, the growth rate increased. Phenol toxicity appears

  6. High-quality genome sequence of the radioresistant bacterium Deinococcus ficus KS 0460.

    Science.gov (United States)

    Matrosova, Vera Y; Gaidamakova, Elena K; Makarova, Kira S; Grichenko, Olga; Klimenkova, Polina; Volpe, Robert P; Tkavc, Rok; Ertem, Gözen; Conze, Isabel H; Brambilla, Evelyne; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, Tbk; Daum, Chris; Shapiro, Nicole; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Daligault, Hajnalka; Davenport, Karen; Erkkila, Tracy; Goodwin, Lynne A; Gu, Wei; Munk, Christine; Teshima, Hazuki; Xu, Yan; Chain, Patrick; Woolbert, Michael; Gunde-Cimerman, Nina; Wolf, Yuri I; Grebenc, Tine; Gostinčar, Cene; Daly, Michael J

    2017-01-01

    The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.

  7. Conservation in the face of diversity: multistrain analysis of an intracellular bacterium

    Directory of Open Access Journals (Sweden)

    Knowles Donald P

    2009-01-01

    Full Text Available Abstract Background With the recent completion of numerous sequenced bacterial genomes, notable advances have been made in understanding the level of conservation between various species. However, relatively little is known about the genomic diversity among strains. We determined the complete genome sequence of the Florida strain of Anaplasma marginale, and near complete (>96% sequences for an additional three strains, for comparative analysis with the previously fully sequenced St. Maries strain genome. Results These comparisons revealed that A. marginale has a closed-core genome with few highly plastic regions, which include the msp2 and msp3 genes, as well as the aaap locus. Comparison of the Florida and St. Maries genome sequences found that SNPs comprise 0.8% of the longer Florida genome, with 33.5% of the total SNPs between all five strains present in at least two strains and 3.0% of SNPs present in all strains except Florida. Comparison of genomes from three strains of Mycobacterium tuberculosis, Bacillus anthracis, and Nessieria meningiditis, as well as four Chlamydophila pneumoniae strains found that 98.8%–100% of SNPs are unique to each strain, suggesting A. marginale, with 76.0%, has an intermediate level of strain-specific SNPs. Comparison of genomes from other organisms revealed variation in diversity that did not segregate with the environmental niche the bacterium occupies, ranging from 0.00% to 8.00% of the larger pairwise-compared genome. Conclusion Analysis of multiple A. marginale strains suggests intracellular bacteria have more variable SNP retention rates than previously reported, and may have closed-core genomes in response to the host organism environment and/or reductive evolution.

  8. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810

    Science.gov (United States)

    Zhang, Zilian; Cai, Ruanhong; Zhang, Wenhui; Fu, Yingnan; Jiao, Nianzhi

    2017-01-01

    Most marine bacteria can produce exopolysaccharides (EPS). However, very few structures of EPS produced by marine bacteria have been determined. The characterization of EPS structure is important for the elucidation of their biological functions and ecological roles. In this study, the structure of EPS produced by a marine bacterium, Alteromonas sp. JL2810, was characterized, and the biosorption of the EPS for heavy metals Cu2+, Ni2+, and Cr6+ was also investigated. Nuclear magnetic resonance (NMR) analysis indicated that the JL2810 EPS have a novel structure consisting of the repeating unit of [-3)-α-Rhap-(1→3)-α-Manp-(1→4)-α-3OAc-GalAp-(1→]. The biosorption of the EPS for heavy metals was affected by a medium pH; the maximum biosorption capacities for Cu2+ and Ni2+ were 140.8 ± 8.2 mg/g and 226.3 ± 3.3 mg/g at pH 5.0; however, for Cr6+ it was 215.2 ± 5.1 mg/g at pH 5.5. Infrared spectrometry analysis demonstrated that the groups of O-H, C=O, and C-O-C were the main function groups for the adsorption of JL2810 EPS with the heavy metals. The adsorption equilibrium of JL2810 EPS for Ni2+ was further analyzed, and the equilibrium data could be better represented by the Langmuir isotherm model. The novel EPS could be potentially used in industrial applications as a novel bio-resource for the removal of heavy metals. PMID:28604644

  9. Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacteriumProteus mirabilisstrain SCDR1.

    Science.gov (United States)

    Saeb, Amr T M; Al-Rubeaan, Khalid A; Abouelhoda, Mohamed; Selvaraju, Manojkumar; Tayeb, Hamsa T

    2017-01-01

    P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in Diabetic foot ulcer (DFU) patients. We isolated P. mirabilis SCDR1 from a Diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against Nanosilver colloids, the commercial Nanosilver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the characterization of the infectious pathogen. P. mirabilis SCDR1 was the first Nanosilver resistant isolate collected from a diabetic patient polyclonal infection. P. mirabilis SCDR1 showed high levels of resistance against Nanosilver colloids, Nanosilver chitosan composite and the commercially available Nanosilver and silver bandages. The P. mirabilis -SCDR1 genome size is 3,815,621 bp. with G + C content of 38.44%. P. mirabilis -SCDR1 genome contains a total of 3533 genes, 3414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, the wound, can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance, including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification. P. mirabilis SCDR1 is the first reported spontaneous Nanosilver resistant bacterial strain. P. mirabilis SCDR1 possesses several mechanisms that may lead to the observed Nanosilver resistance.

  10. Characterization of a prokaryotic haemerythrin from the methanotrophic bacterium Methylococcus capsulatus (Bath).

    Science.gov (United States)

    Karlsen, Odd A; Ramsevik, Linda; Bruseth, Live J; Larsen, Øivind; Brenner, Annette; Berven, Frode S; Jensen, Harald B; Lillehaug, Johan R

    2005-05-01

    For a long time, the haemerythrin family of proteins was considered to be restricted to only a few phyla of marine invertebrates. When analysing differential protein expression in the methane-oxidizing bacterium, Methylococcus capsulatus (Bath), grown at a high and low copper-to-biomass ratio, respectively, we identified a putative prokaryotic haemerythrin expressed in high-copper cultures. Haemerythrins are recognized by a conserved sequence motif that provides five histidines and two carboxylate ligands which coordinate two iron atoms. The diiron site is located in a hydrophobic pocket and is capable of binding O(2). We cloned the M. capsulatus haemerythrin gene and expressed it in Escherichia coli as a fusion protein with NusA. The haemerythrin protein was purified to homogeneity cleaved from its fusion partner. Recombinant M. capsulatus haemerythrin (McHr) was found to fold into a stable protein. Sequence similarity analysis identified all the candidate residues involved in the binding of diiron (His22, His58, Glu62, His77, His81, His117, Asp122) and the amino acids forming the hydrophobic pocket in which O(2) may bind (Ile25, Phe59, Trp113, Leu114, Ile118). We were also able to model a three-dimensional structure of McHr maintaining the correct positioning of these residues. Furthermore, UV/vis spectrophotometric analysis demonstrated the presence of conjugated diiron atoms in McHr. A comprehensive genomic database search revealed 21 different prokaryotes containing the haemerythrin signature (PROSITE 00550), indicating that these putative haemerythrins may be a conserved prokaryotic subfamily.

  11. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath.

    Science.gov (United States)

    Poret-Peterson, Amisha T; Graham, James E; Gulledge, Jay; Klotz, Martin G

    2008-12-01

    Methylococcus capsulatus strain Bath, a methane-oxidizing bacterium, and ammonia-oxidizing bacteria (AOB) carry out the first step of nitrification, the oxidation of ammonia to nitrite, through the intermediate hydroxylamine. AOB use hydroxylamine oxidoreductase (HAO) to produce nitrite. M. capsulatus Bath was thought to oxidize hydroxylamine with cytochrome P460 (cytL), until the recent discovery of an hao gene in its genome. We used quantitative PCR analyses of cDNA from M. capsulatus Bath incubated with CH(4) or CH(4) plus 5 mM (NH(4))(2)SO(4) to determine whether cytL and hao transcript levels change in response to ammonia. While mRNA levels for cytL were not affected by ammonia, hao mRNA levels increased by 14.5- and 31-fold in duplicate samples when a promoter proximal region of the transcript was analyzed, and by sixfold when a region at the distal end of the transcript was analyzed. A conserved open reading frame, orf2, located 3' of hao in all known AOB genomes and in M. capsulatus Bath, was cotranscribed with hao and showed increased mRNA levels in the presence of ammonia. These data led to designating this gene pair as haoAB, with the role of haoB still undefined. We also determined mRNA levels for additional genes that encode proteins involved in N-oxide detoxification: cytochrome c'-beta (CytS) and nitric oxide (NO) reductase (NorCB). Whereas cytS mRNA levels increased in duplicate samples by 28.5- and 40-fold in response to ammonia, the cotranscribed norC-norB mRNA did not increase. Our results strongly suggest that M. capsulatus Bath possesses a functional, ammonia-responsive HAO involved in nitrification.

  12. Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus

    Science.gov (United States)

    Sessions, Alex L.; Jahnke, Linda L.; Schimmelmann, Arndt; Hayes, John M.

    2002-11-01

    Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography-mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the δD values of methane and water were varied independently. Measurement of concomitant changes in δD values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source. All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 ± 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. Accordingly, we hypothesize that all methane H is oxidized to H 2O, which then serves as the H source for all biosynthesis, and that a balance between diffusion of oxygen and water across cell membranes controls the concentration of methane-derived H 2O at 31%. Values for α l/ w, the isotopic fractionation between lipids and water, were 0.95 for fatty acids and 0.85 for isoprenoid lipids. These fractionations are significantly smaller than those measured in higher plants and algae. Values for α l/ m, the isotopic fractionation between lipids and methane, were 0.94 for fatty acids and 0.79 for isoprenoid lipids. Based on these results, we predict that methanotrophs living in seawater and consuming methane with typical δD values will produce fatty acids with δD between -50 and -170‰, and sterols and hopanols with δD between -150 and -270‰.

  13. The intracellular citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' encodes two novel autotransporters.

    Directory of Open Access Journals (Sweden)

    Guixia Hao

    Full Text Available Proteins secreted by the type V secretion system (T5SS, known as autotransporters, are large extracellular virulence proteins localized to the bacterial poles. In this study, we characterized two novel autotransporter proteins of 'Candidatus Liberibacter asiaticus' (Las, and redesignated them as LasAI and LasAII in lieu of the previous names HyvI and HyvII. As a phloem-limited, intracellular bacterial pathogen, Las has a significantly reduced genome and causes huanglongbing (HLB, a devastating disease of citrus worldwide. Bioinformatic analyses revealed that LasAI and LasAII share the structural features of an autotransporter family containing large repeats of a passenger domain and a unique C-terminal translocator domain. When fused to the GFP gene and expressed in E. coli, the LasAI C-terminus and the full length LasAII were localized to the bacterial poles, similar to other members of autotransporter family. Despite the absence of a typical signal peptide, LasAI was found to localize at the cell surface by immuno-dot blot using a monoclonal antibody against the partial LasAI protein. Its surface localization was also confirmed by the removal of the LasAI antigen using a proteinase K treatment of the intact bacterial cells. When co-inoculated with a P19 gene silencing suppressor and transiently expressed in tobacco leaves, the GFP-LasAI translocator targeted to the mitochondria. This is the first report that Las encodes novel autotransporters that target to mitochondria when expressed in the plants. These findings may lead to a better understanding of the pathogenesis of this intracellular bacterium.

  14. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  15. Dynamics of Huanglongbing-associated Bacterium Candidatus Liberibacter asiaticus in Citrus aurantifolia Swingle (Mexican Lime).

    Science.gov (United States)

    Abel Lopez-Buenfil, Jose; Abrahan Ramirez-Pool, Jose; Ruiz-Medrano, Roberto; Del Carmen Montes-Horcasitas, Maria; Chavarin-Palacio, Claudio; Moya-Hinojosa, Jesus; Javier Trujillo-Arriaga, Francisco; Carmona, Rosalia Lira; Xoconostle-Cazares, Beatriz

    2017-01-01

    The bacterial disease citrus huanglongbing (HLB), associated with "Candidatus Liberibacter asiaticus" (C.Las) has severely impacted the citrus industry, causing a significant reduction in production and fruit quality. In the present study, it was monitored the C.Las population dynamics in symptomatic, HLB-positive Mexican lime trees (Citrus aurantifolia Swingle) in a tropical, citrus-producing area of Mexico. The objective of this study was to identify the dynamics of the population of huanglongbing-associated bacterium Candidatus Liberibacter asiaticus and its insect vector in Citrus aurantifolia Swingle (Mexican lime). Leaf samples were collected every 2 months over a period of 26 months for quantification of bacterial titers and young and mature leaves were collected in each season to determine preferential sites of bacterial accumulation. The proportion of living and dead bacterial cells could be determined through the use of quantitative real-time PCR in the presence of ethidium monoazide (EMA-qPCR). It was observed a lower bacterial titer at high temperatures in the infected trees relative to titers in mild weather, despite a higher accumulation of the insect vector Diaphorina citri in these conditions. This study also revealed seasonal fluctuations in the titers of bacteria in mature leaves when compared to young leaves. No statistically significant correlation between any meteorological variable, C.Las concentration and D. citri population could be drawn. Although, HLB management strategies have focused on vector control, host tree phenology may be important. The evaluation of citrus phenology, C.Las concentration, ACP population and environmental conditions provides insights into the cyclical, seasonal variations of both the HLB pathogen and its vector. These findings should help in the design of integrative HLB control strategies that take into account the accumulation of the pathogen and the presence of its vector.

  16. A novel bacterium associated with lymphadenitis in a patient with chronic granulomatous disease.

    Directory of Open Access Journals (Sweden)

    David E Greenberg

    2006-04-01

    Full Text Available Chronic granulomatous disease (CGD is a rare inherited disease of the phagocyte NADPH oxidase system causing defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections. We identified a novel gram-negative rod in excised lymph nodes from a patient with CGD. Gram-negative rods grew on charcoal-yeast extract, but conventional tests could not identify it. The best 50 matches of the 16S rRNA (using BLAST were all members of the family Acetobacteraceae, with the closest match being Gluconobacter sacchari. Patient serum showed specific band recognition in whole lysate immunoblot. We used mouse models of CGD to determine whether this organism was a genuine CGD pathogen. Intraperitoneal injection of gp91(phox -/- (X-linked and p47 (phox -/- (autosomal recessive mice with this bacterium led to larger burdens of organism recovered from knockout compared with wild-type mice. Knockout mouse lymph nodes had histopathology that was similar to that seen in our patient. We recovered organisms with 16S rRNA sequence identical to the patient's original isolate from the infected mice. We identified a novel gram-negative rod from a patient with CGD. To confirm its pathogenicity, we demonstrated specific immune reaction by high titer antibody, showed that it was able to cause similar disease when introduced into CGD, but not wild-type mice, and we recovered the same organism from pathologic lesions in these mice. Therefore, we have fulfilled Koch's postulates for a new pathogen. This is the first reported case of invasive human disease caused by any of the Acetobacteraceae. Polyphasic taxonomic analysis shows this organism to be a new genus and species for which we propose the name Granulobacter bethesdensis.

  17. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Science.gov (United States)

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  18. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces.

    Science.gov (United States)

    Ouwerkerk, Janneke P; Aalvink, Steven; Belzer, Clara; de Vos, Willem M

    2016-11-01

    A Gram-stain-negative, non-motile, strictly anaerobic, oval-shaped, non-spore-forming bacterium (strain PytT) was isolated from reticulated python faeces. Strain PytT was capable of using mucin as sole carbon, energy and nitrogen source. Cells could grow singly, in pairs, and were also found to aggregate. Scanning electron microscopy revealed the presence of filamentous structures connecting individual bacterial cells. Strain PytT could grow on a limited number of single sugars, including N-acetylglucosamine, N-acetylgalactosamine, glucose, lactose and galactose, but only when a plentiful protein source was provided. Phylogenetic analysis based on 16S rRNA gene sequencing showed strain PytT to belong to the Verrucomicrobiae class I, family Akkermansiaceae, genus Akkermansia, with Akkermansia muciniphila MucT as the closest relative (94.4 % sequence similarity). DNA-DNA hybridization revealed low relatedness of 28.3 % with A. muciniphila MucT. The G+C content of DNA from strain PytT was 58.2 mol%. The average nucleotide identity (ANI) of the genome of strain PytT compared to the genome of strain MucT was 79.7 %. Chemotaxonomic data supported the affiliation of strain PytT to the genus Akkermansia. Based on phenotypic, phylogenetic and genetic characteristics, strain PytT represents a novel species of the genus Akkermansia, for which the name Akkermansia glycaniphila sp. nov. is proposed. The type strain is PytT (=DSM 100705T=CIP 110913T).

  19. Isolation of a Campylobacter lanienae-like bacterium from laboratory chinchillas (Chinchilla laniger).

    Science.gov (United States)

    Turowski, E E; Shen, Z; Ducore, R M; Parry, N M A; Kirega, A; Dewhirst, F E; Fox, J G

    2014-12-01

    Routine necropsies of 27 asymptomatic juvenile chinchillas revealed a high prevalence of gastric ulcers with microscopic lymphoplasmacytic gastroenteritis and typhlocolitis. Polymerase chain reaction (PCR) analysis using Campylobacter genus-specific partial 16S rRNA primers revealed the presence of Campylobacter spp. DNA in the faeces of 12 of 27 animals (44.4%). Species-specific partial 16S rRNA PCR and sequencing confirmed that these animals were colonized with Campylobacter lanienae, a gram-negative, microaerophilic bacterium that was first identified on routine faecal screening of slaughterhouse employees and subsequently isolated from faeces of livestock. Campylobacter lanienae was isolated from the faeces of six PCR-positive animals and identified with species-specific PCR and full 16S rRNA sequencing. Phylogenetic analysis showed that these isolates clustered with C. lanienae strain NCTC 13004. PCR analysis of DNA extracted from gastrointestinal tissues revealed the presence of C. lanienae DNA in the caecum and colon of these chinchillas. Gastrointestinal lesions were scored and compared between C. lanienae-positive and C. lanienae-negative animals. There was no correlation between colonization status and lesion severity in the stomach, liver, duodenum, or colon. Possible routes of C. lanienae infection in chinchillas could include waterborne transmission and faecal-oral transmission from wild mice and rats or livestock. Based on these findings, the authors conclude that C. lanienae colonizes the lower bowel of chinchillas in the absence of clinical disease. This is the first report of C. lanienae in any rodent species. Campylobacter lanienae isolates from different mammalian species demonstrate heterogeneity by 16S rRNA sequence comparison. Analysis using rpoB suggests that isolates and clones currently identified as C. lanienae may represent multiple species or subspecies. © 2014 Blackwell Verlag GmbH.

  20. Multiple Signals Govern Utilization of a Polysaccharide in the Gut Bacterium Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Schwalm, Nathan D; Townsend, Guy E; Groisman, Eduardo A

    2016-10-11

    The utilization of simple sugars is widespread across all domains of life. In contrast, the breakdown of complex carbohydrates is restricted to a subset of organisms. A regulatory paradigm for integration of complex polysaccharide breakdown with simple sugar utilization was established in the mammalian gut symbiont Bacteroides thetaiotaomicron, whereby sensing of monomeric fructose regulates catabolism of both fructose and polymeric fructans. We now report that a different regulatory paradigm governs utilization of monomeric arabinose and the arabinose polymer arabinan. We establish that (i) arabinan utilization genes are controlled by a transcriptional activator that responds to arabinan and by a transcriptional repressor that responds to arabinose, (ii) arabinose utilization genes are regulated directly by the arabinose-responding repressor but indirectly by the arabinan-responding activator, and (iii) activation of both arabinan and arabinose utilization genes requires a pleiotropic transcriptional regulator necessary for survival in the mammalian gut. Genomic analysis predicts that this paradigm is broadly applicable to the breakdown of other polysaccharides in both B. thetaiotaomicron and other gut Bacteroides spp. The uncovered mechanism enables regulation of polysaccharide utilization genes in response to both the polysaccharide and its breakdown products. Breakdown of complex polysaccharides derived from "dietary fiber" is achieved by the mammalian gut microbiota. This breakdown creates a critical nutrient source for both the microbiota and its mammalian host. Because the availability of individual polysaccharides fluctuates with variations in the host diet, members of the microbiota strictly control expression of polysaccharide utilization genes. Our findings define a regulatory architecture that controls the breakdown of a polysaccharide by a gut bacterium in response to three distinct signals. This architecture integrates perception of a complex

  1. Thermus anatoliensis sp. nov., a thermophilic bacterium from geothermal waters of Buharkent, Turkey.

    Science.gov (United States)

    Kacagan, Murat; Inan, Kadriye; Canakci, Sabriye; Guler, Halil Ibrahim; Belduz, Ali Osman

    2015-12-01

    A Gram-stain-negative, lack of motility, catalase- and oxidase- positive bacterium (strain MT1(T)) was isolated from Buharkent hot spring in Aydin, Turkey. Its taxonomy was investigated using a polyphasic approach. The strain was able to grow at 45-80 °C, pH 5.5-10.5 and with a NaCI tolerance up to 2.0% (w/v). Strain MT1(T) was able to utilize d-mannitol and l-arabinose, not able to utilize d-cellobiose as sole carbon source. 16S rRNA gene sequence analysis revealed that the strain belonged to the genus Thermus; strain MT1(T) detected low-level similarities of 16S rRNA gene sequences (below 97%) compared with all other species in this genus. The predominant fatty acids of strain MT1(T) were iso-C(15:0) (43.0%) and iso-C(17:0) (27.4%). Polar lipid analysis revealed a major phospholipid, one major glycolipid, one major aminophospholipid, two minor aminolipids, one minor phospholipid, and several minor glycolipids. The major isoprenoid quinone was MK-8. The DNA G+C content of MT1(T) was 69.6 mol%. On the basis of a taxonomic study using a polyphasic approach, strain MT1(T) is considered to represent a novel species of the genus Thermus, for which the name Thermus anatoliensis sp. nov. is proposed. The type strain is MT1(T) (=NCCB 100425(T) =LMG 26880(T)). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Identification and phylogenetic analysis of an okenone-containing halophilic purple sulfur bacterium].

    Science.gov (United States)

    Yang, Suping; Lian, Jianke; Zhao, Chungui; Ma, Wenli; Qu, Yinbo

    2008-05-01

    To exploit resources of purple sulfur bacteria and their photosynthetic genes. A purple sulfur bacterium strain 283-1 of okenone-containing, halophilic, high sulfide tolerance was isolated by agar dilution method in Pfennig medium from photolithoautotrophic enrichments of Dongfeng saltern, Qingdao, China. Cells of strain 283-1 were Gram-negative, halophile, straight or slightly curved rods, motile by monopolar single flagella, no gas vacuoles, carotenoid of okenone series and bacteriochlorophylla as photosynthetic pigment, purple red. It could photolithoautotrophically grow under anoxic condition in the light with sulfide as electron donor, sulfur globules accumulate as intermediate oxidation product and stored in the form of highly refractile globules inside the cells. The strain 283-1 belonged to Gammaproteobacteria, Chromatiales, Chroamtiaceae, genus of Marichromatium. Phylogenetic analysis based on 16S rRNA gene sequence also confirmed that strain 283-1 belonged to Marichromatium genus. However, the physiological characteristics of strain 283-1 were significantly different from four species of the genus Marichromatium. NaCl requirement range from 1% to 15%, good growth was observed at 7.5 mmol x L-(-1) NaS x 9H2O, 45 degrees C, 5000 lux and pH 9.0, a number of organic substances of C3 and C4 of TCA cycles and gluconate could be photoassililated in the presence of sulfide, no growth factors were required. On the basis of 16S rRNA gene sequence analysis and its morphological and physiological characteristics, strain 283-1 is a new isolate of Marichromatium genus, named as Marichromatium sp. 283-1.

  3. [Identification and characterization of a purple sulfur bacterium from mangrove with rhodopin as predominant carotenoid].

    Science.gov (United States)

    Zhao, Jiangyan; Fu, Yingnan; Zhao, Chungui; Yang, Suping; Qu, Yinbo; Jiao, Nianzhi

    2011-10-01

    To exploit resources of purple sulfur bacteria in China and further investigate its response mechanism to ecological environment of mangrove. Repeated agar shake dilution method, microscope techniques, UV-Vis absorption spectra, thin layer chromatography, HPLC and MS were used. We isolated a purple sulfur bacterium, designated as strain YL28, from a intertidal sediment sample collected from inshore mangrove near Luoyang Bridge of Quanzhou city, Fujian Province of China. Cells were ovoid to rod shaped, 0.5 microm - 1 microm x 2 microm - 3 microm. Color of cell suspensions was reddish-brown. It possessed vesicular intracytoplasmic membrane structures, contained rhodopin and phytylated bacteriochlorophyll a as well as the other two novel bacteriochlorophyll a intermediates. The optimum growth was at 2% - 3.5% NaCl, pH 5.7 - 6.7 and 20 degrees C - 35 degrees C. Photoautotrophically growth anaerobically in the light with sulphide, sulphur, thiosulfate, sulfite as electron donor. Globules of S(0) distributed inside the cells. Photoheterotrophic growth with various organic substrates, especially citrate, glucose, sucrose, fructose and propanol in the presence of sulfide. Nitrogen sources: ammonium salts, N2, urea, glutamate, nitrate and nitrite. Vitamins were not required. Qualitative assessment of IC50 values of chloromycetin, cefazolin, benzene, hydroxy biphenyl, enrofloxacin, acetamiprid, mercuric chloride and cadmium chloride were 70, 100, 20, 20, 3, 170, 5 mg/L and 25 mg/L, respectively. Based on phenotype characteristics and 16S rRNA gene sequence similarity of 99% to M. gracile, strain YL28 was identified as novel isolate of M. gracile despite its different physiological characteristics with respect to the species of M. gracile. The organism is possessed of slightly acid tolerance, higher amount of carotenoid of rhodopin and tolerance towards certain antibiotics, pesticide as well as heavy metals.

  4. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Directory of Open Access Journals (Sweden)

    Yajian Song

    Full Text Available The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  5. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil.

    Science.gov (United States)

    Dahal, Ram Hari; Chaudhary, Dhiraj Kumar; Kim, Jaisoo

    2017-07-01

    A novel aerobic, non-motile, halotolerant, alkalitolerant, hydrocarbon degrading, and rod shaped bacterium, designated strain R160(T), was isolated from soil in South Korea. Cells were Gram-staining-negative, catalase-positive, and oxidase-negative. This strain grew up to 7% of NaCl and in the pH range of 6-11 (optimum 7.0-10.0). The isolate degraded 51.7 ± 1.3% of hydrocarbon components (C-18, C-20, and C-22) and 45.8 ± 1.4% oil components (kerosene, diesel, and gasoline). Phylogenetic analysis based on 16 S rRNA gene sequences revealed that strain R160(T) formed a lineage within the genus Acinetobacter, and was closely related to 'Acinetobacter oleivorans' DR1(T) (97.47%, sequence similarity). Other closely related members have sequence similarity between 97.47 to 96.52%. The predominant respiratory lipoquinones of strain R160(T) were ubiquinone 9 (Q-9) and ubiquinone 8 (Q-8). The major polar lipids were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylcholine (PC). The major cellular fatty acids were 9-octadecenoic acid (C18:1 ω9c), hexadecanoic acid (C16:0), and summed feature (comprising C16:1 ω7c and/or C16:1 ω6c). The DNA G + C content of strain R160(T) was 44.9 mol%. On the basis of phenotypic, genotypic, chemotaxonomic, and phylogenetic characteristics, strain R160(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter halotolerans sp. nov. is proposed. The type strain is R160(T) (= KEMB 9005-333(T) = KACC 18453(T) = JCM 31009(T)).

  6. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj

    2014-02-01

    A pink-pigmented, Gram negative, aerobic, facultatively methylotrophic bacterium, strain BL44(T), was isolated from bamboo leaves and identified as a member of the genus Methylobacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity values of 98.7-97.0 % with closely related type strains and showed highest similarity to Methylobacterium zatmanii DSM 5688(T) (98.7 %) and Methylobacterium thiocyanatum DSM 11490(T) (98.7 %). Methylotrophic metabolism in this strain was confirmed by PCR amplification and sequencing of the mxaF gene coding for the α-subunit of methanol dehydrogenase. Strain BL44(T) produced three known quorum sensing signal molecules with similar retention time to C8, C10 and C12-HSLs when characterized by GC-MS. The fatty acid profiles contained major amounts of C18:1 ω7c, iso-3OH C17:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), which supported the grouping of the isolate in the genus Methylobacterium. The DNA G+C content was 66.9 mol%. DNA relatedness of the strain BL44(T) to its most closely related strains ranged from 12-43.3 %. On the basis of the phenotypic, phylogenetic and DNA-DNA hybridization data, strain BL44(T) is assigned to a novel species of the genus Methylobacterium for which the name Methylobacterium pseudosasae sp. nov. is proposed (type strain BL44(T) = NBRC 105205(T) = ICMP 17622(T)).

  7. Salt Specificity of a Reduced Nicotinamide Adenine Dinucleotide Oxidase Prepared from a Halophilic Bacterium1

    Science.gov (United States)

    Hochstein, L. I.; Dalton, B. P.

    1968-01-01

    Extracts prepared from a halophilic bacterium contained a reduced nicotinamide adenine dinucleotide (NADH2) oxidase active at high solute concentrations. The cation requirement was nonspecific, since KCl, RbCl, and CsCl replaced NaCl with little or no loss of activity, and NH4Cl was only partially effective. Only LiCl failed to replace NaCl. No specific chloride requirement was observed although not all anions replaced chloride. Bromide, nitrate, and iodide were essentially ineffective, whereas acetate, formate, citrate, and sulfate proved suitable. The presence of sulfate affected the ability of a cation to satisfy the solute requirement. Sulfate enhanced the rate of NADH2 oxidation when compared with the rate observed in the presence of chloride. Cations which were inactive as chlorides (LiCl and MgCl2 at high concentrations) satisfied the cation requirement when added as sulfate salts. Although magnesium satisfied the cation requirement, a concentration effect, as well as an anion effect, was observed. In the presence of MgCl2, little NADH2 oxidation was observed at concentrations greater than 1 m. At lower concentrations, the rate of oxidation increased, reaching a maximal value at 0.1 m and remaining constant up to a concentration of 0.05 m MgCl2. Magnesium acetate and MgSO4 also replaced NaCl, and the maximal rate of oxidation occurred at 0.05 m with respect to magnesium. There was no change in the rate of oxidation at high magnesium acetate concentrations, whereas the rate of NADH2 oxidation increased at higher concentrations of MgSO4. PMID:5636829

  8. Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens

    Directory of Open Access Journals (Sweden)

    Elena eDalla Vecchia

    2014-08-01

    Full Text Available Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III. Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III reduction, but does not support significant growth, suggesting that little energy can be conserved from this process and that it may occur fortuitously. D. reducens can reduce both soluble (Fe(III-citrate and insoluble (hydrous ferric oxide, HFO Fe(III. Because physically inaccessible HFO was not reduced, we concluded that reduction requires direct contact under these experimental conditions. This implies the presence of a surface exposed reductase capable of transferring electrons from the cell to the extracellular electron acceptor. With the goal of characterizing the role of surface proteins in D. reducens and of identifying candidate Fe(III reductases, we carried out an investigation of the surface proteome (surfaceome of D. reducens. Cell surface exposed proteins were extracted by trypsin cell shaving or by lysozyme treatment, and analyzed by liquid chromatography-tandem mass spectrometry. This investigation revealed that the surfaceome fulfills many functions, including solute transport, protein export, maturation and hydrolysis, peptidoglycan synthesis and modification, and chemotaxis. Furthermore, a few redox-active proteins were identified. Among these, three are putatively involved in Fe(III reduction, i.e., a membrane-bound hydrogenase 4Fe-4S cluster subunit (Dred_0462, a heterodisulfide reductase subunit A (Dred_0143 and a protein annotated as alkyl hydroperoxide reductase but likely functioning as a thiol-disulfide oxidoreductase (Dred_1533.

  9. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    Directory of Open Access Journals (Sweden)

    Sabine Marie Genicot

    2014-08-01

    Full Text Available Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc -CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40°C ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc -CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc -CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc -CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  10. Martelella endophytica sp. nov., an antifungal bacterium associated with a halophyte.

    Science.gov (United States)

    Bibi, Fehmida; Chung, Eu Jin; Khan, Ajmal; Jeon, Che Ok; Chung, Young Ryun

    2013-08-01

    A Gram-staining-negative, non-spore-forming endophytic bacterium, designated strain YC6887(T), was isolated from a root sample of a halophyte, Rosa rugosa, collected from a tidal flat area of Namhae Island, located at the southern end of Korea. Strain YC6887(T) was found to exhibit inhibitory activity against oomycete plant pathogens. The cells were non-motile and aerobic rods. The strain was able to grow at 4-40 °C (optimum 28-30 °C) and at pH 5.0-9.0 (optimum pH 7.0-8.5). Strain YC6887(T) was able to grow at NaCl concentrations of 0-9 % (w/v) with optimum growth at 4-5 % (w/v) NaCl, but NaCl is not essential for growth. Comparison of 16S rRNA gene sequences showed that the strain was a member of the genus Martelella, a member of order Rhizobiales, exhibiting highest similarity with Martelella mediterranea (98.6 %). The DNA-DNA relatedness between strain YC6887(T) and M. mediterranea MACL11(T) was 19.8 ± 6.8. Chemotaxonomically, strain YC6887(T) contained C19 : 0 cyclo ω8c (28.0 %) and C18 : 1ω7c (17.9 %) as predominant fatty acids, confirming the affiliation of strain YC6887(T) with the genus Martelella. The major respiratory quinone was Q-10 and the DNA G+C content was 62.1 mol%. On the basis of phylogenetic analysis, physiological and biochemical characterization and DNA-DNA hybridization data, strain YC6887(T) should be classified as representing a novel species of the genus Martelella, for which the name Martelella endophytica sp. nov. is proposed. The type strain is YC6887(T) ( = KCCM 43011(T) = NBRC 109149(T)).

  11. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Directory of Open Access Journals (Sweden)

    Go Kamoshida

    2018-02-01

    Full Text Available Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs, has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA, and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections.

  12. ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Antonio A Iniesta

    Full Text Available Chromosome segregation is an essential cellular function in eukaryotic and prokaryotic cells. The ParABS system is a fundamental player for a mitosis-like process in chromosome partitioning in many bacterial species. This work shows that the social bacterium Myxococcus xanthus also uses the ParABS system for chromosome segregation. Its large prokaryotic genome of 9.1 Mb contains 22 parS sequences near the origin of replication, and it is shown here that M. xanthus ParB binds preferentially to a consensus parS sequence in vitro. ParB and ParA are essential for cell viability in M. xanthus as in Caulobacter crescentus, but unlike in many other bacteria. Absence of ParB results in anucleate cells, chromosome segregation defects and loss of viability. Analysis of ParA subcellular localization shows that it clusters at the poles in all cells, and in some, in the DNA-free cell division plane between two chromosomal DNA masses. This ParA localization pattern depends on ParB but not on FtsZ. ParB inhibits the nonspecific interaction of ParA with DNA, and ParA colocalizes with chromosomal DNA only when ParB is depleted. The subcellular localization of ParB suggests a single ParB-parS complex localized at the edge of the nucleoid, next to a polar ParA cluster, with a second ParB-parS complex migrating after the replication of parS takes place to the opposite nucleoid edge, next to the other polar ParA cluster.

  13. Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products.

    Science.gov (United States)

    Ortiz de García, Sheyla; García-Encina, Pedro A; Irusta-Mata, Rubén

    2016-01-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a real and widespread concern in recent years. Therefore, the primary goal of this study was to investigate 20 common and widely used PPCPs to assess their individual and combined effect on an important species in one trophic level, i.e., bacteria. The ecotoxicological effects of PPCPs at two different concentration ranges were determined in the bacterium Vibrio fischeri using Microtox(®) and were statistically analyzed using three models in the GraphPad Prism 6 program for Windows, v.6.03. A four-parameter model best fit the majority of the compounds. The half maximal effective concentration (EC50) of each PPCP was estimated using the best-fitting model and was compared with the results from a recent study. Comparative analysis indicated that most compounds showed the same level of toxicity. Moreover, the stimulatory effects of PPCPs at environmental concentrations (low doses) were assessed. These results indicated that certain compounds have traditional inverted U- or J-shaped dose-response curves, and 55% of them presented a stimulatory effect below the zero effect-concentration point. Effective concentrations of 0 (EC0), 5 (EC5) and 50% (EC50) were calculated for each PPCP as the ecotoxicological points. All compounds that presented narcosis as a mode of toxic action at high doses also exhibited stimulation at low concentrations. The maximum stimulatory effect of a mixture was higher than the highest stimulatory effect of each individually tested compound. Moreover, when the exposure time was increased, the hormetic effect decreased. Hormesis is being increasingly included in dose-response studies because this may have a harmful, beneficial or indifferent effect in an environment. Despite the results obtained in this research, further investigations need to be conducted to elucidate the behavior of PPCPs in aquatic environments.

  14. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    Science.gov (United States)

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)). © 2015 IUMS.

  15. β-Fructofuranosidase and sucrose phosphorylase of rumen bacterium Pseudobutyrivibrio ruminis strain 3.

    Science.gov (United States)

    Kasperowicz, Anna; Stan-Glasek, Katarzyna; Guczynska, Wanda; Pristas, Peter; Javorsky, Peter; Vandzurova, Anna; Michalowski, Tadeusz

    2012-03-01

    The subject of this study was the fructan and sucrose degrading enzymes of bacterium Pseudobutyrivibrio ruminis strain 3. It was stated that cell extract from bacteria growing on inulin contained β-fructofuranosidase (EC 3.2.1.80 and/or EC 3.2.1.26) and sucrose phosphorylase (EC 2.4.1.7), while the bacteria maintained on sucrose showed only phosphorylase. Partially purified β-fructofuranosidase digested inulooligosaccharides and sucrose to fructose or fructose and glucose, respectively, but was unable to degrade the long chain polymers of commercial inulin and Timothy grass fructan. Digestion rate of inulooligosaccharides fit Michaelis-Menten kinetics with V(max) 5.64 μM/mg/min and K(m) 1.274%, respectively, while that of sucrose was linear. Partially purified sucrose phosphorylase digested only sucrose. The digestion products were fructose, glucose-1P and free glucose. The reaction was in agreement with Michaelis-Menten kinetics. The V(max) were 0.599 and 0.584 μM/mg/min, while K(m) were 0.190 and 0.202% for fructose release and glucose-1P formation, respectively, when bacteria grew on inulin. The V(max) were, however, 1.37 and 1.023 μM/mg/min, while K(m) were 0.264 and 0.156%, if bacteria were grown on sucrose. The free glucose was hardly detectable for the enzyme originated from inulin grown bacteria, but glucose levels ranged from 0.05 to 0.25 μM/mg/min, when cell extract from bacteria grown on sucrose was used. Release of free glucose was observed when no inorganic phosphate was present in reaction mixture.

  16. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae.

    Science.gov (United States)

    Ambrosio, Rafael; Ortiz-Marquez, Juan Cesar Federico; Curatti, Leonardo

    2017-03-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N2 and CO2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N2 from the air into crops. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All

  17. A novel electrophototrophic bacterium Rhodopseudomonas palustris strain RP2, exhibits hydrocarbonoclastic potential in anaerobic environments

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2016-07-01

    Full Text Available An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS. Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305±10 mA/m2 (1000Ω was generated (power density 131.65±10 mW/m2 by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21±3 mA/m2; power density 720±7 µW/m2, 1000Ω using petroleum hydrocarbon (PH as a sole energy source was also examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9- C36 with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation. Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.

  18. Bacillus mesophilum sp. nov., strain IITR-54T, a novel 4-chlorobiphenyl dechlorinating bacterium.

    Science.gov (United States)

    Manickam, Natesan; Singh, Nitin Kumar; Bajaj, Abhay; Kumar, Rajendran Mathan; Kaur, Gurwinder; Kaur, Navjot; Bala, Monu; Kumar, Anand; Mayilraj, Shanmugam

    2014-07-01

    The taxonomic position of a Gram-positive, endospore-forming bacterium isolated from soil sample collected from an industrial site was analyzed by a polyphasic approach. The strain designated as IITR-54T matched most of the phenotypic and chemical characteristics of the genus Bacillus and represents a novel species. It was found to biodegrade 4-chlorobiphenyl through dechlorination and was isolated through enrichment procedure from an aged polychlorinated biphenyl-contaminated soil. Both resting cell assay and growth under aerobic liquid conditions using 4-chlorobiphenyl as sole source of carbon along with 0.01% yeast extract, formation of chloride ions was measured. 16S rRNA (1,489 bases) nucleotide sequence of isolated strain was compared with those of closely related Bacillus type strains and confirmed that the strain belongs to the genus Bacillus. Strain IITR-54T differs from all other species of Bacillus by at least 2.1% at the 16S rRNA level, and the moderately related species are Bacillus oceanisediminis (97.9%) followed by Bacillus infantis (97.7%), Bacillus firmus (97.4%), Bacillus drentensis (97.3%), Bacillus circulans (97.2%), Bacillus soli (97.1%), Bacillus horneckiae (97.1%), Bacillus pocheonensis (97.1%) and Bacillus bataviensis (97.1%), respectively. The cell wall peptidoglycan contained meso-diaminopimelic acid and the major isoprenoid quinone was MK-7. Major fatty acids are iso-C15:0 (32.4%) and anteiso-C15:0 (27.4%). Predominant polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The results of physiological and biochemical tests allowed the genotypic and phenotypic distinctiveness of strain IITR-54T with its phylogenetic relatives and suggest that the strain IITR-54T should be recognized as a novel species, for which the name Bacillus mesophilum sp. nov. is proposed. The type strain is IITR-54T (=MTCC 11060T=JCM 19208T).

  19. Cyclobacterium halophilum sp. nov., a marine bacterium isolated from a coastal-marine wetland.

    Science.gov (United States)

    Shahinpei, Azadeh; Amoozegar, Mohammad Ali; Sepahy, Abbas Akhavan; Schumann, Peter; Ventosa, Antonio

    2014-03-01

    A novel Gram-stain-negative, slightly halophilic bacterium, designated strain GASx41(T), was isolated from soil of the coastal-marine wetland Gomishan in Iran. Cells of strain GASx41(T) were curved, ring-like or horseshoe-shaped rods and non-motile. Strain GASx41(T) was strictly aerobic, and catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 1-10% (w/v), with optimum growth occurring at 2.5-3% (w/v) NaCl. The optimum temperature and pH for growth were 25-30 °C and pH 7.5-8.0. On the basis of 16S rRNA gene sequence analysis, strain GASx41(T) was shown to belong to the genus Cyclobacterium within the phylum Bacteroidetes and showed closest phylogenetic similarity to 'Cyclobacterium jeungdonense' HMD3055 (98.0%). The DNA G+C content of strain GASx41(T) was 48.1 mol%. The major cellular fatty acids of strain GASx41(T) were iso-C15 : 0, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), anteiso-C15 : 0 2-OH, anteiso-C15 : 0 and iso-C17 : 0 3-OH, and its polar lipid pattern consisted of phosphatidylethanolamine, phosphatidylcholine and 12 unknown lipids. The only quinone present was menaquinone 7 (MK-7). All these features confirmed the placement of isolate GASx41(T) within the genus Cyclobacterium. On the basis of evidence from this study, a novel species of the genus Cyclobacterium, Cyclobacterium halophilum sp. nov., is proposed, with strain GASx41(T) ( = IBRC-M 10761(T) = CECT 8341(T)) as the type strain.

  20. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family 'Saccharospirillaceae'.

    Science.gov (United States)

    Shahinpei, Azadeh; Amoozegar, Mohammad Ali; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Ventosa, Antonio

    2014-11-01

    A novel Gram-staining-negative, motile, non-pigmented, facultatively anaerobic, spirillum-shaped, halophilic and alkaliphilic bacterium, designated strain GCWy1(T), was isolated from water of the coastal-marine wetland Gomishan in Iran. The strain was able to grow at NaCl concentrations of 1-10% (w/v) and optimal growth was achieved at 3% (w/v). The optimum pH and temperature for growth were pH 8.5 and 30 °C, while the strain was able to grow at pH 7.5-10 and 4-40 °C. Phylogenetic analysis based on the comparison of the 16S rRNA gene sequence placed the isolate within the class Gammaproteobacteria as a separate deep branch, with 92.1% or lower sequence similarity to representatives of the genera Saccharospirillum and Reinekea and less than 91.0% sequence similarity with other remotely related genera. The major cellular fatty acids of the isolate were C(18 : 1)ω7c, C(16:0) and C(17 : 0), and the major components of its polar lipid profile were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cells of strain GCWy1(T) contained the isoprenoid quinones Q-9 and Q-8 (81% and 2%, respectively). The G+C content of the genomic DNA of this strain was 52.3 mol%. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain GCWy1(T) represents a novel species in a new genus in the family 'Saccharospirillaceae', order Oceanospirillales, for which the name Salinispirillum marinum gen. nov., sp. nov. is proposed. The type strain of the type species is GCWy1(T) ( = IBRC-M 10765(T) =CECT 8342(T)). © 2014 IUMS.

  1. Limimonas halophila gen. nov., sp. nov., an extremely halophilic bacterium in the family Rhodospirillaceae.

    Science.gov (United States)

    Amoozegar, Mohammad Ali; Makhdoumi-Kakhki, Ali; Ramezani, Mohadaseh; Nikou, Mahdi Moshtaghi; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Ventosa, Antonio

    2013-04-01

    A novel, Gram-staining-negative, non-pigmented, rod-shaped, strictly aerobic, extremely halophilic bacterium, designated strain IA16(T), was isolated from the mud of the hypersaline Lake Aran-Bidgol, in Iran. Cells of strain IA16(T) were not motile. Growth occurred with 2.5-5.2 M NaCl (optimum 3.4 M), at pH 6.0-8.0 (optimum pH 7.0) and at 30-50 °C (optimum 40 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain IA16(T) belonged in the family Rhodospirillaceae and that its closest relatives were Rhodovibrio sodomensis DSM 9895(T) (91.6 % sequence similarity), Rhodovibrio salinarum NCIMB 2243(T) (91.2 %), Pelagibius litoralis CL-UU02(T) (88.9 %) and Fodinicurvata sediminis YIM D82(T) (88.7 %). The novel strain's major cellular fatty acids were C19 : 0 cyclo ω7c and C18 : 0 and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, four unidentified phospholipids, three unidentified aminolipids and two other unidentified lipids. The cells of strain IA16(T) contained the ubiquinone Q-10. The G+C content of the novel strain's genomic DNA was 67.0 mol%. The physiological, biochemical and phylogenetic differences between strain IA16(T) and other previously described taxa indicate that the strain represents a novel species in a new genus within the family Rhodospirillaceae, for which the name Limimonas halophila gen. nov., sp. nov. is proposed. The type strain of Limimonas halophila is IA16(T) ( = IBRC-M 10018(T)  = DSM 25584(T)).

  2. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus

    Science.gov (United States)

    Bloh, Anmar Hameed; Usup, Gires; Ahmad, Asmat

    2016-01-01

    Aim: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. Materials and Methods: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Results: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity). Conclusion: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates. PMID:27051199

  3. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus

    Directory of Open Access Journals (Sweden)

    Anmar Hameed Bloh

    2016-02-01

    Full Text Available Aim: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. Materials and Methods: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup’s Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Results: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06 were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity. Conclusion: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

  4. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ma, Xiao-Bo [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, Hang [Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Du, Dao-Lin, E-mail: ddl@ujs.edu.cn [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Sun, Jian-Fan [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Feng, Yu-Jie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2015-05-15

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H{sub 2}S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater.

  5. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    Science.gov (United States)

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Dissolved Organic Matter Enhances Hg Bioavailability to a Hg-Methylating Bacterium Under Mildly Sulfidic Conditions

    Science.gov (United States)

    Graham, A. M.; Gilmour, C. C.

    2011-12-01

    Field studies have demonstrated a strong linkage between dissolved organic matter (DOM) quantity and quality and in-situ methylmercury (MeHg) production. The biogeochemical basis for these field observations is unknown however. Here, we investigate the roles of DOM and sulfide in controlling Hg bioavailability to the Hg-methylating bacterium Desulfovibrio desulfuricans ND132 in short-term washed cell assays. At environmentally relevant Hg/DOM ratios (2-4300 ng Hg/mg DOM), MeHg production increased linearly with increasing Suwannee River humic acid (SRHA) concentration, even in the presence of sulfide concentrations (5-10 μM) sufficient to outcompete SRHA for inorganic Hg. The DOM-dependent enhancement in Hg-methylation cannot be attributed to an enhancement of ND132 metabolic activity or alteration of Hg sorption to cells or bottle walls. Equilibrium speciation calculations indicated that cell suspensions were supersaturated with respect to metacinnabar (β-HgS(s)) and that Hg-DOM thiol complexes were relatively minor species. Notably, SRHA addition had no effect on Hg methylation in solutions where Hg-cysteine species predominated and β-HgS(s) precipitation was not predicted. We hypothesize that DOM enhances Hg-methylation by stabilizing HgS(s) colloids or nanoparticles against aggregation and/or by reducing the crystallinty of HgS(s) particles, and that such HgS(s) colloids are bioavailable to Hg-methylating bacteria. Ongoing work in the laboratory is evaluating the role of DOM character (size, aromaticity, reduced S content, etc.) in controlling the extent of the enhancement in MeHg production. These findings highlight the limits of equilibrium speciation approaches to predicting Hg bioavailability to methylating bacteria given the demonstrated significance of Hg-DOM-sulfide interactions in the anoxic environments where methylation occurs. Our laboratory experiments provide additional insight into the role that DOM plays in determining spatial and temporal

  7. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  8. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, OR

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, Rhesa N.; Connon, Stephanie A.; Neal, Andrew L.; Dohnalkova, Alice; Magnuson, Timothy S.

    2007-09-01

    The Alvord Basin in southeast Oregon, USA contains a variety of hydrothermal features, which have never been microbiologically characterized. Murky Pot (61°C, pH 7.1) was selected for this study. Sampling of Murky Pot led to the isolation of a novel arsenic-metabolizing organism (YeAs), which produces an arsenic sulfide mineral known as beta-realgar, a mineral that has not previously been observed as a product of bacterial arsenic metabolism. Our goal was to characterize and identify YeAs based on its phylogenetic, physiological, and morphological characteristics. 16S rRNA gene analysis revealed that YeAs has 98.9% sequence similarity to that of Thermobrachium celere. YeAs was grown on a freshwater medium and could utilize a variety of organic substrates, particularly carbohydrates and organic acids. Optimum growth of the organism was seen at 55ºC, but showed growth at a range of 37° to 75°C. No growth was observed when YeAs was grown under aerobic conditions. Microscopic examination revealed Gram-indeterminate, non-spore forming, rod shaped cells. Electron microscopy and elemental analysis revealed significant arsenic sulfide mineralization of cell walls, and extracellular particulate deposition of arsenic sulfide minerals. YeAs showed no detectable respiratory arsenate reductase; however, the organism did display significant detoxification arsenate reductase activity. The phylogenetic, physiological, and morphological characteristics of YeAs demonstrate that it is an anaerobic, moderately thermophilic, arsenic-reducing bacterium. This organism and its associated metabolism could have major implications in the search for innovative methods for arsenic waste management and in the search for novel biogenic signatures.

  9. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Galardini, Marco [University of Florence; Mengoni, Alessio [University of Florence; Brilli, Matteo [Universite de Lyon, France; Pini, Francesco [University of Florence; Fioravanti, Antonella [University of Florence; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Mocali, Stefano [Agrobiol & Pedol Ctr ABP, Agr Res Council, I-50121 Florence, Italy; Bazzicalupo, Marco [University of Florence; Biondi, Emanuele [University of Florence

    2011-01-01

    Background: Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results: With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains.

  10. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil.

    Science.gov (United States)

    Yan, Jun; Yan, Hui; Liu, Li Xue; Chen, Wen Feng; Zhang, Xiao Xia; Verástegui-Valdés, Myrthala M; Wang, En Tao; Han, Xiao Zeng

    2017-01-01

    One Gram-negative, aerobic, motile, rod-shaped bacterium, designated as FH14 T , was isolated from nodules of Phaseolus vulgaris grown in Hidalgo State of Mexico. Results based upon 16S rRNA gene (≥99.8 % similarities to known species), concatenated sequence (recA, atpD and glnII) analysis of three housekeeping genes (≤93.4 % similarities to known species) and average nucleotide identity (ANI) values of genome sequence (ranged from 87.6 to 90.0 % to related species) indicated the distinct position of strain FH14 T within the genus Rhizobium. In analyses of symbiotic genes, only nitrogen fixation gene nifH was amplified that had nucleotide sequence identical to those of the bean-nodulating strains in R. phaseoli and R. vallis, while nodulation gene nodC gene was not amplified. The failure of nodulation to its original host P. vulgaris and other legumes evidenced the loss of its nodulation capability. Strain FH14 T contained summed feature 8 (C 18:1 ω6c/C 18:1 ω7c, 59.96 %), C 16:0 (10.6 %) and summed feature 2 (C 12:0 aldehyde/unknown 10.928, 10.24 %) as the major components of cellular fatty acids. Failure to utilize alaninamide, and utilizing L-alanine, L-asparagine and γ-amino butyric acid as carbon source, distinguished the strain FH14 T from the type strains for the related species. The genome size and DNA G+C content of FH14 T were 6.94 Mbp and 60.8 mol %, respectively. Based on those results, a novel specie in Rhizobium, named Rhizobium hidalgonense sp. nov., was proposed, with FH14 T (=HAMBI 3636 T  = LMG 29288 T ) as the type strain.

  11. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium "Candidatus Holospora parva".

    Directory of Open Access Journals (Sweden)

    Olivia Lanzoni

    Full Text Available Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.

  12. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen

    Science.gov (United States)

    Sundset, Monica A.; Kohn, Alexandra; Mathiesen, Svein D.; Præsteng, Kirsti E.

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer ( Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 × 2.0-3.5 μm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  13. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti.

    Directory of Open Access Journals (Sweden)

    Arjan de Groot

    2009-03-01

    Full Text Available To better understand adaptation to harsh conditions encountered in hot arid deserts, we report the first complete genome sequence and proteome analysis of a bacterium, Deinococcus deserti VCD115, isolated from Sahara surface sand. Its genome consists of a 2.8-Mb chromosome and three large plasmids of 324 kb, 314 kb, and 396 kb. Accurate primary genome annotation of its 3,455 genes was guided by extensive proteome shotgun analysis. From the large corpus of MS/MS spectra recorded, 1,348 proteins were uncovered and semiquantified by spectral counting. Among the highly detected proteins are several orphans and Deinococcus-specific proteins of unknown function. The alliance of proteomics and genomics high-throughput techniques allowed identification of 15 unpredicted genes and, surprisingly, reversal of incorrectly predicted orientation of 11 genes. Reversal of orientation of two Deinococcus-specific radiation-induced genes, ddrC and ddrH, and identification in D. deserti of supplementary genes involved in manganese import extend our knowledge of the radiotolerance toolbox of Deinococcaceae. Additional genes involved in nutrient import and in DNA repair (i.e., two extra recA, three translesion DNA polymerases, a photolyase were also identified and found to be expressed under standard growth conditions, and, for these DNA repair genes, after exposure of the cells to UV. The supplementary nutrient import and DNA repair genes are likely important for survival and adaptation of D. deserti to its nutrient-poor, dry, and UV-exposed extreme environment.

  14. Increased hyphal branching and growth of ectomycorrhizal fungus Lactarius rufus by the helper bacterium Paenibacillus sp.

    Science.gov (United States)

    Aspray, T J; Jones, E E; Davies, M W; Shipman, M; Bending, G D

    2013-07-01

    Paenibacillus sp. EJP73 has been previously demonstrated as a mycorrhization helper bacterium (MHB) for the Lactarius rufus-Pinus sylvestris symbiosis in both laboratory and glasshouse experiments. In the present study, the effect of Paenibacillus sp. EJP73 metabolites on L. rufus EO3 pre-symbiotic growth was tested in two agar plate-based systems. Specifically, volatile metabolites were investigated using a dual plate system, in which the presence of strain EJP73 resulted in a significant negative effect on L. rufus EO3 hyphal radial growth but enhanced hyphal branching and reduced internode distance. Soluble metabolites produced by strain EJP73 were tested on L. rufus EO3 growth in single-agar plate assays by incorporating bacterial cell-free whole or molecular weight fraction spent broth into the agar. Whole spent broth had a negative effect on hyphal growth, whereas a low molecular weight fraction (100-1,000) promoted colony radial growth. Headspace and spent broth analysis of strain EJP73 cultures revealed 2,5-diisopropylpyrazine to be the most significant component. Synthesised 2,5-diisopropylpyrazine and elevated CO2 (2,000 ppm) were tested as specific volatile metabolites in the dual plate system, but neither produced the response shown when strain EJP73 was present. Increased pre-symbiotic hyphal branching leading to increased likelihood of plant infection may be an important MHB mechanism for strain EJP73. Although the precise signal molecules could not be identified, the work suggests a number of metabolites may work synergistically to increase L. rufus root colonisation.

  15. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    Directory of Open Access Journals (Sweden)

    Xueqian eLei

    2015-01-01

    Full Text Available Harmful algal blooms occur throughout the world, threatening human health and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm and relative electron transport rate (rETR suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD and catalase (CAT, increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD and two target respiration-related genes (cob and cox. The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.

  16. The Endosymbiotic Bacterium Wolbachia Selectively Kills Male Hosts by Targeting the Masculinizing Gene.

    Directory of Open Access Journals (Sweden)

    Takahiro Fukui

    2015-07-01

    Full Text Available Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. Wolbachia is an endosymbiotic bacterium that infects a wide range of insect species. Wolbachia is known as an example of a parasite that manipulates the sex of its host's progeny. Infection of Ostrinia moths by Wolbachia causes the production of all-female progeny, however, the mechanism of how Wolbachia accomplishes this male-specific killing is unknown. Here we show for the first time that Wolbachia targets the host masculinizing gene of Ostrinia to accomplish male-killing. We found that Wolbachia-infected O. furnacalis embryos do not express the male-specific splice variant of doublesex, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that Wolbachia infection markedly reduces the mRNA level of Masc, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm Bombyx mori. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in Wolbachia-infected O. furnacalis embryos, a phenomenon that is extremely similar to that observed in Masc mRNA-depleted male embryos of B. mori. Finally, injection of in vitro transcribed Masc cRNA into Wolbachia-infected embryos rescued male progeny. Our results show that Wolbachia-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.

  17. Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2017-11-01

    Full Text Available Abstract Background P. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in Diabetic foot ulcer (DFU patients. We isolated P. mirabilis SCDR1 from a Diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against Nanosilver colloids, the commercial Nanosilver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS, bioinformatics, phylogenetic analysis and pathogenomics in the characterization of the infectious pathogen. Results P. mirabilis SCDR1 was the first Nanosilver resistant isolate collected from a diabetic patient polyclonal infection. P. mirabilis SCDR1 showed high levels of resistance against Nanosilver colloids, Nanosilver chitosan composite and the commercially available Nanosilver and silver bandages. The P. mirabilis -SCDR1 genome size is 3,815,621 bp. with G + C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3533 genes, 3414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S, and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, the wound, can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance, including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification. Conclusion P. mirabilis SCDR1 is the first reported spontaneous Nanosilver resistant bacterial strain. P. mirabilis SCDR1 possesses several mechanisms that may lead to the observed Nanosilver resistance.

  18. Rheinheimera aestuari sp. nov., a marine bacterium isolated from coastal sediment.

    Science.gov (United States)

    Baek, Kyunghwa; Jeon, Che Ok

    2015-08-01

    A Gram-stain-negative, strictly aerobic, non-pigmented, motile bacterium with a single polar flagellum, designated H29T, was isolated from coastal sediment of Jeju Island, South Korea. Cells were non-spore-forming rods showing catalase- and oxidase-positive reactions. Growth of strain H29T was observed at 10-40 °C (optimum, 20-25 °C) and pH 6.0-9.0 (optimum, pH 7.0-8.0), and in the presence of 1-4% (w/v) NaCl (optimum, 2-3%). Strain H29T contained C16 : 0, iso-C15 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c/C16 : 1ω6c) as the major fatty acids and ubiquinone-8 (Q-8) as the sole isoprenoid quinone. Phosphatidylethanolamine and phosphatidylglycerol were identified as the major polar lipids. The G+C content of the genomic DNA was 46.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain H29T formed a phyletic lineage with Rheinheimera hassiensis E48T within the genus Rheinheimera of the family Chromatiaceae. Strain H29T was most closely related to Rheinheimera pacifica KMM 1406T, Rheinheimera muenzenbergensis E49T, Rheinheimera hassiensis E48T and Rheinheimera baltica OSBAC1T with 97.8%, 97.6%, 97.4% and 97.2% 16S rRNA gene sequence similarities, respectively. However, DNA-DNA hybridization values of strain H29T with type strains of these species were lower than 70%. On the basis of the phenotypic, chemotaxonomic and molecular properties, strain H29T represents a novel species of the genus Rheinheimera, for which the name Rheinheimeraaestuarii sp. nov. is proposed. The type strain is H29T ( = KACC 18251T = JCM 30404T).

  19. Rheinheimera gaetbuli sp. nov., a Marine Bacterium Isolated from a Tidal Flat.

    Science.gov (United States)

    Baek, Kyunghwa; Jeon, Che Ok

    2016-03-01

    A gram-staining-negative, strictly aerobic, rod-shaped, and motile bacterium with a single polar flagellum, designated H26(T), was isolated from tidal flat sediment in Jeju Island, South Korea. Growth of strain H26(T) was observed at 4-35 °C (optimum, 20-25 °C), pH 6.0-9.0 (optimum, pH 7.0-8.0), and 1-4 % NaCl (optimum, 2-3 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain H26(T) formed a phyletic lineage within the genus Rheinheimera, family Chromatiaceae. Strain H26(T) was most closely related to Rheinheimera baltica OSBAC1(T), Rheinheimera aestuarii H29(T), Rheinheimera muenzenbergensis E49(T), and Rheinheimera aquimaris SW-353(T) with 98.5, 98.1, 97.8, and 97.5 % of 16S rRNA gene sequence similarities, respectively. The DNA-DNA relatedness levels between strain H26(T) and the type strains of R. baltica, R. aestuarii, R. muenzenbergensis, and R. aquimaris were 35.5 ± 3.2, 33.4 ± 1.5, 31.2 ± 2.2, and 28.7 ± 0.9 %, respectively. The major fatty acids of strain H26(T) were iso-C15:0 3-OH, summed feature 3 (comprising C16:1 ω7c/C16:1 ω6c), C16:0, summed feature 8 (comprising C18:1 ω7c/C18:1 ω6c), iso-C17:0 3-OH, and C12:0 3-OH and the strain contained ubiquinone (Q-8) as the sole isoprenoid quinone. Phosphatidylethanolamine, phosphatidylglycerol, and an aminolipid were identified as the major polar lipids and the G + C content of the genomic DNA was 52.0 mol%. Based on the phenotypic, chemotaxonomic, and molecular properties, strain H26(T) represents a novel species of the genus Rheinheimera, for which the name Rheinheimera gaetbuli sp. nov. is proposed. The type strain was H26(T) (=KACC 18254(T) = JCM 30403(T)).

  20. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans

    Science.gov (United States)

    Blasius, Melanie; Buob, Rebecca; Shevelev, Igor V; Hubscher, Ulrich

    2007-01-01

    Background Enzymes involved in DNA metabolic events of the highly radioresistant bacterium Deinococcus radiodurans are currently examined to understand the mechanisms that protect and repair the Deinococcus radiodurans genome after extremely high doses of γ-irradiation. Although several Deinococcus radiodurans DNA repair enzymes have been characterised, no biochemical data is available for DNA ligation and DNA endhealing enzymes of Deinococcus radiodurans so far. DNA ligases are necessary to seal broken DNA backbones during replication, repair and recombination. In addition, ionizing radiation frequently leaves DNA strand-breaks that are not feasible for ligation and thus require end-healing by a 5'-polynucleotide kinase or a 3'-phosphatase. We expect that DNA ligases and end-processing enzymes play an important role in Deinococcus radiodurans DNA strand-break repair. Results In this report, we describe the cloning and expression of a Deinococcus radiodurans DNA ligase in Escherichia coli. This enzyme efficiently catalyses DNA ligation in the presence of Mn(II) and NAD+ as cofactors and lysine 128 was found to be essential for its activity. We have also analysed a predicted second DNA ligase from Deinococcus radiodurans that is part of a putative DNA repair operon and shows sequence similarity to known ATP-dependent DNA ligases. We show that this enzyme possesses an adenylyltransferase activity using ATP, but is not functional as a DNA ligase by itself. Furthermore, we identified a 5'-polynucleotide kinase similar to human polynucleotide kinase that probably prepares DNA termini for subsequent ligation. Conclusion Deinococcus radiodurans contains a standard bacterial DNA ligase that uses NAD+ as a cofactor. Its enzymatic properties are similar to E. coli DNA ligase except for its preference for Mn(II) as a metal cofactor. The function of a putative second DNA ligase remains unclear, but its adenylyltransferase activity classifies it as a member of the