WorldWideScience

Sample records for existing tandem accelerator

  1. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  2. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  3. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  4. A study of reflex tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Takao; Morinobu, Shunpei; Gono, Yasuyuki; Sagara, Kenji; Sugimitsu, Tsuyoshi; Mitarai, Shiro; Nakamura, Hiroyuki; Ikeda, Nobuo; Morikawa, Tsuneyasu [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1996-12-01

    An investigation on `developing research theme and its realizing experimental apparatus` based on the tandem accelerator facility is executed. At a standpoint of recognition on essentiality of preparation, improvement or novel technical development capable of extreme increase in capacity of the tandem accelerator facility to form COE with high uniqueness, proposal of numerous ideas and their investigations and searches were conducted. In this paper, consideration results of `beam reacceleration using tandem accelerator` were shown as follows: (1) Short life unstable nuclei formed by nuclear reaction using tandem acceleration primary beam is ionized to negative and to reaccelerate by using the same tandem accelerator. And (2) by combination of plural electrons with the tandem primary accelerated beam, numbers of charge is reduced to reaccelerate by the tandem. (G.K.)

  5. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  6. Tandem accelerator operation and improvements

    International Nuclear Information System (INIS)

    Yang Bingfan; Zhang Canzhe; Qin Jiuchang; Hu Yueming; Zhang Guilian; Jiang Yongliang; Hou Deyi; Yang Weimin; Yang Zhiren; Su Shengyong; Kan Chaoxin; Liu Dezhong; Wang Liyong; Bao Yiwen; You Qubo; Yang Tao; Zhang Yan; Zhou Lipeng; Chai Shiqin; Wang Meiyan

    1998-01-01

    The scheduled operation of HI-13 tandem accelerator for various experiments was performed well in 1996 and 1997. The machine running time was 4600 h and 4182 h while the beam time was 3845 h and 3712 h in 1996 and 1997, respectively. The operation of HI-13 tandem accelerator is pretty well. The beam distribution with terminal voltage and the distribution of beam time with ion species are shown out. The development of accelerating tubes for HI-13 tandem is in progress

  7. Tandem accelerators, 1973--1974

    International Nuclear Information System (INIS)

    Howard, F.T.

    1974-01-01

    High voltage tandem accelerators are very important instruments in the field of nuclear physics research, especially in the acceleration of heavy ions. This survey identifies 77 tandems installed in 21 countries; of these, 34 are in the United States. Most installations have supplied data sheets identifying their machines and briefly characterizing their research programs. (U.S.)

  8. Electrostatic field distributions in the Harwell Tandem accelerator

    International Nuclear Information System (INIS)

    Read, P.M.

    1981-11-01

    The electrostatic field distributions in the Harwell Tandem accelerator have been precisely calculated using the electrostatics program FINALE. The results indicate that the accelerator which presently has an upper voltage limit of 6.5 MV has the potential to operate at 8 MV. Such an upgrade could be achieved by a modification to the high voltage terminal. Replacement of the existing accelerator tubes with accelerator tubes capable of a gradient of 1.8 MV/m would also be required. The existing stack may also require replacement. The terminal modification itself would reduce the terminal to tank breakdown frequency. (author)

  9. North-American MP Tandem accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1977-01-01

    There are six North-American MP Tandem accelerators: Yale; Minnesota; Chalk River; Rochester; and two at Brookhaven. The current status and operating characteristics of these six tandem accelerators are discussed. Upgrade and special improvements of the different machines is reviewed and new developments since the last Electrostatic Conference are discussed in detail. The overall operating characteristics of the different machines during the last year of operation are compared

  10. Study of Tandem Accelerator Technology and Its Prospects

    International Nuclear Information System (INIS)

    Sigit-Hariyanto; Sudjatmoko; Djoko-S-Pudjorahardjo; Suryadi; Widdi-Usada; Suprapto; Djasiman; Tono-Wibowo; Agus-Purwadi

    2000-01-01

    Tandem accelerator is an ion acceleration tool in which negative ions injected in the accelerator tube and stripped to become positive ions, then accelerated by electrostatic high voltage such that its energy is multiplied. In this paper, we describe the prospect of accelerator application briefly in agriculture and biotechnology, industry, health and medicine, environment fields. Technical study on tandem accelerator included SNICS and alphatross ion sources, acceleration system and stripper system. The study result for many kinds of negative ions and its current which should be injected in the accelerator tube and the output of tandem accelerator H + , and the distribution of C + , Ni + , Au + , Br + ion on varying charge state is shown. (author)

  11. Accelerator mass analysis at tandem accelerator in Kyoto University

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masanobu; Tazawa, Yuji; Matsumoto, Hiroshi; Hirose, Masanori [Kyoto Univ. (Japan). Faculty of Science; Ogino, Koya; Kohno, Masuchika; Funaba, Hiroyuki

    1996-12-01

    Tandem accelerator in Science Faculty, Kyoto University was renewed from 5 MV in the highest terminal voltage of Van de Graaff to 8 MV of Peletron in 1992. And, AMS effective for cosmic ray, dating, environment measurement and so forth is determined to a column of collaborative studies by universities and institutes in Japan. On this renewal, because of using high energy beam transportation of the present tandem accelerator, super high sensitivity measurement of long half-life radioactive isotopes of heavy elements such as {sup 36}Cl, {sup 41}Ca, {sup 129}I and so forth is aimed, although having some limitations due to small magnet. The accelerator is active in characteristics of the middle size tandem accelerator, and developing {sup 14}C measurement for its standard technology, as aiming at {sup 36}Cl measurement, at first. As a result, in this tandem accelerator stable and high beam transmittance could be obtained by adding a slit at negative ion source to make emittance of incident beam smaller. {sup 14}C/{sup 12}C ratio of Modan`s sample obtained by graphitizing NBS oxalic acid and Ded`s sample consisting of mineral graphite produced in Sri Lanka are measured to confirm better reproductivity of this system. Future development of successive incident method is planned to test actual carbon samples. (G.K.)

  12. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  13. Operation of the tandem-linac accelerator

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The tandem-linac accelerator system is operated as a source of energetic heavy-ion projectiles for research in several areas of nuclear physics and occasionally in other areas of science. The accelerator system consists of a 9-MV tandem electrostatic accelerator and a superconducting-linac energy booster that can provide an additional 20 MV of acceleration. A figure shows the layout of this system, which will be operated in its present form until September 1985, when it will be incorporated into the larger ATLAS system. In both the present and future forms the accelerator is designed to provide the exceptional beam quality and overall versatility required for precision nuclear-structure research

  14. High-sensitivity mass spectrometry with a tandem accelerator

    International Nuclear Information System (INIS)

    Henning, W.

    1984-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems

  15. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  16. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2007. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Miyazaki, Osamu; Awa, Yasuaki; Isaka, Koji; Kutsukake, Kenichi; Komeda, Masao; Shibata, Ko; Hiyama, Kazuhisa; Suzuki, Mayu; Sone, Takuya; Ohuchi, Tomoaki; Terakado, Yuichi; Sataka, Masao

    2009-06-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor-3), JRR-4(Japan Research Reactor-4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2007 and March 31, 2008. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator. (2) Utilization of research reactors and tandem accelerator. (3) Upgrading of utilization techniques of research reactors and tandem accelerator. (4) Safety administration for research reactors and tandem accelerator. (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, plans and outcomes in service and technical developments and so on. (author)

  17. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2010. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Yamada, Yusuke; Kawashima, Kazuhiro; Asozu, Takuhiro; Nakamura, Takemi; Arai, Masaji; Yoshinari, Shuji; Sataka, Masao

    2012-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2010 and March 31, 2011. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for research reactors and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, outcomes in service and technical developments and so on. (author)

  18. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  19. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2011. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Kabumoto, Hiroshi; Nakamura, Takemi; Tamura, Itaru; Kawasaki, Sayuri; Sataka, Masao

    2013-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2011 and March 31, 2012. The activities were categorized into six service/development fields: (1) Recovery from the Great East Japan Earthquake, (2) Operation and maintenance of research reactors and tandem accelerator, (3) Utilization of research reactors and tandem accelerator, (4) Upgrading of utilization techniques of research reactors and tandem accelerator, (5) Safety administration for research reactors and tandem accelerator, (6) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, commendation, outcomes in service and technical developments and so on. (author)

  20. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  1. Actualization of the Tandem-E N Accelerator of the Nuclear Centre of Mexico

    International Nuclear Information System (INIS)

    Villasenor S, P.; Aguilera R, E.; Aspiazu F, J.; Fernandez A, J.; Fernandez B, M.; Garcia R, B.; Lopez M, J.; Martinez Q, E.; Mendez G, B.; Moreno B, E.; Murillo O, G.; Policroniades R, R.; Ramirez T, J.; Reynoso V, R.; Varela G, A.; Vega C, J.

    2004-01-01

    In this work, the activities are described carried out to change the tubes accelerators and original resistances of the accelerator Tandem-E N of the Nuclear Center, for tubes DOWLISH and resistances again design, both donated ones for ORNL. This way same, the problem is described that imply this changes, and like it was solved by the personnel of the laboratory, without having to appeal to external services, what there is redounded in a considerable increment in the costs. In form preliminary the improvements are described observed after the rehabilitation of the Accelerator. (Author)

  2. Vacuum system of tandem type electrostatic accelerator of Kyushu University

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1981-01-01

    In the tandem type electrostatic accelerator of Kyushu University, the problem of vacuum in the beam transport system including the accelerator tube has been considered as one of the important elements for the performance of the electrostatic accelerator from the beginning of construction. Though the three-stage tandem accelerating scheme was considered as the beam transport system at the beginning of the program, in which the existing 6 MV Van de Graaf accelerator was to be used as the injector, three types of ion sources are prepared at present; the sputter ion source to generate negative heavy ions, the polarizing ion source to generate negative polarized protons or deuterons, and direct extraction type negative ion source. Ultrahigh evacuating system, in which the sputter ion pump is mainly employed, and the turbo-molecular pump is used supplementarily, was installed in the vacuum system. The vacuum of approximately 10 - 9 Torr level off-beam at the inlet or outlet of the accelerator tube and approximately 10 - 8 Torr level in the tubing section in the center terminal were achieved. Since the upper limit of withstand voltage of the accelerating tube was not able to be satisfied for the insufficient baking at the beginning, it was finally decided that the accelerating tube should be heated by directly supplying power to the electrode through low voltage discharge in the tube. This method enabled the generated voltage at the terminal to exceed 10 MV. (Wakatsuki, Y.)

  3. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2012. Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Murayama, Yoji; Ishii, Tetsuro; Nakamura, Kiyoshi; Uno, Yuki; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Odauchi, Shouji; Maruo, Takeshi

    2014-03-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2012 and March 31, 2013. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for department of research reactor and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, outcomes in service and technical developments and so on. (author)

  4. Damage situation by the Great East Japan Earthquake and post-quake reconstruction project of the Tandem Accelerator Facility at the University of Tsukuba

    International Nuclear Information System (INIS)

    Sasa, Kimikazu

    2012-01-01

    The 12UD Pelletron tandem accelerator at the University of Tsukuba suffered serious damage from the Great East Japan Earthquake on 11 March 2011. On the day, the 12UD Pelletron tandem accelerator was in operation at 8 MV. The electricity supply went out during the earthquake. Fortunately, there were no causalties by the earthquake in the facility. However, all high voltage accelerating columns fell down in the accelerator tank. We decided to shut down the 12UD Pelletron tandem accelerator. At present, we have a plan to install a new middle-sized tandem accelerator instead of the broken 12UD Pelletron tandem accelerator at the 2nd target room connecting the beam line to existing facilities at the 1st target room. The construction of the new accelerator system will be completed by spring 2014. (author)

  5. Technical specification for a 25 MV tandem electrostatic accelerator

    International Nuclear Information System (INIS)

    Jones, C.M.; Biggerstaff, J.A.; Blair, J.K.; Ball, J.B.; Larson, J.D.; Martin, J.A.; McConnell, J.W.; Milner, W.T.; Murray, J.A.; Ziegler, N.F.

    1975-08-01

    Specifications are given for an accelerator system to consist of a 25 MV tandem electrostatic accelerator and specified ancillary equipment, including an injector, a beam transport system, a vacuum system, a control system, and a system for storage of the insulating gas and transport of the gas to and from the accelerator. The insulating gas shall be SF 6 . The tandem electrostatic accelerator shall be vertical in orientation and of folded construction, and shall be installed in a new structure adjacent to the Oak Ridge Isochronous Cyclotron. (auth)

  6. 25 MV tandem accelerator at Oak Ridge

    International Nuclear Information System (INIS)

    Jones, C.M.

    1980-01-01

    A new heavy-ion accelerator facility is under construction at the Oak Ridge National Laboratory. A brief description of the scope and status of this project is presented with emphasis on the first operational experience with the 25 MV tandem accelerator

  7. Status report on the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    Folded tandem ion accelerator; charged particle beams; voltage stability; Rutherford backscattering; ion optics; beam lines. Abstract. The folded tandem ion accelerator (FOTIA) facility set up at BARC has become operational. At present, it is used for elemental analysis studies using the Rutherford backscattering technique.

  8. Mass spectrometry by means of tandem accelerators

    International Nuclear Information System (INIS)

    Tuniz, C.

    1985-01-01

    Mass spectrometry based on an accelerator allows to measure rare cosmogenic isotopes found in natural samples with isotopic abundances up to 10E-15. The XTU Tandem of Legnaro National Laboratories can measure mean heavy isotopes (36Cl, 41Ca, 129I) in applications interesting cosmochronology and Medicine. The TTT-3 Tandem of the Naples University has been modified in view of precision studies of C14 in Archeology, Paleantology and Geology. In this paper a review is made of principles and methodologies and of some applicationy in the framework of the National Program for mass spectrametry research with the aid of accelerators

  9. Tandem-ESQ for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Di Paolo, H.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Kwan, J.W.; Henestroza, E.

    2006-01-01

    A project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) is described. A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the '7Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. (author)

  10. Present status of tandem accelerator in Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The tandem accelerator in Japan Atomic Energy Research Institute was made by NEC in USA. Since it is the accelerator of turning-up structure, it has large magnet at the high voltage terminal, and supplies electric power by driving a generator with large diameter shaft. The control is carried out by CAMUCK, and the electronic circuit is protected from the surging arising due to discharge. Since the experiment on full scale was begun, 14 years have elapsed, and at present, it became a very stable accelerator. As to the operation mode, the acceleration voltage is limited to below 17 MV. The operation voltage and the state of operation are shown. Recently, the troubles of chains originating in oil have occurred. The adjustment of the tandem accelerator requires more than one month. The adjustment is mainly related to the chains and shafts, and this is explained. The ion source used for the tandem accelerator at present is the negative ion source made by NEC. The installation of an ECR ion source is planned. The utilization of the tandem accelerator system is reported. (K.I.)

  11. ORNL 25 MV tandem accelerator control system

    International Nuclear Information System (INIS)

    Juras, R.C.; Biggerstaff, J.A.; Hoglund, D.E.

    1985-01-01

    The CAMAC-based control system for the 25 MV tandem electrostatic accelerator of the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory (ORNL) was specified by ORNL and built by the National Electrostatics Corporation. Two Perkin-Elmer 32-bit minicomputers are used in the system, a message switching computer and a supervisory computer. The message switching computer transmits and receives control information on six serial highways. This computer shares memory with the supervisory computer. Operator consoles are located on a serial highway; control is by means of a console CRT, trackball, and assignable shaft encoders and meters. Two identical consoles operate simultaneously: one is located in the tandem control room; the other is located in the cyclotron control room to facilitate operation during injection of tandem beams into the cyclotron or when beam lines under control of the cyclotron control system are used. The supervisory computer is used for accelerator parameter setup calculations, actual accelerator setup for new beams based on scaled, recorded parameters from previously run beams, and various other functions. Nearly seven years of control system operation and improvements will be discussed

  12. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Science.gov (United States)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  13. Proceedings of the 13th meeting for tandem accelerators and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    The 13th Meeting for Tandem Accelerators and Related Techniques was held on June 8-9, 2000 at Mutsu, Aomori Prefecture, under the auspices of Marine Research Laboratory, Mutsu Establishment, the Japan Atomic Energy Research Institute. About 60 people participated in the meeting from 27 universities and organizations, many of which have a tandem accelerator or an electrostatic accelerator. The objectives of the meeting are to exchange information on tandem accelerates or electrostatic accelerators by making a presentation on related research and topics, and also to enhance mutual friendship of participants, resulting in the contribution to associated R and D. The meeting mainly consisted of presentations by participants and corresponding Q and A; the present situation on facilities of accelerator mass spectrometers (AMS), operations of and research on tandem accelerators or electrostatic accelerators, applications of AMS, related techniques and applications using accelerators, and so on. This report summarizes the contents of presentations made in the meeting. The 30 of the presented papers are indexed individually. (J.P.N.)

  14. Thirty years of physics at the Bucharest tandem accelerator

    International Nuclear Information System (INIS)

    Dobrescu, S.; Marinescu, L.; Dumitru, G.; Cata-Danil, Gh.

    2003-01-01

    The main parameters of the Bucharest tandem accelerator, as well as the main milestones of its history since March 1973 when it was commissioned are shortly presented. A general presentation of the main basic and applied physics research so far undertaken at the tandem is given, ending with some ideas related with the future perspectives of the tandem. (authors)

  15. Improved voltage performance of the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Meigs, M.J.; Jones, C.M.; Haynes, D.L.; Juras, R.C.; Ziegler, N.F.; Roatz, J.E.; Rathmell, R.D.

    1989-01-01

    This paper reports on the Oak Ridge 25URC tandem electrostatic accelerator one of two accelerators operated by the Holifield Heavy Ion Research Facility (HHIRF) at the Oak Ridge National Laboratory. Placed into routine service in 1982, the accelerator has provided a wide range of heavy ion beams for research in nuclear and atomic physics. These beams have been provided both directly and after further acceleration by the Oak Ridge Isochronous Cyclotron (ORIC). Show schematically in this paper, the tandem accelerator is a model 25URC Pelletron accelerator

  16. Radioisotope detection with tandem electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Gove, H E; Elmore, D; Ferraro, R [Rochester Univ., NY (USA). Nuclear Structure Research Lab.; Beukens, R P; Chang, K H; Kilius, L R; Lee, H W; Litherland, A E [Toronto Univ., Ontario (Canada). Dept. of Physics; Purser, K H [General Ionex Corp., Newburyport, MA (USA)

    1980-01-01

    An MP tandem Van de Graaff accelerator at the University of Rochester has been employed since May 1977 to detect /sup 14/C in terrestrial samples, /sup 36/Cl in terrestrial and extraterrestrial samples and /sup 10/Be and /sup 26/Al in samples produced by reactor and accelerator irradiation. The sample sizes ranged from about 10 to less than 1 mg and the ratio of the radioisotope to the stable isotopes approached one part in 10/sup 16/ for /sup 14/C and /sup 36/Cl and one part in 10/sup 14/ for /sup 10/Be and /sup 26/Al. /sup 14/C has been measured in a number of samples of geological and archaelogical interest. /sup 36/Cl has been measured in various groundwater samples as well as samples at Antarctic meteorites and ice. Dedicated systems for /sup 14/C dating and geological measurements based on the tandem electrostatic accelerator principle are presently under construction for laboratories in the U.S.A., U.K. and Canada.

  17. Actualization of the Tandem-E N Accelerator of the Nuclear Centre of Mexico; Actualizacion del Acelerador Tandem-EN del Centro Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Villasenor S, P.; Aguilera R, E.; Aspiazu F, J.; Fernandez A, J.; Fernandez B, M.; Garcia R, B.; Lopez M, J.; Martinez Q, E.; Mendez G, B.; Moreno B, E.; Murillo O, G.; Policroniades R, R.; Ramirez T, J.; Reynoso V, R.; Varela G, A.; Vega C, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In this work, the activities are described carried out to change the tubes accelerators and original resistances of the accelerator Tandem-E N of the Nuclear Center, for tubes DOWLISH and resistances again design, both donated ones for ORNL. This way same, the problem is described that imply this changes, and like it was solved by the personnel of the laboratory, without having to appeal to external services, what there is redounded in a considerable increment in the costs. In form preliminary the improvements are described observed after the rehabilitation of the Accelerator. (Author)

  18. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    OpenAIRE

    Minárik Stanislav

    2015-01-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensit...

  19. Concurrent control system for the JAERI tandem accelerator

    International Nuclear Information System (INIS)

    Hanashima, S.; Shoji, T.; Horie, K.; Tsukihashi, Y.

    1992-01-01

    Concurrent processing with a multiprocessor system is introduced to the particle accelerator control system region. The control system is a good application in both logical and physical aspects. A renewal plan of the control system for the JAERI tandem accelerator is discussed. (author)

  20. The PSI/ETH tandem accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Synal, H.A.; Doebeli, M.; Fuhrmann, H.; Kubik, P.W.; Nebiker, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)] [and others

    1997-09-01

    The 1996 operation of the PSI/ETH tandem accelerator at ETH Hoenggerberg is summarised with a detailed compilation of the beam time statistics and the statistics of AMS samples for the different radioisotopes and for the major fields of research. (author) 2 tab.

  1. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  2. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Directory of Open Access Journals (Sweden)

    Minárik Stanislav

    2015-08-01

    Full Text Available A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage.

  3. Accelerator mass spectrometry with a coupled tandem-linac system

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    A coupled system provides higher energies, which allows one to extend AMS to hitherto untouched mass regions. Another important argument is that the complexity, although bothersome for the operation, increases the selectivity of detecting a particular isotope. The higher-energy argument holds for any heavy-ion accelerator which is capable of delivering higher energy than a tandem. The present use of tandem-linac combinations for AMS, rather than cyclotrons, linacs or combinations of these machines, has mainly to do with the fact that this technique was almost exclusively developed around tandem accelerators. Therefore the tandem-linac combination is a natural extension to higher energies. The use of negative ions has some particular advantages in suppressing background from unwanted elements that do not form stable negative ions (e.g., N, Mg, Ar). On the other hand, this limits the detection of isotopes to elements which do form negative ions. For particular problems it may therefore be advantageous to use a positive-ion machine. What really matters most for choosing one or the other machine is to what extent the entire accelerator system can be operated in a truly quantiative way from the ion source to the detection system. 20 references, 4 figures

  4. Ohio University tandem Van de Graaff accelerator. Final report

    International Nuclear Information System (INIS)

    Lane, R.O.

    1977-11-01

    A summary is given of the work carried out at the John Edwards Tandem Accelerator Laboratory of Ohio University during the period 1970 to 1977 on studies of neutron-nucleus interactions and nuclear structure using neutrons as probes. This work utilizes the main and unique characteristic of the accelerator: high current, high voltage tandem. Certain applied areas were also studied, such as the production of short-lived isotopes for use in medical diagnoses, production of very high neutron intensity to observe possible sputtering effects, and proton induced x-ray emission with a microprobe beam

  5. Accelerator tube vacuum conditions in the NSF tandem

    International Nuclear Information System (INIS)

    Groome, A.E.

    1979-08-01

    The Nuclear Structure Facility currently under construction at the Daresbury Laboratory contains a 30 MV tandem Van de Graaff accelerator with a modular design of accelerator tube. The vacuum system requirements are specified to limit beam loss due to charge-state-changing collisions in the residual gas. This report gives an assessment of some of the parameters affecting the vacuum pressure in an operational machine. Measurements are made of the vacuum conductance and outgassing rate of accelerator tube modules. An assessment is made of the effects of temperature rise, beam mis-steering and the presence of suppression magnets on the ultimate vacuum obtainable. Predictions are made of the pressure profile throughout the machine and consideration is given to operational problems such as tube conditioning and temporary loss of pumping. A schematic diagram of the tandem and its vacuum system is shown. (author)

  6. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  7. Workshop of the JAEA-Tokai Tandem Accelerator. Memorial of 100,000-hour operation

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Osa, Akihiko

    2009-04-01

    Workshop of the JAEA-Tokai tandem accelerator has been held every two years. As a memorial of 100,000-hour operation of the tandem accelerator, we have organized the workshop focusing on the activity at this facility. This workshop covers developments and experiments carried out so far, together with experiments in progress and proposals in future. As previous series of workshops, we offered an opportunity to have active discussion among scientists in different fields including accelerator, nuclear physics, nuclear chemistry, radiation effects, atomic physics and so on, aiming at extending facility and research interactively. As a memorial lecture, we invited Dr. Akira Tonomura of fellow of Hitachi, Ltd, a distinctive scientist for development of electron holography. He delivered a lecture titled 'Structure of magnetic flux observed by electron beam'. He once used the tandem accelerator to induce columnar defects in high-temperature superconductor and studied vortices trapped along the defects. Prof. Shigeru Kubono of University of Tokyo, a chairman of program advisory committee of the tandem accelerator, encouraged us through a talk of 'Expectations for the JAEA-Tokai tandem accelerator'. This workshop was held at Advanced Science Research Center Building in Nuclear Science Research Institute on January 6th and 7th in 2009, having 24 oral presentations and 48 posters, and successfully carried out with as many as 120 participants and a lot of science discussions. This review is the collection of slides of oral presentations. The colored slides can be also found in the home page of the tandem accelerator facility (http://rrsys.tokai-sc.jaea.go.jp/rrsys/html/tandem/index.html). (author)

  8. Annual report of Tandem Accelerator Center, University of Tsukuba, for fiscal 1976

    International Nuclear Information System (INIS)

    1977-01-01

    A research center of the University of Tsukuba, Tandem Accelerator Center (TAC) has a 12 UD Pelletron tandem accelerator as its principal apparatus; of which acceptance test was finished in July 1976. Activities of the TAC for the period of April 1976 to March 1977 are reported: accelerator and beam transport system, general equipments, equipment development, nuclear physics, chemistry, and biological and medical Science. (Mori, K.)

  9. Annual report of Tandem Accelerator Center, University of Tsukuba, for fiscal 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Tandem Accelerator Center (TAC) is a research center of the University of Tsukuba established mainly for interdisciplinary research. Its principal apparatus is a 12 UD Pelletron tandem accelerator of which assembling was completed in fiscal 1975. Activities of the TAC for the period of April 1975 to March 1976 are reported: accelerator and beam transport system, general equipments, equipment development, and heavy-ion reactions. (Mori, K.)

  10. Polarized ionic source of the tandem accelerator in Kyoto University

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masanobu; Kuwamoto, Shuichi; Takahashi, Seiji [Kyoto Univ. (Japan). Dept. of Physics] [and others

    1997-02-01

    A polarized ion source developed under the National Laboratory of High Energy Physics was transferred to the tandem accelerator in Kyoto University at beginning of 1993 to constitute a displacement of incidence into the accelerator. This was an atomic beam type polarized ion source, which is designed to adopt permanent magnets for 6 poles magnet to polarize the electron, to take out atomic nucleus on a shape of positive ion by ECR ionizer after transferring its polarization through transition using radio frequency (RFT), to make it negative ion by charge conversion using alkaline metal vapor, and to put it into the tandem accelerator. Test of the positive ion was finished at the National Laboratory of High Energy Physics, and test in Kyoto University was required after its negative ionization. As the estimated cost was unsufficient and entrance into the ion source facility in the tandem accelerator building was limited in Kyoto University, step of development was slow. Here is reported on present state of the ion source which is now operating stably. (G.K.)

  11. Use of molecular ion beams from a tandem accelerator

    International Nuclear Information System (INIS)

    Faibis, A.; Goldring, G.; Hass, M.; Kaim, R.; Plesser, I.; Vager, Z.

    1981-01-01

    A large variety of positive molecular ion beams can be produced by gaseous charge exchange in the terminal of a tandem accelerator. After acceleration the molecules are usually dissociated by passage through a thin foil. Measurements of the break-up products provide a way to study both the structure of incident ions and the effects of electronic potentials on the internuclear interaction inside the foil. Beam intensities of a few picoamperes are quite adequate for these measurements, and the relatively high energy obtained by use of a tandem accelerator has the advantage of minimizing multiple scattering effects in the foil. The main difficulty in using the molecular beams lies in the large magnetic rigidity of singly-charged heavy molecular ions

  12. Present status of tandem accelerator in Tsukuba University

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Toyoyuki; Oshima, Hiroyuki; Ishii, Satoshi [Tsukuba Univ., Ibaraki (Japan). Tandem Accelerator Center; and others

    1996-12-01

    The tandem accelerator in Tsukuba University, 12UD Peletron, has continued the operation for 21 years, and the total operation time became 61,822 hours as of the end of March, 1996. In this paper, the state of operation of the tandem accelerator in 1995 and the state of use classified by experimental fields are reported. As for the improvement of peripheral equipment, the renewal of the radiation monitoring system and the new installation of the going-in and out control system for radiation control zones were carried out. In fiscal year 1995, the operation time of the accelerator was 3,966 hours, and ion acceleration time was 3,427 hours or 86%. The renewal and improvement of the accelerator system that had been begun in fiscal year 1989 was completed. Also the operation at highest accelerating voltage 12 MV was carried out for 7 hours. In March, the operation was not done because of the periodic inspection. The state of use of two ion sources for joint utilization is shown, and 20 kinds of ions were used. The state of joint utilization, the troubles and repair, and the renewal and new installation are reported. The plan of installing 1 MV TANDETRON is explained. (K.I.)

  13. Kyushu University Tandem Accelerator Laboratory report, 1988-1990

    International Nuclear Information System (INIS)

    Sagara, Kenshi; Morinobu, Shunpei

    1991-03-01

    Ten years have elapsed since the first beam was obtained from the Kyushu University tandem accelerator. Although the laboratory has achieved successful scientific results, the performance of the accelerator has been on a decline mainly due to the aging. In the last two and a half years, the tandem accelerator has suffered from the fall of terminal voltage to around 8 MV. However, the experimental studies in the laboratory have been active. The utilization of the polarized beams of protons and deuterons to study the scattering of the p+d system, the use of heavy ion beam for the systematic search for the molecular resonance in relatively heavy systems and for the study on reaction mechanism, the use of both light and heavy ion beams for the studies on nuclear engineering, material science and geological science and so on were carried out. The gamma ray spectroscopic study on the state near yrast line was largely hampered by the accelerator troubles, instead, the collaboration with the Niels Bohr Institute provided a wonderful research ground for the studies. (K.I.)

  14. Present status of tandem accelerator analysis facility in National Institute for Environmental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Hiroshi; Shibata, Yasuyuki; Tanaka, Atsushi; Yoneda, Minoru; Kumamoto, Yuichiro; Uehiro, Takashi; Morita, Masatoshi [National Inst. for Environmental Studies, Tsukuba, Ibaraki (Japan)

    1996-12-01

    In National Institute for Environmental Studies, two types of tandem accelerator analysis facilities were able to be installed in September, 1995. One is the accelerator mass analysis exclusive equipment with a 5 MV tandem accelerator, and the other is the high energy ion beam analyzer, in which the surface analysis system is connected to a 1 MV tandem accelerator, mainly used for PIXE measurement. The accelerator mass analyzer can be roughly divided into four parts, that is, ion source and negative ion injection system, accelerator, high energy analysis system, minute amount isotope beam line and control system. These parts are briefly explained. The test measurement of carbon isotope ratio was carried out, but the results dispersed and unsatisfactory. As for the ion beam analyzer, the surface analysis system (RBS400) of Charles Evans and Associates is combined with a 1 MV PELETRON tandem accelerator (3SDH) of NEC, and these are described. This analyzer also is not in the state that the steady operation can be carried out. Slight leak occurred in the ion source. The countermeasures to both cases are in progress. (K.I.)

  15. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.

    2007-01-01

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p, n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p, n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  16. Concurrent control system for the JAERI tandem accelerator

    International Nuclear Information System (INIS)

    Hanashima, Susumu; Shozi, Tokio; Shiozaki, Yasuo; Saito, Motoi; Oogane, Yasuo; Sekiguchi, Satoshi.

    1994-01-01

    A new control system for the JAERI tandem accelerator is constructed. The system utilizes concurrent processing technology with multiprocessor. Transputers are used both for central processor and I/O front end processors. (author)

  17. Installation of an injector for SNICS source of the Tandem Accelerator

    International Nuclear Information System (INIS)

    Villasenor S, P.

    2006-01-01

    Presently work, the adaptation and installation of an accelerating tube (that operates as Injector of 75 KV), to the source of ions 'Sputtering Negative Ion Cesium Source', (SNICS), of the Tandem Accelerator EN of the Nuclear Center is presented. This work allowed to increase the acceleration energy from the negative ions to the beginning of the tank. Since the beam energy that it was possible to obtain from the source, it was very below the design parameters, what limited in great measure the reach of the experiments that could be carried out, was urgent to carry out the installation of the accelerator tube mentioned to the source. The limitations in the available resources had impeded this improvement and it took time being deferred. The added value of this adaptation, it resides in that it is a specialized work and it was, finally, carried out with success by the workers of the Accelerator, adapting to the few existent resources and achieving with it a substantial improvement of the bombing currents obtained for the samples of the investigators. (Author)

  18. Oak Ridge 25URC tandem accelerator 1994 SNEAP lab report

    International Nuclear Information System (INIS)

    Alton, G.D.; Dinehart, M.R.; Dowling, D.T.

    1994-01-01

    The 25URC tandem accelerator is still in shut-down mode until the facility is reconfigured to produce radioactive ion beams (RIBs). Again, the authors have operated approximately 200 hours for ion implantation studies in support of RIB development. Operation of the accelerator has been generally very reliable with most problems being associated with power supplies and components located outside the accelerator. The major operational problem this year was the development of internal shorts in the coils of the energy-analyzing magnet which caused beam instability. The major development activity for the tandem accelerator was the replacement of the corona-point voltage-grading system with resistors. Several milestones for the RIB project have been met since SNEAP 1993. The high-voltage platforms have been built and tested at the required 300 kV. Most equipment has been installed on the platforms so that the first beam can be developed using the Mark I target-ion source. This ion source was characterized on the ion source test facility before moving it to the platform. The second-stage mass-separator magnets have been specified and the contract has been awarded to Sigma Phi. The final optics design for the beam line from the second-stage separator to the tandem accelerator is being completed and equipment and controls are being procured

  19. Characteristics of particle beam acceleration on KUMS tandem electrostatic accelerator 5SDH-2

    OpenAIRE

    谷池, 晃; 古山, 雄一; 北村, 晃

    2006-01-01

    The KUMS tandem electrostatic accelerator, 5SDH-2, was installed in 1996. Ten years have passed since it installed and we obtain some data for accelerator operations. We report the particle beam characteristics such as relation between beam species and switcher magnet current, and dependence of ion charge fraction on stripper gas thickness. We also try to generate nitrogen ion beams, and low energy ion beams.

  20. Development of a remote control console for the HHIRF 25-MV tandem accelerator

    International Nuclear Information System (INIS)

    Hasanul Basher, A.M.

    1991-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 and a communication software package. Hardware configuration has been established, a communication software program that reads the pages from the shared memory has been developed. In this paper, we present the implementation strategy, works completed, existing and new page format, future action plans, explanation of pages and use of related global variables, a sample session, and flowcharts

  1. Radiocarbon dating with the Chalk River MP Tandem accelerator

    International Nuclear Information System (INIS)

    Ball, G.C.; Andrews, H.R.; Brown, R.M.; Burn, N.; Davies, W.G.; Imahori, Y.; Milton, J.C.D.

    1981-01-01

    During the past three years an automated radiocarbon dating system based on the MP Tandem accelerator has been developed for the analysis of 14 C in groundwater samples from the nuclear waste disposal research program and other small samples of scientific interest. At the present time 14 C/ 12 C ratio measurements can be determined with an accuracy of about 5% and the system background levels (approx. 35000 to 45000 years) are totally determined by sample and/or ion source contamination. Our goal has been to develop a dedicated reliable system for routine analysis that will produce accurate results with a minimum expenditure of human resources and accelerator beam time. Improvements required to operate the tandem accelerator as a quantitative tool have also benefited the rest of the experimental nuclear physics program. The early evolution of the dating facility was described previously. This paper is a brief report of the current status at Chalk River

  2. In-terminal ECR Ion Source of the Tandem Accelerator at JAERI

    CERN Document Server

    Matsuda, M; Takeuchi, S

    1999-01-01

    Electron Cyclotron Resonance Ion Source(ECRIS)s are able to produce intense beams of highly charged positive ions and used injection system for cyclotron, linac as well as experiments of atomic physics. The tandem accelerator system has been benefiting from use of an electron stripper at the high voltage terminal. The most probable charged state after a foil stripper is, however, much lower than the highest charge state of ions with an intensity of more than several emA from a high performance ECRIS. With respect to beam current, the life time of stripper foils decrease with increasing beam current. Especially for very heavy ions, it is difficult to obtain a stable and intense beam for a long time without foil exchange. Use of an ECRIS in a tandem accelerator is expected to increase beam intensity, beam energy and beam species. A small permanent magnet ECRIS has been installed in the high voltage terminal of the vertical and folded type 20UR Pelletron tandem accelerator at Japan Atomic Energy Research Institu...

  3. A new accelerator tube and column for a horizontal 8 MV tandem

    International Nuclear Information System (INIS)

    Sundquist, M.L.; Rathmell, R.D.; Raatz, J.E.

    1990-01-01

    A horizontal 8 MV tandem is being installed in an existing tank at Kyoto University in Japan. This NEC Model 8UDH is the largest horizontal Pelletron constructed to date. The terminal is charged by two Pelletron chains. The acceleration tube is a metal and ceramic construction made into tube sections with a length of 30 cm each. This tube design adds 27% more live ceramic than in the standard NEC tube design, which had heated apertures in 5 cm long shorted regions every 20 cm. The column structure and tube design are reviewed. (orig.)

  4. Acceleration of cluster and molecular ions by TIARA 3 MV tandem accelerator

    CERN Document Server

    Saitoh, Y; Tajima, S

    2000-01-01

    We succeeded in accelerating molecular and cluster ions (B sub 2 sub - sub 4 , C sub 2 sub - sub 1 sub 0 , O sub 2 , Al sub 2 sub - sub 4 , Si sub 2 sub - sub 4 , Cu sub 2 sub - sub 3 , Au sub 2 sub - sub 3 , LiF, and AlO) to MeV energies with high-intensity beam currents by means of a 3 MV tandem accelerator in the TIARA facility. These cluster ions were generated by a cesium sputter-type negative ion source. We tested three types of carbon sputter cathodes in which graphite powder was compressed with different pressures. The pressure difference affected the generating ratio of clusters generated to single atom ions extracted from the source and it appeared that the high-density cathode was suitable. We also investigated the optimum gas pressure for charge exchange in the tandem high-voltage terminal. Clusters of larger size tend to require lower pressure than do smaller ones. In addition, we were able to obtain doubly charged AlO molecular ions. (authors)

  5. Installation of an injector for SNICS source of the Tandem Accelerator; Instalacion de un Inyector para fuente SNICS del Acelerador Tandem

    Energy Technology Data Exchange (ETDEWEB)

    Villasenor S, P. [ININ, Centro Nuclear Nabor Carrillo (Mexico)]. e-mail: peguvi@nuclear.inin.mx

    2006-07-01

    Presently work, the adaptation and installation of an accelerating tube (that operates as Injector of 75 KV), to the source of ions 'Sputtering Negative Ion Cesium Source', (SNICS), of the Tandem Accelerator EN of the Nuclear Center is presented. This work allowed to increase the acceleration energy from the negative ions to the beginning of the tank. Since the beam energy that it was possible to obtain from the source, it was very below the design parameters, what limited in great measure the reach of the experiments that could be carried out, was urgent to carry out the installation of the accelerator tube mentioned to the source. The limitations in the available resources had impeded this improvement and it took time being deferred. The added value of this adaptation, it resides in that it is a specialized work and it was, finally, carried out with success by the workers of the Accelerator, adapting to the few existent resources and achieving with it a substantial improvement of the bombing currents obtained for the samples of the investigators. (Author)

  6. Characteristics of KUMM Tandem Electrostatic Accelerator 5SDH-2

    International Nuclear Information System (INIS)

    Kitamura, Akira; Furuyama, Yuichi; Taniike, Akira; Kubota, Naoyoshi

    1998-01-01

    The KUMM Tandem Electrostatic Accelerator was heavily damaged by the Hanshin Earthquake in Jan. 1995, and the renewed version 5SDH-2 was installed in 1996. The fundamental characteristics of the renewed system is reported together with the system composition. (author)

  7. Transport of dc and bunched beams through a 25 MV folded tandem accelerator

    International Nuclear Information System (INIS)

    Milner, W.T.; Alton, G.D.; Hensley, D.C.; Jones, C.M.; King, R.F.; Larson, J.D.; Moak, C.D.; Sayer, R.O.

    1975-01-01

    Studies of beam transport through the planned ORNL 25 MV folded tandem accelerator demonstrate efficient utilization of phase-space acceptance and the feasibility of injecting bunched beams from the tandem accelerator into the Oak Ridge Isochronous Cyclotron (ORIC). Use of a 180 0 bending magnet in the terminal provides outstanding charge state selection and permits better control of the high-energy beam transport than has previously been possible in conventional tandem accelerators. Time spreads introduced in bunched beams by the 180 0 magnet are kept within a 6 0 RF acceptance window at ORIC provided the beam has a crossover in the center of the 180 0 magnet. Ion masses from 12 to 240 amu, preinjection energies from 150 to 500 keV and terminal voltages from 7.5 to 25 MV were studied for dc beams and beams bunched by various modulation techniques. (U.S.)

  8. Operational experience with compressed geometry acceleration tubes in the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Jones, C.M.; Haynes, D.L.; Juras, R.C.; Meigs, M.J.; Ziegler, N.F.

    1989-01-01

    Installation of compressed geometry acceleration tubes and other associated modifications have increased the effective voltage capability of the Oak Ridge 25URC tandem accelerator by about 3 MV. Since mid-September 1988, the accelerator has been operated routinely at terminal potentials up to 24 MV and occasionally near 25 MV. In 3500 hours of full-column operation, including 1100 hours at potentials about 22 MV, no significant spark-included damage was observed. Some considerations related to further improvements in voltage performance are discussed. 7 refs., 5 figs

  9. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2014. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Osa, Akihiko; Imahashi, Masaki; Hirane, Nobuhiko; Motome, Yuiko; Tayama, Hidekazu; Tamura, Itaru; Harada, Yuko; Sakata, Mami; Kadokura, Masakazu; Takita, Chiharu

    2017-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2014. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration, and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  10. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2013. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Kashima, Yoichi; Murayama, Yoji; Nakamura, Kiyoshi; Uno, Yuki; Hirane, Nobuhiko; Ohuchi, Hitoshi; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Harada, Yuko; Kadokura, Masakazu; Machi, Sumire; Takita, Chiharu

    2015-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2013. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  11. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1985-01-01

    This annual report covers the work carried out at the Tandem Accelerator Center, University of Tsukuba, during fiscal year 1984. The 12 UD Pelletron tandem accelerator was operated very stably. In addition, the heavy ion post accelerator with interdigital-H structure has worked well, providing additional energy of 2 MeV per charge for heavy ions. The constructions of a new Lamb-shift polarized ion source, a multi-computer control system for the ion sources of the UTTA, an electrostatic inflection system of incident ions for the UTTA, a new beam bunching system, and a new SF 6 gas handling system were under way. The development and performance test of various radiation detector systems were carried out. Two thirds of the research works were performed by using the beam from the Lamb-shift polarized ion source (PIS). A newly constructed fast spin state interchange control system for the PIS made polarization experiment more effective and accurate. The research activities in the fields of nuclear physics, atomic and solid state physics, and biology and medical science are reported. (Kako, I.)

  12. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  13. Plasma Desorption Mass Spectrometry using TANDEM accelerator in National Industrial Research Inst. of Nagoya

    Energy Technology Data Exchange (ETDEWEB)

    Mizota, Takeshi; Nakao, Setsuo; Niwa, Hiroaki; Saito, Kazuo [Particle Beam Sceince Laboratory, Multi-Function Material Science Department, National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    2001-02-01

    Plasma Desorption Mass Spectrometry (PDMS) analysis was studied using TANDEM accelerator. The heavy ions of MeV range emit the secondary ions of atoms, molecules, polymers and clusters from the irradiated samples without destruction. The analysis system of PDMS designed and set-up using a mass spectrometer of Time of Flight and the TANDEM accelerator. The system performance was tested for C-60 fullerene on the surface of the samples using 11.2 MeV {sup 28}Si beams produced by the TANDEM accelerator of 1.7MV. The result shows that the hydrogen and hydrocarbons can be analyzed in the range of 1amu unit. The resolution (M/{delta}M) of the Mass Spectrometry system is confirmed to be about 1000 from the separation of the 720 and 721amu peaks, which is attributed to the C-60 fullerene including {sup 13}C atoms. (H. Katsuta)

  14. Development of a distributed control system for the JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Hanashima, Susumu

    2005-01-01

    In the JAERI tandem accelerator facility, we are building accelerator complex aiming generation and acceleration of radio nuclear beam. Several accelerators, ion sources and a charge breeder are installed in the facility. We are developing a distributed control system enabling smooth operation of the facility. We report basic concepts of the control system in this article. We also describe about a control hardware using plastic optical fiber, which is developed for the control system. (author)

  15. Energy calibration of the 3 MV tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bunnak, S; Mizuhashi, K; Tajima, S

    1996-12-01

    By this study, a graphite calorimeter has been developed to measure the average ion energy from electrostatic ion accelerator (3 MV Tandem Ion Accelerator of the Takasaki Ion Accelerators for Advanced Radiation Application). A graphite calorimeter was designed for measuring the ion beam energy in wide ion energy ranges (from 3 MeV to 10 MeV). By a couple of this study, the {sup 1} H({sup 15} N, {alpha} {gamma}) {sup 12} C resonant nuclear reactions (resonant energy 6.385 MeV and 13.355 MeV) has been applied for measuring the absolute ion beam energy serve as a comparative method. The obtained results were compared in terms of resolution and accuracy. Close agreement was found for both methods, the deviation was observed within {+-} 3%

  16. Cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING

    International Nuclear Information System (INIS)

    Tukihashi, Yoshihiro; Yoshida, Tadashi; Takekoshi, Eiko

    1979-03-01

    Measuring cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING were completed recently. Measures are taken to prevent penetration of noises into the measuring systems. The cable systems are described in detail, including power supplies and grounding for the measuring systems. (author)

  17. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Educational activities with a tandem accelerator

    Science.gov (United States)

    Casolaro, P.; Campajola, L.; Balzano, E.; D'Ambrosio, E.; Figari, R.; Vardaci, E.; La Rana, G.

    2018-05-01

    Selected experiments in fundamental physics have been proposed for many years at the Tandem Accelerator of the University of Napoli ‘Federico II’s Department of Physics as a part of a one-semester laboratory course for graduate students. The aim of this paper is to highlight the educational value of the experimental realization of the nuclear reaction 19F(p,α)16O. With the purpose of verifying the mass-energy equivalence principle, different aspects of both classical and modern physics can be investigated, e.g. conservation laws, atomic models, nuclear physics applications to compositional analysis, nuclear cross-section, Q-value and nuclear spectroscopic analysis.

  19. Negative ion sources for tandem accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1980-08-01

    Four kinds of negative ion sources (direct extraction Duoplasmatron ion source, radial extraction Penniing ion source, lithium charge exchange ion source and Middleton-type sputter ion source) have been installed in the JAERI tandem accelerator. The ion sources can generate many negative ions ranging from Hydrogen to Uranium with the exception of Ne, Ar, Kr, Xe and Rn. Discussions presented in this report include mechanisms of negative ion formation, electron affinity and stability of negative ions, performance of the ion sources and materials used for negative ion production. Finally, the author will discuss difficult problems to be overcome in order to get any negative ion sufficiently. (author)

  20. Annual report of the Tandem Accelerator Center, University of Tsukuba. April 1, 1996 - March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The 12 UD Pelletron tandem accelerator has been operated successfully from April, 1996 to January, 1997. Although the operation of the accelerator became unstable in the middle of January, it was a short period. The research in the Tandem Accelerator Center covers wide fields, that is, polarization phenomena in nuclear reactions, the nonresonant breakup of Li-7, the further refinement of the CDCC theory, fusion and fission in heavy ion reactions, nuclear structure physics by means of in-beam {gamma} ray spectroscopy, solid state physics using fast ion bemas, Moessbauer effect, NMR, the application of accelerated ion beams to PIXE, and accelerator mass spectrometry. In addition, two major installations were carried out in this academic year. One is a small tandem accelerator which was moved from Electrotechnical Laboratory in Tsukuba, and the other is a system for the production and analysis of atomic clusters. The research activities at the accelerator and experimental facilities and on experimental nuclear physics, theoretical nuclear physics, atomic and solid state physics, cluster science, and ion beam application are reported in this book. Also the list of the publications by these groups is given. Ph. D. and M. Sc. theses are listed, and the speakers and the titles of seminars are reported. (K.I.)

  1. Annual report of the Tandem Accelerator Center, University of Tsukuba. April 1, 1996 - March 31, 1997

    International Nuclear Information System (INIS)

    1997-06-01

    The 12 UD Pelletron tandem accelerator has been operated successfully from April, 1996 to January, 1997. Although the operation of the accelerator became unstable in the middle of January, it was a short period. The research in the Tandem Accelerator Center covers wide fields, that is, polarization phenomena in nuclear reactions, the nonresonant breakup of Li-7, the further refinement of the CDCC theory, fusion and fission in heavy ion reactions, nuclear structure physics by means of in-beam γ ray spectroscopy, solid state physics using fast ion bemas, Moessbauer effect, NMR, the application of accelerated ion beams to PIXE, and accelerator mass spectrometry. In addition, two major installations were carried out in this academic year. One is a small tandem accelerator which was moved from Electrotechnical Laboratory in Tsukuba, and the other is a system for the production and analysis of atomic clusters. The research activities at the accelerator and experimental facilities and on experimental nuclear physics, theoretical nuclear physics, atomic and solid state physics, cluster science, and ion beam application are reported in this book. Also the list of the publications by these groups is given. Ph. D. and M. Sc. theses are listed, and the speakers and the titles of seminars are reported. (K.I.)

  2. Carbon nanotube foils for electron stripping in tandem accelerators

    International Nuclear Information System (INIS)

    Reden, Karl von; Zhang Mei; Meigs, Martha; Sichel, Enid; Fang Shaoli; Baughman, Ray H.

    2007-01-01

    Carbon nanotube technology has rapidly advanced in recent years, making it possible to create meter-long, ∼4 cm wide films of multi-walled tubes of less than 3 μg/cm 2 areal density in a bench top open-air procedure. The physical properties of individual carbon nanotubes have been well established, equaling or surpassing electrical and thermal conductivity and mechanical strength of most other materials, graphite in particular. The handling and transport of such nanotube films, dry-mounted self-supporting on metal frames with several cm 2 of open area, is problem-free: the aerogel films having a volumetric density of about 1.5 mg/cm 3 survived the trip by car and air from Dallas to Oak Ridge without blemish. In this paper we will present the results of first tests of these nanotube films as electron stripper media in a tandem accelerator. The tests were performed in the Model 25 URC tandem accelerator of the Holifield radioactive ion beam facility (HRIBF) at Oak Ridge National Laboratory. We will discuss the performance of nanotube films in comparison with chemical vapor deposition and laser-ablated carbon foils

  3. Investigation of beam transmission in A 9SDH-2 3.0 MV NEC pelletron tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Deoli, Naresh T.; Kummari, Venkata C.; Pacheco, Jose L.; Duggan, Jerome L.; Glass, Gary A.; McDaniel, Floyd D.; Reinert, Tilo; Rout, Bibhudutta; Weathers, Duncan L. [Ion Beam Modification And Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-04-19

    Electrostatic tandem accelerators are widely used to accelerate ions for experiments in materials science such as high energy ion implantation, materials modification, and analyses. Many applications require high beam current as well as high beam brightness at the target; thus, maximizing the beam transmission through such electrostatic accelerators becomes important. The Ion Beam Modification and Analysis Laboratory (IBMAL) at University of North Texas is equipped with four accelerators, one of which is a 9SDH-2 3.0 MV National Electrostatic Corporation (NEC) Pelletron Registered-Sign tandem accelerator. The tandem accelerator is equipped with three ion sources: one radio frequency-He ion source (Alphatross) and two ion sources of Cs-sputter type, the SNICS II (Source of Negative Ions by Cesium Sputtering) and a Cs-sputter source for trace-element accelerator based mass spectrometry. This work presents a detailed study of the beam transmission of hydrogen, silicon, and silver ions through the accelerator using the SNICS ion source with injection energies ranging from 20 keV to 70 keV. The beam transmission is quantified for three different terminal voltages: 1.5 MV, 2.0 MV and 2.5 MV. For a given terminal voltage, it has been found that beam transmission is strongly dependent on the ion source injector potential. Details of experiments and data analysis are presented.

  4. Present status of tandem accelerator research facility (MALT) in University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Koichi; Hatori, Satoshi; Nakano, Chuichiro; Sunohara, Yoko [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    The tandem accelerator in University of Tokyo, which was renewed from 1991 to March, 1994 started the joint utilization within the University since April, 1995 after about one year of the period of adjustment. The time of operation exceeding 3500 hours in one year was recorded. This facility is that for carrying out the minute analysis such as AMS, PIXE, NRA and others and the research of atomic and molecular physics, and called microanalysis laboratory-tandem accelerator (MALT). Support has been done by placing emphasis on the development of AMS measurement which enables the microanalysis of {sup 14}C,{sup 10}Be and {sup 26}Al, but the accuracy of {sup 14}C AMS did not attain the practical level. {sup 10}Be and {sup 26}Al AMS reached almost the practical level, and the measurement of actual samples has been carried out. The state of operation and utilization of the MALT is reported. As to the recent troubles and the countermeasures in the MALT, the voltage instability of the accelerator, the unstable ion source support mechanism and the poor transmissivity of beam in the accelerator are described. (K.I.)

  5. Development of high current injector for tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takashi; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan); Kishimoto, Naoki; Saito, Tetsuya; Mori, Yoshiharu

    1997-02-01

    The development of the electrostatic type tandem accelerators has been carried out so far, but by the recent remarkable progress of negative ion sources, the beam current which was inconceivable so far has become obtainable, and the use as the electrostatic type tandem accelerators is expanding rapidly. The problem which must be solved in the development of a high energy, large current heavy ion injection device is the development of an injector. As to the generation of negative ions, by the development of plasma sputter negative ion sources, the almost satisfactory performance has been obtained in beam current, emittance, life and so on, but as for the transport and control of generated negative ion beam, there is the large problem of spatial charge effect. This time, the verifying test on this problem was carried out, therefore, its contents and results are reported. The equipment which was developed this time was delivered to the Institute for Materials Research. Its specifications are shown. The whole constitution, negative ion source, and beam transport system are described. Beam generation test and spatial charge effect test are reported. The test stand was made, and in the verifying test, the maximum beams of 4 mA in Cu and 3 mA in Ni were able to be generated and transported. The effect of the countermeasures to spatial charge effect was confirmed. (K.I.)

  6. Scaling of the optical parameters for the JAERI tandem accelerator

    International Nuclear Information System (INIS)

    Hanashima, S.; Minehara, E.

    1986-01-01

    A scaling rule of the beam optical parameters was adopted for computer-aided beam transport in the JAERI tandem accelerator. Tests have shown that the computer program can transport a specified beam in a short time using a reference parameter set. Problems of ion source control and accuracy of the optical devices are also discussed

  7. Start up of the Tandem Accelerator in the Ezeiza Atomic Center

    International Nuclear Information System (INIS)

    Bianchini, R.; Consorti, S.; Roldan, M.; Llovera, R.; Arenilla, P.; Alvarez, D.E.; Ugarte, R.

    2010-01-01

    A High Voltage tandem electrostatic accelerator FN model was installed and started up by the Nuclear Regulatory Authority (ARN) on the campus of Ezeiza Atomic Center. Subsequently, the facility was transferred to the National Atomic Energy Commission for a new start up, re-engineering, maintenance, and operation [es

  8. Tailoring of targets for a tandem accelerator laboratory

    International Nuclear Information System (INIS)

    Sletten, G.

    1976-01-01

    The organization of a target laboratory serving the nuclear physics research at a tandem van de graaff accelerator is described. Emphasis is put on the layout of the laboratory and the mode of operation. The working force is about 40 h per week shared by two technical assistants, and they are supervised by a physicist who on the average spends about 1/3 of his time on target-related problems. Selected topics like heavy ion sputtering of actinides and the preparation of multilayer targets are described in detail. (author)

  9. The modification of the terminal electrostatic field of HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Li Tao; Guan Xialing

    1993-01-01

    The calculation of electrostatic field of terminal and its neighbour region for HI-13 tandem accelerator is made. The limit terminal voltage without tubes is evaluated. Using elliptical cross section in stead of circular ones for the first six equipotential rings, the electrostatic field of this region are modified

  10. Analysis and simulation of an electrostatic FN Tandem accelerator

    International Nuclear Information System (INIS)

    Ugarte, Ricardo

    2007-01-01

    An analysis, modeling, and simulation of a positive ion FN Tandem electrostatic accelerator has been done. That has induced a detailed study over all physics components inside the accelerators tank, the terminal control stabilizer (TPS), the corona point, the capacitor pick off (CPO) and over the generating voltmeter (GVM) signals. The parameter of the model has been developed using the Prediction Error estimation Methods (PEM), and within classical techniques of analysis of circuits. The result obtained was used to check and increase the stability of the terminal voltage using Matlab software tools. The result of the simulation was contrasted with the reality and it was possible to improve the stability of the terminal voltage, successfully. The facility belongs to ARN (Argentina) and, in principle, it was installed to development an AMS system. (author)

  11. Improved two-loop beam energy stabilizer for an FN tandem accelerator

    International Nuclear Information System (INIS)

    Trainor, T.A.

    1981-01-01

    A detailed analysis of the properties of various elements in a two-loop voltage regulator for a tandem accelerator enabled design of an optimum system which reduces effective accelerating voltage noise below 100 V. Essential features of the new system are high-quality slit preamplifiers, careful attention to removal of extraneous noise sources, and proper shaping of frequency responses to maximize stable gains and ensure compatibility of the two control loops. The resultant beam energy stabilizer system is easy to operate, has well defined indicators for proper adjustment of operating parameters, and recovers reliably from beam interruptions

  12. Gamma-resonance Contraband Detection using a high current tandem accelerator

    International Nuclear Information System (INIS)

    Milton, B. F.; Beis, J.; Dale, D.; Rogers, J.; Ruegg, R.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Sredniawski, J.

    1999-01-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by 14 N of gammas produced using 13 C(p,γ) 14 N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H - tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results

  13. Annual report of Department of Research Reactors and Tandem Accelerator, JFY2006. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    2007-12-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor-3), JRR-4 (Japan Research Reactor-4) and NSRR (Nuclear Safety Research Reactor) and Tandem Accelerator. The following services and technical developments were achieved in Japanese Fiscal Year 2006: 1) JRR-3 was operated for 181 days in 7 cycles and JRR-4 for 149 days in 37 cycles to provide neutrons for research and development of in-house and outside users. 2) JRR-3 and JRR-4 were utilized through deliberate coordination as follows, a) Neutron irradiations of 628 materials, for neutron transmutation doping of silicon etc. b) Capsule irradiations of 3,067 samples, for neutron activation analyses etc. c) Neutron beam experiments of 6,338 cases x days. 3) Concerning to the 10 times increasing plan of cold neutron beams from JRR-3, a pressure resistant test model of the high-performance neutron moderator vessel which had been designed to increase cold neutrons twice as much as the present one was fabricated. Various developments for upgrading cold neutron guide tubes with super mirrors were in progress. 4) Boron neutron capture therapy was carried out 34 times using JRR-4. Improved neutron collimators were built to fit well to any irregular outline for cancer around the neck. 5) NSRR carried out 4 times of pulse irradiations of high burn-up MOX fuels and 9 times of un-irradiated fuels to contribute to fuel safety researches. 6) The Tandem Accelerator was operated for 201 days to contribute to the researches of nuclear physics and solid state physics with high energy heavy ions. The new utilization program of sharing beam times with outside users was performed by carrying out 45 days. The beam intensity increasing program with a high performance ion source, in place of the compact one which has been working in the high voltage terminal, has made great progress. (author)

  14. Approach to the open advanced facilities initiative for innovation (strategic use by industry) at the University of Tsukuba, Tandem Accelerator Complex

    International Nuclear Information System (INIS)

    Sasa, K.; Tagishi, Y.; Naramoto, H.; Kudo, H.; Kita, E.

    2010-01-01

    The University of Tsukuba, Tandem Accelerator Complex (UTTAC) possesses the 12UD Pelletron tandem accelerator and the 1 MV Tandetron accelerator for University's inter-department education research. We have actively advanced collaborative researches with other research institutes and industrial users. Since the Open Advanced Facilities Initiative for Innovation by the Ministry of Education, Culture, Sports, Science and Technology started in 2007, 12 industrial experiments have been carried out at the UTTAC. This report describes efforts by University's accelerator facility to get industrial users. (author)

  15. Annual report of the Tandem Accelerator Center, University of Tsukuba. April 1, 1993 - March 31, 1994

    International Nuclear Information System (INIS)

    1994-07-01

    In this annual report, the research activities and the technical developments carried out at the Tandem Accelerator Center, University of Tsukuba, for the period from April, 1993 to March, 1994 are described. The tandem accelerator worked with high stability, and provided with sufficient beam time for experiments till the middle of November, however, one of the charging chains broke on November 18. The replacement of the chain was finished in a short time, and experiments were continued to the end of December. From January, 1994, the operation of the accelerator was shut down to replace the cooling towers for building air conditioning and to reconstruct the cooling system for the accelerator. In this book, the activities in the accelerator and experimental facilities and the departments of the experiment and theory on nuclear physics, atomic and solid state physics, and ion beam application are reported. As the new development of experimental instruments, a new rf amplifier for the heavy ion postaccelerator was constructed, and with a liquid helium polarimeter, test experiments are in progress. (K.I.)

  16. Evolution of the Argonne Tandem Linear Accelerator System (ATLAS) control system

    International Nuclear Information System (INIS)

    Power, M.; Munson, F.

    2012-01-01

    Given that the Argonne Tandem Linear Accelerator System (ATLAS) recently celebrated its 25. anniversary, this paper will explore the past, present, and future of the ATLAS Control System, and how it has evolved along with the accelerator and control system technology. ATLAS as we know it today, originated with a Tandem Van de Graff in the sixties. With the addition of the Booster section in the late seventies, came the first computerized control. ATLAS itself was placed into service on June 25, 1985, and was the world's first superconducting linear accelerator for ions. Since its dedication as a National User Facility, more than a thousand experiments by more than 2,000 users worldwide, have taken advantage of the unique capabilities it provides. Today, ATLAS continues to be a user facility for physicists who study the particles that form the heart of atoms. Its most recent addition, CARIBU (Californium Rare Isotope Breeder Upgrade), creates special beams that feed into ATLAS. ATLAS is similar to a living organism, changing and responding to new technological challenges and research needs. As it continues to evolve, so does the control system: from the original days using a DEC PDP-11/34 computer and two CAMAC crates, to a DEC Alpha computer running Vsystem software and more than twenty CAMAC crates, to distributed computers and VME systems. Future upgrades are also in the planning stages that will continue to evolve the control system. (authors)

  17. Baking of tandem accelerator tube by low voltage arc discharge

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1982-01-01

    In designing the accelerating tube for a static tandem accelerator in Kyushu University, the basic policy was as described below: individual unit composing the accelerating tube should fully withstand the electric field of 2 MV/m, and electric discharge must not be propagated from one unit to the adjacent unit when these are assembled to the accelerating tube. The accelerating tube units are each 25 cm in length, and both high and low energy sides are composed of 20 units, respectively. Although about 10 -9 Torr vacuum was obtained at the both ends of the accelerating tube by baking the tube at 300 to 350 deg C with electric heaters wound outside the tube in the conventional method, vast outgas was generated, which decreased vacuum by two or three figures if breakdown occurred through the intermediary of outgas. As a method of positively outgassing and cleaning the electrodes inside the accelerating tube, it was attempted to directly bake all the electrodes in the accelerating tube by causing strong arc discharge flowing H 2 gas in the tube. As a result of considering the conditions for this method, the low voltage arc discharge was employed using oxide cathodes. Thus, after implementing 10A arc discharge for several hours, the voltage was able to be raised to 10 MV almost immediately after the vacuum recovery, and further, after another conditioning for several hours, it was successful to raise voltage up to 11 MV. (Wakatsuki, Y.)

  18. A proposal for study of ion-beam induced chemical reactions using JAERI tandem accelerator

    International Nuclear Information System (INIS)

    1985-11-01

    Problems in ion-beam induced chemical reactions using JAERI Tandem Accelerator were discussed. Research philosophy, some proposed experiments which are based on measurements during ion-beam bombardment, and main features of the experimental apparatus are briefly described in this report. (author)

  19. FN-tandem accelerator in Bucharest after the seismic protection system installation

    International Nuclear Information System (INIS)

    Marinescu, L.; Petrascu, M.; Dima, R.; Serban, D.

    1996-01-01

    Subsequent to the installation of the seismic protection system in the HVEC FN-tandem accelerator in Bucharest, observations have been made of the efficiency of the protection devices. Performance and improvements of the new voltage divider are discussed. The SF 6 content of the insulating gas is shown to be conveniently measured using the elastic recoil technique and a robust ioniser heater is described for the HICONEX source. (orig.)

  20. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented

  1. 6 MV Folded Tandem Ion Accelerator facility at BARC

    International Nuclear Information System (INIS)

    Gupta, S.K.

    2010-01-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) facility is operational round the clock and accelerated beams of both light and heavy ions are being used extensively by various divisions of BARC, Universities, lIT Bombay and other R and D labs across the country. The FOTIA is an upgraded version of the old 5.5 MV single stage Van-de-Graaff accelerator (1962-1992). Since its commissioning in the year 2000, the poor beam transmission through the 180 deg folding magnet was a matter of concern. A systematic study for beam transmission through the accelerator was carried out and progressive modifications in folding magnet chamber, foil stripper holder and improvement in average vacuum level through the accelerator have resulted in large improvement of beam transmission leading to up to 2.0 micro-amp analyzed proton beams on target. Now the utilization of the beams from the accelerator has increased many folds for basic and applied research in the fields of atomic and nuclear physics, material science and radiation biology etc. Few new beam lines after the indigenously developed 5-port switching magnet are added and the experimental setup for PIXE, PIGE, External PIXE, 4 neutron detector, Proton Induced Positron Annihilation Spectroscopy (PIPAS) setup and the general purpose scattering chamber etc have been commissioned in the beam hall. The same team has developed a Low Energy Accelerator Facility (LEAF) which delivers negative ions of light and heavy ions for application in implantation, irradiation damage studies in semiconductor devices and testing of new beam line components being developed for Low Energy High Intensity Proton Accelerator (LEHIPA) programme at BARC. The LEAF has been developed as stand alone facility and can deliver beam quickly with minimum intervention of the operator. Few more features are being planned to deliver uniform scanned beams on large targets. (author)

  2. Giessen polarization facility. II. 1. 2 MeV tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W; Ulbricht, J; Berg, H; Keiner, P; Krause, H H; Schmidt, R; Clausnitzer, G [Giessen Univ. (Germany, F.R.). Strahlenzentrum

    1977-06-15

    A small pressure insulated tandem accelerator with 600 kV terminal voltage was constructed for the application of a polarized ion source of the Lambshift type: thin carbon foils or gas stripping is used for the charge exchange in the high voltage terminal. The calculated ion optical properties were realized in the construction; transmission and energy resolution are sufficient to obtain high intensity polarized beams on target (maximum 0.6..mu..A protons with P=0.75 ) for precision polarization experiments in the 0.2-1.2 MeV energy region.

  3. A study of a superconducting heavy ion cyclotron as a post accelerator for the CRNL MP Tandem

    International Nuclear Information System (INIS)

    Fraser, J.S.; Tunnicliffe, P.R.

    1975-08-01

    A novel design for a heavy ion cyclotron is described utilizing superconducting coils. Acting as a post accelerator for the CRNL MP Tandem accelerator, the proposed cyclotron is capable of producing an output energy of 10 MeV/u and intensities up to approximately 10 10 particles/s for uranium. (E.C.B.)

  4. Note on an energy scanning system for a Van de Graaff or a tandem accelerator

    International Nuclear Information System (INIS)

    Camplan, J.

    1987-01-01

    In a system including one electrostatic deflector, one magnet and a second electrostatic deflector used for energy scanning of particles outgoing from a tandem or a Van de Graaff accelerator, we derive equations linking positions and deflexions of the two deflectors. (orig.)

  5. Tandems as injectors for synchrotrons

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This is a review on the use of tandem electrostatic accelerators for injection and fitting of synchrotrons to accelerate intense beams of heavy ions to relativistic energies. The paper emphasizes the need of operating the tandems in pulsed mode for this application. It has been experimentally demonstrated that at present this type of accelerator still provides the most reliable and best performance. (orig.)

  6. Tandem accelerators in Romania: Multi-tools for science, education and technology

    Science.gov (United States)

    Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.

    2017-06-01

    An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].

  7. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Castell, W.; Di Paolo, H.; Baldo, M.; Bergueiro, J.

    2011-01-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  8. Techniques of tandem accelerator mass spectrometry and their applications to 14C measurements

    International Nuclear Information System (INIS)

    Nakamura, Toshio; Nakai, Nobuyuki; Furukawa, Michiaki

    1990-01-01

    A tandem accelerator mass spectrometer, named Tandetron was installed at Nagoya University in 1982 for 14 C measurement. The Tandetron spectrometer consists of a Cs sputter ion source to produce negative carbon ions, a Schenkel-type 2.2 MV tandem accelerator, an ion-beam analyzing apparatus with a charge-energy selector and mass spectrometer, and a heavy ion detector to identify and count 14 C 3+ ions from various background ions. The 14 C concentrations in pine needles, sampled at the Higashiyama Campus of Nagoya University, have been measured since 1984. The present article describes some of the measurements of 14 C in pine needles, focusing on the annual changes in the Δ 14 C value of atmospheric CO 2 , and on the effect upon 14 C concentrations for pine needles of a local 14 CO 2 emission from incineration of radioactive organic solvent wastes containing 14 C, at the Radioisotope Center in the Higashiyama Campus. The pine needles at some locations seemed to be influenced by local artificial CO 2 emission. The Δ 14 C values increased noticeably from 1956 to 1964 as a result of artificial 14 C produced in nuclear weapon tests. (N.K.)

  9. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Di Paolo, H.; Burlon, A.A.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.

    2009-01-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  10. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    Science.gov (United States)

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  11. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1983-01-01

    The 12 UD Pelletron tandem accelerator has been operated for seven years without serious trouble since the first beam was obtained in February, 1976. In the last year, the tank was opened five times for minor repair, but the operation of 3977 hours has been attained. The construction of a heavy ion post accelerator with interdigital-H type structure has been continued. The research works described in this report were carried out mainly using the beam from a Lamb-shift type polarized ion source or a sputtering ion source. To the Lamb-shift type polarized ion source, a fast spin-reversal system was newly added, and successfully tested. In the sputtering ion source, the beam intensity was increased. A combination of an ionization chamber and a position-sensitive solid state detector was tested to be used for the study on heavy ion nuclear reaction. The characteristics of avalanche along the anode wire in a gas counter were studied. The accelerator and experimental facilities, the development of experimental equipment, and the researches on nuclear physics, atomic and solid state physics, and biological and medical science are reported. (Kako, I.)

  12. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  13. Final version of the pick-up wheels in the Pelletron tandem accelerator at Lund

    International Nuclear Information System (INIS)

    Hakansson, K.; Hellborg, R.

    1993-01-01

    A new type of pick-up wheel has been designed and constructed for the charge transport system of the Lund 3UDH Pelletron tandem accelerator. The major improvements compared with older types are a slender design with only one ball bearing and more robust contact pins with a rubber ring between the pinhead and the wheel nave. (orig.)

  14. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1984-01-01

    The 12 UD Pelletron tandem accelerator was operated very stably through the period covered by this annual report. It was shut down for two weeks to inspect the SF 6 gas transfer system. The construction of a heavy ion post accelerator with interdigital-H structure has been completed, and chlorine ions have been accelerated to 2 MeV per charge. Effort was exerted to develop radiation detectors and a polarimeter. A windowless Si(Li) X-ray detector for PIXE was constructed, and the K X-ray of oxygen was able to be detected with high efficiency. The use of incombustible gas for ionization chambers was tested to detect the heavy ions of low Z and low energy, and nitrogen was available. A time-zero detector for heavy ion mass identification using two microchannel plates and a more elaborate high efficiency gamma detection system with six NaI (Tl) detectors and two Ge(Li) detectors were constructed. VAX 11/750-VAX 11/780 computer system was installed. Most of the research works were conducted, using the beam from the Lamb-shift polarized ion source. The studies on fusion reaction using heavy ions have been continued. The accelerator and experimental facilities, and the researches in the fields of nuclear physics, atomic and solid state physics, and biology and medical science are reported. (Kako, I.)

  15. The status of the tandem accelerator ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, J.; Boldeman, J.; Cohen, D.; Tuniz, C.; Ellis, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The ANTARES facility at the Lucas Heights Research Laboratories has now operated for 4 years. A research program in Accelerator Mass Spectrometry, lon Beam Analysis and small scale radioisotope production has been pursued. During the same period, the accelerator has been significantly upgraded from the configuration which existed at Rutgers University, NJ, USA, before shipment to Australia in 1989. AMS measurement techniques of several long lived isotopes have been developed for environmental, industry and biomedical applications. Both the experimental program and the engineering developments are discussed further.

  16. The status of the tandem accelerator ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, J; Boldeman, J; Cohen, D; Tuniz, C; Ellis, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The ANTARES facility at the Lucas Heights Research Laboratories has now operated for 4 years. A research program in Accelerator Mass Spectrometry, lon Beam Analysis and small scale radioisotope production has been pursued. During the same period, the accelerator has been significantly upgraded from the configuration which existed at Rutgers University, NJ, USA, before shipment to Australia in 1989. AMS measurement techniques of several long lived isotopes have been developed for environmental, industry and biomedical applications. Both the experimental program and the engineering developments are discussed further.

  17. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1982-01-01

    After the satisfactory and busy operation of the 12 UD tandem accelerator for five years, the accelerating tubes showed the symptom of deterioration mainly due to stain, so that a few tubes were changed. In spite of this trouble, the operation over 3000 hours was maintained. The development of peripheral apparatus around the tandem accelerator and detectors was made. Above all, a beam pulsing system was successfully installed. The experimental works on nuclear physics were directed to the studies on polarization phenomena and heavy ion-induced reactions. The importance of the two-step process in the reaction mechanism was established. As the remarkable theoretical progress, a self-consistent collective coordinate method for the large amplitude collective motion was successfully developed, and the boson expansion theory was refined. The yield of X-ray and radiative electron capture and the equilibrium charge state in the collision of heavy ions were studied in detail. By the back scattering of 18 MeV alpha particles channeled in solid state, the shift of resonant peak energy was clearly observed, thus the influence of lattice effect in crystals was shown. (Kako, I.)

  19. 36Cl-AMS measurements with 3-MV tandem accelerator

    International Nuclear Information System (INIS)

    Wang Huijuan; Guan Yongjing; Zhang Wei; Jiang Shan; Ming He

    2013-01-01

    36 C- is one of the most interesting nuclides in accelerator mass spectrometry (AMS) measurements. The application of 36 Cl has been widely applied in various fields. All most all of 36 Cl AMS measurements at natural isotopic concentrations have yet been performed at tandem accelerator with 5 MV or higher terminal voltage. The measure improvement of 36 Cl and other medium heavy isotopes performed at 3 MV in AMS facilities is one of the hottest topics in AMS measurements. In order to increase the suppression factor of 36 S, the energy loss straggling and angular straggling of 36 Cl and 36 S ions in various counter gases (P10, isobutane and propane) were investigated. Some groundwater samples were measured with energy of 32 MeV, and the results were in good agreement with the result obtained with ion energy of 72 MeV. The results indicate that the approximate detection limit of 36 Cl in 3 MV AMS facility is 36 Cl/Cl=1 × 10 -14 , and the uncertainty is 30% when the sample with isotopic ration 36 Cl/Cl≈10 -13 . (authors)

  20. Personal computer control system for small size tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Hiroshi; Kawano, Kazuhiro; Shinozaki, Masataka [Nissin - High Voltage Co. Ltd., Kyoto (Japan)

    1996-12-01

    As the analysis apparatus using tandem accelerator has a lot of control parameter, numbers of control parts set on control panel are so many to make the panel more complex and its operativity worse. In order to improve these faults, development and design of a control system using personal computer for the control panel mainly constituted by conventional hardware parts were tried. Their predominant characteristics are shown as follows: (1) To make the control panel construction simpler and more compact, because the hardware device on the panel surface becomes the smallest limit as required by using a personal computer for man-machine interface. (2) To make control speed more rapid, because sequence control is closed within each block by driving accelerator system to each block and installing local station of the sequencer network at each block. (3) To make expandability larger, because of few improvement of the present hardware by interrupting the sequencer local station into the net and correcting image of the computer when increasing a new beamline. And, (4) to make control system cheaper, because of cheaper investment and easier programming by using the personal computer. (G.K.)

  1. Beam trajectory simulation program at the National Institute of Nuclear Research Tandem Accelerator facility

    International Nuclear Information System (INIS)

    Murillo C, G.

    1996-01-01

    The main object of this thesis is to show in a clear and simple way to the people in general, the function of the Tandem Accelerator located on site the ININ facilities. For this presentation, a computer program was developed. The software written in C language in a structural form, simulates the ion production and its trajectory in a schematic and in an easy way to comprehend. According to the goals of this work, the simulation also shows details of some of the machine components like the source, the accelerator cavity, ,and the bombarding chamber. Electric and magnetic fields calculations are included for the 90 degrees bending magnet and quadrupoles. (Author)

  2. The operational experience with 15 UD Pelletron tandem accelerator and its status

    International Nuclear Information System (INIS)

    Joshi, R.; Singh, J.; Singh, P.

    2015-01-01

    IUAC, New Delhi is equipped with many accelerators of different energy ranges. The 15 UD Pelletron tandem accelerator, the first ion accelerator installed, is a heavy ion accelerator and can accelerate almost all the injected negative ions. It has been operational since 1990 and is being used efficiently in different areas of research. The up time of this accelerator has always been better than 95% while the beam on target time has improved from ∼35% in earlier years to more than 60%. In these years, immense efforts have been put in for its operational improvements and better ion beam energies as well as currents. Recently a proper diagnosis was performed to improve its terminal voltage. Regular maintenance of its charging system, accelerating columns and regular unit wise conditioning have improved overall terminal voltage. The conditioning voltage of 15.5 MV was recently achieved and beam tests were performed at 15.1 MV. This has overall improved the performance of accelerator and the stable beam was delivered to user at the maximum terminal potential of 13.9 MV. The 15 UD Pelletron accelerator is also being used regularly as an injector for LINAC. Recently, few problems were encountered, in 15 UD Pelletron, during a routine LINAC operation. Those problems caused lots of beam instability and consequently beam, after boosting the energy from LINAC, was unstable. Proper investigations were carried out and necessary steps were performed in ion source and 15 UD Pelletron accelerator to overcome these problems. Thereafter, stable beam was delivered to user, using LINAC, continuously for around three months. All the efforts done to improve the performance of 15 UD Pelletron as well as to achieve stable beam from LINAC will be discussed. (author)

  3. Report of the joint seminar on heavy-ion nuclear physics and nuclear chemistry in the energy region of tandem accelerators (II)

    International Nuclear Information System (INIS)

    1986-04-01

    A meeting of the second joint seminar on Heavy-Ion Nuclear Physics and Nuclear Chemistry in the Energy Region of Tandem Accelerators was held after an interval of two years at the Tokai Research Establishment of the JAERI, for three days from January 9 to 11, 1986. In the seminar, about 70 nuclear physicists and nuclear chemists of JAERI and other Institutes participated, and 38 papers were presented. These include general reviews and topical subjects which have been developed intensively in recent years, as well as the new results obtained by using the JAERI tandem accelerator. This report is a collection of the papers presented to the seminar. (author)

  4. Annual report of the Tandem Accelerator Center, University of Tsukuba. April 1, 1997 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This report briefly described the investigations performed during the period from April 1997 to March 1998 in Tandem Accelerator Center. The 12 UD Pelletron tandem accelerator was reconstructed and the first beam test was carried out in Nov. 1997. In nuclear physics, the measurement of total reaction cross sections, the non-resonant breakup of {sup 7}Li and {sup 9}Be, the investigation of hole states via (p,d) reaction, nuclear structure physics by means of in-beam {gamma} ray spectroscopy and the study of the three dimensional cranking model have been performed. In interdisciplinary fields, the development of AMS system has been continued. The trace element analysis of mineral samples has been carried out by means of PIXE with the proton beam which was focused on the sample as narrow as 50 {mu}m{sup 2}. The hydrogen analysis using H({sup 19}F,{alpha}{gamma}) reaction has been started aiming at the extension of the measurement of depth profile down to a few tens of {mu}m deep region. (M.N.)

  5. Annual report of the Tandem Accelerator Center, University of Tsukuba. April 1, 1997 - March 31, 1998

    International Nuclear Information System (INIS)

    1998-06-01

    This report briefly described the investigations performed during the period from April 1997 to March 1998 in Tandem Accelerator Center. The 12 UD Pelletron tandem accelerator was reconstructed and the first beam test was carried out in Nov. 1997. In nuclear physics, the measurement of total reaction cross sections, the non-resonant breakup of 7 Li and 9 Be, the investigation of hole states via (p,d) reaction, nuclear structure physics by means of in-beam γ ray spectroscopy and the study of the three dimensional cranking model have been performed. In interdisciplinary fields, the development of AMS system has been continued. The trace element analysis of mineral samples has been carried out by means of PIXE with the proton beam which was focused on the sample as narrow as 50 μm 2 . The hydrogen analysis using H( 19 F,αγ) reaction has been started aiming at the extension of the measurement of depth profile down to a few tens of μm deep region. (M.N.)

  6. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Burlon, A.A.; Di Paolo, H.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J.C.; Castell, W.; Davidson, J.; Davidson, M.; Repetto, M.; Obligado, M.; Nery, J.P.; Huck, H.; Igarzabal, M.; Fernandez Salares, A.

    2008-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  7. Performance tests of a 1.6-MV Van de Graaff accelerator of tandem type, 1

    International Nuclear Information System (INIS)

    Yano, Syukuro; Nakajima, Tadashi; Kitamura, Akira

    1981-01-01

    Experimental studies on the performance of a 1.6-MV Van de Graaff accelerator of tandem type, Model 5SDH of NEC, are reported. Two kinds of performance test were conducted. First, it was successfully demonstrated that the beam currents observed at two positions, 1m and 7m apart from a switching magnet in the +15 0 beam line, exceed the values accepted for our test according to the specifications of NEC. Second, it turned out that the beam transmission could be kept maximum by selecting the optimum number of live sections in the lower energy accelerator tube depending on terminal voltage. Moreover, the plot of optimum insulating SF 6 gas pressure against terminal voltage prepared by us is found very useful for efficient operation of the 5SDH accelerator. (author)

  8. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    International Nuclear Information System (INIS)

    Wady, P.T.; Draude, A.; Shubeita, S.M.; Smith, A.D.; Mason, N.; Pimblott, S.M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5–6 cm"2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr–25Ni–Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  9. Analysis of the Pelletron charging chain break in the Chalk River MP tandem accelerator

    International Nuclear Information System (INIS)

    Burn, N.; Greiner, B.F.; Coleman, C.E.

    1980-11-01

    On February 7, 1980 one of the three Pelletron charging chains in the Low Energy end of the Chalk River MP Tandem Accelerator broke during normal operation. The chains had been in use for 38 000 h at the time of the break. Tensile tests were carried out on pieces of the broken chain as well as unused pieces of chain. Several possible reasons for the chain break are suggested; ways of improving performance and reliability are proposed. (auth)

  10. Expansion of the data acquisition system for the 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tomita, Yoshiaki

    1981-02-01

    This report describes an expansion of the program of the data acquisition system for the 20 MV tandem accelerator. By the present expansion it became possible to change the accuisition mode or to use non-standard CAMAC modules with partial modification of the program according to well defined prescriptions. The modification can be made by writing microprograms for the MBD or appending subroutines for the reduced spectra in the LIST mode data acquisition. The new program can handle up to 32 ADC's in the standard LIST mode data acquisition. The present expansion aimed to increase the flexibility in data acquisition. It can also be applied to control experimental devices. (author)

  11. Earth and environmental sciences by accelerator mass spectrometry (AMS) with the large tandem accelerator

    International Nuclear Information System (INIS)

    Sasa, K.; Takahashi, T.; Sueki, K.

    2008-01-01

    A multi-nuclide AMS system on the 12UD Pelletron tandem accelerator at the University of Tsukuba (Tsukuba AMS system) has been able to measure environmental levels of long lived radioisotopes of 14 C, 26 Al, 36 Cl and 129 I by employing a molecular pilot beam method. In addition, we have been developing 32 Si and 41 Ca AMS systems for future research programs. Recently, the performance of 36 Cl AMS was improved in AMS technique. The standard deviation is within ±2%, and the background is better than 5 x 10 -15 for the 36 Cl/Cl ratio. At present, our Tsukuba AMS research group has focused its activities especially on the measurement of 36 Cl. We have measured more than 500 samples in year including earth and environmental sciences with the Tsukuba AMS system. A detailed description of the Tsukuba AMS system is given and earth and environmental applications are also described briefly. (author)

  12. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  13. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1979-01-01

    During the academic year of 1978 to 1979, the 12 UD pelletron tandem accelerator has operated successfully. Ion species used were polarized p, polarized d, α(from the polarized ion source), p, d, 16 O and 18 O (from the direct extraction ion source), and C, O, Cu and Au (from the sputtering ion source). Improvements were made in the detector and data acquisition system. The data handling system 'SHINE' was completed and is in full operation. Research works are reported in individual summaries under the following chapters: accelerator and beam transport system, general equipments nuclear physics, atomic and solid-state physics, and biological and medical science and others. (Mori, K.)

  14. Argonne tandem as injector to a superconducting linac

    International Nuclear Information System (INIS)

    Yntema, J.L.; Den Hartog, P.K.; Henning, W.; Kutschera, W.

    1980-01-01

    The Argonne Tandem uses Pelletron chains, NEC accelerator tubes, and a dual closed-corona system. Its main function is to be an injector for a superconducting linear accelerator. As long as the transverse and longitudinal emittances are within the acceptance of the linac, the output beam quality of the tandem-linac system is essentially determined by the tandem. The sensitivity of the linac to the longitudinal emittance ΔEΔt of the incident beam makes the output beam quality dependent on the negative-ion velocity distribution in the source, transit-time effects in the tandem, molecular-beam dissociation, and stripper-foil uniformity. This paper discusses these beam-degrading effects

  15. Multipurpose beam pulsing system for the 12UD Pelletron tandem accelerator at the University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Furuno, Kohei; Fukuchi, Yasuhiko; Kimura, Takashige; Maeoka, Hidenobu; Ishii, Satoshi; Aoki, Takayoshi

    1983-10-01

    A beam pulsing system has been developed for a 12 MV tandem accelerator. The system consists of a pre-acceleration chopper, a klystron buncher and a post-acceleration chopper. The pre-acceleration chopper comprises a slow chopper and a fast travelling-wave chopper. Pulsed beams with widths in the range from 10 ..mu..s to --2 s are obtained with the slow chopper, and the repetition periods can be varied from 70 ..mu..s to 4s. The fast chopper produces ion bursts having widths between 0.05 and 0.8 ..mu..s with a duty factor of --10%. The buncher is operated with the two choppers to obtain beam pulses as narrow as a few nanoseconds. Time-of-flight measurements yielded pulse widths 2-4 ns (FWHM) wide for ions in the mass range 1 <= A <= 28. The ratio of the dark to peak ion current was usually of the order of 10/sup 4/.

  16. Heavy-ion accelerator mass spectrometry with a 'small' accelerator

    International Nuclear Information System (INIS)

    Steier, P.; Golser, R.; Priller, A.; Vockenhuber, C.; Irlweck, K.; Kutschera, W.; Lichtenstein, V.

    2001-01-01

    Full text: VERA, the Vienna environmental research accelerator, is based on a 3-MV pelletron tandem accelerator and is designed to allow the transport of ions of all elements, from the lightest to the heaviest. The VERA heavy ion program tries to establish measurement methods which work for the long-lived radionuclides where suppression of isobars is not required. Among these are 129 I, 210 Pb, 236 U and all heavier ions where no stable isobars exist. To suppress neighboring masses, the resolution of VERA was increased, both by improving the ion optics of existing elements and by installing a new electrostatic separator after the analyzing magnet. Interfering ions which pass all beam filters are identified with a high-resolution time-of-flight system, using a 0.5 μg/cm 2 DLC (diamond-like carbon) foil in the start detector, which substantially reduces beam straggling. Compared to heavy ion AMS at large tandem accelerators (TV ≥ 8 MV) and for cases where stable isobar interference is absent, it is possible to offset the disadvantage of lower ion energy. Moreover, the more compact facilities like VERA achieve higher stability and reliability and provide advanced computer control. This promises even higher precision and sensitivity for a larger number of samples, which is a prerequisite for research on natural-occurring heavy radioisotopes at environmental levels. First results on the measurement of 210 Pb (half-life 22 a) and 236 U (23 Ma) encourages us to push towards even heavier radionuclides (e.g. 224 Pu, 81 Ma). (author)

  17. Annual report of the Tandem Accelerator Center, University of Tsukuba. April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This annual report includes the research activities from April, 1995 to March, 1996. The 12 UD Pelletron tandem accelerator has been operated successfully to provide sufficient beam time for experiments. The stable operation of the accelerator brought out steady advances in many investigations continued as long range projects. Those are polarization phenomena in nuclear reactions, the nonresonant breakup of Li-7, further refinement of continuum discretized coupled channels theory, fusion and fission in heavy ion reactions, nuclear structure physics by means of in-beam γ ray spectroscopy, solid state physics using fast ion beams, Moessbauer effect, NMR, and the application of accelerated ion beams to PIXE and accelerator mass spectrometry. As the new developments of experimental instruments, an ion source for micro-cluster beams and a pulsing system for low velocity cluster ions have been successfully constructed. A beam line producing proton micro-beam has been constructed. In this report, the accelerator and experimental facilities, the experiments and theories of nuclear physics, atomic and solid state physics, ion beam applications, publications, theses and seminars, and personnel are reported. (K.I.)

  18. Installation of a tandem-type accelerator mass spectrometer

    International Nuclear Information System (INIS)

    Mizushima, Toshihiko; Togawa, Orihiko; Mizutani, Yoshihiko; Yamamoto, Tadatoshi

    2000-02-01

    Tandem-type accelerator mass spectrometer (hereinafter referred to as Tandetron) was installed at the Ominato Facility of Mutsu Establishment, JAERI in April, 1997. The objective of its installation is to investigate the mechanism of the mixing and circulation of seawater in the ocean, by collecting seawater samples around Japan and analyzing the horizontal and vertical distributions of 14 C contained in the samples. The Tandetron consists of two lines to measure isotopic ratios of carbon and those of heavier iodine. The adjustment for the carbon line was finished and the measurements of seawater samples were started. The iodine line, on the other hand, is on the final step of its adjustment and performance tests are being carried out with a TOF (Time of Flight) detector. The iodine line will be used to analyze 129 I released from a spent nuclear fuel reprocessing plant and other nuclear facilities. In this report, we summarize the status of installation of the carbon and iodine lines for the Tandetron. The report describes the situations of their adjustments until now, the outline of the Tandetron, tests of measurement performance, evaluation and inspection of shielding performance, problems and their solutions, and so on. (author)

  19. Notes on the voltage performance of accelerator tube sub-modules for the NSF tandem

    International Nuclear Information System (INIS)

    Eastham, D.A.; Groome, A.E.; Powell, P.

    1978-01-01

    Measurements are reported of the d.c. voltage performance of vacuum accelerator tube sub-modules for the Nuclear Structure Facility 30 MV Tandem at Daresbury. Using diagnostic techniques it has been possible to separate out the different processes in the tube which can lead to breakdown. As a result, improved sub-modules have been produced. Tests, have simulated the ion exchange processes which occur in longer tube lengths, and a better understanding has been obtained of the way in which these processes depend on the tube geometry and cleanliness. (U.K.)

  20. Test facility of proton beam utilization of the PEFP at the SNU-AMS tandem accelerator

    International Nuclear Information System (INIS)

    Kim, K. R.; Park, B. S.; Lee, H. R.

    2004-01-01

    The PEFP (Proton Engineering Frontier Project) will supply users with a 20-MeV proton beam by the middle of 2007. A survey on users' demand was performed to draw the concept for the 20-MeV user facilities and to investigate users' requirements. In the mean time, a 6-MeV test facility has been developed to give users opportunities to experiment with proton beams. That facility will be attached to the 3-MV tandem accelerator at Seoul National University.

  1. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Bergueiro, J.; Igarzabal, M.; Suarez Sandin, J.C.; Somacal, H.R.; Thatar Vento, V.; Huck, H.; Valda, A.A.; Repetto, M.

    2011-01-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  2. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  3. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mello, S. L. A., E-mail: smello@ufv.br [Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG (Brazil); Codeço, C. F. S.; Magnani, B. F.; Sant’Anna, M. M. [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil)

    2016-06-15

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  4. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    Furuno, K.; Shima, K.; Komatsubara, T.

    1992-09-01

    This annual report includes the research activities and the technical developments carried out at the Tandem Accelerator Center in University of Tsukuba for the period from April 1991 to March 1992. Research activities covered the following subjects. Experimental investigations were made on 1) nuclear spectroscopy of high-spin rotational states and high-spin isomers in odd-odd nuclei, anomalous Fermi-coupling constant in the β decay of 35 Ar and the search for new isotopes around the mass number 90; 2) polarization phenomena in nuclear reactions; 3) the application of energetic heavy ions to solid state physics; 4) the properties of defects in metal produced by proton irradiation; 5) the magnetic properties of LiVO 2 by NMR; 6) off line Moessbauer studies; and 7) the mechanism of micro-cluster formation at the surface of material by heavy-ion bombardment. Theoretical work pertinent to the nuclear collective motion and the relativistic mean-field theory is also included in this report. (J.P.N.)

  5. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Annual report 1992 of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1993-10-01

    This annual report includes the research activities and the technical developments carried out at the Tandem Accelerator Center in University of Tsukuba for the period from April 1992 to March 1993. New experimental investigations were made on (1) nuclear spectroscopy was initiated by a new γ ray spectrometer; (2) polarization phenomena in nuclear reactions; (3) the application of energetic heavy ions to solid state physics; (4) the behavior of self interstitial atoms and its migration mechanism in Mo metal (5) the studies on electronic conduction of metal oxides and bronzes by NMR; (6) Moessbauer studies on Fe-Cr alloy and the RBS analysis of YBCO superconductor films; and (7) a new field was challenged on the micro cluster physics. Nuclear collective motion and the relativistic mean-field theory is also included in this report. (J.P.N.)

  7. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    Science.gov (United States)

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Present status of tandem accelerator in Department of Science, Kyoto University

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Seiji; Nakamura, Masanobu; Murakami, Tetsuya; Osoi, Yu; Matsumoto, Hiroshi; Hirose, Masanori; Takimoto, Kiyohiko; Sakaguchi, Harutaka; Imai, Kenichi [Kyoto Univ. (Japan). Dept. of Physics

    1996-12-01

    The 8UDH tandem accelerator in Department of Science, Kyoto University, has been utilized for six and a half years since the start, and at present, the joint utilization in the first half of fiscal year 1996 is carried out. Also in this year, experiment is carried out by limiting terminal voltage to below 7 MV for general users. Accelerator Group is developing by placing emphasis on a nuclear physics project PIS and an interdisciplinary project AMS, subsequently to the last fiscal year. The terminal voltage and the time of operation of pellet chains in the operation from October, 1995 to July, 1996 are shown. The course of the improvement, troubles and the repair from July, 1995 to June, 1996 is reported. The countermeasures to the damage of column tension rods did not end, and the new parts will be attached in coming autumn. Two large and four small chain tension pulleys were replaced. The surfaces of nylon rods were scratched and repaired. The belts driving the SF6 gas blower have been exchanged every about 8000 hours operation. A maniford was attached to the ion source for mixing gases. As the utilization from October 1995 to March 1996, 23 subjects for 83 days were adopted, and from April to October, 1996, the subjects for 65 days were adopted. (K.I.)

  9. Present status of TIARA electrostatic accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)

  10. Application of tandem accelerator mass spectrometor to the chronological study of archaeological samples on Ryukyu Islands

    International Nuclear Information System (INIS)

    Taira, Hatsuo; Higa, Kenichi; Nakai, Nobuyuki; Nakamura, Toshio.

    1987-01-01

    Along with the urbanization of rural areas on Ryukyu Islands, many shell mounds and pre-historic sites have been found in resent years. Chrological studies of shell samples from these mounds will lead to the better understanding of cultural background for the pre-historic human activities on the Ryukyu Islands. C-14 dating by beta counting is the common method to obtain the ages of the archaeological samples. It is, however, very limitted in obtaining the absolute ages by the above mehtod due to the large sample sizes required and time consuming. There are many newly obtained archaeological samples left unstudied in detail. The alternate is a method called Tandem Accelerator Mass Spectrometer (AMS) installed at Nagoya University, which is composed of the tandem type accelerator to measure very low concentration of C-14 in archaeological samples. The system has been designed particularly to measure the radio-carbon and has advantages of being small sample size and very little time consuming for C-14 measurement as compared with the beta counting. It is the aim of this work to apply the above AMS for obtaining the absolute ages of the archaeological samples. The results agreed well with those estimated by the Erthenware method (relative method of dating), which ranged from 500 to 6000 y.b.p. The results may be helpful for the chronological arrangement of the samples and for the understanding of pre-historical human activities on the Ryukyu Islands. (author)

  11. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  12. Tandem Accelerator Center, University of Tsukuba, annual report 1998. April 1, 1998 - March 31, 1999

    International Nuclear Information System (INIS)

    1999-07-01

    The operation of the 12 UD Pelletron tandem accelerators was very stable until December 12, 1998. A total beam time for experiments is 2383 hours. This report describes the activities at Tandem Accelerator Center of the University of Tsukuba in fiscal year 1998. The 32 reports are presented in the 4 categories; that are (1) Accelerator and Experimental Facilities (7 reports), (2) Nuclear Physics (12 reports), (3) Atomic and Solid State Physics, and Cluster Science (10 reports), (4) Ion Beam Application (3 reports). New development of experimental instruments were made on a proton polarimeter at very low energies, a detector of atomic cluster at low velocity, a long focal-plane position sensitive detector, and a liquid-helium-free superconducting solenoid for an Ecr ion source. In the field of nuclear physics, progresses were made in proton total-reaction cross sections, the continuum discretized coupled channel (CDCC) theory, (d, αX) reactions, 7 Li breakup reactions, hole states via (p, d) reaction, and nuclear structure physics by means of in-beam γ ray spectroscopy. New approaches were initiated on the precise measurement of proton-proton elastic scattering to search for magnetic monopole, and on perturbed angular correlations to measure nuclear g-factors in the pico second region. The investigation of ion-induced secondary electron is made in the binary-encounter electron emission from crystalline and non crystalline targets. An applicability of ion-induced Auger electrons to structure analysis was also demonstrated. An experiments of Br and I ions opened a new approach to the study of structural defects in amorphous silica. The study of deuteron implantation into silicon single crystal resulted in an interpretation of macroscopic migration. Microscopic migration was investigated on some metals. In atomic cluster physics, angular distributions of several noble-gas ions were measured to derive a new interaction potential. Mass spectra of semiconductor and 3d

  13. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  14. A dedicated AMS setup for 53Mn/60Fe at the Cologne FN tandem accelerator

    Science.gov (United States)

    Schiffer, M.; Dewald, A.; Feuerstein, C.; Altenkirch, R.; Stolz, A.; Heinze, S.

    2015-10-01

    Following demands for AMS measurements of medium mass isotopes, especially for 53Mn and 60Fe, we started to build a dedicated AMS setup at the Cologne FN tandem accelerator. This accelerator with a maximum terminal voltage of 10 MV can be reliably operated at a terminal voltage of 9.5 MV which corresponds to energies of 93-102 MeV for 60Fe or 53Mn beams using the 9+ or 10+ charge state. These charge states can be obtained by foil stripping with efficiencies of 30% and 20%, respectively. Energies around 100 MeV are sufficient to effectively suppress the stable isobars 60Ni and 53Cr by (dE/dx) techniques using combinations of energy degrader foils and dispersive elements like electrostatic analyzers and time of flight (TOF) systems as well as (dE/dx)E ion detectors. In this contribution we report on the actual status of the AMS setup and discuss details and expected features.

  15. Materials Science Division HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Taylor, A.

    1981-10-01

    The ANL-Materials Science Division High Voltage Electron Microscope-Tandem Facility is a unique national research facility available to scientists from industry, universities, and other national laboratories, following a peer evaluation of their research proposals by the Facility Steering Committee. The principal equipment consists of a Kratos EM7 1.2-MV high voltage electron microscope, a 300-kV Texas Nuclear ion accelerator, and a National Electrostatics 2-MV Tandem accelerator. Ions from both accelerators are transmitted into the electron microscope through the ion-beam interface. Recent work at the facility is summarized

  16. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  17. Development of intense high-energy noble gas ion beams from in-terminal ion injector of tandem accelerator using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakanoya, T.; Hanashima, S.; Takeuchi, S. [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2011-10-21

    An ECRIS-based heavy ion injector was constructed in the high-voltage terminal of JAEA-Tokai Tandem Accelerator to develop new beam species of highly charged noble gas ions. This work was associated with a lot of development to operate the ion source on the 20UR Pelletron high voltage terminal in high pressure SF{sub 6} gas environment. Highly charged ions of N, O, Ne, Ar, Kr and Xe have been accelerated satisfactorily. Operating data integrated during many years long beam delivery service are summarized.

  18. Use of a tandem accelerator in the basic studies on nuclear fusion and environmental diagnostics

    International Nuclear Information System (INIS)

    Oguri, Yoshiyuki; Hasegawa, Jun; Fukuda, Hitoshi; Ogawa, Masao

    2001-01-01

    A small tandem electrostatic accelerator has worked well 16 years after installation. In the last year, however, a pellet chain touched to inductor and a considerable amount of metallic powder was sprayed inside the pressure vessel. Basic experiments have been made on the interaction of plasma and heavy ion beams. Stopping powers of a plasma produced by laser irradiation were measured as a function of the injection energy. In addition, fabrication of solid hydrogen targets has been tried. PIXE analysis has been applied to air pollution in monitoring a long major roads. In addition preparatory treatments and procedures for thick samples are tested. (M. Tanaka)

  19. New uses for the Tandem Van de Graaff Accelerator

    International Nuclear Information System (INIS)

    Balcazar Garcia, M.

    1989-01-01

    The Tandem Van de Graaff is a very high resolution magnetic separator whose application offers a rich and virgin field for research in other areas. This work presents some of the radioisotopes of interest; their mechanisms of formation and this relationship with studies in solar activity variations in earth magnetic fields, carbon cycle dynamics, archaeological dating, dating of aquifer deposits, solar influences on variations in earth climates and the mechanics of tectonic plates. Discussed are the advantages of the Tandem utilization as an isotope separator compared with conventional techniques. (Author)

  20. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  1. Present state of control system of tandem accelerator in JAERI. Accidents frequently occurred in 1995 fiscal year

    Energy Technology Data Exchange (ETDEWEB)

    Hanashima, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    Tandem accelerator in JAERI (Japan Atomic Energy Research Institute) has been controlled by parallel processing control system using plural microprocessors and parallel processing programming since 1992. As the control system has been smoothly operated since beginning of its usage, many system downs have been experienced at later half of 1995. After each system down, original damage has not been found and it has been recovered by usual restarting operation. Some found remarkable defects were corrected by correction of electric circuit. As a result, frequency of the system down was decreased remarkably but its level could not be reduced to a level before occurring this phenomenon. As operation of the accelerator is preferable without control line for urgent measure, fundamental determination method is planned by controlling humidity of the control room and replacing serial highway driver with a new type producing now. (G.K.)

  2. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  3. Status of the Oak Ridge 25 URC accelerator

    International Nuclear Information System (INIS)

    Ziegler, N.F.; Richardson, E.G.; Mills, G.D.

    1985-01-01

    The tandem accelerator achieved 3900 hours of a beam available for research.'' This amounts to a 23% increase in research time over the previous year. This was achieved despite 15 tank openings, 13 of which were unscheduled. The highest terminal voltage for a regularly scheduled experiment was 21.5 MV, an increase of 1.2 MV over the previous year. An arc discharge conditioning test was conducted on the top five units of the accelerator and a test of the accelerator with macropulsed beam was accomplished. Operating experience with the tandem accelerator over the past year is summarized. New ion species provided for research include 1 H, 7 Li, 40 Ca, 13 C, 52 Cr, 90 Zr, 93 Nb, and 238 U. Additions and modifications to the tandem accelerator are reported

  4. The nuclear structure facility tandem at Daresbury laboratory

    International Nuclear Information System (INIS)

    Voss, R.G.P.

    1976-01-01

    A 30MV tandem electrostatic accelerator for ions of all types, including heavy ions, is being built at Daresbury Laboratory. Construction is well advanced, and considerable effort is continuing to be devoted to R and D programme into the technology of electrostatic accelerators

  5. Estimation of acceptable beam trip frequencies of accelerators for ADS and comparison with performances of existing accelerators

    International Nuclear Information System (INIS)

    Takei, Hayanori; Tsujimoto, Kazufumi; Nishihara, Kenji; Furukawa, Kazuro; Yano, Yoshiharu; Ogawa, Yujiro; Oigawa, Hiroyuki

    2009-09-01

    Frequent beam trips as experienced in existing high power proton accelerators may cause thermal fatigue problems in ADS components which may lead to degradation of their structural integrity and reduction of their lifetime. Thermal transient analyses were performed to investigate the effects of beam trips on the reactor components, with the objective of formulating ADS design that had higher engineering possibilities and determining the requirements for accelerator reliability. These analyses were made on the thermal responses of four parts of the reactor components; the beam window, the cladding tube, the inner barrel and the reactor vessel. Our results indicated that the acceptable frequency of beam trips ranged from 50 to 2x10 4 times per year depending on the beam trip duration. As the beam trips for durations exceeding five minutes were assumed to make the plant shut down and restart, the plant availability was estimated to be 70%. In order to consider measures to reduce the frequency of beam trips on the high power accelerator for ADS, we compared the acceptable frequency of beam trips with the operation data of existing accelerators. The result of this comparison showed that for typical conditions the beam trip frequency for durations of 10 seconds or less was within the acceptable level, while that exceeding five minutes should be reduced to about 1/30 to satisfy the thermal stress conditions. (author)

  6. AMS of 36Cl with the VERA 3 MV tandem accelerator

    International Nuclear Information System (INIS)

    Martschini, Martin; Andersson, Pontus; Forstner, Oliver; Golser, Robin; Hanstorp, Dag; Lindahl, Anton O.; Kutschera, Walter; Pavetich, Stefan; Priller, Alfred; Rohlén, Johan; Steier, Peter; Suter, Martin; Wallner, Anton

    2013-01-01

    Recent progress with compact ionization chambers has opened new possibilities for isobar suppression in accelerator mass spectrometry (AMS). Separation of 36 Cl (t 1/2 = 0.30 Ma) at natural isotopic levels from its stable isobar 36 S became feasible at particle energies of 24 MeV, which are also accessible for medium-sized tandem accelerators with 3 MV terminal voltage like VERA (Vienna Environmental Research Accelerator). Investigations with an ionization chamber revealed how physics favors isobar separation even at energies below the maximum of the Bragg curve. The strong energy focusing effect at high energy losses reduces energy straggling significantly and isobar separation steadily increases up to almost full energy loss. With an optimized detection setup, sulfur suppression factors of 2 × 10 4 have been achieved. Refraining from the additional use of degrader foils has the benefit of high transmission to the detector (∼16%), but requires a low sulfur output from the ion source. Therefore several backing materials have been screened for sulfur content. The dependence of the sulfur output on the AgCl sample size has been investigated as well. Precision and accuracy have been thoroughly assessed over the last two years. Since drifts in the spectra are efficiently corrected by monitoring the position of the 36 S peak, the reproducibility for high ratio samples ( 36 Cl/Cl > 10 −12 ) is better than 2%. Our blank value of 36 Cl/Cl ≈ (5 ± 5) × 10 −16 is competitive to other labs. 36 Cl has become a routine AMS-isotope at VERA. Recently we also explored novel techniques for additional sulfur suppression already in the ion source. While results with a small gas reaction cell in front of the sputter target were discouraging, a decrease in the sulfur/chlorine ratio by one order of magnitude was achieved by directing 300 mW continuous wave laser beam at 445 nm towards the cathode in the ion source.

  7. JAERI Tandem annual report 1983

    International Nuclear Information System (INIS)

    Harada, Kichinosuke; Maruyama, Michio; Okashita, Hiroshi; Ozawa, Kunio; Shikazono, Naomoto; Tanaka, Shigeya

    1984-07-01

    This annual report describes research activities which have been performed with JAERI tandem accelerator from April 1, 1983 to March 31, 1984. Summary reports of 32 papers, publications, personnel and a list of co-operative reserches with universities are contained. (author)

  8. JAERI tandem annual report, 1982

    International Nuclear Information System (INIS)

    Harada, Kichinosuke; Maruyama, Michio; Ozawa, Kunio; Shikazono, Naomoto; Tamura, Tsutomu; Tanaka, Shigeya

    1983-06-01

    This annual report describes research activities which have been performed with JAERI tandem accelerator from September 1, 1981 to March 31, 1983. Summary reports of 38 papers, publications, personnel and a list of co-operative researches with universities are contained. (author)

  9. Status of the tandem FEL project development in Israel

    International Nuclear Information System (INIS)

    Benzvi, I.; Sokolowski, J.; Jerby, E.; Chomski, D.; Ruschin, S.

    1989-01-01

    The authors report the status of a collaborative research project development aimed toward construction of an IR FEL based on the EN tandem electrostatic accelerator of the Weizmann Institute of Science. A preliminary feasibility demonstration project yielded encouraging progress in three aspects: (1) Electron gun and accelerator conversion: A 50-kV 1-A electron gun injector was designed, built, tested, and assembled on the 6-MeV tandem accelerator which was previously converted and conditioned to operate as an electron accelerator in a positively charged HV terminal configuration. Contrary to the configuration of the only electrostatic accelerator FEL demonstrated so far, the electron gun and multistage depressed collector are connected to the ground, and the wiggler is placed in the HV terminal of the straight geometry tandem accelerator. This configuration promises to provide a high current high quality e-beam. (2) Electron-beam transport: The first installation of the electron optical beam recovery system yielded transport efficiency of 80%. Substantial improvement is expected with planned electron optics modifications. An effect, highly significant for realizing long pulse (quasi-cw) FEL operation, was observed experimentally. Due to the damping effect of the accelerator column capacitance network, the voltage terminal stayed constant for milliseconds even with poor beam transport efficiency. This points to the possibility of developing a long pulse FEL which may operate at a single longitudinal mode. (3) Wiggler development: A conventional 4.4-cm period SmCo planar wiggler was acquired and evaluated using a recently constructed floating wire magnetic field measurement setup

  10. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1990-07-01

    This Annual Report covers the research activities and the technical developments of the Tandem Accelerator Center, University of Tsukuba, for the period from April 1989 to March 1990. Laborious but promising work of refreshing 12UD has continued throughout the year, in the intervals of the regular machine-time service. The terminal voltage of 12UD has gone beyond 12MV. At the time of writing this manuscript, 12UD is running up stably around 12.4MV, the loss current being essentially zero. She has recovered and further begins to flesh up without a surgical operation of grafting 'compressed tubes'. In the course of conditioning, the voltage has reached to 12.78MV. In spite of the considerable time consumed by the refreshing, the total machine-time has exceeded 2,000 hours. In addition to the improvement of 12UD, activities at the Center covered a wide area of research field, viz. 1) nuclear spectroscopy of transitional nuclei, 2) heavy ion fusion and fission processes, 3) polarization phenomena in nuclear reactions, 4) charge exchange process in atomic collisions, 5) application of energetic heavy ions investigating solid-state physics, and 6) effect of ion-irradiation on the fatigue properties of metal. Theoretical work pertinent to the nuclear structure is also included in this report. (author)

  11. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report covers the research activities and the technical developments of the Tandem Accelerator Center, University of Tsukuba, for the period from April 1988 to March 1989. Laborious work of refreshing 12UD has continued throughout the year, in parallel with the regular machine-time service. Almost 95% of the work has been completed by the end of March 1989. At the time of writing this manuscript, 12UD is running up modestly beyond 11.0MV, raising joyous murmur of pellet chains. She has recovered up to the hilt. In spite of the considerable time consumed by the refreshing, the total machine-time has exceeded 3,000 hours. Activities at the Center covered a wide area of research field, viz. 1) nuclear spectroscopy of transitional nuclei, 2) heavy ion fusion and fission processes, 3) polarization phenomena in nuclear reactions, 4) charge exchange process in atomic collisions, 5) application of energetic heavy ions to investigating solid-state physics, and 6) effect of ion-irradiation on the fatigue properties of metal. Theoretical work pertinent to the nuclear structure is also included in this report. Prospects for a project attempting to equip the Center with a crystal-ball spectrometer is, at least, not gloomy. First streaks of light seems to begin glimmering. (author)

  12. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  13. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  14. Annual report of the Tandem Accelerator Center, University of Tsukuba, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    This annual report covers the research activities and technical developments of the Tandem Accelerator Center, University of Tsukuba, in the period from April, 1987 to March, 1988. In the field of nuclear physics, the elastic and inelastic scattering of polarized protons from even-even medium weight nuclei was investigated systematically by light ion beam experiment. A QDQ type magnetic spectrograph for double scattering experiment was almost complete. The studies on heavy ion-induced fission reaction advanced by measuring anisotropy in fission angular distribution, and a view on the mechanism of the reaction was acquired. A new, ingenious technique enabled to identify prompt characteristics X-ray accompanying the fusion reaction induced by heavy ions. In the field of atomic and solid state physics, a strange dependence of equilibrium charge state on the atomic number of projectile heavy ions has been elucidated. The research on ion beam shadowing effect on the emission of ion-induced secondary electrons was continued. The Rutherford backscattering of O 4+ ions was applied to determine the composition of Y-Ba-Cu oxide film, and it shed light on the condition governing the nature of superconductive materials. The 12 UD Pelletron was operated quite satisfactorily. (Kako, I.)

  15. JAEA-Tokai tandem annual report 2010. April 1, 2010 - March 31, 2011

    International Nuclear Information System (INIS)

    Matsuda, Makoto; Takeuchi, Suehiro

    2011-12-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2010 to March 31, 2011. Thirty-six summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  16. JAEA-Tokai tandem annual report 2010. April 1, 2010 - March 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Makoto; Takeuchi, Suehiro [Japan Atomic Energy Agency, Nuclear Science Research Institute, Tokai, Ibaraki (Japan); Chiba, Satoshi; Mitsuoka, Shin-ichi; Tsukada, Kazuaki [Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki (Japan); Ishikawa, Norito; Toh, Yosuke [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, Tokai, Ibaraki (Japan)

    2011-12-15

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2010 to March 31, 2011. Thirty-six summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  17. JAEA-Tokai tandem annual report 2011. April 1, 2011 - March 31, 2012

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Tsukada, Kazuaki; Koura, Hiroyuki

    2014-04-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2011 to March 31, 2012. Twenty-seven summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  18. A dedicated AMS setup for medium mass isotopes at the Cologne FN tandem accelerator

    Science.gov (United States)

    Schiffer, M.; Altenkirch, R.; Feuerstein, C.; Müller-Gatermann, C.; Hackenberg, G.; Herb, S.; Bhandari, P.; Heinze, S.; Stolz, A.; Dewald, A.

    2017-09-01

    AMS measurements of medium mass isotopes, e.g. of 53Mn and 60Fe, are gaining interest in various fields of operation, especially geoscience. Therefore a dedicated AMS setup has been built at the Cologne 10 MV FN tandem accelerator. This setup is designed to obtain a sufficient suppression of the stable isobars at energies around 100 MeV. In this contribution we report on the actual status of the new setup and the first in-beam tests of its individual components. The isobar suppression is done with (dE/dx) techniques using combinations of energy degrader foils with an electrostatic analyzer (ESA) and a time of flight (ToF) system, as well as a (dE/dx),E gas ionization detector. Furthermore, the upgraded ion source and its negative ion yield measurement for MnO- are presented.

  19. Pelletron ion accelerator facilities at Inter University Accelerator Centre

    International Nuclear Information System (INIS)

    Chopra, S.

    2011-01-01

    Inter University Accelerator Centre has two tandem ion accelerators, 15UD Pelletron and 5SDH-2 Pelletron, for use in different areas of research. Recently Accelerator Mass Spectrometry facility has also been added to to the existing experimental facilities of 15UD Pelletron. In these years many modifications and up gradations have been performed to 15UD Pelletron facility. A new MCSNICS ion source has been procured to produce high currents for AMS program. Two foils stripper assemblies ,one each before and after analyzing magnet, have also been added for producing higher charge state beams for LINAC and for experiments requiring higher charge states of accelerated beams. A new 1.7 MV Pelletron facility has also been recently installed at IUAC and it is equipped with RBS and Channelling experimental facility. There are two beam lines installed in the system and five more beam lines can be added to the system. A clean chemistry laboratory with all the modern facilities has also been developed at IUAC for the chemical processing of samples prior to the AMS measurements. The operational description of the Pelletron facilities, chemical processing of samples, methods of measurements and results of AMS measurements are being presented. (author)

  20. Telemetry component tests in the FN tandem terminal

    International Nuclear Information System (INIS)

    Bicek, J.J.; Billquis, P.J.; Yntema, J.L.

    1977-01-01

    When an electrostatic tandem accelerator is used primarily for heavy ion acceleration, numerous communication channels with the high voltage terminal are desirable. The ANL FN tandem operates at a tank pressure of 100 psi SF 6 at terminal voltages up to 9.5 MeV. A low powered He-Ne laser with 15 percent modulation has been successfully tested in the terminal under normal operating conditions. Such a system allows the transmission of information without the use of light guides. Multistranded light guides did not withstand voltage gradients as low as 0.4 MV/m. Single core light guides with a diameter of 0.5 mm have been successfully operated at voltage gradients in excess of 1.7 MV/m. In addition to the laser a microprocessor has also been tested in the tandem terminal. With suitable protection, an 8080 microprocessor and a programmable ROM operated successfully for several weeks under normal operating conditions

  1. Physics design of heavy-ion irradiation beam line on HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Zhu Fei; Peng Zhaohua; Hu Yueming; Jiao Xuesheng; Chen Dongfeng; Cao Yali

    2014-01-01

    Background: Heavy-ion microporous membrane is a new kind of filter material, which has prosperous application in the fields of medical and biological agents, electronic, food, environmental science, materials science, etc. Purpose: Polyester membranes were irradiated with 32 S produced by HI-13 tandem accelerator to develop a microporous membrane at CIAE, and the irradiation uniformity is determined by the beam distribution, also the microporous uniformity is required higher than 90%. Methods: An octupole magnet was used to correct the beam distribution from Gauss to uniform. Meanwhile, main parameters of beam line were given, and the alignment tolerances for optical elements were also analyzed. Results: Alignment tolerance of the optical elements could cause great influence on the beam center deviation in the process of correction, which would destroy the irradiation uniformity. Steering magnet was applied to meet with the design requirements. Conclusion: This study provides a practical and feasible way for industrial production of heavy-ion microporous membrane. (authors)

  2. JAERI tandem, linac and V.D.G. annual report 1984

    International Nuclear Information System (INIS)

    Shikazono, Naomoto; Iizumi, Masashi; Ishii, Mitsuhiko; Kawarasaki, Yuuki; Murayama, Michio; Okashita, Hiroshi; Ozawa, Kunio; Suto, Yoichi

    1985-07-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1984 to March 31, 1985. Summary reports of 53 papers, publications, personnel and a list of cooperative researches with universities are contained. (author)

  3. JAERI tandem, linac and V.D.G. annual report 1987

    International Nuclear Information System (INIS)

    1988-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1987 to March 31, 1988. Summary reports of 49 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  4. JAERI TANDEM, LINAC and V.D.G. annual report 1989

    International Nuclear Information System (INIS)

    1990-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1989 to March 31, 1990. Summary reports of 49 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  5. JAERI Tandem, LINAC and V.D.G. annual report 1986

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1986 to March 31, 1987. Summary reports of 55 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  6. JAERI tandem, LINAC and V.D.G. annual report 1988

    International Nuclear Information System (INIS)

    1989-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1988 to March 31, 1989. Summary reports of 45 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  7. JAERI TANDEM, LINAC and V.D.G. annual report, 1985

    International Nuclear Information System (INIS)

    1986-08-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1985 to March 31, 1986. Summary reports of 52 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  8. The 16-MV pelletron accelerator at NSC

    International Nuclear Information System (INIS)

    Narayanan, M.M.; Chopra, S.; Kanjilal, D.

    1994-01-01

    A 15-UD 16-MV Pelletron accelerator was commissioned at Nuclear Science Centre (NSC) in July 1991. It is a large tandem Van de Graaff type electrostatic accelerator capable of accelerating almost any ion beam from hydrogen to uranium to energies from a few tens of MeV (Million electron Volts) to hundreds of MeV. The availability of the various beams having widely variable energy, good energy resolution and excellent quality makes this accelerator an extremely versatile machine. This gives rise to the possibilities of basic and applied research in various disciplines of science. The principle of operation of a tandem accelerator and the salient features of the accelerator system at NSC are described. (author). 2 refs., 4 figs

  9. JAEA-Tokai tandem annual report 2012. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Tsukada, Kazuaki; Koura, Hiroyuki

    2014-03-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator and superconducting booster from April 1, 2012 to March 31, 2013. Thirty-one summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  10. Beam trajectories through the upgraded XTU tandem

    International Nuclear Information System (INIS)

    Guan Xialing

    1988-01-01

    The paper deals with a problem applicable to all electrostatic accelerators with inclined field accelerating tubes, how the trajectory of the central beam particle is affected if one of the accelerating gaps must be shorted out due to insulator failure. For the long tube of the Legnaro XTU tandem the effect of each accelerator gap is calculated and a method of compensation either by shorting out an appropriate gap with reversed incline or by appropriately steering the beam into the entrance of the low energy tube is given. (orig.)

  11. JAEA-Tokai tandem annual report 2009. April 1, 2009 - March 31, 2010

    International Nuclear Information System (INIS)

    Matsuda, Makoto; Takeuchi, Suehiro

    2010-12-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2009 to March 31, 2010. Fifty-seven summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. The fifty-seven summary reports are indexed individually. (J.P.N.)

  12. JAEA-Tokai tandem annual report 2008. April 1, 2008 - March 31, 2009

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Chiba, Satoshi; Mitsuoka, Shinichi

    2009-11-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2008 to March 31, 2009. Fifty-five summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. The fifty-five summary reports are indexed individually. (J.P.N.)

  13. Beam transport calculations for the EN tandem installation

    International Nuclear Information System (INIS)

    Sparks, R.J.

    1980-12-01

    Transport of a charged particle beam through the new EN tandem accelerator installation of the Institute of Nuclear Sciences has been analysed using simplified mathematical models. The purpose is to identify the factors affecting transmission of the beam, and to arrive at a design for the system to inject the beam into the accelerator

  14. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Science.gov (United States)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  15. New heavy-ion accelerator facility at Oak Ridge

    International Nuclear Information System (INIS)

    Stelson, P.H.

    1974-01-01

    Funds were obtained to establish a new national heavy-ion facility to be located at Oak Ridge. The principal component of this facility is a 25-MW tandem designed specifically for good heavy-ion acceleration, which will provide high quality beams of medium weight ions for nuclear research by itself. The tandem beams will also be injected into ORIC for additional energy gain, so that usable beams for nuclear physics research can be extended to about A = 160. A notable feature of the tandem is that it will be of the ''folded'' type, in which both the negative and positive accelerating tubes are contained in the same column. The accelerator system, the experimental lay-out, and the time schedule for the project are discussed

  16. Present status of the negative ion sources and injectors at JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Minehara, E.; Yoshida, T.; Abe, S.

    1988-01-01

    The JAERI tandem accelerator began regular operation with the 350 kV negative ion jnjector and 3 kinds of nagative ion sources (Direct Extraction Duoplasmatron Ion Source, Heinickie Penning Ion Source, Negative Ion Sputter Source (Refocus-UNIS)) since 1982. An extension with the injector was constructed in 1984, (1) to increase reliability of all devices in the injector, (2) to exclude completely any unsafe operation in the injector, and (3) to tune several ion sources simultaneously, while a certain ion source is in operation. After the extended injector became available, we have been able to run the whole injector system very safely, steadily and effectively, and have had few troubles. Currently, the second injector has been constructed in order to obtain a full strength of resistance against any sudden troubles in the injector. Several other operational and developmental items will be discussed in the text briefly. (author)

  17. Annual Report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1978-01-01

    In 1977, 12 UD Pelletron tandem accelerator has been operated by the University's researchers and engineers. Except for the tank opening for regular inspection we met twice the troubles which forced to change the accelerating tube. The experiences teach us that it needs about 20 days to finish the conditioning after changing the accelerating tube. A sputter ion source of new version is now being installed on the top floor. Two devices for the detection of X-rays were tested. An apparatus for bombardment of samples in air for biological and medical sciences has been successfully used. The subjects of researches on nuclear physics cover the light-ion reactions, heavy-ion reactions and nuclear spectroscopy. A special emphasis has been put on the measurements on vector- and tensor-analyzing powers in the light-ion reactions, because of a higher efficiency of the polarized ion source. Elaborate works on the heavy-ion reactions including the angular correlation patterns and excitation functions have been made in parallel. Papers of these works are now being prepared, a few having been published already. Moreover, in the University of Tsukuba, a new research system, called Special Research Project on Nuclear and Solid State Sciences Using Accelerated Beams (Nuclear and Solid State Research Project) started in 1978 and will continue for five years. In this research project, researchers from various Institutes in the University of Tsukuba, as well as visiting researchers from other institutions in Japan and from abroad, participate. Using a variety of accelerated beams, i.e. of heavy, light and polarized beams, this research project aims mainly at the high excitation, short life, transient and inhomogeneous states both in nuclear and extra-nuclear world. It covers both fundamental research in nuclear, atomic and solid state sciences as well as their application in various fields. (J.P.N.)

  18. JAEA-Tokai tandem annual report 2013. April 1, 2013 - March 31, 2014

    International Nuclear Information System (INIS)

    Osa, Akihiko; Nishio, Katsuhisa; Tsukada, Kazuaki; Ishikawa, Norito; Toh, Yosuke; Koura, Hiroyuki; Ohkubo, Nariaki; Matsuda, Makoto

    2016-12-01

    The Japan Atomic Energy Agency (JAEA)-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator and superconducting booster from April 1, 2013 to March 31, 2014. Thirty-one summary reports were categorized into seven research/development fields: (1) accelerator operation, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  19. Status of the Catania tandem as injector of the superconducting cyclotron

    International Nuclear Information System (INIS)

    Ciavola, G.; Cuttone, G.; Raia, G.

    1990-01-01

    The Catania LNS tandem facility is operating since 1984. The status and the main modifications of the accelerator during these years are described and the performance obtained is reported. A superconducting cyclotron will be installed at the LNS facility as tandem booster; the main progress is presented. (orig.)

  20. Single atom counting with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Woelfli, W [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1984-02-01

    Direct detection of radioisotopes with conventional mass spectrometers is possible when the potential background atoms, in particular stable isotopes of the same mass (isobars) or molecules of similar mass are present in sufficiently low concentrations. Most of the long lived radioisotopes of interest for dating purposes however, occur in such small concentrations that their peak in the mass spectrum is obscured by the stable isobar and molecule distributions. The key idea of the new AMS technique which allows us to measure directly such small concentrations is the acceleration of the sample atoms to MeV energies and to use various filter processes and particle identification techniques developed for nuclear physics research to eliminate the isobaric and molecular interferences. The detection methods used for each radioisotope depend on the dominant background atoms and these in turn depend on the specific accelerator used. The problems encountered in transforming an existing particle accelerator into a high precision dating tool are considerable and have been solved only recently for one type of accelerator, notably the tandem Van de Graaff. For this reason the description of the AMS method and some of its applications is restricted to this type of accelerator only.

  1. The transmission theory of electrostatic analyzer in six dimensional phase space and the concept design of a supersensitive mass spectrometer beam line for HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Guan Xialing; Cao Qingxi; Zhang Jie; Ye Jingping

    1986-01-01

    It follows from the motion equations of charged particle in curvilinear coordinates system that the transfer matrix of electrostatic analyzer was derived in six dimensional phase space. In accordance with these matrixes, the concept design of the supersensitive mass spectrometer beam line for HI-13 tandem accelerator was calculated

  2. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pkb@iuac.res.in [Inter-University Accelerator Center (IUAC), New Delhi (India); Chopra, S. [Inter-University Accelerator Center (IUAC), New Delhi (India); Pattanaik, J.K. [Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, WB (India); Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D. [Inter-University Accelerator Center (IUAC), New Delhi (India)

    2015-10-15

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for {sup 10}Be and {sup 26}Al with all the modern facilities has also been developed for the chemical processing of samples. {sup 10}Be measurements on sediment samples, inter laboratory comparison results and {sup 26}Al measurements on standard samples are presented in this paper. In addition to the {sup 10}Be and {sup 26}Al AMS facilities, a new {sup 14}C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  3. Present and future prospects of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Kutschera, W.

    1987-04-01

    Accelerator Mass Spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and man-made (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotope are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, minerals exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS are discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators

  4. Argonne National Laboratory 1980-1981 tandem-linac accelerator report

    International Nuclear Information System (INIS)

    Hartog, P.D.; Pardo, R.; Munson, F.; Heath, C.

    1981-01-01

    Performance of the facility is discussed. The FN tandem Van de Graaff is now used as an injector for the superconducting linac; heavy-ion beams are being injected. Stripper foil development is described, with fabrication by arc evaporation and by RF discharge compared. Facility modifications, such as the control room, are discussed

  5. Heavy ion acceleration at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1989-01-01

    The Brookhaven AGS is alternating gradient synchrotron, 807 meters in circumference, which was originally designed for only protons. Using the 15 MV Brookhaven Tandem Van de Graaff as an injector, the AGS started to accelerate heavy ions of mass lighter than sulfur. Because of the relatively poor vacuum (∼10 -8 Torr), the AGS is not able to accelerate heavier ions which could not be fully stripped of electrons at the Tandem energy. When the AGS Booster, which is under construction, is completed the operation will be extended to all species of heavy ions including gold and uranium. Because ultra-high vacuum (∼10 -11 Torr) is planned, the Booster can accelerate partially stripped elements. The operational experience, the parameters, and scheme of heavy ion acceleration will be presented in detail from injection to extraction, as well as future injection into the new Relativistic Heavy Ion Collider (RHIC). A future plan to improve intensity of the accelerator will also be presented. 5 figs., 4 tabs

  6. Heavy-atom neutral beams for tandem-mirror end plugs

    International Nuclear Information System (INIS)

    Post, D.E.; Grisham, L.R.; Santarius, J.F.; Emmert, G.A.

    1981-05-01

    The advantages of neutral beams with Z greater than or equal to 3 formed from negative ions, accelerated to 0.5 to 1.0 MeV/amu, and neutralized with high efficiency, are investigated for use in tandem mirror reactor end plugs. These beams can produce Q's of 20 to 30, and thus can replace the currently proposed 200 to 500 keV neutral proton beams presently planned for tandem mirror reactors. Thus, these Z greater than or equal to 3 neutral beams increase the potential attractiveness of tandem mirror reactors by offering a substitute for difficult high energy neutral hydrogen end plug beams

  7. JAERI tandem annual report 2002. April 1, 2002 - March 31, 2003

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Oshima, Masumi; Ishii, Tetsuro; Nagame, Yuichiro; Chiba, Satoshi; Sataka, Masao

    2003-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 2002 to March 31, 2003. Summary reports of 54 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  8. JAERI TANDEM annual report 2000. April 1, 2000 - March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Chiba, Satoshi; Nagame, Yuichiro; Sataka, Masao; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (eds.)

    2001-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 2000 to March 31, 2001. Summary reports of 46 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  9. JAERI tandem annual report 2001. April 1, 2001 - March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Chiba, Satoshi; Nagame, Yuichiro; Sataka, Masao; Iwamoto, Akira (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 2001 to March 31, 2002. Summary reports of 48 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  10. JAERI tandem annual report 1999. April 1, 1999 - March 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1999 to March 31, 2000. Summary reports of 49 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  11. From moon stones to simulation - More than 40 years of experiments on the 7 MV tandem accelerator at Cea/Dam Ile de France; Des pierres de lune a la simulation - Plus de 40 ans d'experiences aupres de l'accelerateur Van de Graaff tandem 7 MV CEA/DAM Ile de France

    Energy Technology Data Exchange (ETDEWEB)

    Bauge, E.; Bersillon, O.; Couillaud, Ch.; Daugas, J.M.; Flament, J.L.; Frehaut, J.; Haouat, G.; Joly, S.; Laborie, J.M.; Ledoux, X.; Marmouget, J.G.; Patin, Y.; Poncy, J.L.; Sigaud, J.; Varignon, C

    2009-07-01

    Following the decommissioning of the 7 MV tandem accelerator of CEA/DAM by the end of 2007, the present report relates the history of the accelerator from its beginning in the sixties and then the nuclear physics studies on fission, (x,xn) reactions, elastic and inelastic scattering, etc and other studies in microelectronics, biology, etc) performed with that installation. (authors)

  12. Heavy-ion research at the tandem and superconducting linac accelerators

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The heavy-ion research program at the Argonne Physics Division is principally aimed at the study of nuclear structure and its manifestation in heavy-ion induced nuclear reactions. In order to extract information on nuclear structure, measurements with high precision often need to be performed. Such measurements are now carried out at the tandem-linac accelerator over a wide energy range. The investigation of high-spin states near the yrast line has provided much new information on the behavior of nuclei at high angular momentum. Argonne work has concentrated on nuclei where high-spin isomers, the so-called yrast traps, are prevalent. The resonance effects observed previously in the 24 Mg( 16 O, 12 C) 28 Si reactions have been further explored through both additional measurements and a new quantitative method of analysis. The measurements were extended in energy and angular range and to various exit channels as well as similar systems. Several measurements were performed to investigate the reaction mechanisms in heavy-ion induced reactions and to map out the distribution of reaction strength as a function of energy and target-projectile masses energy regions previously not accessible. The behavior of the quasi- and deep-inelastic reaction cross sections was studied as a function of energy for medium-heavy systems, the production of inclusive alpha-particle yields for 16 O beams at energies E/A greater than or equal to 5 MeV/nucleon, and excitation functions, mass and kinetic energy distributions for heavy-ion induced fusion-fission reactions

  13. Beam emittance of the Stony Brook Tandem-LINAC booster

    International Nuclear Information System (INIS)

    Scholldorf, A.H.

    1984-01-01

    This dissertation is primarily a study of the longitudinal and transverse beam emittance of the Stony Brook Heavy Ion Tandem LINAC Accelerator Facility, with a secondary emphasis on the beam dynamical design of two key elements of the system: a low energy double-drift buncher, and an achromatic double-90 0 LINAC injection system. A transverse emittance measuring system consisting of two translation stages controlled by stepper motors is described. Each stage carried a pair of beam defining slits mounted so that both horizontal and vertical emittances could be measured with only linear motion of the stage assembly. Beam currents were measured directly by a low-noise, high-sensitivity electrometer circuit integrated with the second slit-stage assembly. A mini-computer controlled the motors and acquired and displayed the data. Transverse emittance areas of beams of 12 C, 16 O, 32 S, and 58 Ni were measured at ion source extraction potential, after ion source acceleration, after tandem acceleration, and after LINAC acceleration. The results were analyzed in terms of source sputter-cone geometry, angle straggling in gas and foil strippers, and a variety of other factors

  14. Summary report on large HVEC accelerators

    International Nuclear Information System (INIS)

    Thieberger, P.

    1981-01-01

    The main features are described of the ten presently operating large HVEC tandem accelerators and of four additional HVEC accelerators which are in different stages of testing, construction or planning. Present performance characteristics are discussed as well as available information about long term reliability. Some recent improvements are mentioned and comparisons are drawn for acceleration tube gradients in various different configurations and accelerators. Finally, some possible future developments are indicated

  15. Physics and technical development of accelerators

    International Nuclear Information System (INIS)

    2000-03-01

    About 90 registered participants delivered more than 40 scientific papers. A great part of these presentations were of general interest about running projects such as CIME accelerator at Ganil, IPHI (high intensity proton injector), ESRF (European source of synchrotron radiation), LHC (large hadron collider), ELYSE accelerator at Orsay, AIRIX, and VIVITRON tandem accelerator. Other presentations highlighted the latest technological developments of accelerator components: superconducting cavities, power klystrons, high current injectors..

  16. Accelerator mass spectrometry of the heaviest long-lived ...

    Indian Academy of Sciences (India)

    A 3-MV pelletron tandem accelerator is the heart of the Vienna environmental research accelerator (VERA). ... Vienna Environmental Research Accelerator, Institute for Isotopic Research and Nuclear Physics, University of Vienna, A-1090 Vienna, Austria; Russian Research Center, “Kurchatov Institute”, Institute of Nuclear ...

  17. Tandem Accelerator Laboratory annual report 1979

    International Nuclear Information System (INIS)

    Xenoulis, A.C.

    1980-01-01

    The activities presented cover the following topics: heavy ion reactions, gamma ray spectroscopy, applied atomic and nuclear physics, theoretical nuclear physics, data collection and processing, accelerator operation, as well as personnel and publications. (T.A.)

  18. Tandem Accelerator Laboratory annual report 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The activities presented cover the following topics: heavy ion reactions, gamma ray spectroscopy, applied atomic and nuclear physics, theoretical nuclear physics, data collection and processing, accelerator operation, as well as personnel and publications. (T.A.)

  19. Tandem Accelerator Laboratory annual report 1980

    International Nuclear Information System (INIS)

    Anagnostatos, G.S.

    1981-01-01

    The activities presented cover the following topics: heavy ion reactions, gamma ray spectroscopy, applied atomic and nuclear physics, theoretical nuclear physics, data collection and processing development, accelerator operation, as well as personnel and publications. (T.A.)

  20. Distributed control system for NSC tandem-LINAC

    International Nuclear Information System (INIS)

    Ajith Kumar, B.P.; Subrahmaniam, E.T.; Singh, Kundan

    2001-01-01

    The new control system for the tandem-LINAC accelerator system at Nuclear Science Centre (NSC), runs on a network of Pentiums under the LINUX operating system. Some of the computers are interfaced to the devices of the accelerator, using CAMAC, and run a server program. On the same network there are machines providing the operator interface, by running the client program. The client computers use the x-window graphics and shaft encoder knobs interfaced to them to provide the operator interface. The system supports the monitoring and controlling of all the accelerator parameters including the beam profile monitors, from any of the clients. (author)

  1. Annual report of the Tandem Accelerator Center, University of Tsukuba. April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    1995-10-01

    During the period from April 1994 to March 1995, the tandem accelerator was operated successfully to provide sufficient beam time for experiments. The following research activities are described in this annual report: 1)nuclear reaction studies aiming at the (p, n) threshold effect on the elastic scattering of protons on light nuclei, the measurement of the cross section of non-resonant breakup of 7 Li, the establishment of a new analyzing-power standard by the 12 C(d vector, p) 13 C reaction and the evaluation of the fission time scale for a hot compound nucleus; 2)nuclear structure physics by means of in-beam γ ray spectroscopy; 3)theoretical studies on nuclear collective motions and the structure of odd-odd nuclei; 4)radiation effects of low energy deuterons in silicon; 5)dynamics of collisions between heavy ions and C 60 clusters; 6)detailed investigation of the lattice disorder and some other properties of the surface of solid by ion-induced secondary electron spectroscopy; 7)the migration mechanism of self interstitial atoms by the measurement of internal friction for W specimens after the proton bombardment at low temperature; 8)Moessbauer studies on Fe/MgF 2 thin films; 9)the mechanism of phase transition and electron transport phenomena by NMR method; 10)elemental analyses by PIXE, ion luminescence and Rutherford back scattering; 11)tests of 14 C measurement for geophysical samples by accelerator mass spectrometry. In addition to these research works, the constructions of the ion source dedicated to the accelerator mass spectrometry and the irradiation system for PIXE with beams of submillimeter size have been continued as new technical developments. (J.P.N.)

  2. Status of the Cracow electrostatic accelerator project

    International Nuclear Information System (INIS)

    Hebenstreit, J.R.; Kopczynski, J.P.

    1981-01-01

    The range of nuclear reaction measurements and applied interdisciplinary research performed earlier with accelerated particles in this Institute were strongly limited the accelerators being at disposal: an open air 1 MV Van de Graaff generator in the Jagellonian University and the cyclotron U-120 in the neighboring Institute of Nuclear Physics. Due to financial problems connected with buying a new ready accelerator, an approval was obtained for carrying out a detailed design study on condition that the accelerator should be constructed in the Institute and should be built of construction elements accessible in Poland. Having obtained the final approval of the project - tandem accelerator with 5 MV pressurized Van de Graaff generator, the construction was started in 1980. The investment period should be finished in 1982 with a single ended 5 MV accelerator. Simultaneously, the calculations and preparation for a tandem mode was begun. The gas handling system has just been made by the home industry and should be mounted and tested in 1981. The reconstruction of the building should be performed in the same time

  3. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1981-01-01

    During the academic year 1980 - 1981, the 12 UD Pelletron tandem accelerator in UTTAC has experienced several troubles. The accelerator tank had to be opened six times including the scheduled overhaul. Due to these troubles, both the beam time and the chain operation time were reduced by 20% as compared with the preceding year. However, the beam pulsing system was completed, and pulsed beam has been in use. The polarized ion source and the sputter ion source have worked well. A heavy ion booster with interdigital H-structure was designed, and has been under construction. Special efforts have been exerted on the detectors and detector systems. The examples of the achievements mainly associated with the Nuclear and Solid State Research Project are enumerated as follows. The complete experiment on d-p system provided the data on nuclear three body problem. The information about the mechanism of two-nucleon transfer reaction (p,t) was obtained. The mechanisms of (p,p) and (p,d) reactions were clarified. The experiment on the measurement of the magnetic moment of β-emitting products with polarized beam began. The properties of very highly excited states were clarified by the study of heavy ion-induced reactions. A new model for heavy ion fusion reaction was proposed. The mechanism of inner shell ionization was clarified by passing heavy ions through solids. (Kako, I.)

  4. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1980-01-01

    This is the fifth annual report of the Tandem Accelerator Center, as well as the third of the Nuclear and Solid State Research Project at the University of Tsukuba. It contains the short descriptions of the activities during the period from April, 1979, to March, 1980. The 12 UD Pelletron has worked well and was utilized over 2900 hours as the time of beam on targets. The performance of the polarized ion source has been quite good, and it produced the beams of polarized protons and deuterons as well as of alpha particles. The sputter ion source (TUNIS) replaced the direct extraction duoplasmatron in most cases, and it produced the beams of isotopes of O, F, Si, Cl, Ni, Cu, etc., without gas injection. The construction of the second measuring room has been completed, and four beam courses are equipped with a general purpose scattering chamber, the devices for perturbed angular correlation, inner and outer shell ionization, and biological studies. The beam pulsing system was installed on the accelerator, and will be in operation soon. Further efforts have been made to develop detection and data processing systems. The examples of the recent researches mainly under the program of the NSSRP in various fields are enumerated. The exchange and collaboration with other institutions were active. (Kako, I.)

  5. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  6. The NSC 16 MV tandem accelerator control system

    International Nuclear Information System (INIS)

    Ajith Kumar, B.P.; Kannaiyan, J.; Sugathan, P.; Bhowmik, R.K.

    1994-01-01

    The computerized control system for the 16 MV Pelletron accelerator at the Nuclear Science Centre runs on a PC-AT 386 computer. Devices in the accelerator are interfaced to the computer by using a CAMAC Serial Highway. The software, written in C, is Database oriented and supports many features useful for the accelerator operation. The control console consists of an EGA monitor, keyboard, assignable control knobs and meters, a diagrammatic display showing the overall status of the machine and a similar panel for showing the status of radiation safety interlocks. The system has been operational for the past three years and is discussed below. (orig.)

  7. Sao Paulo pelletron accelerator: fortieth anniversary

    International Nuclear Information System (INIS)

    Pereira, Dirceu

    2012-01-01

    Full text: This year the 8MV Sao Paulo Pelletron tandem accelerator completes 40 years . This electrostatic accelerator was installed in the Sao Paulo University in 1972 , and it was the first of this model constructed the National Electrostatic Corporation with several innovations particularly with respect to the new concept of accelerator tube and the charge system. In the talk will be discussed the performance of the accelerator during all these years and the main result scientific results. (author)

  8. Sao Paulo pelletron accelerator: fortieth anniversary

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Dirceu [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This year the 8MV Sao Paulo Pelletron tandem accelerator completes 40 years . This electrostatic accelerator was installed in the Sao Paulo University in 1972 , and it was the first of this model constructed the National Electrostatic Corporation with several innovations particularly with respect to the new concept of accelerator tube and the charge system. In the talk will be discussed the performance of the accelerator during all these years and the main result scientific results. (author)

  9. Pelletron accelerator at Panjab University Chandigarh

    International Nuclear Information System (INIS)

    Singh, Nirmal; Mehta, Devinder

    2006-01-01

    The purpose of pelletron accelerator at Panjab University is to develop a low-energy accelerator laboratory within the university infrastructure. It will be housing a tandem electrostatic accelerator. The facility will bring together the available scientific expertise from a wide range of applications, viz. medical, biological and physical sciences and engineering that utilize accelerator-based technologies and techniques. It will play an important role in promoting integrated research and education across scientific disciplines available in the campus. (author)

  10. Reconditioning of the Cologne tandem after a fire at the ion source

    International Nuclear Information System (INIS)

    Dewald, A.; Steinert, L.

    1988-01-01

    In summer 1984 a fire broke out at the duoplasmatron ion source on the Cologne tandem accelerator. HCl from burnt PVC caused enormous damage by corrosion. After reconditioning the accelerator and following some improvements it was possible to operate the tandem more reliably at 9.5 MV than previously at 8 MV. Work is in progress to rebuild the injector in order to replace the inhomogeneous voltage divider at the entrance of the first tube by a homogeneous one. In addition a 90 0 injector with injection energy increased from 80 keV to 180 keV is planned. Since 1986 the Rossendorf sputter source MISS-483 has been in standard operation. (orig.)

  11. Technical aspects of 3MV particle accelerator at GGV Bilaspur

    International Nuclear Information System (INIS)

    Mallik, C.

    2013-01-01

    The accelerator at GGV, Bilaspur is a 3 MV pelletron operating is Tandem mode. The talk will describe the technical aspects of the accelerator. It will also discuss the beam aspects of the pelletron and the feasibility options with the accelerator. (author)

  12. The 12UD Pelletron accelerator at the University of Tsukuba

    International Nuclear Information System (INIS)

    Seki, S.; Furuno, K.; Ishihara, T.; Nagashima, Y.; Yamanouchi, M.; Aoki, T.; Mikumo, T.; Sanada, J.; Tsukuba Univ., Sakura, Ibaraki

    1981-01-01

    The 12 UD Pelletron installed at the Tandem Accelerator Center of the University of Tsukuba has been in operation for nearly four years. The installation of the accelerator is described and the operational experience with the accelerator and associate facilities are summarized. (orig.)

  13. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  14. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  15. Major maintenance of the Munich MP-tandem

    International Nuclear Information System (INIS)

    Muenzer, H.; Carli, W.; Hartung, P.; Jakob, H.; Nocker, H.; Rohrer, L.; Schnitter, H.; Assmann, W.; Maier, H.J.; Machlitt, N.; Steffens, H.

    1988-01-01

    Several measures have been taken to restore the voltage performance of the Munich tandem. 1. All accelerator tubes were reconditioned by sandblasting, new electrodes and diaphragms were inserted and preassembled groups of tubes were baked in high vacuum. 2. All other vacuum components were cleaned, baked in high vacuum and partly pressure leak tested outside the tandem. 3. High voltage tests were performed with tubes. Without portico voltages up to 16 MV were obtained, with portico up to 17.5 MV. 4. Some modifications (e.g. infrared light links) were introduced. The shutdown lasted 6 months. In March 1987 beam operation was resumed at moderate terminal voltages, interrupted by intervals of soft conditioning. (orig.)

  16. Report of the third seminar on nuclear physics at the energy region of the JAERI tandem-booster accelerator February 27-28, 1992, Tokai, Japan

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Oshima, Masumi; Ikezoe, Hiroshi; Nagame, Yuichiro; Shinohara, Nobuo

    1992-09-01

    A seminar on new experiments to be studied and new experimental apparatus suitable for the JAERI tandem-booster accelerator being under construction was held at Tokai Research Establishment of JAERI in the period from February 27 to 28, 1992. Sixty eight participants from universities and from JAERI attended to discuss the following items: 1. Physics at low temperature, 2. Nuclear structure at high spin and at high excitation energy, 3. Application of unstable beam and their spectroscopy, 4. Nuclear reaction at intermediate energy, 5. New facilities. (author)

  17. Heavy-ion acceleration with a superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a 19 F beam from the tandem, and by September 1978 a 5-resonator linac provided an 16 O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs

  18. JAERI TANDEM, LINAC and V.D.G. annual report 1990. April 1, 1990 - March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1990 to March 31, 1990. Summary reports of 38 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  19. JAERI TANDEM, LINAC and V.D.G. annual report 1991 April 1, 1991 - March 31, 1992

    International Nuclear Information System (INIS)

    1992-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1991 to March 31, 1992. Summary reports of 44 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  20. The pressure vessel for the NSF tandem

    International Nuclear Information System (INIS)

    Jones, C.W.

    1979-04-01

    The pressure vessel is a major component of the 30 MV tandem Van de Graaff electrostatic accelerator to be used in nuclear structure research at Daresbury Laboratory. The accelerator will be capable of accelerating the full range of ions in the form of a beam. Acceleration takes place in a vertical evacuated tube (beam tube) by means of a high potential on a terminal at the central position, the terminal and beam tube assembly being supported by an insulated stack structure within the pressure vessel. Under operating conditions the vessel is filled with sulphur hexafluoride gas (SF 6 ) at high pressure which acts as an insulating medium between the centre terminal and the vessel wall. The vessel is situated inside a concrete tower which besides supporting the injector room above the vessel also acts as radiation shielding around the accelerator. The report covers: functional requirements; fundamental considerations with regard to the design and procurement; detail design; materials; manufacture; acceptance test; surface treatment; final leak test. (U.K.)

  1. Analysis of vitamin K-1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization

    DEFF Research Database (Denmark)

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-01-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K-1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass...... spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot...

  2. Vivitron - A 35 MV Van de Graaff tandem. Design, performance, charge transport system

    International Nuclear Information System (INIS)

    Letournel, M.; Helleboid, J.M.; Bertein, H.

    1985-01-01

    This paper describes a new configuration for an electrostatic tandem accelerator. The project of the Strasbourg Nuclear Center is a 35 MV Van de Graaff tandem, in fact a new design in that field. The general features of the machine and its associated electrostatic field are described. The machine is designed to minimise energy dissipation within the accelerator column in the event of electrical breakdown. This is discussed as also insulator and conductor designs. Charge transport system is a particular field. The choice of a belt system and its design result from specific studies carried out at the C.R.N. with reference to the electrostatics of solid and gaseous insulations [fr

  3. Present and future prospects of accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, W

    1988-05-20

    Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10/sup -10/ to 10/sup -15/ relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10/sup 2/ to 10/sup 8/ years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned field. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  4. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  5. Report of the joint seminar on solid state physics, atomic and molecular physics, and materials science in the energy region of tandem accelerators

    International Nuclear Information System (INIS)

    Kazumata, Yukio

    1993-01-01

    The joint seminar on Solid State Physics, Atomic and Molecular Physics and Materials Science in the Energy Region of Tandem Acceleration was held at Tokai Research Establishment of JAERI, for two days from January 22 to 23, 1991. About 60 physicists and material scientists participated and 18 papers were presented in this seminar. The topics presented in this seminar included lattice defects in semiconductors, ion-solid collisions, atomic collisions by high energy particles, radiation effects on high T c superconducting materials and FCC metals, radiation effects on materials of space and fusion reactors, uranium compounds and superlattice. (J.P.N.)

  6. Installation and Preliminary Test of the Ion Accelerator for the Surface Analysis at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Il; Ahn, Tae Sung; Seo, Dong Hyuk; Kwon, Hyeok Jung; Kim, Cho Rong; Park, Jun Kue; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An electrostatic tandem accelerator, which had been operating over 25 years at KIGAM (Korea Institute of Geoscience and Mineral Resources), is moved to KOMAC (Korea Multi-purpose Accelerator Complex) last year. For the purpose of supplying the qualified and quantified data from the irradiated species as part of the user service of KOMAC. The accelerator is a pelletron with tandem type. The ion accelerator for surface analysis was moved at KOMAC last year. The installation with alignment was done. The conditioning of high voltage was operated up to 1.7 MV. The beam transmission to PIXE beam line was achieved as 51%.

  7. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  8. JAERI TANDEM and V.D.G. annual report 1992 April 1, 1992 - March 31, 1993

    International Nuclear Information System (INIS)

    1993-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1992 to March 31, 1993. Summary reports of 41 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  9. JAERI TANDEM and V.D.G. annual report 1994. April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    Suzuki, Yasuo; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Shinohara, Nobuo; Takeuchi, Suehiro; Shoji, Tokio; Okabe, Takashi

    1995-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1994 to March 31, 1995. Summary reports of 47 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  10. JAERI tandem and V.D.G. annual report 1997. April 1, 1997 - March 31, 1998

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Chiba, Satoshi; Sataka, Masao; Nagame, Yuichiro; Takemori, Satoshi; Iwamoto, Akira

    1998-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1997 to March 31, 1998. Summary reports of 40 papers, and lists of publication, personnel and cooperative researches with universities are contained. (author)

  11. JAERI tandem and V.D.G. annual report 1998. April 1, 1998 - March 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1998 to March 31, 1999. Summary reports of 38 papers, and lists of publication, personnel and cooperative research with universities and contained. (author)

  12. JAERI tandem and V.D.G. annual report 1993. April 1, 1993 - March 31, 1994

    International Nuclear Information System (INIS)

    Suzuki, Yasuo; Ikezoe, Hiroshi; Iwamoto, Akira; Kazumata, Yukio; Shinohara, Nobuo; Takeuchi, Suehiro; Okabe, Takashi

    1994-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1993 to March 31, 1994. Summary reports of 43 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  13. JAERI TANDEM and V.D.G. annual report 1995. April 1, 1995 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Nagame, Yuichiro; Shoji, Tokio; Okabe, Takashi; Maekawa, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; eds.

    1996-08-01

    This annual report describes research activities which have been performed with the JAERI Tandem accelerator and the Van de Graaff accelerator from April 1, 1995 to March 31, 1996. Summary reports of 59 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  14. JAERI TANDEM and V.D.G. annual report 1996. April 1, 1996 - March 31, 1997

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Nagame, Yuichiro; Shoji, Tokio; Okabe, Takashi; Maekawa, Hiroshi

    1997-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaf accelerator from April 1, 1996 to March 31, 1997. Summary reports of 48 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  15. JAERI TANDEM and V.D.G. annual report 1994. April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Shinohara, Nobuo; Takeuchi, Suehiro; Shoji, Tokio; Okabe, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; eds.

    1995-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1994 to March 31, 1995. Summary reports of 47 papers, and list of publications, personnel and cooperative researches with universities are contained. (author).

  16. Folded tandem ion accelerator facility at Trombay

    Indian Academy of Sciences (India)

    In the present system, negative ion beams extracted from the SNICS-II source are pre- accelerated up to 150 keV. ..... of PCs with a front-end interface using CAMAC instrumentation and uses QNX real time operating system. There are large ...

  17. Accelerator Mass Spectrometry at the Nuclear Science Laboratory: Applications to Nuclear Astrophysics

    Science.gov (United States)

    Collon, P.; Bauder, W.; Bowers, M.; Lu, W.; Ostdiek, K.; Robertson, D.

    The Accelerator Mass Spectrometry (AMS) program at the Nuclear Science Laboratory of the University of Notre Dame is focused on measurements related to galactic radioactivity and to nucleosynthesis of main stellar burning as well as the production of so called Short-Lived Radionuclides (SLRs) in the Early Solar System (ESS). The research program is based around the 11MV FN tandem accelerator and the use of the gas-filled magnet technique for isobar separation. Using a technique that evolved from radiocarbon dating, this paper presents a number of research programs that rely on the use of an 11MV tandem accelerator at the center of the AMS program.

  18. Operational experience of the ATLAS accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P K; Bogaty, J M; Bollinger, L M; Clifft, B E; Craig, S L; Harden, R E; Markovich, P; Munson, F H; Nixon, J M; Pardo, R C; Phillips, D R; Shepard, K W; Tilbrook, I R; Zinkmann, G P [Argonne National Lab., IL (USA). Physics Div.

    1990-02-01

    The ATLAS accelerator consists of a HVEC model FN tandem accelerator injecting into a linac of independently-phased niobium superconducting resonators. The accelerator provides beams with masses 6 {le} A {le} 127 and with energies ranging up to 20 MeV/A for the lightest ions and 4 MeV/A for the heaviest ions. Portions of the linac have been in operation since 1978 and, over the last decade, more than 35000 h of operating experience have been accumulated. The long-term stability of niobium resonators, and their feasibility for use in heavy-ion accelerators is now well established. (orig.).

  19. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  20. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  1. Present status of the Kyushu University accelerator facility

    International Nuclear Information System (INIS)

    Mitarai, Shiro; Maeda, Toyokazu; Koga, Yoshihiro

    2001-01-01

    A large diameter gas stripper was developed and incorporated to a terminal port of the tandem accelerator and test operation was performed. The permeability of low-energy carbon beams in the tandem was remarkably improved with the gas stripper. A recoiled-nuclei mass spectrometer was also developed and facilitated for accurate measurement of the cross sections of 12 C( 4 He, γ) 16 O in cosmic nuclear reactions. Test operation was made for reduction of background due to the injection beams. The plasma-sputtering type ion source was introduced and the beams will be injected into the tandem. (H. Yokoo)

  2. Accelerator timing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Oerter, B.; Conkling, C.R.

    1995-01-01

    Accelerator timing at Brookhaven National Laboratory has evolved from multiple coaxial cables transmitting individual pulses in the original Alternating Gradient Synchrotron (AGS) design, to serial coded transmission as the AGS Booster was added. With the implementation of this technology, the Super Cycle Generator (SCG) which synchronizes the AGS, Booster, LINAC, and Tandem accelerators was introduced. This paper will describe the timing system being developed for the Relativistic Heavy Ion Collider (RHIC)

  3. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

    2005-07-01

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  4. Frontier applications of electrostatic accelerators

    Science.gov (United States)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  5. Sub-nanosecond lifetime measurements using the Double Orange Spectrometer at the cologne 10 MV Tandem accelerator

    International Nuclear Information System (INIS)

    Regis, J.-M.; Materna, Th.; Christen, S.; Bernards, C.; Braun, N.; Breuer, G.; Fransen, Ch.; Heinze, S.; Jolie, J.; Meersschaut, T.; Pascovici, G.; Rudigier, M.; Steinert, L.; Thiel, S.; Warr, N.; Zell, K.O.

    2009-01-01

    Conversion electron spectroscopy constitutes an important tool in nuclear structure physics. A high efficiency iron-free Orange type electron spectrometer with an energy resolution of 1-2% has been installed at a beam line of the Cologne 10 MV FN Tandem Van-de-Graaff accelerator for in-beam studies of conversion electrons. In combination with a γ-ray detector array, high efficiency e - -γ-coincidences can be performed. The newly developed very fast LaBr 3 (Ce) scintillator detector with an energy resolution of about 4% makes it also possible to use e - -γ-coincidences for lifetime measurements of nuclear excited states. A second iron-free Orange spectrometer can be connected to perform e - -e - -coincidences. Because of the higher efficiency and the better energy resolution, the use of the Double Orange Spectrometer for lifetime measurements is more powerful. Lifetimes down to 100 ps and even less can be determined with an accuracy of about 10 ps. The working principle of the Orange spectrometer and the setup of the Double Orange Spectrometer are described. The performances are illustrated by examples of in-beam experiments with a main focus on high precision lifetime measurements.

  6. Operational experience of the ATLAS accelerator

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.

    1989-01-01

    The ATLAS accelerator consists of a HVEC model FN tandem accelerator injecting into a linac of independently-phased niobium superconducting resonators. The accelerator provides beams with masses from 6≤A≤127 and with energies ranging up to 20 MeV/A for the lightest ions and 4 MeV/A for the heaviest ions. Portions of the linac have been in operation since 1978 and, over the last decade, more than 35,000 hours of operating experience have been accumulated. The long-term stability of niobium resonators, and their feasibility for use in heavy-ion accelerators is now well established. 11 refs., 3 figs., 1 tab

  7. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270 MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) has been designed, fabricated and installed successfully. It has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  8. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRlS) has been designed, fabricated and installed successfully. lt has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  9. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  10. JAERI electrostatic accelerators for multiple ion beam application

    International Nuclear Information System (INIS)

    Ishii, Yasuyuki; Tajima, Satoshi; Takada, Isao

    1993-01-01

    An electrostatic accelerators facility of a 3MV tandem accelerator, a 3MV single-ended accelerator and a 400kV ion implanter was completed mainly for materials science and biotechnology research at JAERI, Takasaki. The accelerators can be operated simultaneously for multiple beam application in triple and dual beam modes. The single-ended machine was designed to satisfy an extremely high voltage stability of ±1x10 -5 to provide a submicron microbeam stably. The measured voltage stability and ripple were within the designed value. (author)

  11. Track detectors in particle accelerator environment: an overview on existing and new methods

    International Nuclear Information System (INIS)

    Tripathy, S.P.; Sarkar, P.K.

    2011-01-01

    The advent of high energy, high intensity particle accelerators, with increasing applications in various fields has lead to the involvement of more users and operators. The complex (secondary) radiation field in an accelerator environment, generated by the primary beam hitting a target, is highly directional, dynamic, pulsed and mixed in nature, which poses a unique challenge for the radiological safety aspects, specially the neutrons contributing to a significant dose even beyond the shields. Solid polymeric track detectors (SPTDs), due to their insensitivity to low LET radiations and integrating nature of signal registration, are found to be effective and convenient for neutron measurements. This paper reviews some of the existing and frequently used methods of neutron spectrometry and dosimetry using SPTDs and explores new approaches as well. The paper elaborates on the extended energy response and rapid etching techniques of SPTDs along with some new results. An overview on the recently introduced microwave-induced chemical etching (MICE) technique is also presented. (author)

  12. A python based interface for the tandem-linac control system

    International Nuclear Information System (INIS)

    Ajith Kumar, B.P.

    2011-01-01

    The control system for the Tandem-LINAC accelerator system at IUAC is a client-server design running on a network of PCs under the GNU/Linux operating system. The computers connected to the devices in the accelerator run a server program. The computers providing the user interface runs different kinds of client programs that communicates to the servers over a TCT/IP network to control/monitor the accelerator parameters. Both the programs were written in C language and some programming expertise was required to write the client programs. The addition of a Python language interface has enabled the users to write programs for specific tasks like data logging and partial automation of the operation with minimal effort. (author)

  13. Development of accelerator technology for biotechnology and materials science

    International Nuclear Information System (INIS)

    Arakawa, Kazuo; Saitoh, Yuichi; Kurashima, Satoshi; Yokota, Watalu

    2008-01-01

    The TIARA (Takasaki Ion accelerators for Advanced Radiation Application) is a unique worldwide facility for advancing the frontiers of biotechnology and materials science, consisting of four accelerators: a K110 AVF cyclotron, a 3-MV tandem accelerator, a 3-MV single-ended accelerator and a 400-kV ion implanter. The accelerator complex provides a variety of ion species from proton to bismuth in a wide energy range from keV to MeV. This report outlines the facility and the major beam applications, and describes the details of development of accelerator technology for biotechnology and materials science applications at TIARA. (author)

  14. Physics and technical development of accelerators; Physique et technique des accelerateurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    About 90 registered participants delivered more than 40 scientific papers. A great part of these presentations were of general interest about running projects such as CIME accelerator at Ganil, IPHI (high intensity proton injector), ESRF (European source of synchrotron radiation), LHC (large hadron collider), ELYSE accelerator at Orsay, AIRIX, and VIVITRON tandem accelerator. Other presentations highlighted the latest technological developments of accelerator components: superconducting cavities, power klystrons, high current injectors..

  15. Annotating and Interpreting Linear and Cyclic Peptide Tandem Mass Spectra.

    Science.gov (United States)

    Niedermeyer, Timo Horst Johannes

    2016-01-01

    Nonribosomal peptides often possess pronounced bioactivity, and thus, they are often interesting hit compounds in natural product-based drug discovery programs. Their mass spectrometric characterization is difficult due to the predominant occurrence of non-proteinogenic monomers and, especially in the case of cyclic peptides, the complex fragmentation patterns observed. This makes nonribosomal peptide tandem mass spectra annotation challenging and time-consuming. To meet this challenge, software tools for this task have been developed. In this chapter, the workflow for using the software mMass for the annotation of experimentally obtained peptide tandem mass spectra is described. mMass is freely available (http://www.mmass.org), open-source, and the most advanced and user-friendly software tool for this purpose. The software enables the analyst to concisely annotate and interpret tandem mass spectra of linear and cyclic peptides. Thus, it is highly useful for accelerating the structure confirmation and elucidation of cyclic as well as linear peptides and depsipeptides.

  16. Heavy ion acceleration strategies in the AGS accelerator complex -- 1994 Status report

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Benjamin, J.; Blaskiewicz, M.

    1995-01-01

    The strategies invoked to satisfy the injected beam specifications for the Brookhaven Relativistic Heavy Ion Collider (RHIC) continue to evolve, in the context of the yearly AGS fixed target heavy ion physics runs. The primary challenge is simply producing the required intensity. The acceleration flexibility available particularly in the Booster main magnet power supply and rf accelerating systems, together with variations in the charge state delivered from the Tandem van de Graaff, and accommodation by the AGS main magnet and rf systems allow the possibility for a wide range of options. The yearly physics run provides the opportunity for exploration of these options with the resulting significant evolution in the acceleration plan. This was particularly true in 1994 with strategies involving three different charge states and low and high acceleration rates employed in the Booster. The present status of this work will be presented

  17. A New Accelerator-Based Mass Spectrometry.

    Science.gov (United States)

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  18. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    International Nuclear Information System (INIS)

    Carnes, K.D.; Cocke, C.L.; Chang, Z.; Ben-Itzhak, I.; Needham, H.V.; Rankin, A.

    2007-01-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined

  19. The AMS [Accelerator Mass Spectrometer] program at LLNL

    International Nuclear Information System (INIS)

    Proctor, I.D.

    1988-09-01

    Livermore will have an operational Accelerator Mass Spectrometer (AMS) by mid-1989 as part of its new Multi-user Tandem Laboratory. The spectrometer was designed primarily for applications in archaeology and the geosciences and was co-funded by the University of California Regents. Radiological control for personnel protection, ion sources and injection systems, the tandem and all beam handling hardware are operated with a distributed processor computer control system. The Tandem is the former University of Washington injector FN which has been upgraded with Dowlish tubes, pelletron charging and SF 6 gas. Design goals for the AMS system, computer aided operation, automated measurement capability, initial results and some of our intended applications will be presented. 5 refs., 2 figs

  20. Present state of tandem accelerator analysis facility of the National Institute for Environmental Studies. 2. Sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kumamoto, Yuichiro; Shibata, Yasuyuki; Kume, Hiroshi; Tanaka, Atsushi; Yoneda, Minoru; Uehiro, Takashi; Morita, Masatoshi [National Inst. for Environmental Studies, Tsukuba, Ibaraki (Japan)

    1996-12-01

    An AMS exclusive apparatus constituted for a center of 5 MV of tandem accelerator (15SDH-2) was introduced to the National Institute for Environmental Studies on September, 1995. The incidental part of the apparatus is constituted by combining negative ion source for solid sample (MC-SNICS) with successive incidental system and combining negative ion source for gas sample (MGF-SNICS) with simultaneous incidental system. In this study, preparation of graphite target for testing of {sup 14}C at a temporary aim of supplying solid sample for MC-SNICS necessary to modulate the apparatus has been conducted. As a result, it was found that most of isotope fractionation on graphite formation from oxalic acid could be neglected. However, as it was said that efficiency of the graphite formation was largely changed with mixing with traced volume of gas such as sulfur dioxide and so on, future presumption is laid at investigation of such isotope fractionation effect on some samples except oxalic acid. In order to conduct contamination evaluation of 14-C at sample preparation, graphite preparation from organic matters and carbon dioxide obtained the fossil fuels without containing 14-C are exchanged in present research. (G.K.)

  1. Accelerator mass spectrometry researches at NIES-TERRA

    International Nuclear Information System (INIS)

    Shibata, Yasuyuki; Yoneda, Minoru; Tanaka, Atsushi; Uehiro, Takashi; Morita, Masatoshi; Uchida, Masao; Yoshinaga, Jun

    2003-01-01

    In the AMS facility at the National Institute for Environmental Studies (NIES-TERRA; Tandem accelerator for Environmental Research and Radiocarbon Analysis), several research programs have been proceeded, including a program, called GC-AMS, for the compound-specific 14 C analysis in environmental samples

  2. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cartelli, D.; Thatar Vento, V.; Castell, W.; Di Paolo, H.; Kesque, J.M.; Bergueiro, J.; Valda, A.A.

    2011-01-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  3. Research with the EN Tandem accelerator

    International Nuclear Information System (INIS)

    Becker, A.; Donne, A.J.H.; Holthuizen, A.; Kalish, R.; Middelkoop, G. van; Raedt, J.A.G. de; Rutten, A.J.; Zalm, P.C.

    1979-01-01

    During 1978 attention has been mainly focussed on two subjects: the velocity dependence of the transient field down to low velocities and the field strength for light nuclei in ferromagnetic gadolinium. The main aim in the former was to prove the existence or non-existence of a field due to Coulomb scattering of (polarized) host electrons. The fields in Gd were investigated as a further test of the atomic model, in particular the direct polarization of the 1s atomic shell for light ions by molecular orbital (MO) coupling. (Auth.)

  4. Upgrading of the AMS facility at the Koffler 14UD Pelletron accelerator

    CERN Document Server

    Berkovits, D; Bordeanu, C; Ghelberg, S; Hass, M; Heber, O; Paul, M; Shahar, Y; Verri, G; 10.1016/j.nimb.2004.04.033

    2004-01-01

    The AMS facility based on a 14UD Pelletron tandem accelerator has been upgraded in recent years to support an active and diversified research program. A new dedicated AMS ion source beam line merging at 45 degrees with the existing injection line through a 45 degrees electrostatic deflector is in operation. The multi-sample high- intensity Cs sputter ion source stands on a separate 120 kV platform and is remote-controlled through a hybrid infrared-fiber-optics link operated either manually or by the accelerator-control computer, ensuring safe and reliable operation. Independent current preamplifiers are used in Faraday cup current readings down to the pA range. The accelerator computer-control system was upgraded to Lab View 6.1, allowing a PC server to control and read out all hardware components while one or more remote PC clients run the AMS software. Ad hoc sequences of commands, written in a script macro language, are run from a client computer to perform an automated AMS measurement. The present capabil...

  5. Improved voltage performance of the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Meigs, M.J.; Jones, C.M.; Haynes, D.L.; Juras, R.C.; Ziegler, N.F.; Raatz, J.E.; Rathmell, R.D.

    1988-01-01

    While voltage performance of the accelerator has been adequate for the experimental program to date, it seemed clear that improvement in voltage performance could be of direct benefit to the experimental program in the future. Therefore, we began, in June 1986, a program of modifications and tests which was designed to improve voltage performance of the accelerator. In this paper, we discuss the final phase of this program and initial tests of the accelerator following completion of this final phase. 11 refs., 4 figs

  6. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The impact of genome triplication on tandem gene evolution in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lu eFang

    2012-11-01

    Full Text Available Whole genome duplication (WGD and tandem duplication (TD are both important modes of gene expansion. However, how whole genome duplication influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751 and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the 3 species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole-genome polyploidization event.

  8. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  9. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  10. Calculations of the beam transport through the low energy side of the Lund Pelletron accelerator

    International Nuclear Information System (INIS)

    Dymnikov, A.; Hellborg, R.; Pallon, J.; Skog, G.; Yang, C.

    1993-01-01

    A new recursive technique has been used to solve the equations of motion of charged particles in electric and magnetic fields taking into account the effect of space charge. Based on this technique a computer code has been written and calculations have been carried out for the beam optics, from the ion-source to the terminal, stripper of the Lund Pelletron tandem accelerator. The code has been found capable of describing the beam-optics of the existing setup and will in future be used together with a library of typical field descriptions to design new beam lines. (orig.)

  11. Present state of tandem superconductive booster of JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Matsuda, Makoto; Kanazawa, Shuhei; Yoshida, Tadashi; Ouchi, Isao; Shoji, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The superconductive booster constructed rear-stage accelerator of the tandem accelerator of the Tokai Research Establishment, JAERI (Japan Atomic Energy Research Institute), was completed in construction of its whole system on October, 1993, and through its beam accelerating test and remodulation its design characteristics were established on September, 1994. From November, 1994 to April, 1995 a repulsion-forming nuclear isolation apparatus was installed to modulate at target room, and was begun to use on June, 1995. The beam reaccelerated at the booster was used mainly for nuclear spectroscopy experiment, a collaborative research was developed using mini-crystal balls made by collecting from University of Tsukuba and so forth. The accelerating part of the booster is a phase independent setting type Linac consisting of 40 niobium superconducting holes with 1/4 wave-length type and 130 MHz in frequency, in which a hole can form 5 MV/m of accelerating electric field for 4 W of radio frequency spent power of 0.75 MV of accelerating voltage per hole, to form 30 MV of voltage in a whole. 4 holes are contained into each 10 cryostats, respectively. In accelerating tests, Si, Cl, Ni, Ge, Ag, I and Au ions are accelerated to establish 30 mV of total accelerating voltage in its design value, which reaches to their expected energy characteristics. Its used days in this year are 25 days after beginning of its use, and operating days of the cooling apparatus was 135 days in total. (G.K.)

  12. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab

  13. GPU accelerated tandem traversal of blocked bounding volume hierarchy collision detection for multibody dynamics

    DEFF Research Database (Denmark)

    Damkjær, Jesper; Erleben, Kenny

    2009-01-01

    and a simultaneous descend in the tandem traversal. The data structure design and traversal are highly specialized for exploiting the parallel threads in the NVIDIA GPUs. As proof-of-concept we demonstrate a GPU implementation for a multibody dynamics simulation, showing an approximate speedup factor of up to 8...

  14. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  15. JAEA-Tokai TANDEM annual report 2005. April 1, 2005 - March 31, 2006

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Takeuchi, Suehiro; Oshima, Masumi; Nagame, Yuichiro; Chiba, Satoshi; Sataka, Masao; Osa, Akihiko

    2006-09-01

    This annual report describes research activities, which have been performed using the JAEA-Tokai tandem accelerator with the energy booster from April 1, 2005 to March 31, 2006. Summary reports of 51 papers are categorized into seven research/development fields, i.e., (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, and (7) radiation effects in materials, and lists of publications, meetings, personnel and cooperative researches with universities related to these papers are contained. The 51 of presented papers are indexed individually. (J.P.N.)

  16. Breakdowns and solutions in 15 UD pelletron ion accelerator facility at Inter-University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Joshi, R.; Singh, P.; Suraj; Nishal, S.M.; Panwar, N.S.; Singh, M.P.; Kumar, R.; Prasad, J.; Sota, M.; Patel, V.P.; Sharma, R.P.; Kumar, Pankaj; Devi, K.D.; Ojha, S.; Gargari, S.; Chopra, S.; Kanjilal, D.

    2013-01-01

    15UD Pelletron accelerator, installed in Inter-University Accelerator Centre (IUAC), New Delhi, is a tandem ion accelerator and is performing well since its commissioning. Constant efforts have been put to keep high uptime and better performance of the accelerator for more than two decades. In recent years, the facility was improved by many modifications and up gradations. It has also gone through a few major breakdowns related to charging system and fiber optic cables. Out of two charging systems, one system failed and devices housed in tank stopped working due to the damage of fiber optic cables. The reasons for both of these breakdowns were studied thoroughly. The entire charging system and fiber optic cable network have been rebuilt and tested. The diagnostic techniques and maintenance methods for these two breakdowns will be discussed in this paper. (author)

  17. Present status of the Tandetron Accelerator at Mutsu Establishment, JAEA

    International Nuclear Information System (INIS)

    Amano, Hikaru; Kabuto, Shoji; Kinoshita, Naoki; Suzuki, Takashi; Otosaka, Shigeyoshi; Kuwabara, Jun; Kitamura, Toshikatsu; Tanaka, Takayuki; Kitada, Yoshinobu; Watanabe, Yukiya

    2007-01-01

    The accelerator mass analyzer system at Mutsu Establishment, JAEA consists of a 3 MV tandem electrostatic accelerator and two beamlines for measuring isotope ratios of carbon and iodine. The present paper reports on (1) the operation and maintenance works in fiscal 2005, (2) the measurements of 14 C and 129 I and the related technology development, and (3) the public utilization of the system, which was started from 2006. (K.Y.)

  18. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1986-01-01

    From November, 1985 to January, 1986, the accelerator was shut down for reconstructing and realigning the accelerator tubes. Thereafter, the beam transmission improved considerably, especially for polarized ion beam. The total chain operation time was 2735 hr, and the beam acceleration time was 2254 hr in academic year 1985. A new prebuncher was tested, and improvement was found in the beam width and beam utilization factor. A postbuncher was installed in the high energy beam line, and tested with beam. The construction of a new polarized ion source is in progress. Its ECR positive ion source has been completed and tested. Also a new Wien filter was installed, and the spin filter was calibrated. A new data taking and analyzing system ''SHINE'' has been developed, and its first version has been completed and used for experimental work. The CAMAC system has been used for the interface between the VAX 11 computer and the electronic modules for data acquisition. The experimental techniques for detectors, nuclear polarization work, heavy ion-induced nuclear physics, the study on charge exchange, the ion-induced emission of secondary electrons, ion backscattering spectrometry, application of Moessbauer effect and NMR and so on are reported. (Kako, I.)

  19. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    Science.gov (United States)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  20. ATLAS accelerator laboratory report

    International Nuclear Information System (INIS)

    Den Hartog, P.

    1986-01-01

    The operation of the ATLAS Accelerator is reported. Modifications are reported, including the installation of conductive tires for the Pelletron chain pulleys, installation of a new high frequency sweeper system at the entrance to the linac, and improvements to the rf drive ports of eight resonators to correct failures in the thermally conductive ceramic insulators. Progress is reported on the positive-ion injector upgrade for ATLAS. Also reported are building modifications and possible new uses for the tandem injector

  1. Feasibility studies of RFQ based 14C accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Guo Zhiyu; Liu Kexin; Yan Xueqing; Xie Yi; Fang Jiaxun; Chen Jiaer

    2007-01-01

    Electrostatic accelerators with terminal voltage less than 1 MeV have been successfully used for 14 C AMS. This contribution shows that a small RFQ accelerator may also be suitable for AMS 14 C measurements. A well-designed RFQ accelerator can realize a low energy spread and high isotopic selection with a length of less than 1 m and reasonable power consumption. Compared with small tandem accelerators, a RFQ does not need isolation gas and can accept much higher beam currents. Its stripper would be at ground potential and there would be no further acceleration after stripping, so the background from charge exchange processes should be lower. The RFQ design and system are described

  2. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  3. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    Aim The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Background Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Materials and methods Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm3 and 0.65 cm3 Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.1–8 Results All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.7 Conclusion Results confirmed that the linear accelerator is capable of performing accurate VMAT. PMID:24416566

  4. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy.

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm(3) and 0.65 cm(3) Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.(1-8.) All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.(7.) Results confirmed that the linear accelerator is capable of performing accurate VMAT.

  5. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    Science.gov (United States)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 RITA). Desired proton or light-ion energies can be achieved by controlling the velocity of the snowplow, which is shown to scale inversely with the rise-time of the laser (higher energies for shorter pulses) and directly with the scale-length of the plasma density gradient. Similar acceleration can be produced by controlling the increase of the laser frequency (Chirp Induced Transparency Acceleration, ChITA). Work supported by the National Science Foundation under NSF- PHY-0936278. Also, NSF-PHY-0936266 and NSF-PHY-0903039; the US Department of Energy under DEFC02-07ER41500, DE- FG02-92ER40727 and DE-FG52-09NA29552.

  6. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, Pavel P., E-mail: povinec@fmph.uniba.sk; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-15

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for {sup 14}C and {sup 129}I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  7. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  8. Addendum to a proposal for ATLAS: a precision heavy-ion accelerator at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1978-12-01

    This revised proposal for the construction of the Argonne Tandem-Linac Accelerator System (ATLAS) is in all essentials the same as the proposal originally presented to NUSAC in March 1978. The only differences worth mentioning are the plan to expand the experimental area somewhat more than was originally proposed and an increased cost, brought about principally by inflation. The outline presented is the same as in the original document, reproduced for the convenience of the reader. The objective of the proposed Argonne Tandem-Linac Accelerator System (ATLAS) is to provide precision beams of heavy ions for nuclear physics research in the region of projectile energies comparable to nuclear binding energies (5 to 25 MeV/A). By using the demonstrated potential of superconducting rf technology, beams of exceptional quality and flexibility can be obtained. The proposed system is designed to provide beams with tandem-like energy resolution and ease of energy variation, and the energy range is comparable to that of a approx. 50 MV tandem. In addition, the beam will be bunched into very short (approx. 50 psec) pulses, permitting fast-timing measurements that can open up major new experimental approaches

  9. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  10. JAERI TANDEM annual report 2004. April 1, 2004 - March 31, 2005

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Takeuchi, Suehiro; Oshima, Masumi; Nagame, Yuichiro; Chiba, Satoshi; Sataka, Masao

    2006-01-01

    This annual report describes research activities, which have been performed with the JAERI tandem accelerator and its energy booster from April 1, 2004 to March 31, 2005. Summary reports of 48 papers, and lists of publication, personnel and cooperative research with universities are contained. The JAERI (Japan Atomic Energy Research Institute) have been unified with JNC (Japan Nuclear Fuel Cycle Development Institute) and became JAEA (Japan Atomic Energy Agency) on October 1st, 2005. (author)

  11. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  12. The electronic logbook for LNL accelerators

    International Nuclear Information System (INIS)

    Canella, S.; Carletto, O.

    2012-01-01

    In spring 2009 all run-time data concerning the particle accelerators at LNL (Legnaro National Laboratory) were still registered mainly on paper. The electrostatic accelerator TANDEM-XTU and its Negative Source data were logged on a large format paper logbook. For the ALPI booster and the PIAVE injector with its Positive ECR Source a number of independent paper notebooks were used, together with plain data files containing raw instant snapshots of the RF super-conductive accelerators. At that time a decision was taken to build a new tool for a general electronic registration of accelerators run-time data. The result of this effort, the LNL electronic logbook, is here presented. The LNL electronic logbook is a many-layers software tool that is made of data sets and software programs. It is used to register states, events, texts, images and files according to the shift structures in the working time of the LNL accelerators. The same system is used to register data and to retrieve them. It may be accessed by standard browser on any platform

  13. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    Science.gov (United States)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  14. Possibility of analysis using RBS, PIXE and nuclear reaction on the electrostatic Pelletron accelerator 5SDH-2

    International Nuclear Information System (INIS)

    Nguyen The Nghia; Bui Van Loat; Le Hong Khiem

    2011-01-01

    The electrostatic Pelletron accelerator 5SDH-2 is installing at Hanoi University of Sciences. This accelerator will be the first tandem electrostatic accelerator installed in Vietnam. The schematic structure, principle of operation of the machine and its application for analysis using Rutherford Back Scattering (RBS), Particle-Induced X-ray Emission (PIXE) and Nuclear Reaction Analysis (NRA) will be presented. (author)

  15. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  16. JAEA-Tokai TANDEM annual report 2006. April 1, 2006 - March 31, 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This annual report describes a summary of each research activity, which has been carried out using the JAEA-Tokai tandem accelerator with the energy booster from April 1, 2006 to March 31, 2007. The forty-eight summary reports were categorized into seven research/development fields, i.e., (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, and (7) radiation effects in materials, in addition, lists of publications, personnel and cooperative researches with universities are contained. Regarding the number of summaries each of the fields is as follows: accelerator operation and development - 11, nuclear structure - 11, nuclear reaction - 6, nuclear chemistry - 5, nuclear theory - 4, atomic physics and solid state physics - 3, radiation effects in materials - 8. The 48 of the presented papers are indexed individually. (J.P.N.)

  17. Tandem accelerator transmission and life measurement of 50 keV/amu Au ions using stripper foil made by INS

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Satoshi; Takahashi, Tsutomu; Shima, Kunihiro [Tsukuba Univ., Ibaraki (Japan). Tandem Accelerator Center; Sugai, Isamu; Oyaizu, Mitsuhiro

    1996-12-01

    The role of stripper foil is the charge exchange of ions. The thickness for attaining equilibrium in charge exchange becomes thinner as ions become lower speed and heavier. Accordingly, for the stripper foil, thin foil thickness is demanded in addition to the demand of long life. The stripper foil made by INS, University of Tokyo, is recognized as its long life. In the 12 UD PELETRON tandem accelerator in University of Tsukuba, in order to meet the demand of users to use heavy ions, the use of long life stripper foil has become urgent necessity. Therefore, as for the foil made by INS, the life by Au ion irradiation and the Au ion transmission were measured four times. As to the features of the test of this time, irradiation was carried out under the severe condition for the foil of low speed Au ions, and the change of beam transmission with time lapse was observed in addition to the life. The method of measurement is explained. The preparation of foils and the determination of their thickness are reported. As the results, the lifetime of the foils made by INS and the thickness dependence and time dependence or dose dependence of the transmission of low speed, heavy Au-197 ions are described. (K.I.)

  18. The mechanical development and construction of the insulating legs for the NSF tandem

    International Nuclear Information System (INIS)

    Leese, J.M.

    1978-06-01

    The Science Research Council is constructing at its Daresbury Laboratory a 30 MV tandem Van de Graaff accelerator which will be used as a research tool to accelerate ions of a wide range of elements. Ions are accelerated through an evacuated beam tube by maintaining a high electric field along it. The ion beam is steered and focussed by magnets situated at various positions along the tube, which, together with the beam handling elements, is supported by a vertical insulating stack. The stack consists of eight vertical columns tied together at regular intervals by stiff rings to obtain the necessary mechanical stability. Each column is made up of 'insulating legs' with tubular steel legs at the terminal and dead section positions. This report describes the manufacturing processes and their development for the insulating legs. (author)

  19. A Tandem Repeat in Decay Accelerating Factor 1 Is Associated with Severity of Murine Mercury-Induced Autoimmunity

    Directory of Open Access Journals (Sweden)

    David M. Cauvi

    2014-01-01

    Full Text Available Decay accelerating factor (DAF, a complement-regulatory protein, protects cells from bystander complement-mediated lysis and negatively regulates T cells. Reduced expression of DAF occurs in several systemic autoimmune diseases including systemic lupus erythematosus, and DAF deficiency exacerbates disease in several autoimmune models, including murine mercury-induced autoimmunity (mHgIA. Daf1, located within Hmr1, a chromosome 1 locus associated in DBA/2 mice with resistance to mHgIA, could be a candidate. Here we show that reduced Daf1 transcription in lupus-prone mice was not associated with a reduction in the Daf1 transcription factor SP1. Studies of NZB mice congenic for the mHgIA-resistant DBA/2 Hmr1 locus suggested that Daf1 expression was controlled by the host genome and not the Hmr1 locus. A unique pentanucleotide repeat variant in the second intron of Daf1 in DBA/2 mice was identified and shown in F2 intercrosses to be associated with less severe disease; however, analysis of Hmr1 congenics indicated that this most likely reflected the presence of autoimmunity-predisposing genetic variants within the Hmr1 locus or that Daf1 expression is mediated by the tandem repeat in epistasis with other genetic variants present in autoimmune-prone mice. These studies argue that the effect of DAF on autoimmunity is complex and may require multiple genetic elements.

  20. The LLNL Multiuser Tandem Laboratory computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1992-01-01

    The Physics Department of the Lawrence Livermore National Laboratory (LLNL) recently constructed a Multiuser Tandem Laboratory (MTL) to perform a variety of basic and applied measurement programs. The laboratory and its research equipment were constructed with support from a consortium of LLNL Divisions, Sandia National Laboratories Livermore, and the University of California. Primary design goals for the facility were inexpensive construction and operation, high beam quality at a large number of experimental stations, and versatility in adapting to new experimental needs. To accomplish these goals, our main design decisions were to place the accelerator in an unshielded structure, to make use of reconfigured cyclotrons as effective switching magnets, and to rely on computer control systems for both radiological protection and highly reproducible and well-characterized accelerator operation. This paper addresses the radiological control computer system

  1. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  2. Orsay cyclotron design with superconducting coils and the associated accelerating unit

    International Nuclear Information System (INIS)

    1983-06-01

    This report ends the theoretical and technical studies of the project of new accelerating unit proposed by IPN at Orsay. The isochronous cyclotron with superconducting coils is coupled to two different injections: an axial one with polarized or not ion sources for light ions or multicharged ion sources for heavy ions; a radial injection from the reviewed tandem MP13Met. The following points are underlined: 1) the specificity of the machine 2) the theoretical and technical feasibility of a compact high frequency accelerating system suited to this type of machine 3) the development of an extraction device of the beam 4) the feasibility of an axial injection along the optical axis coupled to a unique central region of the cyclotron 5) the criterions to define, the choices to make to get a radial injection of the beam coming from the tandem in the cyclotron [fr

  3. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Herrera, M.S.; González, S.J.; Burlon, A.A.; Minsky, D.M.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

  4. The tandem Tritron control system, a status report

    International Nuclear Information System (INIS)

    Rohrer, L.; Schnitter, H.; Cazan, A.; Jakubowska, E.; Walchshaeusl, B.

    1994-01-01

    The control system for the tandem accelerator and the Tritron was put into operation in 1988 and has been developed further continuously. It consists of many Z280 microcomputer crates, equipped with I/O-boards to control accelerator devices, personal computers serving as control desks, a file server, an address server, and an error logger. All computers are interconnected by an ARCnet local area network. The program language in every computer and the communication language is FORTH. Every node contains a multitasking FORTH system with floating point arithmetic from the beginning and interprets or compiles the data stream coming from the ARCnet. Each node is programmed with its special program so that it can perform its specific control or monitor task. The system is very flexible. Every node may be changed or replaced by a better one, if necessary. The only condition is that it can be connected to the ARCnet and can be programmed in FORTH. ((orig.))

  5. ATLAS: a proposal for a precision heavy ion accelerator at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of the proposed Argonne Tandem-Linac Accelerator System (ATLAS) is to provide precision beams of heavy ions for nuclear physics research in the region of projectile energies comparable to nuclear binding energies (5-25 MeV/A). By using the demonstrated potential of superconducting rf technology, beams of exceptional quality and flexibility can be obtained. The system is designed to provide beams with tandem-like energy resolution and ease of energy variation, the energy range is comparable to that of a approx. 50 MV tandem and, in addition, the beam will be bunched into very short (approx. 50 psec) pulses, permitting fast-timing measurements that can open up major new experimental approaches.

  6. ATLAS: a proposal for a precision heavy ion accelerator at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1978-02-01

    The objective of the proposed Argonne Tandem-Linac Accelerator System (ATLAS) is to provide precision beams of heavy ions for nuclear physics research in the region of projectile energies comparable to nuclear binding energies (5-25 MeV/A). By using the demonstrated potential of superconducting rf technology, beams of exceptional quality and flexibility can be obtained. The system is designed to provide beams with tandem-like energy resolution and ease of energy variation, the energy range is comparable to that of a approx. 50 MV tandem and, in addition, the beam will be bunched into very short (approx. 50 psec) pulses, permitting fast-timing measurements that can open up major new experimental approaches

  7. Accelerator mass spectrometry in NIPNE

    International Nuclear Information System (INIS)

    Ivascu, M; Marinescu, L.; Dima, R.; Cata-Danil, D.; Petrascu, M.; Popescu, I.; Stan-Sion, C.; Radulescu, M.; Plostinaru, D.

    1997-01-01

    The Accelerator Mass Spectrometry (AMS) is today the method capable to measure the lowest concentration of a particular nuclide in sample materials. The method has applications in environmental physics, medicine, measurements of cosmic-ray or nuclear power plant produced radionuclides in the earth's atmosphere. All over the world, more than 40 charged particles and heavy ion accelerators are performing such analyses concerning the research interest of a huge number of laboratories. The Romanian Institute of Nuclear Physics and Engineering in Bucharest has initiated a construction project for the AMS facility at the FN - Van de Graaff Tandem accelerator. This program benefits of technical and financial assistance provided by IAEA in the frame of the IAEA-TC Project ROM 8014-265C. A general lay-out of the AMS project is presented. The construction work has begun and first tests of the AMS injector will take place between July - September this year. (authors)

  8. First operation of ATLAS using the PII linac and a comparison to tandem injection

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs

  9. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-12-31

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  10. First operation of ATLAS using the PII linac and a comparison to tandem injection

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Markovich, P.; Munson, F.H.; Shepard, K.W.; Zinkann, G.P.

    1991-01-01

    The ATLAS Positive Ion Injector (PII) is designed to replace the tandem injector for the ATLAS heavy-ion facility. When the PII project is complete, ATLAS will be able to accelerate all ions through uranium to energies above the Coulomb barrier. PII consists of an ECR ion source on a 350 kV platform and a very low-velocity superconducting linac. The PII project is nearing completion. First beam from the complete system is expected in early 1992. Beam tests and experiments using a partially completed PII linac have demonstrated that the technical design goals are being met. The results of the early beam tests and first experiments will be discussed and compared to the performance of ATLAS with tandem injection. 10 refs., 2 figs.

  11. Off-line tests of superconducting resonators of the JAERI tandem booster

    International Nuclear Information System (INIS)

    Shibata, Michihiro; Ishii, Tetsuro; Takeuchi, Suehiro

    1993-01-01

    The JAERI tandem booster linac, which consists of 46 superconducting quarter wave resonators, is under construction. Off-line tests for resonators were performed. Accelerating field levels of 7MV/m were obtained at an rf input of 4W with most resonators. A maximum field level of 12.7MV/m was obtained. The Q-value was degraded when resonators were cooled down slowly around a temperature of 120K. We investigated this phenomenon by changing the cooling rate. (author)

  12. Accelerator-based atomic physics experiments with photon and ion beams

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1984-01-01

    Accelerator-based atomic physics experiments at Brookhaven presently use heavy-ion beams from the Dual MP Tandem Van de Graaff Accelerator Facility for atomic physics experiments of several types. Work is presently in progress to develop experiments which will use the intense photon beams which will be available in the near future from the ultraviolet (uv) and x-ray rings of the National Synchrotron Light Source (NSLS). Plans are described for experiments at the NSLS and an exciting development in instrumentation for heavy-ion experiments is summarized

  13. A new electrostatic accelerator: the vivitron

    International Nuclear Information System (INIS)

    1982-07-01

    The 35 MV electrostatic accelerator described in the present document operates according to Van de Graaff tandem type accelerator principles. This new accelerator has appreciable advantages over the classical machines built up to today: 1) reduced radial dimensions, and in consequence, a lower overall cast for identical or even lower limiting electric field values; 2) a significantly reduced stored electrical energy distributed in a homogeneous and better controlled way over the interelectrode space; 3) the use of discrete electrodes rather than classical intermediate screens enabling the advantages of direct electrical vision between the vessel and the high-tension electrode (voltage measurements and regulation by the Corona effect) to be retained. The reduced surface area of these electrodes improving both their characteristics when a voltage is applied and the mechanical behavior of the system; 4) a ''light'' internal structure enabling a horizontal machine to be envisaged [fr

  14. A new gas stripper system for BARC-TIFR Pelletron Accelerator facility: installation and preliminary results

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ninawe, N.G.; Yadav, M.L.; Ekambaram, M.; Ramjilal; Matkar, U.V.; Ansari, Q.N.; Lokare, R.N.; Ramlal; Gupta, A.K.; Bhagwat, P.V.; Pillay, R.G.

    2009-01-01

    The gas-stripper plays a key role in stripping the heavy and molecular ion beams in a tandem accelerator. Efficiency of gas stripper depends on its supporting vacuum pumps. A new recirculating turbo molecular pump-based gas stripper has been installed in the high voltage terminal of Pelletron Accelerator. Re-circulating the stripper gas reduces the flow of gas into the accelerating tubes reducing the transmission losses. Preliminary results obtained using the new gas stripper system are discussed. (author)

  15. Applied Physics Research at the Idaho Accelerator Center

    International Nuclear Information System (INIS)

    Date, D. S.; Hunt, A. W.; Chouffani, K.; Wells, D. P.

    2011-01-01

    The Idaho Accelerator Center, founded in 1996 and based at Idaho State University, supports research, education, and high technology economic development in the United States. The research center currently has eight electron linear accelerators ranging in energy from 6 to 44 MeV with the latter linear accelerator capable of picosecond pulses, a 2 MeV positive-ion Van de Graaff, a 4 MV Nec tandem Pelletron, and a pulsed-power 8 k A, 10 MeV electron induction accelerator. Current research emphases include, accelerator physics research, accelerator based medical isotope production, active interrogation techniques for homeland security and nuclear nonproliferation applications, non destructive testing and materials science studies in support of industry as well as the development of advanced nuclear fuels, pure and applied radio-biology, and medical physics. This talk will highlight three of these areas including the production of the isotopes 99 Tc and 67 Cu for medical diagnostics and therapy, as well as two new technologies currently under development for nuclear safeguards and homeland security - namely laser Compton scattering and the polarized photofission of actinides

  16. Accelerator Physics Section progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1986-05-01

    This report summarizes the work of the Accelerator Physics Section of the Institute of Nuclear Sciences during the period January-December 1985. Applications of the EN-tandem accelerator included 13 N production for tracer experiments in plants and animals, hydrogen profiling with a 19 F beam and direct detection of heavy ions with a surface barrier detector. Preparations for accelerator mass spectrometry continued steadily, with the commissioning of the pulsed EHT supply which selects the isotope to be accelerated, routine detection of 14 C ions, and completion of a sputter ion source with an eight position target wheel. It was shown that the hydrogen content of a material could be derived from a simultaneous measurement of the transmission of neutrons and gamma rays from a neutron source or accelerator target. The 11 CO 2 produced at the 3 MV accelerator was used in two studies of translocation in a large number of plant species: the effects of small quantities of SO 2 in the air, and the effect of cooling a short length of the stem. The nuclear microprobe was applied to studies of carbon pickup during welding of stainless steel, determination of trace elements in soil and vegetation and the measurement of sodium depth profiles in obsidian - in particular the effect of rastering the incident proton beams

  17. Evolution and development of the Oak Ridge 25URC tandem accelerator control system

    International Nuclear Information System (INIS)

    Juras, R.C.; Ziegler, N.F.; Meigs, M.J.; McPherson, R.L.; Hoglund, D.E.; Biggerstaff, J.A.

    1987-01-01

    Since acceptance of the 25URC accelerator in 1982, we have continued to develop and improve both the accelerator control system and associated software. In this paper, we describe these improvements and also discuss how our experience with the present system would influence the architecture and design of future, similar systems

  18. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  19. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  20. Genetic Analysis of Eight X-Chromosomal Short Tandem Repeat ...

    African Journals Online (AJOL)

    X-Chromosome short tandem repeat (STR) typing can complement existing DNA profiling protocols and can also offer useful information in cases of complex kinship analysis. This is the first population study of 8 X-linked STRs in Iraq. The purpose of this work was to provide a basic data of allele and haplotype frequency for ...

  1. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Negative hydrogen ion sources for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D.P.; /Fermilab; Peters, J.; /DESY; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  3. Accelerator mass spectrometry of 59Ni and Fe isotopes at the Argonne superconducting linac

    International Nuclear Information System (INIS)

    Henning, W.; Kutschera, W.; Myslek-Laurikainen, B.; Pardo, R.C.; Smither, R.K.; Yntema, J.L.

    1981-01-01

    We have obtained initial results in an attempt to use the Argonne tandem-linac system for accelerator mass spectrometry of medium-heavy nuclei. Nuclei of the radioisotope 59 Ni (T/sub 1/2 = 7.5 x 10 5 y) and of the stable isotope 58 Fe at low concentrations have been accelerated and clearly identified. The latter experiment is in preparation of a measurement of the half-life of 60 Fe

  4. Pilot instrumentation of a Superpave test section at the Kansas Accelerated Testing laboratory

    Science.gov (United States)

    2003-04-01

    Two Superpave test sections were constructed at the Kansas Accelerated Testing Laboratory (K-ATL) with 12.5 mm (2 in) nominal maximum size Superpave mixture (SM-2A) with varying percentages (15 and 30 percent) of river sand. A 150 kN (34 kip) tandem ...

  5. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    Science.gov (United States)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  6. JAEA-Tokai tandem annual report 2007. April 1, 2007 - March 31, 2008

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Chiba, Satoshi; Ishikawa, Norito; Mitsuoka, Shinichi; Ishii, Tetsuro; Matsuda, Makoto

    2008-11-01

    The JAEA-Tokai tandem accelerator facility has been used in various research fields of heavy-ion nuclear science and material science not only by JAEA personnel but also by researchers from universities, institutes and companies. This annual report describes a summary of research activities carried out in the period between April 1, 2007 and March 31, 2008. The forty-nine summary reports from users were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. Also contained are lists of publications, meetings, technical staff, researchers in JAEA and cooperative researchers with universities. The 49 of the presented papers are indexed individually. (J.P.N.)

  7. Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight

    Science.gov (United States)

    Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; hide

    2016-01-01

    BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (one hour post-landing), or at the airport (four hours post-landing). The USOS crewmembers were also tested at the refueling stop (12 hours post-landing) and at the NASA Johnson Space Center (24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also

  8. Analogue computer display of accelerator beam optics

    International Nuclear Information System (INIS)

    Brand, K.

    1984-01-01

    Analogue computers have been used years ago by several authors for the design of magnetic beam handling systems. At Bochum a small analogue/hybrid computer was combined with a particular analogue expansion and logic control unit for beam transport work. This apparatus was very successful in the design and setup of the beam handling system of the tandem accelerator. The center of the stripper canal was the object point for the calculations, instead of the high energy acceleration tube a drift length was inserted into the program neglecting the weak focusing action of the tube. In the course of the installation of a second injector for heavy ions it became necessary to do better calculations. A simple method was found to represent accelerating sections on the computer and a particular way to simulate thin lenses was adopted. The analogue computer system proved its usefulness in the design and in studies of the characteristics of different accelerator installations over many years. The results of the calculations are in very good agreement with real accelerator data. The apparatus is the ideal tool to demonstrate beam optics to students and accelerator operators since the effect of a change of any of the parameters is immediately visible on the oscilloscope

  9. McMaster Accelerator Laboratory annual report, 1983

    International Nuclear Information System (INIS)

    1983-11-01

    The FN tandem accelerator has been upgraded with new spiral inclined field tubes and a pelletron charging system. Terminal voltages of 10 MV are obtained regularly, and improved injection optics allow higher transmission and increased beam currents. Much work has been done on tritium-induced reactions and with polarized deuteron beams. The study of nuclear phenomena at high spin and nuclear temperature using the multiplicity filter continues. Several experiments touch on other areas of physics, engineering, and medicine

  10. Accelerator mass spectrometry at IFIN-HH in Bucharest

    International Nuclear Information System (INIS)

    Stan-Sion, C.; Catana, D.; Plostinaru, D.; Radulescu, M.; Enachescu, M.

    1999-01-01

    An AMS (Accelerator Mass Spectrometry) facility was constructed at the FN - 8 MV Tandem Accelerator of the National Institute for Physics and Nuclear Engineering in Bucharest. It represents the first experimental setup of this type in the large geographical area of Eastern Europe. The main components of the facility are: the ion injector deck, the AMS beam line and the detector systems. The injector deck is polarised at 50 kV and contains the high current sputtering ion source (spherical ionizer) followed, for beam transport, by electrostatic devices (single lenses, steerers, quadrupole lenses), a double focussing, 90 angle analysing magnet (Danfysik), a pre-acceleration tube (NEC) and several diagnose and defining elements. The AMS samples are placed in an eight stack magazine attached to the ion source. On the exit side of the Tandem Accelerator tank, a velocity filter and the particle detection system are mounted. The beam line, on the high energy side, is optically achromatic and contains two 90 angle analysing magnets of 150 MEP. For particle detection a Bragg-curve Spectroscopy Detector (ionisation chamber) is used and a multi-anode gas detector with TOF discrimination is under construction. The research programme at this new facility is focused on using 26 Al for medical applications. In future it will be use for 129 I - AMS measurements as a nuclear safeguard. This long lived isotope will be used to monitor and investigate the transport of 129 I in vicinity of three nuclear power plants in Eastern Europe: Kozloduy (Bulgaria), Cernavoda (Romania) and Chernobyl (Ukraine). Measurements will concern soil, precipitation and air samples. Water samples will be collected along the flow of rivers Danube and Dnieper, from the Danube Delta and from coastal areas of the Black Sea. (authors)

  11. TANDEM

    Data.gov (United States)

    Federal Laboratory Consortium — The Tandem Van de Graaff facility provides researchers with beams of more than 40 different types of ions - atoms that have been stripped of their electrons. One of...

  12. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    Science.gov (United States)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  13. The new external ion beam analysis setup at the Demokritos Tandem accelerator and first applications in cultural heritage

    International Nuclear Information System (INIS)

    Sokaras, Dimosthenis; Bistekos, Euthimios; Georgiou, Lambros; Salomon, Joseph; Bogovac, Mladen; Aloupi-Siotis, Eleni; Paschalis, Vasilis; Aslani, Ioanna; Karabagia, Sofia; Lagoyannis, Anastasios; Harissopulos, Sotirios; Kantarelou, Vasiliki; Karydas, Andreas-Germanos

    2011-01-01

    At the 5.5 MV Tandem VdG accelerator of the Institute of Nuclear Physics of N.C.S.R. 'Demokritos', Athens, Greece, an external ion-beam set-up has been recently developed and installed. The aim of this development was to integrate the analytical capabilities of the PIXE, RBS and PIGE ion beam techniques in one experimental set-up, so that to attain a complete elemental and near surface structural characterization of samples in an almost non-destructive way and without any limitation concerning their size or conductive state. A careful 3D mechanical drawing optimized the set-up experimental parameters achieving probe dimensions at the millimeter range (1 mm 2 ) and fulfilling the special requirements imposed for optimum performance of the aforementioned techniques, including the possibility to use heavier, than protons, ion beams. For the digital pulse processing of the X-ray, γ-ray and charged particle detector signals, novel hardware and software tools were developed based on a custom FPGA configuration. The first applications were focused in the quality control of materials that have been intentionally contaminated with a particular tracer-element ('tagged' materials). The tagged materials which were developed and tested are technologically authentic replicas of ancient attic ceramics with black glazed decoration. Analytical diagnostic studies were carried out for a few representative paintings of contemporary Greek painters in order to identify and document materials/pigments and techniques and eventually to prevent trade of fakes. Finally, ancient glass beads were also examined with respect to the sodium concentration and its in-depth homogeneity.

  14. Experience utilizing a 3.7 MeV tandem cascade accelerator (TCA) for PET radioisotope production

    International Nuclear Information System (INIS)

    Welch, M.J.; Gaehle, G.; Dence, C.S.

    1994-01-01

    A 3.7 MeV TCA was installed at Washington University in the Spring of 1993 for evaluation as a PET isotope production accelerator. The accelerator was installed in a specially designed suite consisting of the accelerator room, a open-quotes hot labclose quotes and a open-quotes cold labclose quotes. The accelerator has been utilized routinely for PET isotope production since it's installation. Although the major radionuclide produced utilizing the TCA is oxygen-15, techniques for the production of fluorine-18 and nitrogen-13 have been developed. The novel techniques used to produce usable quantities of these latter two isotopes will be discussed

  15. Potential measurements in tandem mirrors

    International Nuclear Information System (INIS)

    Glowienka, J.C.

    1985-11-01

    The US mirror program has begun conducting experiments with a thermal barrier tandem mirror configuration. This configuration requires a specific axial potential profile and implies measurements of potential for documentation and optimization of the configuration. This report briefly outlines the motivation for the thermal barrier tandem mirror and then outlines the techniques used to document the potential profile in conventional and thermal barrier tandem mirrors. Examples of typical data sets from the world's major tandem mirror experiments, TMX and TMX-U at Lawrence Livermore National Laboratory (LLNL) and Gamma 10 at Tsukuba University in Japan, and the current interpretation of the data are discussed together with plans for the future improvement of measurements of plasma potential

  16. A new design for the low-energy optics of the Lund pelletron accelerator

    International Nuclear Information System (INIS)

    Hellborg, R.; Hakansson, K.; Skog, G.

    1990-01-01

    Several improvements have been implemented on the low-energy side of the Lund 3UDH Pelletron tandem accelerator. We report on the use of an ANIS sputtering source, the installation of a new injector with two legs and the rebuilding of the low-energy optics between sources and accelerator. New lenses have been placed at optimum positions which, together with a higher pump capacity, increased the beam transmission. Angular misalignment of the beam has been minimized by repositioning steerers and profile monitors. (orig.)

  17. Present status of Kyushu University tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroyuki; Marinobu, Shunpei; Makajima, Takao [Kyushu Univ., Fukuoka (Japan). Faculty of Science; and others

    1996-12-01

    The accelerator has been operated almost smoothly. The number of uncovering in the last one year was several times for exchanging C-foils. The time of operation in 1995 was about 2500 hours. The nuclides of the beams used in the last one year are shown, and the nuclide that the nuclear spectroscopy group used changed from Si and S to B and others. The coil which has been used for 20 years was renewed in 1995, due to current leak and unstable magnetic field. For purifying SF6 gas, when it is filled in a tank, it is passed through a molecular sieve. The molecular sieve is regenerated by heating the tower above 100 deg C while vacuumizing for removing absorbed moisture. Vacuum leak occurred in this molecular sieve tower due to thermal history and humidity for more than 10 years. The electromagnet of QQDDQQ was installed anew to the recoil particle analyzer. For analyzing {sup 36}Cl the time division operation with {sup 35}Cl and {sup 37}C1 was carried out, and the first test was finished. Helium negative ions were taken out from the polarized ion source, and used for experiment. The intensity of the negative ions was same as that of polarized beam. The development of BIGT was carried out. (K.I.)

  18. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  19. A system for measuring the energy spread of an accelerated beam

    International Nuclear Information System (INIS)

    Wilkerson, J.F.; Ludwig, E.J.; Clegg, T.B.; Anderson, R.E.

    1987-01-01

    A system has been implemented to monitor directly the energy spread of analyzed beams from a tandem electrostatic accelerator. The dispersion of a deflection magnet in the beam handling system is used to transform the energy distribution into a spatial distribution, which then is measured by electrostatically sweeping the spatially extended beam across a narrow slit. (orig.)

  20. SIRIUS – A new 6 MV accelerator system for IBA and AMS at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Pastuovic, Zeljko, E-mail: zkp@ansto.gov.au; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-15

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  1. Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Barshilia, Harish C.; Selvakumar, N.; Rajam, K.S. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017 (India); Biswas, A. [Spectroscopy Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2008-11-15

    Spectrally selective TiAlN/AlON tandem absorbers were deposited on copper and stainless steel substrates using a reactive DC/RF magnetron sputtering system. The compositions and thicknesses of the individual component layers were optimized to achieve high absorptance ({alpha}=0.931-0.942) and low emittance ({epsilon}=0.05-0.06) on copper substrate. The experimental spectroscopic ellipsometric data have been fitted with the theoretical models to derive the dispersion of the optical constants (n and k). In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) for different durations and temperatures. The tandem absorber deposited on Cu substrates exhibited high solar selectivity ({alpha}/{epsilon}) of 0.946/0.07 even after heat treatment in air up to 600 C for 2 h. At 625 C, the solar selectivity decreased significantly on Cu substrates (e.g., {alpha}/{epsilon}=0.924/0.30). The tandem absorber on Cu substrates was also stable in air up to 100 h at 400 C with a solar selectivity of 0.919/0.06. Studies on the accelerated aging tests indicated that the activation energy for the degradation of the tandem absorber is of the order of 100 kJ/mol. (author)

  2. McMaster Accelerator Laboratory annual report, 1984

    International Nuclear Information System (INIS)

    1984-11-01

    Summaries of projects in progress constitute the major portion of this report. The tandem accelerator operated well during most of the year, with a number of heavy ion runs carried out at 10.44 MV. Tritium beams and polarized deuteron beams have been used extensively. Experiments using the multiplicity filter to study high spin states continue. An experiment was carried out relating to the search for a neutrino mass. Activity also continued in other areas of physics, engineering and medicine

  3. STATIONARY DISTRIBUTION OF A TANDEM QUEUE WITH ADDITIONAL FLOWS ON THE STATIONS OF THE TANDEM

    Directory of Open Access Journals (Sweden)

    V. I. Klimenok

    2017-01-01

    Full Text Available A tandem queueing system consisting of a finite number of multi-server stations without buffers is analized. The input flow at the first station is a ???????????? (Markovian arrival process. The customers from this flow aim to be served at all stations of the tandem. For any station, besides transit customers proceeding from the previous station, an additional ???????????? flow of new customers arrives at this station directly. Customers from this flow aim to be served at this station and all subsequent stations of the tandem. The service times of customer at the stations are exponentially distributed with the service rate depending of number of the station. The algorithms for culculation of stationary distributions and the loss probabilities associated with the tandem are given.

  4. Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhu, Minghua; Zhao, Hongxia; Xia, Deming; Du, Juan; Xie, Huaijun; Chen, Jingwen

    2018-08-30

    An accelerated solvent extraction (ASE) with in-cell clean-up method coupled to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 21 antibiotics in sea cucumber. The analytes include 10 sulfonamides, 4 fluoroquinolones, 3 amphenicols, 2 beta-lactams, 1 lincosamide and trimethoprim. Optimal parameters of ASE method were obtained at 80 °C, 1 static cycle of 5 min with methanol/acetonitrile (1/1, v/v) using 2 g of C18 as adsorbent. Recoveries at 50.1-129.2% were achieved with RSD under 20%. Method detection limits ranged from 0.03 to 2.9 μg kg -1 . Compared to the reported ultrasound-assisted extraction method, the proposed method offered comparable extraction efficiency for sulfonamides from sea cucumber, but higher for other categories of antibiotics. This validated method was then successfully applied to sea cucumber samples and 9 antibiotics were detected with the highest concentration up to 57.7 μg kg -1 for norfloxacin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Subattomole sensitivity in biological accelerator mass spectrometry.

    Science.gov (United States)

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  6. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Bemmerer D.

    2015-01-01

    Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  7. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8).

    Science.gov (United States)

    Zhang, Ning; Chow, Simon Kwoon Ho; Leung, Kwok Sui; Lee, Ho Hin; Cheung, Wing Hoi

    2017-10-15

    Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Plasma confinement in the TMX tandem mirror

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.; Allen, S.L.; Casper, T.A.

    1981-01-01

    Plasma confinement in the Tandem Mirror Experiment (TMX) is described. Axially confining potentials are shown to exist throughout the central 20-cm core of TMX. Axial electron-confinement time is up to 100 times that of single-cell mirror machines. Radial transport of ions is smaller than axial transport near the axis. It has two parts at large radii: nonambipolar, in rough agreement with predictions from resonant-neoclassical transport theory, and ambipolar, observed near the plasma edge under certain conditions, accompanied by a low-frequency, m = 1 instability or strong turbulence

  9. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  10. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zastepa, Arthur; Pick, Frances R; Blais, Jules M; Saleem, Ammar

    2015-05-04

    The fate and persistence of microcystin cyanotoxins in aquatic ecosystems remains poorly understood in part due to the lack of analytical methods for microcystins in sediments. Existing methods have been limited to the extraction of a few extracellular microcystins of similar chemistry. We developed a single analytical method, consisting of accelerated solvent extraction, hydrophilic-lipophilic balance solid phase extraction, and reversed phase high performance liquid chromatography-tandem mass spectrometry, suitable for the extraction and quantitation of both intracellular and extracellular cyanotoxins in sediments as well as pore waters. Recoveries of nine microcystins, representing the chemical diversity of microcystins, and nodularin (a marine analogue) ranged between 75 and 98% with one, microcystin-RR (MC-RR), at 50%. Chromatographic separation of these analytes was achieved within 7.5 min and the method detection limits were between 1.1 and 2.5 ng g(-1) dry weight (dw). The robustness of the method was demonstrated on sediment cores collected from seven Canadian lakes of diverse geography and trophic states. Individual microcystin variants reached a maximum concentration of 829 ng g(-1) dw on sediment particles and 132 ng mL(-1) in pore waters and could be detected in sediments as deep as 41 cm (>100 years in age). MC-LR, -RR, and -LA were more often detected while MC-YR, -LY, -LF, and -LW were less common. The analytical method enabled us to estimate sediment-pore water distribution coefficients (K(d)), MC-RR had the highest affinity for sediment particles (log K(d)=1.3) while MC-LA had the lowest affinity (log K(d)=-0.4), partitioning mainly into pore waters. Our findings confirm that sediments serve as a reservoir for microcystins but suggest that some variants may diffuse into overlying water thereby constituting a new route of exposure following the dissipation of toxic blooms. The method is well suited to determine the fate and persistence of different

  11. MHD stability of tandem mirrors

    International Nuclear Information System (INIS)

    Poulsen, P.; Molvik, A.; Shearer, J.

    1982-01-01

    The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration

  12. Brief-stimulus presentations on multiform tandem schedules

    OpenAIRE

    Reed, Phil

    1994-01-01

    Three experiments examined the influence of a brief stimulus (a light) on the behavior of food-deprived rats whose lever pressing on tandem schedules comprising components of different schedule types resulted in food presentation. In Experiment 1, either a tandem variable-ratio variable-interval or a tandem variable-interval variable-ratio schedule was used. The variable-interval requirement in the tandem variable-ratio variable-interval schedule was yoked to the time taken to complete the va...

  13. Accelerator mass spectrometry of heavy elements: /sup 36/Cl to /sup 205/Pb

    Energy Technology Data Exchange (ETDEWEB)

    Henning, W

    1987-08-25

    Measurements are discussed in which the technique of accelerator mass spectrometry was applied to problems involving heavy radioisotopes. These measurements, which depend on the ion energies that can be reached with the new heavy-ion accelerator facilities, were performed at the Argonne tandem linac accelerator system (ATLAS) and at the UNILAC accelerator at GSI. The topics include a discussion of measurements of long nuclear lifetimes, of radioisotope detection of interest to solar neutrino experiments, and of a determination of the /sup 41/Ca concentration in natural samples of terrestrial origin by making use of isotopic pre-enrichment in an isotope separator. A long-known method of isobar separation, employing a gas-filled magnetic field region, has been revived for some of these measurements and its characteristics and advantages are briefly reviewed.

  14. Accelerator SIMS, a technique for the determination of stable trace elements in ultrapure materials

    Energy Technology Data Exchange (ETDEWEB)

    Ender, R.M.; Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Doebeli, M.; Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A new sputtering chamber with special precautions against sample contamination from the surroundings of the sample has been added to the AMS beamline of the tandem accelerator. This allows the detection of trace element concentrations in ultrapure materials below the ppb range in many cases. (author) 1 fig., 2 refs.

  15. Kansas State University accelerator laboratory upgrade

    International Nuclear Information System (INIS)

    Richard, P.

    1989-01-01

    The J.R. Macdonald Laboratory is undergoing a major upgrade of its facilities and capabilities. The laboratory is dedicated to the study of ion-atom collisions using highly charged ions from accelerators and/or ion sources. The mainstay of the laboratory over the last two decades has been a 6 MV tandem accelerator. It has been used to produce one- to a few-MeV/u highly charged ions for studying high energy atomic collisions, and to produce recoil ions from ocllisions with projectile ions for studying low energy atomic collisions. In order to enhance the capabilities of studying atomic collisions in these two energy regimes, we are constructing a superconducting LINAC booster to the tandem, and a stand-alone CRYEBIS source. The project, which is funded by the US Department of Energy, began in May 1985 with a May 1989 completion schedule. The upgrade includes a building addition, funded by the State of Kansas, to house the new facilities. The LINAC consists of a time-superbunching module, followed by three large cryostat modules each containing four superconducting resonators, and followed by an energy-rebunching module. The resonators are the split-ring superconducting Nb type designed and constructed at Argonne National Laboratory, and are presently being tested at KSU. The CRYEBIS source, which consists of a 1 m long 5 T superconducting solenoid with a high degree of straightness, is in the final stages of assembly. We have in operation a new computer network for data acquisition and analysis. A progress report on the status of the upgrade is presented. (orig.)

  16. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  17. 3 MV, Tandetron accelerator at CCCM

    International Nuclear Information System (INIS)

    Raju, V.S.

    2003-01-01

    Surface analysis requires compositional characterisation of thin films such as stoichiometries and the depth distributions of the constituents present in 100 A to a few tens of microns. Complimented by Ultra Trace laboratory and Bulk laboratory of the Centre, for cross validation with other state of art specialized analytical techniques in specific times, this laboratory has been providing the services to different end users around the country. The surface laboratory has three major facilities viz. a 3MV Tandem accelerator dedicated for Ion Beam Analysis, an Analytical Electron Microscope and an indigenously built X-Ray Photoelectron Spectroscopy system

  18. McMaster Accelerator Laboratory. Annual report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This Annual Report summarizes the research activities at the McMaster Accelerator Laboratory. Included are reports of work carried out during the period of November 1987 to September 1988 with separate subsections for Nuclear Physics Research, Accelerator Mass Spectrometry, Atomic, Molecular and Material Sciences, and Nuclear Medicine. A number of the research reports are of a preliminary nature and the authors should be contacted before results are quoted. Details of the facility and its operation follow with reports of our computer control group. Finally there is a list of publications covering the period January 1987 to September 1988. The two major accelerators continue to operate very well. The model FN tandem Van De Graaff was used by four research groups for routine runs at a terminal voltage of 10 MV or higher with serveral days of experiments at 11 MV. The variety and stability of heavy ion beams continues to increase. Our technical staff have done an excellent job of improving and upgrading this facility and are to be congratulated on a job well done

  19. The ISOL exotic beam facility at LNS: the EXCYT project

    International Nuclear Information System (INIS)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D.; Qin, J.; Wollnik, H.

    1997-01-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ''two accelerators'' method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.)

  20. The ISOL exotic beam facility at LNS: the EXCYT project

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Qin, J. [Institute of Atomic Energy, Beijing (China); Wollnik, H. [Giessen Univ. (Germany)

    1997-04-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ``two accelerators`` method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.). 8 refs.

  1. In situ detection of tandem DNA repeat length

    Energy Technology Data Exchange (ETDEWEB)

    Yaar, R.; Szafranski, P.; Cantor, C.R.; Smith, C.L. [Boston Univ., MA (United States)

    1996-11-01

    A simple method for scoring short tandem DNA repeats is presented. An oligonucleotide target, containing tandem repeats embedded in a unique sequence, was hybridized to a set of complementary probes, containing tandem repeats of known lengths. Single-stranded loop structures formed on duplexes containing a mismatched (different) number of tandem repeats. No loop structure formed on duplexes containing a matched (identical) number of tandem repeats. The matched and mismatched loop structures were enzymatically distinguished and differentially labeled by treatment with S1 nuclease and the Klenow fragment of DNA polymerase. 7 refs., 4 figs.

  2. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  3. Installation of the Ion Accelerator for the Surface Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung; Kim, Han-Sung; Chung, Bo-Hyun; Ahn, Tae-Sung; Kim, Dae-Il; Kim, Cho-Rong; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, an introduction to the accelerator, an installation status at KOMAC and the operation plan of the accelerator are discussed. A pelletron, which has been used over 25 years at KIGAM, is moved and installed at KOMAC in order to supply a qualified service to ion beam users. The system will be installed in September and component tests will be carried. The operation of the system starts in 2016 after it gets operation license from Nuclear Safety and Security Commission. Korea Multi-purpose Accelerator Complex (KOMAC) is operating several ion beam accelerators to provide various ion beams to users. Those are a 100 MeV proton linear accelerator, a 220 keV ion implanter for gaseous ion beams, a 150 keV metal ion implanter and a 20 keV high-current ion implanter. All of those are the machine for user service and it is important to qualify the results of the irradiation conditions for user service. For this reason, an electrostatic tandem accelerator, which has been operating over 25 years at Korea Institute of Geoscience and Mineral Resources (KIGAM), is moved to KOMAC in order to supply the qualified and quantified data on the irradiation species.

  4. Photoelastic examination of borosilicate glass discs used in the insulating legs for the NSF tandem

    International Nuclear Information System (INIS)

    Acton, W.J.; Cundy, D.

    1981-04-01

    The results are presented of a photoelastic stress analysis carried out to establish the effect of re-annealing borosilicate glass discs used in the insulating legs of the 30 MV tandem van de Graaff accelerator of the NSF. The results show that re-annealing of the glass discs has no measurable effect on reducing the high stress at inclusions and re-emphasise the need to exercise great care in selecting suitable discs for use in the insulating legs. (U.K.)

  5. Characterization Study of Accelerator for Application in Biotechnology

    International Nuclear Information System (INIS)

    Yazid-M; Muryono, H.

    2000-01-01

    The characterization of accelerator for application in biotechnology was studied. Accelerator is a machine to produce ion beam particles. Accelerator can be used for biotechnology experiments. Ion beam particles irradiation on the biological material will produced variabilities of genetics and induced mutations. In general, new varieties were found by hybridization method or mutation breeding method by gamma rays irradiation. Ion beam particles can be used for biological material irradiation to find variabilities of genetics and induced mutations. The high percentage of mutation rate and LET value by ion beam particles irradiation was found higher than by gamma rays irradiation. Ion beam particle irradiation can also be controlled and foewed to target in biological material. The characterization of accelerator needed for biotechnology experiments are types of accelerator (Tandem Van de Graff, AVF Cyclotron, Synchrotron, Rilac), types of ion particles (C, He, electron, Ar, Ne, Ni, Al, Xe and Au), range of energy (5 - 2.090 MeV), range of dose irradiation (10 - 250 Gy), range of ion current (0.02 - 20 nA), range of ion beam particles diameter (10 - 100 μm), range of LET value (300 - 1.800 keV/μm ) and irradiation time (5 - 30 seconds/samples). (author)

  6. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  7. Long-term outcome of accelerated partial breast irradiation using a multilumen balloon applicator in a patient with existing breast implants.

    Science.gov (United States)

    Akhtari, Mani; Nitsch, Paige L; Bass, Barbara L; Teh, Bin S

    2015-01-01

    Accelerated partial breast irradiation is now an accepted component of breast-conserving therapy. However, data regarding long-term outcomes of patients treated with multilumen catheter systems who have existing breast implants are limited. We report the treatment and outcome of our patient who had existing bilateral silicone subpectoral implants at the time of presentation. Ultrasound-guided core needle biopsy of the right breast showed infiltrating mucinous carcinoma. Right breast lumpectomy revealed an 8 mm area of infiltrating ductal carcinoma with mucinous features and nuclear grade 1. A 4-5 cm Contura (Bard Biopsy Systems, Tempe, AZ) device was placed, and she was treated over the course of 5 days twice daily to a dose of 34 Gy using a high-dose-rate iridium-192 source. The planning target volume for evaluation was 73.9 cc. The percentage of the planning target volume for evaluation receiving 90%, 95%, and 100% of the prescribed dose was 99.9%, 99.3%, and 97.8%, respectively. The total implant volume was 234.5 cc and received a mean dose of 15.4 Gy and a maximum dose of 72.8 Gy. The percentage of implant volume receiving 50%, 75%, 100%, and 200% of the prescribed dose was 31.1%, 16.5%, 8.6%, 2.0%, and 0%, respectively. Maximum skin dose was 97% of the prescribed dose. With a followup of nearly 5 years, she continues to be cancer free with minimal late toxicities and good to excellent cosmetic outcome. Accelerated partial breast irradiation using a multilumen balloon applicator in patients with existing breast implants can safely be performed with excellent long-term cosmetic outcome. Further studies are needed to establish the absolute dosimetric tolerance of breast implants. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Novel applications of particle accelerators to radiotherapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Universidad Nacional de San Martin, Villa Ballester

    2002-01-01

    Charged hadrons (protons and heavier ions) have very definite advantages over photons as far as radiotherapy applications are concerned. They allow for much better spatial dose localization due to their charge, relatively high mass and nature of the energy deposition process. In the frame of an attempt to promote the introduction of hadrontherapy in Argentina an external beam facility has been installed at our tandem accelerator TANDAR. The advantages of heavy ions can only be fully exploited for tumors of well defined localization. In certain types of malignancies, however, the region infiltrated by tumor cells is diffuse, with no sharp boundaries and with microscopic ramifications. In such cases (particularly in certain brain cancers) a more sophisticated scheme has been suggested called boron neutron capture therapy (BNCT). In this work, the use of the Tandar accelerator to produce neutrons for feasibility studies for BNCT through low-energy proton beams on a thick LiF target is being briefly described. Studies on the 13 C(d,n) reaction and a comparison with other neutron-producing reactions are also mentioned. Simulation work to optimize an accelerator-based neutron production target is discussed. A project is being prepared to develop a small proton accelerator in Argentina. Technical specifications of this machine are briefly discussed. (author)

  9. Sample preparation for accelerator mass spectrometry at the University of Washington

    International Nuclear Information System (INIS)

    Grootes, P.M.; Stuiver, M.; Farwell, G.W.; Schmidt, F.H.

    1981-01-01

    The adaptation of the University of Washington FN tandem Van de Graaff to accelerator mass spectrometry (AMS), as well as some of the results obtained, are described in another paper in this volume (Farwell et al., 1981). Here we discuss our experiences in preparing carbon and beryllium samples that give large and stable ion beams when used in our Extrion cesium sputter source with an inverted cesium beam geometry

  10. Delivery of single accelerated particles

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.; Schimmerling, W.; Vosburgh, K.G.; Crebbin, K.; Everette, W.; Howard, J.

    1978-01-01

    It is desirable for certain experiments involving accelerators to have the capability of delivering just a single beam particle to the target area. The essential features of such a one-at-a-time facility are discussed. Two such facilities are described which were implemented at high-energy heavy ion accelerators without having to make major structural changes in the existing beam lines or substantially interfering with other accelerator uses. Two accelerator facilities are described which had the capability of delivering a single beam particle to the target area. This feature is necessary in certain experiments investigating visual phenomena induced by charged particles, other single particle interactions in biology, and other experiments in which the low intensities of cosmic rays need to be simulated. Both facilities were implemented without having to make structural changes in the existing beam lines or substantially interfering with other accelerator uses. (Auth.)

  11. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  12. Development of small applied accelerator in Tokyo Institute of Technology

    CERN Document Server

    Hattori, T

    2002-01-01

    Interdigital-H(IH) Linac was constructed and applied to materials research in the University. IH Linac uses 1.6 MV small tandem pelletron and accelerates ion (>Q/A=1/4) from 240 KeV to 2.4 MeV. The secondary IH Linac was built and increased the energy to 3.4 MeV/u. In order to apply linac to therapy, IH Linac for PET (Position Emission Tomography), Carbon 6 MeV/u Linac for cancer therapy, APF (Alternating Phase Focus)-IH prototype linac, Carbon 2 MeV/u test APF-IH linac were developed. On application to semiconductor and industry, IHQ type MeV ion implantation device, APF-IH type MeV ion implantation device and high-energy electron accelerator were developed. A bone density measurement instrument was developed and the data was proved better values than ordinary instrument. The problems of prototype small accelerator are summarized. (S.Y.)

  13. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    International Nuclear Information System (INIS)

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV 16 O 2+ was injected into ORIC, stripped to 8 + and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin 208 Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations

  14. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  15. Tandem-method for measurement of destruction cross-sections of neutral projectiles at intermediate and high velocities

    International Nuclear Information System (INIS)

    Sant'Anna, M.M.; Magnani, B.F.; Correa, R.S.; Coelho, L.F.S.

    2007-01-01

    We have recently presented destruction cross-section data for negative ions obtained with a technique that uses the gas stripper of a tandem accelerator as the collision target. In this work, we develop an extension of that technique to measure destruction cross-sections for neutral projectiles, important parameters to estimate neutral beam attenuation in Heavy Ion Fusion applications. Measurements for the H+N 2 collision system are used to exemplify and discuss the capabilities and limitations of the proposed experimental method

  16. The development of a cryopump for stripper gas pumping in a 30 MV tandem Van de Graaff

    International Nuclear Information System (INIS)

    Halliday, B.S.

    1980-04-01

    The development of a cryopump is described for a 30 MV tandem Van de Graaf accelerator to control the vacuum pressure in the beam tube at the centre terminal when a gas stripper is in use. The system has been fully assembled and has been mechanically tested, the cryo pumps have been cooled to 18 0 K and the insulation tested electrically to +- 20 kV between the pump elements and the biased stripper canal. (UK)

  17. In situ TEM-tandem/implanter interface facility in Wuhan University for investigation of radiation effects

    International Nuclear Information System (INIS)

    Guo Liping; Li Ming; Liu Chuansheng; Song Bo; Ye Mingsheng; Fan Xiangjun; Fu Dejun

    2007-01-01

    Transmission electron microscope (TEM) interfaced to one or more ion implanters and/or accelerators, i.e. in situ TEM, provides effective tools to observe microstructural changes of studied samples during the ion irradiation. Evolution of both radiation damages and irradiation-induced nano-sized microstructures can be investigated with this technique, much more convenient than conventional ex situ techniques. In situ TEM technique has been widely applied in various fields, especially in the study of radiation damages of structural materials of fission and fusion nuclear reactors, and in evaluation and qualification of radioactive waste forms. Nowadays there are more than a dozen such facilities located in Japan, France, and the United States. Recently, we have constructed the first TEM-Tandem/Implanter interface facility of China in Wuhan University. A modified Hitachi H800 TEM was interfaced to a 200 kV ion implanter and a 2 x 1.7 MV tandem accelerator. Effective steps were taken to isolate the TEM from mechanical vibration from the ion beam line, and no obvious wobbling of the TEM image was observed during the ion implantation. The amorphization process of Si crystal irradiated by 115 keV N + ion beam was observed in the primary experiments, demonstrating that this interface facility is capable of in situ study of radiation effects. An online low energy gaseous ion source which may provide 1-20 keV H + and He + is under construction. (authors)

  18. New developments in design and applications for Pelletron accelerators

    International Nuclear Information System (INIS)

    Norton, Greg

    2002-01-01

    Most of the developments over the last several years related to Pelletron accelerator are in the field of accelerator mass spectrometry (AMS) and other low beam current applications with the exception of a very high DC electron recirculation Pelletron. High precision AMS systems based on tandem pelletrons from 500 kV to 5 MV terminal potential are now in use for routine high precision AMS measurements. Their performance will be reported. In addition, there has been significant advancement in the design of the multi-cathode SNICS source for the use of both gas and solid samples within a single source. The latest performance of these sources will be discussed. New diagnostics is being developed for very low beam currents. The latest design of the low current beam profile monitor (LCBPM) will also be presented. (author)

  19. Power supplies in 14 UD pelletron accelerator and its control (Paper No. CP 12)

    International Nuclear Information System (INIS)

    Vaze, M.Y.; Bhalerao, P.J.; Tambvekar, V.V.

    1990-01-01

    14UD Pelletron is a 14 million volt tandem heavy ion accelerator. For generation of the accelerating voltage, heavy ion beams and transporting the beam through low energy injector systems, accelerator, high energy system, analysing magnets and finally upto the target different types of types of D.C. power supplies with varying capacity and specifications are used in this accelerator. Broadly these power supplies can be classified in three different types: (1)D.C. high voltage low current voltage regulated supplies, (2)Low voltage high current current regulated high precision D.C. power supplies, and (3)Medium power current regulated D.C. power supplies. These power supplies are described and systems where they are used are mentioned. They are interfaced with CAMAC module and are controlled and monitored remotely from the control room through the serial highway link. (author). 2 figs

  20. First phase plan for experimental study of heavy-ion inertial fusion accelerator

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki; Okamura, Masahiro; Oguri, Yoshiyuki; Aida, Toshihiro; Takeuchi, Kouichi; Sasa, Kimikazu; Itoh, Takashi; Okada, Masashi; Takahashi, Yousuke; Ishii, Yasuyuki.

    1993-01-01

    We propose the basic experiment plan of driver for heavy-ion inertial fusion by heavy-ion linac [1-3] system and the heavy-ion cooler synchrotron. As the first phase of planning, we will improve old heavy-ion accelerator system that accelerate small intensity around Cl ion with charge to mass ratio of 1/4 up to 2.4 MeV/amu. The injector of the system will exchange from the 1.6 MV Peletron Tandem accelerator to an RFQ type linac with an ECR heavy-ion source. According to building up the power sources of RF and focusing magnet, then it is able to accelerate intense around Xe ion with charge to mass ratio of 1/6 up to 2.4 MeV/amu. At the next stage of it, we will construct a heavy-ion cooler synchrotron having magneticrigidity of 3 or 6 Tm and begin to study about HIF driver. (author)

  1. Modification in existing SF6 gas handling system at 14UD BARC-TIFR Pelletron Accelerator, Mumbai

    International Nuclear Information System (INIS)

    Ninawe, N.G.; Gupta, S.K.; Ramjilal; Sparrow, Hillary; Sharma, S.C.; Bhagwat, P.V.; Salvi, S.B.

    2003-01-01

    BARC-TIFR 14 UD Pelletron Accelerator facility at TIFR, Mumbai is operational since inception 1989. The accelerator is housed inside a pressure vessel of 6 metre diameter, 25 metre long and 525m 3 volume. The accelerator tank is pressurized with SF 6 at 80 to 100 psig in order to achieve 14MV. The inventory of SF 6 gas is about 18,000 Kg (approximately) at 80 psig. SF 6 gas can be transported from Accelerator tank to storage tank using gas handling system, which consists of oil free compressor, vacuum pump, dust filters, oil filters, dryers etc

  2. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    International Nuclear Information System (INIS)

    Williams, J.R.; Clark, J.C.; Isaacs-Smith, T.

    2001-01-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed

  3. Parametric studies of tandem mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  4. Development of a fast voltage control method for electrostatic accelerators

    International Nuclear Information System (INIS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-01-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed

  5. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  6. Introduction to tandem mirror physics

    International Nuclear Information System (INIS)

    Kesner, J.; Gerver, M.J.; Lane, B.G.; McVey, B.D.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.

    1983-09-01

    This monograph, prepared jointly by the MIT Plasma Fusion Center Mirror Fusion group and SAI, Boulder, Colorado, presents a review of the development of mirror fusion theory from its conception some thirty years ago to the present. Pertinent historic experiments and their contribution are discussed to set the stage for a detailed analysis of current experiments and the problems which remain to be solved in bringing tandem mirror magnetic confinement fusion to fruition. In particular, Chapter III discusses in detail the equilibrium and stability questions which must be dealt with before tandem mirror reactors become feasible, while Chapters IV and V discuss some of the current machines and those under construction which will help to resolve critical issues in both physics and engineering whose solutions are necessary to the commercialization of tandem mirror fusion

  7. Integrating knowledge-based systems into operations at the McMaster University FN tandem accelerator laboratory

    International Nuclear Information System (INIS)

    Poehlman, W.F.S.; Stark, J.W.

    1989-01-01

    The introduction of computer-based expertise in accelerator operations has resulted in the development of an Accelerator Operators' Companion which incorporates a knowledge-based front-end that is tuned to user operational expertise. The front-end also provides connections to traditional software packages such as database and spreadsheet programs. During work on the back-end, that is, real-time expert system control development, the knowledge engineering phase has revealed the importance of modifying expert procedures when a multitasking environment is involved

  8. Annual report 1991 of Munich University and Technical University Accelerator Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    The experimental work in the Accelerator Laboratory contains investigations of nuclear reactions and nuclear structure, studies of atom physics and the application of nuclear physics methods in physics and in interdisciplinary research. These applications are acceleration mass spectrometry to detect traces of radio-isotopes and material analysis with particle beams. The development of apparatus in the fields of accelereator construction, ion sources and targets are at the heart of the laboratory and help to establish its reputation. They are of the greatest importance for the education of students. The development stage for the superconducting post-accelerator TRITRON is complete and prototypes of the magnets and resonators were successfully tested and operated. The mass-production of all the components is under way or already finished. The standard injector for the tandem axxelerator and an injector for accelerator mass spectroscopy with stable isotopes are being newly designed. The experimental work is supplemented by the calculations of our theoretical collagues of core reaction mechanisms, core de-excitation and the Cerenkov radiation of core structures and transition strengths, by relativistic Hartree-Fock calculations and by star model calculations. (orig.) [de

  9. Tandem Translation Classroom: A Case Study

    Science.gov (United States)

    Kim, Dohun; Koh, Taejin

    2018-01-01

    The transition to student-centred learning, advances in teleconferencing tools, and active international student exchange programmes have stimulated tandem learning in many parts of the world. This pedagogical model is based on a mutual language exchange between tandem partners, where each student is a native speaker in the language the…

  10. A solution process for inverted tandem solar cells

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Bundgaard, Eva; Sylvester-Hvid, Kristian O.

    2011-01-01

    Tandem solar cells with normal and inverted device geometries were prepared by a solution process. Both device types were based on the use of zinc(II)oxide as the electron transporting layer (ETL). The hole transporting layer (HTL) was either PEDOT:PSS for normal geometry tandem solar cells...... or vanadium(V)oxide in the case of inverted tandem cells. It was found that the inverted tandem solar cells performed comparable or better than the normal geometry devices, showing that the connection structure of vanadium(V)oxide, Ag nanoparticles and zinc(II)oxide functions both as a good recombination...... layer, ensuring serial connection, and as a solvent barrier, protecting the first photoactive layer from processing of the second layer. This successfully demonstrates a tandem solar cell fabrication process fully compatible with state-of-the-art solution based automated production procedures....

  11. Task difficulty has no effect on haptic anchoring during tandem walking in young and older adults.

    Science.gov (United States)

    Costa, Andréia Abud da Silva; Santos, Luciana Oliveira Dos; Mauerberg-deCastro, Eliane; Moraes, Renato

    2018-02-14

    This study assessed the contribution of the "anchor system's" haptic information to balance control during walking at two levels of difficulty. Seventeen young adults and seventeen older adults performed 20 randomized trials of tandem walking in a straight line, on level ground and on a slightly-raised balance beam, both with and without the use of the anchors. The anchor consists of two flexible cables, whose ends participants hold in each hand, to which weights (125 g) are attached at the opposing ends, and which rest on the ground. As the participants walk, they pull on the cables, dragging the anchors. Spatiotemporal gait variables (step speed and single- and double-support duration) were processed using retro-reflective markers on anatomical sites. An accelerometer positioned in the cervical region registered trunk acceleration. Walking on the balance beam increased single- and double-support duration and reduced step speed in older adults, which suggests that this condition was more difficult than walking on the level ground. The anchors reduced trunk acceleration in the frontal plane, but the level of difficulty of the walking task showed no effect. Thus, varying the difficulty of the task had no influence on the way in which participants used the anchor system while tandem walking. The older adults exhibited more difficulty in walking on the balance beam as compared to the younger adults; however, the effect of the anchor system was similar in both groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Accelerator mass spectrometry and associated facilities at Inter-University Accelerator Centre, New Delhi, India

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bohra, Archna; Ojha, S.; Gargari, S.; Joshi, R.; Roonwal, G.S.; Chopra, S.; Pattanaik, J.K.; Balakrishnan, S.

    2011-01-01

    Accelerator Mass Spectrometry (AMS) facility at Inter-University Accelerator Centre (IUAC) is developed by upgrading its existing 15UD Pelletron accelerator. Since last two decades Pelletron is mainly used for nuclear physics, materials science, atomic physics, radiation biology and accelerator mass spectrometry is recent development. In addition, a chemistry laboratory in clean room for the chemical processing of samples for AMS studies has also been established. At present the AMS facility is used for 10 Be, 26 Al measurements and soon other long lived radio-isotopes will also be used

  13. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    Energy Technology Data Exchange (ETDEWEB)

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV /sup 16/O/sup 2 +/ was injected into ORIC, stripped to 8/sup +/ and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin /sup 208/Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations.

  14. Oak Ridge isochronous cyclotron as an energy booster for a 25 MV tandem

    International Nuclear Information System (INIS)

    Lord, R.S.; Hudson, E.D.; McNeilly, G.S.

    1975-01-01

    The maximum heavy-ion energy available at Oak Ridge will be substantially increased by using ORIC as an energy booster for the 25 MV ''folded'' tandem now being acquired. Beams of ions with mass up to A = 160, with energy sufficient to overcome the Coulomb barrier on lead, will be produced. The beams will enter the cyclotron through the dee stem and will be directed by a magnet through the fringe and main fields to a stripping foil which lies on the appropriate orbit for acceleration. General orbit and beam transport codes were used to aid in the design of the injection system. (U.S.)

  15. The accelerator breeder

    International Nuclear Information System (INIS)

    Johansson, E.

    1986-01-01

    Interactions of high-energy particles with atomic nuclei, in particular heavy ones, leads to a strong emission of neutrons. Preferably these high-energy particles are protons or deuterons obtained from a linear accelerator. The neutrons emitted are utilized in the conversion of U238 to Pu239 or of Th232 to U233. The above is the basis of the accelerator breeder, a concept studied abroad in many variants. No such breeder has, however, so far been built, but there exists vast practical experience on the neutron production and on the linear accelerator. Some of the variants mentioned are described in the report, after a presentation of general characteristics for the particle-nucleus interaction and for the linear accelerator. (author)

  16. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    Science.gov (United States)

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  17. Design studies of heavy ion linear accelerators constructed of independently phased spiral resonators

    International Nuclear Information System (INIS)

    Stokes, R.H.; Armstrong, D.D.

    1975-01-01

    Preliminary design studies are reported for two linear accelerators for heavy ions. One accelerator is a high-intensity machine which would operate with 100 percent duty factor and would produce tin ions with 6.1 MeV/A. Alternatively, it could be operated under pulsed conditions with 25 percent duty factor and would then accelerate uranium ions to 8.1 MeV/A, tin ions to 10.5 MeV/A, and all lighter ions to higher velocities. It would be injected with a positive multicharge ion source and a 4-MV single-ended dc generator. Also, design studies are reported for small postaccelerator injected by a model FN tandem. Both accelerators use three-drift-tube spiral resonators operating at room temperature. Magnetic quadrupole singlets are placed between all resonators to provide radial focussing. Each resonator is independently phased according to the velocity of the ion to be accelerated. The ability to adjust the phase of each resonator permits variations in final energy and other beam properties with great flexibility. (U.S.)

  18. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  19. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  20. The Kyoto University tandem upgrading project

    International Nuclear Information System (INIS)

    Nakamura, Masanobu; Shimoura, Susumu; Takimoto, Kiyohiko; Sakaguchi, Harutaka; Kobayashi, Shinsaku

    1988-01-01

    A brief description on the Kyoto University tandem upgrading project. The project consists of replacing the old 5 MV tandem Van de Graaff by an 8UDH pelletron. The old pressure vessel and beam lines are used again without significant modification. The project is planned to be completed at the end of 1989. (orig.)

  1. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  2. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  3. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    Terebilo, Andrei

    2001-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  4. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcken, K.M., E-mail: klaus.wilcken@ansto.gov.au [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Freeman, S.P.H.T.; Xu, S.; Dougans, A. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom)

    2013-01-15

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such {sup 14}C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed {sup 13}C and {sup 16}O by improvising an additional Wien filter on our SSAMS deck. Also, {sup 14}C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the {sup 14}N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  5. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps

    Directory of Open Access Journals (Sweden)

    Guangchuan Yang

    2016-10-01

    Full Text Available This paper investigated the actual truck acceleration capability at metered on-ramps. Truck acceleration performance data were collected through a video-based data collection method. A piecewise constant acceleration model was employed to capture truck acceleration characteristics. It was found that the existing acceleration length will affect truck drivers’ acceleration behavior. At the taper type ramp that has limited acceleration distance, acceleration profile indicated a decreasing trend with distance. While for the ramp with an auxiliary lane that has sufficient acceleration distance, it was found that the acceleration behavior is to have a high acceleration rate in the beginning, then acceleration rate decrease with speed increase, and high acceleration rate again as drivers approach the merging area. Field data show that the truck acceleration performance data documented in the ITE’s (Institute of Transportation Engineers “Traffic Engineering Handbook” are much lower than the field collected data. Also, based on the regression analysis of speed versus distance profiles, it was found that the AASHTO’s (American Association of State Highway and Transportation Officials Green Book acceleration length design guidance is insufficient to accommodate trucks at metered on-ramps. The required acceleration lengths for medium and heavy trucks are approximately 1.3 and 1.6 times of the Green Book design guideline, respectively.

  6. Light ion program at BNL

    International Nuclear Information System (INIS)

    Foelsche, H.; Barton, D.S.; Thieberger, P.

    1986-08-01

    At Brookhaven National Laboratory (BNL) two existing facilities, the Tandem Van de Graaff machines and the AGS have been joined by a beam transfer line, and modified to permit acceleration of light ions (up to sulfur) to energies of 14.6 GeV/amu. Light ions supplied by a pulsed ion source are accelerated by the Tandem to an energy of about 7 to 8 MeV/amu, and are transferred directly into the AGS in the fully stripped state. In the AGS an auxiliary rf system has been added to accelerate through the low velocity region from about 7 to about 200 MeV/amu, at which point the previously existing AGS RF system takes over to complete the acceleration cycle to full energy, as it normally does for protons. Standard resonant slow extraction delivers the beam to the existing experimental beam facilities. This is the first phase of a long range program to provide facilities for relativistic heavy ion experiments with fixed targets and ultimately with colliding beams at BNL. The design objectives for this project and preliminary results obtained during the commissioning of the light ion program are described in this paper. Plans for a future second phase, a booster accelerator to permit heavy ion acceleration in the AGS, and of the third phase, a proposed Relativistic Heavy Ion Collider (RHIC) are briefly mentioned as well

  7. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  8. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  9. Pulsed power ion accelerators for inertially confined fusion

    International Nuclear Information System (INIS)

    Olson, C.L.

    1976-01-01

    Current research is described on pulsed power ion accelerators for inertial fusion, i.e., ion diodes and collective accelerators. Particle beam energy and power requirements for fusion, and basic deposition characteristics of charged particle beams are discussed. Ion diodes and collective accelerators for fusion are compared with existing conventional accelerators

  10. Report to users of ATLAS [Argonne Tandem-Line Accelerator System

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1987-03-01

    The operation and development of ATLAS are reported, including accelerator improvements. Particularly noted is an upgrade to extend the mass range of projectiles up to uranium and to increase the beam intensity by at least two orders of magnitude for all ions. Meetings are discussed, particularly of the Program Advisory Committee and the User Group Executive Committee. Some basic information is provided for users planning to run experiments at ATLAS, including a table of beams available. The data acquisition system for ATLAS, DAPHNE, is discussed, as are the following experimental facilities: the Argonne-Notre Dame Gamma Ray Facility, a proposal submitted for constructing a large-acceptance Fragment Mass Analyzer. Brief summaries are provided of some recent experiments for which data analysis is complete. Experiments performed during the period from June 1, 1986 to January 31, 1987 are tabulated, providing the experiment number, scientists, institution, experiment name, number of days, beam, and energy

  11. Report to users of ATLAS (Argonne Tandem-Line Accelerator System)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Glagola, B. (eds.)

    1987-03-01

    The operation and development of ATLAS are reported, including accelerator improvements. Particularly noted is an upgrade to extend the mass range of projectiles up to uranium and to increase the beam intensity by at least two orders of magnitude for all ions. Meetings are discussed, particularly of the Program Advisory Committee and the User Group Executive Committee. Some basic information is provided for users planning to run experiments at ATLAS, including a table of beams available. The data acquisition system for ATLAS, DAPHNE, is discussed, as are the following experimental facilities: the Argonne-Notre Dame Gamma Ray Facility, a proposal submitted for constructing a large-acceptance Fragment Mass Analyzer. Brief summaries are provided of some recent experiments for which data analysis is complete. Experiments performed during the period from June 1, 1986 to January 31, 1987 are tabulated, providing the experiment number, scientists, institution, experiment name, number of days, beam, and energy. (LEW)

  12. Packet models revisited: tandem and priority systems

    NARCIS (Netherlands)

    M.R.H. Mandjes (Michel)

    2004-01-01

    textabstractWe examine two extensions of traditional single-node packet-scale queueing models: tandem networks and (strict) priority systems. Two generic input processes are considered: periodic and Poisson arrivals. For the two-node tandem, an exact expression is derived for the joint distribution

  13. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  14. Injector of the Utrecht EN tandem

    Energy Technology Data Exchange (ETDEWEB)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van (Rijksuniversiteit Utrecht (Netherlands). Fysisch Lab.)

    1984-02-15

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90/sup 0/ analysing magnet, m/..delta..m=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system.

  15. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  16. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  17. Study and characteristics of a VIVITRON type electrostatic accelerator

    International Nuclear Information System (INIS)

    Tancogne-Dejean, J.P.

    1986-12-01

    The conception of the 2 MV tandem electrostatic accelerator ARAMIS, which is intended for research in solid state and astrophysics, benefits from certain technological advances of the VIVITRON. Our study has dealt with the shape and arrangement of the column electrodes for this machine. We have employed the program Poisson which performs two-dimensional calculations of the electrical constraint at the surface of the conductors. The maximum field strength on the constrained regions has a value of 11.5 MV/m. This completely acceptable result let one expect that the machine operation will be satisfactory. Certain limitations inherent in the bidimensional calculations have led us to consider programs treating three dimensions. Access to the finite element library MODULEF at the Centre de Calcul in Strasbourg has increased the computational possibilities. The case of an insulating post in the coaxial terminal-tank structure has thus been treated. This work has allowed the construction of the column electrodes to proceed. They will be ready the beginning 1987. The tandem ARAMIS being built should be operational by the end of 1987 [fr

  18. Reserves in load capacity assessment of existing bridges

    Science.gov (United States)

    Žitný, Jan; Ryjáček, Pavel

    2017-09-01

    High percentage of all railway bridges in the Czech Republic is made of structural steel. Majority of these bridges is designed according to historical codes and according to the deterioration, they have to be assessed if they satisfy the needs of modern railway traffic. The load capacity assessment of existing bridges according to Eurocodes is however often too conservative and especially, braking and acceleration forces cause huge problems to structural elements of the bridge superstructure. The aim of this paper is to review the different approaches for the determination of braking and acceleration forces. Both, current and historical theoretical models and in-situ measurements are considered. The research of several local European state norms superior to Eurocode for assessment of existing railway bridges shows the big diversity of used local approaches and the conservativeness of Eurocode. This paper should also work as an overview for designers dealing with load capacity assessment, revealing the reserves for existing bridges. Based on these different approaches, theoretical models and data obtained from the measurements, the method for determination of braking and acceleration forces on the basis of real traffic data should be proposed.

  19. {sup 36}Cl exposure dating with a 3-MV tandem

    Energy Technology Data Exchange (ETDEWEB)

    Steier, Peter, E-mail: peter.steier@univie.ac.a [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Forstner, Oliver; Golser, Robin; Kutschera, Walter; Martschini, Martin [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Merchel, Silke [CEREGE, CNRS-IRD-Universite Aix-Marseille, Europole Mediterraneen de L' Arbois, 13545 Aix-en-Provence (France); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Orlowski, Tobias; Priller, Alfred [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Vockenhuber, Christof [Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Wallner, Anton [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland)

    2010-04-15

    {sup 36}Cl AMS measurements at natural isotopic concentrations have yet been performed only at tandem accelerators with 5 MV terminal voltage or beyond. We have developed a method to detect {sup 36}Cl at natural terrestrial isotopic concentrations with a 3-MV system, operated above specifications at 3.5 MV. An effective separation was obtained with an optimized split-anode ionization chamber design (adopted from the ETH/PSI Zurich AMS group), providing a suppression factor of up to 30,000 for the interfering isobar {sup 36}S. Despite the good separation, a relatively high sulfur output from the ion source ({sup 36}S{sup -}/{sup 35}Cl{sup -} approx 4 x 10{sup -10} for samples prepared from chemically pure reagents), and a possibly cross contamination resulted in a background corresponding to {sup 36}Cl/Cl approx 3 x 10{sup -14}. The method was applied to samples containing between 10{sup 5} and 10{sup 6} atoms {sup 36}Cl/g rock from sites in Italy and Iran, which were already investigated by other laboratories for surface exposure dating. The {sup 36}Cl/Cl ratios in the range from 2 x 10{sup -13} to 5 x 10{sup -12} show a generally good agreement with the previous results. These first measurements demonstrate that also 3-MV tandems, constituting the majority of dedicated AMS facilities, are capable of {sup 36}Cl exposure dating, which is presently the domain of larger facilities.

  20. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  1. Improved transmission of electrostatic accelerator in a wide range of terminal voltages by controlling the focal strength of entrance acceleration tube

    Science.gov (United States)

    Lobanov, Nikolai R.; Tunningley, Thomas; Linardakis, Peter

    2018-04-01

    Tandem electrostatic accelerators often require the flexibility to operate at a variety of terminal voltages to accommodate various user requirements. However, the ion beam transmission will only be optimal for a limited range of terminal voltages. This paper describes the operational performance of a novel focusing system that expands the range of terminal voltages for optimal transmission. This is accomplished by controlling the gradient of the entrance of the low-energy tube, providing an additional focusing element. In this specific case it is achieved by applying up to 150 kV to the fifth electrode of the first unit of the accelerator tube. Numerical simulations and beam transmission tests have been performed to confirm the effectiveness of the lens. An analytical expression has been derived describing its focal properties. These tests demonstrate that the entrance lens control eliminates the need to short out sections of the tube for operation at low terminal voltage.

  2. Report of the workshop on accelerator-based atomic and molecular science

    International Nuclear Information System (INIS)

    Meyerhof, W.E.

    1981-01-01

    This Workshop, held in New London, NH on July 27-30, 1980, had a registration of 43, representing an estimated one-third of all principal investigators in the United States in this research subfield. The workshop was organized into 5 working groups for the purpose of (1) identifying some vital physics problems which experimental and theoretical atomic and molecular science can address with current and projected techniques; (2) establishing facilities and equipment needs required to realize solutions to these problems; (3) formulating suggestions for a coherent national policy concerning this discipline; (4) assessing and projecting the manpower situation; and (5) evaluating the relations of this interdisciplinary science to other fields. Recommedations deal with equipment and operating costs for small accelerator laboratories, especially at universities; instrumentation of ion beam lines dedicated to atomic and molecular science at some large accelerators; development of low-velocity, high charge-state ion sources; synchrotron light sources; improvement or replacement of tandem van de Graaff accelerators; high-energy beam lines for atomic physics; the needs for postdoctoral support in this subfield; new accelerator development; need for representatives from atomic and molecular science on program committees for large national accelerator facilities; and the contributions the field can make to applied physics problems

  3. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-01-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7 Li(p, n) 7 Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  4. Introduction to RF linear accelerators

    International Nuclear Information System (INIS)

    Weiss, M.

    1994-01-01

    The basic features of RF linear accelerators are described. The concept of the 'loaded cavity', essential for the synchronism wave-particle, is introduced, and formulae describing the action of electromagnetic fields on the beam are given. The treatment of intense beams is mentioned, and various existing linear accelerators are presented as examples. (orig.)

  5. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    International Nuclear Information System (INIS)

    Salehpour, Mehran; Håkansson, Karl; Possnert, Göran

    2013-01-01

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for 14 C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5–10 μg C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  6. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, Mehran, E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, PO Box 516, SE-751 20 Uppsala (Sweden); Hakansson, Karl; Possnert, Goeran [Department of Physics and Astronomy, Ion Physics, PO Box 516, SE-751 20 Uppsala (Sweden)

    2013-01-15

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for {sup 14}C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5-10 {mu}g C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  7. Present status of Accelerator-Based BNCT.

    Science.gov (United States)

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  8. Tandem mirror reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1977-01-01

    A parametric analysis and a preliminary conceptual design for a 1000 MWe Tandem Mirror Reactor (TMR) are described. The concept is sufficiently attractive to encourage further work, both for a pure fusion TMR and a low technology TMR Fusion-Fission Hybrid

  9. Proceedings of the meeting on the acceleration of polarized beams

    International Nuclear Information System (INIS)

    Takagi, Akira; Mori, Yoshiharu

    1980-08-01

    The project for accelerating polarized proton beam with the 12 GeV synchrotron in the National Laboratory for High Energy Physics was started in full scale, and the development of a polarized ion source of high intensity and the analysis of reduced polarization problem on the way to accelerate in the booster or the main ring have been carried out. On the other hand, with the cyclotrons in the Research Center for Nuclear Physics, Osaka University, and the Institute for Nuclear Research, University of Tokyo, and with the tandem machine in the Accelerator Center, Tsukuba University, polarized beams have already been accelerated, and the steady operations have been continued. Taking this opportunity, this study meeting was planned, considering that it is necessary to exchange informations among the researchers on polarized beam. It was the significant study meeting as unexpectedly many persons took part and the useful advices to the polarized beam project in this Laboratory were obtained. The construction of the preaccelerator for polarized protons was commenced in this year in the National Laboratory for High Energy Physics. In the proceedings, the introduction, the foreword, and eight papers are summarized. The progress of polarized beam researches in the world was mentioned in the introduction, and the project for proton acceleration in this Laboratory was explained in the foreword. (Kako, I.)

  10. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  11. Tandem catalysis: a new approach to polymers.

    Science.gov (United States)

    Robert, Carine; Thomas, Christophe M

    2013-12-21

    The creation of polymers by tandem catalysis represents an exciting frontier in materials science. Tandem catalysis is one of the strategies used by Nature for building macromolecules. Living organisms generally synthesize macromolecules by in vivo enzyme-catalyzed chain growth polymerization reactions using activated monomers that have been formed within cells during complex metabolic processes. However, these biological processes rely on highly complex biocatalysts, thus limiting their industrial applications. In order to obtain polymers by tandem catalysis, homogeneous and enzyme catalysts have played a leading role in the last two decades. In the following feature article, we will describe selected published efforts to achieve these research goals.

  12. Feasibility study on tandem fuel cycle

    International Nuclear Information System (INIS)

    Han, P.S.; Suh, I.S.; Rim, C.S.; Kim, B.K.; Suh, K.S.; Ro, S.K.; Juhn, P.I.; Kim, S.Y.

    1983-01-01

    The objective of this feasibility study is to review and assess the current state of technology concerning the tandem fuel cycle. Based on the results from this study, a long-term development plan suitable for Korea has been proposed for this cycle, i.e., the PWR → CANDU tandem fuel cycle which used plutonium and uranium, recovered from spent PWR fuel by co-processing, as fuel material for CANDU reactors. (Author)

  13. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  14. Design Study of a Mini Cyclotron for the Application of Biomedical Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Yun, Chong-Chul; Youn, Min-Yong; Wang, Sonjong

    2009-01-01

    A small cyclotron has been considered for the use of biomedical accelerator mass spectrometer (BAMS). Over a decade ago a few cyclotrons had been constructed and tested for AMS, but technical problems of instability and poor transmission efficiency caused to discontinue further developments. The major reason of the demise of cyclotron AMS was the dominance of commercial Tandem-based AMS facilities. Now BAMS may ask for more compact system, and perhaps using positive ions to accelerate isotope tracers is a favorable feature. The design of a cyclotron to meet the requirements of BAMS has been performed by adopting a compact magnet with high stability and a flat-topping rf system to increase transmission efficiency.

  15. Search for the 36Cl isotope in natural samples by cyclotron or tandem accelerators

    International Nuclear Information System (INIS)

    Brissaud, I.; Kalifa, J.; Laurnet, H.

    1981-01-01

    Because of the Half-life of 36 Cl (305.000 years), the measurement of the concentration of 36 Cl/Cl in natural samples is essential to the dating of very old ground waters. Thus, this measurement can provide an unique tool in fundamental research (such as knowledge of slow ground water movements) or in applied research (such as the evaluation of fossil water natural resources... etc...). We are more especially involved in age determination of groundwaters from confined aquifers in regions with presently arid or semi-arid climates where deep aquifers were recharged during post pluvial episodes. Accelerators as mass spectrometers have been used for approximately three years for the detection of different isotopes and especially 36 Cl. As a first step our group has tried to evaluate the possibilities of different accelerators by measuring the concentration 36 Cl/Cl of different samples prepared artificially. Then, we have begun to measure the 36 Cl presence in Sahara ground water samples

  16. Investigation on the instability characteristics in MM-4U tandem mirror

    International Nuclear Information System (INIS)

    Ye Rubin; Ming Linzhou; Wu Guangun; Shi Qiang; Xu Liyun; Li Zhicai; Zhao Xiaochun

    1995-06-01

    The plasma fluctuation signals in MM-4U tandem mirror were investigated by using linear spectral analysis. Oscillation and propagation characteristics of the instability were obtained. the instability mode and probable exciting mechanism and a method for measuring electron temperature were deduced. The wave-wave nonlinear interaction processes were studied by using nonlinear spectral analysis technique. It is shown that the nonlinear three waves interaction process exists in the device as the main nonlinear process. The nonlinear interaction broadens the spectra of the instability

  17. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  18. Application of accelerators in industry, medicine and for environmental research in Almaty Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Lyssukhin, S.N.; Arzumanov, A.A.

    2001-01-01

    Full text: The Institute of Nuclear Physics in Almaty is the only Kazakhstan institution with a significant activity at the national level in the field of physics of accelerators, their application and associated technology. Three accelerators of different type are being used in the Institute: high power electron beam accelerator, isochronous cyclotron and heavy ion electrostatic tandem. Electron beam accelerator ELV-4 - This high power machine is only electron beam irradiation facility of industrial scale in the Republic. It was produced by Budker Institute of Nuclear Physics, Novosibirsk, Russia and installed in Almaty in 1991 for development of radiation technology in Kazakhstan. The accelerator generates electron beams of following parameters: Energy range (MeV) 1.0-1.5; Max. beam power (kW) 40; Max. beam current (mA) 40. The machine is equipped with beam scanning system, extraction device with output window 980x75 mm 2 and chain conveyer for irradiated material supply. Tn the time being the accelerator is regularly used for radiation cross-linking technology and for sterilization. Cross-linking technology is the base of high quality roof material production for building industry. Raw ethylene-propylene rubber mixture is rolled as strip of 50 m length, 1 m width, 1 mm thickness and then irradiated by dose of about 120 kGy. The final product is waterproof flexible material, very stable in hard atmospheric conditions and non sensitive to sun UV radiation. Sterilization of medical materials and items is not traditional application of such low energy installations but due to uniqueness of this accelerator in Kazakhstan and high actuality of the task for the Republic this technology was developed in INP. Hermetically packed items (medical cotton , bandages, syringes, surgical gloves, small plastic bottles) with thickness less than penetration range of 1.5 MeV electrons are put at the conveyer as mono-layer and irradiated by sterilizing dose of 25 kGy. Isochronous

  19. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 1

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  20. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 2

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  1. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Zastepa, Arthur; Pick, Frances R.; Blais, Jules M.; Saleem, Ammar

    2015-01-01

    Highlights: • First analytical method for intracellular microcystins (MCs) in sediment. • Includes a suite of variants (LR, 7dm LR, RR, YR, WR, LA, LF, LY, LW) and nodularin. • Reports the first measurements of MCs in sediment pore waters. • MCs detected in >100 year old lake sediments suggesting long-term preservation. • Sediment-pore water distribution (K d ) differed between variants suggesting differences in environmental fate. - Abstract: The fate and persistence of microcystin cyanotoxins in aquatic ecosystems remains poorly understood in part due to the lack of analytical methods for microcystins in sediments. Existing methods have been limited to the extraction of a few extracellular microcystins of similar chemistry. We developed a single analytical method, consisting of accelerated solvent extraction, hydrophilic–lipophilic balance solid phase extraction, and reversed phase high performance liquid chromatography-tandem mass spectrometry, suitable for the extraction and quantitation of both intracellular and extracellular cyanotoxins in sediments as well as pore waters. Recoveries of nine microcystins, representing the chemical diversity of microcystins, and nodularin (a marine analogue) ranged between 75 and 98% with one, microcystin-RR (MC-RR), at 50%. Chromatographic separation of these analytes was achieved within 7.5 min and the method detection limits were between 1.1 and 2.5 ng g −1 dry weight (dw). The robustness of the method was demonstrated on sediment cores collected from seven Canadian lakes of diverse geography and trophic states. Individual microcystin variants reached a maximum concentration of 829 ng g −1 dw on sediment particles and 132 ng mL −1 in pore waters and could be detected in sediments as deep as 41 cm (>100 years in age). MC-LR, -RR, and -LA were more often detected while MC-YR, -LY, -LF, and -LW were less common. The analytical method enabled us to estimate sediment-pore water distribution coefficients (K d

  2. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zastepa, Arthur, E-mail: arthur.zastepa@gmail.com; Pick, Frances R.; Blais, Jules M.; Saleem, Ammar

    2015-05-04

    Highlights: • First analytical method for intracellular microcystins (MCs) in sediment. • Includes a suite of variants (LR, {sup 7dm}LR, RR, YR, WR, LA, LF, LY, LW) and nodularin. • Reports the first measurements of MCs in sediment pore waters. • MCs detected in >100 year old lake sediments suggesting long-term preservation. • Sediment-pore water distribution (K{sub d}) differed between variants suggesting differences in environmental fate. - Abstract: The fate and persistence of microcystin cyanotoxins in aquatic ecosystems remains poorly understood in part due to the lack of analytical methods for microcystins in sediments. Existing methods have been limited to the extraction of a few extracellular microcystins of similar chemistry. We developed a single analytical method, consisting of accelerated solvent extraction, hydrophilic–lipophilic balance solid phase extraction, and reversed phase high performance liquid chromatography-tandem mass spectrometry, suitable for the extraction and quantitation of both intracellular and extracellular cyanotoxins in sediments as well as pore waters. Recoveries of nine microcystins, representing the chemical diversity of microcystins, and nodularin (a marine analogue) ranged between 75 and 98% with one, microcystin-RR (MC-RR), at 50%. Chromatographic separation of these analytes was achieved within 7.5 min and the method detection limits were between 1.1 and 2.5 ng g{sup −1} dry weight (dw). The robustness of the method was demonstrated on sediment cores collected from seven Canadian lakes of diverse geography and trophic states. Individual microcystin variants reached a maximum concentration of 829 ng g{sup −1} dw on sediment particles and 132 ng mL{sup −1} in pore waters and could be detected in sediments as deep as 41 cm (>100 years in age). MC-LR, -RR, and -LA were more often detected while MC-YR, -LY, -LF, and -LW were less common. The analytical method enabled us to estimate sediment-pore water

  3. Search for Dark Photons with Accelerators

    Directory of Open Access Journals (Sweden)

    Merkel Harald

    2014-01-01

    Full Text Available A dark photon as the mediator of an interaction of the dark sector is a well motivated extension of the standard model. While possible dark matter particles are heavy and seem to be beyond the reach of current accelerators, the dark photon is not necessarily heavy and might have a mass in the range of existing accelerators. In recent years, an extensive experimental program at several accelerators for the search for dark photons were established. In this talk, recent results and progress in the determination of exclusion limits with accelerators is presented.

  4. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  5. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    Science.gov (United States)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  6. Operational status of the uranium beam upgrade of the ATLAS accelerator

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Nolen, J.A.

    1993-01-01

    The Positive-Ion Injector (PII) for ATLAS is complete. First beams from the new injector have been accelerated and used for experiments at ATLAS. The PH consists of an ECR ion source on a 350-kV platform and a low-velocity superconducting linac. The first acceleration of uranium for the experimental program has demonstrated the design goals of the project have been met. Since the summer of 1992, the new injecter has been used for the research program approximately 50% of the time. Longitudinal beam quality from the new injector has been measured to be significantly better than comparable beams from the tandem injecter. Changes to the mix of resonators in the main ATLAS accelerator to match better the velocity profile for heavy beams such as uranium are nearly complete and uranium energies up to 6.45 MeV per nucleon have been achieved. The operating experience of the new ATLAS facility will be discussed with emphasis on the measured beam quality as well as achieved beam energies and currents

  7. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  8. Comparison of traditional low-dose-rate to optimized and nonoptimized high-dose-rate tandem and ovoid dosimetry

    International Nuclear Information System (INIS)

    Decker, William E.; Erickson, Beth; Albano, Katherine; Gillin, Michael

    2001-01-01

    Purpose: Few dose specification guidelines exist when attempting to perform high-dose-rate (HDR) dosimetry. The purpose of this study was to model low-dose-rate (LDR) dosimetry, using parameters common in HDR dosimetry, to achieve the 'pear-shape' dose distribution achieved with LDR tandem and ovoid applications. Methods and Materials: Radiographs of Fletcher-Suit LDR applicators and Nucletron 'Fletcher-like' HDR applicators were taken with the applicators in an idealized geometry. Traditional Fletcher loadings of 3M Cs-137 sources and the Theratronics Planning System were used for LDR dosimetry. HDR dosimetry was performed using the Nucletron Microselectron HDR UPS V11.22 with an Ir-192 source. Dose optimization points were initially located along a line 2 cm lateral to the tandem, beginning at the tandem tip at 0.5-cm intervals, ending at the sail, and optimized to 100% of the point A dose. A single dose optimization point was also placed laterally from the center of each ovoid equal to the radius of the ovoid (ovoid surface dose). For purposes of comparison, dose was also calculated for points A and B, and a point located 1 cm superior to the tandem tip in the plane of the tandem, (point F). Four- and 6-cm tandem lengths and 2.0-, 2.5-, and 3.0-cm ovoid diameters were used for this study. Based on initial findings, dose optimization schemes were developed to best approximate LDR dosimetry. Finally, radiographs were obtained of HDR applications in two patients. These radiographs were used to compare the optimization schemes with 'nonoptimized' treatment plans. Results: Calculated doses for points A and B were similar for LDR, optimized HDR, and nonoptimized HDR. The optimization scheme that used tapered dose points at the tandem tip and optimized a single ovoid surface point on each ovoid to 170% of point A resulted in a good approximation of LDR dosimetry. Nonoptimized HDR resulted in higher doses at point F, the bladder, and at points lateral to the tandem tip

  9. The injector of the Utrecht EN tandem

    International Nuclear Information System (INIS)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van

    1984-01-01

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90 0 analysing magnet, m/Δm=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system. (orig.)

  10. Recent improvements of the tandem facility at LNS

    International Nuclear Information System (INIS)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Gammino, S.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Scuderi, V.

    1993-01-01

    The Laboratorio Nazionale del Sud (LNS) of Catania is equipped with an upgraded 15 MV SMP tandem that is going to be coupled to a k=800 superconducting cyclotron. The status of the facility and the performances of the upgraded tandem are presented. (orig.)

  11. Performance analysis of tandem queues with small buffers

    NARCIS (Netherlands)

    Vuuren, van M.; Adan, I.J.B.F.; Papadopoulos, C.T.

    2005-01-01

    In this paper we present an approximation for the performance analysis of single-server tandem queues with small buffers and generally distributed service times. The approximation is based on decomposition of the tandem queue in subsystems, the parameters of which are determined by an iterative

  12. The last large pelletron accelerator of the Herb era

    International Nuclear Information System (INIS)

    Chopra, S.; Narayanan, M. M.; Joshi, R.; Gargari, S.; Kanjilal, D.; Datta, S. K.; Mehta, G. K.

    1999-01-01

    Prof. Ray Herb pioneered the concept and design of the tandem Pelletron accelerator in the late sixties at NEC. The 15UD Pelletron at Nuclear Science Centre (NSC), upgraded for 16MV operation using compressed geometry accelerating tubes is the last such large Pelletron. It has unique features like offset and matching quadrupoles after the stripper for charge state selection inside the high voltage terminal and consequently the option of further stripping the ion species of the selected charge states at high energy dead section, and elaborate pulsing system in the pre-acceleration region consisting of a beam chopper, a travelling wave deflector, a light ion buncher (1-80 amu) and a heavy ion buncher (>80 amu). NSC was established as a heavy ion accelerator based inter university centre in 1985. It became operational in July 1991 to cater to the research requirements of a large user community which at present includes about fifty universities, twenty-eight colleges and a dozen other academic institutes and research laboratories. The number of users in Materials and allied sciences is about 500. Various important modifications have been made to improve the performance of the accelerator in the last seven years. These include replacement of the corona voltage grading system by a resistor based one, a pick-up loop to monitor charging system performance, conversion from basic double unit structure to singlet, installation of a spiral cavity based phase detector system with post-accelerator stripper after the analyzing magnet, and a high efficiency multi harmonic buncher. Installation of a turbo pump based stripper gas recirculation system in the terminal is also planned. A brief description of utilization of the machine will be given

  13. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  14. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  15. The ANTARES accelerator: a facility for environmental monitoring and materials characterisation

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    An analytical facility for Accelerator Mass Spectrometry (AMS) and Ion Beam Analysis (IBA) has been under development since 1989 on the 8-MV tandem accelerator ANTARES at the Lucas Heights Science and Technology Centre. Three beamlines are presently dedicated to the AMS analysis of long-lived radionuclides and one is used for the study of multilayered semiconductor structures by heavy ion recoil spectrometry. Having accomplished the task of transforming the old nuclear physics accelerator from Rutgers University into a world-class analytical facility, ANSTO scientists are now promoting research projects based on the capability of the ANTARES instruments. New instruments are being constructed on the ANTARES accelerator for future programs in environmental monitoring, safeguards, nuclear waste disposal and applications in advanced materials. A new AMS beamline has been designed that is expected to be capable of measuring rare heavy radionuclides, such as 236 U, 229 , 230T h and 244 Pu, in natural samples with ultra-high sensitivity. A novel, heavy ion microprobe will allow IBA of surfaces with a spatial resolution of 10 μm for high-energy ions (20-100 MeV) from chlorine to iodine. These instruments are complementary to other advanced analytical tools developed by ANSTO, such as the synchrotron radiation beamline at the Australian National Beamline Facility

  16. Quantum optical device accelerating dynamic programming

    OpenAIRE

    Grigoriev, D.; Kazakov, A.; Vakulenko, S.

    2005-01-01

    In this paper we discuss analogue computers based on quantum optical systems accelerating dynamic programming for some computational problems. These computers, at least in principle, can be realized by actually existing devices. We estimate an acceleration in resolving of some NP-hard problems that can be obtained in such a way versus deterministic computers

  17. DB2: a probabilistic approach for accurate detection of tandem duplication breakpoints using paired-end reads.

    Science.gov (United States)

    Yavaş, Gökhan; Koyutürk, Mehmet; Gould, Meetha P; McMahon, Sarah; LaFramboise, Thomas

    2014-03-05

    With the advent of paired-end high throughput sequencing, it is now possible to identify various types of structural variation on a genome-wide scale. Although many methods have been proposed for structural variation detection, most do not provide precise boundaries for identified variants. In this paper, we propose a new method, Distribution Based detection of Duplication Boundaries (DB2), for accurate detection of tandem duplication breakpoints, an important class of structural variation, with high precision and recall. Our computational experiments on simulated data show that DB2 outperforms state-of-the-art methods in terms of finding breakpoints of tandem duplications, with a higher positive predictive value (precision) in calling the duplications' presence. In particular, DB2's prediction of tandem duplications is correct 99% of the time even for very noisy data, while narrowing down the space of possible breakpoints within a margin of 15 to 20 bps on the average. Most of the existing methods provide boundaries in ranges that extend to hundreds of bases with lower precision values. Our method is also highly robust to varying properties of the sequencing library and to the sizes of the tandem duplications, as shown by its stable precision, recall and mean boundary mismatch performance. We demonstrate our method's efficacy using both simulated paired-end reads, and those generated from a melanoma sample and two ovarian cancer samples. Newly discovered tandem duplications are validated using PCR and Sanger sequencing. Our method, DB2, uses discordantly aligned reads, taking into account the distribution of fragment length to predict tandem duplications along with their breakpoints on a donor genome. The proposed method fine tunes the breakpoint calls by applying a novel probabilistic framework that incorporates the empirical fragment length distribution to score each feasible breakpoint. DB2 is implemented in Java programming language and is freely available

  18. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    Science.gov (United States)

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  19. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  20. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  1. Essay of accelerator R and D in a small laboratory of an university. Head ion IH linac for fusion material. 1983-1985

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki

    2005-01-01

    The linear accelerator of Inter-Digital H type (IH linac) is known to have a high shunt impedance. Research Laboratory for Nuclear Reactors of Tokyo Institute of Technology introduced an IH linac for fusion materials irradiation test in 1983. The beam injector was a tandem electrostatic accelerator. The IH linac was designed and fabricated based on the developmental work at Institute for Nuclear Study of University of Tokyo. The processes of component alignment, cold test and start-up operation are described. Educational aspect of the project is also reviewed. (K.Y.)

  2. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  3. Accelerators for therapy

    International Nuclear Information System (INIS)

    Pohlit, W.

    1994-01-01

    In the past decades circular and linear electron accelerators have been developed for clinical use in radiation therapy of tumors with the aim of achieving a high radiation dose in the tumor and as low as possible dose in the adjacent normal tissues. Today about one thousand accelerators are in medical use throughout the world and many hundred thousand patients are treated every day with accelerator-produced radiation. There exists, however, a large number of patients who cannot be treated satisfactorily in this way. New types of radiations such as neutrons, negative pions, protons and heavy ions were therefore tested recently. The clinical experience with these radiations and with new types of treatment procedures indicate that in future the use of a scanning beam of high energy protons might be optimal for the treatment of tumors. (orig.)

  4. Quality evaluation of tandem mass spectral libraries.

    Science.gov (United States)

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  5. Stephen Myers - More collaboration for accelerators

    CERN Multimedia

    2009-01-01

    Stephen Myers has been appointed Director of Accelerators and Technology. His highest priority is to get the LHC running this year, but beyond that he also has the difficult task of balancing resources between non-LHC physics, new projects and consolidation of the existing accelerators. Stephen Myers, previous head of the Accelerator and Beams (AB) Department, will now oversee all the accelerator and technology activities at CERN, including the Beams, Technology and Engineering departments, in the re-established position of Director of Accelerators and Technology. "There are several good reasons to have a single person responsible for the CERN accelerators and technology," said Myers. "Most importantly, this will allow closer collaboration between the three departments and provide the structure for possible redeployment of resources. There will, of course, be regular meetings between the heads of department and myself, and if proble...

  6. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  7. Single-task and dual-task tandem gait test performance after concussion.

    Science.gov (United States)

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2017-07-01

    To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Swedish earthquakes and acceleration probabilities

    International Nuclear Information System (INIS)

    Slunga, R.

    1979-03-01

    A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)

  9. Accelerator-TEM interface facility and application

    International Nuclear Information System (INIS)

    Liu Chuansheng; Li Ming; He Jun; Yang Zheng; Zhou Lin; Wang Zesong; Guo Liping; Jiang Changzhong; Yang Shibo; Fu Dejun; Fan Xiangjun; Liu Jiarui; Lee J C

    2010-01-01

    An accelerator-TEM interface facility has been established at Wuhan University in 2008. The system consists of an H800 TEM linked to a 200 kV ion implanter and a 2 x 1.7 MV tandem accelerator. Nitrogen ions at 115 keV were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 180 nA. Structural evolution caused by ion irradiation in Si, GaAs, nanocrystal Ag was observed in situ. The in situ observation showed that the critical implantation dose for amorphization of Si is 10 14 cm -2 . The nuclear material C276 samples implanted with 115 keV Ar + was also studied, and dislocation loops sized at 3-12 nm were clearly observed after implantation to doses of over 1 x 10 15 cm -2 . The density of the loops increased with the dose. Evolution to polycrystalline and amorphous structures were observed at 5 x l0 15 cm -2 and 3 x 10 16 cm -2 , respectively. An in situ RBS/C chamber was installed on the transport line of the accelerator-TEM interface system. This enables in situ measurement of composition and location of the implanted species in lattice of the samples. In addition, a 50 kV low-energy gaseous ion generator was installed close to the TEM chamber, which facilitates in situ TEM observation of helium bubbles formed in helium-implanted materials. (authors)

  10. Negotiating Multiple Identities through eTandem Learning Experiences

    Science.gov (United States)

    Yang, Se Jeong; Yi, Youngjoo

    2017-01-01

    Much of eTandem research has investigated either linguistic or cross-cultural aspects of second language (L2) learning, but relatively little is known about issues of identity construction in an eTandem context. Situating the study within theories and research of language learner identity, we examined ways in which two adult L2 learners (a Korean…

  11. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    International Nuclear Information System (INIS)

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-01-01

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V OC = 1.041 V, J SC = 2.97 mA/cm 2 , FF = 32.3%) to 2.6% (V OC = 1.336 V, J SC = 4.65 mA/cm 2 , FF = 41.98%) due to the eliminated interfacial series resistance.

  12. Evaluation of tandem repeats for MLVA typing of Streptococcus uberis isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Lamoureux Jérémy

    2006-11-01

    Full Text Available Abstract Background Streptococcus uberis is a common cause of bovine mastitis and recommended control measures, based on improved milking practice, teat dipping and antibiotic treatment at drying-off, are poorly efficient against this environmental pathogen. A simple and efficient typing method would be helpful in identifying S.uberis sources, virulent strains and cow to cow transmission. The potential of MLVA (Multiple Loci VNTR Analysis; VNTR, Variable Number of Tandem Repeats for S. uberis mastitis isolates genotyping was investigated. Results The genomic sequence of Streptococcus uberis (strain 0104J was analyzed for potential variable number tandem repeats (VNTRs. Twenty-five tandem repeats were identified and amplified by PCR with DNA samples from 24 S. uberis strains. A set of seven TRs were found to be polymorphic and used for MLVA typing of 88 S. uberis isolates. A total of 82 MLVA types were obtained with 22 types among 26 strains isolated from the milk of mastitic cows belonging to our experimental herd, and 61 types for 62 epidemiologically unrelated strains, i.e. collected in different herds and areas. Conclusion The MLVA method can be applied to S. uberis genotyping and constitutes an interesting complement to existing typing methods. This method, which is easy to perform, low cost and can be used in routine, could facilitate investigations of the epidemiology of S. uberis mastitis in dairy cows.

  13. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  14. Accelerator research studies. Progress report

    International Nuclear Information System (INIS)

    1983-07-01

    The major goal of this project is to study the effects that lead to emittance growth and limitation of beam current and brightness in periodic focusing systems (including linear accelerators). This problem is of great importance for all accelerator applications requiring high intensity beams with small emittance such as heavy ion fusion, spallation neutron sources and high energy physics. In the latter case, future machines must not only provide higher energies (in the range of 10 to 100 TeV), but also higher luminosities than the existing facilities. This implies considerably higher phase-space density of the particle beam produced by the injector linac, i.e., the detrimental emittance growth and concurrent beam loss observed in existing linacs must be avoided

  15. Absence of a fundamental acceleration scale in galaxies

    Science.gov (United States)

    Rodrigues, Davi C.; Marra, Valerio; del Popolo, Antonino; Davari, Zahra

    2018-06-01

    Dark matter is currently one of the main mysteries of the Universe. There is much strong indirect evidence that supports its existence, but there is yet no sign of a direct detection1-3. Moreover, at the scale of galaxies, there is tension between the theoretically expected dark matter distribution and its indirectly observed distribution4-7. Therefore, phenomena associated with dark matter have a chance of serving as a window towards new physics. The radial acceleration relation8,9 confirms that a non-trivial acceleration scale a0 can be found from the internal dynamics of several galaxies. The existence of such a scale is not obvious as far as the standard cosmological model is concerned10,11, and it has been interpreted as a possible sign of modified gravity12,13. Here, we consider 193 high-quality disk galaxies and, using Bayesian inference, show that the probability of existence of a fundamental acceleration is essentially 0: the null hypothesis is rejected at more than 10σ. We conclude that a0 is of emergent nature. In particular, the modified Newtonian dynamics theory14-17—a well-known alternative to dark matter based on the existence of a fundamental acceleration scale—or any other theory that behaves like it at galactic scales, is ruled out as a fundamental theory for galaxies at more than 10σ.

  16. A novel beam focus control at the entrance to the ANU 14UD accelerator

    International Nuclear Information System (INIS)

    De Cesare, M.; Weisser, D. C.; Fifield, L. K.; Tunningley, T. B.; Lobanov, N. R.

    2013-01-01

    Tandem electrostatic accelerators often require the flexibility to operate at variety of terminal voltages to cater for various user needs. However beam transmission will only be optimal for a limited range of terminal voltages. This paper describes a focussing system that greatly expands the range of terminal voltages for optimal transmission. This is achieved by controlling the gradient of the entrance of the low-energy tube providing an additional controllable focusing element. Up to 150 kV is applied to the fifth electrode of the first unit of the accelerator tube giving control of the tube entrance lens strength. Beam tests to confirm the efficacy of the lens have been performed. These tests demonstrate that the entrance lens control eliminates the need to short out sections of the tube for low terminal voltage operation. (authors)

  17. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    Directory of Open Access Journals (Sweden)

    Wei He

    Full Text Available A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF for space instruments. A model for the system functional error rate (SFER is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA is presented. Based on experimental results of different ions (O, Si, Cl, Ti under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2, while the MTTF is approximately 110.7 h.

  18. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  19. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  20. Development of new electron beam accelerator

    International Nuclear Information System (INIS)

    Tanaka, Jiro

    1976-01-01

    Approximately two decades have elapsed since electron accelerators were first employed in industry. It is widely used in the fields of chemical and food industries and the prevention of pollution. The accelerators for industrial use are limited to those obtainable high current or high output, low cost and easy handling. The low energy (up to 2 or 3 MeV) accelerators applicable to industry include the rectification type (Cockcroft, Dynamitron, Van de Graaff etc.), the AC transformer type (resonance transformer, cascade transformer) and the transformer type. As the accelerators of higher energy (more than 3 MeV), there exist the linear accelerator and the electromagnetic induction type. The linear accelerators are widely employed for industrial and medical uses as the large output can be obtained. Though various types of accelerators are used in industry, more increasing demands in accordance with the diversification of application are not always satisfied. As it seems that the realization of a new accelerator of improved performance and cost requires long time, it may be important to perform the standardization by dividing the energy and output ranges. (Wakatsuki, Y.)