WorldWideScience

Sample records for existing microscopic skyrme

  1. Microscopic optical potential calculations of finite nuclei with extended skyrme forces

    International Nuclear Information System (INIS)

    Yuan Haiji; Ye Weilei; Gao Qin; Shen Qingbiao

    1986-01-01

    Microscopic optical potential calculations in the Hartree-Fock (HF) approximation with Extended Skyrme forces are investigated. The HF equation is derived from the variation principle and the potential formula of spherical nuclei is obtained by two different ways. Then the calculations for symmetrid nuclei 16 O, 40 Ca and asymmetric nucleus 90 Zr with eight sets of Skyrme force parameters are presented. Our results show that the potential form and variating tendency with incident energy are reasonable and there apparently appears a 'wine-bottle-bottom' shape in the intermediate energy region. Furthermore, our calculations reflect shell effects clearly

  2. N=1 supersymmetric extension of the baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2011-01-01

    We construct a method to supersymmetrize higher kinetic terms and apply it to the baby Skyrme model. We find that there exist N=1 supersymmetric extensions for baby Skyrme models with arbitrary potential.

  3. Investigation of restricted baby Skyrme models

    International Nuclear Information System (INIS)

    Adam, C.; Romanczukiewicz, T.; Wereszczynski, A.; Sanchez-Guillen, J.

    2010-01-01

    A restriction of the baby Skyrme model consisting of the quartic and potential terms only is investigated in detail for a wide range of potentials. Further, its properties are compared with those of the corresponding full baby Skyrme models. We find that topological (charge) as well as geometrical (nucleus/shell shape) features of baby Skyrmions are captured already by the soliton solutions of the restricted model. Further, we find a coincidence between the compact or noncompact nature of solitons in the restricted model, on the one hand, and the existence or nonexistence of multi-Skyrmions in the full baby Skyrme model, on the other hand.

  4. A supersymmetric Skyrme model

    International Nuclear Information System (INIS)

    Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin

    2016-01-01

    Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,ℂ)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,ℂ), we find explicitly a nontrivial solution to the algebraic auxiliary field equations that we call a non-canonical branch, which when substituted back into the Lagrangian gives a Skyrme-like model. If we restrict to a submanifold, where quasi-NG bosons are turned off, which is tantamount to restricting the Skyrme field to SU(2), then the fourth-order derivative term reduces exactly to the standard Skyrme term. Our model is the first example of a nontrivial auxiliary field solution in a multi-component model.

  5. Baby Skyrme model and fermionic zero modes

    Science.gov (United States)

    Queiruga, J. M.

    2016-09-01

    In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of Bogomol'nyi-Prasad-Sommerfield compact baby Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three Supersymmetry (SUSY) generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.

  6. A gauged baby Skyrme model and a novel BPS bound

    International Nuclear Information System (INIS)

    Adam, C; Naya, C; Sanchez-Guillen, J; Wereszczynski, A

    2013-01-01

    The baby Skyrme model is a well-known nonlinear field theory supporting topological solitons in two space dimensions. Its action functional consist of a potential term, a kinetic term quadratic in derivatives (the 'nonlinear sigma model term') and the Skyrme term quartic in first derivatives. The limiting case of vanishing sigma model term (the so-called BPS baby Skyrme model) is known to support exact soliton solutions saturating a BPS bound which exists for this model. Further, the BPS model has infinitely many symmetries and conservation laws. Recently it was found that the gauged version of the BPS baby Skyrme model with gauge group U(1) and the usual Maxwell term, too, has a BPS bound and BPS solutions saturating this bound. This BPS bound is determined by a superpotential which has to obey a superpotential equation, in close analogy to the situation in supergravity. Further, the BPS bound and the corresponding BPS solitons only may exist for potentials such that the superpotential equation has a global solution. We also briefly describe some properties of soliton solutions.

  7. Proton radioactivity lifetimes using Skyrme interactions

    International Nuclear Information System (INIS)

    Routray, T.R.; Tripathy, S.K.; Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The phenomena of proton radioactivity is recent and has been possible with the advent of the radioactive ion beams facilities. The neutron deficient nuclei lying above the proton drip line has positive Q values for protons and are spontaneous proton emitters. This limits the possibilities of the creation of ever more exotic nuclei in the proton rich side of the β stability valley. Limited number of works have been done in calculating the half lives of proton emitting nuclei using different models. But calculation of lifetimes of the proton emitting nuclei using Skyrme interaction has not yet been reported. More than 110 Skyrme sets are available, constructed for different purposes, all having the common feature of giving finite nuclei ground state properties and saturation conditions in nuclear matter. Skyrme sets constructed in the late 90's, particularly the construction of SLy sets and others Skyrme sets developed thereafter, have additional care in constraining the parameters for applications to nuclear matter under extreme conditions. Stone et al. have analyzed the Skyrme sets on the basis of available constraints and have sorted out finally 27 Skyrmes sets which can be admitted for calculation of isospin rich dense nuclear matter. The objective of the work is to examine the predictions of the Skyrme sets on the half lives of the proton emitters

  8. Inflating baby-Skyrme branes in six dimensions

    International Nuclear Information System (INIS)

    Brihaye, Yves; Delsate, Terence; Kodama, Yuta; Sawado, Nobuyuki

    2010-01-01

    We consider a six-dimensional brane world model, where the brane is described by a localized solution to the baby-Skyrme model extending in the extra dimensions. The branes have a cosmological constant modeled by inflating four-dimensional slices, and we further consider a bulk cosmological constant. We construct solutions numerically and present evidence that the solutions cease to exist for large values of the brane cosmological constant in some particular case. Then we study the stability of the model by considering perturbation of the gravitational part (resp. baby Skyrmion) with fixed matter fields (resp. gravitational background). Our results indicate that the perturbation equations do not admit localized solutions for certain type of perturbation. The stability analysis can be alternatively seen as leading to a particle spectrum; we give mass estimations for the baby-Skyrme perturbation and for the graviton.

  9. Second RPA with Skyrme Interaction

    International Nuclear Information System (INIS)

    Gambacurta, D; Catara, F; Grasso, M

    2011-01-01

    The Second Random Phase Approximation (RPA) is a natural extension of RPA obtained by introducing more general excitation operators where two particle-two hole configurations, in addition to the one particle-one hole ones, are considered. Some Second RPA results with Skyrme force in 16 O are presented. Different levels of approximation are compared and in particular the quality of the diagonal approximation is tested. The issue of the rearrangement terms to be used in the matrix elements beyond the standard RPA ones, when density-dependent force are used, is briefly discussed. Two approximated, and generally used, schemes are used: the rearrangement terms are neglected in the matrix elements beyond RPA or evaluated with the RPA prescription. As a general feature of Second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found with respect to RPA distributions.

  10. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  11. Baby Skyrme models without a potential term

    Science.gov (United States)

    Ashcroft, Jennifer; Haberichter, Mareike; Krusch, Steffen

    2015-05-01

    We develop a one-parameter family of static baby Skyrme models that do not require a potential term to admit topological solitons. This is a novel property as the standard baby Skyrme model must contain a potential term in order to have stable soliton solutions, though the Skyrme model does not require this. Our new models satisfy an energy bound that is linear in terms of the topological charge and can be saturated in an extreme limit. They also satisfy a virial theorem that is shared by the Skyrme model. We calculate the solitons of our new models numerically and observe that their form depends significantly on the choice of parameter. In one extreme, we find compactons while at the other there is a scale invariant model in which solitons can be obtained exactly as solutions to a Bogomolny equation. We provide an initial investigation into these solitons and compare them with the baby Skyrmions of other models.

  12. Gauged multisoliton baby Skyrme model

    Science.gov (United States)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  13. Static properties of nucleons in a modified Skyrme model

    International Nuclear Information System (INIS)

    Nguyen Ai Viet; Pham Thuc Tuyen

    1989-02-01

    A modified Skyrme type model is proposed by neglecting non-linearly non-invariant terms from the Skyrme's Lagrangian. It turns out that beside some additional advantages a hedgehog configuration of this model can quantitatively describe nucleons the same way as the skyrmion does in the usual Skyrme model. (author) 8 refs.; 2 figs

  14. Topological solitons in the supersymmetric Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)

    2017-01-04

    A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.

  15. Magnetic moments and the Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Trento Univ. (Italy). Dipartmento di Matematica e Fisica

    1977-12-12

    The magnetic properties of the Skyrme interaction have been studied by performing a restricted Hartree-Fock calculation in order to evaluate the magnetic polarizability and the corrections to the Schmidt moments in nuclei with closed jj shells plus or minus one nucleon. Different corrections to the Schmidt values have been evaluated and discussed: the M1 core polarization and the renormalization of the gyromagnetic factors due to exchange and spin-orbit forces. Several variants of the Skyrme interaction have been studied and discussed in detail.

  16. Hyperspherical calculations with Skyrme-like forces

    International Nuclear Information System (INIS)

    Navarro, J.

    1975-11-01

    The first approximation of the hyperspherical harmonic method is used to describe in a unified way the ground state and the breathing mode of several doubly-magic nuclei with Skyrme-like forces. A comparison is made with other methods [fr

  17. Δ-decay in the Skyrme model

    International Nuclear Information System (INIS)

    Verschelde, H.

    1988-01-01

    The Δ-decay matrix element is calculated while carefully paying attention to ordering problems. The decay width obtained is too large by a factor of four. Arguments are given that this discrepancy is not a defect of the Skyrme model but a consequence of the rigid rotor quantization. (orig.)

  18. Towards the establishment of nonlinear hidden symmetries of the Skyrme model

    International Nuclear Information System (INIS)

    Herrera-Aguilar, A.; Kanakoglou, K.; Paschalis, J. E.

    2006-01-01

    We present a preliminary attempt to establish the existence of hidden nonlinear symmetries of the SU(N) Skyrme model which could, in principle, lead to the further integration of the system. An explicit illustration is given for the SU(2) symmetry group

  19. Description of nuclear structure and cross sections for nucleon-nucleus scattering on the basis of effective Skyrme forces

    International Nuclear Information System (INIS)

    Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.

    2009-01-01

    The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.

  20. Two-current nucleon observables in Skyrme model

    International Nuclear Information System (INIS)

    Chemtob, M.

    1987-01-01

    Three independent two-current nucleon observables are studied within the two-flavor Skyrme model for the πρω system. The effecive lagrangian is that of the gauged chiral symmetry approach, consistent with the vector meson dominance, in the linear realization (for the vector mesons) of the global chiral symmetry. The first application deals with the nucleon electric polarizability and magnetic susceptibility. Both seagull and dispersive contributions appear and we evaluate the latter in terms of the sums over intermediate states. The results are compared with existing quark model results as well as with empirical determinations. The second application concerns the zero-point quantum correction to the skyrmion mass. We apply a chiral perturbation theory approach to evaluate the ion loop contribution to the nucleon mass. The comparison with the conventional Skyrme model result reveals an important sensitivity to the stabilization mechanism. The third application is to lepton-nucleon deep inelastic scattering in the Bjorken scaling limit. The structure tensor is calculated in terms of the representation as a commutator product of two currents. Numerical results are presented for the scaling function F 2 (x). An essential use is made of the large N c (number of colors) approximation in all these applications. In the numerical computations we ignore the distortion effects, relative to the free plane wave limit, on the pionic fluctuations. (orig.)

  1. Hyperon puzzle of neutron stars with Skyrme force models

    International Nuclear Information System (INIS)

    Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin; Lee, Chang-Hwan

    2015-01-01

    We consider the so-called hyperon puzzle of neutron star (NS). We employ Skyrme force models for the description of in-medium nucleon–nucleon (NN), nucleon–Lambda hyperon (NΛ) and Lambda–Lambda (ΛΛ) interactions. A phenomenological finite-range force (FRF) for the ΛΛ interaction is considered as well. Equation of state (EoS) of NS matter is obtained in the framework of density functional theory, and Tolman–Oppenheimer–Volkoff (TOV) equations are solved to obtain the mass-radius relations of NSs. It has been generally known that the existence of hyperons in the NS matter is not well supported by the recent discovery of large-mass NSs (M ≃ 2M⊙) since hyperons make the EoS softer than the one without them. For the selected interaction models, NΛ interactions reduce the maximum mass of NS by about 30%, while ΛΛ interactions can give about 10% enhancement. Consequently, we find that some Skyrme force models predict the maximum mass of NS consistent with the observation of 2M ⊙ NSs, and at the same time satisfy observationally constrained mass-radius relations. (author)

  2. Rotational Symmetry Breaking in Baby Skyrme Models

    Science.gov (United States)

    Karliner, Marek; Hen, Itay

    We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  3. Neutron matter properties using generalized Skyrme force

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ramadan, Kh.A.

    2002-01-01

    The generalized Skyrme potential is used to calculate the properties of neutron matter in the form of the Thomas–Fermi model. The binding energy per particle, spin symmetry energy, free energy, pressure, entropy, sound velocity and magnetic susceptibility are calculated as a function of density ρ. The results are comparable with those obtained by Friedman and Pandharipande, who used the Urbana v 14 potential plus an effective repulsive three-body force. (author)

  4. BPS submodels of the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)

    2017-06-10

    We show that the standard Skyrme model without pion mass term can be expressed as a sum of two BPS submodels, i.e., of two models whose static field equations, independently, can be reduced to first order equations. Further, these first order (BPS) equations have nontrivial solutions, at least locally. These two submodels, however, cannot have common solutions. Our findings also shed some light on the rational map approximation. Finally, we consider certain generalisations of the BPS submodels.

  5. BPS submodels of the Skyrme model

    Directory of Open Access Journals (Sweden)

    C. Adam

    2017-06-01

    Full Text Available We show that the standard Skyrme model without pion mass term can be expressed as a sum of two BPS submodels, i.e., of two models whose static field equations, independently, can be reduced to first order equations. Further, these first order (BPS equations have nontrivial solutions, at least locally. These two submodels, however, cannot have common solutions. Our findings also shed some light on the rational map approximation. Finally, we consider certain generalisations of the BPS submodels.

  6. Topological phase transitions in the gauged BPS baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-01-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  7. Topological phase transitions in the gauged BPS baby Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Romanczukiewicz, T. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland)

    2015-05-29

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  8. Microscopically Based Nuclear Energy Functionals

    International Nuclear Information System (INIS)

    Bogner, S. K.

    2009-01-01

    A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.

  9. Sum rules, asymptotic behaviour and (multi)baryon states in the Skyrme model

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Wulck, S.

    1990-01-01

    We obtain sum roles that should be satisfied by the solutions of the Euler-Lagrange equation for the chiral angle in the Skyrme model in the hedgehog representation. The sum rules allow to determine the existence of solutions with integer baryon number for well determined values of a relevant dimensionless parameter Φ only. For all other values, there are no solutions with integer baryon number, in particular for the pure non-linear sigma model. (author)

  10. Comparison of different Skyrme forces: Fusion barriers and fusion cross sections

    International Nuclear Information System (INIS)

    Puri, R.K.; Gupta, R.K.

    1995-01-01

    Fusion barriers and fusion cross sections are calculated using the Skyrme energy-density formalism. To study the role of different parametrizations of the Skyrme interaction, we use two typical forces, i.e., the original Skyrme force S and the widely used Skyrme force SIII. Our calculations show that, in the reactions considered here, the Skyrme force S gives higher fusion cross sections compared to that of the Skyrme force SIII. The main part of this difference can be associated with the presence of the spin-density contribution in the Skyrme force SIII

  11. “Half a proton” in the Bogomol’nyi-Prasad-Sommerfield Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Lukács, Árpád [MTA Wigner RCP, RMI, P.O. Box 49, Budapest H1525 (Hungary)

    2016-07-15

    The BPS Skyrme model is a model containing an SU(2)-valued scalar field, in which a Bogomol’nyi-type inequality can be satisfied by soliton solutions (skyrmions). In this model, the energy density of static configurations is the sum of the square of the topological charge density plus a potential. The topological charge density is nothing else but the pull-back of the Haar measure of the group SU(2) on the physical space by the field configuration. As a consequence, this energy expression has a high degree of symmetry: it is invariant to volume preserving diffeomorphisms both on physical space and on the target space. We demonstrate here that in the BPS Skyrme model such solutions exist that a fraction of its charge and energy densities is localised, and the remaining part can be far away, not interacting with the localised part.

  12. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  13. Novel baryon resonances in the Skyrme model

    International Nuclear Information System (INIS)

    Hussain, F.; Sri Ram, M.S.

    1985-01-01

    We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV

  14. Higher-order Skyrme hair of black holes

    Science.gov (United States)

    Gudnason, Sven Bjarke; Nitta, Muneto

    2018-05-01

    Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.

  15. Multi-skyrmion solutions of a sixth order Skyrme model

    International Nuclear Information System (INIS)

    Floratos, I.

    2001-08-01

    In this thesis, we study some of the classical properties of an extension of the Skyrme model defined by adding a sixth order derivative term to the Lagrangian. In chapter 1, we review the physical as well as the mathematical motivation behind the study of the Skyrme model and in chapter 2, we give a brief summary of various extended Skyrme models that have been proposed over the last few years. We then define a new sixth order Skyrme model by introducing a dimensionless parameter λ that denotes the mixing between the two higher order terms, the Skyrme term and the sixth order term. In chapter 3 we compute numerically the multi-skyrmion solutions of this extended model and show that they have the same symmetries with the usual skyrmion solutions. In addition, we analyse the dependence of the energy and radius of these classical solutions with respect to the coupling constant λ. We compare our results with experimental data and determine whether this modified model can provide us with better theoretical predictions than the original one. In chapter 4, we use the rational map ansatz, introduced by Houghton, Manton and Sutcliffe, to approximate minimum energy multi-skyrmion solutions with B ≤ 9 of the SU(2) model and with B ≤ 6 of the SU(3) model. We compare our results with the ones obtained numerically and show that the rational map ansatz works just as well for the generalised model as for the pure Skyrme model, at least for B ≤ 5. In chapter 5, we use a generalisation of the rational map ansatz, introduced by loannidou, Piette and Zakrzewski, to construct analytically some topologically non-trivial solutions of the extended model in SU(3). These solutions are spherically symmetric and some of them can be interpreted as bound states of skyrmions. Finally, we use the same ansatz to construct low energy configurations of the SU(N) sixth order Skyrme model. (author)

  16. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    International Nuclear Information System (INIS)

    Kluepfel, Peter

    2008-01-01

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  17. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  18. Selected papers, with commentary, of Tony Hilton Royle Skyrme

    CERN Document Server

    Skyrme, T H R

    1994-01-01

    The most important papers of Tony Hilton Royle Skyrme are collected in this volume which also includes commentaries by G Brown and other articles relating to the life and work of Tony Skryme, R Dalitz, E Witten and others. Skyrme's work was brilliant, profound and surprisingly useful. He provided an original solution to the problem of constructing fermions from bosons, formulating the topological soliton model of the nucleon. His two-parameter model of effective interactions in nuclei has yielded a remarkably accurate description of nuclear structure. His a-particle model of nuclei gave deep i

  19. Selected papers, with commentary, of Tony Hilton Royle Skyrme

    International Nuclear Information System (INIS)

    1994-01-01

    This book contains 13 selected papers of T.H.R. Skyrme covering work on the alpha-particle and shell models of the nucleus and, primarily, on the Skyrme model of the nucleus. The present collection of articles also includes a re-publication of articles, by others and of a later date, as evidence of the significant impact, eventually, of the concept of Skyrmions on nuclear theory. However, these articles had previously already been submitted to the INIS Data Base. Refs, figs, tabs

  20. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  1. ΔS=1 weak transitions in the Skyrme model

    International Nuclear Information System (INIS)

    Praszalowicz; Trampetic, J.

    1985-01-01

    We calculate the octet matrix elements of the operator (anti du)sub(L)(anti us)sub(L) in the Skyrme model and compare them with the quark model predictions. We find that the agreement between the two models is quite satisfactory. (orig.)

  2. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program

    Science.gov (United States)

    Colò, Gianluca; Cao, Ligang; Van Giai, Nguyen; Capelli, Luigi

    2013-01-01

    Random Phase Approximation (RPA) calculations are nowadays an indispensable tool in nuclear physics studies. We present here a complete version implemented with Skyrme-type interactions, with the spherical symmetry assumption, that can be used in cases where the effects of pairing correlations and of deformation can be ignored. The full self-consistency between the Hartree-Fock mean field and the RPA excitations is enforced, and it is numerically controlled by comparison with energy-weighted sum rules. The main limitations are that charge-exchange excitations and transitions involving spin operators are not included in this version. Program summaryProgram title: skyrme_rpa (v 1.00) Catalogue identifier: AENF_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5531 No. of bytes in distributed program, including test data, etc.: 39435 Distribution format: tar.gz Programming language: FORTRAN-90/95; easily downgradable to FORTRAN-77. Computer: PC with Intel Celeron, Intel Pentium, AMD Athlon and Intel Core Duo processors. Operating system: Linux, Windows. RAM: From 4 MBytes to 150 MBytes, depending on the size of the nucleus and of the model space for RPA. Word size: The code is written with a prevalent use of double precision or REAL(8) variables; this assures 15 significant digits. Classification: 17.24. Nature of problem: Systematic observations of excitation properties in finite nuclear systems can lead to improved knowledge of the nuclear matter equation of state as well as a better understanding of the effective interaction in the medium. This is the case of the nuclear giant resonances and low-lying collective excitations, which can be described as small amplitude collective motions in the framework of

  3. The tensor part of the Skyrme energy density functional. I. Spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2007-04-15

    We perform a systematic study of the impact of the J-vector{sup 2} tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations which cover a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of radii. The major findings of our study are (i) tensor terms should not be added perturbatively to existing parameterizations, a complete refit of the entire parameter set is imperative. (ii) The free variation of the tensor terms does not lower the {chi}{sup 2} within a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of node-less intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor term coupling constants, however, the overall

  4. Probing the role of Skyrme interactions on the fission dynamics of the {sup 6}Li + {sup 238}U reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ishita; Kumar, Raj; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India)

    2017-06-15

    The performance of selected five Skyrme forces (out of a set of 240), tested by Dutra et al., is analyzed in view of fusion-fission dynamics. These forces are assumed to perform better for neutron-rich systems, so the choice of the reaction is accordingly made by opting for a neutron-rich target in {sup 6}Li + {sup 238}U reaction. This reaction is diagnosed further in reference to fusion hindrance within the dynamical approach of the cluster-decay model (DCM). In order to reduce the computational time, three Skyrme forces are figured out with the criteria that these forces cover the barrier characteristics of the remaining two forces as well. The fission cross-sections are successfully addressed at low energies for the {sup 6}Li + {sup 238}U reaction. However, at relatively higher energies, the excitation functions show theoretical suppression with respect to experimental data, which may be associated with the possible existence of incomplete fusion (ICF). For ICF, we have considered that the {sup 6}Li broke into {sup 4}He + {sup 2}H, as mentioned in the experimental work. The calculations of ICF are carried out for the {sup 4}He + {sup 238}U reaction with the selected Skyrme forces at E{sub c.m.} = 26.20 and 27.51 MeV. These forces address the data nicely for the compound nucleus (CN) as well as ICF processes. Here, the NRAPR force seems to require lesser barrier modification as compared to the other forces, therefore it can be used as an alternate choice for calculating the interaction potential. Additionally, the prediction of cross-sections at lower energies has been done with DCM using the NRAPR force. The l-dependent % barrier modification of the Skyrme forces undertaken is also worked out in reference to fusion hindrance at below barrier energies. (orig.)

  5. Genesis and evolution of the Skyrme model from 1954 to the present

    International Nuclear Information System (INIS)

    Sanyuk, V.I.

    1994-01-01

    Not widely known facts on the genesis of the Skyrme model are presented in a historical survey, based on Skyrme's earliest papers and on his own published remembrance. We consider the evolution of Skyrme's model description of nuclear matter from the ''Mesonic Fluid'' model up to its final version, known as the baryon model. We pay special tribute to some well-known ideas in contemporary particle physics which one can find in Skyrme's earlier papers, such as: Nuclear Democracy, the Solitonic Mechanism, the Nonlinear Realization of Chiral Symmetry, Topological Charges, Fermi-Bose Transmutation, etc. It is curious to note in the final version of the Skyrme model gleams of Kelvin's ''Vortex Atoms'' theory. In conclusion we make a brief analysis of the validity of Skyrme's conjectures in view of recent results and pinpoint some questions which still remain. (author). 93 refs, 4 figs

  6. Generalized Skyrme model with the loosely bound potential

    Science.gov (United States)

    Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana

    2016-12-01

    We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.

  7. Baby Skyrme models for a class of potentials

    International Nuclear Information System (INIS)

    Eslami, P.; Zakrzewski, W.; Sarbishaei, M.

    2000-01-01

    We consider a class of (2+1)- dimensional baby Skyrme models with potentials that have more than one vacuum. These potentials are generalizations of old and new baby Skyrme models; they involve more complicated dependence on φ 3 . We find that when the potential is invariant under φ 3 → -φ 3 the configurations corresponding to the baby Skyrmions lying 'on top of each other' are the minima of the energy. However, when the potential breaks this symmetry the lowest field configurations correspond to separated baby skyrmions. We compute the energy distributions for skyrmions of degrees between one and eight and discuss their geometrical shapes and binding energies. We also compare the 2-skyrmion states for these potentials. Most of our work has been performed numerically with the model being formulated in terms of three real scalar fields (satisfying one constraint)

  8. Influence of Skyrme-type interaction on HICs observables

    Directory of Open Access Journals (Sweden)

    Zhang Yingxun

    2016-01-01

    Full Text Available A new version of the improved quantum molecular dynamics model has been developed by including Skyrme type momentum dependent interaction. 12 Skyrme like parameter sets {K0, S0, L, m*s, m*v} are adopted in the transport model code to calculate the isospin diffusion, single and double ratios of transverse emitted nucleons, neutron proton isoscaling ratios. The calculations and correlation analysis evidence that isospin diffusion observable at lower beam energy is sensitive to the slope of symmetry energy and m*s. The high energy neutrons and protons yield ratios from reactions at different incident energies provide a sensitive observable to study the nucleon effective mass splitting, at higher beam energy.

  9. Static properties of baryons in the SU(3) Skyrme model

    International Nuclear Information System (INIS)

    Sriram, M.S.; Mani, H.S.; Ramachandran, R.

    1984-01-01

    We study the SU(3) x SU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms. We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio α, SU(3) mass breaking in the octet and decuplet, and the ΔI = 1 part of the electromagnetic mass splitting in baryons. The theoretical numbers are in reasonable agreement with the experimental values

  10. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  11. Goldberger-treiman relation and nucleon's mean square radius of strong interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Li Bingan

    1988-01-01

    In this letter it is shown that even in m π ≠ 0 case the Goldberger-Treiman relation is still hold in the Skyrme model. The mean square radius of strong interaction of nucleon 2 > s 1/2 is computed in the Skyrme model

  12. Few-baryon systems in the SU(2)-Skyrme model

    International Nuclear Information System (INIS)

    Nikolaev, V.A.; Tkachev, O.G.

    1989-01-01

    The classically stable solitons with baryon number 1, 2, 3, 4 have been investigated in the framework of the very general assumption about the form of the solutions for the Skyrme model equations. Some of the solitons have the toroidal structure and some of them are more complicated. The effective quantum-mechanical Hamiltonian and its spectrum are obtained by using the collective variable method. All the states with quantum numbers of light nuclei have the binding energy greater than the experimental one. Some of the calculated states containing antibaryons as substructure units should appear in the experiments with stopped antibaryons as compound nuclear states. 16 refs.; 7 figs.; 5 tabs

  13. The phonon-coupling model for Skyrme forces

    Energy Technology Data Exchange (ETDEWEB)

    Lyutorovich, N.; Tselyaev, V. [St. Petersburg State University (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de; Krewald, S. [Forschungszentrum Jülich, Institut für Kernphysik (Germany); Reinhard, P.-G. [Universität Erlangen-Nürnberg, Institut für Theoretische Physik II (Germany)

    2016-11-15

    A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.

  14. Bogomolny equations in certain generalized baby BPS Skyrme models

    Science.gov (United States)

    Stępień, Ł. T.

    2018-01-01

    By using the concept of strong necessary conditions (CSNCs), we derive Bogomolny equations and Bogomol’nyi-Prasad-Sommerfield (BPS) bounds for two certain modifications of the baby BPS Skyrme model: the nonminimal coupling to the gauge field and the k-deformed ungauged model. In particular, we study how the Bogomolny equations and the equation for the potential reflect these two modifications. In both examples, the CSNC method appears to be a very useful tool. We also find certain localized solutions of these Bogomolny equations.

  15. Further investigations of the NN interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Kaelbermann, G.; Eisenberg, J.M.

    1989-01-01

    We examine the influence of the coupling to NΔ and ΔΔ degrees of freedom for the NN interaction as derived in the Skyrme model, carrying out an extensive search for parameters in the basic Lagrangian that will yield both reasonable single-baryon results and appreciable attraction. Separately the free one-body skyrmeon solution and an improved two-body solution are inserted in the product ansatz for the two-body system both with and without time-dependent dynamical terms. No appreciable central attraction between nucleons is found with either of these approaches. (author)

  16. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  17. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S; Tajima, N; Onishi, N [Tokyo Univ. (Japan)

    1998-03-01

    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  18. Skyrme interaction to second order in nuclear matter

    Science.gov (United States)

    Kaiser, N.

    2015-09-01

    Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.

  19. The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment

    Energy Technology Data Exchange (ETDEWEB)

    Dzhioev, Alan A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru [JINR, Bogoliubov Laboratory of Theoretical Physics (Russian Federation); Stoyanov, Ch., E-mail: stoyanov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria)

    2016-11-15

    We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, {sup 56}Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT{sub +} transitions which dominate electron capture at E{sub e} ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.

  20. Rotational-vibrational coupling in the BPS Skyrme model of baryons

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C.; Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków (Poland)

    2013-11-04

    We calculate the rotational-vibrational spectrum in the BPS Skyrme model for the hedgehog skyrmion with baryon number one. The resulting excitation energies for the nucleon and delta Roper resonances are slightly above their experimental values. Together with the fact that in the standard Skyrme model these excitation energies are significantly lower than the experimental ones, this provides strong evidence for the conjecture that the inclusion of the BPS Skyrme model is required for a successful quantitative description of physical properties of baryons and nuclei.

  1. Hamiltonian formalism of the Skyrme model with ω mesons

    International Nuclear Information System (INIS)

    Adami, C.

    1988-07-01

    We have in this thesis presented the semiclassical quantum theory of the Skyrme model with coupling to an isoscalar gauge field. For the quantization of the classical theory we used the Hamiltonian formalism. Furthermore we have studied the consequences of the canonical treatment, whereby we found the explicite πN vertex of the theory, as well as presented the correct treatment of the spatial contribution of the ω field. Furthermore we indicated that a consistent treatment requires the summation of all tree diagrams of the theory with internal π and ω lines. Such a calculation contains the explicite construction of solutions for the coupled πω field equations. A further result of this thesis concerns the application of the linear πN vertex to the calculation of the Δ decay width via the process Δ→Nπ. (orig./HSI) [de

  2. Recent Results From Skyrme-TDHF: Giant Resonances and Collisions

    International Nuclear Information System (INIS)

    Stevenson, Paul D.

    2007-01-01

    Using fully three-dimensional Time-Dependent Hartree-Fock with Skyrme forces allows one to explore small and large amplitude collective motion in nuclei using only an effective interaction fitted to ground state and nuclear matter properties as input. In this talk, results are presented for TDHF calculations of giant resonances and nuclear collisions. We examine deformation splitting of the giant dipole resonance on ground and excited intrinsic superdeformed states, showing the interplay between Landau splitting and deformation splitting, including effects of triaxiality[1]. In the case of giant monopole resonances, isospin-mixing is examined, showing that the isovector and isoscalar parts of strength functions are strongly coupled [2]. The role of absorption in the TDHF approach to linear and nonlinear regimes is examined[3]. Calculations of nuclear collisions are also explored, showing that the effects of fully relaxed symmetry produce new modes of energy loss not found in previous calculations [4]. (Author)

  3. Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach

    International Nuclear Information System (INIS)

    Staszczak, A.; Wong, Cheuk-Yin

    2009-01-01

    Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum

  4. Yukawa couplings and the nature of zero modes in the Skyrme model

    International Nuclear Information System (INIS)

    Kawarabayashi, K.

    1989-01-01

    Several issues related, directly or indirectly, to the Yukawa coupling in the Skyrme model are discussed. The authors try to shed a new light on the physical nature of the zero modes associated with translation (rotation) invariance of the model

  5. Solitons in topologically trivial and nontrivial sectors of the Skyrme model

    International Nuclear Information System (INIS)

    Nikolaev, V.A.; Tkachev, O.G.

    1989-01-01

    Using of the new predictions of form of solitons in the Skyrme model new series of baryon and meson-like configurations are obtained. Some of the obtained configurations are classically stable objects. It is shown that proposed ansatz is the generalization of the Skyrme-Witten ansatz and k Φ one. The origin and approximate character of the last ansatz was demonstrated. 5 refs.; 3 figs.; 2 tabs

  6. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  7. Second RPA calculations with the Skyrme and Gogny interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gambacurta, Danilo [Horia Hulubei National Institute for Physics and Nuclear Engineering, Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Magurele, Jud. Ilfov (Romania); Grasso, Marcella [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France)

    2016-07-15

    The Second Random Phase Approximation (SRPA) is a natural extension of RPA where more general excitation operators are introduced. These operators contain, in addition to the one particle-one hole configurations already considered in RPA, also two particle-two hole excitations. Only in the last years, large-scale SRPA calculations have been performed, showing the merits and limits of this approach. In the first part of this paper, we present an overview of recent applications of the SRPA based on the Skyrme and Gogny interactions. Giant resonances in {sup 16}O will be studied and their properties discussed by using different models. In particular, we will present the first applications of the SRPA model with the finite-range Gogny interaction, discussing the advantages and drawbacks of using such an interaction in this type of calculations. After that, some more recent results, obtained by using a subtraction procedure to overcome double-counting in the SRPA, will be discussed. We will show that this procedure leads to results that are weakly cutoff dependent and that a strong reduction of the SRPA downwards shift with respect to the RPA spectra is found. Moreover, applying this procedure for the first time in the Gogny-SRPA framework, we will show that this method is able to reduce the anomalous shift found in previous calculations and related to some proton-neutron matrix elements of the residual interaction. (orig.)

  8. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    International Nuclear Information System (INIS)

    Erler, Jochen

    2011-01-01

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for α, β-decay and spontaneous fission in a very wide range with proton numbers 86 ≤ Z ≤ 120 and neutron numbers up to N ∼ 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate β-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute β-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  9. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Jochen

    2011-01-31

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  10. New topological structures of Skyrme theory: baryon number and monopole number

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M. [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China); Konkuk University, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of); Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, Seoul (Korea, Republic of); Zhang, Pengming [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China)

    2017-02-15

    Based on the observation that the skyrmion in Skyrme theory can be viewed as a dressed monopole, we show that the skyrmions have two independent topology, the baryon topology π{sub 3}(S{sup 3}) and the monopole topology π{sub 2}(S{sup 2}). With this we propose to classify the skyrmions by two topological numbers (m, n), the monopole number m and the shell (radial) number n. In this scheme the popular (non spherically symmetric) skyrmions are classified as the (m, 1) skyrmions but the spherically symmetric skyrmions are classified as the (1, n) skyrmions, and the baryon number B is given by B = mn. Moreover, we show that the vacuum of the Skyrme theory has the structure of the vacuum of the Sine-Gordon theory and QCD combined together, which can also be classified by two topological numbers (p, q). This puts the Skyrme theory in a totally new perspective. (orig.)

  11. Temperature-dependent optical potential and mean free path based on Skyrme interactions

    International Nuclear Information System (INIS)

    Ge Lingxiao; Zhuo Yizhong; Noerenberg, W.; Technische Hochschule Darmstadt

    1986-03-01

    Optical potentials and mean free paths of nucleons at finite temperatures are studied by utilizing effective Skyrme interactions which yield 'good' optical potentials at zero temperature. The results for nuclear matter (symmetric and asymmetric) are applied within the local density approximation of finite nuclei at various temperatures. Because of the limitation due to zero-range forces used and the assumptions of temperature independent nuclear densities and effective Skyrme interactions made, the calculations are expected to be limited to nucleon energies between 10 and 50 MeV above the Fermi energy and to nuclear temperatures of less than 8 MeV. (orig.)

  12. Skyrme interaction and the properties of cold and hot neutron matter

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Hassan, M.Y.M.; Ramadan, S.

    1986-08-01

    The binding energy per particle, effective mass, magnetic susceptibility, etc for neutron matter are calculated using the Skyrme interaction SKII. Relativistic corrections to the non-relativistic Skyrme effective interaction to order 1/C 2 are also used to calculate the corrections for the binding energy of neutron matter. The correction is very small for small values of k h and increases as k n is increased. The thermal properties of neutron matter are calculated also using SKII force. The temperature dependences of the volume and spin pressure are determined. The results obtained show a similar trend as previous theoretical estimates by different methods of calculation. (author)

  13. Skyrme RPA description of γ-vibrational states in rare-earth nuclei

    Directory of Open Access Journals (Sweden)

    Nesterenko V.O.

    2016-01-01

    Full Text Available The lowest γ-vibrational states with Kπ = 2+γ in well-deformed Dy, Er and Yb isotopes are investigated within the self-consistent separable quasiparticle random-phase-approximation (QRPA approach based on the Skyrme functional. The energies Eγ and reduced transition probabilities B(E2γ of the states are calculated with the Skyrme force SV-mas10. We demonstrate the strong effect of the pairing blocking on the energies of γ-vibrational states. It is also shown that collectivity of γ-vibrational states is strictly determined by keeping the Nilsson selection rules in the corresponding lowest 2qp configurations.

  14. An effective Skyrme-type interaction for the calculation of nuclear structures of the whole mass table

    International Nuclear Information System (INIS)

    Waroquier, M.E.L.

    1982-01-01

    The Hartree-Fock-Bogolyubov formalism is extended for 3 body interactions and applied to spherical nuclei. The structure of the proposed extension of the Skyrme-type interaction is given, together with the analytical expression of the corresponding Hartree-Fock differential equation. The Skyrme-force parameters are modified in order to be able to reproduce the ground state properties. The problem of the spin-stability of the proposed interaction is treated. The Skyrme-interaction is applied as particle-hole interaction and saturation properties are studied. Structure of the charge, neutron density distributions and changes introduced by adding protons or neutrons are treated. (MDC)

  15. Exotic B=2 states in the SU(2) Skyrme model and other recent results in the B=1 sector

    International Nuclear Information System (INIS)

    Schwesinger, B.

    1986-01-01

    Effective theories with surprising phenomenological success immediatly prompt the suspicion that they are intimately connected to a more fundamental theory. In the case of the Skyrme model things have gone the other way round: first there was the finding that the large N c -limit of QCD results in an effective theory of free mesons where baryons emerge as solitons from meson fields. Subsequently the long forgotten Skyrme model was unearthed by Witten as a possible candidate for such a theory. Examined in the light of its phenomenological capabilities the Skyrme model lead to the surprising success it enjoys till now. (orig./BBOE)

  16. Pion photoproduction in the Skyrme model and low-energy theorem

    International Nuclear Information System (INIS)

    Saito, Sakae; Takeuchi, Fuminaka; Uehara, Masayuki

    1993-01-01

    We investigate pion photoproduction on the nucleon in the Skyrme model. We employ the formulation, which was recently developed by Hayashi et al., that the full pion field is treated as an interpolating field between asymptotic in and out fields. It is shown that the amplitude of the pion photoproduction is correctly given by the direct and the crossed baryon-pole terms, and the equal-time commutator terms between the axial-vector current and the electromagnetic current and between the pion field and the latter. We show that the lowest-order Kroll-Ruderman and the pion pole terms are reproduced, and that the seagull terms inherent to the Skyrme model are present. Further, the threshold behavior of the amplitude is discussed. (orig.)

  17. Gamow-Teller resonances and a separable approximation for Skyrme tensor interactions

    Directory of Open Access Journals (Sweden)

    Severyukhin A. P.

    2012-12-01

    Full Text Available A finite rank separable approximation for the quasiparticle random phase approximation (QRPA with Skyrme interactions is applied to study properties of the Gamow-Teller (GT resonances in the neutron-rich Cd isotopes. This approximation enables one to reduce considerably the dimension of matrix that must be diagonalized to perform QRPA calculations in a very large configuration space. Our results from the SGII Skyrme interaction with the tensor interactions and the density-dependent zero-range pairing interaction show that the GT distribution is noticeably modified when the tensor correlations are taken into account. In particular, for 130Cd the dominant peak is moved 3.6 MeV downward and 10% of the GT distribution is shifted to the high excitation energy region near E=50MeV.

  18. Skyrme-model πNN form factor and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Holzwarth, G.; Machleidt, R.

    1997-01-01

    We apply the strong πNN form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low-momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes it possible to use a soft pion form factor in the NN system. As a consequence, the πN and the NN systems can be described using the same πNN form factor, which is impossible with the monopole. copyright 1997 The American Physical Society

  19. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  20. Properties of nuclear matter from macroscopic–microscopic mass formulas

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2015-12-01

    Full Text Available Based on the standard Skyrme energy density functionals together with the extended Thomas–Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic–microscopic mass formulas: Lublin–Strasbourg nuclear drop energy (LSD formula and Weizsäcker–Skyrme (WS* formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞=230±11 MeV and 235±11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L=41.6±7.6 MeV for LSD and 51.5±9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron–proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree–Fock–Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  1. β-decay in the Skyrme-Witten representation of QCD

    International Nuclear Information System (INIS)

    Snyderman, N.J.

    1991-01-01

    The renormalized coupling strength of the β-decay axial vector current is related to π ± p cross sections through the Adler-Weisberger sum rule, that follows from chiral symmetry. We attempt to understand the Adler-Weisberger sum rule in the 1/N c expansion in QCD, and in Skyrme-Witten model that realizes the 1/N c expansion in the low energy limit, using it to explicitly calculate both g A and the π ± p cross sections

  2. Ground-state properties of axially deformed Sr isotopes in Skyrme-Hartree-Fock-Bogolyubov method

    International Nuclear Information System (INIS)

    Yilmaz, A.H.; Bayram, T.; Demirci, M.; Engin, B.; Bayram, T.

    2010-01-01

    Binding energies, the mean-square nuclear radii, neutron radii, quadrupole moments and deformation parameters to axially deformed Strontium isotopes were evaluated using Hartree-Fock-Bogolyubov method. Shape coexistence was also discussed. The results were compared with experimental data and some estimates obtained within some nuclear models. The calculations were performed for SIy4 set of Skyrme forces and for wide range of the neutron numbers of Sr isotopes

  3. Λ hypernuclei in the Skyrme-Hartree-Fock treatment with G-matrix motivated interactions

    International Nuclear Information System (INIS)

    Lanskoy, D.E.; Yamamoto, Y.

    1997-01-01

    Skyrme-like hyperon-nucleon potentials are derived from G-matrix calculations and shown to reproduce well the Λ single-particle spectra of hypernuclei measured in BNL and KEK. Fit of the spectra can restrict p-wave ΛN interaction, radii of Λ orbits in hypernuclear ground states, Λ well depth and effective mass in nuclear matter rather tightly. Implications of ΛN spin-orbit force to the spectra are considered. (author)

  4. Multi baryons with flavors in the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Schat, Carlos L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, Norberto N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. of Physics

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order {omicron}(1/m{sub Q}). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  5. Multi baryons with flavors in the Skyrme model

    International Nuclear Information System (INIS)

    Schat, Carlos L.; Scoccola, Norberto N.

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order ο(1/m Q ). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  6. Finite rank separable approximation for Skyrme interactions: spin-isospin excitations

    International Nuclear Information System (INIS)

    Severyukhin, A.P.; Voronov, V.V.; Borzov, I.N.; Nguyen Van Giai

    2012-01-01

    A finite rank separable approximation for the quasiparticle random phase approximation with the Skyrme interactions is applied for the case of charge-exchange nuclear modes. The coupling between one- and two-phonon terms in the wave functions is taken into account. It has been shown that the approximation reproduces reasonably well the full charge-exchange RPA results for the spin-dipole resonances in 132 Sn. As an illustration of the method, the phonon-phonon coupling effect on the β-decay half-life of 78 Ni is considered

  7. The nucleon-nucleon spin-orbit interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Riska, D.O.; Dannbom, K.

    1987-01-01

    The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component

  8. Attractive component in the nucleon-nucleon interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Nyman, E.M.; Riska, D.O.

    1986-01-01

    The spin- and isospin-independent part of the nulceon-nucleon interaction in the Skyrme model is shown to contain a weak attractive intermediate-range term in addition to the well-known short-range repulsion. The attraction is a consequence of the rotational degree of freedom of a skyrmion in the presence of the field of another one, and can be thought of as an enhancement of the moment of inertia of each skyrmion. While the attractive term is dominant at large distances it is not sufficiently strong for nuclear binding. (orig.)

  9. Sum rules for nuclear excitations with the Skyrme-Landau interaction

    International Nuclear Information System (INIS)

    Liu Kehfei; Luo Hongde; Ma Zhongyu; Feng Man; Shen Qingbiao

    1991-01-01

    The energy-weighted sum rules for electric, magnetic, Fermi and Gamow-Teller transitions with the Skyrme-Landau interaction are derived from the double commutators and numerically calculated in a HF + RPA formalism. As a numerical check of the Thouless theorem, our self-consistent calculations show that the calculated RPA strengths exhaust more than 85% of the sum rules in most cases. The well known non-energy-weighted sum rules for Fermi and Gamow-Teller transitions are also checked numerically. The sum rules are exhausted by more than 94% in these cases. (orig.)

  10. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  11. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  12. Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    International Nuclear Information System (INIS)

    Gebremariam, B.; Bogner, S.K.; Duguet, T.

    2011-01-01

    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyrme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in (arXiv:0910.4979) by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N 2 LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A link to a downloadable Mathematica notebook containing the novel density-dependent couplings is provided.

  13. Densities, form factors, transitions and multipole moments in the s-d shell, with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1977-09-01

    The nuclear densities, radii, multipole moments, form-factors and transition probabilities obtained for the A = 4n type of nuclei in the s-d shell are reported, using the Hartree-Fock wave functions calculated with the Skyrme force. Experimental data and theoretical values derived by others are shown for comparison [pt

  14. Microscopic Polyangiitis

    Science.gov (United States)

    ... body, specifically the feet, lower legs and, in bed-ridden patients, the buttocks. The skin findings of cutaneous ... that are in contact with the lungs’ microscopic air sacs – the condition may quickly pose a threat ...

  15. The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model

    International Nuclear Information System (INIS)

    Zamick, L.

    1984-01-01

    The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell

  16. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    Science.gov (United States)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  17. Hartree-Fock+BCS approach to unstable nuclei with the Skyrme force

    International Nuclear Information System (INIS)

    Tajima, Naoki

    2001-01-01

    We reanalyze the results of our extensive Hartree-Fock+BCS calculation from new points of view paying attention to the properties of unstable nuclei. The calculation has been done with the Skyrme SIII force for the ground and shape isomeric states of 1029 even-even nuclei ranging 2≤Z≤114. We also discuss the advantages of the employed three-dimensional Cartesian-mesh representation, especially on its remarkably high precision with apparently coarse meshes when applied to atomic nuclei. In Appendices we give the coefficients of finite-point numerical differentiation and integration formulae suitable for Cartesian mesh representation and elucidate the features of each formula and the differences from a method based on the Fourier transformation. (author)

  18. The low-energy theorem of pion photoproduction using the Skyrme model

    International Nuclear Information System (INIS)

    Ikehashi, T.; Ohta, K.

    1995-01-01

    We reassess the validity of the current-algebra based low-energy theorem of pion photoproduction on the nucleon using the Skyrme model. We find that one of the off-shell electromagnetic form factors of the nucleon exhibits infrared divergence in the chiral limit. This contribution introduces an additional term to the threshold amplitude predicted by the low-energy theorem. The emergence of the additional term indicates an unavoidable necessity of off-shell form factors in deriving the low-energy theorem. In the case of neutral pion production, the new contribution to the threshold amplitude is found to be comparable in magnitude to the low-energy theorem's prediction and has the opposite sign. In the charged pion production channels, the correction to the theorem is shown to be relatively small. (orig.)

  19. Skyrme-Hartree-Fock in the realm of nuclear mean field models

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Reiss, C.; Maruhn, J.; Bender, M.; Buervenich, T.; Greiner, W.

    2000-01-01

    We discuss and compare two brands of nuclear mean field models, the Skyrme-Hartree-Fock scheme (SHF) and the relativistic mean field model (RMF). Similarities and differences are worked out on a formal basis and with respect to the models performance in describing nuclear data. The bulk observables of stable nuclei are all described very well. Differences come up when extrapolating to exotic nuclei. The typically larger asymmetry energy in RMF leads to a larger neutron skin. Superheavy nuclei are found to be very sensitive on the single particle levels particularly on the spin orbit splitting. Ground state correlations from collective surface vibrations can have a significant effect on difference observables, as two-nucleon separation energy and two-nucleon shell gap. (author)

  20. Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    International Nuclear Information System (INIS)

    Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

    2006-01-01

    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars

  1. Martian Microscope

    Science.gov (United States)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  2. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Department of Physics, Panjab University, Chandigarh-160014 (India); School of Physics and Material Science, Thapar University, Patiala-147004 (India); Sharma, Manoj K. [School of Physics and Material Science, Thapar University, Patiala-147004 (India); Gupta, Raj K. [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2011-11-15

    First, the nuclear proximity potential, obtained by using the semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), is shown to give more realistic barriers in frozen density approximation, as compared to the sudden approximation. Then, taking advantage of the fact that, in ETF method, different Skyrme forces give different barriers (height, position and curvature), we use the l-summed extended-Wong model of Gupta and collaborators (2009) under frozen densities approximation for calculating the cross-sections, where the Skyrme force is chosen with proper barrier characteristics, not-requiring additional 'barrier modification' effects (lowering or narrowing, etc.), for a best fit to data at sub-barrier energies. The method is applied to capture cross-section data from {sup 48}Ca + {sup 238}U, {sup 244}Pu, and {sup 248}Cm reactions and to fusion-evaporation cross-sections from {sup 58}Ni + {sup 58}Ni, {sup 64}Ni + {sup 64}Ni, and {sup 64}Ni + {sup 100}Mo reactions, with effects of deformations and orientations of nuclei included, wherever required. Interestingly, whereas the capture cross-sections in Ca-induced reactions could be fitted to any force, such as SIII, SV and GSkI, by allowing a small change of couple of units in deduced l{sub max}-values at below-barrier energies, the near-barrier data point of {sup 48}Ca + {sup 248}Cm reaction could not be fitted to l{sub max}-values deduced for below-barrier energies, calling for a check of data. On the other hand, the fusion-evaporation cross-sections in Ni-induced reactions at sub-barrier energies required different Skyrme forces, representing 'modifications of the barrier', for the best fit to data at all incident center-of-mass energies E{sub c.m.}'s, displaying a kind of fusion hindrance at sub-barrier energies. This barrier modification effect is taken into care here by using different Skyrme forces for reactions belonging to different regions of

  3. Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences

    1997-03-01

    We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)

  4. Thermal modified Thomas-Fermi approximation with the Skyrme interaction for the 208Pb + 208Pb system

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ismail, M.; Osman, M.; Ramadan, Kh.A.

    1988-01-01

    A generalization of the modified Thomas-Fermi (MTF) approximation to finite temperatures is used to calculate the optical potential for the 208 Pb + 208 Pb system using the energy density formalism derived from different effective forces of Skyrme type. The nuclear optical potential becomes more attractive when the temperature is increased. Pockets are also predicted in the total potential (Nuclear + Coulomb) wich depths are dependent on both the type of effective force and the temperature. 23 refs., 7 figs. (author)

  5. Nuclear ground state properties and self-consistent calculations with the Skyrme interaction. II. S-D shell nuclei

    International Nuclear Information System (INIS)

    Flocard, H.

    1975-04-01

    Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr

  6. Combining the modified Skyrme-like model and the local density approximation to determine the symmetry energy of nuclear matter

    Science.gov (United States)

    Liu, Jian; Ren, Zhongzhou; Xu, Chang

    2018-07-01

    Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV nuclear matter can be obtained together.

  7. Energy Levels and B(E2) transition rates in the Hartree-Fock approximation with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1976-11-01

    The Hartree-Fock approximation with the Skyrme force is applied to the A = 4n type of nuclei in the s-d shell. Energy levels and electric quadrupole transition probabilities within the ground states band are calculated from the projected states of good angular momentum. Strong approximations are made but the results concerning the spectra are better than those obtained with more sophisticated density independent two-body interactions. The transition rates are less sensitive to the interaction, as previously verified

  8. Low-energy coupling of individual and collective degrees of freedom: a general microscopic approach

    International Nuclear Information System (INIS)

    Quentin, P.; Meyer, M.

    1988-01-01

    A general microscopic approach of low energy coupling of individual and collective degrees of freedom is presented. The ingredients of a Bohr-Mottelson unified model description are determined consistently from the Skyrme SIII effective interaction, through the adiabatic limit of the time-dependent Hartree-Fock-Bogoliubov approximation. Three specific aspects will be mostly developed: i) the effect of pairing correlations on adiabatic mass parameters and collective dynamics; ii) a consistent coupling of collective and individual degrees of freedom to describe odd nuclei; iii) a study of spectroscopic data in odd-odd nuclei as a test of effective nucleon-nucleon interactions. (author)

  9. Microscopic optical potential for 208Pb in the nuclear structure approach

    International Nuclear Information System (INIS)

    Bernard, V.; Nguyen Van Gai.

    1979-04-01

    The optical potential for nucleon- 208 Pb scattering below 30 MeV is calculated microscopically as the sum of a real Hartree-Fock term and a complex correction term arising from the coupling to excited states of the target. The Skyrme effective interaction is used to generate the Hartree-Fock field, the RPA excited states and the coupling. A complex local equivalent potential is defined and used to calculate scattering and absorption cross-sections. The real part of the optical potential is reasonably well described in this approach while the imaginary part is too weak. Inclusion of rearrangement processes could improve the agreement with experiment

  10. Collective nuclear excitations with Skyrme-second random-phase approximation

    International Nuclear Information System (INIS)

    Gambacurta, D.; Catara, F.; Grasso, M.

    2010-01-01

    Second random-phase approximation (RPA) calculations with a Skyrme force are performed to describe both high- and low-lying excited states in 16 O. The coupling between one particle-one hole and two particle-two hole as well as that between two particle-two hole configurations among themselves are fully taken into account, and the residual interaction is never neglected; we do not resort therefore to a generally used approximate scheme where only the first kind of coupling is considered. The issue of the rearrangement terms in the matrix elements beyond the standard RPA will be considered in detail in a forthcoming paper. Two approximations are employed here for these rearrangement terms: they are either neglected or evaluated with the RPA procedure. As a general feature of second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found with respect to RPA distributions. A much more important fragmentation of the strength is also naturally provided by the second RPA owing to the huge number of two particle-two hole configurations. A better description of the excitation energies of the low-lying 0 + and 2 + states is obtained with the second RPA than with the RPA.

  11. An outline of the life and work of Tony Hilton Royle Skyrme (1922-1987)

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1988-01-01

    Tony Hilton Royle Skyrme was born on 5 December 1922 at 7 Blessington Road, Lewisham (Kent), London. Tony's maternal grandfather was Herbert William Thomson Roberts, a tidal computer for the Admiralty by profession. The inclusion of Lord Kelvin's baptismal name (William Thomson) among his forenames reflects the professional contact which Tony's great-grandfather had with Lord Kelvin and the high regard in which he held the latter. This great-grandfather of Tony's on the maternal side was Edward Roberts. He was appointed Secretary to the Tidal Committee of the British Association for the Advancement of Science, being made responsible later for the construction of the first Tidal Predicter, which had been designed by Lord Kelvin. He played a large part in the design and construction of the Universal Tide-predicting Machines used by the Indian and Colonial Government and by the Admiralty Hydrographic Office. It was his house which held the Tidal Predicter, the first model of the machine, which made such a strong impression on the young Tony and influenced so greatly the development of his later ideas, as Tony himself recounted in a lecture given at a Workshop on Skyrmions in 1984

  12. Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, K.; Routray, T.R.; Pattnaik, S.P. [Sambalpur University, School of Physics, Jyotivihar (India); Basu, D.N. [Variable Energy Cyclotron Center, Kolkata (India)

    2017-07-15

    The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using β-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars ∝ 2M {sub CircleDot}. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, R ≥ 3.69 + 3.44M/M {sub CircleDot}. Present calculations suggest that the crustal fraction of the total moment of inertia can be ∝ 6.3% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions. (orig.)

  13. Microscopic study of superdeformation in the A = 150 mass region

    Energy Technology Data Exchange (ETDEWEB)

    Rigollet, C.; Gall, B. [CNRS, Strasbourg (France); Bonche, P. [CEN Saclay, Gif sur Yvette (France)] [and others

    1996-12-31

    The authors are presently investigating the properties of superdeformed (SD) nuclear states in the A=150 mass region. For that purpose, they use the cranked HFB method in which pairing correlations are treated dynamically by means of the Lipkin-Nogami prescription. Their goal is to take advantage of the large amount of experimental data to test the predictive power of their microscopic approach and of the effective interaction. In the present communication, they focus on {sup 152}Dy and {sup 153}Dy for which there are recent experimental data. In particular lifetime measurements have allowed to extract electric quadrupole moments. The new Skyrme effective force SLy4 is used to describe the nucleon-nucleon interaction, while for the pairing channel the authors use a density-dependent zero-range interaction.

  14. Microscopical description of isovector collective Osup(+) states in atomic nuclei

    International Nuclear Information System (INIS)

    Chekanov, N.A.

    1983-01-01

    A microscopical consistent description of isobar-analogue states and isovector monopole giant resonances is given in framework of the random-phase theory. The necessary one-particle basis, including the continuous spectrum, is determined by solution of the Hartree-Fock equations with the effective Skyrme-type interaction. An important feature of such a description is an automatical fulfilment of the consistency conditions relating the shell potential, nuclear density and the residual interaction. Effects due to Coulomb interaction in nuclei are investigated, such as the Coulomb shift energies, isospin admixtures to the ground state of the parent nucleus. Transition densities for the analogue states are obtained. Numerical calculations have been performed in the coordinate space for a number of neutron-rich nuclei

  15. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  16. Collective excitations at low energy: microscopic study of rotation, vibration and their coupling in even-even nuclei; Excitations collectives a basse energie: Etude microscopique de la rotation, de la vibration et de leur couplage dans les noyaux pair-pairs

    Energy Technology Data Exchange (ETDEWEB)

    Deloncle, I.

    1989-10-23

    In this study we have built the quadrupolar collective Bohr Hamiltonian in a purely microscopic way by using an approximation of the time-dependant Hartree-Fock adiabatic approach. The purpose of this work was to obtain a quantitative description of the collective properties in the low energy range of intermediate and heavy nuclei by using a 2-body effective interaction of Skyrme-type. We consider low energy processes as dynamic regimes in which the collective movement is adiabatic when compared with modes associated to individual freedom. In the N-body solution we propose, we have assumed that: -) a mean field exists at any moment, -) some collective variables exist whose temporal variations include all the dynamics, and -) the collective movement is adiabatic. This work is a microscopic formulation and an efficient approach to resolve the Bohr and Mottelson unified model. Low energy spectra have been computed for 4 nuclei: Ge{sup 74}, Se{sup 76}, Cd{sup 110} and Pt{sup 186} and they agree well with experimental data.

  17. Generator coordinate calculations of 4He and 16O nuclei with Skyrme-like forces and square-well construction potential

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Christov, C.V.

    1984-11-01

    The generator coordinate method with a square-well construction potential and Skyrme-like interactions is applied to calculate characteristics of 4 He and 16 O nuclei. The corresponding nucleon momentum distributions have a high momentum component, which differs from the results obtained with a harmonic oscillator potential. (author)

  18. On microscopic theory of radiative nuclear reaction characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre “Kurchatov Institute” (Russian Federation); Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V. [Institute for Physics and Power Engineering (Russian Federation); Goriely, S. [Institut d’Astronomie et d’Astrophysique (Belgium)

    2016-07-15

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

  19. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  20. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  1. Two-photon contributions to the elastic electron-nucleon scattering in the Skyrme model; Zwei-Photon-Beitraege zur elastischen Elektron-Nukleon-Streuung im Skyrme-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Markus

    2008-09-23

    The electromagnetic form factors are crucial for our understanding of the inner structure of the proton. Recently it has become feasible to measure them by the use of polarisation transfer techniques in addition to the traditional Rosenbluth separation method. Thereby emerged an incompatibility of the results obtained by these two different experimental methods. It is commonly assumed that the discrepance is induced by higher order corrections to the cross section, especially through two-photon exchange processes. Unfortunately these processes cannot be calculated in a model independent manner because off-shell photon nucleon vertices arise. Effective chiral lagrangians contain already local two-photon couplings and therefore seem exceptionally well suited to study the anomaly contribution to the two-photon exchange. These couplings give two-photon exchange contributions that can be understood as the coupling of the nucleon to pions, decaying into two virtual photons. A particular contribution emerges from the chiral anomaly of QCD, that describes the two-photon decay of the neutral pion. The most important goal of this work is the calculation of the contribution arising from the anomaly to the elastic electron-proton scattering. The results are expected to be widely model independent since the anomaly directly reflects a QCD property. Based on the Skyrme model the protons are realized as soliton solutions in effective chiral theories. The next to leading order contribution to the cross section is given by the interference between the one- and two-photon exchange. The latter contains an ultraviolet divergence, which is renormalized by a local effective counterterm. This counterterm contributes to the width of the neutral pion decay which determines the finite part of the counterterm coefficient. The affect of the anomaly to the Rosenbluth separation of the electromagnetic form factors as well as the discrepance regarding the polarization measurements is extensively

  2. On the properties of nuclear matter with an excess of neutrons, of spin-up neutrons and of spin-up protons using the Skyrme interaction

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-11-01

    The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)

  3. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  4. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  5. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  6. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  7. The Homemade Microscope.

    Science.gov (United States)

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  8. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  9. Legendre condition and the stabilization problem for classical soliton solutions in generalized Skyrme models

    International Nuclear Information System (INIS)

    Kiknadze, N.A.; Khelashvili, A.A.

    1990-01-01

    The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed

  10. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  11. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  12. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  13. Infrared microscope inspection apparatus

    Science.gov (United States)

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  14. A particle-number conserving microscopic approach to octupole deformation of normal deformed and superdeformed states in 194Pb

    International Nuclear Information System (INIS)

    Nhan Hao, T.V.; Phu Dat, D.H.; Hoang Tung, N.; Tran, H.N.

    2015-01-01

    The left–right asymmetric deformation of normal deformed (ND) and superdeformed (SD) states of 194 Pb has been investigated in the framework of the parity-symmetry projection of the highly truncated diagonalization approach (HTDA), which is suited to treat the correlations in an explicitly particle-number conserving microscopic approach. A Skyrme energy density functional using the SIII and SkM* interactions has been considered to treat the particle–hole channel, whereas a density-independent δ force has been adopted for the residual interaction. The obtained results are compared with previous approaches. The calculated octupole phonon excitation energy is found to be in good qualitative agreement with available data in the ND state. (author)

  15. Electron microscope studies

    International Nuclear Information System (INIS)

    Crewe, A.V.; Kapp, O.H.

    1992-01-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations

  16. Electron microscope studies

    Energy Technology Data Exchange (ETDEWEB)

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  17. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  18. The scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salvan, F.

    1986-01-01

    A newly conceived microscope, based on a pure quantum phenomenon, is an ideal tool to study atom by atom the topography and properties of surfaces. Applications are presented: surface ''reconstruction'' of silicon, lamellar compound study, etc... Spectroscopy by tunnel effect will bring important information on electronic properties; it is presented with an application on silicon [fr

  19. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  20. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  1. Neuromorphic Data Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Naegle, John H.; Suppona, Roger A.; Aimone, James Bradley; James, Conrad D.; Follett, David R.; Townsend, Duncan C.M.; Follett, Pamela L.; Karpman, Gabe D.

    2017-08-01

    In 2016, Lewis Rhodes Labs, (LRL), shipped the first commercially viable Neuromorphic Processing Unit, (NPU), branded as a Neuromorphic Data Microscope (NDM). This product leverages architectural mechanisms derived from the sensory cortex of the human brain to efficiently implement pattern matching. LRL and Sandia National Labs have optimized this product for streaming analytics, and demonstrated a 1,000x power per operation reduction in an FPGA format. When reduced to an ASIC, the efficiency will improve to 1,000,000x. Additionally, the neuromorphic nature of the device gives it powerful computational attributes that are counterintuitive to those schooled in traditional von Neumann architectures. The Neuromorphic Data Microscope is the first of a broad class of brain-inspired, time domain processors that will profoundly alter the functionality and economics of data processing.

  2. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  3. Microscopic enteritis: Bucharest consensus.

    Science.gov (United States)

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  4. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  5. Thimble microscope system

    Science.gov (United States)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  6. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  7. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  8. Electron microscope phase enhancement

    Science.gov (United States)

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  9. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  10. Microscopic description of production cross sections including deexcitation effects

    Science.gov (United States)

    Sekizawa, Kazuyuki

    2017-07-01

    Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing

  11. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  12. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  13. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  14. Imaging arrangement and microscope

    Science.gov (United States)

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  15. Microscopic Theory of Transconductivity

    Directory of Open Access Journals (Sweden)

    A. P. Jauho

    1998-01-01

    Full Text Available Measurements of momentum transfer between two closely spaced mesoscopic electronic systems, which couple via Coulomb interaction but where tunneling is inhibited, have proven to be a fruitful method of extracting information about interactions in mesoscopic systems. We report a fully microscopic theory for transconductivity σ12, or, equivalently, momentum transfer rate between the system constituents. Our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which are topologically related, but not equivalent to, the Azlamazov-Larkin and Maki-Thompson diagrams known for superconductivity. In the present paper the magnetic field dependence of σ12 is discussed, and we find that σ12(B is strongly enhanced over its zero field value, and it displays strong features, which can be understood in terms of a competition between density-of-states and screening effects.

  16. Microscopic entropy and nonlocality

    International Nuclear Information System (INIS)

    Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.

    2003-01-01

    We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper

  17. Solution of the Skyrme-Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VIII) HFODD (v2.73y): A new version of the program

    International Nuclear Information System (INIS)

    Schunck, N.; Dobaczewski, J.

    2017-01-01

    Here, we describe the new version (v2.73y) of the code hfodd which solves the nuclear Skyrme Hartree–Fock or Skyrme Hartree–Fock–Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton–neutron mixing in the particle–hole channel for Skyrme functionals, (ii) the Gogny force in both particle–hole and particle–particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb energy of each fragment, (v) the new version 200d of the code hfbtho, together with an enhanced interface between HFBTHO and HFODD, (vi) parallel capabilities, significantly extended by adding several restart options for large-scale jobs, (vii) the Lipkin translational energy correction method with pairing, (viii) higher-order Lipkin particle-number corrections, (ix) interface to a program plotting single-particle energies or Routhians, (x) strong-force isospin-symmetry-breaking terms, and (xi) the Augmented Lagrangian Method for calculations with 3D constraints on angular momentum and isospin. Finally, an important bug related to the calculation of the entropy at finite temperature and several other little significant errors of the previous published version were corrected.

  18. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VII) HFODD (v2.49t): A new version of the program

    International Nuclear Information System (INIS)

    Schunck, Nicolas F.; McDonnell, J.; Sheikh, J.A.; Staszczak, A.; Stoitsov, Mario; Dobaczewski, J.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.

  19. Microscopic approach to the generator coordinate method

    International Nuclear Information System (INIS)

    Haider, Q.; Gogny, D.; Weiss, M.S.

    1989-01-01

    In this paper, we solve different theoretical problems associated with the calculation of the kernel occurring in the Hill-Wheeler integral equations within the framework of generator coordinate method. In particular, we extend the Wick's theorem to nonorthogonal Bogoliubov states. Expressions for the overlap between Bogoliubov states and for the generalized density matrix are also derived. These expressions are valid even when using an incomplete basis, as in the case of actual calculations. Finally, the Hill-Wheeler formalism is developed for a finite range interaction and the Skyrme force, and evaluated for the latter. 20 refs., 1 fig., 4 tabs

  20. Femtosecond photoelectron point projection microscope

    International Nuclear Information System (INIS)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-01-01

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect

  1. Proper alignment of the microscope.

    Science.gov (United States)

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  2. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  3. Scanning Electron Microscope Analysis System

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  4. Requirements for existing buildings

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Wittchen, Kim Bjarne

    This report collects energy performance requirements for existing buildings in European member states by June 2012.......This report collects energy performance requirements for existing buildings in European member states by June 2012....

  5. Greening Existing Tribal Buildings

    Science.gov (United States)

    Guidance about improving sustainability in existing tribal casinos and manufactured homes. Many steps can be taken to make existing buildings greener and healthier. They may also reduce utility and medical costs.

  6. The new Isidore microscope

    International Nuclear Information System (INIS)

    Rabouille, O.; Viard, J.; Menard, M.; Allegre, S.

    2001-01-01

    In the frame of the refurbishment of LECI hot laboratory in Saclay, it was decided to renew one of the two metallography lines of the building. This line is located at one end of the Isidore line of lead-shielded hot cells. The work started by the cleaning of 5 aout of 9 cells in Isidore line. Two were 2 m x 1.5 m cells, whereas the 3 others were smaller. Decontamination was difficult in both larger cells, because a lot of metallographic preparation had been performed there and because the cleaning of the lower parts of the cell, below the working area, was uneasy by remote manipulators. The refurbishment of the cells included: - Changing the windows, because old windows were made of glass panels sperated by oil, which is now prohibited by safety requirements. - Putting of a new pair of manipulators on one large cell, and adding bootings on manipulators on one large cell, and adding bootings on manipulators on both large cells. - Changing all the ventilation systems in these cells (new types of filters, new air-ducts), - Modifying and changing metallic pieces constituting the working are inside the cell - Increasing the hight of the small cells in order to add a manipulator for charging the sample on microscope or on hardness machine. - Simplifying the electrical wiring in order to decrease the fire risk in the hot cell line. - Add a better fire protection between the working area and the transfer area, i. e. between the front and the rear part of the cells. The scientific equipments fot these cells are: An Olympus microscope, modified by Optique Peter (company based in Lyons), equipped with a motorised sample holder (100 x 200 mm), maximum size of sample: O. D.=100 mm, 6 magnifications: x 12.5, x50, x100, x200, x500 and x1000, two microhardness positions: Vickers and Knoop. Polaroid image and digital camera with SIS image analysis system. A new periscope manufactured by Optique Peter. magnification x2 and x9, digital image and SIS system, and old periscope

  7. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  8. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adel, A. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia); Alharbi, T. [Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia)

    2017-01-15

    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyuez-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions {sup 16}O + {sup 70}Ge and {sup 28}Si + {sup 100}Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data. (orig.)

  9. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  10. Biophysics and the microscopic theory of He II

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Ghassib, H.B.

    1985-08-01

    Bose-Einstein condensation and solitonic propagation have recently been shown to be intimately related in biosystems. From our previous demonstration of the existence of solitons in a dilute Bose gas we set out the basis for a full microscopic theory of He II. This is used to understand recent experiments in He II, which are in apparent contradiction. New experiments are suggested by the microscopic theory. (author)

  11. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification. Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are...

  12. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  13. Atomic force microscope with integrated optical microscope for biological applications

    OpenAIRE

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a specific biological object of interest. Here an AFM is presented which has an incorporated inverted optical microscope. The optical image from the optical microscope is not obscured by the cantilever...

  14. Mobile microscope complex GIB-1

    International Nuclear Information System (INIS)

    Belyakov, A.V.; Gorbachev, A.N.

    2002-01-01

    To study microstructure in operating pipelines of power units a mobile microscope system is developed and successfully used. The system includes a portable microscope, a monitor, power supply and a portable computer. The monitor is used for surveying images from a video camera mounted on the microscope. The magnification on visual examination constitutes x 100 and x 500. Diameters of pipelines examined should not be less than 130 mm. Surface preparation for microstructural studies includes routine mechanical rough grinding and polishing with subsequent etching [ru

  15. Microscopic Procedures for Plant Meiosis.

    Science.gov (United States)

    Braselton, James P.

    1997-01-01

    Describes laboratory techniques designed to familiarize students with meiosis and how microscopic preparations of meiosis are made. These techniques require the use of fresh or fixed flowers. Contains 18 references. (DDR)

  16. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  17. Disorder-induced microscopic magnetic memory

    International Nuclear Information System (INIS)

    Pierce, M.S.; Buechler, C.R.; Sorensen, L.B.; Turner, J.J.; Kevan, S.D.; Jagla, E.A.; Deutsch, J.M.; Mai, T.; Narayan, O.; Davies, J.E.; Liu, K.; Dunn, J. Hunter; Chesnel, K.M.; Kortright, J.B.; Hellwig, O.; Fullerton, E.E.

    2005-01-01

    Using coherent x-ray speckle metrology, we have measured the influence of disorder on major loop return point memory (RPM) and complementary point memory (CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the low disorder limit, the domain structures show no memory with field cycling - no RPM and no CPM. With increasing disorder, we observe the onset and the saturation of both the RPM and the CPM. These results provide the first direct ensemble-sensitive experimental study of the effects of varying disorder on microscopic magnetic memory and are compared against the predictions of existing theories

  18. Collective effects in microscopic transport models

    International Nuclear Information System (INIS)

    Greiner, Carsten

    2003-01-01

    We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hydrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hardonic description, which guarantees sufficiently fast chemical equilibration

  19. Microscopic modelling of doped manganites

    International Nuclear Information System (INIS)

    Weisse, Alexander; Fehske, Holger

    2004-01-01

    Colossal magneto-resistance manganites are characterized by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting two conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low-energy physics. Focusing on short-range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations

  20. Microscopic approach to nuclear anharmonicities

    International Nuclear Information System (INIS)

    Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi

    1985-01-01

    Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)

  1. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  2. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  3. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Microscopic functional anatomy: Integumentary system: Chapter 17

    Science.gov (United States)

    Elliott, Diane G.; Ostrander, Gary K.

    2000-01-01

    Many of the features of the fish integument can only be observed microscopically. Because there are over 20,000 living fishes, mostly higher bony fishes (teleosts), a great diversity exists in the microscopic anatomy of the integument. This chapter presents several examples from varied taxonomic groups to illustrate the variation in morphological features. As in all vertebrate epidermis, the fundamental structural unit is the epithelial cell. This is the only constant feature, as a great diversity of cell types exists in the various fish taxa. Some of these include apocrine mucous cells and a variety of other secretory cells, ionocytes, sensory cells, and wandering cells such as leukocytes. The dermis consists essentially of two sets of collagen fibers arranged in opposing geodesic spirals around the body. The dermis of most fishes is divided into two major layers. The upper (outer) layer, the stratum spongiosum or stratum laxum, is a loose network of connective tissue, whereas the lower layer, the stratum compactum, is a dense layer consisting primarily of orthogonal collagen bands. There are also specialized dermal elements such as chromatophores scales, and fin rays.

  5. Axiomatic electrodynamics and microscopic mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1981-04-01

    A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)

  6. Microscopic collective models of nuclei

    International Nuclear Information System (INIS)

    Lovas, Rezsoe

    1985-01-01

    Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)

  7. Microscope and method of use

    Science.gov (United States)

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  8. Why preeclampsia still exists?

    Science.gov (United States)

    Chelbi, Sonia T; Veitia, Reiner A; Vaiman, Daniel

    2013-08-01

    Preeclampsia (PE) is a deadly gestational disease affecting up to 10% of women and specific of the human species. Preeclampsia is clearly multifactorial, but the existence of a genetic basis for this disease is now clearly established by the existence of familial cases, epidemiological studies and known predisposing gene polymorphisms. PE is very common despite the fact that Darwinian pressure should have rapidly eliminated or strongly minimized the frequency of predisposing alleles. Consecutive pregnancies with the same partner decrease the risk and severity of PE. Here, we show that, due to this peculiar feature, preeclampsia predisposing-alleles can be differentially maintained according to the familial structure. Thus, we suggest that an optimal frequency of PE-predisposing alleles in human populations can be achieved as a result of a trade-off between benefits of exogamy, importance for maintaining genetic diversity and increase of the fitness owing to a stable paternal investment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Existence of Projective Planes

    OpenAIRE

    Perrott, Xander

    2016-01-01

    This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.

  10. Does bioethics exist?

    Science.gov (United States)

    Turner, L

    2009-12-01

    Bioethicists disagree over methods, theories, decision-making guides, case analyses and public policies. Thirty years ago, the thinking of many scholars coalesced around a principlist approach to bioethics. That mid-level mode of moral reasoning is now one of many approaches to moral deliberation. Significant variation in contemporary approaches to the study of ethical issues related to medicine, biotechnology and health care raises the question of whether bioethics exists as widely shared method, theory, normative framework or mode of moral reasoning.

  11. Atomic force microscope featuring an integrated optical microscope

    NARCIS (Netherlands)

    Putman, C.A.J.; Putman, Constant A.J.; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1992-01-01

    The atomic force microscope (AFM) is used to image the surface of both conductors and nonconductors. Biological specimens constitute a large group of nonconductors. A disadvantage of most AFM's is the fact that relatively large areas of the sample surface have to be scanned to pinpoint a biological

  12. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  13. Microscopic description of nuclear reactions

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1992-01-01

    The genealogical series method has been extended to the continuous spectrum of the many-body systems. New nonlinear integral equations have been formulated to perform the microscopical description of the nuclear reactions with arbitrary number of particles. The way to solve them numerically is demonstrated

  14. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  15. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  16. Microscope sterility during spine surgery.

    Science.gov (United States)

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2012-04-01

    Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact

  17. O Ponto G Existe?

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Molina Noccioli

    2016-07-01

    Full Text Available Este trabalho busca analisar o tratamento linguístico-discursivo das informações acerca de um tópicotemático tradicionalmente visto como tabu, relacionado a questões sexuais, na notícia O ponto G existe?, publicada em 2008, na revista brasileira Superinteressante, destacando-se como o conhecimento em questão é representado socialmente ao se considerar a linha editorial da revista. A notícia caracteriza-se como um campo fértil para a análise das estratégias divulgativas, já que atrai, inclusive pelas escolhas temáticas, a curiosidade dos leitores. Imbuído de um tema excêntrico, o texto consegue angariar um público jovem interessado em discussões polêmicas relacionadas ao seu universo.

  18. Lebesgue Sets Immeasurable Existence

    Directory of Open Access Journals (Sweden)

    Diana Marginean Petrovai

    2012-12-01

    Full Text Available It is well known that the notion of measure and integral were released early enough in close connection with practical problems of measuring of geometric figures. Notion of measure was outlined in the early 20th century through H. Lebesgue’s research, founder of the modern theory of measure and integral. It was developed concurrently a technique of integration of functions. Gradually it was formed a specific area todaycalled the measure and integral theory. Essential contributions to building this theory was made by a large number of mathematicians: C. Carathodory, J. Radon, O. Nikodym, S. Bochner, J. Pettis, P. Halmos and many others. In the following we present several abstract sets, classes of sets. There exists the sets which are not Lebesgue measurable and the sets which are Lebesgue measurable but are not Borel measurable. Hence B ⊂ L ⊂ P(X.

  19. EXIST Perspective for SFXTs

    Science.gov (United States)

    Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.

    2009-12-01

    Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B 1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.

  20. Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

    Science.gov (United States)

    Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.

    2018-05-01

    Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure

  1. Differential magnetic force microscope imaging.

    Science.gov (United States)

    Wang, Ying; Wang, Zuobin; Liu, Jinyun; Hou, Liwei

    2015-01-01

    This paper presents a method for differential magnetic force microscope imaging based on a two-pass scanning procedure to extract differential magnetic forces and eliminate or significantly reduce background forces with reversed tip magnetization. In the work, the difference of two scanned images with reversed tip magnetization was used to express the local magnetic forces. The magnetic sample was first scanned with a low lift distance between the MFM tip and the sample surface, and the magnetization direction of the probe was then changed after the first scan to perform the second scan. The differential magnetic force image was obtained through the subtraction of the two images from the two scans. The theoretical and experimental results have shown that the proposed method for differential magnetic force microscope imaging is able to reduce the effect of background or environment interference forces, and offers an improved image contrast and signal to noise ratio (SNR). © Wiley Periodicals, Inc.

  2. Microscopic theory of ultrafast spin linear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G P, E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, IN 47809 (United States)

    2011-05-25

    A recent experiment (Vahaplar et al 2009 Phys. Rev. Lett. 103 117201) showed that a single femtosecond laser can reverse the spin direction without spin precession, or spin linear reversal (SLR), but its microscopic theory has been missing. Here we show that SLR does not occur naturally. Two generic spin models, the Heisenberg and Hubbard models, are employed to describe magnetic insulators and metals, respectively. We find analytically that the spin change is always accompanied by a simultaneous excitation of at least two spin components. The only model that has prospects for SLR is the Stoner single-electron band model. However, under the influence of the laser field, the orbital angular momenta are excited and are coupled to each other. If a circularly polarized light is used, then all three components of the orbital angular momenta are excited, and so are their spins. The generic spin commutation relation further reveals that if SLR exists, it must involve a complicated multiple state excitation.

  3. Duties to Extraterrestrial Microscopic Organisms

    Science.gov (United States)

    Cockell, C. S.

    Formulating a normative axiology for the treatment of extraterrestrial microscopic organisms, should they ever be found, requires an extension of environmental ethics to beyond the Earth. Using an ethical framework for the treatment of terrestrial micro-organisms, this paper elaborates a similar ethic for the treatment of extraterrestrial microscopic organisms. An ethic of `teloempathy' allows for the moral considerability of any organism that has `interests', based on rudimentary qualities of conativism, and therefore allows for an identical treatment of all life, related or not related to life on Earth. Although, according to this ethic, individual extraterrestrial microscopic organisms have a good of their own and even `rights', at this level the ethic can only be theoretical, allowing for the inevitable destruction of many individual organisms during the course of human exploratory missions, similarly to the daily destruction of microbes by humans on Earth. A holistic teloempathy, an operative ethic, not only provides a framework for human exploration, but it also has important implications for planetary protection and proposals to implement planetary-scale atmospheric alterations on other bodies. Even prior to the discovery of extraterrestrial life, or the discovery of a complete absence of such life, this exercise yields important insights into the moral philosophy that guides our treatment of terrestrial micro-organisms.

  4. Dynamical fusion thresholds in macroscopic and microscopic theories

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Sierk, A.J.; Nix, J.R.

    1983-01-01

    Macroscopic and microscopic results demonstrating the existence of dynamical fusion thresholds are presented. For macroscopic theories, it is shown that the extra-push dynamics is sensitive to some details of the models used, e.g. the shape parametrization and the type of viscosity. The dependence of the effect upon the charge and angular momentum of the system is also studied. Calculated macroscopic results for mass-symmetric systems are compared to experimental mass-asymmetric results by use of a tentative scaling procedure, which takes into account both the entrance-channel and the saddle-point regions of configuration space. Two types of dynamical fusion thresholds occur in TDHF studies: (1) the microscopic analogue of the macroscopic extra push threshold, and (2) the relatively high energy at which the TDHF angular momentum window opens. Both of these microscopic thresholds are found to be very sensitive to the choice of the effective two-body interaction

  5. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    Science.gov (United States)

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  6. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    Science.gov (United States)

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  7. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  8. Microscopic Analysis of Activated Sludge. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  9. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  10. Coincidence: Fortran code for calculation of (e, e'x) differential cross-sections, nuclear structure functions and polarization asymmetry in self-consistent random phase approximation with Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M.; Marangoni, M.; Saruis, A.M.

    1990-10-01

    This report describes the COINCIDENCE code written for the IBM 3090/300E computer in Fortran 77 language. The output data of this code are the (e, e'x) threefold differential cross-sections, the nuclear structure functions, the polarization asymmetry and the angular correlation coefficients. In the real photon limit, the output data are the angular distributions for plane polarized incident photons. The code reads from tape the transition matrix elements previously calculated, by in continuum self-consistent RPA (random phase approximation) theory with Skyrme interactions. This code has been used to perform a numerical analysis of coincidence (e, e'x) reactions with polarized electrons on the /sup 16/O nucleous.

  11. Microscopic nuclear dissipation. Pt. 2

    International Nuclear Information System (INIS)

    Yannouleas, C.; Dworzecka, M.; Griffin, J.J.

    1983-01-01

    We have formulated a microscopic, nonperturbative, time reversible model which exhibits a dissipative decay of collective motion for times short compared to the system's Poincare time. The model assumes an RPA approximate description of the initial collective state within a restricted subspace, then traces its time evolution when an additional subspace is coupled to the restricted subspace by certain simplified matrix elements. It invokes no statistical assumptions. The damping of the collective motion occurs via real transitions from the collective state to other more complicated nuclear states of the same energy. It corresponds therefore to the so called 'one-body' long mean free path limit of nuclear dissipation when the collective state describes a surface vibration. When the simplest RPA approximation is used, this process associates the dissipation with the escape width for direct particle emission to the continuum. When the more detailed second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states as well. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy, unlike the dissipation of a classical damped oscillator, where it is proportional to the kinetic energy only. However, for coherent, multi-phonon wave packets, which explicitly describe the time-dependent oscillations of the mean field, dissipation proportional only to the kinetic energy is obtained. Canonical coordinates for the collective degree of freedom are explicitly introduced and a nonlinear frictional hamiltonian to describe such systems is specified by the requirement that it yield the same time dependence for the collective motion as the microscopic model. Thus, for the first time a descriptive nonlinear hamiltonian is derived explicitly from the underlying microscopic model of a nuclear system. (orig.)

  12. Microscopic structure for light nuclei

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1995-01-01

    The microscopic structure for light nuclei e.g. 4 He, 7 Li and 8 Be is considered in the frame work of the generator coordinate method (GCM). The physical interpretation of our GCM is also discussed. The GC amplitudes are used to calculate the various properties like charge and magnetic RMS radii, form factors, electromagnetic moments, astrophysical S-factor, Bremsstrahlung weighted cross sections, relative wavefunctions and vertex functions etc. All the calculated quantities agree well with the values determined experimentally. (author). 30 refs., 10 figs., 2 tabs

  13. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-06-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1 to 4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  14. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-01-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1-4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  15. Microscopical advances in assisted reproduction.

    Science.gov (United States)

    Baccetti, B

    2004-01-01

    In a series of papers carried out by this laboratory it was demonstrated that the quality of sterile males sperm, assessed submicroscopically and mathematically, is closely correlated with the success of the various procedures of assisted reproduction. If we attempt to select hypothetically optimal spermatozoa destined to the ICSI by light inverted microscopy, a considerable amount of ultrastructural information is lost and our selection is merely based on the motility. In this study we apply polarization microscopy to the ICSI technique, introducing polarizing and analyzing lenses in an inverted microscope model, operating in a transparent container. The retardation of the birefringence in the various organelles is evaluated by compensators, and the images are transmitted to a video system, and stored in a computer. Spermatozoa are maintained alive and perfectly motile in this polarizing inverted microscope, and the character of the birefringence is the same as in fixed and sectioned biological material examined by polarization microscopy. The birefringence of the sperm structures allows a sperm analysis closer to TEM than to phase contrast light microscopy analysis.

  16. Visualizing 3-D microscopic specimens

    Science.gov (United States)

    Forsgren, Per-Ola; Majlof, Lars L.

    1992-06-01

    The confocal microscope can be used in a vast number of fields and applications to gather more information than is possible with a regular light microscope, in particular about depth. Compared to other three-dimensional imaging devices such as CAT, NMR, and PET, the variations of the objects studied are larger and not known from macroscopic dissections. It is therefore important to have several complementary ways of displaying the gathered information. We present a system where the user can choose display techniques such as extended focus, depth coding, solid surface modeling, maximum intensity and other techniques, some of which may be combined. A graphical user interface provides easy and direct control of all input parameters. Motion and stereo are available options. Many three- dimensional imaging devices give recordings where one dimension has different resolution and sampling than the other two which requires interpolation to obtain correct geometry. We have evaluated algorithms with interpolation in object space and in projection space. There are many ways to simplify the geometrical transformations to gain performance. We present results of some ways to simplify the calculations.

  17. Guideline of guidelines: asymptomatic microscopic haematuria.

    Science.gov (United States)

    Linder, Brian J; Bass, Edward J; Mostafid, Hugh; Boorjian, Stephen A

    2018-02-01

    The aim of the present study was to review major organizational guidelines on the evaluation and management of asymptomatic microscopic haematuria (AMH). We reviewed the haematuria guidelines from: the American Urological Association; the consensus statement by the Canadian Urological Association, Canadian Urologic Oncology Group and Bladder Cancer Canada; the American College of Physicians; the Joint Consensus Statement of the Renal Association and British Association of Urological Surgeons; and the National Institute for Health and Care Excellence. All guidelines reviewed recommend evaluation for AMH in the absence of potential benign aetiologies, with the evaluation including cystoscopy and upper urinary tract imaging. Existing guidelines vary in their definition of AMH (role of urine dipstick vs urine microscopy), the age threshold for recommending evaluation, and the optimal imaging method (computed tomography vs ultrasonography). Of the reviewed guidelines, none recommended the use of urine cytology or urine markers during the initial AMH evaluation. Patients should have ongoing follow-up after a negative initial AMH evaluation. Significant variation exists among current guidelines for AMH with respect to who should be evaluated and in what manner. Given the patient and health system implications of balancing appropriately focused and effective diagnostic evaluation, AMH represents a valuable future research opportunity. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  18. Robotic autopositioning of the operating microscope.

    Science.gov (United States)

    Oppenlander, Mark E; Chowdhry, Shakeel A; Merkl, Brandon; Hattendorf, Guido M; Nakaji, Peter; Spetzler, Robert F

    2014-06-01

    Use of the operating microscope has become pervasive since its introduction to the neurosurgical world. Neuronavigation fused with the operating microscope has allowed accurate correlation of the focal point of the microscope and its location on the downloaded imaging study. However, the robotic ability of the Pentero microscope has not been utilized to orient the angle of the microscope or to change its focal length to hone in on a predefined target. To report a novel technology that allows automatic positioning of the operating microscope onto a set target and utilization of a planned trajectory, either determined with the StealthStation S7 by using preoperative imaging or intraoperatively with the microscope. By utilizing the current motorized capabilities of the Zeiss OPMI Pentero microscope, a robotic autopositioning feature was developed in collaboration with Surgical Technologies, Medtronic, Inc. (StealthStation S7). The system is currently being tested at the Barrow Neurological Institute. Three options were developed for automatically positioning the microscope: AutoLock Current Point, Align Parallel to Plan, and Point to Plan Target. These options allow the microscope to pivot around the lesion, hover in a set plane parallel to the determined trajectory, or rotate and point to a set target point, respectively. Integration of automatic microscope positioning into the operative workflow has potential to increase operative efficacy and safety. This technology is best suited for precise trajectories and entry points into deep-seated lesions.

  19. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  20. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  1. Foldscope: origami-based paper microscope.

    Directory of Open Access Journals (Sweden)

    James S Cybulski

    Full Text Available Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education.

  2. Microscopic description of magnetized plasma: quasiparticle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Decyk, V.K.

    1993-01-01

    A quasiparticle concept is developed systematically, from first principles, within the context of microscopic description of magnetized plasma. It is argued that the zeroth velocity-gyroangle harmonic of the microscopic particle distribution function under the gyrokinetic change of variables can be taken as a microscopic quasi-particle density in a reduced phase space. The nature of quasiparticles is discussed and equations of their motion are derived within both exact and reduced microscopic descriptions. The reduced one employs explicitly the separation of interesting time scales. (orig.)

  3. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  4. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  5. Existence problem of proton semi-bubble structure in the 2{sub 1}{sup +} state of {sup 34}Si

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng [China Institute of Atomic Energy, Beijing (China); Sichuan University, Key Laboratory of Radiation Physics and Technology of Ministry of Education, School of Physics Science and Technology, Chengdu (China); Bai, C.L. [Sichuan University, Key Laboratory of Radiation Physics and Technology of Ministry of Education, School of Physics Science and Technology, Chengdu (China); Yao, J.M. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Southwest University, School of Physical Science and Technology, Chongqing (China); Zhang, H.Q.; Zhang, X.Z. [China Institute of Atomic Energy, Beijing (China)

    2017-09-15

    The fully self-consistent Hartree-Fock (HF) plus random phase approximation (RPA) based on Skyrme-type interaction is used to study the existence problem of proton semi-bubble structure in the 2{sub 1}{sup +} state of {sup 34}Si. The experimental excitation energy and the transition strength of the 2{sub 1}{sup +} state in {sup 34}Si can be reproduced quite well. The tensor effect is also studied. It is shown that the tensor interaction has a notable impact on the excitation energy of the 2{sub 1}{sup +} state and a small effect on the B(E2) value. Besides, its effect on the density distributions in the ground and 2{sub 1}{sup +} state of {sup 34}Si is negligible. Our present results with T36 and T44 show that the 2{sub 1}{sup +} state of {sup 34}Si is mainly caused by proton transition from π1d{sub 5/2} orbit to π2s{sub 1/2} orbit, and the existence of a proton semi-bubble structure in this state is very unlikely. (orig.)

  6. Hamiltonian mechanics limits microscopic engines

    Science.gov (United States)

    Anglin, James; Gilz, Lukas; Thesing, Eike

    2015-05-01

    We propose a definition of fully microscopic engines (micro-engines) in terms of pure mechanics, without reference to thermodynamics, equilibrium, or cycles imposed by external control, and without invoking ergodic theory. This definition is pragmatically based on the observation that what makes engines useful is energy transport across a large ratio of dynamical time scales. We then prove that classical and quantum mechanics set non-trivial limits-of different kinds-on how much of the energy that a micro-engine extracts from its fuel can be converted into work. Our results are not merely formal; they imply manageable design constraints on micro-engines. They also suggest the novel possibility that thermodynamics does not emerge from mechanics in macroscopic regimes, but rather represents the macroscopic limit of a generalized theory, valid on all scales, which governs the important phenomenon of energy transport across large time scale ratios. We propose experimental realizations of the dynamical mechanisms we identify, with trapped ions and in Bose-Einstein condensates (``motorized bright solitons'').

  7. Spectral Interferometry with Electron Microscopes

    Science.gov (United States)

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  8. Mice embryology: a microscopic overview.

    Science.gov (United States)

    Salvadori, Maria Letícia Baptista; Lessa, Thais Borges; Russo, Fabiele Baldino; Fernandes, Renata Avancini; Kfoury, José Roberto; Braga, Patricia Cristina Baleeiro Beltrão; Miglino, Maria Angélica

    2012-10-01

    In this work, we studied the embryology of mice of 12, 14, and 18 days of gestation by gross observation, light microscopy, and scanning electron microscopy. Grossly, the embryos of 12 days were observed in C-shaped region of the brain, eye pigmentation of the retina, first, second, and third pharyngeal arches gill pit nasal region on the fourth ventricle brain, cervical curvature, heart, liver, limb bud thoracic, spinal cord, tail, umbilical cord, and place of the mesonephric ridge. Microscopically, the liver, cardiovascular system and spinal cord were observed. In the embryo of 14 days, we observed structures that make up the liver and heart. At 18 days of gestation fetuses, it was noted the presence of eyes, mouth, and nose in the cephalic region, chest and pelvic region with the presence of well-developed limbs, umbilical cord, and placenta. Scanning electron microscopy in 18 days of gestation fetuses evidenced head, eyes closed eyelids, nose, vibrissae, forelimb, heart, lung, kidney, liver, small bowel, diaphragm, and part of the spine. The results obtained in this work describe the internal and external morphology of mice, provided by an integration of techniques and review of the morphological knowledge of the embryonic development of this species, as this animal is of great importance to scientific studies. Copyright © 2012 Wiley Periodicals, Inc.

  9. Scanning Microscopes Using X Rays and Microchannels

    Science.gov (United States)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  10. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  11. Ontological Proofs of Existence and Non-Existence

    Czech Academy of Sciences Publication Activity Database

    Hájek, Petr

    2008-01-01

    Roč. 90, č. 2 (2008), s. 257-262 ISSN 0039-3215 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : ontological proofs * existence * non-existence * Gödel * Caramuel Subject RIV: BA - General Mathematics

  12. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VII) HFODD (v2.49t): A new version of the program

    Science.gov (United States)

    Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. New version program summaryProgram title:HFODD (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution

  13. A microscopic model of triangular arbitrage

    Science.gov (United States)

    Aiba, Yukihiro; Hatano, Naomichi

    2006-11-01

    We introduce a microscopic model which describes the dynamics of each dealer in multiple foreign exchange markets, taking account of the triangular arbitrage transaction. The model reproduces the interaction among the markets well. We explore the relation between the parameters of the present microscopic model and the spring constant of a macroscopic model that we proposed previously.

  14. Quantum theory and microscopic mechanics. I

    International Nuclear Information System (INIS)

    Yussouff, M.

    1984-08-01

    The need for theoretical descriptions and experimental observations on 'small' individual systems is emphasized. It is shown that the mathematical basis for microscopic mechanics is very simple in one dimension. The square well problem is discussed to clarify general points about stationary states and the continuity of (p'/p) across potential boundaries in the applications of microscopic mechanics. (author)

  15. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  16. Existence theory in optimal control

    International Nuclear Information System (INIS)

    Olech, C.

    1976-01-01

    This paper treats the existence problem in two main cases. One case is that of linear systems when existence is based on closedness or compactness of the reachable set and the other, non-linear case refers to a situation where for the existence of optimal solutions closedness of the set of admissible solutions is needed. Some results from convex analysis are included in the paper. (author)

  17. The Current Status of Microscopical Hair Comparisons

    Directory of Open Access Journals (Sweden)

    Walter F. Rowe

    2001-01-01

    Full Text Available Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation leads to three conclusions: (1 microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2 the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3 forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court’s Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  18. Microscopical study of K isomers in the nuclear region A ∼ 180

    International Nuclear Information System (INIS)

    Libert, J.; Quentin, P.; Pillet, N.; Ponsa, A.

    1997-01-01

    At present the K isomers are the best candidates for high density energy storage, although one of the major problems resides in the availability of simple and fast storage mechanisms. To respond to this question it is necessary to know thoroughly the structure of the concerned isomers and low energy modes of excitation. Particularly, proper to this type of studies is the region of A ∼ 180, where a large number of K isomers are known at present ( 178 Hf, 179 Hf and 180 Ta). Microscopic calculations using Skyrme SIII plus a simple pairing interaction lead to a good reproduction of certain single particle and collective spectroscopic properties of 178 Hf. In this region the spectroscopic properties are governed by three single proton states (5/2 - , 7/2 - and 9/2 + ) and by two single neutron states (7/2 + , 9/2 - ). The computed quasi-particle spectrum reproduces within 100 keV the energies of the isomeric states 16 + , 14 - , 25/2 - and 9 - . Based on this agreement one can predict a band spectroscopy rich in high K values due to a plenty of possible single particle combinations which have themselves high K value. Particularly, one have to stress the quasi-degeneracy of a K π = 15 + with the 16 + configuration in 178 Hf. Should this prediction experimentally be confirmed interesting consequences have to be expected on the spectroscopy above the 16 + isomer of 178 Hf as well as on the states implied in the decay of this storage state. Actually, 1 MeV above the 16 + state one can note isolated states reachable by parity breaking (or not breaking) transitions which could be mixture of K = 15, 14, 13, etc structures due to Coriolis interaction. The calculation reported are although simple (the approximation of the free quasi-particles on the BCS vacuum of 178 Hf). Under current study are the quantitative consequences of the Coriolis coupling, the decrease of pairing gaps with increasing quasi-particle number, the Hartree-Fock polarization (even and odd under time

  19. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  20. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Development and applications of the positron microscope

    International Nuclear Information System (INIS)

    1991-01-01

    Progress on the positron microscope during the past year has been steady, and we currently project that initial microscope images can be collected during mid to late summer of 1992. Work during the year has mainly been divided among four areas of effort: hardware construction; power supply and control system development; radioactive source fabrication; and planning of initial experimental projects. Details of progress in these areas will be given below. An initial optical design of the microscope was completed during 1990, but during the past year, significant improvements have been made to this design, and several limiting cases of microscope performance have been evaluated. The results of these evaluations have been extremely encouraging, giving us strong indications that the optical performance of the microscope will be better than originally anticipated. In particular, we should be able to explore ultimate performance capabilities of positron microscopy using our currently planned optical system, with improvements only in the image detector system, and the positron-source/moderator configuration. We should be able to study imaging reemission microscopy with resolutions approaching 10 Angstrom and be able to produce beam spots for rastered microscope work with diameters below the 1000 Angstrom diffusion limit. Because of these exciting new possibilities, we have decided to upgrade several microscope subsystems to levels consistent with ultimate performance earlier in our construction schedule than we had previously intended. In particular, alignment facilities in the optical system, vibration isolation, and power supply and control system flexibility have all been upgraded in their design over the past year

  2. Towards vortex imaging with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Fuchs, Dan T.

    1994-02-01

    A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)

  3. Confocal scanning microscope for nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Kovalev, Yu.S.; Soroko, L.M.

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of single silver grain is shown. The cross sections of the same particle track of diameter 1 μm, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles

  4. A sub-cm micromachined electron microscope

    Science.gov (United States)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  5. phytochemical and microscopical evaluation of desmodium velutinum

    African Journals Online (AJOL)

    USER

    2015-06-01

    Jun 1, 2015 ... and observed under the compound microscope for the presence of cell inclusions such as cellulose, starch, oil ... opportunity of providing useful medicinal compounds. (Gill, 1992). ..... Medical Properties of African. Plants of.

  6. Understanding and caring for an operating microscope

    Directory of Open Access Journals (Sweden)

    Ismael Cordero

    2014-04-01

    Full Text Available An operating or surgical microscope is an optical instrument that provides the surgeon with a stereoscopic, high quality magnified and illuminated image of the small structures in the surgical area.

  7. A pragmatic guide to multiphoton microscope design

    Science.gov (United States)

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  8. Multi-compartment microscopic diffusion imaging

    OpenAIRE

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2016-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microsco...

  9. Microscopic and macroscopic models for pedestrian crowds

    OpenAIRE

    Makmul, Juntima

    2016-01-01

    This thesis is concerned with microscopic and macroscopic models for pedes- trian crowds. In the first chapter, we consider pedestrians exit choices and model human behaviour in an evacuation process. Two microscopic models, discrete and continuous, are studied in this chapter. The former is a cellular automaton model and the latter is a social force model. Different numerical test cases are investigated and their results are compared. In chapter 2, a hierarchy of models for...

  10. IMIS: An intelligence microscope imaging system

    Science.gov (United States)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  11. Existing Steel Railway Bridges Evaluation

    Science.gov (United States)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  12. Existing Steel Railway Bridges Evaluation

    Directory of Open Access Journals (Sweden)

    Vičan Josef

    2016-12-01

    Full Text Available The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  13. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    Science.gov (United States)

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  14. The importance of radiographic imaging in the microscopic assessment of bone tumors

    International Nuclear Information System (INIS)

    Larousserie, F.; Kreshak, J.; Gambarotti, M.; Alberghini, M.; Vanel, D.

    2013-01-01

    Introduction: Primary bone tumors are rare and require a multidisciplinary approach. Diagnosis involves primarily the radiologist and the pathologist. Bone lesions are often heterogeneous and the microscopic diagnostic component(s) may be in the minority, especially on core needle biopsies. Reactive processes, benign, and malignant tumors may have similar microscopic aspects. For these challenging cases, the correlation of microscopic and radiologic information is critical, or diagnostic mistakes may be made with severe clinical consequences for the patient. The purpose of this article is to explain how pathologists can best use imaging studies to improve the diagnostic accuracy of bone lesions. Diagnosis: Many bone lesions are microscopically and/or radiographically heterogeneous, especially those with both lytic and matrix components. Final diagnosis may require specific microscopic diagnostic features that may be present in the lesion, but not the biopsy specimen. A review of the imaging helps assess if sampling was adequate. The existence of a pre-existing bone lesion, syndrome (such as Ollier disease or multiple hereditary exostosis), or oncologic history may be of crucial importance. Finally, imaging information is very useful for the pathologist to perform accurate local and regional staging during gross examination. Conclusion: Close teamwork between pathologists, radiologists, and clinicians is of utmost importance in the evaluation and management of bone tumors. These lesions can be very difficult to interpret microscopically; imaging studies therefore play a crucial role in their accurate diagnosis

  15. The importance of radiographic imaging in the microscopic assessment of bone tumors

    Energy Technology Data Exchange (ETDEWEB)

    Larousserie, F., E-mail: frederique.larousserie@cch.aphp.fr [Université Paris Descartes, Sorbonne Paris Cité, Paris (France); Department of pathology, Rizzoli Institute, Bologna (Italy); Kreshak, J.; Gambarotti, M.; Alberghini, M.; Vanel, D. [Department of pathology, Rizzoli Institute, Bologna (Italy)

    2013-12-01

    Introduction: Primary bone tumors are rare and require a multidisciplinary approach. Diagnosis involves primarily the radiologist and the pathologist. Bone lesions are often heterogeneous and the microscopic diagnostic component(s) may be in the minority, especially on core needle biopsies. Reactive processes, benign, and malignant tumors may have similar microscopic aspects. For these challenging cases, the correlation of microscopic and radiologic information is critical, or diagnostic mistakes may be made with severe clinical consequences for the patient. The purpose of this article is to explain how pathologists can best use imaging studies to improve the diagnostic accuracy of bone lesions. Diagnosis: Many bone lesions are microscopically and/or radiographically heterogeneous, especially those with both lytic and matrix components. Final diagnosis may require specific microscopic diagnostic features that may be present in the lesion, but not the biopsy specimen. A review of the imaging helps assess if sampling was adequate. The existence of a pre-existing bone lesion, syndrome (such as Ollier disease or multiple hereditary exostosis), or oncologic history may be of crucial importance. Finally, imaging information is very useful for the pathologist to perform accurate local and regional staging during gross examination. Conclusion: Close teamwork between pathologists, radiologists, and clinicians is of utmost importance in the evaluation and management of bone tumors. These lesions can be very difficult to interpret microscopically; imaging studies therefore play a crucial role in their accurate diagnosis.

  16. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film.

    Science.gov (United States)

    Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2018-06-01

    Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Limitations of existing web services

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Limitations of existing web services. Uploading or downloading large data. Serving too many user from single source. Difficult to provide computer intensive job. Depend on internet and its bandwidth. Security of data in transition. Maintain confidentiality of data ...

  18. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  19. Designs for a quantum electron microscope.

    Science.gov (United States)

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  1. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  2. A subsurface add-on for standard atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G. J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J., E-mail: Rost@physics.leidenuniv.nl [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  3. Adaptation of commercial microscopes for advanced imaging applications

    Science.gov (United States)

    Brideau, Craig; Poon, Kelvin; Stys, Peter

    2015-03-01

    Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.

  4. A frameless stereotaxic operating microscope for neurosurgery

    International Nuclear Information System (INIS)

    Friets, E.M.; Strohbehn, J.W.; Hatch, J.F.; Roberts, D.W.

    1989-01-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given

  5. Optical modeling of Fresnel zoneplate microscopes

    International Nuclear Information System (INIS)

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-01-01

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  6. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  7. The optics of microscope image formation.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  8. A frameless stereotaxic operating microscope for neurosurgery.

    Science.gov (United States)

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  9. The EXIST Mission Concept Study

    Science.gov (United States)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  10. The Greenhouse Effect Does Exist!

    OpenAIRE

    Ebel, Jochen

    2009-01-01

    In particular, without the greenhouse effect, essential features of the atmospheric temperature profile as a function of height cannot be described, i.e., the existence of the tropopause above which we see an almost isothermal temperature curve, whereas beneath it the temperature curve is nearly adiabatic. The relationship between the greenhouse effect and observed temperature curve is explained and the paper by Gerlich and Tscheuschner [arXiv:0707.1161] critically analyzed. Gerlich and Tsche...

  11. Europe - space for transcultural existence?

    OpenAIRE

    Tamcke, Martin; Janny, de Jong; Klein, Lars; Waal, Margriet

    2013-01-01

    Europe - Space for Transcultural Existence? is the first volume of the new series, Studies in Euroculture, published by Göttingen University Press. The series derives its name from the Erasmus Mundus Master of Excellence Euroculture: Europe in the Wider World, a two year programme offered by a consortium of eight European universities in collaboration with four partner universities outside Europe. This master highlights regional, national and supranational dimensions of the European democrati...

  12. Existence of undiscovered Uranian satellites

    International Nuclear Information System (INIS)

    Boice, D.C.

    1986-04-01

    Structure in the Uranian ring system as observed in recent occultations may contain indirect evidence for the existence of undiscovered satellites. Using the Alfven and Arrhenius (1975, 1976) scenario for the formation of planetary systems, the orbital radii of up to nine hypothetical satellites interior to Miranda are computed. These calculations should provide interesting comparisons when the results from the Voyager 2 encounter with Uranus are made public. 15 refs., 1 fig., 1 tab

  13. UNCITRAL: Changes to existing law

    OpenAIRE

    Andersson, Joakim

    2008-01-01

    The UNCITRAL Convention on Contracts for the International Carriage of Goods [wholly or partly] by Sea has an ambition of replacing current maritime regimes and expands the application of the Convention to include also multimodal transport. This thesis questions what changes to existing law, in certain areas, the new Convention will bring compared to the current regimes. In the initial part, the thesis provides for a brief background and history of international maritime regulations and focus...

  14. Existence Results for Incompressible Magnetoelasticity

    Czech Academy of Sciences Publication Activity Database

    Kružík, Martin; Stefanelli, U.; Zeman, J.

    2015-01-01

    Roč. 35, č. 6 (2015), s. 2615-2623 ISSN 1078-0947 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : magnetoelasticity * magnetostrictive solids * incompressibility * existence of minimizers * quasistatic evolution * energetic solution Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/kruzik-0443017.pdf

  15. Determination of the parameters of a microscopic object from a complex response of a differential microscope

    International Nuclear Information System (INIS)

    Baranov, D V; Egorov, Alexander A; Zolotov, Evgenii M; Svidzinsky, K K

    1998-01-01

    An analysis of the amplitude and phase of a complex response of a heterodyne differential microscope was used to demonstrate experimentally the feasibility of determination of the parameters of a composite microscopic object representing a combination of a step with a groove. (laser applications and other topics in quantum electronics)

  16. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    Science.gov (United States)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  17. On the microscopic foundation of scattering theory

    International Nuclear Information System (INIS)

    Moser, T.

    2007-01-01

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics

  18. Microscopic hydrodynamics study with nuclear track membrane

    International Nuclear Information System (INIS)

    Shilun Guo; Yuhua Zhao; Yulan Wang; Hiuhong Hao; Brandt, R.; Vater, P.

    1988-01-01

    Microscopic hydrodynamics has been studied using different liquids and nuclear track membranes with pores perpendicularly piercing through them. The flow rate of water and alcohol has been studied with polycarbonate track membranes with pore diameters 1.48 micrometres and 1.08 micrometres. It has been shown that the flow rate both for water and alcohol on a microscopic scale can be determined by the Poiseuille law which characterizes macroscopic laminar flow. The Reynolds number used in macroscopic fluid flow has been calculated from the flow rate and parameters of the liquids and the geometry of the pores. It has been shown that this Reynolds number can also be used to characterize microscopic flow. Based on the above results, the filtration capacity (or limit) of polycarbonate track microfilters for water had been calculated. Some possible limits on the application of the calculation are pointed out and discussed. (author)

  19. Scanning laser microscope for imaging nanostructured superconductors

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-01-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  20. Smartphone Magnification Attachment: Microscope or Magnifying Glass

    Science.gov (United States)

    Hergemöller, Timo; Laumann, Daniel

    2017-09-01

    Today smartphones and tablets do not merely pervade our daily life, but also play a major role in STEM education in general, and in experimental investigations in particular. Enabling teachers and students to make use of these new techniques in physics lessons requires supplying capable and affordable applications. Our article presents the improvement of a low-cost technique turning smartphones into powerful magnifying glasses or microscopes. Adding only a 3D-printed clip attached to the smartphone's camera and inserting a small glass bead in this clip enables smartphones to take pictures with up to 780x magnification (see Fig. 1). In addition, the construction of the smartphone attachments helps to explain and examine the differences between magnifying glasses and microscopes, and shows that the widespread term "smartphone microscope" for this technique is inaccurate from a physics educational perspective.

  1. Handy Microscopic Close-Range Videogrammetry

    Science.gov (United States)

    Esmaeili, F.; Ebadi, H.

    2017-09-01

    The modeling of small-scale objects is used in different applications such as medicine, industry, and cultural heritage. The capability of modeling small-scale objects using imaging with the help of hand USB digital microscopes and use of videogrammetry techniques has been implemented and evaluated in this paper. Use of this equipment and convergent imaging of the environment for modeling, provides an appropriate set of images for generation of three-dimensional models. The results of the measurements made with the help of a microscope micrometer calibration ruler have demonstrated that self-calibration of a hand camera-microscope set can help obtain a three-dimensional detail extraction precision of about 0.1 millimeters on small-scale environments.

  2. Scanning laser microscope for imaging nanostructured superconductors

    Science.gov (United States)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  3. Environmental TEM in an Aberration Corrected Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    ‐resolution imaging. A gaseous atmosphere in the pole‐piece gap of the objective lens of the microscope alters both the incoming electron wave prior to interaction with the sample and the outgoing wave below the sample. Whereas conventional TEM samples are usually thin (below 10‐20 nm), the gas in the environmental...... the microscope column. The effects of gas on the electron wave in the objective lens are not well understood and needs further attention. Imaging samples with a simple geometry, such as gold particles on a flat graphene substrate and analyzing the variations in contrast, provides a means for understanding...... results from imaging in various elemental as well as di‐molecular gases and their effect on imaging and spectroscopy in the environmental transmission electron microscope....

  4. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  5. Neutron relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong

    1991-01-01

    In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested

  6. Microscopic saw mark analysis: an empirical approach.

    Science.gov (United States)

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  7. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    Science.gov (United States)

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  8. Expectations for neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Date, M.

    1993-01-01

    Neutrons have been used as microscopic probes to study structural and dynamical properties of various materials. In this paper I shall give a comparative study of the neutron research in the condensed matter physics with other typical microscopic methods such as X-rays, laser optics, magnetic resonances, Moessbauer effect and μSR. It is emphasized that the neutron study will extensively be important in future beyond the condensed matter physics. Chemistry, biology, earth sciences, material engineerings and medical sciences will become new frontiers for neutron study. (author)

  9. An innovative approach in microscopic endodontics

    Science.gov (United States)

    Mittal, Sunandan; Kumar, Tarun; Sharma, Jyotika; Mittal, Shifali

    2014-01-01

    The introduction of the dental operating microscope was a turning point in the history of dentistry. It triggered a rapid transition from the conventional world of macro-dentistry to the precise, detailed world of micro-dentistry. However, working at these higher-power magnifications brings the clinician into the realm where even slight hand movements are disruptive. Physiologic hand tremor is a problem resulting in difficulty in mouth mirror placement. Hence, in this paper, a new instrument was designed to overcome the drawback of hand tremors during microscopic endodontics. PMID:24944459

  10. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  11. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  12. Quantum logics with existence property

    International Nuclear Information System (INIS)

    Schindler, C.

    1991-01-01

    A quantum logic (σ-orthocomplete orthomodular poset L with a convex, unital, and separating set Δ of states) is said to have the existence property if the expectation functionals on lin(Δ) associated with the bounded observables of L form a vector space. Classical quantum logics as well as the Hilbert space logics of traditional quantum mechanics have this property. The author shows that, if a quantum logic satisfies certain conditions in addition to having property E, then the number of its blocks (maximal classical subsystems) must either be one (classical logics) or uncountable (as in Hilbert space logics)

  13. Towards an unified microscopic approach of the description of the nuclear structure and reaction

    International Nuclear Information System (INIS)

    Hoang, Sy-Than

    2009-01-01

    This thesis contains 3 main parts: 1. Nuclear matter: The properties of nuclear matter are examined using finite range effective interactions, either derived from the Brueckner theory (M3Y-type interactions) or determined in a purely phenomenological way (Gogny-type interactions). Skyrme-type interactions are also used for comparison. The motivation of the study is to establish a link between the bare NN interaction and nuclear matter properties via the effective Brueckner G-matrix parameterized in the M3Y form. We have concentrated our discussion on several main aspects: the pressure in symmetric nuclear matter and in neutron matter, the density dependence of the symmetry energy S, the neutron star cooling, and the nuclear matter incompressibility for the symmetric and asymmetric nuclear matter. 2. Structure of finite nuclei and of the inner crust of neutron stars: We present the non-relativistic HF and HF-BCS approaches in coordinate representation using finite-range density-dependent interactions in both the mean field and pairing channels. The method for solving the HF equations in coordinate space is presented. We limit the study to the spherical symmetry case. An iterative scheme is used for solving the integro-differential HF equations. We adopt the method of Brueckner-Gammel-Weizner which is free of poles in the local equivalent potentials, in contrast to the usually used Vautherin-Veneroni method. Alternatively, we have developed a method using a basis of spherical Bessel functions. The latter method is useful for treating systems containing many nucleons in large boxes like the Wigner-Seitz (WS) cells of the neutron star inner crust. We have thus studied, using the effective interactions mentioned above, the doubly magic nuclei, the Sn isotopes, and the possible occurrence of bubble structures in the nuclei 22 O, 34 Si, 46 Ar and 68 Ar. We also present for the first time a study of Wigner-Seitz cells in the inner crust of neutron stars using finite range

  14. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  15. Science 101: How Does an Electron Microscope Work?

    Science.gov (United States)

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  16. Microscopic nuclear structure with sub-nucleonic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1986-01-01

    The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)

  17. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires

    International Nuclear Information System (INIS)

    Zubkov, Evgeniy

    2013-01-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  18. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  19. Microscopic polyangeitis, report of a case

    International Nuclear Information System (INIS)

    Malagon, Patricia; Suarez, Martha Lucia

    1998-01-01

    Polyarteritis or microscopic polyangeitis is a systemic necrotizing vasculitis associated with the lung-kidney syndrome. It presents with diffuse alveolar hemorrhage and necrotizing glomerulonephritis with multisystem involvement. A case is presented of a 50 years old male with its clinical and imaging findings

  20. MACROSCOPICAL AND MICROSCOPICAL STUDIES ON THE ...

    African Journals Online (AJOL)

    Caesalpinia crista leaves are bipinnate of about six pairs with alternate leaflets while the stem us fibrous, cylindrical hollow and prickly. Microscopical examination revealed the presence of strained cuticle, straight-walled epidermal cells, paracytic stomata, unicellular covering trichomes, fibres, prisms as well as cluster of ...

  1. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  2. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  3. Microscopic Description of Le Chatelier's Principle

    Science.gov (United States)

    Novak, Igor

    2005-01-01

    A simple approach that "demystifies" Le Chatelier's principle (LCP) and simulates students to think about fundamental physical background behind the well-known principles is presented. The approach uses microscopic descriptors of matter like energy levels and populations and does not require any assumption about the fixed amount of substance being…

  4. Remote Controlling and Monitoring of Microscopic Slides

    International Nuclear Information System (INIS)

    Mustafa, G.; Qadri, M.T.; Daraz, U.

    2016-01-01

    Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope's stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert's opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of the slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist in viewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients. (author)

  5. The Titan Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Jinschek, Jörg R.

    2009-01-01

    University of Denmark (DTU) provides a unique combination of techniques for studying materials of interest to the catalytic as well as the electronics and other communities [5]. DTU’s ETEM is based on the FEI Titan platform providing ultrahigh microscope stability pushing the imaging resolution into the sub...

  6. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  7. Exploring the environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.

    2012-01-01

    of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based techniques and phenomena. In addition, application of adjacent setups using sophisticated transfer methods...

  8. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  9. Microscopic approaches to quantum nonequilibriumthermodynamics and information

    Science.gov (United States)

    2018-02-09

    perspective on quantum thermalization for Science [8]. Wrote a joint experiment- theory paper on studying connections between quantum and classical chaos in...on the random matrix theory (eigenstate thermalization) and macroscopic phenomena (both equilibrium and non-equilibrium). Understanding thermodynamics...information. Specific questions to be addressed: connections of microscopic description of quantum chaotic systems based on the random matrix theory

  10. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges...

  11. Reasoning about Magnetism at the Microscopic Level

    Science.gov (United States)

    Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien

    2014-01-01

    Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…

  12. Does cold nuclear fusion exist?

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Bystritskij, V.M.; Egorov, V.G.; Shamsutdinov, S.G.; Shyshkin, A.L.; Stolupin, V.A.; Yutlandov, I.A.

    1989-01-01

    The results of investigation of cold nuclear fusion on palladium are given both for electrolysis of heavy water D 2 O and mixture D 2 O + H 2 O) (1:1) and for palladium saturation with gaseous deuterium. The possibility of existance of this phenomenon was examined by detection of neutrons and gamma quanta from reactions: d + d → 3 He + n + 3.27 MeV, p + d → 3 He + γ + 5.5 MeV. Besides these reactions were identified by measuring the characteristic X radiation of palladium due to effect of charged products 3 He, p, t. The upper limits of the intensities of hypothetical sources of neutrons and gamma quanta at the 95% confidence level were obtained to be Q n ≤ 2x10 -2 n/sxcm 3 Pd, Q γ ≤ 2x10 -3 γ/sxcm 3 Pd. 2 refs.; 4 figs.; 2 tabs

  13. Straightening: existence, uniqueness and stability

    Science.gov (United States)

    Destrade, M.; Ogden, R. W.; Sgura, I.; Vergori, L.

    2014-01-01

    One of the least studied universal deformations of incompressible nonlinear elasticity, namely the straightening of a sector of a circular cylinder into a rectangular block, is revisited here and, in particular, issues of existence and stability are addressed. Particular attention is paid to the system of forces required to sustain the large static deformation, including by the application of end couples. The influence of geometric parameters and constitutive models on the appearance of wrinkles on the compressed face of the block is also studied. Different numerical methods for solving the incremental stability problem are compared and it is found that the impedance matrix method, based on the resolution of a matrix Riccati differential equation, is the more precise. PMID:24711723

  14. Why do interstellar grains exist

    International Nuclear Information System (INIS)

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  15. Microscopic study of rock for estimating long-term behavior

    International Nuclear Information System (INIS)

    Ichikawa, Yasuaki

    2004-02-01

    Micro-structure of rock plays an essential role for their long-term behavior. For understanding long-term characteristics of granite we here present the followings: 1) observation of microcrack initiation and propagation by Conforcal Laser Scanning Microscope (CLSM) under uniaxial compression (before loading and at each loading stage), 2) characterization of the mechanism of microcrack initiation and propagation observed by stereoscopic microscope under uniaxial/triaxial compression and relaxation tests, and 3) a study of strong discontinuity analysis included in the homogenization theory to predict the long-term behavior of micro/macro-level stress for granite. First, CLSM was used to acquire clearly focused three-dimensional images of granite specimens, and observed the change of microscale structure including the mineral configuration under applying uniaxial compression stress. Then though microcracks have ever thought to be initiated and propagated on intergranular boundaries, we understand through the CLSM observation that new microcracks are generated from the ends of pre-existing cracks which are distributed in quartz and biotite. Second, we showed the results of stress-relaxation test of granite specimens observed by an optical microscope under water-saturated triaxial compression condition. Since microcrack generation and propagation play an essential role to predict the long-term behavior of rock, we managed the experiments with careful attention of 1) keeping constant edge-displacement and constant strain in the whole specimen accurately, and 2) measuring the relaxed stress exactly. Next, in order to simulate the experimental results which indicate that initiation and propagation of microcracks control the stress-relaxation phenomenon, we introduce a homogenization analysis procedure together with the strong discontinuity analysis which has recently established the mechanical implication and mathematical foundation. The numerical results show that we can

  16. Existe sujeito em Michel Maffesoli?

    Directory of Open Access Journals (Sweden)

    Marli Appel da Silva

    2010-06-01

    Full Text Available Este ensaio discute a concepção de sujeito na abordagem teórica de Michel Maffesoli. As ideias desse autor estão em voga em alguns meios acadêmicos no Brasil e são difundidas por algumas mídias de grande circulação nacional. Entretanto, ao longo de suas obras, os pressupostos que definem quem é o sujeito maffesoliano se encontram pouco clarificados. Portanto, para alcançar o objetivo a que se propõe, este ensaio desenvolve uma análise da epistemologia e da ontologia maffesoliana com a finalidade de compreender as origens dos pressupostos desse autor, ou seja, as teorias e os autores em que Maffesoli se baseou para desenvolver uma visão de sujeito. Com essa compreensão, pretende-se responder à questão: existe sujeito na abordagem teórica de Maffesoli.

  17. Designs for a quantum electron microscope

    International Nuclear Information System (INIS)

    Kruit, P.; Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R.; Hammer, J.; Thomas, S.; Weber, P.; Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A.; Hommelhoff, P.; Berggren, K.K.

    2016-01-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  18. Designs for a quantum electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kruit, P., E-mail: p.kruit@tudelft.nl [Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hammer, J.; Thomas, S.; Weber, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Hommelhoff, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Berggren, K.K. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-15

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  19. Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY

    International Nuclear Information System (INIS)

    Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas; Wilhein, Thomas; Lühl, Lars; Malzer, Wolfgang; Kanngießer, Birgit

    2016-01-01

    We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2

  20. Statistical laws in urban mobility from microscopic GPS data in the area of Florence

    International Nuclear Information System (INIS)

    Bazzani, Armando; Giorgini, Bruno; Rambaldi, Sandro; Gallotti, Riccardo; Giovannini, Luca

    2010-01-01

    The application of Statistical Physics to social systems is mainly related to the search for macroscopic laws that can be derived from experimental data averaged in time or space, assuming the system in a steady state. One of the major goals would be to find a connection between the statistical laws and the microscopic properties: for example, to understand the nature of the microscopic interactions or to point out the existence of interaction networks. Probability theory suggests the existence of a few classes of stationary distributions in the thermodynamics limit, so that the question is if a statistical physics approach could be able to enroll the complex nature of the social systems. We have analyzed a large GPS database for single-vehicle mobility in the Florence urban area, obtaining statistical laws for path lengths, for activity downtimes and for activity degrees. We show also that simple generic assumptions on the microscopic behavior could explain the existence of stationary macroscopic laws, with a universal function describing the distribution. Our conclusion is that understanding the system complexity requires a dynamical database for the microscopic evolution, which allows us to solve both small space and time scales in order to study the transients

  1. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    Science.gov (United States)

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  2. Portable smartphone based quantitative phase microscope

    Science.gov (United States)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  3. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  4. Electron microscopic radioautography of the cell

    International Nuclear Information System (INIS)

    Sarkisov, D.S.; Pal'tsyn, A.A.; Vtyurin, B.V.

    1980-01-01

    This monograph is the first one in the world literature that gives th generalised experience in application of the up-to-date method of structural and functional analysis, i.e. of electron-microscopic autography to study the dynamics of intracellular processes under normal conditions as well as under some pathogenic effects. Given herein are the data on synthesis of DNA and RNA in various structures of the nucleus, particularly in nucleoli, the regularities of the synthesis processes in the organellae of the same name are discussed; illustrated are the possibilities of structure analysis of biosynthesis intensity variations in the nucleus and cytoplasma in cells of liver miocardium, granulation tissue at different stages of morphological process; the results of electron-microscopic radioautography application in study of clinical biopsy material are given and the data obtained are discussed in the light of general pathology problems

  5. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  6. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  7. Development of a transmission positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Matsuya, M., E-mail: matsuya@jeol.co.jp [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Jinno, S. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan); Ootsuka, T.; Inoue, M. [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Kurihara, T. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Doyama, M.; Inoue, M. [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0913 (Japan); Fujinami, M. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan)

    2011-07-21

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000x (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  8. Design and development of compact multiphoton microscopes

    Science.gov (United States)

    Mehravar, SeyedSoroush

    A compact multi-photon microscope (MPM) was designed and developed with the use of low-cost mode-locked fiber lasers operating at 1040nm and 1560nm. The MPM was assembled in-house and the system aberration was investigated using the optical design software: Zemax. A novel characterization methodology based on 'nonlinear knife-edge' technique was also introduced to measure the axial, lateral resolution, and the field curvature of the multi-photon microscope's image plane. The field curvature was then post-corrected using data processing in MATLAB. A customized laser scanning software based on LabVIEW was developed for data acquisition, image display and controlling peripheral electronics. Finally, different modalities of multi-photon excitation such as second- and third harmonic generation, two- and three-photon fluorescence were utilized to study a wide variety of samples from cancerous cells to 2D-layered materials.

  9. EXTRACELLULAR CELLULOLYTIC COMPLEXES PRODUCTION BY MICROSCOPIC FUNGI

    Directory of Open Access Journals (Sweden)

    S. O. Syrchin

    2015-10-01

    Full Text Available The aim of this work was to screen and to study the effect of inducers on the synthesis of the cellulolytic enzyme complexes by microscopic fungi. Cellulolytic and xylanolytic activities were determined by reducing sugar with DNS reagent, and β-glucosidase activity by pNPG hydrolysis. The enzyme preparations were obtained by ammonium sulphate precipitation. Among 32 studied strains of microscopic fungi 14 produced cellulo- and xylanolytic enzyme complexes. Fusarium sp. 5 and Fennellia sp. 2806 demonstrated the highest levels of all studied enzyme activities. Enzyme preparations with high endo-, exoglucanase, xylanase and β-glucosidase activities were obtained from these strains. Fusarium sp. 5 and Fennellia sp. 2806 were active producers of cellulase enzyme complexes during growth on natural substrates. It was shown that inductors of cellulolytic enzymes in Fusarium sp. 5 and Fennellia sp. 2806 differed from the ones in Trichoderma reesei.

  10. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  11. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  12. Triple Giant Resonance Excitations: A Microscopic Approach

    International Nuclear Information System (INIS)

    Lanza, E.G.; Andres, M.V.; Catara, F.; Chomaz, Ph.; Fallot, M.; Scarpaci, J.A.

    2007-01-01

    We present, for the first time, microscopic calculations of inelastic cross sections of the triple excitation of giant resonances induced by heavy ion probes. We start from a microscopic approach based on RPA. The mixing of three-phonon states among themselves and with two- and one-phonon states is considered within a boson expansion with Pauli corrections. In this way we go beyond the standard harmonic approximations and get anharmonic excitation spectra. At the same time we also introduce non-linearities in the external field. The calculations are done by solving semiclassical coupled channel equations, the channels being superpositions of one-, two- and three-phonon states. Previous calculations for the Double Giant Resonance excitation show good agreement with experimental cross sections. The inclusion of the three phonon components confirms the previous results for the DGR and produces a strong increase in the Triple GR energy region

  13. Realistic microscopic level densities for spherical nuclei

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented

  14. The existence of a stable noncollinear phase in a Heisenberg model with complex structure

    Energy Technology Data Exchange (ETDEWEB)

    Shopova, Diana V.; Boyadjiev, Todor L

    2003-05-19

    We have analyzed the properties of a noncollinear magnetic phase obtained in the mean-field analysis of the model of two coupled Heisenberg subsystems. The domain of its existence and stability is narrow and depends on the ratio between the averaged over nearest neighbours microscopic exchange parameters.

  15. Classification and unification of the microscopic deterministic traffic models.

    Science.gov (United States)

    Yang, Bo; Monterola, Christopher

    2015-10-01

    We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.

  16. Microscopic modeling of multi-lane highway traffic flow

    Science.gov (United States)

    Hodas, Nathan O.; Jagota, Anand

    2003-12-01

    We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.

  17. Summary of existing uncertainty methods

    International Nuclear Information System (INIS)

    Glaeser, Horst

    2013-01-01

    A summary of existing and most used uncertainty methods is presented, and the main features are compared. One of these methods is the order statistics method based on Wilks' formula. It is applied in safety research as well as in licensing. This method has been first proposed by GRS for use in deterministic safety analysis, and is now used by many organisations world-wide. Its advantage is that the number of potential uncertain input and output parameters is not limited to a small number. Such a limitation was necessary for the first demonstration of the Code Scaling Applicability Uncertainty Method (CSAU) by the United States Regulatory Commission (USNRC). They did not apply Wilks' formula in their statistical method propagating input uncertainties to obtain the uncertainty of a single output variable, like peak cladding temperature. A Phenomena Identification and Ranking Table (PIRT) was set up in order to limit the number of uncertain input parameters, and consequently, the number of calculations to be performed. Another purpose of such a PIRT process is to identify the most important physical phenomena which a computer code should be suitable to calculate. The validation of the code should be focused on the identified phenomena. Response surfaces are used in some applications replacing the computer code for performing a high number of calculations. The second well known uncertainty method is the Uncertainty Methodology Based on Accuracy Extrapolation (UMAE) and the follow-up method 'Code with the Capability of Internal Assessment of Uncertainty (CIAU)' developed by the University Pisa. Unlike the statistical approaches, the CIAU does compare experimental data with calculation results. It does not consider uncertain input parameters. Therefore, the CIAU is highly dependent on the experimental database. The accuracy gained from the comparison between experimental data and calculated results are extrapolated to obtain the uncertainty of the system code predictions

  18. The clinical microscope and direct composite veneer

    DEFF Research Database (Denmark)

    Pascotto, Renata C; Benetti, Ana Raquel

    2010-01-01

    This paper presents the advantages and limitations related to the use of a clinical microscope in restorative dentistry, and it demonstrates the aid of magnification during preparation and restoration of a direct composite veneer. Good illumination and visibility is important to adequately viewin...... the adjacent dental tissues so that the resin composite buildup can mimic natural teeth. The reproduction of details results in a naturally esthetic direct veneer....

  19. Theoretical approach to the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Noguera, C.

    1990-01-01

    Within a one-electron approach, based on a Green's-function formalism, a nonperturbative expression for the tunneling current is obtained and used to discuss which spectroscopic information may be deduced from a scanning-tunneling-microscope experiment. It is shown up to which limits the voltage dependence of the tunneling current reproduces the local density of states at the surface, and how the reflection coefficients of the electronic waves at the surface may modify it

  20. Digital management of an electron microscope unit

    International Nuclear Information System (INIS)

    Elea, N.; Dickson, M.; Munroe, P.

    2002-01-01

    Full text: Electron microscope units, especially those such as ours, which operate as a central infrastructural facility are increasingly asked to provide more service, over more instruments with decreasing, or limited, financial resources. We believe that staff time is best used performing electron microscopy, assisting users and maintaining instrumentation rather than in the pursuit of red tape. One solution to this problem has been the creation of a control system which performs all routine acts of data management, such as the archiving and accessing of digital data, providing access to bookings, and most importantly in the era of user pays services, logging time and billing users. The system we have created, developed and expanded allows the users themselves to access our server through any web-browser and make their own bookings or access and manipulate their data. Users themselves must log on to a microscope through swipecard readers before it can be used and log-off after use. Their time is logged precisely and an exquisitely fair user pays systems can be operated by transferring logged usage time to spreadsheets to calculate charges. Furthermore, this system acts as a method of user authentication and can be used to bar incompetent or unauthorised users. The system has recently been upgraded to increase its utility to include sensors that monitor the electron microscope operating environment, such as magnetic field, room temperature, water flow etc, so that if these parameters depart significantly from optimum levels electron microscope unit staff may be alerted. In this presentation the structure of our system will be described and the advantages and disadvantages of such a system will be discussed. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Active Mask Segmentation of Fluorescence Microscope Images

    OpenAIRE

    Srinivasa, Gowri; Fickus, Matthew C.; Guo, Yusong; Linstedt, Adam D.; Kovačević, Jelena

    2009-01-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the “contour” to that of “inside and outside”, or, masks, allowing for easy mul...

  2. Microscopic foundation of the interacting boson model

    International Nuclear Information System (INIS)

    Arima, Akito

    1994-01-01

    A microscopic foundation of the interacting boson model is described. The importance of monopole and quadrupole pairs of nucleons is emphasized. Those pairs are mapped onto the s and d bosons. It is shown that this mapping provides a good approximation in vibrational and transitional nuclei. In appendix, it is shown that the monopole pair of electrons plays possibly an important role in metal clusters. (orig.)

  3. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  4. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  5. The Mathematical Microscope - Making the inaccessible accessible

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2011-01-01

      In this chapter we introduce a new term, the "Mathematical Microscope", as a method of using mathematics in accessing information about reality when this information is otherwise inaccessible. Furthermore, we discuss how models and experiments are related: none of which are important without th...... of mathematical modeling is discussed for type 1 and type 2 diabetes, depression, cardiovascular diseases and the interactions between the combinations of these, the so-called gray triangle in the metabolic syndrome....

  6. Experimental demonstration of microscopic process monitoring

    International Nuclear Information System (INIS)

    Hurt, R.D.; Hurrell, S.J.; Wachter, J.W.; Hebble, T.L.; Crawford, A.B.

    1982-01-01

    Microscopic process monitoring (MPM) is a material control strategy designed to use standard process control data to provide expanded safeguards protection of nuclear fuel cycle facilities. The MPM methodology identifies process events by recognizing significant patterns of changes in on-line measurements. The goals of MPM are to detect diversions of nuclear material and to provide information on process status useful to other facility safeguards operations

  7. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  8. On microscopic structure of the QCD vacuum

    Science.gov (United States)

    Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.

    2018-05-01

    We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.

  9. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  10. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  12. First Sample Delivery to Mars Microscope

    Science.gov (United States)

    2008-01-01

    The Robotic Arm on NASA's Phoenix Mars Lander has just delivered the first sample of dug-up soil to the spacecraft's microscope station in this image taken by the Surface Stereo Imager during the mission's Sol 17 (June 12), or 17th Martian day after landing. The scoop is positioned above the box containing key parts of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer, or MECA, instrument suite. It has sprinkled a small amount of soil into a notch in the MECA box where the microscope's sample wheel is exposed. The wheel turns to present sample particles on various substrates to the Optical Microscope for viewing. The scoop is about 8.5 centimeters (3.3 inches) wide. The top of the MECA box is 20 centimeters (7.9 inches) wide. This image has been lightened to make details more visible. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program

    Science.gov (United States)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.

    2017-11-01

    intrinsic densities. In the present version of HFBTHO, the energy density derives either from the zero-range Skyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear super-fluidity is treated at the Hartree-Fock-Bogolyubov (HFB) approximation. Constraints on the nuclear shape allows probing the potential energy surface of the nucleus as needed e.g., for the description of shape isomers or fission. The implementation of a local scale transformation of the single-particle basis in which the HFB solutions are expanded provide a tool to properly compute the structure of weakly-bound nuclei. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions or the finite-range Gogny force until a self-consistent solution is found. A previous version of the program was presented in M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013) 1592-1604 with much of the formalism presented in the original paper M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Additional comments: The user must have access to (i) the LAPACK subroutines DSYEEVR, DSYEVD, DSYTRF and DSYTRI, and their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices, (ii) the LAPACK subroutines DGETRI and DGETRF, which invert arbitrary real matrices, and (iii) the BLAS routines DCOPY, DSCAL, DGEMM and DGEMV for double-precision linear algebra (or provide another set of subroutines that can perform such tasks). The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.

  14. Occupational concerns associated with regular use of microscope

    OpenAIRE

    Garima Jain; Pushparaja Shetty

    2014-01-01

    Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire...

  15. First application experiments with the Stockholm compact soft x-ray microscope

    International Nuclear Information System (INIS)

    Bertilson, M; Hofsten, O von; Lindblom, M; Holmberg, A; Takman, P; Vogt, U; Hertz, H; Thieme, J

    2009-01-01

    Most soft x-ray microscopes operating in the water window (λ = 2.3 - 4.4 nm) rely on synchrotron radiation sources. In the future we believe scientists will use soft x-ray microscopes as one imaging tool among others in their own laboratory. For this purpose we have developed a full field soft x-ray microscope with a laser-plasma source compact enough to fit on an optical table. In this contribution we describe the current status of this microscope now featuring stable operation at λ = 3.37 nm or λ 2.48 nm. In-house fabricated single element zone plates offering the possibility to perform phase contrast imaging have been implemented. We also report on the first application experiments for compact soft x-ray microscopy, including results from studies of clay minerals and colloids existing in nature and results from phase optics experiments. Planned upgrades of the microscope include increasing the source brightness, implementing more efficient condenser optics, and installing a cryo sample stage for tomography. These improvements will open up for further applications, especially in the field of biological imaging.

  16. A cost-effective fluorescence mini-microscope for biomedical applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.

  17. A Cost-Effective Fluorescence Mini-Microscope with Adjustable Magnifications for Biomedical Applications

    Science.gov (United States)

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters such as cell/tissue viability (e.g. Live/Dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60X, achieves a resolution as high as microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread applications in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required. PMID:26282117

  18. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  19. 21 CFR 864.3600 - Microscopes and accessories.

    Science.gov (United States)

    2010-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other biological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microscopes and accessories. 864.3600 Section 864...

  20. Chromosome structure investigated with the atomic force microscope

    NARCIS (Netherlands)

    de Grooth, B.G.; Putman, C.A.J.; Putman, Constant A.; van der Werf, Kees; van Hulst, N.F.; van Oort, G.; van Oort, Geeske; Greve, Jan; Manne, Srinivas

    1992-01-01

    We have developed an atomic force microscope (AFM) with an integrated optical microscope. The optical microscope consists of an inverted epi-illumination system that yields images in reflection or fluorescence of the sample. With this system it is possible to quickly locate an object of interest. A

  1. Microscopic reversibility and the information contained in the composition vector

    CERN Document Server

    Luetich, J J

    2001-01-01

    The microscopic level of observation is the level where every (hypothetical) transformation is reversible. As during reversible processes no composition information is generated by the system, when transforming composition variables, microscopic reversibility is the other side of the coin. This paper is the fourth member of a tetralogy conceived to give insight into the concept of microscopic reversibility.

  2. Occupational concerns associated with regular use of microscope

    Directory of Open Access Journals (Sweden)

    Garima Jain

    2014-08-01

    Full Text Available Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Results: Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11–15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15–30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. Conclusions: The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  3. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  4. 21 CFR 878.4700 - Surgical microscope and accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered device...

  5. Occupational concerns associated with regular use of microscope.

    Science.gov (United States)

    Jain, Garima; Shetty, Pushparaja

    2014-08-01

    Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. a questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11-15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15-30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  6. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Science.gov (United States)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  7. Improved Scanners for Microscopic Hyperspectral Imaging

    Science.gov (United States)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  8. Quantitative Imaging with a Mobile Phone Microscope

    Science.gov (United States)

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  9. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  10. Quantitative imaging with a mobile phone microscope.

    Directory of Open Access Journals (Sweden)

    Arunan Skandarajah

    Full Text Available Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.

  11. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters

    International Nuclear Information System (INIS)

    Maki, D.; Ishii, T.; Sato, F.; Kato, Y.; Yamamoto, T.; Iida, T.

    2011-01-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using 241 Am alpha rays. The spatial resolution of this system was ∼3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image. (authors)

  12. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters.

    Science.gov (United States)

    Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.

  13. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  14. French contributions to electron microscopic radioautography

    International Nuclear Information System (INIS)

    Droz, B.

    1994-01-01

    The radio autographic contributions carried out by electron microscopists took a part to improve the methodology and to extend applications to major biological problems. As underlined by CP Leblonc radioautography has clarified the importance of renewing systems; one may truly say that radioautography has introduced the time dimension in histology. The sites of biosynthesis of different substances have been located on the sub cellar scale, and it is now possible to analyse the molecular migrations within cells. The development of in situ hybridization and of receptors binding sites at the ultrastructural level has enlarged the application field of electron microscope radioautography. 64 refs., 2 figs

  15. Microscopic optoelectronic defectoscopy of solar cells

    Directory of Open Access Journals (Sweden)

    Dallaeva D.

    2013-05-01

    Full Text Available Scanning probe microscopes are powerful tool for micro- or nanoscale diagnostics of defects in crystalline silicon solar cells. Solar cell is a large p-n junction semiconductor device. Its quality is strongly damaged by the presence of defects. If the cell works under low reverse-biased voltage, defects emit a light in visible range. The suggested method combines three different measurements: electric noise measurement, local topography and near-field optical beam induced current and thus provides more complex information. To prove its feasibility, we have selected one defect (truncated pyramid in the sample, which emitted light under low reverse-biased voltage.

  16. Scanning Tunneling Microscope For Use In Vacuum

    Science.gov (United States)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  17. Electron microscope studies on nuclear track filters

    International Nuclear Information System (INIS)

    Roell, I.; Siegmon, W.

    1982-01-01

    Nuclear track filters became more and more important in various fields of application. The filtration process can be described by a set of suitable parameters. For some applications it may be necessary to know the structure of the surface and the pores themselves. In most cases the etching process yields surfaces and pore geometries that are quite different from ideal planes and cylinders. In the presented work the production of different filter types will be described. The resulting surfaces and pore structures have been investigated by means of a scanning electron microscope. (author)

  18. A microscopic derivation of stochastic differential equations

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1996-01-01

    With the help of the formulation of Non-Equilibrium Thermo Field Dynamics, a unified canonical operator formalism is constructed for the quantum stochastic differential equations. In the course of its construction, it is found that there are at least two formulations, i.e. one is non-hermitian and the other is hermitian. Having settled which framework should be satisfied by the quantum stochastic differential equations, a microscopic derivation is performed for these stochastic differential equations by extending the projector methods. This investigation may open a new field for quantum systems in order to understand the deeper meaning of dissipation

  19. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  20. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  1. Ponderomotive phase plate for transmission electron microscopes

    Science.gov (United States)

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  2. DHM (Digital Holography Microscope) for imaging cells

    International Nuclear Information System (INIS)

    Emery, Yves; Cuche, Etienne; Colomb, Tristan; Depeursinge, Christian; Rappaz, Benjamin; Marquet, Pierre; Magistretti, Pierre

    2007-01-01

    Light interaction with a sample modifies both intensity and phase of the illuminating wave. Any available supports for image recording are only sensitive to intensity, but Denis Gabor [P. Marquet, B. Rappaz, P. Magistretti, et. al. Digital Holography for quantitative phase-contrast imaging, Optics Letters, 30, 5, pp 291-93 (2005)] invented in 1948 a way to encode the phase as an intensity variation: the h ologram . Digital Holographic Microscopy (DHM) [D. Gabor, A new microscopic principle, Nature, 1948] implements digitally this powerful hologram. Characterization of various pollen grains and of morphology changes of neurones associated with hypotonic shock demonstrates the potential of DHM for imaging cells

  3. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  4. [Remote Slit Lamp Microscope Consultation System Based on Web].

    Science.gov (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  5. 10 CFR 4.127 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Existing facilities. 4.127 Section 4.127 Energy NUCLEAR... 1973, as Amended Discriminatory Practices § 4.127 Existing facilities. (a) Accessibility. A recipient... make each of its existing facilities or every part of an existing facility accessible to and usable by...

  6. Another look through Heisenberg’s microscope

    Science.gov (United States)

    Boughn, Stephen; Reginatto, Marcel

    2018-05-01

    Heisenberg introduced his famous uncertainty relations in a seminal 1927 paper entitled The Physical Content of Quantum Kinematics and Mechanics. He motivated his arguments with a gedanken experiment, a gamma ray microscope to measure the position of a particle. A primary result was that, due to the quantum nature of light, there is an inherent uncertainty in the determinations of the particle’s position and momentum dictated by an indeterminacy relation, δ qδ p∼ h. Heisenberg offered this demonstration as ‘a direct physical interpretation of the [quantum mechanical] equation {{pq}}-{{qp}}=-{{i}}{\\hslash }’ but considered the indeterminacy relation to be much more than this. He also argued that it implies limitations on the very meanings of position and momentum and emphasised that these limitations are the source of the statistical character of quantum mechanics. In addition, Heisenberg hoped but was unable to demonstrate that the laws of quantum mechanics could be derived directly from the uncertainty relation. In this paper, we revisit Heisenberg’s microscope and argue that the Schrödinger equation for a free particle does indeed follow from the indeterminacy relation together with reasonable statistical assumptions.

  7. Microscopic calculation of the 4He system

    International Nuclear Information System (INIS)

    Hofmann, H.M.

    1996-01-01

    We report on a consistent, microscopic calculation of the bound and scattering states in the 4 He system employing a realistic nucleon-nucleon potential in the framework of the resonating group model (RGM). We present for comparison with these microscopic RGM calculations the results from a charge-independent, Coulomb-corrected R-matrix analysis of all types of data for reactions in the A=4 system. Comparisons are made between the phase shifts, and with a selection of measurements from each reaction, as well as between the resonance spectra obtained from both calculations. In general, the comparisons are favorable, but distinct differences are observed between the RGM calculations and some of the polarisation data. The partial-wave decomposition of the experimental data produced by the R-matrix analysis shows that these differences can be attributed to just a few S-matrix elements, for which inadequate tensor-force strength in the N-N interaction used appears to be responsible. (orig.)

  8. Electron microscope autoradiography of isolated DNA molecules

    International Nuclear Information System (INIS)

    Delain, Etienne; Bouteille, Michel

    1980-01-01

    Autoradiographs of 3 H-thymidine-labelled DNA molecules were observed with an electron microscope. After ten months of exposure significant labelling was obtained with tritiated T7 DNA molecules which had a specific activity of 630,000 cpm/μg. Although isolated DNA molecules were not stretched out to such an extent that they could be rigorously compared to straight 'hot lines', the resolution was estimated and found to be similar to that obtained by autoradiography on thin plastic sections. The H.D. value was of the order of 1600A. From the known specific activity of the macromolecules, it was possible to compare the expected number of disintegrations from the samples to the number of grains obtained on the autoradiograms. This enabled us to calculate 1/ The absolute autoradiographic efficiency and 2/ The per cent ratio of thymidine residues labelled with tritium. These results throw some light on the resolution and sensitivity of electron microscope autoradiography of shadowed isolated macromolecules as compared to thin plastic sections

  9. Microscopic models for bridging electrostatics and currents

    Science.gov (United States)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  10. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  11. A LEGO Mindstorms Brewster angle microscope

    Science.gov (United States)

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  12. Plan for SQUID microscope at ASRC: Vision, purposes and the present status

    International Nuclear Information System (INIS)

    Kadowaki, K.; Kakeya, I.; Suzuki, J.; Hata, Y.; Hojyo, K

    2001-01-01

    A new research plan to develop SQUID microscope and apply it to advanced science and technology research was started in the year of 2000 at the Advanced Science Research Center (ASRC) of JAERI (Japan Atomic Energy Research Institute). This plan was made to develop 'research of ultrafine magnetic structures with magnetic microscope' and is scheduled to continue five years. Principle of SQUID magnetic microscope is to observe changes of magnetic field in microscopic space using SQUID element as the magnetic probe. At present this type of instrument is fabricated by Seiko Instruments Inc. in Japan and is commercially available. Therefore, this plan is being promoted in collaboration with Seiko Instruments Inc. One of the main issues of the present plan is to raise the spatial resolution to the extremity. As of magnetic microscopes, 'magnetic force microscope' and 'scanning Hall probe microscope' also exist. They have different characteristics of their own. The present plan needs challenging technical developments in various fields. Supposed the spatial resolution be made very high, for example, by making very fine SQUID loop with ultrafine processing, critical technologies like sensitivity, electronics, quantum size effect and so on are to be solved at the same time. Characteristics of the existing instrument are being examined from various aspects. At present, the following three issues are taken up and being studied. (1) High resolution and related technical developments. (2) High sensitivity. (3) High performance of cooling system. Among them, the high resolution is the most serious problem. Completely new design of the SQUID system may be needed. By using the existing instrument, magnetic fluxes trapped on YBCO films are observed and the image quality is being examined. Some of the issues which are considered to be taken up now are listed as follows. (1) Magnetic domain structures on thin film magnetic materials. (2) Observation of structures of Josephson magnetic

  13. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  14. Microscopic theory of the current-voltage relationship across a normal-superconducting interface

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.; Watts-Tobin, R.J.

    1979-01-01

    Measurements by Pippard et al. have shown the existence of an extra resistance due to the penetration of an electrical potential into a superconductor. Previous theories of this effect are unable to explain the full temperature dependence of the extra resistance because they use oversimplified models of the normal--superconducting interface. We show that the microscopic theory for dirty superconductors leads to a good agreement with experiment over the whole temperature range

  15. Microscopic to macroscopic depletion model development for FORMOSA-P

    International Nuclear Information System (INIS)

    Noh, J.M.; Turinsky, P.J.; Sarsour, H.N.

    1996-01-01

    Microscopic depletion has been gaining popularity with regard to employment in reactor core nodal calculations, mainly attributed to the superiority of microscopic depletion in treating spectral history effects during depletion. Another trend is the employment of loading pattern optimization computer codes in support of reload core design. Use of such optimization codes has significantly reduced design efforts to optimize reload core loading patterns associated with increasingly complicated lattice designs. A microscopic depletion model has been developed for the FORMOSA-P pressurized water reactor (PWR) loading pattern optimization code. This was done for both fidelity improvements and to make FORMOSA-P compatible with microscopic-based nuclear design methods. Needless to say, microscopic depletion requires more computational effort compared with macroscopic depletion. This implies that microscopic depletion may be computationally restrictive if employed during the loading pattern optimization calculation because many loading patterns are examined during the course of an optimization search. Therefore, the microscopic depletion model developed here uses combined models of microscopic and macroscopic depletion. This is done by first performing microscopic depletions for a subset of possible loading patterns from which 'collapsed' macroscopic cross sections are obtained. The collapsed macroscopic cross sections inherently incorporate spectral history effects. Subsequently, the optimization calculations are done using the collapsed macroscopic cross sections. Using this approach allows maintenance of microscopic depletion level accuracy without substantial additional computing resources

  16. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  17. Active mask segmentation of fluorescence microscope images.

    Science.gov (United States)

    Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena

    2009-08-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.

  18. System modelling of a lateral force microscope

    International Nuclear Information System (INIS)

    Michal, Guillaume; Lu, Cheng; Kiet Tieu, A

    2008-01-01

    To quantitatively analyse lateral force microscope measurements one needs to develop a model able to relate the photodiode signal to the force acting on the tip apex. In this paper we focus on the modelling of the interaction between the cantilever and the optical chain. The laser beam is discretized by a set of rays which propagates in the system. The analytical equation of a single ray's position on the optical sensor is presented as a function of the reflection's state on top of the cantilever. We use a finite element analysis on the cantilever to connect the optical model with the force acting on the tip apex. A first-order approximation of the constitutive equations are derived along with a definition of the system's crosstalk. Finally, the model is used to analytically simulate the 'wedge method' in the presence of crosstalk in 2D. The analysis shows how the torsion loop and torsion offset signals are affected by the crosstalk.

  19. Performance of the SRRC scanning photoelectron microscope

    Science.gov (United States)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T. J.; Chen, C. T.; Tsang, K.-L.

    2001-07-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  20. Performance of the SRRC scanning photoelectron microscope

    International Nuclear Information System (INIS)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.-L.

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed

  1. The Scanning TMR Microscope for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Kunal N. Vyas

    2015-04-01

    Full Text Available We present a novel tunnel magnetoresistance (TMR scanning microscopeset-up capable of quantitatively imaging the magnetic stray field patterns of micron-sizedelements in 3D. By incorporating an Anderson loop measurement circuit for impedancematching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3Drastering a mounted TMR sensor over our magnetic barcodes, we are able to characterisethe complex domain structures by displaying the real component, the amplitude and thephase of the sensor’s impedance. The modular design, incorporating a TMR sensor withan optical microscope, renders this set-up a versatile platform for studying and imagingimmobilised magnetic carriers and barcodes currently employed in biosensor platforms,magnetotactic bacteria and other complex magnetic domain structures of micron-sizedentities. The quantitative nature of the instrument and its ability to produce vector maps ofmagnetic stray fields has the potential to provide significant advantages over other commonlyused scanning magnetometry techniques.

  2. Quantum liquids in confinement the microscopic view

    CERN Document Server

    Krotscheck, Eckhard S; Rimnac, A; Zillich, R

    2003-01-01

    We discuss, on a microscopic level, the effects of confinement on structural as well as dynamic properties of quantum liquids. The most evident structural consequences of confinement are layer structures found in liquid films, and free surfaces appearing in liquid drops and slabs. These structural properties have immediate consequences: new types of excitation such as surface phonons, layer phonons, layer rotons, and standing waves can appear and are potentially observable in neutron scattering spectra as well as in thermodynamic properties. Atom scattering experiments provide further insights into structural properties. Methods have been developed to describe elastic and inelastic atom scattering as well as transport currents. The theory has been applied to examine scattering processes of sup 4 He and sup 3 He atoms impinging on sup 4 He clusters, as well as sup 4 He scattering off sup 4 He films and slabs.

  3. Performance of the SRRC scanning photoelectron microscope

    CERN Document Server

    Hong, I H; Yin, G C; Wei, D H; Juang, J M; Dann, T E; Klauser, R; Chuang, T J; Chen, C T; Tsang, K L

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  4. System for optical sorting of microscopic objects

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a system for optical sorting of microscopic objects and corresponding method. An optical detection system (52) is capable of determining the positions of said first and/or said second objects. One or more force transfer units (200, 205, 210, 215) are placed...... in a first reservoir, the one or more force units being suitable for optical momentum transfer. An electromagnetic radiation source (42) yields a radiation beam (31, 32) capable of optically displacing the force transfer units from one position to another within the first reservoir (1R). The force transfer...... units are displaced from positions away from the first objects to positions close to the first objects, and then displacing the first objects via a contact force (300) between the first objects and the force transfer units facilitates an optical sorting of the first objects and the second objects....

  5. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  6. Intravital Microscopic Interrogation of Peripheral Taste Sensation

    Science.gov (United States)

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-01

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  7. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...... substrate. By using a firmly attached fiber we achieve an excellent reproducibility and unconstrained positioning of the tip. We observe a transient signal with 2.9 ps pulse width in tunneling mode and 5 ps in contact mode. The instrument is applied to investigating the mode structure on a coplanar...

  8. Microscopic theory of one-body dissipation

    International Nuclear Information System (INIS)

    Koonin, S.E.; Randrup, J.; Hatch, R.; Kolomietz, V.

    1977-01-01

    A microscopic theory is developed for nuclear collective motion in the limit of a long nuclear mean-free path. Linear response techniques are applied to an independent particle model and expressions for the collective kinetic energy and rate of energy dissipation are obtained. For leptodermous systems, these quantities are characterized by mass and dissipation kernels coupling the velocities at different points on the nuclear surface. In a classical treatment, the kernels are given in terms of nucleon trajectories within the nuclear shape. In a quantal treatment, the dissipation kernel is related to the nuclear Green function. The spatial and thermal properties of the kernels are investigated. Corrections for the diffuseness of the potential and shell effects are also discussed. (Auth.)

  9. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  10. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  11. Do Elementary Particles Have an Objective Existence?

    OpenAIRE

    Nissenson, Bilha

    2007-01-01

    The formulation of quantum theory does not comply with the notion of objective existence of elementary particles. Objective existence independent of observation implies the distinguishability of elementary particles. In other words: If elementary particles have an objective existence independent of observations, then they are distinguishable. Or if elementary particles are indistinguishable then matter cannot have existence independent of our observation. This paper presents a simple deductio...

  12. 34 CFR 104.22 - Existing facilities.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Existing facilities. 104.22 Section 104.22 Education... Accessibility § 104.22 Existing facilities. (a) Accessibility. A recipient shall operate its program or activity.... This paragraph does not require a recipient to make each of its existing facilities or every part of a...

  13. 45 CFR 1170.32 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1170.32 Section 1170.32... ASSISTED PROGRAMS OR ACTIVITIES Accessibility § 1170.32 Existing facilities. (a) Accessibility. A recipient... require a recipient to make each of its existing facilities or every part of a facility accessible to and...

  14. 45 CFR 605.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 605.22 Section 605.22 Public... Accessibility § 605.22 Existing facilities. (a) Accessibility. A recipient shall operate each program or... existing facilities or every part of a facility accessible to and usable by qualified handicapped persons...

  15. 14 CFR 1251.301 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Existing facilities. 1251.301 Section 1251... HANDICAP Accessibility § 1251.301 Existing facilities. (a) Accessibility. A recipient shall operate each... existing facilities or every part of a facility accessible to and usable by handicapped persons. (b...

  16. 45 CFR 1151.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1151.22 Section 1151.22... Prohibited Accessibility § 1151.22 Existing facilities. (a) A recipient shall operate each program or... make each of its existing facilities or every part of a facility accessible to and usable by...

  17. 10 CFR 611.206 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  18. A microscopic study of giant resonances in nuclei near drip lines

    CERN Document Server

    Sagawa, H; Zhang, X Z

    1999-01-01

    We study giant resonances using the self-consistent Hartree-Fock calculation plus the random phase approximation with Skyrme interactions. Including simultaneously both the isoscalar and the isovector correlation the RPA response function is calculated in the coordinate space so as to take properly into account the continuum effect. Giant monopole states are discussed in relation with the nuclear compression modulus of the nuclear matter K sub n sub m. The core polarization charges are also discussed in comparison with recent empirical data in sup 1 sup 0 sup 0 Sn region.

  19. X-ray microscope with a Wolter mirror

    International Nuclear Information System (INIS)

    Watanabe, Norio; Aoki, Sadao

    2003-01-01

    A Wolter mirror as an objective of an X-ray microscope is described. In comparison with other optical elements, a Wolter mirror has several advantages, such as a large numerical aperture and no chromatic aberration. Recent developments of fabrication process enabled us to make a Wolter mirror objective for X-rays. The fabrication process and the applications to a soft X-ray microscope and an X-ray fluorescence microscope are described. (author)

  20. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  1. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-10-11

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  2. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  3. Evaluation of a completely robotized neurosurgical operating microscope.

    Science.gov (United States)

    Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf

    2013-01-01

    Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.

  4. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  5. Adaptive optical microscope for brain imaging in vivo

    Science.gov (United States)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  6. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  7. Microscopic studies of RIB target materials and ion induced nanostructures

    International Nuclear Information System (INIS)

    Karmakar, Prasanta; Bhattacharya, Shampa; Roy, Tapatee Kundu; Bhowmick, Debasis; Chakrabarti, Alok

    2010-01-01

    The invention of electron microscope and scanning probe microscope has empowered us to visualize the tiny world that has explored many fundamental laws of natures. Further technological advancements have made these tools capable to probe micron size structures to individual atom. These microscopes are used to image and study micron size fibers or grain structures used for high yield radioactive products, to few nanometer size ripple, dot and hole structures produced by ion irradiation. Electron Microscope has also been used to characterize the ion beam synthesized dilute magnetic systems

  8. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  9. Using a university characterization facility to educate the public about microscopes: light microscopes to SEM

    Science.gov (United States)

    Healy, Nancy; Henderson, Walter

    2015-10-01

    The National Nanotechnology Infrastructure Network (NNIN)1is an integrated partnership of 14 universities across the US funded by NSF to support nanoscale researchers. The NNIN education office is located at the Institute of Electronics and Nanotechnology at the Georgia Institute of Technology. At Georgia Tech we offer programs that integrate the facility and its resources to educate the public about nanotechnology. One event that has proved highly successful involves using microscopes in our characterization suite to educate a diverse audience about a variety of imaging instruments. As part of the annual Atlanta Science Festival (ATLSF)2 we provided an event entitled: "What's all the Buzz about Nanotechnology?" which was open to the public and advertised through a variety of methods by the ATLSF. During the event, we provided hands-on demos, cleanroom tours, and activities with three of our microscopes in our recently opened Imaging and Characterization Facility: 1. Keyence VHX-600 Digital Microscope; 2. Hitachi SU823 FE-SEM; and 3. Hitachi TM 3000. During the two hour event we had approximately 150 visitors including many families with school-aged children. Visitors were invited to bring a sample for scanning with the TM-3000. This paper will discuss how to do such an event, lessons learned, and visitor survey results.

  10. High-speed infrared thermography for the measurement of microscopic boiling parameters on micro- and nano-structured surfaces

    International Nuclear Information System (INIS)

    Park, Youngjae; Kim, Hyungdae; Kim, Hyungmo; Kim, Joonwon

    2014-01-01

    Micro- and nano-scale structures on boiling surfaces can enhance nucleate boiling heat transfer coefficient (HTC) and critical heat flux (CHF). A few studies were conducted to explain the enhancements of HTC and CHF using the microscopic boiling parameters. Quantitative measurements of microscopic boiling parameters are needed to understand the physical mechanism of the boiling heat transfer augmentation on structured surfaces. However, there is no existing experimental techniques to conveniently measure the boiling parameters on the structured surfaces because of the small (microscopic boiling parameters. Finally, quantitative microscopic boiling parameters are used to interpret the enhancement of HTC and CHF. In this study, liquid-vapor phase distributions of each surface were clearly visualized by IR thermography during the nucleate boiling phenomena. From the visualization results, following microscopic boiling parameters were quantitatively measured by image processing. - Number density of dry patch, NDP IR thermography technique was demonstrated by nucleate pool boiling experiments with M- and N surfaces. The enhancement of HTC and CHF could be explained by microscopic boiling parameters

  11. Microscopic transport model animation visualisation on KML base

    Science.gov (United States)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  12. An automated protocol for performance benchmarking a widefield fluorescence microscope.

    Science.gov (United States)

    Halter, Michael; Bier, Elianna; DeRose, Paul C; Cooksey, Gregory A; Choquette, Steven J; Plant, Anne L; Elliott, John T

    2014-11-01

    Widefield fluorescence microscopy is a highly used tool for visually assessing biological samples and for quantifying cell responses. Despite its widespread use in high content analysis and other imaging applications, few published methods exist for evaluating and benchmarking the analytical performance of a microscope. Easy-to-use benchmarking methods would facilitate the use of fluorescence imaging as a quantitative analytical tool in research applications, and would aid the determination of instrumental method validation for commercial product development applications. We describe and evaluate an automated method to characterize a fluorescence imaging system's performance by benchmarking the detection threshold, saturation, and linear dynamic range to a reference material. The benchmarking procedure is demonstrated using two different materials as the reference material, uranyl-ion-doped glass and Schott 475 GG filter glass. Both are suitable candidate reference materials that are homogeneously fluorescent and highly photostable, and the Schott 475 GG filter glass is currently commercially available. In addition to benchmarking the analytical performance, we also demonstrate that the reference materials provide for accurate day to day intensity calibration. Published 2014 Wiley Periodicals Inc. Published 2014 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  13. Contact detection for nanomanipulation in a scanning electron microscope.

    Science.gov (United States)

    Ru, Changhai; To, Steve

    2012-07-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Contact detection for nanomanipulation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Ru, Changhai; To, Steve

    2012-01-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. -- Highlights: ► We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. ► Detecting contact between an end-effector and a target surface using SEM as a vision sensor. ► Additional touch/force sensors or specialized hardware need not be added. ► Achieved high repeatability and accuracy. ► Complete automatic contact detection within typically 60 s.

  15. Contact detection for nanomanipulation in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Changhai, E-mail: rchhai@gmail.com [Automation College, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Jiangsu 215021 (China); To, Steve, E-mail: Steve.to@utoronto.ca [Department of Mechanical and Industry Engineering, University of Toronto, Ontario, Canada M5S3G8 (Canada)

    2012-07-15

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000 Multiplication-Sign magnification while inducing little end-effector damage. -- Highlights: Black-Right-Pointing-Pointer We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. Black-Right-Pointing-Pointer Detecting contact between an end-effector and a target surface using SEM as a vision sensor. Black-Right-Pointing-Pointer Additional touch/force sensors or specialized hardware need not be added. Black-Right-Pointing-Pointer Achieved high repeatability and accuracy. Black-Right-Pointing-Pointer Complete automatic contact detection within typically 60 s.

  16. Mechanism of diarrhea in microscopic colitis.

    Science.gov (United States)

    Protic, Marijana; Jojic, Njegica; Bojic, Daniela; Milutinovic, Svetlana; Necic, Dusanka; Bojic, Bozidar; Svorcan, Petar; Krstic, Miodrag; Popovic, Obren

    2005-09-21

    To search the pathophysiological mechanism of diarrhea based on daily stool weights, fecal electrolytes, osmotic gap and pH. Seventy-six patients were included: 51 with microscopic colitis (MC) (40 with lymphocytic colitis (LC); 11 with collagenous colitis (CC)); 7 with MC without diarrhea and 18 as a control group (CG). They collected stool for 3 d. Sodium and potassium concentration were determined by flame photometry and chloride concentration by titration method of Schales. Fecal osmotic gap was calculated from the difference of osmolarity of fecal fluid and double sum of sodium and potassium concentration. Fecal fluid sodium concentration was significantly increased in LC 58.11+/-5.38 mmol/L (Pdiarrhea compared to fecal osmotic gap. Seven (13.3%) patients had osmotic diarrhea. Diarrhea in MC mostly belongs to the secretory type. The major pathophysiological mechanism in LC could be explained by a decrease of active sodium absorption. In CC, decreased Cl/HCO3 exchange rate and increased chloride secretion are coexistent pathways.

  17. Microscopic activity patterns in the naming game

    International Nuclear Information System (INIS)

    Dall'Asta, Luca; Baronchelli, Andrea

    2006-01-01

    The models of statistical physics used to study collective phenomena in some interdisciplinary contexts, such as social dynamics and opinion spreading, do not consider the effects of the memory on individual decision processes. In contrast, in the naming game, a recently proposed model of language formation, each agent chooses a particular state, or opinion, by means of a memory-based negotiation process, during which a variable number of states is collected and kept in memory. In this perspective, the statistical features of the number of states collected by the agents become a relevant quantity to understand the dynamics of the model, and the influence of topological properties on memory-based models. By means of a master equation approach, we analyse the internal agent dynamics of the naming game in populations embedded on networks, finding that it strongly depends on very general topological properties of the system (e.g. average and fluctuations of the degree). However, the influence of topological properties on the microscopic individual dynamics is a general phenomenon that should characterize all those social interactions that can be modelled by memory-based negotiation processes

  18. Microscopic aspects of the Interacting Boson

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.

    1985-01-01

    A review is presented of the concept of using boson descriptions of many-fermion systems, and the IBM is introduced in a historical context. Next, the use of the IBM-2 as a phenomenological tool is investigated. The model is applied to the even zinc isotopes and the model is found to give a reasonable description of the experimental data. In the phenomenological calculations, the parameters of the IBM-2 Hamiltonian are adjusted until good agreement is obtained with the experimental data. To put the theoretical basis of the IBM-2 on firm ground, it is important to be able to calculate these parameters microscopically. A framework is developed in which such calculations can be performed for non-deformed nuclei. Results are presented for the mercury isotopes and discussed in detail. The calculated parameter values agree for the most part with the values obtained by phenomenological fit but with some exceptions. Similar calculations are performed for the platinum isotopes. The results for these isotopes are then related to the concept of F-spin multiplets. When the Surface Delta Interaction (SDI) is used, several simplifications can be made in the IBM. In certain schematic situations, the parameters of the IBM-2 Hamiltonian can be related directly to the strength of the SDI. Several interesting results are obtained whose full implication will be investigated in the future.

  19. Microscopic aspects of the Interacting Boson

    International Nuclear Information System (INIS)

    Druce, C.H.

    1985-01-01

    A review is presented of the concept of using boson descriptions of many-fermion systems, and the IBM is introduced in a historical context. Next, the use of the IBM-2 as a phenomenological tool is investigated. The model is applied to the even zinc isotopes and the model is found to give a reasonable description of the experimental data. In the phenomenological calculations, the parameters of the IBM-2 Hamiltonian are adjusted until good agreement is obtained with the experimental data. To put the theoretical basis of the IBM-2 on firm ground, it is important to be able to calculate these parameters microscopically. A framework is developed in which such calculations can be performed for non-deformed nuclei. Results are presented for the mercury isotopes and discussed in detail. The calculated parameter values agree for the most part with the values obtained by phenomenological fit but with some exceptions. Similar calculations are performed for the platinum isotopes. The results for these isotopes are then related to the concept of F-spin multiplets. When the Surface Delta Interaction (SDI) is used, several simplifications can be made in the IBM. In certain schematic situations, the parameters of the IBM-2 Hamiltonian can be related directly to the strength of the SDI. Several interesting results are obtained whose full implication will be investigated in the future

  20. Microscopic modeling of the Raman diffusion

    International Nuclear Information System (INIS)

    Benisti, D.; Morice, O.; Gremillet, L.; Strozzi, D.

    2010-01-01

    In the typical conditions of density and electronic temperature of the Laser Megajoule (LMJ), a quantitative assessment of the Raman reflectivity requires an accurate calculation of the non-linear movement of each electron submitted to the waves propagating in the plasma. The interaction of a laser beam with a plasma generates an electronic wave shifted in frequency (that can be back-scattered) and an electron plasma wave (OPE). The OPE can give to the electrons a strongly non-linear movement by trapping them in a potential well. This non-linearity of microscopic origin has an impact on the plasma electronic density. We have succeeded in computing this plasma electronic density in a very accurate way by combining the principles of a perturbative approach with those of an adiabatic theory. Results show that the Raman diffusion can grow on temperature and density ranges more important than expected. We have predicted the threshold and the behavior of the Raman diffusion above this threshold as accurately as we had done it with a Vlasov code but by being 10000 times more rapid. (A.C.)

  1. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  2. Soft x-ray spectro microscope

    International Nuclear Information System (INIS)

    Campuzano, J.C.; Jennings, G.; Beaulaigue, L.; Rodricks, B.G.; Brizard, C.

    1990-01-01

    This paper reports on the development of an x-ray photoelectron microscope that provides spatial as well as chemical information on the nature of the sample. Photons from the Aladdin Synchrotron at the Synchrotron Radiation Center in Stoughton, WI are monochromatized by an extended-range Grasshopper monochromator covering the range 40 to 1500 eV with energy resolution varying between 10 and 200 MeV. The monochromatized radiation generates photoelectrons in the sample, which are energy-analyzed with a resolving power E|ΔE > 5 x 10 4 and imaged by a multichannel plate array. The visible image is transferred to a computer by a virtual-phase charge-coupled device camera with a dynamic range of 4096:1. Preliminary coarse measurements indicate a spatial resolution of the instrument of better than 1μm, although a limit of 600 Angstrom is possible. The instrument provides chemical shift-resolved images of low-lying core levels in a variety of samples

  3. Microscopic thermal characterization of HTR particle layers

    International Nuclear Information System (INIS)

    Rochais, D.; Le Meur, G.; Basini, V.; Domingues, G.

    2008-01-01

    This paper presents thermal diffusivity measurements of HTR fuel particle pyrolytic carbon layers at room temperature. The photoreflectance microscopy (PM) technique is used to characterize particle layers at a microscopic scale. Nevertheless, buffer layer needs a particular analysis due to its porous structure. Indeed, measurements by PM on this material only permit to obtain the thermal diffusivity of the solid skeleton, whose homogeneous zones surface does not exceed 100 μm 2 . These characteristics make, on the one hand, delicate the use of PM, and on the other hand, require the use of a numerical homogenization technique. This model takes into account the properties of gas confined in the pores, to simulate the conduction heat flux traveling through the layer in relation with its microstructure and to estimate an effective thermal conductivity of the entire layer. This approach is validated by infrared microscopy measurement of the effective thermal diffusivity of the especially elaborated thicker buffer layer. Last, the first tests to characterize the silicon carbide layer are presented

  4. Microscopic thermodynamics with levitated nanoparticles (Conference Presentation)

    Science.gov (United States)

    Gieseler, Jan; Jain, Vijay; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-09-01

    Micsospheres trapped in liquid by so called optical tweezers have been established as useful tools to study microscopic thermodynamics. Since the sphere is in direct contact with the liquid, it is strongly coupled to the thermal bath and its dynamics is dominated by thermal fluctuations. In contrast, here we use an optically trapped nanoparticle in vacuum to study fluctuations of a system that is coupled only weakly to the thermal bath. The weak coupling allows us to resolve the ballistic dynamics and to control its motion via modulation of the trapping beam, thereby preparing it in a highly non-thermal state. We develop a theory for the effective Hamiltonian that describes the system dynamics in this state and show that all the relevant parameters can be controlled in situ. This tunability allows us to study classical fluctuation theorems for different effective Hamiltonians and for varying coupling to the thermal bath ranging over several orders of magnitude. The ultimate goal, however, is to completely suppress the effect of the thermal bath and to prepare the levitated nanoparticle in a quantum mechanical state. Our most recent result indicate that this regime is now within reach.

  5. Nitrogen implantation with a scanning electron microscope.

    Science.gov (United States)

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  6. [Relationships between microscope structure and thermodynamic properties

    International Nuclear Information System (INIS)

    Wu, R.S.; Lee, L.L.; Cochran, D.

    1990-01-01

    This paper exhibits on the molecular level, the relationships between the microscopic structure and thermodynamic properties of dilute supercritical solutions by application of the integral equation theories for molecular distribution functions. To solve the integral equations, the authors use Baxter's Wiener-Hopf factorization of the Ornstein-Zernike equations and then apply this method to binary Lennard-Jones mixtures. A number of closure relations have been used: such as the Percus-Yevick (PY), the reference hypernetted chain (RHNC), the hybrid mean spherical approximation (HMSA), and the reference interaction-site (RISM) methods. The authors examine the microstructures of several important classes of supercritical mixtures, including the usual attractive-type and the less known repulsive-type solutions. The clustering of solvent molecules for solvent-solute structures in the attractive mixtures and, correspondingly, the solvent cavitation in the repulsive mixtures are clearly demonstrated. These are shown to be responsible for the large negative growth of the solute partial molar volumes in the attractive case and the positive growth in the repulsive case

  7. Adiabatic process reversibility: microscopic and macroscopic views

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)

  8. Microscopic Holography for flow over rough plate

    Science.gov (United States)

    Talapatra, Siddharth; Hong, Jiarong; Lu, Yuan; Katz, Joseph

    2008-11-01

    Our objective is to measure the near wall flow structures in a turbulent channel flow over a rough wall. In-line microscopic holographic PIV can resolve the 3-D flow field in a small sample volume, but recording holograms through a rough surface is a challenge. To solve this problem, we match the refractive indices of the fluid with that of the wall. Proof of concept tests involve an acrylic plate containing uniformly distributed, closely packed 0.45mm high pyramids with slope angle of 22^^o located within a concentrated sodium iodide solution. Holograms recorded by a 4864 x 3248 pixel digital camera at 10X magnification provide a field of view of 3.47mm x 2.32mm and pixel resolution of 0.714 μm. Due to index matching, reconstructed seed particles can be clearly seen over the entire volume, with only faint traces with the rough wall that can be removed. Planned experiments will be performed in a 20 x 5 cm rectangular channel with the top and bottom plates having the same roughness as the sample plate.

  9. Visible and occult microscopic lesions of endometriosis

    Directory of Open Access Journals (Sweden)

    Khaleque Newaz Khan

    2014-11-01

    Full Text Available Endometriosis is a multifactorial disease mostly affecting women of reproductive age and is associated with chronic pelvic pain and infertility. Even after 300 years, most of the literature claims that pathogenesis and/or pathophysiology of endometriosis is still elusive. Recurrence of pain and lesion continues to occur after effective medical or surgical therapies. Once generated within the pelvis due to retrograde entry of menstrual debris, peritoneal endometriotic lesions time-dependently change their color appearance resulting from certain biochemical change within lesions. A variable pattern of endometriotic lesions within the pelvis can be detected by laparoscopy as visible peritoneal endometriosis. It is generally believed that besides ovarian steroid hormones, the growth of endometriosis can be regulated by the innate immune system in the pelvic microenvironment by their interaction with endometrial cells and immune cells. Even with the careful eyes of an expert surgeon, we may sometimes miss detecting peritoneal lesion within the peritoneal cavity or deep into the peritoneum. In such a case, random collection of normal peritoneum may carry the possibility to identify some hidden endometriotic lesions by microscopy and these lesions can be named as occult (invisible microscopic endometriosis (OME. Here, we discuss the color appearance of peritoneal lesions and activity of these lesions by analysis of a panel of activity markers. Finally we discuss our recent findings on OME, their biological and clinical significance, and try to make a possible link in the origin between visible endometriosis and OME.

  10. Helium leak testing of scanning electron microscope

    International Nuclear Information System (INIS)

    Ahmad, Anis; Tripathi, S.K.; Mukherjee, D.

    2015-01-01

    Scanning Electron Microscope (SEM) is a specialized electron-optical device which is used for imaging of miniscule features on topography of material specimens. Conventional SEMs used finely focused high energy (about 30 KeV) electron beam probes of diameter of about 10nm for imaging of solid conducting specimens. Vacuum of the order of 10"-"5 Torr is prerequisite for conventional Tungsten filament type SEMs. One such SEM was received from one of our laboratory in BARC with a major leak owing to persisting poor vacuum condition despite continuous pumping for several hours. He-Leak Detection of the SEM was carried out at AFD using vacuum spray Technique and various potential leak joints numbering more than fifty were helium leak tested. The major leak was detected in the TMP damper bellow. The part was later replaced and the repeat helium leak testing of the system was carried out using vacuum spray technique. The vacuum in SEM is achieved is better than 10"-"5 torr and system is now working satisfactorily. (author)

  11. Shear viscosity coefficient from microscopic models

    International Nuclear Information System (INIS)

    Muronga, Azwinndini

    2004-01-01

    The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the ultrarelativistic quantum molecular dynamics (UrQMD), using the Green-Kubo formulas. Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π,η,ω,ρ,φ with a uniform phase-space distribution, the evolution takes place through elastic collisions, production, and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times

  12. Existence of equilibria in articulated bearings

    Science.gov (United States)

    Buscaglia, G.; Ciuperca, I.; Hafidi, I.; Jai, M.

    2007-04-01

    The existence of equilibrium solutions for a lubricated system consisting of an articulated body sliding over a flat plate is considered. Though this configuration is very common (it corresponds to the popular tilting-pad thrust bearings), the existence problem has only been addressed in extremely simplified cases, such as planar sliders of infinite width. Our results show the existence of at least one equilibrium for a quite general class of (nonplanar) slider shapes. We also extend previous results concerning planar sliders.

  13. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes

    Science.gov (United States)

    Richard, R.; Martone, P.; Callahan, L.M.

    2014-01-01

    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  14. Compact, single-tube scanning tunneling microscope with thermoelectric cooling.

    Science.gov (United States)

    Jobbins, Matthew M; Agostino, Christopher J; Michel, Jolai D; Gans, Ashley R; Kandel, S Alex

    2013-10-01

    We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions.

  15. Students' Conceptions about the Sub-Microscopic Approach to ...

    African Journals Online (AJOL)

    NICO

    The main objective of this study was to test chemistry students' competence, throughout the ... liquids, solids, solutions); the changes in the nature, arrangement and ... Sub-microscopic particles, sub-microscopic approach, properties of matter, explanations in chemistry. .... (e) Intramolecular bonds within the H2O molecules.

  16. Free and open-source automated 3-D microscope.

    Science.gov (United States)

    Wijnen, Bas; Petersen, Emily E; Hunt, Emily J; Pearce, Joshua M

    2016-11-01

    Open-source technology not only has facilitated the expansion of the greater research community, but by lowering costs it has encouraged innovation and customizable design. The field of automated microscopy has continued to be a challenge in accessibility due the expense and inflexible, noninterchangeable stages. This paper presents a low-cost, open-source microscope 3-D stage. A RepRap 3-D printer was converted to an optical microscope equipped with a customized, 3-D printed holder for a USB microscope. Precision measurements were determined to have an average error of 10 μm at the maximum speed and 27 μm at the minimum recorded speed. Accuracy tests yielded an error of 0.15%. The machine is a true 3-D stage and thus able to operate with USB microscopes or conventional desktop microscopes. It is larger than all commercial alternatives, and is thus capable of high-depth images over unprecedented areas and complex geometries. The repeatability is below 2-D microscope stages, but testing shows that it is adequate for the majority of scientific applications. The open-source microscope stage costs less than 3-9% of the closest proprietary commercial stages. This extreme affordability vastly improves accessibility for 3-D microscopy throughout the world. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Measurement of the Resolution of the Optical Microscope.

    Science.gov (United States)

    Bowlt, C.

    1983-01-01

    Outlines procedures demonstrating that the aperture of a microscope objective limits resolving power and then, by using ancillary measurements made with a calibrated graticule in the microscope eyepiece, that the experimentally determined value for the maximum resolving power of a given objective is close to the value predicted by theory. (JN)

  19. A General Microscopic Traffic Model Yielding Dissipative Shocks

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Caputo, Jean Guy; Christiansen, Peter Leth

    2018-01-01

    We consider a general microscopic traffic model with a delay. An algebraic traffic function reduces the equation to the Aw-Rascle microscopic model while a sigmoid function gives the standard “follow the leader”. For zero delay we prove that the homogeneous solution is globally stable...

  20. Isospin-dependent term in the relativistic microscopic optical potential

    International Nuclear Information System (INIS)

    Rong Jian; Ma Zhongyu; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Chinese Academy of Sciences, Beijing

    2005-01-01

    The isospin-dependence of the relativistic microscopic optical potential is investigated in the Dirac Brueckner-Hartree-Fock approach. The isospin part of the microscopic optical potential is emphasized. A local density approximation is adopted for finite nuclei. Taking 208 Pb as example, the difference between proton and neutron optical potentials is studied and compared with the phenomenological Lane Model potential. (authors)

  1. Remote Histology Learning from Static versus Dynamic Microscopic Images

    Science.gov (United States)

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2016-01-01

    Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized.…

  2. Occult microscopic endometriosis: undetectable by laparoscopy in normal peritoneum.

    Science.gov (United States)

    Khan, Khaleque Newaz; Fujishita, Akira; Kitajima, Michio; Hiraki, Koichi; Nakashima, Masahiro; Masuzaki, Hideaki

    2014-03-01

    Is there any occurrence of hidden (occult) endometriotic lesions in normal peritoneum of women with and without visible endometriosis? We detected a slightly higher occurrence of occult microscopic endometriosis (OME) in normal peritoneum of women with visible endometriosis than in control women. Based on a small number of cases, the concept of invisible microscopic endometriosis in visually normal peritoneum has been reported for more than a decade but there is controversy regarding their tissue activity and clinical significance. This case-controlled research study was conducted with prospectively collected normal peritoneal samples from 151 women with and 62 women without visible endometriosis. Normal peritoneal biopsy specimens from different pelvic sites of were collected during laparoscopy. A histological search of all peritoneal biopsy specimens for the detection of invisible endometriosis was done by immunoreaction to Ber-EP4 (epithelial cell marker), CD10 (stromal cell marker) and Calretinin (mesothelial cell marker). Tissue expression of estrogen/progesterone receptors (ER/PR) and cell proliferation marker, Ki-67, was performed by immunohistochemistry to identify tissue activity. Three different patterns of OME were detected based on (I) the presence of typical gland/stroma, (II) reactive hyperplastic change of endometrioid epithelial cells with surrounding stroma and (III) single-layered epithelium-lined cystic lesions with surrounding stroma. A higher tendency toward the occurrence of OME was found in women with visible endometriosis (15.2%, 23/151) compared with control women (6.4%, 4/62) (P = 0.06, χ(2) test). The epithelial cells and/or stromal cells of OME lesions were immunoreactive to Ber-EP4 and CD10 but not reactive to Calretinin. ER and PR expression was observed in all patterns of OME lesions. Ki-67 index was significantly higher in pattern I/II OME lesions than in pattern III OME lesions (Pendometriosis due to the presence of adhesions in

  3. Construction and test of the PRIOR proton microscope

    International Nuclear Information System (INIS)

    Lang, Philipp-Michael

    2015-01-01

    The study of High Energy Density Matter (HEDM) in the laboratory makes great demands on the diagnostics because these states can usually only be created for a short time and usual diagnostic techniques with visible light or X-rays come to their limit because of the high density. The high energy proton radiography technique that was developed in the 1990s at the Los Alamos National Laboratory is a very promising possibility to overcome those limits so that one can measure the density of HEDM with high spatial and time resolution. For this purpose the proton microscope PRIOR (Proton Radiography for FAIR) was set up at GSI, which not only reproduces the image, but also magnifies it by a factor of 4.2 and thereby penetrates matter with a density up to 20 g/cm 2 . Straightaway a spatial resolution of less than 30 μm and a time resolution on the nanosecond scale was achieved. This work describes details to the principle, design and construction of the proton microscope as well as first measurements and simulations of essential components like magnetic lenses, a collimator and a scintillator screen. For the latter one it was possible to show that plastic scintillators can be used as converter as an alternative to the slower but more radiation resistant crystals, so that it is possible to reach a time resolution of 10 ns. Moreover the characteristics were investigated for the system at the commissioning in April 2014. Also the changes in the magnetic field due to radiation damage were studied. Besides that an overview about future applications is given. First experiments with Warm Dense Matter created by using a Pulsed Power Setup have already been performed. Furthermore the promising concept of combining proton radiography with particle therapy has been investigated in context of the PaNTERA project. An outlook on the possibilities with future experiments at the FAIR accelerator facility is given as well. Because of higher beam intensity an energy one can expect even

  4. 47 CFR 17.17 - Existing structures.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Existing structures. 17.17 Section 17.17... STRUCTURES Federal Aviation Administration Notification Criteria § 17.17 Existing structures. (a) The requirements found in § 17.23 relating to painting and lighting of antenna structures shall not apply to those...

  5. 10 CFR 1040.72 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 1040.72 Section 1040.72 Energy... § 1040.72 Existing facilities. (a) Accessibility. A recipient shall operate any program or activity to... facilities or every part of a facility accessible to and useable by handicapped persons. (b) Methods. A...

  6. 45 CFR 84.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Accessibility § 84.22 Existing facilities. (a) Accessibility. A recipient shall operate its program or activity so that when each part is..., welfare, or other social services at alternate accessible sites, alteration of existing facilities and...

  7. Financial gap calculations for existing cogeneration 2008

    International Nuclear Information System (INIS)

    Hers, S.J.; Wetzels, W.; Seebregts, A.J.; Van der Welle, A.J.

    2008-05-01

    The Dutch SDE (abbreviation for the renewable energy incentive) subsidy scheme promotes the reduction of CO2 emissions which results from the use of Combined Heat and Power (CHP) plants. This report calculates the profitability of operation of existing CHP plants. This information can be used for decision making on the SDE subsidy for existing CHP plants in 2008 [nl

  8. On the existence of consistent price systems

    DEFF Research Database (Denmark)

    Bayraktar, Erhan; Pakkanen, Mikko S.; Sayit, Hasanjan

    2014-01-01

    We formulate a sufficient condition for the existence of a consistent price system (CPS), which is weaker than the conditional full support condition (CFS). We use the new condition to show the existence of CPSs for certain processes that fail to have the CFS property. In particular this condition...

  9. [Microscopic investigation of vessel wall after endovascular catheter atherectomy].

    Science.gov (United States)

    Tsygankov, V N; Khovalkin, R G; Chekmareva, I A; Kalinin, D V; Filippova, E M

    2014-01-01

    Endovascular target catheter atherectomy (ETCA) - method of artery patency allowing to obtain occlusion substrate. Given the high destructive effect of atherectome's elements on tissue the objective was determination possibility of histological and electron microscopic investigation of this substrate after atherectomy. The research included 8 patients who underwent ETCA of legs arteries. It was observed substrate removal from broken stent in 1 case. 2 of 8 patients had diabetes. Obtained substrate was available for histological and electron microscopic investigation. Atherosclerosis was confirmed in all cases. It was not observed substrate significant morphological changes in patients with presence or absence of diabetes. Microscopic investigation of substrate from broken stent shows pronounced development of granulation tissue that was regarded as special form of reparative regeneration. Finding internal elastic membrane during microscopic investigation in some cases proves radical intervention. The authors consider that microscopic investigation of substrate after ETCA may be used for diagnosis verification, thorough analysis of morphological changes in lesion area and radicalism of atherectomy.

  10. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  11. Theory of a Quantum Scanning Microscope for Cold Atoms.

    Science.gov (United States)

    Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P

    2018-03-30

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  12. An electron microscope for the aberration-corrected era

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, O.L. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)], E-mail: krivanek.ondrej@gmail.com; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)

    2008-02-15

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  13. An electron microscope for the aberration-corrected era

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W.

    2008-01-01

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown

  14. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    Science.gov (United States)

    Arrabito, L.; Bozza, C.; Buontempo, S.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; DeLellis, G.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Marco, N.; Ereditato, A.; Esposito, L. S.; Fini, R. A.; Giacomelli, G.; Giorgini, M.; Grella, G.; Ieva, M.; Janicsko Csathy, J.; Juget, F.; Kreslo, I.; Laktineh, I.; Manai, K.; Mandrioli, G.; Marotta, A.; Migliozzi, P.; Monacelli, P.; Moser, U.; Muciaccia, M. T.; Pastore, A.; Patrizii, L.; Petukhov, Y.; Pistillo, C.; Pozzato, M.; Romano, G.; Rosa, G.; Russo, A.; Savvinov, N.; Schembri, A.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tioukov, V.; Waelchli, T.

    2007-05-01

    The OPERA experiment, designed to conclusively prove the existence of νμ→ντ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ντ's in the CNGS νμ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.

  15. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    International Nuclear Information System (INIS)

    Arrabito, L; Bozza, C; Buontempo, S

    2007-01-01

    The OPERA experiment, designed to conclusively prove the existence of ν μ →ν τ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ν τ 's in the CNGS ν μ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ∼20 cm 2 /h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA

  16. New implementation of a shear-force microscope suitable to study topographical features over wide areas

    International Nuclear Information System (INIS)

    Ustione, A.; Cricenti, A.; Piacentini, M.; Felici, A. C.

    2006-01-01

    A new implementation of a shear-force microscope is described that uses a shear-force detection system to perform topographical imaging of large areas (∼1x1 mm 2 ). This implementation finds very interesting application in the study of archeological or artistic samples. Three dc motors are used to move a sample during a scan, allowing the probe tip to follow the surface and to face height differences of several tens of micrometers. This large-area topographical imaging mode exploits new subroutines that were added to the existing homemade software; these subroutines were created in Microsoft VISUAL BASIC 6.0 programming language. With this new feature our shear-force microscope can be used to study topographical details over large areas of archaeological samples in a nondestructive way. We show results detecting worn reliefs over a coin

  17. Microscopic Characterization of Scalable Coherent Rydberg Superatoms

    Directory of Open Access Journals (Sweden)

    Johannes Zeiher

    2015-08-01

    Full Text Available Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a “superatom,” is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.

  18. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    Bisson, A.A.

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10 19 , 9 x 10 19 and 2 x 10 20 n f cm -2 at a temperature below 100 deg. C. For the irradiation at 6 x 10 19 n f cm -2 , the defects are merely visible, but at 2 x l0 20 n f cm -2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [fr

  19. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  20. Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Faulkner, T.; Segerink, Franciscus B.; van der Werf, Kees; de Grooth, B.G.; Bölger, B.; Bölger, B.

    1992-01-01

    Images obtained with a scanning near field optical microscope (SNOM) operating in reflection are presented. We have obtained the first results with a SiN tip as optical probe. The instrument is simultaneously operated as a scanning force microscope (SFM). Moreover, the instrument incorporates an

  1. Probing chirality with a femtosecond reaction microscope

    Directory of Open Access Journals (Sweden)

    Janssen M. H. M.

    2013-03-01

    Full Text Available Detection of molecular chirality with high sensitivity and selectivity is important for many analytical and practical applications. Photoionization has emerged as a very sensitive probe of chirality in molecules. We show here that a table top setup with a femtosecond laser and a single imaging detector for both photoelectrons and photoions enables detection of chirality up to 3 orders of magnitude better than the existing conventional absorption based techniques.

  2. Comparison of Microscopic Drivers' Probabilistic Lane-changing Models With Real Traffic Microscopic Data

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Sadat Hoseini

    2011-07-01

    Full Text Available The difficulties of microscopic-level simulation models to accurately reproduce real traffic phenomena stem not only from the complexity of calibration and validation operations, but also from the structural inadequacies of the sub-models themselves. Both of these drawbacks originate from the scant information available on real phenomena because of the difficulty in gathering accurate field data. This paper studies the traffic behaviour of individual drivers utilizing vehicle trajectory data extracted from digital images collected from freeways in Iran. These data are used to evaluate the four proposed microscopic traffic models. One of the models is based on the traffic regulations in Iran and the three others are probabilistic models that use a decision factor for calculating the probability of choosing a position on the freeway by a driver. The decision factors for three probabilistic models are increasing speed, decreasing risk of collision, and increasing speed combined with decreasing risk of collision. The models are simulated by a cellular automata simulator and compared with the real data. It is shown that the model based on driving regulations is not valid, but that other models appear useful for predicting the driver’s behaviour on freeway segments in Iran during noncongested conditions.

  3. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  4. The existence of trajectories joining critical points

    International Nuclear Information System (INIS)

    Yu Shuxiang.

    1985-01-01

    In this paper, using the notion of an isolating block and the concept of canonical regions, three existence criteria of trajectories connecting a pair of critical points of planar differential equations are given. (author)

  5. Pre-Existing Condition Insurance Plan Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Affordable Care Act created the new Pre-Existing Condition Insurance Plan (PCIP) program to make health insurance available to Americans denied coverage by...

  6. Seismic assessment of existing nuclear chemical plants

    International Nuclear Information System (INIS)

    Merriman, P.A.

    1997-01-01

    This paper outlines the generic approach to the seismic assessment of existing structures. It describes the role of the safety case in determining the studies carried out by the functional departments on individual projects. There is an emphasis on the role of existing information and material tests to provide realistic properties for analysis to account for possible degradation effects. Finally, a case study of a concrete containment cell is shown to illustrate the approach. (author)

  7. Solar Panel Installations on Existing Structures

    OpenAIRE

    Tim D. Sass; Pe; Leed

    2013-01-01

    The rising price of fossil fuels, government incentives and growing public aware-ness for the need to implement sustainable energy supplies has resulted in a large in-crease in solar panel installations across the country. For many sites the most eco-nomical solar panel installation uses existing, southerly facing rooftops. Adding solar panels to an existing roof typically means increased loads that must be borne by the building-s structural elements. The structural desig...

  8. The global existence problem in general relativity

    CERN Document Server

    Andersson, L

    2000-01-01

    We survey some known facts and open questions concerning the global properties of 3+1 dimensional space--times containing a compact Cauchy surface. We consider space--times with an $\\ell$--dimensional Lie algebra of space--like Killing fields. For each $\\ell \\leq 3$, we give some basic results and conjectures on global existence and cosmic censorship. For the case of the 3+1 dimensional Einstein equations without symmetries, a new small data global existence result is announced.

  9. Novel scanning probe microscope instrumentation with applications in nanotechnology

    International Nuclear Information System (INIS)

    Humphry, M.J.

    2000-10-01

    A versatile scanning probe microscope controller has been constructed. Its suitability for the control of a range of different scanning probe microscope heads has been demonstrated. These include an ultra high vacuum scanning tunnelling microscope, with which atomic resolution images of Si surfaces was obtained, a custom-built atomic force microscope, and a custom-built photon emission scanning tunnelling microscope. The controller has been designed specifically to facilitate data acquisition during molecular manipulation experiments. Using the controller, the fullerene molecule C 60 has been successfully manipulated on Si(100)-2x1 surfaces and detailed data has been acquired during the manipulation process. Evidence for two distinct modes of manipulation have been observed. A repulsive mode with success rates up to 90% was found to occur with tunnel gap impedances below 2GΩ, while between 2GΩ and 8GΩ attractive manipulation events were observed, with a maximum success rate of ∼8%. It was also found that the step size between feedback updates had a significant effect on tip stability, and that dwell time of the STM tip at each data point had a critical effect on manipulation probability. A multi-function scanning probe microscope head has been developed capable of operation as a scanning tunnelling microscope and an atomic force microscope in vacuum and a magnetic field of 7T. The custom-built controller also presented here was used to control the head. A three-axis inertial sliding motor was developed for the head, capable of reproducible step sizes of <1000A. In addition, an optical fibre interferometer was constructed with a sensitivity of 0.2A/√Hz. Preliminary development of a magnetic resonance force microscope mode has also been performed, with initial results showing such a system to be feasible. (author)

  10. Effect of operating microscope light on brain temperature during craniotomy.

    Science.gov (United States)

    Gayatri, Parthasarathi; Menon, Girish G; Suneel, Puthuvassery R

    2013-07-01

    Operating microscopes used during neurosurgery are fitted with xenon light. Burn injuries have been reported because of xenon microscope lighting as the intensity of xenon light is 300 W. We designed this study to find out if the light of operating microscope causes an increase in temperature of the brain tissue, which is exposed underneath. Twenty-one adult patients scheduled for elective craniotomies were enrolled. Distal esophageal temperature (T Eso), brain temperature under the microscope light (T Brain), and brain temperature under dura mater (T Dura) were measured continuously at 15-minute intervals during microscope use. The irrigation fluid temperature, room temperature, intensity of the microscope light, and the distance of the microscope from the brain surface were kept constant. The average age of the patients was 44±15 years (18 males and 3 females). The mean duration of microscope use was 140±39 minutes. There were no significant changes in T Brain and T Dura and T Eso over time. T Dura was significantly lower than T Brain both at time 0 and 60 minutes but not at 90 minutes. T Brain was significantly lower than T Eso both at time 0 and 60 minutes but not at 90 minutes. The T Dura remained significantly lower than T Eso at 0, 60, and 90 minutes. Our study shows that there is no significant rise in brain temperature under xenon microscope light up to 120 minutes duration, at intensity of 60% to 70%, from a distance of 20 to 25 cm from the brain surface.

  11. Auricular burns associated with operating microscope use during otologic surgery.

    Science.gov (United States)

    Latuska, Richard F; Carlson, Matthew L; Neff, Brian A; Driscoll, Colin L; Wanna, George B; Haynes, David S

    2014-02-01

    To raise awareness of the potential hazard of auricular burns associated with operating microscope use during otologic surgery. Retrospective case series and summary of the Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database of voluntary adverse event reports pertaining to microscope related auricular thermal injuries. All patients who sustained auricular burns while using the operating microscope during otologic surgery at 2 tertiary academic referral centers. Surgical procedure, microscope model, intensity of illumination, length of procedure, focal length, location and severity of burn, and patient outcome. A total of 4 microscope-related auricular thermal injuries were identified from the authors' institutions. Additionally, 82 unique cases of soft tissue burns associated with the use of an operative microscope have been voluntarily reported to the FDA since 2004. A disproportionately large percent (∼ 30%) of these occurred within the field of otology, the majority of which were during tympanoplasty or tympanomastoidectomy procedures at focal length distances of 300 mm or less with xenon light source microscopes. Simultaneous advancements in light delivery technologies and lens optics have continued to improve the efficiency of the operating microscope; however, these improvements also increase the potential for thermal injuries. Although rare, a review of the FDA MAUDE database suggests that microscope-related soft tissue burns occur more frequently in otology than any other surgical specialty. A variety of factors may help explain this finding, including the unique anatomy of the external ear with thin skin and limited underlying adipose tissue. Preventative measures should be taken to decrease the risk of thermal injuries including use of the lowest comfortable light intensity, adjusting the aperture width to match the operative field, frequent wound irrigation, and covering exposed portions of the pinna

  12. Development of superconducting cryo-electron microscope and its applications

    International Nuclear Information System (INIS)

    Iwatsuki, Masashi

    1988-01-01

    Recently, a superconducting cryo-electron microscope in which specimens are cooled to the liquid helium temperature (4.2 K) has been developed. The main components and functional features of this new microscope are reported together with application data on polyethylene, poly (4-methyl-1-pentene), valonia cellulose, rock salt, ice crystallites and ceramic superconductor. The resistance to electron radiation damage, of beam-sensitive specimens including polymers has been increased more than ten times. Thus, the microscope has made it possible to take high resolution images and to analyze the crystal-structure of micro-areas. (orig.) [de

  13. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2002-01-01

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  14. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  15. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  16. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  17. Microscopic wormholes and the geometry of entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Francisco S.N. [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Lisbon (Portugal); Olmo, Gonzalo J. [Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

    2014-06-15

    It has recently been suggested that Einstein-Rosen (ER) bridges can be interpreted as maximally entangled states of two black holes that form a complex Einstein-Podolsky-Rosen (EPR) pair. This relationship has been dubbed as the ER = EPR correlation. In this work, we consider the latter conjecture in the context of quadratic Palatini theory. An important result, which stems from the underlying assumptions as regards the geometry on which the theory is constructed, is the fact that all the charged solutions of the quadratic Palatini theory possess a wormhole structure. Our results show that spacetime may have a foam like microstructure with wormholes generated by fluctuations of the quantum vacuum. This involves the spontaneous creation/annihilation of entangled particle-antiparticle pairs, existing in a maximally entangled state connected by a nontraversable wormhole. Since the particles are produced from the vacuum and therefore exist in a singlet state, they are necessarily entangled with one another. This gives further support to the ER = EPR claim. (orig.)

  18. A rheological and microscopical characterization of biocompatible ferrofluids

    International Nuclear Information System (INIS)

    Nowak, J.; Wolf, D.; Odenbach, S.

    2014-01-01

    There is an increasing interest in suspensions of magnetic nanoparticles in the biomedical area. Those ferrofluids are e.g. used for magnetic resonance imaging and emerging research focuses on employing the fluids for magnetic drug targeting or magnetic particle heating as a potential treatment for cancer. For these applications the knowledge of the suspensions' thermophysical properties is of major interest to guarantee a safe and effective application. Therefore the flow behavior cannot be neglected as it might significantly influence the execution of the aforementioned applications. In this experimental study two biocompatible ferrofluids were investigated. Rheological measurements were carried out using rotational rheometry. To allow an interpretation of the fluids' behavior the microscopic make-up was investigated using dynamic light scattering and transmission electron microscopy. Measurements of diluted ferrofluids were carried out as a first step to simulate the rheological behavior reflecting the concentration of magnetic nanoparticles found in blood flow for most biomedical applications of such fluids. The detected strong effects show the potential to significantly influence application and handling of the biocompatible ferrofluids in the medical area and should therefore be taken into account for further research as well as for the application of such fluids. - Highlights: • The rheology of biocompatible multicore ferrofluids is influenced by magnetic fields. • The flow curves can be described by the Herschel–Bulkley model. • A connection between the magnetoviscous effect and the particle size is found. • The strong magnetoviscous effect exists even if the fluids are diluted. • The connection between the effect and the dilution is mathematically described

  19. Nanoscans of piezoelectric activity using an atomic force microscope

    International Nuclear Information System (INIS)

    Zheng, Z.; Guy, I.L.; Butcher, K.S.A.; Tansley, T.L.

    2002-01-01

    Full text: Any crystal which lacks a centre of symmetry is piezoelectric. This includes all of the ferroelectric crystals used in photonics and virtually all compound semiconductors. Such crystals, when grown in thin film form invariably exist in a strained state and thus possess internal piezoelectric fields which can affect their electronic properties. A knowledge of the piezoelectric properties of such crystals is thus important in understanding how they behave in practical devices. It also provides a tool for analysing the crystal structure of such materials. Using an atomic force microscope (AFM) as a probe of piezoelectric activity allows the study of variations in crystal structure on a nanoscale. The AFM piezoelectric technique has been used by several groups to study structures of ceramic materials with large piezoelectric coefficients, intended for applications in piezoelectric actuators. In the AFM method, a driving signal of a few volts at a frequency well below the AFM tip resonance, is applied to a sample of the material mounted in the AFM. This voltage causes the sample dimensions to change in ways determined by the piezoelectric properties of the sample. The AFM signal thus contains the normal surface profile information and an additional component generated by the piezoelectric vibrations of the sample. A lockin amplifier is used to separate the piezoelectric signal from the normal AFM surface profile signal. The result is the simultaneous acquisition of the surface profile and a piezoelectric map of the surface of the material under study. We will present results showing the results of such measurements in materials such as lithium niobate and gallium nitride. These materials have piezoelectric coefficients which are much lower than those of materials to which the technique has normally been applied

  20. Calcium carbonate crystallisation at the microscopic level

    International Nuclear Information System (INIS)

    Dobson, Phillip Stephen

    2001-01-01

    and chemistries, allowed the study of the role of the substrate on crystal induction. Crystal growth and induction time data were analysed in terms of transport versus surface-controlled mechanisms. Crystal induction was catalysed to a greater extent on higher energy surfaces. The effect of protonation of acidic and basic surfaces on crystal induction has also been investigated by electrochemical control. AFM was used to study cleaved calcite crystals before and after growth in a Kitano solution, followed by in-situ observation of crystal growth under a Kitano solution. This revealed the mechanism to be through the growth of islands. The combination of an AFM with an inverted optical microscope allowed the same measurements to be made on freshly grown, calcite microcrystals, with observation of a single growth spiral on each. The effect of a known growth inhibitor (maleic acid) was also investigated in-situ. This was found to change the morphology of the growth spiral on microcrystals in a manner consistent with preferential adsorption. (author)