WorldWideScience

Sample records for existing life cycle

  1. Life cycle assessment: Existing building retrofit versus replacement

    Science.gov (United States)

    Darabi, Nura

    The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.

  2. Identifying best existing practice for characterization modeling in life cycle impact assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Goedkoop, Mark; Guinée, Jeroen

    2013-01-01

    Purpose: Life cycle impact assessment (LCIA) is a field of active development. The last decade has seen prolific publication of new impact assessment methods covering many different impact categories and providing characterization factors that often deviate from each other for the same substance...... and impact. The LCA standard ISO 14044 is rather general and unspecific in its requirements and offers little help to the LCA practitioner who needs to make a choice. With the aim to identify the best among existing characterization models and provide recommendations to the LCA practitioner, a study...... was performed for the Joint Research Centre of the European Commission (JRC). Methods Existing LCIA methods were collected and their individual characterization models identified at both midpoint and endpoint levels and supplemented with other environmental models of potential use for LCIA. No new developments...

  3. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    Energy Technology Data Exchange (ETDEWEB)

    Santero, Nicholas; Masanet, Eric; Horvath, Arpad

    2010-04-20

    This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

  4. Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps.

    Science.gov (United States)

    Hischier, Roland; Walser, Tobias

    2012-05-15

    The use of engineered nanomaterials offers advantages as well as disadvantages from a sustainability perspective. It is important to identify such points as early as possible in order to be able to build on existing strengths, while counteracting disadvantages. Life Cycle Assessment (LCA) is a suitable method to assess the environmental performance of a product or process. But so far studies applying LCA to the area of nanotechnology have been scarce. One reason might be that the LCA framework has a whole list of issues that need further precision in order to be applicable to nanotechnologies: system boundaries and a functional unit have to be chosen in a way that allows one to do a comparison of equal functionalities; adequate and comprehensive life cycle inventory data for engineered nanomaterials are the key on the level of inventory analysis; and the impact assessment step requires a clear definition of the degree of detail on the level of nanoparticle emissions. The LCA studies existing thus far in the area of nanotechnology have barely begun to cover all these aspects. Thus, in order to improve the current situation, the authors propose to go ahead in each of the LCA stages as far as scientific advances allow. For the inventory modelling this means e.g. that comprehensive, transparently documented and quality ensured data of the most important engineered nanomaterials should be collected and made available in a widely-accepted format. Concerning nanoparticle emissions, as many parameters as possible have to be collected pertaining to the production, use, and the disposal phase of these engineered nanomaterials. Furthermore, on the level of impact assessment, relevant physical characteristics have to be identified for a toxicity assessment of nanoparticles and a consensus has to be found for a limited but sufficient number of independent parameters influencing toxicity to be collected. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Life-Cycle Assessment of Seismic Retrofit Strategies Applied to Existing Building Structures

    Directory of Open Access Journals (Sweden)

    Umberto Vitiello

    2016-12-01

    Full Text Available In the last few years, the renovation and refurbishment of existing buildings have become the main activities of the construction industry. In particular, many studies have recently focused on the mechanical and energy performances of existing retrofitted/refurbished facilities, while some research has addressed the environmental effects of such operations. The present study aims to assess the environmental impact of some retrofit interventions on an existing reinforced concrete (RC building. Once the structural requirements have been satisfied and the environmental effects of these retrofit solutions defined, the final purpose of this study is to identify the most environmentally sustainable retrofit strategy. The environmental impact of the structural retrofit options is assessed using a life-cycle assessment (LCA. This paper sets out a systematic approach that can be adopted when choosing the best structural retrofit option in terms of sustainability performance. The final aim of the study is to also provide a tool for researchers and practitioners that reflects a deep understanding of the sustainability aspects of retrofit operations and can be used for future researches or practical activities.

  6. Paper waste - Recycling, incineration or landfilling? A review of existing life cycle assessments

    International Nuclear Information System (INIS)

    Villanueva, A.; Wenzel, H.

    2007-01-01

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry

  7. Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data.

    Science.gov (United States)

    Peters, Glen P; Aamaas, Borgar; T Lund, Marianne; Solli, Christian; Fuglestvedt, Jan S

    2011-10-15

    The Life Cycle Assessment (LCA) impact category "global warming" compares emissions of long-lived greenhouse gases (LLGHGs) using Global Warming Potential (GWP) with a 100-year time-horizon as specified in the Kyoto Protocol. Two weaknesses of this approach are (1) the exclusion of short-lived climate forcers (SLCFs) and biophysical factors despite their established importance, and (2) the use of a particular emission metric (GWP) with a choice of specific time-horizons (20, 100, and 500 years). The GWP and the three time-horizons were based on an illustrative example with value judgments and vague interpretations. Here we illustrate, using LCA data of the transportation sector, the importance of SLCFs relative to LLGHGs, different emission metrics, and different treatments of time. We find that both the inclusion of SLCFs and the choice of emission metric can alter results and thereby change mitigation priorities. The explicit inclusion of time, both for emissions and impacts, can remove value-laden assumptions and provide additional information for impact assessments. We believe that our results show that a debate is needed in the LCA community on the impact category "global warming" covering which emissions to include, the emission metric(s) to use, and the treatment of time.

  8. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook)

    OpenAIRE

    HAUSCHILD Michael; GOEDKOOP Mark; GUINEE Jerome; HEIJUNGS Reinout; HUIJBREGTS Mark; JOLLIET Olivier; MARGNI Manuele; DE SCHRYVER An

    2010-01-01

    To achieve more sustainable production and consumption patterns, we must consider the environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e. their entire life cycle from ¿cradle to grave¿. In the Communication on Integrated Product Policy (IPP), (EC, 2003), the European Commission committed to produce a handbook on best practice in Life Cycle Assessment (LCA). The Sustainable Consumption and Production (SCP) Action ...

  9. Life Cycle Assessment Modelling of Greenhouse Gas Emissions from Existing and Proposed Municipal Solid Waste Management System of Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    Adila Batool Syeda

    2017-12-01

    Full Text Available Open Dumping of indiscriminate municipal solid waste (MSW remarkably contributes to global warming (GW. Life Cycle Assessment modelling may be a useful tool for assessing the best waste management option regarding GW potential. The current study evaluates the contribution of an existing MSW management (MSWM system to greenhouse gases in Gulberg Town, Lahore, Pakistan. This research also presents a comparison of scenarios with different waste management options. Life Cycle Assessment methodology has been used to conduct the study. EASETECH has been used for modelling. The short-term scenarios (STSs have been developed to promote the thinking of integration of treatment technologies in the current waste management system within a few months. The results show that the major contribution to the total emissions comes from the anaerobic digestion of organic material from open waste dumps. Currently, recycling is the best treatment option for reducing the CO2-eq values in the study area. It was clarified that recycling is the best option for reducing the CO2-eq values, whereas biogasification comes in second in terms of savings and reduction. The integration of recycling and biogasification techniques would be a good solution.

  10. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    International Nuclear Information System (INIS)

    Techato, Kua-anan; Watts, Daniel J.; Chaiprapat, Sumate

    2009-01-01

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste

  11. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Techato, Kua-anan [International Postgraduate Programs in Environmental Management (Hazardous Waste Management) and ERI (Energy Research Institute), Chulalongkorn University, Bangkok 10330 (Thailand); Watts, Daniel J. [Otto H. York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Chaiprapat, Sumate [Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90112 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management-Satellite Center at Prince of Songkla University (Thailand)

    2009-01-15

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste. (author)

  12. Life Cycle Collection Management

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2003-09-01

    Full Text Available Life cycle collection management is a way of taking a long-term approach to the responsible stewardship of the British Library's collections and is one of the Library's strategic strands. It defines the different stages in a collection item's existence over time. These stages range from selection and acquisitions processing, cataloguing and press marking, through to preventive conservation, storage and retrieval. Life cycle collection management seeks to identify the costs of each stage in order to show the economic interdependencies between the phases over time. It thereby aims to demonstrate the long-term consequences of what the library takes into its collections, by making explicit the financial and other implications of decisions made at the beginning of the life cycle for the next 100 plus years. This paper describes the work over the past year at the British Library on this complex and complicated subject. It presents the emerging findings and suggests how it can be used for practical reasons (by individual curators and selectors and for economic, governance and political purposes. The paper describes the next steps in the project, for example, on a predictive data model. The British Library is seeking to benchmark itself against comparable organisations in this area. It intends to work with others on specific comparison for example, of life cycle costing of electronic and paper journals, as a prelude to eliding digital and 'traditional' formats.

  13. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  14. Life Cycle Management

    DEFF Research Database (Denmark)

    Bey, Niki

    2018-01-01

    This chapter gives an overview of Life Cycle Management (LCM)—a discipline that deals with the managerial tasks related to practicing sustainable development in an organisation . Just as Life Cycle Assessment, LCM advocates the life cycle perspective , and it applies this perspective in decision...

  15. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    Remmen, Arne; Thrane, Mikkel

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  16. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  17. Life Cycle Sustainability Dashboard

    DEFF Research Database (Denmark)

    Traverso, Marzia; Finkbeiner, Matthias; Jørgensen, Andreas

    2012-01-01

    One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental,economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products...... of sustainability is the communicability of the results by means of a graphical representation (a cartogram), characterized by a suitable chromatic scale and ranking score. The integration of LCSA and the dashboard of sustainability into a so-called Life Cycle Sustainability Dashboard (LCSD) is described here...

  18. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  19. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  20. Mosquito Life Cycle

    Science.gov (United States)

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  1. Sustainable Building Life Cycle Design

    Directory of Open Access Journals (Sweden)

    Ginzburg Alexander

    2016-01-01

    Full Text Available The current building life cycle management system in the Russian Federation is a family of discrete subsystems that exist independently for different building life cycle stages. In this situation building reliability and sustainable functioning are out of the question. The implementation of a united information model (BIM-model intended to describe building entire life cycle will allow to raise the sustainability, but this will happen only if goals and concerns of all participants of the project process are properly coordinated. An important figure of process sustainability is the organizational and technological reliability (OTR that describes the possibility of a system to reach a goal. In case of building life cycle design, the economical efficiency of a building can be considered as the goal. The required technical, ecological, organizational, and other parameters form a complex of constraints that determine the area of allowable values for building functioning. In its broad meaning, OTR may be understood as the probability of receiving an economical effect based on the value of organizational and economical reliability (OER.

  2. The software life cycle

    CERN Document Server

    Ince, Darrel

    1990-01-01

    The Software Life Cycle deals with the software lifecycle, that is, what exactly happens when software is developed. Topics covered include aspects of software engineering, structured techniques of software development, and software project management. The use of mathematics to design and develop computer systems is also discussed. This book is comprised of 20 chapters divided into four sections and begins with an overview of software engineering and software development, paying particular attention to the birth of software engineering and the introduction of formal methods of software develop

  3. LIFE CYCLE OF INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Y. S. Sennik

    2015-01-01

    Full Text Available This work is a generalization of the theoretical propositions related to the life cycle of information systems. There was given the definition of the life cycle, specify which items you should include every step of the cycle. Describes the methodology division of the life cycle on the main stage, including methodology Rational Unified Process. The description of the fundamental standards in this area. Special attention was paid to the work of the basic life cycle models. It was carried out their comparative characteristics. On the basis of the theoretical propositions, it was concluded that the preferred model of the life cycle for the corporate network is a spiral model and the use of international standards in the life cycle saves a lot of effort, time and material resources.

  4. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  5. Emissions from photovoltaic life cycles

    NARCIS (Netherlands)

    Fthenakis, V.M.; Kim, H.C.; Alsema, E.A.|info:eu-repo/dai/nl/073416258

    2008-01-01

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle

  6. The Life Cycle of Centrioles

    OpenAIRE

    Hatch, E.; Stearns, T.

    2010-01-01

    Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have di...

  7. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  8. Non-existence of limit cycles for planar vector fields

    Directory of Open Access Journals (Sweden)

    Jaume Gine

    2014-03-01

    Full Text Available This article presents sufficient conditions for the non-existence of limit cycles for planar vector fields. Classical methods for the nonexistence of limit cycles are connected with the theory developed here.

  9. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  10. Total Product Life Cycle (TPLC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Total Product Life Cycle (TPLC) database integrates premarket and postmarket data about medical devices. It includes information pulled from CDRH databases...

  11. The soil life cycle

    NARCIS (Netherlands)

    Leeuwen, van J.P.

    2016-01-01

    Soil is one of the most important natural resource for life on Earth and provides important ecosystem services, such as food production, carbon sequestration, water regulation and contaminant attenuation. Soil quality, defined as the soil’s ability to provide these services, is drastically

  12. The life cycle of centrioles.

    Science.gov (United States)

    Hatch, E; Stearns, T

    2010-01-01

    Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have different functions. Here, we discuss how new centrioles are assembled, what mechanisms limit centriole number, and the consequences of the inherent asymmetry of centriole duplication and segregation.

  13. Life cycle management of analytical methods.

    Science.gov (United States)

    Parr, Maria Kristina; Schmidt, Alexander H

    2018-01-05

    In modern process management, the life cycle concept gains more and more importance. It focusses on the total costs of the process from invest to operation and finally retirement. Also for analytical procedures an increasing interest for this concept exists in the recent years. The life cycle of an analytical method consists of design, development, validation (including instrumental qualification, continuous method performance verification and method transfer) and finally retirement of the method. It appears, that also regulatory bodies have increased their awareness on life cycle management for analytical methods. Thus, the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), as well as the United States Pharmacopeial Forum discuss the enrollment of new guidelines that include life cycle management of analytical methods. The US Pharmacopeia (USP) Validation and Verification expert panel already proposed a new General Chapter 〈1220〉 "The Analytical Procedure Lifecycle" for integration into USP. Furthermore, also in the non-regulated environment a growing interest on life cycle management is seen. Quality-by-design based method development results in increased method robustness. Thereby a decreased effort is needed for method performance verification, and post-approval changes as well as minimized risk of method related out-of-specification results. This strongly contributes to reduced costs of the method during its life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  15. Developing IAM for Life Cycle Safety Assessment

    NARCIS (Netherlands)

    Toxopeus, Marten E.; Lutters, Diederick; Nee, Andrew Y.C.; Song, Bin; Ong, Soh-Khim

    2013-01-01

    This publication discusses aspects of the development of an impact assessment method (IAM) for safety. Compared to the many existing IAM’s for environmentally oriented LCA, this method should translate the impact of a product life cycle on the subject of safety. Moreover, the method should be

  16. Current Knowledge of the Life Cycles of

    NARCIS (Netherlands)

    Peperzak, L.; Gäbler-Schwarz, S.

    2012-01-01

    Despite continuous efforts since the 1950s and more recent advances in culturing flagellates and nonflagellate cells of the prymnesiophyte Phaeocystis, a number of different life-cycle models exist today that appear to apply for P. globosa Scherff. and P. antarctica G. Karst., both spherical colony

  17. Life Cycle Costing: An Introduction

    DEFF Research Database (Denmark)

    Rödger, Jan-Markus; Kjær, Louise Laumann; Pagoropoulos, Aris

    2018-01-01

    The chapter gives an introduction to life cycle costing (LCC) and how it can be used to support decision-making. It can form the economic pillar in a full life cycle sustainability assessment, but often system delimitations differ depending on the goal and scope of the study. To provide a profound...... as well as guidance on how to collect data to overcome this hurdle. In an illustrative case study on window frames, the eLCC theory is applied and demonstrated with each step along the eLCC procedure described in detail. A final section about advanced LCC introduces how to monetarise externalities and how...

  18. Sourcing Life Cycle Inventory Data

    Science.gov (United States)

    The collection and validation of quality lifecycle inventory (LCI) data can be the most difficult and time-consuming aspect of developing a life cycle assessment (LCA). Large amounts of process and production data are needed to complete the LCI. For many studies, the LCA analyst ...

  19. The product life cycle revisited

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    1995-01-01

    Efter et introduktionsafsnit følger afsnit II, hvor der gives en historisk analyse af Life Cycle Assessment (LCA) og Environmental Impact Assessment (EIA). I afsnit III munder analysen ud i en vurdering af ligheder og forskelle mellem LCA analyser og EIA analyser, og en diskussion følger af...

  20. Emissions from photovoltaic life cycles.

    Science.gov (United States)

    Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik

    2008-03-15

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

  1. Menopause: A Life Cycle Transition.

    Science.gov (United States)

    Evarts, Barbara Kess; Baldwin, Cynthia

    1998-01-01

    Family therapists need to address the issue of menopause proactively to be of benefit to couples and families during this transitional period in the family life cycle. Physical, psychological, and psychosocial factors affecting the menopausal woman and her family, and ways to address these issues in counseling are discussed. (Author/EMK)

  2. Optimal Life Cycle Portfolio Choice with Housing Market Cycles

    DEFF Research Database (Denmark)

    Fischer, Marcel; Stamos, Michael Z.

    2013-01-01

    income, and pre-existing housing wealth but also the state of the housing market significantly affect household decisions. Consistently with the data, the model predicts that in good states of housing market cycles (1) homeownership rates increase, (2) households buying homes invest a larger share......In recent decades U.S. households have experienced residential house prices moving persistently, that is, returns being positively serially correlated. We set up a realistically calibrated life cycle model with slow-moving time variation in expected housing returns, showing that not only age, labor...

  3. The Sphinx's Riddle: Life and Career Cycles.

    Science.gov (United States)

    Burack, Elmer H.

    1984-01-01

    Career cycles should be considered apart from life cycles, even though the two are interrelated. This essay examines five theories about life and career cycles, and offers insights into their limitations and potential uses. (JB)

  4. LIFE CYCLE OF A WINE BRAND

    Directory of Open Access Journals (Sweden)

    Viktoriia Paziuk

    2015-11-01

    Full Text Available The aim of the work is to determine the life cycle of the wine brand, the development of ways to improve its effectiveness at different stages of the life cycle. Being scientifically informed of the existence of the life cycle of the brand allows modern enterprises to enhance their competitive position in the market and take advantage of the acquired differences in order to attract more attention from consumers. Methods. The study is based on scientific methods of research of economic phenomena: the dialectic, abstract logical (in the exercise of theoretical generalizations to the definition of the concept of «life cycle of the perpetrator of the brand, a scientific abstraction, comparison and ordering (the study of factors influencing the life cycle of the perpetrator of the brand and the factors influencing a choice of products for consumers, statistical and problem-chronological (the study of the requirements of the brand in a changing consumer preferences, logical generalization (in determining the social and ethical functions guilty brand. Results. The stages of the life cycle of the wine brand, which take into account its characteristics and form its social and ethical functions. Describing the requirements for the wine brand in the changing tastes and preferences of consumers. Specification of wine promotion of the brand in an increasingly competitive environment. Preconditions have been set for a new wine brand. The practical significance. The brand always increases the value of the product and its entry into new markets, as well as reduces the time to attract consumers. Possibility to ensure the growth of the brand in a declining market; building market share in a highly competitive environment; marketing innovative products in order to create a new sales strategy. After all, to gain and maintain the popularity of a certain product, one must personalize it with giving associations and a way to provide it with distinctive features. Only

  5. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    genetic algorithms (GAs), particle swarm optimisation (PSOs), and stochastic hill climbing to create a generally well-performing search heuristics. In the LifeCycle model, we consider candidate solutions and their fitness as individuals, which, based on their recent search progress, can decide to become...... either a GA individual, a particle of a PSO, or a single stochastic hill climber. First results from a comparison of our new approach with the single search algorithms indicate a generally good performance in numerical optimization....

  6. Optimizing the data life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kilian [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Jung, Christopher [KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2013-07-01

    Today, data play a central role in most fields of Science. In recent years, the amount of data from experiment, observation, and simulation has increased rapidly and the data complexity has grown. Also, communities and shared storage have become geographically more distributed. Therefore, methods and techniques applied for scientific data need to be revised and partially be replaced, while keeping the community-specific needs in focus. The Helmholtz Portfolio Extension ''Large Scale Data Management and Analysis'' (LSDMA) focuses on the optimization of the data life cycle in different research areas. In its five Data Life Cycle Labs (DLCLs), data experts closely collaborate with the communities in joint research and development to optimize the respective data life cycle. In addition, the Data Services Integration Team provides data analysis tools and services which are common to several DLCLs. This presentation describes the various activities within LSDMA and focuses on the work done in the DLCL ''Structure of Matter''. The main topics of this DLCL are the support for the international projects FAIR (Facility for Anti Proton and Ion Research) which will evolve around GSI in Darmstadt and the European XFEL and PETRA III at DESY in Hamburg.

  7. The Life Cycle Analysis Toolbox

    International Nuclear Information System (INIS)

    Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

    1999-01-01

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools

  8. Does It Have a Life Cycle?

    Science.gov (United States)

    Keeley, Page

    2010-01-01

    If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…

  9. Optimization of life cycle management costs

    International Nuclear Information System (INIS)

    Banerjee, A.K.

    1994-01-01

    As can be seen from the case studies, a LCM program needs to address and integrate, in the decision process, technical, political, licensing, remaining plant life, component replacement cycles, and financial issues. As part of the LCM evaluations, existing plant programs, ongoing replacement projects, short and long-term operation and maintenance issues, and life extension strategies must be considered. The development of the LCM evaluations and the cost benefit analysis identifies critical technical and life cycle cost parameters. These open-quotes discoveriesclose quotes result from the detailed and effective use of a consistent, quantifiable, and well documented methodology. The systematic development and implementation of a plant-wide LCM program provides for an integrated and structured process that leads to the most practical and effective recommendations. Through the implementation of these recommendations and cost effective decisions, the overall power production costs can be controlled and ultimately lowered

  10. Life cycle management in product development

    DEFF Research Database (Denmark)

    Skelton, Kristen; Pattis, Anna

    2013-01-01

    The integration of Life Cycle Thinking (LCT) and Life Cycle Management (LCM) into business operations poses great challenges, as it requires a wider range of environmental responsibility often extending beyond a company's immediate control. Simultaneously, it offers many opportunities...

  11. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  12. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  13. An Integrated Framework for Life Cycle Engineering

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Herrmann, Christoph; Kara, Sami

    2017-01-01

    Life Cycle Engineering (LCE) was introduced as a concept more than 24 years ago in order to address emerging concerns about environmental sustainability in engineering. A number of methods and tools have been introduced to operationalise the LCE concept, but since then, the scope of sustainability...... has broadened, and as a result, LCE has evolved in parallel with other disciplines with similar aims. Currently, in addition to LCE, there exist a number of concepts such as Industrial Ecology, Cleaner Production, Life Cycle Management (LCM), Industrial Symbiosis, and Circular Economy. As a result......-down and bottom-up approach, the framework establishes a relationship between LCE and the other concepts and positions them relative to the planetary boundaries and the concept of absolute environmental sustainability. (C) 2017 The Authors. Published by Elsevier B.V....

  14. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  15. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  16. Social Life Cycle Assessment Revisited

    Directory of Open Access Journals (Sweden)

    Ruqun Wu

    2014-07-01

    Full Text Available To promote the development of Social Life Cycle Assessment (SLCA, we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA, is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.

  17. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  18. Life cycle of transformer oil

    Directory of Open Access Journals (Sweden)

    Đurđević Ksenija R.

    2008-01-01

    Full Text Available The consumption of electric power is constantly increasing due to industrialization and population growth. This results in much more severe operating conditions of transformers, the most important electrical devices that make integral parts of power transmission and distribution systems. The designed operating life of the majority of worldwide transformers has already expired, which puts the increase of transformer reliability and operating life extension in the spotlight. Transformer oil plays a very important role in transformer operation, since it provides insulation and cooling, helps extinguishing sparks and dissolves gases formed during oil degradation. In addition to this, it also dissolves moisture and gases from cellulose insulation and atmosphere it is exposed to. Further and by no means less important functions of transformer are of diagnostic purpose. It has been determined that examination and inspection of insulation oil provide 70% of information on transformer condition, which can be divided in three main groups: dielectric condition, aged transformer condition and oil degradation condition. By inspecting and examining the application oil it is possible to determine the condition of insulation, oil and solid insulation (paper, as well as irregularities in transformer operation. All of the above-mentioned reasons and facts create ground for the subject of this research covering two stages of transformer oil life cycle: (1 proactive maintenance and monitoring of transformer oils in the course of utilization with reference to influence of transformer oil condition on paper insulation condition, as well as the condition of the transformer itself; (2 regeneration of transformer oils for the purpose of extension of utilization period and paper insulation revitalization potential by means of oil purification. The study highlights advantages of oil-paper insulation revitalization over oil replacement. Besides economic, there are

  19. Monetary valuation in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Weidema, Bo Pedersen; Brandão, Miguel

    2015-01-01

    different impacts and/or with other economic costs and benefits. For this reason, monetary valuation has a great potential to be applied also in Life Cycle Assessment (LCA), especially in the weighting phase. However, several challenges limit its diffusion in the field, which resulted in only a few......Monetary valuation is the practice of converting measures of social and biophysical impacts into monetary units and is used to determine the economic value of non-market goods, i.e. goods for which no market exists. It is applied in cost benefit analysis to enable the cross-comparison between...

  20. Life Cycle Assessment - Theory and Practice

    DEFF Research Database (Denmark)

    This book is a uniquely pedagogical while still comprehensive state-of-the-art description of LCA-methodology and its broad range of applications. The five parts of the book conveniently provide: I) the history and context of Life Cycle Assessment (LCA) with its central role as quantitative and s...... needed to perform an LCA. V) An appendix with an LCA report template, a full example LCA report serving as inspiration for students who write their first LCA report, and a more detailed overview of existing LCIA methods and their similarities and differences....

  1. Publication Life Cycle at CERN Document Server

    CERN Multimedia

    Witowski, Sebastian; Costa, Flavio; Gabancho, Esteban; Marian, Ludmila; Tzovanakis, Harris

    2017-01-01

    This presentation guides listeners through all the stages of publication life cycle at CERN Document Server, from the ingestion using one of the various tools, through curation and processing, until the data is ready to be exported to other systems. It describes different tools that we are using to curate the incoming publications as well as to further improve the existing data on CDS. The second part of the talk goes through various challenges we have faced in the past and how we are going to overcome them in the new version of CDS.

  2. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Nutt, Mark M.

    2003-01-01

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  3. Asset life cycle plans: twelve steps to assist strategic decision-making in asset life cycle management

    NARCIS (Netherlands)

    Ruitenburg, Richard Jacob; Braaksma, Anne Johannes Jan; van Dongen, Leonardus Adriana Maria; Carnero, Maria Carmen; Gonzalez-Prida, Vicente

    2017-01-01

    Effective management of physical assets should deliver maximum business value. Therefore, Asset Management standards such as PAS 55 and ISO 55000 ask for a life cycle approach. However, most existing methods focus only on the short term of the asset's life or the estimation of its remaining life.

  4. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  5. Nuclear plant life cycle costs

    International Nuclear Information System (INIS)

    Durante, R.W.

    1994-01-01

    Life cycle costs of nuclear power plants in the United States are discussed. The author argues that these costs have been mishandled or neglected. Decommissioning costs have escalated, e.g. from $328 per unit in 1991 to $370 in 1993 for the Sacramento Municipal Utility District, though they still only amount to less than 0.1 cent per kWh. Waste management has been complicated in the U.S. by the decision to abandon civilian reprocessing; by the year 2000, roughly 30 U.S. nuclear power units will have filled their storage pools; dry storage has been delayed, and will be an expense not originally envisaged. Some examples of costs of major component replacement are provided. No single component has caused as much operational disruption and financial penalties as the steam generator. Operation and maintenance costs have increased steadily, and now amount to more than 70% of production costs. A strategic plan by the Nuclear Power Oversight Committee (of U.S. utilities) will ensure that the ability to correctly operate and maintain a nuclear power plant is built into the original design. 6 figs

  6. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-11-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  7. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-03-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  8. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    Science.gov (United States)

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  9. An ideal sealed source life-cycle

    International Nuclear Information System (INIS)

    Tompkins, Joseph Andrew

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they

  10. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    Science.gov (United States)

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  11. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  12. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  13. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  14. Recent developments in Life Cycle Assessment

    NARCIS (Netherlands)

    Finnveden, Göran; Hauschild, Michael Z.; Ekvall, Tomas; Guinée, Jeroen B.; Heijungs, Reinout; Hellweg, Stefanie; Koehler, Annette; Pennington, David; Suh, Sangwon

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in

  15. Social Life Cycle Assessment: An Introduction

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bonou, Alexandra; Wangel, Arne

    2018-01-01

    An expansion of the LCA framework has been going on through the development of ‘social life cycle assessment’—S-LCA. The methodology, still in its infancy, has the goal of assessing social impacts related to a product’s life cycle. This chapter introduces S-LCA framework area and the related...

  16. From life cycle talking to taking action

    NARCIS (Netherlands)

    Potting, J.; Curran, M.A.; Blottnitz, von H.

    2010-01-01

    Introduction - The biannual Life Cycle Management conference series aims to create a platform for users and developers of Life Cycle Assessment (LCA) and related tools to share their experiences. A key concern of the LCM community has been to move beyond the production of LCA reports toward using

  17. Educational Focuses in Organisational Life Cycles.

    Science.gov (United States)

    Miller, Harry G.

    1985-01-01

    Presents four stages frequently associated with the stages of an organization's life cycle: experimentation, growth, maturity, and decline or stability. The author also demonstrates that the impact of employment and thus training related to organizational life cycles suggests a need for understanding the technical preparation required for…

  18. When Product Life Cycle Meets Customer Activity Cycle

    DEFF Research Database (Denmark)

    Tan, Adrian Ronald

    2007-01-01

    Manufacturing companies have traditionally focused their efforts on designing, developing and producing products to offer on the market. Today global competition and demands for greater company responsibility of products throughout their entire life cycle are driving manufacturing companies to sh...

  19. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  20. Econometric analysis of ship life cycles - are safety inspections effective?

    NARCIS (Netherlands)

    G.E. Bijwaard (Govert); S. Knapp (Sabine)

    2008-01-01

    textabstractDue to the shipping industry’s international legal framework and the existence of loopholes in the system, an estimated 5-10 percent of substandard ships exist which are more likely to have incidents with high economic cost. This article uses ship life cycles to provide insight into

  1. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  2. Computer Software for Life Cycle Cost.

    Science.gov (United States)

    1987-04-01

    34 111. 1111I .25 IL4 jj 16 MICROCOPY RESOLUTION TEST CHART hut FILE C AIR CoMMNAMN STFF COLLG STUJDET PORTO i COMpUTER SOFTWARE FOR LIFE CYCLE CO879...obsolete), physical life (utility before physically wearing out), or application life (utility in a given function)." (7:5) The costs are usually

  3. Evolution of complex life cycles

    NARCIS (Netherlands)

    ten Brink, J.A.

    2018-01-01

    The majority of all animal species have a metamorphosis, even though fossil evidence suggests that this life-history strategy only evolved a few times. It is thought that ontogenetic niche shifts, where individuals change their diet, habitat, and/or behaviour during their life, have been the first

  4. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  5. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  6. Life cycle of transformer oil

    OpenAIRE

    Đurđević Ksenija R.; Vojinović-Miloradov Mirjana; Sokolović Slobodan M.

    2008-01-01

    The consumption of electric power is constantly increasing due to industrialization and population growth. This results in much more severe operating conditions of transformers, the most important electrical devices that make integral parts of power transmission and distribution systems. The designed operating life of the majority of worldwide transformers has already expired, which puts the increase of transformer reliability and operating life extension in the spotlight. Transformer oil pla...

  7. Life extension and life cycle management

    International Nuclear Information System (INIS)

    Hoang, H.

    2010-10-01

    To continue the effort of nuclear energy as the clean energy offsetting the increase in greenhouse gas emission that contributes to the increased global warming effect, the nuclear industry is focused on the optimization of their current nuclear generation assets. Plant life extension (Plex) and Plant life management (Plim), together with power up rate, are the key strategies for the optimization effort. Plex begins with the process to obtain the regulatory approval for an additional 20 years of operation, beyond the current 40-year limit. This highly standardized process consists of the following steps: 1) Scoping: identify the systems, structures and components for inclusion in the license renewal scope of work. 2) Screening: narrow down the selection of the in-scope systems, structures and components based on passive and long-lived characteristics. 3) Aging management review: demonstrate that aging effects will continue to be managed during the additional 20 years of operation. 4) Time limiting aging analyses: confirm the acceptability of design bases analyses that assume the 40-year plant life as a key input assumptions. To provide a consistent approach for the preparation of the license renewal application, the following are the key guidance documents: NUREG-1800: Standard review plan; NUREG-1801: Generic aging lessons learned; Nuclear Energy Institute NEI 95-10. The objectives of Plim are to focus on improving plant reliability/availability, and to plan for equipment upgrades for efficiency improvement as well as technological obsolescence. Plim is a technical evaluation combined with a risk assessment to produce a long-range business plant with a time horizon of 10 years or longer. Due to its long view nature, this plan will be reviewed on a yearly basis for any required adjustments. The technical evaluation consists of the following major steps: 1) Select systems, structures and components with performance deficiencies experience. 2) Collect operating data

  8. Techno-Economics & Life Cycle Assessment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  9. Life-Cycle Models for Survivable Systems

    National Research Council Canada - National Science Library

    Linger, Richard

    2002-01-01

    .... Current software development life-cycle models are not focused on creating survivable systems, and exhibit shortcomings when the goal is to develop systems with a high degree of assurance of survivability...

  10. Life cycle assessment of asphalt pavement maintenance.

    Science.gov (United States)

    2014-01-01

    This study aims at developing a life cycle assessment (LCA) model to quantify the impact of pavement preservation on energy consumption and greenhouse gas (GHG) emissions. The construction stage contains material, manufacture, transportation and plac...

  11. Life-cycle assessment of Nebraska bridges.

    Science.gov (United States)

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  12. Life cycle costs for Alaska bridges.

    Science.gov (United States)

    2014-08-01

    A study was implemented to assist the Alaska Department of Transportation and Public Facilities (ADOT&PF) with life cycle costs for : the Alaska Highway Bridge Inventory. The study consisted of two parts. Part 1 involved working with regional offices...

  13. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  14. Corporate entrepreneurship in organisational life-cycle

    OpenAIRE

    Duobienė, Jurga

    2013-01-01

    Paper deals with the development of corporate entrepreneurship in different stages of organisational life-cycle. The research presents a model for the evaluation of corporate entrepreneurship and systemises relevant theoretical and empirical research in the field of entrepreneurship and corporate entrepreneurship. Moreover, it describes the development of corporate entrepreneurship in the entire organisational life-cycle since most of researchers who discuss the topics of corporate entreprene...

  15. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  16. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  17. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  18. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...

  19. Adenomyosis: a life-cycle approach.

    Science.gov (United States)

    Benagiano, Giuseppe; Brosens, Ivo; Habiba, Marwan

    2015-03-01

    The life-cycle approach to endometriosis highlighted unexpected features of the condition; the same approach was therefore applied to gain insight into the clinical features of adenomyosis and to draw a comparison with endometriosis. This is possible today thanks to new imaging techniques enabling non-invasive diagnosis of adenomyosis. The specificity and sensitivity of magnetic resonance imaging and transvaginal ultrasound remain uncertain. Unlike endometriosis, little information is available on the presence of classic adenomyosis in adolescents, except for rare cystic forms that may not represent the true disease. Adenomyosis is most likely to affect adult women, although most reported incidences are still based on post-hysterectomy studies, and are affected by diligence in histopathologic diagnosis and the adopted cut-off point. The traditionally accepted associations of adult adenomyosis, such as multiparity, a link to infertility and its effect on pregnancy are uncertain. Active adenomyosis has been found in pre- and peri-menopausal women and in postmenopausal women receiving tamoxifen. In conclusion, major diagnostic limitations and the systematic bias of hysterectomy make it difficult to draw firm conclusions from existing evidence. In addition, no information is available on the natural history of adenomyosis and no study has systematically evaluated its existence in adolescents. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Metadata Life Cycles, Use Cases and Hierarchies

    Directory of Open Access Journals (Sweden)

    Ted Habermann

    2018-05-01

    Full Text Available The historic view of metadata as “data about data” is expanding to include data about other items that must be created, used, and understood throughout the data and project life cycles. In this context, metadata might better be defined as the structured and standard part of documentation, and the metadata life cycle can be described as the metadata content that is required for documentation in each phase of the project and data life cycles. This incremental approach to metadata creation is similar to the spiral model used in software development. Each phase also has distinct users and specific questions to which they need answers. In many cases, the metadata life cycle involves hierarchies where latter phases have increased numbers of items. The relationships between metadata in different phases can be captured through structure in the metadata standard, or through conventions for identifiers. Metadata creation and management can be streamlined and simplified by re-using metadata across many records. Many of these ideas have been developed to various degrees in several Geoscience disciplines and are being used in metadata for documenting the integrated life cycle of environmental research in the Arctic, including projects, collection sites, and datasets.

  1. Integrated NPP life cycle management - Agency's approach

    International Nuclear Information System (INIS)

    Gueorguiev, B.

    2002-01-01

    Full text: The number of nuclear power plants (NPPs) operating in the world has been roughly constant for the past seven years. There are 438 reactors of 353,489 MW(e) capacity in the world and they generated 2448.9 TWh in 2001 giving a total world operating experience with nuclear power of 10,363 years. About 230 units have reached already over 15 years of operation and significant number of these plants are fully depreciated. Share of nuclear power in electricity production sector in Member States utilising nuclear power plants represents a meaningful amount and in 14 countries it exceeds 30%. Therefore, a loss of this share should be covered by new installed capacities either from conventional or alternative sources of electricity generation. Recent forecasts, for nuclear power use over the next two decades range from ∼350 to ∼500 GW(e) worldwide. While assessing the need for any nuclear power related programmes there are several important factors that must be considered since even 350 GW(e) is a very large programme requiring several hundred thousand highly qualified personnel and a substantial infrastructure to assure its continued safe, reliable and cost-effective operation. It is important to assure reliable, safe and economic beneficial performance of the plant, which requires in turn an appropriated management of any activity connected with any taken period of a plant life starting from design and ending by the decided mode of decommissioning. The period between the first and the last payment for the activities connected with the existence of a plant could be defined as a life cycle of the plant. Such integrated approach requires considering the life cycle of the plant in a much broader sense than just operational life and is characterized by the variety of activities and their management represents in a whole a plant life management programme (PLIM). Therefore PLIM could be defined as an aggregate (totality) of technical, financial, economical and

  2. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    social audits. Through an interview with a social auditor it is suggested that the auditor varies the procedures for carrying out the audit in order to get the most valid result. For example, the auditor has to take into account the various tricks a company in a given context normally uses to cheat......This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers...

  3. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  4. Asset Allocation Over the Life Cycle

    DEFF Research Database (Denmark)

    Fischer, Marcel; Kraft, Holger; Munk, Claus

    2013-01-01

    We study the welfare effect of tax-optimizing portfolio decisions in a life cycle model with unspanned labor income and realization-based capital gain taxation. For realistic parameterizations of our model, certainty equivalent welfare gains from fully tax-optimized portfolio decisions are less...... and instead assumes mark-to-market taxation, these gains are less than 0.5%. That is, our work provides a justification for ignoring taxes in life cycle portfolio choice problems - a wide-spread assumption in that literature. However, if capital gains are forgiven at death (as in the U.S.), investors...... with strong bequest motives face substantial welfare costs when not tax-optimizing their portfolio decisions towards the end of the life cycle....

  5. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  6. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  7. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  8. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination...... of technologies) having the largest potential for reducing the overall environmental impacts....

  9. Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future.......The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future....

  10. Comparative myoanatomy of cycliophoran life cycle stages

    DEFF Research Database (Denmark)

    Neves, Ricardo C.; Cunha, Maria R.; Funch, Peter

    2010-01-01

    The metazoan phylum Cycliophora includes small cryptic epibionts that live attached to the mouthparts of clawed lobsters. The life cycle is complex, with alternating sexual and asexual generations, and involves several sessile and free-living stages. So far, the morphological and genetic characte......The metazoan phylum Cycliophora includes small cryptic epibionts that live attached to the mouthparts of clawed lobsters. The life cycle is complex, with alternating sexual and asexual generations, and involves several sessile and free-living stages. So far, the morphological and genetic...

  11. New criteria on the existence of stable-limit cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Gascon, F [Instituto de Estructura de la Materia (GIFT) y Dep. de Fisica Teorica Universidad Complutense, Madrid (Espana); Kumpera, A [Universidade Estadual de Campinas (Brazil). Inst. de Matematica

    1978-06-10

    Negative criteria are given assuring the absence of stable limit cycles. These criteria are valid for vector fields over R/sup 3/ and R/sup 4/ and some of them can be applied to vector fields over Rsup(n).

  12. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  13. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 2, Data Analysis-The Methods describes the methods for carrying out data analysis within the systems development life-cycle and demonstrates how the results of fact gathering can be used to produce and verify the analysis deliverables. A number of alternative methods of analysis other than normalization are suggested. Comprised of seven chapters, this book shows the tasks to be carried out in the logical order of progression-preparation, collection, analysis of the existing system (which comprises the tasks of synthesis, verification, an

  14. Automation life-cycle cost model

    Science.gov (United States)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  15. Life cycle management at Ontario Power Generation

    International Nuclear Information System (INIS)

    Spekkens, P.

    2006-01-01

    This paper outlines the Life Cycle Management (LCM) program at Ontario Power Generation. LCM is carried out at different levels that includes components, systems, unit and fleet. A system involves cumulative effect of individual component aging. These components include steam generators, pressure tubes and feeders. A unit involves an overall unit aging strategy integrating all systems. At the fleet level, there is an optimal strategy for plant-level investments including end-of-life of a unit

  16. Ecology and Life Cycle Patterns of Echinococcus Species.

    Science.gov (United States)

    Romig, T; Deplazes, P; Jenkins, D; Giraudoux, P; Massolo, A; Craig, P S; Wassermann, M; Takahashi, K; de la Rue, M

    2017-01-01

    The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  18. 10 CFR 436.19 - Life cycle costs.

    Science.gov (United States)

    2010-01-01

    ... operation and maintenance costs: (c) Replacement costs less salvage costs of replaced building systems; and... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the...

  19. Semantic catalogs for life cycle assessment data

    NARCIS (Netherlands)

    Kuczenski, Brandon; Davis, Christopher B.; Rivela, Beatriz; Janowicz, Krzysztof

    2016-01-01

    Life cycle assessment (LCA) is a highly interdisciplinary field that requires knowledge from different domains to be gathered and interpreted together. Although there are relatively few major data sources for LCA, the data themselves are presented with highly heterogeneous formats, interfaces, and

  20. The life cycle of social media

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    2014-01-01

    markdownabstract__Abstract__ Using weekly data on the interest for 17 social media via Google trends and using quarterly data on actual users for 3 social media, it is reported in this letter that the life cycles of social media mimic those of durable consumer goods. On average, the popularity of

  1. Maintenance: Changing Role in Life Cycle Management

    NARCIS (Netherlands)

    Takata, S.; Kimura, F.; van Houten, Frederikus J.A.M.; Westkamper, E.; Shpitalni, M.; Ceglarek, D.; Lee, J.

    2004-01-01

    As attention to environmental problems grows, product life cycle management is becoming a crucial issue in realizing a sustainable society. Our objective is to provide the functions necessary for such a society while minimizing material and energy consumption. From this viewpoint, we should redefine

  2. Predictors and Portfolios Over the Life Cycle

    DEFF Research Database (Denmark)

    Kraft, Holger; Munk, Claus; Weiss, Farina

    In a calibrated consumption-portfolio model with stock, housing, and labor income predictability, we evaluate the welfare effects of predictability on life-cycle consumption-portfolio choice. We compare skilled investors who are able to take advantage of all sources of predictability with unskilled...

  3. Product Life Cycle - Quality Management Issues

    DEFF Research Database (Denmark)

    Alting, Leo; Majstorovic, Vidosav D.

    2004-01-01

    The strategic goal of our country is European and world integration. Within this context the management of sustainable development considered from the aspect of product’s life cycle and its quality management represents a real challenge for researchers, economy and educational system. The aim...

  4. Sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, E.A.; Heijungs, R.; Bokkers, E.A.M.; Boer, de I.J.M.

    2014-01-01

    Life cycle assessments require many input parameters and many of these parameters are uncertain; therefore, a sensitivity analysis is an essential part of the final interpretation. The aim of this study is to compare seven sensitivity methods applied to three types of case stud-ies. Two

  5. Designing for the ISD Life Cycle.

    Science.gov (United States)

    Wallace, Guy W.; Hybert, Peter R.; Smith, Kelly R.; Blecke, Brian D.

    2002-01-01

    Outlines the recent criticisms of traditional ISD (Instructional Systems Design) and discusses the implications that impact the life cycle costs of T&D (Training and Development) projects and their ROI (Return On Investment) potential. Describes a modified approach to ISD which mimics the modular approach of systems engineering design.…

  6. Life cycle characteristics of SME’s

    NARCIS (Netherlands)

    Masurel, E.; Montfort, van K.

    2006-01-01

    Our study of professional services firms clearly revealed that firms change over the course of their life cycles. During the first three stages, diversification in sales, the differentiation in labor force, and the level of labor productivity increase. In the last stage, diversification in sales,

  7. Implementing Life Cycle Assessment in Product development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the envir......The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating......, and of the opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding...... of possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  8. Farinon microwave end of life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Poe, R.C.

    1996-06-24

    This engineering report evaluates alternatives for the replacement of the Farinon microwave radio system. The system is beyond its expected life cycle and has decreasing maintainability. Principal applications supported by the Farinon system are two electrical utility monitor and control systems, the Integrated Transfer Trip System (ITTS), and the Supervisory Control and Data Acquisition (SCADA) system.

  9. Life cycle cost report of VHLW cask

    International Nuclear Information System (INIS)

    1995-06-01

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste

  10. Life cycle management and assessment: approaches and visions towards sustainable manufacturing

    DEFF Research Database (Denmark)

    Westkämper, Engelbert; Alting, Leo; Arndt, Günther

    2000-01-01

    . The goal of this approach is to protect resources and maximize effectiveness by means of life cycle assessment, product data management, technical support and, last but not least, life cycle costing. This paper shows the existing approaches of LCM and discusses their prospects and further development....... concepts are required, new regulations have been passed or consumer values are changing, the differences between business areas are disappearing. Life cycle management (LCM) considers the product life cycle as a whole and optimizes the interaction of product design, manufacturing and life cycle activities...

  11. Life cycle management and assessment: approaches and visions towards sustainable manufacturing

    DEFF Research Database (Denmark)

    Westkämper, Engelbert; Alting, Leo; Arndt, Günther

    2001-01-01

    and optimizes the interaction of product design, manufacturing and life cycle activities. The goal of this approach is to protect resources and maximize effectiveness by means of life cycle assessment, product data management, technical support and, last but not least, life cycle costing. This paper shows....... Economically successful business areas can also be explored. Whether new service concepts are required, new regulations have been passed or consumer values are changing, the differences between business areas are disappearing. Life cycle management (LCM) considers the product life cycle as a whole...... the existing approaches of LCM and discusses their prospects and further development....

  12. Life cycle planning: An evolving concept

    International Nuclear Information System (INIS)

    Moore, P.J.R.; Gorman, I.G.

    1994-01-01

    Life-cycle planning is an evolving concept in the management of oil and gas projects. BHP Petroleum now interprets this idea to include all development planning from discovery and field appraisal to final abandonment and includes safety, environmental, technical, plant, regulatory, and staffing issues. This article describes in the context of the Timor Sea, how despite initial successes and continuing facilities upgrades, BHPP came to perceive that current operations could be the victim of early development successes, particularly in the areas of corrosion and maintenance. The search for analogies elsewhere lead to the UK North Sea, including the experiences of Britoil and BP, both of which performed detailed Life of Field studies in the later eighties. These materials have been used to construct a format and content for total Life-cycle plans in general and the social changes required to ensure their successful application in Timor Sea operations and deployment throughout Australia

  13. Influence of service life on Life Cycle Assessments

    NARCIS (Netherlands)

    van Nunen, H.; Hendriks, N.A.; Erkelens, P.A.

    2003-01-01

    Environmental assessment is part of present decision making. But, because of difficulties the assessments are not as profound as could be. Life Cycle Assessment (LCA) is a cradle-to-grave approach and consequently a time factor is embedded. Until now this time factor is fixed and calculations are

  14. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  15. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  16. Evaluation of pavement life cycle cost analysis: Review and analysis

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-07-01

    Full Text Available The cost of road construction consists of design expenses, material extraction, construction equipment, maintenance and rehabilitation strategies, and operations over the entire service life. An economic analysis process known as Life-Cycle Cost Analysis (LCCA is used to evaluate the cost-efficiency of alternatives based on the Net Present Value (NPV concept. It is essential to evaluate the above-mentioned cost aspects in order to obtain optimum pavement life-cycle costs. However, pavement managers are often unable to consider each important element that may be required for performing future maintenance tasks. Over the last few decades, several approaches have been developed by agencies and institutions for pavement Life-Cycle Cost Analysis (LCCA. While the transportation community has increasingly been utilising LCCA as an essential practice, several organisations have even designed computer programs for their LCCA approaches in order to assist with the analysis. Current LCCA methods are analysed and LCCA software is introduced in this article. Subsequently, a list of economic indicators is provided along with their substantial components. Collecting previous literature will help highlight and study the weakest aspects so as to mitigate the shortcomings of existing LCCA methods and processes. LCCA research will become more robust if improvements are made, facilitating private industries and government agencies to accomplish their economic aims. Keywords: Life-Cycle Cost Analysis (LCCA, Pavement management, LCCA software, Net Present Value (NPV

  17. Life cycle and sustainability of abrasive tools

    CERN Document Server

    Linke, Barbara

    2016-01-01

    This monograph focuses on abrasive tools for grinding, polishing, honing, and lapping operations. The book describes the life cycle of abrasive tools from raw material processing of abrasive grits and bonding, manufacturing of monolithic or multi-layered tools, tool use to tool end-of-life. Moreover, this work highlights sustainability challenges including economic, environmental, social and technological aspects. The target audience primarily comprises research and industry experts in the field of manufacturing, but the book may also be beneficial for graduate students.

  18. Life cycle assessment of mobile phone housing.

    Science.gov (United States)

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  19. Life cycle assessment of waste paper management

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2008-01-01

    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing oil global warming potentials. The consequence of choosing...... results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system...... a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate Was Studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved...

  20. Life-cycle design for sustainable architecture

    Directory of Open Access Journals (Sweden)

    Francesca Thiébat

    2013-05-01

    Full Text Available Sustainability in architecture should involve environmental and social aspects and also economic aspects. However, in a design process budget issues usually outweigh ecological aspects. How can we then drive clients and builders to put more socially responsible buildings on the market that do not exceed the fixed budget but are environmentally friendly? This paper propose an economic and environmental assessment tool to aid private or public building designers and owners to find the global sustainability value of a green building within a life cycle perspective. Sustainable life cycle tools for buildings design and construction help to achieve successfully integrated architecture. The research here presented proposes a new point of view of the “time-cost-quality triangle” of Project Management, by introducing three further aspects: environment, society and aesthetics.

  1. Status of life cycle inventories for batteries

    International Nuclear Information System (INIS)

    Sullivan, J.L.; Gaines, L.

    2012-01-01

    Highlights: ► Cradle-to-gate (ctg) energy and emissions compared among five battery systems. ► Calculate material production values fall well within observed ranges. ► Values based on recycled materials in poor agreement with observed ranges. ► Material production data needed for recycled and some virgin battery materials. ► Battery manufacturing data range widely and hence also need updating. - Abstract: This study reviews existing life-cycle inventory (LCI) results for cradle-to-gate (ctg) environmental assessments of lead-acid (PbA), nickel–cadmium (NiCd), nickel-metal hydride (NiMH), sodium-sulfur (Na/S), and lithium-ion (Li-ion) batteries. LCI data are evaluated for the two stages of cradle-to-gate performance: battery material production and component fabrication and assembly into purchase ready batteries. Using existing production data on battery constituent materials, overall battery material production values were calculated and contrasted with published values for the five battery technologies. The comparison reveals a more prevalent absence of material production data for lithium ion batteries, though such data are also missing or dated for a few important constituent materials in nickel metal hydride, nickel cadmium, and sodium sulfur batteries (mischmetal hydrides, cadmium, β-alumina). Despite the overall availability of material production data for lead acid batteries, updated results for lead and lead peroxide are also needed. On the other hand, LCI data for the commodity materials common to most batteries (steel, aluminum, plastics) are up to date and of high quality, though there is a need for comparable quality data for copper. Further, there is an almost total absence of published LCI data on recycled battery materials, an unfortunate state of affairs given the potential benefit of battery recycling. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and

  2. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  3. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    Bates, J.; Watkiss, P.; Thorpe, T.

    1997-01-01

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO 2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  4. Life Cycle Assessment of Polymers in Qatar

    OpenAIRE

    ÖZERKAN, Nesibe Gözde; ADEED, Mariam AIMa’; KAHRAMAN, Ramazan

    2011-01-01

    Life Cycle Assessment (LCA) is gaining wider acceptance as a method that evaluates the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and assesses the impact of those energy and material used and released to the environment. It is also considered as one of the best environmental management tools that can be used to compare alternative eco-performances of recycling or disposal...

  5. Modern architecture in a life cycle perspective

    OpenAIRE

    Vestergaard, Inge

    2017-01-01

    By confronting the mistakes from the Modern Movement, the ideas of modernistic architecture are under pressure. This paper will summarize the primary architectural mistakes of the mono-functional thinking in planning and building and the non-appropriate environmental dispositions of the big plans from the 60s and will suggest a holistic and broader life-cycle perspective on housing from the welfare society. On one hand, we care for the strong Modern Movements manifestoes in the form of archit...

  6. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  7. Methodologies for Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Le Bocq, Agathe; Nazakina, Liudmila

    2008-01-01

    Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several similarit......Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several...... similarities with other social assessment tools, but in order to limit the review, only claims to address social impacts from an LCA-like framework is considered. Main Features. The review is to a large extent based on conference proceedings and reports of which some are not easily accessible, since very...... stage in the product life cycle. Another very important difference among the proposals is their position towards the use of generic data. Several of the proposals argue that social impacts are connected to the conduct of the company leading to the conclusion that each individual company in the product...

  8. Conceptual Framework To Extend Life Cycle Assessment ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  9. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  10. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  11. LIFE Materials: Fuel Cycle and Repository Volume 11

    International Nuclear Information System (INIS)

    Shaw, H.; Blink, J.A.

    2008-01-01

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  12. A Simulation Model for the Waterfall Software Development Life Cycle

    OpenAIRE

    Bassil, Youssef

    2012-01-01

    Software development life cycle or SDLC for short is a methodology for designing, building, and maintaining information and industrial systems. So far, there exist many SDLC models, one of which is the Waterfall model which comprises five phases to be completed sequentially in order to develop a software solution. However, SDLC of software systems has always encountered problems and limitations that resulted in significant budget overruns, late or suspended deliveries, and dissatisfied client...

  13. Indicators for human toxicity in Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Krewitt, Wolfram; Pennington, David W.; Olsen, Stig Irving

    2002-01-01

    The main objectives of this task group under SETAC-Europe’s Second Working Group on Life Cycle Impact Assessment (LCIA-WIA2) were to identify and discuss the suitability of toxicological impact measures for human health for use in characterization in LCIA. The current state of the art of defining......, as well as potency. Quantitative severity-based indicators yield measures in terms of Years of Life Lost (YOLL), Disability Adjusted Life Years (DALY), Quality Adjusted Life Years (QALY) and other similar measures. DALYs and QALYs are examples of approaches that attempt to account for both years of life...... such as No Observed Effect Levels (NOEL). NOELs, and similar data, are determined in laboratory studies using rodents and are then extrapolated to more relevant human measures. Many examples also exist of measures and methods beyond potency-based indicators that attempt to account for differences in expected severity...

  14. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A comparison of major petroleum life cycle models | Science ...

    Science.gov (United States)

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  16. Nuclear plant life cycle management implementation guide. Final report

    International Nuclear Information System (INIS)

    Sliter, G.E.; Negin, C.A.

    1998-11-01

    Nuclear power plants, as baseload suppliers of electricity, are major corporate assets. As the nuclear industry enters its fourth decade as a major producer of clean electricity, the structure of the utility industry is undergoing a historical landmark transition from economic deregulation to a competitive, market-driven industry. An integral part of competition is to manage the operation of the key asset, the plant, in the long term, thereby enhancing its long-term profitability. Life cycle management (LCM) is a well-known technical-economic decision-making process for any large industrial facility. LCM optimizes the service life of a facility and maximizes its life-cycle asset value. LCM integrates aging management (maintaining the availability of costly-to-replace components and structures) with asset management (plant valuation and investment strategies that account for economic, performance, regulatory, and environmental uncertainties). LCM involves predicting maintenance, repair, and other capital costs for a nuclear unit far into the future, as well as planning and managing strategic issues such as waste disposal, fuel storage, decommissioning, and public acceptance. This Life Cycle Management Implementation Guide introduces the reader to the LCM concept and its benefits, describes the elements and activities associated with an LCM program (most of which already exist in all plants), gives an overview of asset and aging management, and provides key references related to life cycle management for nuclear power plants. It also summarizes the major elements of life cycle management required for license renewal or, for newer plants, keeping open the option of license renewal

  17. Life Cycle Assessment of Completely Recyclable Concrete.

    Science.gov (United States)

    De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele

    2014-08-21

    Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  18. Life Cycle Assessment of Completely Recyclable Concrete

    Directory of Open Access Journals (Sweden)

    Mieke De Schepper

    2014-08-01

    Full Text Available Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  19. Roles of Apicomplexan protein kinases at each life cycle stage.

    Science.gov (United States)

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  1. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  2. sensitivity analysis on flexible road pavement life cycle cost model

    African Journals Online (AJOL)

    user

    of sensitivity analysis on a developed flexible pavement life cycle cost model using varying discount rate. The study .... organizations and specific projects needs based. Life-cycle ... developed and completed urban road infrastructure corridor ...

  3. Development of computer software for pavement life cycle cost analysis.

    Science.gov (United States)

    1988-01-01

    The life cycle cost analysis program (LCCA) is designed to automate and standardize life cycle costing in Virginia. It allows the user to input information necessary for the analysis, and it then completes the calculations and produces a printed copy...

  4. Life Cycle Impact Assessment Research Developments and Needs

    Science.gov (United States)

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  5. Designer and Constructor Practices to Ensure Life Cycle Performance

    National Research Council Canada - National Science Library

    Shelton, Joelle

    1998-01-01

    .... Many of these attempts focus on reducing costs and improving functionality, such as life cycle cost analysis and value engineering, while others, such as design-build, focus on specific phases of the life cycle...

  6. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  7. Life Cycle Assessment - Theory and Practice

    DEFF Research Database (Denmark)

    and scientifically-based tool supporting society’s transitioning towards a sustainable economy; II) all there is to know about LCA methodology illustrated by a red-thread example which evolves as the reader advances; III) a wealth of information on a broad range of LCA applications with dedicated chapters on policy...... development, prospective LCA, life cycle management, waste, energy, construction and building, nanotechnology, agrifood, transport, and LCA-related concepts such as footprinting, ecolabelling,design for environment, and cradle to cradle. IV) A cookbook giving the reader recipes for all the concrete actions...

  8. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  9. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  10. Life cycle assessment, electricity generation and sustainability

    International Nuclear Information System (INIS)

    Aumonier, S.

    1998-01-01

    When making a choice between alternatives, in whatever field, it is essential to have regard for the complete set of costs and benefits, in the widest possible sense, that will result in each case. The preferred option should be that which confers the maximum benefit, although relevant objectives will often conflict and its identification may be far from straightforward. Life cycle assessment (LCA) is an environmental accounting tool for measuring the inputs and outputs of an option, whether a product, a process or an activity. This paper explains the principles and methodologies involved in LCA, its application to the nuclear sector, and to electricity generating options and sustainable development. (author)

  11. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  12. A Life-Cycle Model of Outmigration and Economic Assimilation of Immigrants in Germany

    NARCIS (Netherlands)

    Bellemare, C.

    2004-01-01

    This paper estimates a structural dynamic life-cycle model of outmigration where, in each period, immigrants choose whether to work in the host country, not to work but remain in the host country, or outmigrate.The model incorporates several features of existing life-cycle theories of outmigration

  13. Residential Preferences and Moving Behavior: A Family Life Cycle Analysis.

    Science.gov (United States)

    McAuley, William J.; Nutty, Cheri L.

    The relationship of family life cycle changes to housing preferences and residential mobility is examined. Two residential decision-making issues are explored in detail--how family life cycle stages influence what people view as important to their choice of residential setting and what individuals at different family life cycle stages view as the…

  14. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  15. Stoichiometric implications of a biphasic life cycle.

    Science.gov (United States)

    Tiegs, Scott D; Berven, Keith A; Carmack, Douglas J; Capps, Krista A

    2016-03-01

    Animals mediate flows of elements and energy in ecosystems through processes such as nutrient sequestration in body tissues, and mineralization through excretion. For taxa with biphasic life cycles, the dramatic shifts in anatomy and physiology that occur during ontogeny are expected to be accompanied by changes in body and excreta stoichiometry, but remain little-explored, especially in vertebrates. Here we tested stoichiometric hypotheses related to the bodies and excreta of the wood frog (Lithobates sylvaticus) across life stages and during larval development. Per-capita rates of nitrogen (N) and phosphorus (P) excretion varied widely during larval ontogeny, followed unimodal patterns, and peaked midway through development (Taylor-Kollros stages XV and XII, respectively). Larval mass did not increase steadily during development but peaked at stage XVII and declined until the termination of the experiment at stage XXII. Mass-specific N and P excretion rates of the larvae decreased exponentially during development. When coupled with population-biomass estimates, population-level excretion rates were greatest at stages VIII-X. Percent carbon (C), N, and C:N of body tissue showed weak trends across major life stages; body P and C:P, however, increased sixfold during development from egg to adult. Our results demonstrate that intraspecific ontogenic changes in nutrient contents of excretion and body tissues can be significant, and that N and P are not always excreted proportionally throughout life cycles. These results highlight the dynamic roles that species play in ecosystems, and how the morphological and physiological changes that accompany ontogeny can influence ecosystem-level processes.

  16. UTILITY OF A FULL LIFE-CYCLE COPEPOD BIOASSAY APPROACH FOR ASSESSMENT OF SEDIMENT-ASSOCIATED CONTAMINANT MIXTURES. (R825279)

    Science.gov (United States)

    AbstractWe compared a 21 day full life-cycle bioassay with an existing 14 day partial life-cycle bioassay for two species of meiobenthic copepods, Microarthridion littorale and Amphiascus tenuiremis. We hypothesized that full life-cycle tests would bette...

  17. A deterministic model of nettle caterpillar life cycle

    Science.gov (United States)

    Syukriyah, Y.; Nuraini, N.; Handayani, D.

    2018-03-01

    Palm oil is an excellent product in the plantation sector in Indonesia. The level of palm oil productivity is very potential to increase every year. However, the level of palm oil productivity is lower than its potential. Pests and diseases are the main factors that can reduce production levels by up to 40%. The existence of pests in plants can be caused by various factors, so the anticipation in controlling pest attacks should be prepared as early as possible. Caterpillars are the main pests in oil palm. The nettle caterpillars are leaf eaters that can significantly decrease palm productivity. We construct a deterministic model that describes the life cycle of the caterpillar and its mitigation by using a caterpillar predator. The equilibrium points of the model are analyzed. The numerical simulations are constructed to give a representation how the predator as the natural enemies affects the nettle caterpillar life cycle.

  18. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    OpenAIRE

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle Management by means of a four year Action Research project implementing Asset Life Cycle Plans. Five main capabilities emerged: 1. strategic information use; 2. alignment of operations and strategy;...

  19. Life cycle implications of urban green infrastructure

    International Nuclear Information System (INIS)

    Spatari, Sabrina; Yu Ziwen; Montalto, Franco A.

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. - Highlights: → LCA methods can identify environmental tradeoffs for urban low impact development. → Energy and GHG payback time is sensitive to LID construction material choice. → LCA of LID upscaled from street to watershed level is expected to be nonlinear. - The benefits of low impact development and green infrastructure in cities can be modeled using life cycle assessment to understand and guide decisions for meeting sustainability goals.

  20. Life-cycle of fuel peat

    International Nuclear Information System (INIS)

    Leijting, J.; Silvo, K.

    1998-01-01

    The share of peat in the primary energy supply in Finland in 1996 was about 6.5 % and the area used for peat production was about 535 km 2 , corresponding to about 0.5 % of the original peatland area of Finland. Fuel peat production is hence a significant form of using natural resources. About 1.4 % of the total peatland area has been reserved for peat production. Approximately 95 % of the peat excavated in Finland is used as fuel peat, and 5 % as horticultural peat. As raw material and fuel peat can be considered to be slowly renewable material. The environmental impacts of fuel peat production, transportation and peat combustion were evaluated in this research by methods used in life-cycle assessment. Preparation and production phases of peat production areas, fuel peat transportation to power plants, combustion of peat in power plants, and disposal of the ashes formed the basis for the investigation. Data collected in 1994-1996 was used as the basic material in the research. Special attention was paid to the estimation of greenhouse gas balance when using a virgin bog and the forest drained peatland areas as starting points. Post-production use of peatlands were not inspected in the life-cycle assessment. The work was carried out in 1997 in cooperation with Vapo Oy. The regional environmental centers, VTT and Helsinki and Joensuu Universities assisted significantly in acquisition of the material and planning of the work 3 refs

  1. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  2. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    NARCIS (Netherlands)

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle

  3. DETERMINANTS OF ENTERPRISES LIFE CYCLE IN MODERN CONDITIONS OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Alla Polianska

    2016-03-01

    Full Text Available In the article the theoretical basis of organization life cycle research as well as the particularly of the organization life cycle concept implementation for solving of modern targets of enterprises and organizations development are highlighted. The determinants of one life cycle stage transformation to the other at the enterprises, that allows to better understand the conditions of its functioning and to identify factors that affect the viability of the company and its duration, are considered. Management technologies at different stages of organizations life cycle are proposed. Keywords: enterprise, development, organizations life cycle, determinants, Oil and Gas company JEL: M 20

  4. A comparison of production system life cycle models

    Science.gov (United States)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  5. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  6. Life Cycle and Suicidal Behavior among Women

    Directory of Open Access Journals (Sweden)

    Pablo Mendez-Bustos

    2013-01-01

    Full Text Available It is nowadays accepted that, independently of methodological issues, women commit fewer suicides than men but make more frequent attempts. Yet, female suicidal risk varies greatly along the lifetime and is linked to the most significant moments in it. A wide analysis of the existing literature was performed to provide a narrative description on the evolution of female suicidal rates from childhood to old age, considering the milestones in their life history. A detailed analysis of gender differences in suicidal behavior is key to establish preventive measures and priorities. More specific studies are needed to adapt future interventions on female suicide.

  7. The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.

    Science.gov (United States)

    Burdett, Emily R R; Barrett, Justin L

    2016-06-01

    Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.

  8. Modern architecture in a life cycle perspective

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2017-01-01

    By confronting the mistakes from the Modern Movement, the ideas of modernistic architecture are under pressure. This paper will summarize the primary architectural mistakes of the mono-functional thinking in planning and building and the non-appropriate environmental dispositions of the big plans...... architectural transformations on city level and on housing level. The transformation goals are to secure the economy and the social and the environmental aspects in the transformation´s life-cycle perspective in order to make the buildings and the districts interact with and adapt to society. The conclusion...... points out the architectural consequences of prioritizing in the transformation process the social parameters higher than the original rigid architectural theories....

  9. Life cycle implications of urban green infrastructure.

    Science.gov (United States)

    Spatari, Sabrina; Yu, Ziwen; Montalto, Franco A

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. PROJECT GOVERNANCE – PHASES AND LIFE CYCLE

    Directory of Open Access Journals (Sweden)

    Robbert Titus DEENEN

    2007-01-01

    Full Text Available When talking about projects, the barrier is clear: successful and failed. Some fail due to different reasons, but lack of good project and risk management played a large part. Others succeed largely because of the rigorous and disciplined application of good project practices. But both groups illustrate many points that underline and demonstrate important concepts applicable to current projects. Systematic application of good methods leads to successful outcomes in projects of all types. All projects are fundamentally dependent on people, and human beings are not very different today than we were hundreds, or even thousands, of years ago. This paper uncovers main elements in projects area such as the concepts and governance of projects, with an underline of the main characteristics and the projects phases and life cycle that erase the uncertainty that joins all the projects built at any time.

  11. Life cycle assessment of gasoline and diesel

    International Nuclear Information System (INIS)

    Furuholt, Edgar

    1995-01-01

    A life cycle assessment (LCA) has been carried out to compare production and use of three different fuel products: regular gasoline, gasoline with MTBE and diesel. The study quantifies energy consumption and emissions through the production chain and assesses the potential impacts to the environment. Some of the methodological problems performing the LCA are discussed. The study indicates that production of gasoline with MTBE has potentially larger environmental impacts than production of regular gasoline, caused by the extra facilities for production of MTBE. The study also shows that the results are highly sensitive to the actual product specifications and assumptions that are made. Different product specifications can therefore lead to other conclusions. The results also indicate that production of diesel leads to significantly lower potential impacts than the gasolines

  12. Life cycle costing with a discount rate

    Science.gov (United States)

    Posner, E. C.

    1978-01-01

    This article studies life cycle costing for a capability needed for the indefinite future, and specifically investigates the dependence of optimal policies on the discount rate chosen. The two costs considered are reprocurement cost and maintenance and operations (M and O) cost. The procurement price is assumed known, and the M and O costs are assumed to be a known function, in fact, a non-decreasing function, of the time since last reprocurement. The problem is to choose the optimum reprocurement time so as to minimize the quotient of the total cost over a reprocurement period divided by the period. Or one could assume a discount rate and try to minimize the total discounted costs into the indefinite future. It is shown that the optimum policy in the presence of a small discount rate hardly depends on the discount rate at all, and leads to essentially the same policy as in the case in which discounting is not considered.

  13. Life Cycle Assessment of Sugar Production (VB)

    DEFF Research Database (Denmark)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela

    1999-01-01

    The environmental organisation NOAH has proposed carrying out an environmental assessment of two different sugar productions (using sugar beet or sugar cane) in order to illustrate which of the systems has a higher environmental impact for sugar consumption in Denmark. Therefore a comparison...... will be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...... obtained in the present LCA of sugar produces from sugar canes or sugar beet it is difficult to make an immediate choice between the two possibilities. Indeed, Quantitative results from the EDIP (Environmental Design of Industrial Products) software are globally similar for both ways of producing sugar...

  14. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  15. Life cycle assessment of a floating offshore wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettel, Jan [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Praha 166 27 (Czech Republic); Charles University in Prague Environment Center, U Krize 8, Prague 158 00 (Czech Republic); Reenaas, Marte; Solli, Christian [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Hertwich, Edgar G. [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-03-15

    A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial. (author)

  16. Numerical investigation into the existence of limit cycles in two-dimensional predator�prey systems

    Directory of Open Access Journals (Sweden)

    Quay van der Hoff

    2013-05-01

    Full Text Available There has been a surge of interest in developing and analysing models of interacting species in ecosystems, with specific interest in investigating the existence of limit cycles in systems describing the dynamics of these species. The original Lotka–Volterra model does not possess any limit cycles. In recent years this model has been modified to take disturbances into consideration and allow populations to return to their original numbers. By introducing logistic growth and a Holling Type II functional response to the traditional Lotka–Volterra-type models, it has been proven analytically that a unique, stable limit cycle exists. These proofs make use of Dulac functions, Liénard equations and invariant regions, relying on theory developed by Poincaré, Poincaré-Bendixson, Dulac and Liénard, and are generally perceived as difficult. Computer algebra systems are ideally suited to apply numerical methods to confirm or refute the analytical findings with respect to the existence of limit cycles in non-linear systems. In this paper a class of predator–prey models of a Gause type is used as the vehicle to illustrate the use of a simple, yet novel numerical algorithm. This algorithm confirms graphically the existence of at least one limit cycle that has analytically been proven to exist. Furthermore, adapted versions of the proposed algorithm may be applied to dynamic systems where it is difficult, if not impossible, to prove analytically the existence of limit cycles.

  17. Application of monetary valuation in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Weidema, Bo Pedersen; Pizzol, Massimo; Miguel, Brandão

    Monetary valuation, or monetarisation, is the determination of the economic value of non-market goods, i.e. goods for which no market exists. Although monetary valuation has a great potential to be applied in Life Cycle Assessment (LCA), in particular in the weighting phase, several challenges...... for LCA. For the two surveys, the total number of respondents was 209. The critial review showed that observed- and revealed-preference methods and the abatement cost method have limited applicability in LCA, whereas the conjoint analysis method and the budget constraint method are the best options...

  18. LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER

    Science.gov (United States)

    This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...

  19. 20th CIRP International Conference on Life Cycle Engineering

    CERN Document Server

    Song, Bin; Ong, Soh-Khim

    2013-01-01

    This edited volume presents the proceedings of the 20th CIRP LCE Conference, which cover various areas in life cycle engineering such as life cycle design, end-of-life management, manufacturing processes, manufacturing systems, methods and tools for sustainability, social sustainability, supply chain management, remanufacturing, etc.

  20. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw; Chakraborty, A.; Saha, B.B.; Chun, Won Gee; Ng, K.C.

    2010-01-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel

  1. MED-SUV Data Life Cycle

    Science.gov (United States)

    Sangianantoni, Agata; Puglisi, Giuseppe; Spampinato, Letizia; Tulino, Sabrina

    2015-04-01

    The MED-SUV project aims to implement a digital e-infrastructure for data access in order to promote the monitoring and study of key volcanic regions prone to volcanic hazards, and thus improve hazard assessment, according to the rationale of Supersite GEO initiative to Vesuvius- Campi Flegrei and Mt Etna, currently identified as Permanent Supersites. The present study focuses on the life cycle of MED-SUV data generated in the first period of the project and highlights the managing approach, as well as the crucial steps to be implemented for ensuring that data will be properly and ethically managed and can be used and accessed from both MED-SUV and the external community. The process is conceived outlining how research data being handled as the project progresses, describing what data are collected, processed or generated and how these data are going to be shared and made available through Open Access. Data cycle begins with their generation and ends with the deposit in the digital infrastructure, its key series of stages through which MED-SUV data passes are Collection, Data citation, Categorization of data, Approval procedure, Registration of datasets, Application of licensing models, and PID assignment. This involves a combination of procedures and practices taking into account the scientific core mission and the priorities of the project as well as the potential legal issues related to the management and protection of the Intellectual Property. We believe that the implementation of this process constitutes a significant encouragement in MED-SUV data sharing and as a consequence a better understanding on the volcanic processes, hazard assessment and a better integration with other Supersites projects.

  2. Management system and organizational life cycle: A qualitative study

    OpenAIRE

    Selma Zone Fekih Ahmed

    2013-01-01

    This research deals with the importance of the components of the management system according to the phases of organizational life cycle. The goal of our research is to provide the theoretical reflection on the life cycle of the organization and to shed light on the components of the management system for each phase. The conceptual analysis shows that the management system is made up of its three components: ethics, mode of functioning and procedure of regulation. The organizational life cycle...

  3. Life Cycle Design - a Route to the Sustainable Industrial Culture?

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Wenzel, Henrik; Alting, Leo

    1999-01-01

    In the attempt to reorient Society's development in a more sustainable direction attention is focused on the environmental impact of products and systems over their entire life cycle, but how can the environmental life cycle perspective be introduced into the design of new solutions and how much...... can be optained through life cycle design? The authors' experience with integration of environmental considerations in product development is presented, ranging from the detailed interactive approach to the EDIP-method through various simplified approaches. The potential for environmental improvements...... is reviewed and the overall question of to what extent life cycle design is a route to the sustainable industrial culture is discussed....

  4. Development of an Enhanced Generic Data Mining Life Cycle (DMLC)

    OpenAIRE

    Hofmann, Markus; Tierney, Brendan

    2017-01-01

    Data mining projects are complex and have a high failure rate. In order to improve project management and success rates of such projects a life cycle is vital to the overall success of the project. This paper reports on a research project that was concerned with the life cycle development for large scale data mining projects. The paper provides a detailed view of the design and development of a generic data mining life cycle called DMLC. The life cycle aims to support all members of data mini...

  5. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  6. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  7. A sustainable life-cycle method

    Directory of Open Access Journals (Sweden)

    Diruji Dugarte

    2015-07-01

    Full Text Available The need for innovative and cost effective approaches for infrastructure maintenance has never been more crucial. In fact, this has been a popular topic in technical reports like the McGraw Hill Construction, the Dutch Cobouw construction magazine and the new multidisciplinary journal “Infrastructure Asset Management” by the Institution of Civil Engineers. The financial status of Industrial Parks (IP and Business Parks (BP in the Netherlands, as well as in the rest of the world, has been greatly influenced by the 2007-2008 financial crisis. As a consequence, several IPs and BPs have suffered from infrastructural deterioration that needs to be revitalized. Therefore, one of the priorities facing municipalities nowadays is stimulating companies to invest and redefine such areas with the goal of improving its economic output and optimize the expenditure on its maintenance costs. The different stakeholders involved in the life-cycle management of these parks make strategic decisions based on data that has been gathered over time by its users, either private or public. However, gathering data is becoming more and more complex with time. Infrastructures in these parks are increasingly demanding custom supply of services by the private industry to cope with their technical operations. As a consequence, the level of detail of the assets information is very high. Hence, the digital collaboration and interoperability has become almost mandatory for enabling proper management in construction areas. Interoperability can be described as the ability of making systems and organization work together.

  8. The life cycle of platelet granules.

    Science.gov (United States)

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  9. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Timsy [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Jha, Hem C. [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Verma, Subhash C. [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Robertson, Erle S., E-mail: erle@mail.med.upenn.edu [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)

    2015-01-14

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  10. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    International Nuclear Information System (INIS)

    Uppal, Timsy; Jha, Hem C.; Verma, Subhash C.; Robertson, Erle S.

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle

  11. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  12. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  13. Life cycle reliability assessment of new products—A Bayesian model updating approach

    International Nuclear Information System (INIS)

    Peng, Weiwen; Huang, Hong-Zhong; Li, Yanfeng; Zuo, Ming J.; Xie, Min

    2013-01-01

    The rapidly increasing pace and continuously evolving reliability requirements of new products have made life cycle reliability assessment of new products an imperative yet difficult work. While much work has been done to separately estimate reliability of new products in specific stages, a gap exists in carrying out life cycle reliability assessment throughout all life cycle stages. We present a Bayesian model updating approach (BMUA) for life cycle reliability assessment of new products. Novel features of this approach are the development of Bayesian information toolkits by separately including “reliability improvement factor” and “information fusion factor”, which allow the integration of subjective information in a specific life cycle stage and the transition of integrated information between adjacent life cycle stages. They lead to the unique characteristics of the BMUA in which information generated throughout life cycle stages are integrated coherently. To illustrate the approach, an application to the life cycle reliability assessment of a newly developed Gantry Machining Center is shown

  14. Life cycle assessment of regional brick manufacture

    Directory of Open Access Journals (Sweden)

    López-Aguilar, H. A.

    2016-06-01

    Full Text Available This document presents a Life Cycle Assessment (LCA study to quantify the environmental cradle-to-gate impact of the manufacture of brick for the construction industry, produced with material of igneous source. Its mineral composition and thermal isolation properties were characterized for use in real estate construction. The LCA results for brick manufacture using this material identified the greatest environmental impact to be associated with material extraction and its proportional cement content. Additionally, this document presents an evaluation of the environmental impact of the manufacturing process by comparing traditional fired clay brick and brick of the material under study. In conclusion, the studied material shows thermal insulation qualities and suitability for the manufacture of bricks with low incorporated energy.Este trabajo presenta un estudio de Análisis de Ciclo de Vida (ACV para cuantificar los impactos ambientales de la cuna a la puerta de la manufactura de ladrillos para la industria de la construcción, fabricados de un material de origen ígneo. Se caracterizó su composición mineralógica y propiedades de aislamiento térmico para ser usado en la construcción de inmuebles. Los resultados ACV de la fabricación de ladrillos de este material, identificaron la mayor contribución a los impactos ambientales asociados a la extracción del material y la cantidad proporcional de cemento. Adicionalmente, se presenta una evaluación comparativa del impacto ambiental entre la manufactura de un ladrillo tradicional de arcilla cocido y de un ladrillo del material en estudio. En conclusión el material estudiado muestra cualidades de aislamiento térmico y es adecuado para la fabricación de ladrillos con baja energía incorporada.

  15. Break free from the product life cycle.

    Science.gov (United States)

    Moon, Youngme

    2005-05-01

    Most firms build their marketing strategies around the concept of the product life cycle--the idea that after introduction, products inevitably follow a course of growth, maturity, and decline. It doesn't have to be that way, says HBS marketing professor Youngme Moon. By positioning their products in unexpected ways, companies can change how customers mentally categorize them. In doing so, they can shift products lodged in the maturity phase back--and catapult new products forward--into the growth phase. The author describes three positioning strategies that marketers use to shift consumers' thinking. Reverse positioning strips away"sacred" product attributes while adding new ones (JetBlue, for example, withheld the expected first-class seating and in-flight meals on its planes while offering surprising perks like leather seats and extra legroom). Breakaway positioning associates the product with a radically different category (Swatch chose not to associate itself with fine jewelry and instead entered the fashion accessory category). And stealth positioning acclimates leery consumers to a new offering by cloaking the product's true nature (Sony positioned its less-than-perfect household robot as a quirky pet). Clayton Christensen described how new, simple technologies can upend a market. In an analogous way, these positioning strategies can exploit the vulnerability of established categories to new positioning. A company can use these techniques to go on the offensive and transform a category by demolishing its traditional boundaries. Companies that disrupt a category through positioning create a lucrative place to ply their wares--and can leave category incumbents scrambling.

  16. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  17. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    Science.gov (United States)

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  18. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    Science.gov (United States)

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  19. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available of the environmental impacts of a product (or service). The Life Cycle Assessment (LCA) concept previously known as Life Cycle Analysis has emerged as one of the most appropriate tools for assessing product-related environmental impacts and for supporting an effective...

  20. Life cycle assessment of palm-derived biodiesel in Taiwan

    KAUST Repository

    Maharjan, Sumit; Wang, Wei-Cheng; Teah, Heng Yi

    2016-01-01

    . This study aims to evaluate the cradle-to-grave life cycle environmental performance of palm biodiesel within two different Asian countries, Malaysia and Taiwan. The phases of the life cycle such as direct land-use-change impact, plantation and milling

  1. Cost estimation and management over the life cycle of metallurgical ...

    African Journals Online (AJOL)

    This study investigates whether all expected costs over the life cycle of metallurgical research projects are included in initial, normal and fi nal cost estimates, and whether these costs are managed throughout a project's life cycle since there is not enough emphasis on the accurate estimation of costs and their management ...

  2. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    Science.gov (United States)

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  3. From BIM to life cycle information management in infrastructure

    NARCIS (Netherlands)

    Nederveen, G.A. van; Wolfert, R.; Ruitenbeek, M. van de

    2014-01-01

    In principle, Building Information Modelling (BIM) should provide a basis for infrastructure information management during the whole life-cycle. In practice however, the use of BIM is normally limited to the design and construction phases. It seems that the use of BIM information in other life-cycle

  4. Effective Integration of Life Cycle Engineering in Education

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Lutters, Diederick

    2015-01-01

    In practice, applying life cycle engineering in product design and development requires an integrated approach, because of the many stakeholders and variables (e.g. cost, environmental impact, energy, safety, quality) involved in a complete product life cycle. In educating young engineers, the same

  5. Life cycle impacts of manufacturing redwood decking in Northern California

    Science.gov (United States)

    Richard D. Bergman; Elaine Oneil; Ivan L. Eastin; Han-Sup Han

    2014-01-01

    Awareness of the environmental footprint of building construction and use has led to increasing interest in green building. Defining a green building is an evolving process with life cycle inventory and life cycle impact assessment (LCIA) emerging as key tools in that evolution and definition process. This study used LCIA to determine the environmental footprint...

  6. Determination of HSE program proportional to organizational Corporate life cycles

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Result: Corporate life cycles questionnaire with 10 indicators, available HSE programs score cards with 47 indicators according to OGP model and corporate life cycles proper programs table were results of this article. .Conclusion: The results showedweakness in the HSE programs implementation.Therefore, we offered the management methods like upgrade HSE culture and leadership for modification.

  7. Models of the Organizational Life Cycle: Applications to Higher Education.

    Science.gov (United States)

    Cameron, Kim S.; Whetten, David A.

    1983-01-01

    A review of models of group and organization life cycle development is provided and the applicability of those models for institutions of higher education are discussed. An understanding of the problems and characteristics present in different life cycle stages can help institutions manage transitions more effectively. (Author/MLW)

  8. Petri Net Modeling of Computer Virus Life Cycle | Ikekonwu ...

    African Journals Online (AJOL)

    Virus life cycle, which refers to the stages of development of a computer virus, is presented as a suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model is also presented. The intention of ...

  9. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt

    2009-01-01

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  10. Integrated design strategy for product life-cycle management

    Science.gov (United States)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  11. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    approach combines the following elements: a) The manufacturing phase chemical inventory is based on the environmental genome of industrial products database, ensuring mass and energy balance, b) near-field exposure to consumer products during the use phase is determined based on the mass of chemical......There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...

  12. Addressing the effect of social life cycle assessments

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Dreyer, Louise Camilla; Wangel, Arne

    2012-01-01

    the validity of these hypotheses. Results: Three in some cases potentially overlapping SLCA approaches are presented, assumed to create a beneficial effect in the life cycle in different ways. However, empirical and theoretical findings show that the beneficial effects proposed to arise from the use of each......Purpose: In the recently published ‘Guidelines for social life cycle assessment of products’, it is stated that the ultimate objective of developing the social life cycle assessment (SLCA) is to promote improvements of social conditions for the stakeholders in the life cycle. This article addresses...... how the SLCA should be developed so that its use promotes these improvements. Methods: Hypotheses of how the use of SLCA can promote improvement of social conditions in the life cycle are formulated, after which theories and empirical findings from relevant fields of research are used to address...

  13. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  14. A resource guide to nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Klein, D.J.

    1993-11-01

    Forecasting the useful economic life of a nuclear unit and addressing the complementary issue of license renewal, both key elements of life cycle management, are complex undertakings. This guide is a resource document emphasizing the technical elements of life cycle management (LCM) with focus on the determination of adequate maintenance programs and the identification of data and records necessary to support them. Information on other life cycle management issues, such as license renewal regulation, is also provided. Because of the volume of information required for LCM evaluations and the need for periodic updating, this Guide is presented as an updatable ''electronic book.''

  15. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  16. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  17. Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11

    International Nuclear Information System (INIS)

    Wang, S.; Yu, P.

    2006-01-01

    In this article, a systematic procedure has been explored to studying general Z q -equivariant planar polynomial Hamiltonian vector fields for the maximal number of closed orbits and the maximal number of limit cycles after perturbation. Following the procedure by taking special consideration of Z 12 -equivariant vector fields of degree 11, the maximal of 99 closed orbits are obtained under a well-defined coefficient group. Consequently, perturbation parameter control in limit cycle computation leads to the existence of 121 limit cycles in the perturbed Hamiltonian vector field, which gives rise to the lower bound of Hilbert number of 11th-order systems as H(11) ≥ 11 2 . Two conjectures are proposed regarding the maximal number of closed orbits for equivariant polynomial Hamiltonian vector fields and the maximal number of limit cycles bifurcated from the well defined Hamiltonian vector fields after perturbation

  18. A comparison of advanced thermal cycles suitable for upgrading existing power plant

    International Nuclear Information System (INIS)

    Heyen, G.; Kalitventzeff, B.

    1999-01-01

    In view of the constant growth of electricity usage and public pressure to reduce the dependence on nuclear power plants in the energy supply, solutions are sought to increase the capacity of power plants using fossil fuels. Highly efficient cycles are available: gas turbines combined with waste heat boilers and steam cycles are able to achieve efficiencies above 50-55%. However building new plants requires a large amount of capital.Alternative proposals are based on upgrades of existing plants : capital savings are expected by reusing part of the facilities. In the present study, three parallel proposals are compared on the basis of exergy efficiency; cost of investment and flexibility of operation are also discussed. They are compared with classical Rankine cycle and state of the art combined cycles. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Detrimental consequences of women life cycle on the oral cavity

    Directory of Open Access Journals (Sweden)

    Jammula Surya Prasanna

    2018-01-01

    Full Text Available The majority of us visit a dentist only when we experience a toothache, as visiting the dentist regularly is the last thing that strikes our mind. Many clinical studies have concluded that oral bacteria can lead to a genre of health conditions which may sometimes be very serious. As females go, through certain stages in their reproductive life cycle, alterations arise in the level of sex steroid hormones circulating in their bloodstream. Specifically, variations in levels of progesterone and estrogen in women may adversely affect the periodontal tissues in the mouth. Extensive research suggests a relationship between periodontal diseases and puberty, menstruation, pregnancy, oral contraceptive use, and menopause. Estrogen and progesterone affect the entire body, including the oral tissues. The gingival tissues respond to this increased level of estrogen and progesterone by undergoing vasodilatation and increased capillary permeability. Consequently, there is an increased migration of fluid and white blood cells out of blood vessels. Also associated with increased progesterone levels are alterations in the existing microbial populations. The levels of Gram-negative anaerobic bacteria, such as Prevotella intermedia, increase as a result of the high concentration of hormones available as a nutrient for growth. This article discusses the plethora of causes which affect the oral health of women as they undergo the different life cycles.

  20. Life Cycle Assessment of Lubricant Oil Plastic Containers in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Clara Oliveira

    2017-04-01

    Full Text Available Brazil, like many emerging countries, has experienced a fast growth in the demand for automobiles in recent decades. This has produced a significant increase in the amount of hazardous waste to be disposed of, including used lubricant oil. Restrictive regulations are being used by many nations to deal with this problem, focusing on treatments, such as recycling, to avoid resource depletion. Specific rules for disposal of used lubricant oil already exist in various countries, including Brazil, but not for its containers. Using the life cycle assessment methodology, this article evaluates different management options for the destination of Lubricant Oil Plastic Containers (LOPCs, comparing recycling and incineration to disposal in an industrial landfill. Results show that reducing the proportion of LOPCs destined to the landfill has positive impacts in lowering the burdens caused in the life cycle of LOPCs. Incineration, which is not a technology used for destination of LOPCs in Brazil, proved to be a promising option when combined with recycling for treatment of this kind of waste. Combining different destinations is also a good option as long as economic, logistics and the environment are taken into consideration. The present paper concludes that emerging countries are able to manage hazardous waste provided that there is adequate legislation and political will along with cooperation from the private sector. This study can be helpful to the decision-making processes concerning hazardous waste, especially for industrial strategies and policy makers.

  1. A Life-Cycle Analysis of Social Security with Housing

    OpenAIRE

    Chen, Kaiji

    2009-01-01

    This paper incorporates two features of housing in a life-cycle analysis of social security: housing as a durable good and housing market frictions. We find that with housing as a durable good unfunded social security substantially crowds out housing consumption throughout the life cycle. By contrast, aggregate non-durable consumption is higher when social security is present, although it is postponed until late in life. Moreover, in the presence of housing market frictions, social security l...

  2. Rules of Thumb in Life-Cycle Saving Decisions

    OpenAIRE

    Winter, Joachim; Schlafmann, Kathrin; Rodepeter, Ralf

    2011-01-01

    We analyse life-cycle saving decisions when households use simple heuristics, or rules of thumb, rather than solve the underlying intertemporal optimization problem. We simulate life-cycle saving decisions using three simple rules and compute utility losses relative to the solution of the optimization problem. Our simulations suggest that utility losses induced by following simple decision rules are relatively low. Moreover, the two main saving motives re ected by the canonical life-cyc...

  3. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man –environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  4. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man–environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  5. Evaluation of life cycle inventory data for recycling systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Damgaard, Anders; Jensen, Morten Bang

    2014-01-01

    This paper reviews databases on material recycling (primary as well as secondary production) used in life cycle assessments (LCA) of waste management systems. A total of 366 datasets, from 1980 to 2010 and covering 14 materials, were collected from databases and reports. Totals for CO2-equivalent...... the primary production of newsprint, HDPE and glass were 238%, 443% and 452%, respectively. For steel and aluminium the differences were 1761% and 235%, respectively. There is a severe lack of data for some recycled materials; for example, only one dataset existed for secondary cardboard. The study shows...... datasets to use could not be determined from the study. However, from the gathered data, recycling in general showed lower emission of CO2 per kg material than primary production, so the recycling of materials (considered in this study) is thus beneficial in most cases....

  6. Life Cycle Development of Obesity and Its Determinants

    DEFF Research Database (Denmark)

    Cavaco, Sandra; Eriksson, Tor; Skalli, Ali

    This paper is concerned with how obesity and some of its determinants develop over individuals’ life cycles. In particular we examine empirically the role and relative importance of early life conditions (parents’ education and socioeconomic status) and individuals’ own education as adults and how...... their impacts on the probability of overweight and obesity evolves over the life cycle. As the data set includes information about the individuals’ health behaviours (smoking and physical exercise) at various ages we can also examine the impact of these at different stages of the persons’ life cycle. The data......’ socioeconomic status predicts obesity in early adulthood whereas individuals’ own socioeconomic status as adults is more important in explaining obesity at later stages of the life cycle, and (iii) changes in obesity status are associated with changes in health behaviours....

  7. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.

    Science.gov (United States)

    Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F

    2012-12-01

    Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Coaching "Callings" throughout the Adult Life Cycle.

    Science.gov (United States)

    Hudson, Frederic M.

    2001-01-01

    The process of "callings" continues throughout life. Coaching can connect the present to the future in a meaningful way. Callings represent a value shift requiring revision of the nature and scope of one's central purpose in life and meaningful activities. (JOW)

  9. Software life cycle process and classification guides for KNICS digital instrumentation and control system design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Son, Han Seung; Kim, Jang Yeol; Kwon, Kee Choon; Lee, Soon Seung; Kim, Doo Hwan [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Documentation should exist that shows that the qualification activities have been successfully accomplished for each life cycle activity group. In particular, the documentation should show that the system safety requirements have been adequately addressed for each life cycle activity group, that no new hazards have been introduced, and that the software requirements, design elements, and code elements that can affect safety have been identified. Because the safety of software can be assured through both the process Verification and Validation (V and V) itself and the V and V of all the intermediate and final products during the software development lifecycle, the development of KNICS Software Safety Framework (KSSF) must be established. As the first activity for establishing KSSF, we have developed this report, Software Life Cycle Process and Classification Guides for KNICS Digital I and C System. This report is organized as follows. Chapter I describes the background, definitions, and references of SLCP. Chapter II describes KNICS safety software categorization. In Chapter III, we define the requirements on software life cycle process for designing digital KNICS. Chapter III.3, that is the main section of the chapter, includes the requirements for software life cycle process planning, the requirements for software life cycle process implementation, and the requirements for software life cycle process design outputs. Finally, we have described the result of a case study on the SLCP for developing the software of ESF-CCS system that is being developed by a private company, BNF. 29 refs., 5 figs., 7 tabs. (Author)

  10. Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Nuri Cihat Onat

    2014-12-01

    Full Text Available Sustainable transportation and mobility are key components and central to sustainable development. This research aims to reveal the macro-level social, economic, and environmental impacts of alternative vehicle technologies in the U.S. The studied vehicle technologies are conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and full battery electric vehicles (BEV. In total, 19 macro level sustainability indicators are quantified for a scenario in which electric vehicles are charged through the existing U.S. power grid with no additional infrastructure, and an extreme scenario in which electric vehicles are fully charged with solar charging stations. The analysis covers all life cycle phases from the material extraction, processing, manufacturing, and operation phases to the end-of-life phases of vehicles and batteries. Results of this analysis revealed that the manufacturing phase is the most influential phase in terms of socio-economic impacts compared to other life cycle phases, whereas operation phase is the most dominant phase in the terms of environmental impacts and some of the socio-economic impacts such as human health and economic cost of emissions. Electric vehicles have less air pollution cost and human health impacts compared to conventional gasoline vehicles. The economic cost of emissions and human health impact reduction potential can be up to 45% and 35%, respectively, if electric vehicles are charged through solar charging stations. Electric vehicles have potential to generate income for low and medium skilled workers in the U.S. In addition to quantified sustainability indicators, some sustainability metrics were developed to compare relative sustainability performance alternative passenger vehicles. BEV has the lowest greenhouse gas emissions and ecological land footprint per $ of its contribution to the U.S. GDP, and has the lowest ecological footprint per unit of its energy consumption. The

  11. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  12. Life cycle management. Condition monitoring of wind power plants; Life-cycle-management. Zustandsueberwachung von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R. [cmc GmbH, Kiel (Germany)

    2013-06-01

    The author of the contribution under consideration reports on maintenance strategies and condition monitoring in the field of wind energy. Beside the components in the drive train of wind turbines under consideration, the condition monitoring of the hardware systems and their software is explained. A brief overview of the field of machinery diagnosis and an explanation of the transmission of the measured data follow. Additional sensors such as sensors for the rotor blade monitoring, oil particles counter or oil quality sensors are described. In the field of diagnostic certainty, special follow-up studies such as video endoscopy, analysis of oil or grease, filter testing and material testing are discussed. The information from these thematic fields is used in the life-cycle management database for operationally relevant evaluations and considerations of economy of condition monitoring systems.

  13. General Concerns Life-Cycle Design of Economical Ice-Resistant Structures in the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Zhang Da-yong

    2017-08-01

    Full Text Available In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both iceresistant and economical offshore platforms. However, there are many risks during the life cycle of offshore platforms due to the imperfect preliminary design for the Bohai Sea economical ice-resistant structures. As a result, the whole life-cycle design should be considered, including plan, design, construction, management and maintenance design. Based on the demand of existing codes and research of the basic design, structural ice-resistant performance and the reasonable management and maintenance, the life-cycle design theory is discussed. It was concluded that the life-cycle cost-effective optimum design proposed will lead to a minimum risk.

  14. LIFE CYCLE DESIGN OF MILK AND JUICE PACKAGING

    Science.gov (United States)

    A life cycle design demonstration project was initiated between the U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Dow Chemical Company, and the University of Michigan to investigate milk and juice packagie design. The primary objective of ...

  15. Estimating pesticide emissions for life cycle assessment of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Røpke, Inge

    2004-01-01

    As the first country in Europe Denmark almost 2 years ago established an official center for Life Cycle Assessments and life cycle approaches as an element of the national IPP (Integrated Product Policy). The Danish EPA lends financial support to this important initiative, the aim of which is to: 1....... promote the use of Life Cycle Assessment and other product-oriented environmental tools in companies, 2. support companies and other in using environmental assessment of products and services, 3. ensure that the effort in the LCA area is based on a solid and scientific basis, and 4. maintain the well...... evaluation finished in September 2004. Important learnings for all who are engaged in dissemination of life cycle thinking in industry will be presented....

  16. Environmental life cycle assessment of water supply in South Africa ...

    African Journals Online (AJOL)

    The life cycle impact assessment (LCIA) phase of LCAs evaluates the ... considered where water is used in the manufacturing sector of South Africa, and to identify ... The boosting requirements attribute most to the electricity dependency of the ...

  17. Transportation Life Cycle Assessment (LCA) Synthesis, Phase II

    Science.gov (United States)

    2018-04-24

    The Transportation Life Cycle Assessment (LCA) Synthesis includes an LCA Learning Module Series, case studies, and analytics on the use of the modules. The module series is a set of narrated slideshows on topics related to environmental LCA. Phase I ...

  18. Electric vehicle life cycle cost analysis : final research project report.

    Science.gov (United States)

    2017-02-01

    This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...

  19. Life cycle and economic efficiency analysis: durable pavement markings.

    Science.gov (United States)

    2009-07-01

    This project examined the life cycle and economic efficiency of two pavement marking : materials inlaid tape and thermoplastic to find the most economical product for specific : traffic and weather conditions. Six locations in the state of Ma...

  20. Life cycle assessment of a wind farm and related externalities

    DEFF Research Database (Denmark)

    Schleisner, Liselotte

    2000-01-01

    This paper concentrates on the assessment of energy and emissions related to the production and manufacture of materials for an offshore wind farm as well as a wind farm on land based on a life cycle analysis (LCA) model. In Denmark a model has been developed for life cycle assessments of different...... materials. The model is able to assess the energy use related to the production, transportation and manufacture of 1 kg of material. The energy use is divided into fuels used in order to estimate the emissions through the life cycle. In the paper the model and the attached assumptions are described......, and the model is demonstrated for two wind farms. The externalities for the wind farms are reported, showing the importance of life cycle assessment for renewable energy technologies. (C) 2000 Elsevier Science Ltd. All rights reserved....

  1. A new data architecture for advancing life cycle assessment

    Science.gov (United States)

    IntroductionLife cycle assessment (LCA) has a technical architecture that limits data interoperability, transparency, and automated integration of external data. More advanced information technologies offer promise for increasing the ease with which information can be synthesized...

  2. Life Cycle Costs in Education: Operations & Maintenance Considered.

    Science.gov (United States)

    Moussatche, Helena; Languell-Urquhart, Jennifer; Woodson, Carol

    2000-01-01

    Discusses life cycle cost analysis when deciding on flooring finishes and examines operations and maintenance cost effectiveness relative to hard, resilient, and soft flooring. A chart of evaluated flooring materials' characteristics, appropriate maintenance procedures, and recommended frequency is included. (GR)

  3. PETRI NET MODELING OF COMPUTER VIRUS LIFE CYCLE

    African Journals Online (AJOL)

    Dr Obe

    dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model ... Keywords: Virus lifecycle, Petri nets, modeling. simulation. .... complex process. Figure 2 .... by creating Matlab files for five different computer ...

  4. Consumption Over Life Cycle: How Different is Housing?

    OpenAIRE

    Fang (Annie) Yang

    2006-01-01

    Micro data over the life cycle shows different patterns of consumption for housing and non-housing goods: the consumption profile of non-housing goods is hump-shaped while the consumption profile for housing first increases monotonically and then flattens out. These patterns hold true at each consumption quartile. This paper develops aquantitative, dynamic general equilibrium model of life-cycle behavior, which generates consumption profiles consistent with the observed data. Borrowing constr...

  5. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  6. A Literature review of life cycle assessment for bridge infrastructure

    DEFF Research Database (Denmark)

    Du, Guangli

    2010-01-01

    Currently, the whole world is confronted with great challenges related to environmental issues. As a fundamentalinfrastructure in transport networks, railway bridges are responsible for numerous material and energy consumption throughtheir life cycle, which in turn leads to significant environmen......Currently, the whole world is confronted with great challenges related to environmental issues. As a fundamentalinfrastructure in transport networks, railway bridges are responsible for numerous material and energy consumption throughtheir life cycle, which in turn leads to significant...

  7. Designer and constructor practices to ensure life cycle performance.

    OpenAIRE

    Shelton, Joelle L.

    1998-01-01

    CIVINS (Civilian Institutions) Thesis document Technology advances of the last few decades, in such areas as computing and construction materials, have inspired many attempts to improve the construction process. Many of these attempts focus on reducing costs and improving functionality, such as life cycle cost analysis and value engineering, while others, such as design-build, focus on specific phases of the life cycle. Other factors such as declining productivity, the quantity of construc...

  8. Life Cycle Assessment of fresh dairy packaging at ELOPAK

    OpenAIRE

    Ruttenborg, Vegard

    2017-01-01

    Nearly all food and drink products require some packaging, and the impact from production and consumption is causing a strain on the environment. To counteract the bad effects, business is emphasizing the environmental performance of products and therefore utilising Life Cycle Assessment as a tool to quantify the environmental impacts from a products life cycle. Elopak, which is an International supplier of paper-based packaging for liquid food, is a such company. This thesis i...

  9. CORE COMPETENCIES AND PHASES OF THE ORGANIZATIONAL LIFE CYCLE

    OpenAIRE

    Ahmed, Selma Zone Fekih; Koubaa, Manel Belguith

    2013-01-01

    Organizations evolve according to well-defined phases during which it must raise some competencies more than others. This study discusses the importance of core competencies according to the phases of the life cycle of the organization. In this research, we mobilize the core competencies approach to explore the competence required at each stage of the organizational life cycle. The quantitative study of 50 Tunisian companies operating in the food sector shows that the importance of core ...

  10. HIV LIFE CYCLE AND POTENTIAl TARGETS FOR DRUG ACTIVITY

    African Journals Online (AJOL)

    TABLE Ill. STAGES IN THE HIV UFE CYCLE THAT ARE TARGETS FOR CURRENTLY AVAIlABLE ANTIRETROVIRAlS. Fig. 7. Life cycle ofHIVand targets for ontiretrovirol theropy. (Reproduced with permission from: 5Miller, The Clinician's Guide to. Antiretroviral Resistance, 2007.) JULY 2002. Budding: immature virus.

  11. The Life-Cycle Policy model

    NARCIS (Netherlands)

    Anciaux, N.L.G.; Bouganim, Luc; van Heerde, H.J.W.; Pucheral, Philippe; Apers, Peter M.G.

    Our daily life activity leaves digital trails in an increasing number of databases (commercial web sites, internet service providers, search engines, location tracking systems, etc). Personal digital trails are commonly exposed to accidental disclosures resulting from negligence or piracy and to

  12. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  13. How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector?

    DEFF Research Database (Denmark)

    Niero, Monia; Di Felice, Francesco; Ren, Jingzheng

    2014-01-01

    , as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value......This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper......; these correlations can be used to improve the design of new wooden pallets.The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent...

  14. Models of life: epigenetics, diversity and cycles

    Science.gov (United States)

    Sneppen, Kim

    2017-04-01

    This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.

  15. Aquatic ecotoxicological indicators in life cycle assessment

    DEFF Research Database (Denmark)

    Pennington, David W.; Payet, Jerome; Hauschild, Michael Zwicky

    2004-01-01

    available methods, without the need to describe the entire SSDs and without the need for additional data. For example, the octanol-water partitioning coefficient provides a sufficient estimation basis for about 50% of existing chemicals that have a narcosis mode of action. This is also relevant in LCA...

  16. Life cycle assessment of the offshore wind farm alpha ventus

    International Nuclear Information System (INIS)

    Wagner, Hermann-Josef; Baack, Christoph; Eickelkamp, Timo; Epe, Alexa; Lohmann, Jessica; Troy, Stefanie

    2011-01-01

    Due to better wind conditions at sea, offshore wind farms have the advantage of higher electricity production compared to onshore and inland wind farms. In contrast, a greater material input, leading to increased energy consumptions and emissions during the production phase, is required to build offshore wind farms. These contrary effects are investigated for the first German offshore wind farm alpha ventus in the North Sea. In a life cycle assessment its environmental influence is compared to that of Germany's electricity mix. In comparison to the mix, alpha ventus had better indicators in nearly every investigated impact category. One kilowatt-hour electricity, generated by the wind farm, was burdened with 0.137 kWh Primary Energy-Equivalent and 32 g CO 2 -Equivalent, which represented only a small proportion of the accordant values for the mix. Furthermore, the offshore foundations as well as the submarine cable were the main energy intensive components. The energetic and greenhouse gas payback period was less than one year. Therefore, offshore wind power, even in deep water, is compatible with the switch to sustainable electricity production relying on renewable energies. Additional research, taking backup power plants as well as increasingly required energy storage systems into account, will allow further calculation. -- Highlights: → Offshore wind energy represents an environmentally friendly way of power generation. → The offshore foundations and the submarine cable are energy intensive components. → Alpha ventus emits 30 g CO 2 per kWh electricity over the entire life cycle. → Less specific emissions occur in comparison to the existing German electricity grid. → The energetic and greenhouse gas payback periods are less than one year.

  17. Environmental profile evaluations of piezoelectric polymers using life cycle assessment

    Science.gov (United States)

    Parvez Mahmud, M. A.; Huda, Nazmul; Hisan Farjana, Shahjadi; Lang, Candace

    2018-05-01

    Piezoelectric materials are indispensable to produce electricity, harvesting ambient mechanical energy through motion for sectors and products, from sensors, to biomedical systems, to tiny electronics. Nylon 66 and tetrafluoroethylene dominate the market among thousands of piezoelectric materials to provide an autonomous power supply. Emphasis has been given on investigating the environmental impacts of both materials due to the growing consciousness of the ecological and health risks of piezoelectric polymers. The fabrication steps of these polymers from raw materials are extremely hazardous to the environment in terms of toxicity and human health effects. However, no quantification of the possible environmental impacts for the manufacturing of nylon 66 and tetrafluoroethylene exists. This research paper addresses their comparative environmental effects, in terms of chemical constituents. Life cycle impact analysis has been carried out by ReCipe 2016 Endpoint, Ecopoints 97, Raw material flows and CML-IA baseline methods, using Australasian life cycle inventory database and SimaPro software. The impacts are considered in categories like global warming, eutrophication, terrestrial ecotoxicity, human carcinogenic toxicity, fine particulates, and marine ecotoxicity. The results show that there is a significant environmental impact caused by tetrafluoroethylene in comparison with nylon 66 polymer during the manufacturing process. These impacts occur due to the quantity of toxic chemical elements present as constituents of tetrafluoroethylene raw material and its fabrication periods. It can be anticipated that a better ecological performance can be attained through optimization, especially by cautiously picking substitute materials and machines, taking into account the toxicity aspects, and by minimizing the impacts related to designs, fabrication processes and usage.

  18. Design strategies for pollution prevention in industries (life cycle design)

    International Nuclear Information System (INIS)

    Saleemi, A.R.

    1997-01-01

    Pollution prevention and adoption of clean technologies in the industry are to be the proper strategies to flight against the growing industrial pollution in Pakistan. These strategies will not only reduce the existing pollution load and will also help to have sustainable industrial development in Pakistan in is well established that the concept of pollution prevention demands use of minimum, resources with maximum efficiency to achieve double benefits such as resource conservation and environmental protection. The application of cleaner production and waste minimization in thousand of industries in other part of world has proved beyond doubt that the use of cleaner technology is cheaper as compared to installation of waste treatment plants for end of pipe treatment. Waste treatment plants have been blamed not to solve any pollution problem, but only to transfer pollution from one environmental media to another. The adoption of waste treatment technologies have also created lot of other problems. Thousand of industries in the world have change their focus of activities from end of pipe treatment to pollution prevention techniques. It is the right time to start pollution prevention activities in industry. The design of a product system in the industry can be represented logically as a series of decision and choices made individually and collectively by design participant. The choices range from the selection of materials and manufacturing processes to choices relating to shape, from and function of a product. The product life cycle design provides a logical system for addressing pollution prevention because the full range of environmental consequence associated with the product can be considered and it is a powerful tool for identifying and maximizing the environmental benefits of pollution prevention. The life cycle assesment (LCA) concept suggests that decision making should be based on consideration of the cradle-to grave characteristics of the product, process

  19. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    Science.gov (United States)

    Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  20. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 1, Data Analysis-The Deliverables provides a comprehensive treatment of data analysis within the systems development life-cycle and all the deliverables that need to be collected in analysis. The purpose of deliverables is explained and a number of alternative ways of collecting them are discussed. This book is comprised of five chapters and begins with an overview of what """"analysis"""" actually means, with particular reference to tasks such as hardware planning and software evaluation and where they fit into the overall cycle. The ne

  1. Moonstruck how lunar cycles affect life

    CERN Document Server

    Naylor, Ernest

    2015-01-01

    Throughout history, the influence of the full Moon on humans and animals has featured in folklore and myths. Yet it has become increasingly apparent that many organisms really are influenced indirectly, and in some cases directly, by the lunar cycle. Breeding behaviour among some marine animals has been demonstrated to be controlled by internal circalunar biological clocks, to the point where lunar-daily and lunar-monthly patterns of Moon-generated tides are embedded in their genes. Yet, intriguingly, Moon-related behaviours are also found in dry land and fresh water species living far beyond the influence of any tides. In Moonstruck, Ernest Naylor dismisses the myths concerning the influence of the Moon, but shows through a range of fascinating examples the remarkable real effects that we are now finding through science. He suggests that since the advent of evolution on Earth, which occurred shortly after the formation of the Moon, animals evolved adaptations to the lunar cycle, and considers whether, if Moo...

  2. Life-cycle stages of Dinophysis acuminata (Dinophyceae) in the ...

    African Journals Online (AJOL)

    Despite many observations of different life-cycle stages of Dinophysis species, the complete life history of the genus is still unknown owing to the difficulties encountered in culturing these species. The seasonal distribution of D. acuminata was followed at two offshore stations in the brackish Baltic Sea by means of in situ ...

  3. LIFE CYCLE DESIGN OF A FUEL TANK SYSTEM

    Science.gov (United States)

    This life cycle design (LCD) project was a collaborative effort between the National Pollution Prevention Center at the University of Michigan, General Motors (GM), and the U.S. Environmental Protection Agency (EPA). The primary objective of this project was to apply life cyc...

  4. [Herbal medicine in womens' life cycle].

    Science.gov (United States)

    Ben-Arye, Eran; Oren, Amnon; Ben-Arie, Alon

    2006-10-01

    Women use herbs and other traditional and complementary modalities to treat various ailments throughout their life circle. This article reviewed 19 randomized controlled trials, which studied efficacy and safety of various herbs in the treatment of premenstrual syndrome (PMS), nausea and vomiting in the first trimester of pregnancy and menopausal hot flushes. Preliminary data support the efficacy of Chaste tree fruit (Vitex agnus) in the treatment of PMS, Ginger (Zingiber officinale) in the treatment of hyperemesis gravidarum and (Cimicifuga racemosa) in the treatment of menopausal hot flushes. Additional and more rigorous studies are warranted in order to support the efficacy and safety of these herbal remedies.

  5. Life cycle synchronization is a viral drug resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Iulia A Neagu

    2018-02-01

    Full Text Available Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, such as adherence to a prescribed regimen and the emergence of viral drug resistance. The epidemiology and evolution of drug resistance have been extensively characterized, and it is generally assumed that drug resistance arises from mutations that alter the virus's susceptibility to the direct action of the drug. In this paper, we consider the possibility that a virus population can evolve towards synchronizing its life cycle with the pattern of drug therapy. The periodicity of the drug treatment could then allow for a virus strain whose life cycle length is a multiple of the dosing interval to replicate only when the concentration of the drug is lowest. This process, referred to as "drug tolerance by synchronization", could allow the virus population to maximize its overall fitness without having to alter drug binding or complete its life cycle in the drug's presence. We use mathematical models and stochastic simulations to show that life cycle synchronization can indeed be a mechanism of viral drug tolerance. We show that this effect is more likely to occur when the variability in both viral life cycle and drug dose timing are low. More generally, we find that in the presence of periodic drug levels, time-averaged calculations of viral fitness do not accurately predict drug levels needed to eradicate infection, even if there is no synchronization. We derive an analytical expression for viral fitness that is sufficient to explain the drug-pattern-dependent survival of strains with any life cycle length. We discuss the implications of these findings for

  6. 19th CIRP Conference on Life Cycle Engineering

    CERN Document Server

    Linke, Barbara

    2012-01-01

    The 19th CIRP Conference on Life Cycle Engineering continues a strong tradition of scientific meetings in the areas of sustainability and engineering within the community of the International Academy for Production Engineering (CIRP). The focus of the conference is to review and discuss the current developments, technology improvements, and future research directions that will allow engineers to help create green businesses and industries that are both socially responsible and economically successful.  The symposium covers a variety of relevant topics within life cycle engineering including Businesses and Organizations, Case Studies, End of Life Management, Life Cycle Design, Machine Tool Technologies for Sustainability, Manufacturing Processes, Manufacturing Systems, Methods and Tools for Sustainability, Social Sustainability, and Supply Chain Management.

  7. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  8. Confronting product life thinking with product life cycle analysis

    DEFF Research Database (Denmark)

    McAloone, Tim C.

    2001-01-01

    to "read" the environment out of the product, in order to systematically, quickly and efficiently come to some design recommendations for the company. The phrases "LCA" and "product life thinking" will be described and differentiated and a pattern identified for their cooperative effect in use....

  9. Life cycle versus balanced funds: An emerging market perspective

    Directory of Open Access Journals (Sweden)

    Elbie Louw

    2017-08-01

    Full Text Available Background: Inadequate retirement savings is an international challenge. Additionally, individuals are not cognisant of how asset allocation choices ultimately impact retirement savings. Life cycle and balanced funds are popular asset allocation strategies to save towards retirement. However, recent research is questioning the efficacy of life cycle funds that switch to lower risk asset classes as retirement approaches. Aim: The purpose of this study is to compare the performance of life cycle funds with balanced funds to determine whether either dominates the other. The study compares balanced and life cycle funds with similar starting asset allocations as well as those where the starting asset allocations differ. Setting: The study has a South African focus and constructs funds using historical data for the main local asset classes; that is, equity, fixed income and cash, as well as a proxy for foreign equity covering the period 1986–2013. Method: The study makes use of Monte Carlo simulations and bootstrap with replacement, and compares the simulated outcomes using stochastic dominance as decision-making criteria. Results: The results indicate that life cycle funds fail to dominate balanced funds by first-order or almost stochastic dominance when funds have a similar starting asset allocation. It is noteworthy that there are instances where the opposite is true, that is, balanced funds dominate life cycle funds. These results highlight that while the life cycle funds provide more downside protection, they significantly suppress the upside potential compared to balanced funds. When the starting asset allocations of the balanced and life cycle funds differ, the stochastic dominance results are inconsistent as to the efficacy of the life cycle fund strategies considered. Conclusion: The study shows that whether one fund is likely to dominate the other is strongly dependent on the underlying asset allocation strategies of the funds

  10. Life cycle strategies of copepods in coastal upwelling zones

    Science.gov (United States)

    Peterson, W.

    1998-06-01

    Life cycles of copepods of coastal upwelling zones are of the multigenerational type—as many as 10 or more generations may be produced each year, depending upon water temperature, food concentration and length of the upwelling season. Abundant food resources and moderate temperature convey advantages to those copepods living in coastal upwelling zones, however, there is a clear disadvantage in that coastal upwelling zones are highly advective environments. Typically, water circulation patterns are such that surface waters are carried offshore, deeper waters carried onshore and most of the water column over the continental shelf is moving equatorward. The challenge to copepod species that inhabit upwelling systems is life cycle closure—how do eggs, nauplii, juveniles and adults avoid being swept out of these ecosystems in the face of persistent transport out of the system? In this review, I first list the species which dominate coastal upwelling ecosystems then discuss three variations on the multigenerational life cycle scheme that are observed in upwelling systems. The latter part of the review is devoted to discussion of how individuals are retained in the productive continental shelf waters within coastal upwelling ecosystems. The suggestion is made that the only copepod species that successfully achieve life cycle closure in such systems are those that are preadapted to upwelling circulation patterns. Our quantitative understanding of the relative importance of physical factors (such as advection) and biological factors (birth, growth, and mortality) on life cycle strategies and population dynamics is quite rudimentary. It would help our understanding if there were more field studies and more computer modeling studies that focused on seasonal cycles of abundance, development times and vertical distribution of life cycle stages, and measurements of water circulation patterns.

  11. Life Cycle Engineering – from methodology to enterprise culture

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Alting, Leo; Poll, Christian

    2003-01-01

    As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number of method......As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number...... of methodologies and tools for life cycle assessment and development of more eco-efficient products, from complex to simplified, catering to the needs of especially small and medium-sized enterprizes. The tools and data are in place, but dissemination lacks behind. Propagation of life cycle thinking and life cycle...... engineering to larger parts of industry is attempted by strengthening the market pull through integrated product policy measures, and at the same time pushing through information activities, training and dissemination of tools. Experience hitherto shows that these forces are insufficient and that stronger...

  12. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  13. Predicting product life cycle using fuzzy neural network

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2014-09-01

    Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.

  14. Life-Cycle Consumption and Children

    DEFF Research Database (Denmark)

    Jørgensen, Thomas Høgholm

    2017-01-01

    I estimate by maximum likelihood a dynamic model of optimal intertemporal allocation of consumption in the presence of children using high-quality Danish longitudinal data. The number and age of all children can affect the marginal utility of consumption while income uncertainty, credit constraints...... and postretirement motives also influence household behaviour. While I estimate that children have a surprisingly small effect on the marginal utility of non-durable consumption, data simulated from the estimated model replicates similar correlations between log consumption growth and changing household composition...... as found in the Danish data and typically found in UK and US data. To reconcile the results with existing studies, I illustrate how ignoring precautionary motives increases the estimated importance of children. The results indicate that precautionary motives might play a larger role than children...

  15. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  16. Influence of Life Cycle Stage on Family Social Climate and Attitudes Toward the Residential Environment.

    Science.gov (United States)

    Inman, Marjorie

    The existing physical forms of housing are not always compatible with prevalent social patterns. To investigate the relationship between family system characteristics and attitudes about residential space, 64 Indiana families in 4 stages of the family life cycle (early years with no children, crowded years with at least one preschool child, peak…

  17. The Life Cycle of the Child Care Center -- Understanding Center Growth and Development.

    Science.gov (United States)

    Bess, Gary; Ratekin, Cindy

    2001-01-01

    Identifies the seven stages of the life cycle for child care centers: entrepreneurial; development; formalization; maturity; stagnation; death; and renewal. Suggests that critical transition points exist for organizational development, and that, if they are aware of and understand each stage of development, administrators may intervene at those…

  18. Social security wealth and aggregate consumption : An extended life-cycle model estimated for The Netherlands

    NARCIS (Netherlands)

    Zant, W.

    In this paper a method is developed to calculate a wealth variable accounting for the existence of the basic old-age provisions in The Netherlands (AOW). In line with Feldstein's extended life-cycle model, consumption functions with (gross) social security wealth are estimated for The Netherlands

  19. Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Abanades, J. Carlos; Escosa, Jesus M.; Pano, Jara; Gimenez, Antonio; Sanchez-Biezma, Andres; Ballesteros, Juan C.

    2008-01-01

    Postcombustion CO 2 capture is the best suitable capture technology for existing coal power plants. This paper focuses on an emerging technology that involves the separation of CO 2 using the reversible carbonation reaction of CaO to capture CO 2 from the flue gas, and the calcination of CaCO 3 to regenerate the sorbent and produce concentrated CO 2 for storage. We describe the application to this concept to an existing (with today's technology) power plant. The added capture system incorporates a new supercritical steam cycle to take advantage of the large amount of heat coming out from the high temperature capture process (oxyfired combustion of coal is needed in the CaCO 3 calciner). In these conditions, the capture system is able to generate additional power (26.7% efficiency respect to LHV coal input to the calciner after accounting for all the penalties in the overall system), without disturbing the steam cycle of the reference plant (that retains its 44.9 efficiency). A preliminary cost study of the overall system, using well established analogues in the open literature for the main components, yields capture cost around 16 Euro /ton CO 2 avoided and incremental cost of electricity of just over 1 Euro /MW h e

  20. Life cycle evaluation of spaceflight qualified nickel-hydrogen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.K.; Brill, J.N. [Eagle-Picher Industries, Inc., Joplin, MO (United States). Advanced Systems Operation

    1995-12-31

    Life cycle test results are summarized from more than 300 spaceflight qualified nickel-hydrogen (NiH{sub 2}) battery cells currently on life test. Cells ranging in size from 4 ampere-hours (Ah) to 120 Ah are being tested under a variety of conditions to support current NiH{sub 2} battery applications. Results to date include 55,600 accelerated LEO cycles at 30% DOD; 102,840 accelerated LEO cycles at 15% DOD; 44,900 cycles under a real-time LEO profile; 44,100 cycles in real-time LEO; 30 accelerated GEO eclipse seasons and 7 real-time GEO eclipse seasons, both at 75% DOD maximum. Alternative separator materials have completed more than 40,000 charge/discharge cycles in accelerated LEO testing and advanced design electrocatalytic hydrogen electrodes have completed more than 16,000 cycles in real-time LEO testing. Common pressure vessel cell designs have completed 18,000 cycles in real-time LEO testing at 45% DOD.

  1. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  2. Industrial open source solutions for product life cycle management

    Directory of Open Access Journals (Sweden)

    Jaime Campos

    2014-12-01

    Full Text Available The authors go through the open source for product life cycle management (PLM and the efforts done from communities such as the open source initiative. The characteristics of the open source solutions are highlighted as well. Next, the authors go through the requirements for PLM. This is an area where more attention has been given as the manufacturers are competing with the quality and life cycle costs of their products. Especially, the need of companies to try to get a strong position in providing services for their products and thus to make themselves less vulnerable to changes in the market has led to high interest in product life cycle simulation. The potential of applying semantic data management to solve these problems discussed in the light of recent developments. In addition, a basic roadmap is presented as to how the above-described problems could be tackled with open software solutions.

  3. Assessing environmental impacts in a life cycle perspective

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2005-01-01

    is focused on the product system which comprises all the processes which the product and its components meet throughout their lives- from the extraction of raw materials via manufacture, use and waste management to final disposal, or in short from the cradle to the grave (see Figure 1). The focus......What are the environmental impacts from an armchairor a cellular phone or a steak, if you take into account all the activities needed to produce, maintain, use or consume and eventually dispose of it? Life cycle impact assessment is the part of life cycle assessment (LCA) where the inventory...... of material flows in the life cycle of a product are translated into environmental impacts and consumption of resources, and questions like these are given an answer. The environmental impacts may range from very local (e.g. land use) to global (like climate change). As an environmental analysis tool, LCA...

  4. Replacement and inspection policies for products with random life cycle

    International Nuclear Information System (INIS)

    Yun, Won Young; Nakagawa, Toshio

    2010-01-01

    In this paper, we consider maintenance policies for products in which the economical life cycle of products is a random variable. First, we study a periodic replacement policy with minimal repair. The system is minimally repaired at failure and is replaced by new one at age T (periodic replacement policy with minimal repair of Barlow and Hunter). The expected present value of total maintenance cost of products with random life cycle is obtained and the optimal replacement interval minimizing the cost is found. Second, we consider an inspection policy for products with random life cycle to detect the system failure. The expected total cost is obtained and the optimal inspection interval is found. Numerical examples are also included.

  5. A CASKCOM: A cask life cycle cost model

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    CASKCOM (cask cost model) is a computerized model which calculates the life cycle costs (LCC) associated with specific transportation cask designs and discounts those costs, if the user so chooses, to a net present value. The model has been used to help analyze and compare the life cycle economics of burnup credit and nonburnup credit cask designs being considered as conditions for a new generation of spent fuel transportation casks. CASKCOM is parametric in the sense that its input data can be easily changed in order to analyze and compare the life cycle cost implications arising from alternative assumptions. The input data themselves are organized into two main groupings. The first grouping comprises a set of data which is independent of cask design. This first grouping does not change from the analysis of one cask design to another. The second grouping of data is specific to each individual cask design. This second grouping thus changes each time a new cask design is analyzed

  6. Quantifying Cost Risk Early in the Life Cycle

    International Nuclear Information System (INIS)

    Mar, B.

    2004-01-01

    A new method for analyzing life cycle cost risk on large programs is presented that responds to an increased emphasis on improving sustainability for long-term programs. This method provides better long-term risk assessment and risk management techniques. It combines standard Monte Carlo analysis of risk drivers and a new data-driven method developed by the BMDO. The approach permits quantification of risks throughout the entire life cycle without resorting to difficult to support subjective methods. The BMDO methodology is shown to be relatively straightforward to apply to a specific component or process within a project using standard technical risk assessment methods. The total impact on system is obtained using the program WBS, which allows for the capture of correlated risks shared by multiple WBS items. Once the correlations and individual component risks are captured, a Monte Carlo simulation can be run using a modeling tool such as ANALYTICA to produce the overall life cycle cost risk

  7. Life cycle assessment and the agri-food chain

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Nguyen, T Lan T

    2012-01-01

    Our food consumption is responsible for a major part of the environmental impact related to our total consumption. Life cycle assessment (LCA) is a product-oriented tool that can be used efficiently to identify improvement options within the food chain covering a product’s life cycle from cradle...... to grave, which is very complex for many foods, and to support choices of consumption. The LCA methodology is supported by public standards and public policy measures and has proved its value in business development for more environmentally friendly products. It is an essential feature that the effects...... of resource use and emissions associated with a product’s life cycle can be aggregated into impact categories (e.g., nonrenewable energy use, land occupation, global warming, acidification, etc.) and further aggregated into overall damage impacts (e.g., impacts on biodiversity, human health, and resource...

  8. Life Cycle Assessment in the Cereal and Derived Products Sector

    DEFF Research Database (Denmark)

    Renzulli, Pietro A.; Bacenetti, Jacopo; Benedetto, Graziella

    2015-01-01

    environmental improvement in such systems. Following a brief introduction to the cereal sector and supply chain, this chapter reviews some of the current cereal-based life cycle thinking literature, with a particular emphasis on LCA. Next, an analysis of the LCA methodological issues emerging from......This chapter discusses the application of life cycle assessment methodologies to rice, wheat, corn and some of their derived products. Cereal product systems are vital for the production of commodities of worldwide importance that entail particular environmental hot spots originating from...... their widespread use and from their particular nature. It is thus important for tools such as life cycle assessment (LCA) to be tailored to such cereal systems in order to be used as a means of identifying the negative environmental effects of cereal products and highlighting possible pathways to overall...

  9. Security Risks: Management and Mitigation in the Software Life Cycle

    Science.gov (United States)

    Gilliam, David P.

    2004-01-01

    A formal approach to managing and mitigating security risks in the software life cycle is requisite to developing software that has a higher degree of assurance that it is free of security defects which pose risk to the computing environment and the organization. Due to its criticality, security should be integrated as a formal approach in the software life cycle. Both a software security checklist and assessment tools should be incorporated into this life cycle process and integrated with a security risk assessment and mitigation tool. The current research at JPL addresses these areas through the development of a Sotfware Security Assessment Instrument (SSAI) and integrating it with a Defect Detection and Prevention (DDP) risk management tool.

  10. Life cycle human health impacts of 875 pesticides

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Oliver

    2016-01-01

    present a consistent framework for characterizing human toxicological impacts associated with pesticides applied to agricultural crops in the frame of life cycle impact assessment based on state-of-the-art data and methods. Methods We combine a dynamic multicrop plant uptake model designed for evaluating......-crop combinations of 10 orders of magnitude. Conclusions Our framework is operational for use in current life cycle impact assessment models, is made available for USEtox, and closes an important gap in the assessment of human exposure to pesticides. For ready use in life cycle assessment studies, we present...... pesticide-crop combination-specific characterization factors normalized to pesticide mass applied and provide default data for application times and loss due to post-harvest food processing. When using our data, we emphasize the need to consult current pesticide regulation, since each pesticide...

  11. Global life cycle releases of engineered nanomaterials

    International Nuclear Information System (INIS)

    Keller, Arturo A.; McFerran, Suzanne; Lazareva, Anastasiya; Suh, Sangwon

    2013-01-01

    Engineered nanomaterials (ENMs) are now becoming a significant fraction of the material flows in the global economy. We are already reaping the benefits of improved energy efficiency, material use reduction, and better performance in many existing and new applications that have been enabled by these technological advances. As ENMs pervade the global economy, however, it becomes important to understand their environmental implications. As a first step, we combined ENM market information and material flow modeling to produce the first global assessment of the likely ENM emissions to the environment and landfills. The top ten most produced ENMs by mass were analyzed in a dozen major applications. Emissions during the manufacturing, use, and disposal stages were estimated, including intermediate steps through wastewater treatment plants and waste incineration plants. In 2010, silica, titania, alumina, and iron and zinc oxides dominate the ENM market in terms of mass flow through the global economy, used mostly in coatings/paints/pigments, electronics and optics, cosmetics, energy and environmental applications, and as catalysts. We estimate that 63–91 % of over 260,000–309,000 metric tons of global ENM production in 2010 ended up in landfills, with the balance released into soils (8–28 %), water bodies (0.4–7 %), and atmosphere (0.1–1.5 %). While there are considerable uncertainties in the estimates, the framework for estimating emissions can be easily improved as better data become available. The material flow estimates can be used to quantify emissions at the local level, as inputs for fate and transport models to estimate concentrations in different environmental compartments.

  12. Improving Life-Cycle Cost Management of Spacecraft Missions

    Science.gov (United States)

    Clardy, Dennon

    2010-01-01

    This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.

  13. Life cycle, individual thrift, and the wealth of nations.

    Science.gov (United States)

    Modigliani, F

    1986-11-07

    One theory of the determinants of individual and national thrift has come to be known as the life cycle hypothesis of saving. The state of the art on the eve of the formulation of the hypothesis some 30 years ago is reviewed. Then the theoretical foundations of the model in its original formulation and later amendment are set forth, calling attention to various implications, some distinctive to it and some counterintuitive. A number of crucial empirical tests, both at the individual and the aggregate level, are presented as well as some applications of the life cycle hypothesis of saving to current policy issues.

  14. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    International Nuclear Information System (INIS)

    R.E. Sweeney

    2001-01-01

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance

  15. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  16. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    International Nuclear Information System (INIS)

    Sweeney, R.

    2000-01-01

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance

  17. From life cycle assessment to sustainable production: Status and perspectives

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Jeswiet, Jack; Alting, Leo

    2005-01-01

    to the tools for design for disassembly. Life Cycle Engineering is defined, and a systematic hierarchy is presented for the different levels at which environmental impacts from industry can be addressed by the engineer in order to improve the eco-efficiency of the industry. The role of industry in meeting...... the sustainability challenge to our societies is discussed, and it is concluded that industry must include not only the eco-efficiency but also the product's environmental justification and the company ethics in a life cycle perspective in order to become sustainable. In the outlook it is concluded that current...

  18. Life Cycle Assessment of the wind farm alpha ventus

    Directory of Open Access Journals (Sweden)

    Wagner H.-J.

    2013-06-01

    Full Text Available Life Cycle Assessments (LCA is an important tool for industry and policy makers, used to determine the actual emissions of a product or technology throughout its whole life cycle. In case of energy production systems or power plants, analysis of energy required to produce the materials and processes; emissions resulting from various processes for materials production and processes resulting into their Cumulated Energy Demand (CED and Global Warming Potential (GWP become important parameters when making decisions on further research, development and deployment of any technology. The method of carrying out such analysis is explained through a case study.

  19. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 4, Activity Analysis-The Methods describes the techniques and concepts for carrying out activity analysis within the systems development life-cycle. Reference is made to the deliverables of data analysis and more than one method of analysis, each a viable alternative to the other, are discussed. The """"bottom-up"""" and """"top-down"""" methods are highlighted. Comprised of seven chapters, this book illustrates how dependent data and activities are on each other. This point is especially brought home when the task of inventing new busin

  20. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  1. Life cycle assessment of the Danish electricity distribution network

    DEFF Research Database (Denmark)

    Turconi, Roberto; Simonsen, Christian G.; Byriel, Inger P.

    2014-01-01

    Purpose This article provides life cycle inventory data for electricity distribution networks and a life cycle assessment (LCA) of the Danish transmission and distribution networks. The aim of the study was to evaluate the potential importance of environmental impacts associated with distribution...... complexity and material consumption. Infrastructure provided important contributions to metal depletion and freshwater eutrophication (copper and aluminum for manufacturing of the cables and associated recycling being the most important). Underground 50-kV lines had larger impacts than overhead lines, and 0...

  2. Advancing life cycle economics in the Nordic countries

    DEFF Research Database (Denmark)

    Haugbølle, Kim; Hansen, Ernst Jan de Place

    2005-01-01

    Advancing construction and facilities management requires the ability to estimate and evaluate the economic consequences of decisions in a lifetime perspective. A survey of state-of-the-art on life cycle economics in the Nordic countries showed that, despite a number of similarities, no strong...... that the configuration of the roles as client, owner and user is indicative of a client's interest in life cycle economics. Second, a proposal for a common Nordic cost classification was put forward. Third, it was argued that there is a strong need to develop tools and methodologies to depict the cost/value ratio...

  3. Addressing software security and mitigations in the life cycle

    Science.gov (United States)

    Gilliam, David; Powell, John; Haugh, Eric; Bishop, Matt

    2004-01-01

    Traditionally, security is viewed as an organizational and Information Technology (IT) systems function comprising of firewalls, intrusion detection systems (IDS), system security settings and patches to the operating system (OS) and applications running on it. Until recently, little thought has been given to the importance of security as a formal approach in the software life cycle. The Jet Propulsion Laboratory has approached the problem through the development of an integrated formal Software Security Assessment Instrument (SSAI) with six foci for the software life cycle.

  4. A Generic Life Cycle Assessment Tool for Chemical-biochemical Processes

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2013-01-01

    As environmental impacts and resource depletion are serious concerns for the modern society, they also provide the motivation and need to design processes that are not only economically and operationally feasible, but also environmentally friendly. In this respect, life cycle assessment (LCA......) is a tool for quantifying potential environmental impacts throughout the life cycle of the product or process. It can be used in conjunction with an economic tool to evaluate the design of any existing and/or new chemical-biochemical process and create improvement options in order to arrive at the best...

  5. Structured life-cycle management: The case for starting now

    International Nuclear Information System (INIS)

    Fuller, E.; Crockett, J.

    1992-01-01

    The issuance of the US Nuclear Regulatory Commission (NRC) of the license renewal rule and the maintenance rule have presented a challenge to the nuclear industry to meet the requirements of both rules. These two rules afford an opportunity to provide a comprehensive, strategic approach to facility operation. A strategic approach is essential to integrate the processes and programs that are vying for resources within the organization and to take advantage of the opportunities available. This approach has been called structured life-cycle management (SLCM). The objectives of SLCM are to integrate the various utility programs and processes that bear directly on performance of the facility structures, systems, and components (SSCs) to (1) assure that SSC age-related issues are addressed effectively in utility maintenance and operations programs to preserve license-renewal options; (2) incorporate all existing utility maintenance and other related program benefits into one managed program (e.g., environmental qualification, design basis reconstitution, motor-operated valve testing, in-service inspection and test programs, and individual plant evaluations); and (3) maximize the benefits possible from the synergy of combining the various programs and processes in terms of enhanced safety, performance, and cost

  6. Role of radiologists in CAD life-cycle

    International Nuclear Information System (INIS)

    Pietka, Ewa; Kawa, Jacek; Spinczyk, Dominik; Badura, Pawel; Wieclawek, Wojciech; Czajkowska, Joanna; Rudzki, Marcin

    2011-01-01

    A modern CAD (computer-aided diagnosis) system development involves a multidisciplinary team whose members are experts in medical and technical fields. This study indicates the activities of medical experts at various stages of the CAD design, testing, and implementation. Those stages include a medical analysis of the diagnostic problem, data collection, image analysis, evaluation, and clinical verification. At each stage the physicians knowledge and experience are indispensable. The final implementation involves integration with the existing Picture Archiving and Communication System. The term CAD life-cycle describes an overall process of the design, testing, and implementation of a system that in its final form assists the radiologists in their daily clinical routine. Four CAD systems (applied to the bone age assessment, Multiple Sclerosis detection, lung nodule detection, and pneumothorax measurement) developed in our laboratory are given as examples of how consecutive stages are developed by the multidisciplinary team. Specific advantages of the CAD implementation that include the daily clinical routine as well as research and education activities are discussed.

  7. Application of Cloud Storage on BIM Life-Cycle Management

    Directory of Open Access Journals (Sweden)

    Lieyun Ding

    2014-08-01

    Full Text Available Because of its high information intensity, strong consistency and convenient visualization features, building information modelling (BIM has received widespread attention in the fields of construction and project management. However, due to large amounts of information, high integration, the need for resource sharing between various departments, the long time-span of the BIM application, challenges relating to data interoperability, security and cost all slow down the adoption of BIM. This paper constructs a BIM cloud storage concept system using cloud storage, an advanced computer technology, to solve the problem of mass data processing, information security, and cost problems in the existing application of BIM to full life-cycle management. This system takes full advantage of the cloud storage technique. Achievements are reached in four areas of BIM information management, involving security and licensing management, file management, work process management and collaborative management. The system expands the time and space scales, improves the level of participation, and reduces the cost of BIM. The construction of the BIM cloud storage system is one of the most important directions of the development of BIM, which benefits the promotion and further development of BIM to better serve construction and engineering project management.

  8. Product Life Cycle of the Manufactured Home Industry

    Directory of Open Access Journals (Sweden)

    Gavin Wherry

    2014-09-01

    Full Text Available Residential construction consumes an estimated 26 percent of the total U.S. wood harvest and thus plays an important role in the forest products value chain. While being a relatively small part of the U.S. residential construction market, the factory-built residential housing industry, originating from manufactured homes (e.g. mobile homes, is embracing emerging industry segments such as modular or panelized homes. Since indications exist that factory-built home production is slated to gain a more prominent role in the U.S. construction markets at the cost of traditional stick-built production, the factory-built home industry sub-segment is of considerable importance to the forest products industry. This research looks at manufactured home producers as a benchmark for analyzing the current economic state of the industry and discusses competitive strategies. The analysis concludes, through macroeconomic modeling, that manufactured homes are in the declining stage of their product life cycle due to changes to the U.S. residential construction sector and the factory-built home industry and by advancements of rival industry-segments. As market share continues to decline, firms operating in this industry-segment seek to either hedge their losses through product diversification strategies or remain focused on strategically repositioning the manufactured home segment.

  9. Match your sales force structure to your business life cycle.

    Science.gov (United States)

    Zoltners, Andris A; Sinha, Prabhakant; Lorimer, Sally E

    2006-01-01

    Although companies devote considerable time and money to managing their sales forces, few focus much thought on how the structure of the sales force needs to change over the life cycle of a product or a business. However, the organization and goals of a sales operation have to evolve as businesses start up, grow, mature, and decline if a company wants to keep winning the race for customers. Specifically, firms must consider and alter four factors over time: the differing roles that internal salespeople and external selling partners should play, the size of the sales force, its degree of specialization, and how salespeople apportion their efforts among different customers, products, and activities. These variables are critical because they determine how quickly sales forces respond to market opportunities, they influence sales reps' performance, and they affect companies' revenues, costs, and profitability. In this article, the authors use timeseries data and cases to explain how, at each stage, firms can best tackle the relevant issues and get the most out of their sales forces. During start-up, smart companies focus on how big their sales staff should be and on whether they can depend upon selling partners. In the growth phase, they concentrate on getting the sales force's degree of specialization and size right. When businesses hit maturity, companies should better allocate existing resources and hire more general-purpose salespeople. Finally, as organizations go into decline, wise sales leaders reduce sales force size and use partners to keep the business afloat for as long as possible.

  10. Role of radiologists in CAD life-cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pietka, Ewa, E-mail: ewa.pietka@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Kawa, Jacek, E-mail: jacek.kawa@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Spinczyk, Dominik, E-mail: dominik.spinczyk@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Badura, Pawel, E-mail: pawel.badura@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Wieclawek, Wojciech, E-mail: wojciech.wieclawek@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Czajkowska, Joanna, E-mail: joanna.czajkowska@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Rudzki, Marcin, E-mail: marcin.rudzki@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland)

    2011-05-15

    A modern CAD (computer-aided diagnosis) system development involves a multidisciplinary team whose members are experts in medical and technical fields. This study indicates the activities of medical experts at various stages of the CAD design, testing, and implementation. Those stages include a medical analysis of the diagnostic problem, data collection, image analysis, evaluation, and clinical verification. At each stage the physicians knowledge and experience are indispensable. The final implementation involves integration with the existing Picture Archiving and Communication System. The term CAD life-cycle describes an overall process of the design, testing, and implementation of a system that in its final form assists the radiologists in their daily clinical routine. Four CAD systems (applied to the bone age assessment, Multiple Sclerosis detection, lung nodule detection, and pneumothorax measurement) developed in our laboratory are given as examples of how consecutive stages are developed by the multidisciplinary team. Specific advantages of the CAD implementation that include the daily clinical routine as well as research and education activities are discussed.

  11. Life cycle uses of concrete for more sustainable construction

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, A. [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    2001-07-01

    This paper examined ways in which the environmental burdens of construction in general and concrete production in particular can be reduced. Aggregates for concrete production include sand, gravel and stone. They account for most (80 per cent) of the materials used in the United States. This paper argued that given the fact that environmental concerns are an important social issue, the issue of natural resource conservation should be addressed. Some of the life-cycle assessments and comparative design issues associated with concrete construction were summarized. The author presented the example that often the initial cost of a new pavement application may indicate a lower environmental impact than an equivalent design when asphalt is used over reinforced concrete. However, annualized impacts may result in comparable environmental assessments. The same is true for bridge girders, reinforced concrete also seems to be a better environmental choice than steel. This paper also described end-of-life options that involve the use of waste products and recycled products in concrete and other materials to reduce the overall environmental impacts of a product or facility. This paper was divided into several sections entitled: life cycle assessments; life cycle inventory assessment of concretes and asphalt pavements; and, life cycle inventory assessment of concrete and steel bridge girders. 16 refs., 4 tabs.

  12. Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney

    2010-10-01

    Full Text Available Citing the myriad applications of nanotechnology, this paper emphasizes the need to conduct “life cycle” based assessments as early in the new product development process as possible, for a better understanding of the potential environmental and human health consequences of nanomaterials over the entire life cycle of a nano-enabled product. The importance of this reasoning is further reinforced through an illustrative case study on automotive exterior body panels, which shows that the perceived environmental benefits of nano-based products in the Use stage may not adequately represent the complete picture, without examining the impacts in the other life cycle stages, particularly Materials Processing and Manufacturing. Nanomanufacturing methods often have associated environmental and human health impacts, which must be kept in perspective when evaluating nanoproducts for their “greenness.” Incorporating life-cycle thinking for making informed decisions at the product design stage, combining life cycle and risk analysis, using sustainable manufacturing practices, and employing green chemistry alternatives are seen as possible solutions.

  13. Quantitative assessment of the environmental footprint of the French nuclear fuel cycle by life cycle assessment

    International Nuclear Information System (INIS)

    Poinssot, Christophe; Bourg, Stephane; Ouvrier, Noel; Serp, Jerome

    2015-07-01

    Full text of publication follows: Nuclear energy contributes to most than 75% of the French electricity thanks to the operation of 58 generation 2 reactors located on 19 sites built from the 70's to the end of the 90's. France also developed for a long time a fully integrated nuclear industry covering the whole nuclear fuel cycle, from the ore mining to the fabrication of the fuel for the front-end, from the reprocessing up to the MOX fuel fabrication and storage facility and in the near-future geological repository for the back-end. This investment allows France to produce a low-carbon electricity with the second lowest GHG emissions intensity, in the range of 90 g CO 2 /KWh. Such a very beneficial figure is directly related to the high contribution of nuclear in the electricity mix combined with renewables energies, in particular hydro. Greenhouse gases emissions are very relevant to assess the respective influence on the global climate change, but they do not address the whole potential environmental impact of any activity. However, such a question is crucial for assessing the respective sustainability of such an activity, in particular nuclear energy which is thought to be very detrimental by a large part of the public opinion. In order to address this question, we developed a dedicated life cycle assessment (LCA) tools referred to as NELCAS, the specificity of which is to focus on the first order parameters and avoiding any 'black-box' effect which can exist in commercial LCA tool. Thanks to the recent transparency and nuclear safety law (2006), in- and out- fluxes of matter and energy for any of the fuel cycle facilities are now publicly available. We hence used this significant set of measured data to feed our model and assess the most usual environmental indicators such as land use, different types of atmospheric emissions (GHG, SOx, NOx, particles...) and aqueous release (chemical effluents, eutrophication potential,...)... We also

  14. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    International Nuclear Information System (INIS)

    Josa, Alejandro; Aguado, Antonio; Cardim, Arnaldo; Byars, Ewan

    2007-01-01

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content

  15. Getting the chemicals right: Gaps and opportunities in addressing inorganics in life cycle assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; Kirchhübel, Nienke

    2017-01-01

    and certain cationic metals is included in existing characterization models within life cycle impact assessment (LCIA). However, a variety of additional inorganic substances used e.g. in the textile, personal care, and building and construction industry are included neither in current life cycle inventory...... databases, nor current LCIA methods. Without the integration of the various economically relevant and potentially human toxic and/or ecotoxic inorganic substances such as inorganic salts, acids, bases and elements, however, no satisfying conclusions regarding the environmental sustainability of any......Life cycle assessment (LCA) is used to compare products and product systems in terms of their environmental sustainability and for that LCA needs to include all potential impacts on humans and the environment. Currently, quantifying the toxicity potential of several thousand organic substances...

  16. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  17. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  18. The models of the life cycle of a computer system

    Directory of Open Access Journals (Sweden)

    Sorina-Carmen Luca

    2006-01-01

    Full Text Available The paper presents a comparative study on the patterns of the life cycle of a computer system. There are analyzed the advantages of each pattern and presented the graphic schemes that point out each stage and step in the evolution of a computer system. In the end the classifications of the methods of projecting the computer systems are discussed.

  19. Product Life Cycle: Moving from Theory to Practice

    Directory of Open Access Journals (Sweden)

    Stanley Buchin

    2015-02-01

    Full Text Available Restaurant, bar, and hospitality trends are rapidly changing, and businesses must be more proactive than ever before to continuously stimulate business and prepare for a products natural life cycle. This article will explore a model of predicting PLC and strategic practices that can extend the mature phase of a restaurant or bar.

  20. Life cycle of tortoise tick Hyalomma aegyptium under laboratory conditions

    Czech Academy of Sciences Publication Activity Database

    Široký, P.; Erhart, Jan; Petrželková, Klára Judita; Kamler, M.

    2011-01-01

    Roč. 54, č. 3 (2011), 277-284 ISSN 0168-8162 Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z60220518 Keywords : Hyalomma aegyptium * Testudo * Life-cycle * Laboratory rearing Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.725, year: 2011

  1. Normalisation and weighting in life cycle assessment: quo vadis?

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Laurent, Alexis; Sala, Serenella

    2017-01-01

    Purpose: Building on the rhetoric question “quo vadis?” (literally “Where are you going?”), this article critically investigates the state of the art of normalisation and weighting approaches within life cycle assessment. It aims at identifying purposes, current practises, pros and cons, as well...

  2. Life-cycle of the European compost worm Dendrobaena veneta ...

    African Journals Online (AJOL)

    1990-06-05

    Jun 5, 1990 ... that this species does have potential to combat organic waste problems. The complete life-cycle of D. veneta has not been documented yeL We therefore included this ... in plastic containers with gauze lids. Fifty grams of the stabilized culture medium per wonn was added when the experiment was started.

  3. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  4. New Sarcocystis species with a snake-gecko life cycle

    Czech Academy of Sciences Publication Activity Database

    Šlapeta, J.; Modrý, D.; Koudela, Břetislav

    1998-01-01

    Roč. 45, č. 1 (1998), s. 7 ISSN 1066-5234. [New Sarcocystis species with a snake -gecko life cycle. 01.01.1998-02.01.1998, Praha] R&D Projects: GA ČR GA508/95/0273 Subject RIV: fp - Other Medical Disciplines

  5. Environmental life cycle assessments for water treatment processes ...

    African Journals Online (AJOL)

    The objective of this study was to generate information on the environmental profile of the life cycle of water, including treatment, distribution and collection and disposal (including recycling), in an urban context. As a case study the eThekwini Municipality (with its main city Durban) in South Africa was used. Another aim of ...

  6. An introduction to Life-cycle Thinking and Management

    DEFF Research Database (Denmark)

    Remmen, Arne

    This booklet descibes how enterprises can begin developing cleaner products based on a life-cycle perspective. It focuses on a simple approach to preventive environmental initiatives, where enterprises can begin at a level that matches their ambitions and their preconditions. The report is aimed...... at enterprises that, irregardless of size or sector, are interested in reducing environmental impacts from their products....

  7. Innovative predictive maintenance concepts to improve life cycle management

    NARCIS (Netherlands)

    Tinga, Tiedo

    2014-01-01

    For naval systems with typically long service lives, high sustainment costs and strict availability requirements, an effective and efficient life cycle management process is very important. In this paper four approaches are discussed to improve that process: physics of failure based predictive

  8. IT logistics support life cycle of products in air engine

    Directory of Open Access Journals (Sweden)

    М.С. Кулик

    2009-02-01

    Full Text Available  Questions of increase of efficiency of a supply with information of creation and support in operation of modern aviation engines are considered. The revealed most perspective directions of development of complex systems of support of life cycle aviation technics.

  9. Life Cycle Assessment Framework for Indoor Emissions of Synthetic Nanoparticles

    Science.gov (United States)

    Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteri...

  10. Base Camp Life Cycle Management: Focusing on the Critical Elements

    Science.gov (United States)

    2011-12-01

    needs of the occupants, although “building” this infrastructure often meant cobbling together prefabricated buildings or tents as much as it meant...as System Boundaries.” Journal of Industrial Ecology 10, no. 1 (2006): 61-77. Rebitzer, G. and Hunkeler, D. Life Cycle Costing in LCM: Ambitions

  11. LIFE CYCLE DESIGN OF IN-MOLD SURFACING FILM

    Science.gov (United States)

    Since 1990, the NRMRL has been at the forefront in the development of Life Cycle Assessment as a methodology for environmental assessment. In 1994, NRMRL established an LCA Team to organize individual efforts into a comprehensive research program. The LCA Team coordinates work in...

  12. Application of product life cycle concept to private label management

    Directory of Open Access Journals (Sweden)

    Sandra Horvat

    2013-06-01

    Full Text Available Private labels have recorded significant growth rates worldwide, becoming a serious threat to manufacturer brands. Development of private labels in many different product categories increased the complexity of their management. Therefore, this paper examines the possibility of using the product life cycle concept in private label management. Given that private labels are a specific brand type, it is necessary to adjust certain elements of the product life cycle concept, as it was developed on the basis of manufacturer brands. For instance, in the growth stage of the product life cycle, retailers expand private labels to a number of product categories and use the push strategy while manufacturers tend to expand their distribution network in the expansion of their brands and predominantly use the pull strategy in doing so. Furthermore, there is a focus shift from low-price strategy, predominantly used in the introduction phase, to increasing the quality and private label value in the later stages of the product life cycle.

  13. Applying life cycle management of colombian cocoa production

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz-R

    2014-03-01

    Full Text Available The present research aims to evaluate the usefulness of the application of Life Cycle Management in the agricultural sector focusing on the environmental and socio-economic aspects of decision making in the Colombian cocoa production. Such appraisal is based on the application of two methodological tools: Life Cycle Assessment, which considers environmental impacts throughout the life cycle of the cocoa production system, and Taguchi Loss Function, which measures the economic impact of a process' deviation from production targets. Results show that appropriate improvements in farming practices and supply consumption can enhance decision-making in the agricultural cocoa sector towards sustainability. In terms of agri-business purposes, such qualitative shift allows not only meeting consumer demands for environmentally friendly products, but also increasing the productivity and competitiveness of cocoa production, all of which has helped Life Cycle Management gain global acceptance. Since farmers have an important role in improving social and economic indicators at the national level, more attention should be paid to the upgrading of their cropping practices. Finally, one fundamental aspect of national cocoa production is the institutional and governmental support available for farmers in face of socio-economic or technological needs.

  14. Life cycle assessment Part 2 : Current impact assessment practice

    NARCIS (Netherlands)

    Pennington, D.W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T.; Rebitzer, G.

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse,

  15. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Science.gov (United States)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  16. Bridging Arctic environmental science and life cycle assessment

    DEFF Research Database (Denmark)

    Johnsen, Fredrik Moltu

    2014-01-01

    Current research aims to make the impact assessment module of life cycle assessment (LCA) less site-generic and thus more relevant to particular regions. The Arctic region attracts its share of interest when it comes to environmental issues, but little research has been performed with the explicit...

  17. THE LIFE CYCLE OF SHOPPING CENTERS AND POSSIBLE REVITALIZATION STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dabija Dan Cristian

    2009-05-01

    Full Text Available This paper addresses the concept of shopping center life cycle. The concept is considered a possible explanation for the death of certain types of shopping centers and birth of others. Of course that there are also other theories that explains this evolut

  18. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of

  19. Pets, Attachment, and Well-Being across the Life Cycle.

    Science.gov (United States)

    Sable, Pat

    1995-01-01

    Using an ethological framework, explores the ways in which family pets, in particular dogs and cats, provide certain components of attachment that contribute to emotional and social well-being throughout the life cycle. Implications are identified for social policies that will protect and maintain this bond for particular populations. (RJM)

  20. Advanced Composite Air Frame Life Cycle Cost Estimating

    Science.gov (United States)

    2014-06-19

    the ACCA based on the cost . This cost analysis takes into account the increased performance parameters of the new airframe structure. This research...20 Advanced Composite Cargo Aircraft ( ACCA ) ..........................................................23 viii Cost Estimation...establishing the procurement strategies and life cycle cost (LCC) model cost estimations. The current LCC models do not take into account the potential cost

  1. Future of lignite resources: a life cycle analysis.

    Science.gov (United States)

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  2. Methods for global sensitivity analysis in life cycle assessment

    NARCIS (Netherlands)

    Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, de Imke J.M.

    2017-01-01

    Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to

  3. Studies on the life cycle and morphometrics of honeybees, Apis ...

    African Journals Online (AJOL)

    The life cycle of the honeybee, Apis mellifera adansonii, was studied in mangrove area by monitoring the developmental stages and morphology of the castes. It was observed that the fate of the eggs were predetermined at the onset leading to drones, queens or workers. It was also established that the three different castes ...

  4. Life cycle impact assssment of biobased plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, Ioannis; Faaij, André; Lundquist, Lars; Schenker, Urs; Biois, J.F.; Patel, M.K.

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  5. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  6. The life cycle of a gorgonian: Eunicella singularis (Esper, 1794)

    NARCIS (Netherlands)

    Weinberg, Steven; Weinberg, Francisca

    1979-01-01

    The life cycle of the gorgonian Eunicella singularis has been studied with emphasis on larval behaviour, metamorphosis and annual growth. Planulae are found to have a mobile phase lasting from several hours to several days. Once settled, they metamorphose into a complete primary polyp in

  7. Life Cycle Characteristics of Small Professional Service Firms

    NARCIS (Netherlands)

    Masurel, E.; van Montfort, C.A.G.M.

    2006-01-01

    Our study of professional services firms clearly revealed that firms change over the course of their life cycles. During the first three stages, diversification in sales, the differentiation in labor force, and the level of labor productivity increase. In the last stage, diversification in sales,

  8. Guidelines to perform Life Cycle Analysis of Buildings

    NARCIS (Netherlands)

    Blok, R.; Gervasio, H.; Braganca, L.; Koukkari, H.; Blok, R.

    2008-01-01

    This paper gives a short introduction and attempts to give guidelines on how to perform a life Cycle Analysis (LCA) of a Building. Because a building is a complex system with many subsystems with building elements out of different materials, each fulfilling different functions the LCA of a building

  9. Infrastructures and Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2012-01-01

    Design and maintenance of infrastructures using Life-Cycle Cost-Benefit analysis is discussed in this paper with special emphasis on users costs. This is for several infrastructures such as bridges, highways etc. of great importance. Repair or/and failure of infrastructures will usually result...

  10. 10 CFR 455.64 - Life-cycle cost methodology.

    Science.gov (United States)

    2010-01-01

    ...-investment ratio is the ratio of the present value of net cost savings attributable to an energy conservation measure to the present value of the net increase in investment, maintenance and operating, and replacement... present value. The format for displaying life-cycle costs shall be a savings-to-investment ratio. (b) An...

  11. Life-Cycle Inventory Analysis of Manufacturing Redwood Decking

    Science.gov (United States)

    Richard D. Bergman; Han-Sup Han; Elaine Oneil; Ivan L. Eastin

    2012-01-01

    Green building has become increasingly important. Therefore, consumers and builders often take into account the environmental attributes of a building material. This study determined the environmental attributes associated with manufacturing 38-mm × 138-mm (nominal 2 × 6) redwood decking in northern California using the life-cycle inventory method. Primary data...

  12. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    Watt, M.E.; Johnson, A.J.; Outhred, H.R.; Ellis, M.

    1998-01-01

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  13. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost,

  14. FileNet's BPM life-cycle support

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.

    2006-01-01

    Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes. In the research

  15. Life-cycle of the European compost worm Dendrobaena veneta ...

    African Journals Online (AJOL)

    The life-cycle of Dendrobaena veneta was studied to assess the potential of this species in vermiculture. The development, growth and reproduction were investigated by rearing worms at 25°C on urine-free cattle manure with a moisture content of 80% over a period of 200 days. It was found that cocoons are produced at a ...

  16. Title IV Cash Management Life Cycle Training. Participant's Guide.

    Science.gov (United States)

    Department of Education, Washington, DC.

    This participant's guide includes: "Introduction: Welcome to Cash Management Life Cycle Training"; "Module 1: Review of Cash Management Principles" (cash management overview and activity); "Module 2: Common Origination and Disbursement (COD) System Overview" (e.g., full participants and phase-in participants, COD…

  17. The genetic covariance between life cycle stages separated by metamorphosis.

    Science.gov (United States)

    Aguirre, J David; Blows, Mark W; Marshall, Dustin J

    2014-08-07

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G: (gobsmax ), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Life cycle cost and risk estimation of environmental management options

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.

    1996-01-01

    The evaluation process is demonstrated in this paper through comparative analysis of two alternative scenarios identified for the management of the alpha-contaminated fixed low-level waste currently stored at INEL. These two scenarios, the Base Case and the Delay Case, are realistic and based on actual data, but are not intended to exactly match actual plans currently being developed at INEL. Life cycle cost estimates were developed for both scenarios using the System Cost Model; resulting costs are presented and compared. Life cycle costs are shown as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Although there are some short-term cost savings for the Delay Case, cumulative life cycle costs eventually become much higher than costs for the Base Case over the same period of time, due mainly to the storage and repackaging necessary to accommodate the longer Delay Case schedule. Life cycle risk estimates were prepared using a new risk analysis method adapted to the System Cost Model architecture for automated, systematic cost/risk applications. Relative risk summaries are presented for both scenarios as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Relative risk of the Delay Case is shown to be higher than that of the Base Case. Finally, risk and cost results are combined to show how the collective information can be used to help identify opportunities for risk or cost reduction and highlight areas where risk reduction can be achieved most economically

  19. Life cycle greenhouse gas emissions of anesthetic drugs.

    Science.gov (United States)

    Sherman, Jodi; Le, Cathy; Lamers, Vanessa; Eckelman, Matthew

    2012-05-01

    Anesthesiologists must consider the entire life cycle of drugs in order to include environmental impacts into clinical decisions. In the present study we used life cycle assessment to examine the climate change impacts of 5 anesthetic drugs: sevoflurane, desflurane, isoflurane, nitrous oxide, and propofol. A full cradle-to-grave approach was used, encompassing resource extraction, drug manufacturing, transport to health care facilities, drug delivery to the patient, and disposal or emission to the environment. At each stage of the life cycle, energy, material inputs, and emissions were considered, as well as use-specific impacts of each drug. The 4 inhalation anesthetics are greenhouse gases (GHGs), and so life cycle GHG emissions include waste anesthetic gases vented to the atmosphere and emissions (largely carbon dioxide) that arise from other life cycle stages. Desflurane accounts for the largest life cycle GHG impact among the anesthetic drugs considered here: 15 times that of isoflurane and 20 times that of sevoflurane on a per MAC-hour basis when administered in an O(2)/air admixture. GHG emissions increase significantly for all drugs when administered in an N(2)O/O(2) admixture. For all of the inhalation anesthetics, GHG impacts are dominated by uncontrolled emissions of waste anesthetic gases. GHG impacts of propofol are comparatively quite small, nearly 4 orders of magnitude lower than those of desflurane or nitrous oxide. Unlike the inhaled drugs, the GHG impacts of propofol primarily stem from the electricity required for the syringe pump and not from drug production or direct release to the environment. Our results reiterate previous published data on the GHG effects of these inhaled drugs, while providing a life cycle context. There are several practical environmental impact mitigation strategies. Desflurane and nitrous oxide should be restricted to cases where they may reduce morbidity and mortality over alternative drugs. Clinicians should avoid

  20. Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Pere Fullana-i-Palmer

    2011-03-01

    Full Text Available Recently increasing attention has been paid to complementing environmental Life Cycle Assessment (LCA with social aspects. The paper discusses the selection of social impacts and indicators from existing frameworks like Social Life Cycle Assessment (SLCA and Social Impact Assessment (SIA. Two ongoing case studies, addressing sustainability assessment within decision support, were considered: (1 Integrated Water Resources Management (IWRM in Indonesia; and (2 Integrated Packaging Waste Management in Spain and Portugal (FENIX. The focus was put on social impacts occurring due to decisions within these systems, such as choice of technologies, practices or suppliers. Thus, decision makers—here understood as intended users of the studies’ results—are not consumers that buy (or do not buy a product, such as in recent SLCA case-studies, but mainly institutions that decide about the design of the water or packaging waste management system. Therefore, in the FENIX project, a list of social impacts identified from literature was sent to the intended users to be ranked according to their priorities. Finally, the paper discusses to what extent the entire life cycle is reflected in SLCA impact categories and indicators, and explains how both life-cycle and on-site-related social impacts were chosen to be assessed. However, not all indicators in the two projects will assess all stages of the life cycle, because of their varying relevance in the different stages, data availability and practical interest of decision makers.

  1. Implementation of life cycle costing for a commercial building: case of a residential apartment at Yogyakarta

    Directory of Open Access Journals (Sweden)

    Kaming Peter F

    2017-01-01

    Full Text Available Analysis of a design process is very important in controlling the initial costs and future costs in possession of an investment project such as commercial building. Therefore, it should be wise to perform a life cycle cost analysis to determine the cost of any category contained in future cost of the building. The analysis also provide information to see how much the total cost incurred by a development project from initial to the future cost by implementing BS ISO 15686 part 5: 2008, regarding life cycle costing. The purpose of this study is to identify the cost proportion and make long-term plans of a commercial building in term of its life cycle costing from a case of a residential apartment in Yogyakarta, Indonesia. Results of the study show that there are three groups that make up the life cycle cost: the cost of development of the building, the operating costs, and the cost of maintenance and replacement. For a long-term plan the life cycle cost for 25 years the percentage obtained as follows, initial development cost of 42%, operational costs 39%, maintenance and replacement costs 19%. The results would also make comparison with other existing commercial buildings.

  2. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  3. Data life cycle: a perspective from the Information Science

    Directory of Open Access Journals (Sweden)

    Ricardo César Gonçalves Sant’Ana

    2016-08-01

    Full Text Available Introduction: Access and use of data as a key factor has been extended to several areas of knowledge of today's society. It’s necessary to develop a new perspective that presents phases and factors involved in these processes, providing an initial analysis structure, allowing the efforts, skills and actions organization related to the data life cycle. Purpose: This article is a proposal for a new look at the data life cycle, that assumes, as a central element, the data itself, supporting itself on the concepts and contributions that Information Science can provide, without giving up the reflections on the role of other key areas such as Computer Science. Methodology: The methodological procedures consisted of bibliographic research and content analysis to describe the phases and factors related to the Data Life Cycle, developing reflections and considerations from context already consolidated in the development of systems that can corroborate the idea of centrality of data. Results: The results describe the phases of: collect, storage, recovery and discard, permeated by transverse factors: privacy, integration, quality, copyright, dissemination and preservation, composing a Data Life Cycle. Conclusions: The current context of the availability of large volumes of data, with great variety and at speeds that provide access in real time, setting the so-called Big Data that requires new concerns about access and use processes of data. The Information Science may offer a new approach, now centered in the data, and contribute to the optimization of Data Life Cycle as a whole, extending bridges between users and the data they need.

  4. Application of Life Cycle Assessment (LCA) in Sugar Industries

    Science.gov (United States)

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  5. Externalities in a life cycle model with endogenous survival☆

    Science.gov (United States)

    Kuhn, Michael; Wrzaczek, Stefan; Prskawetz, Alexia; Feichtinger, Gustav

    2011-01-01

    We study socially vs individually optimal life cycle allocations of consumption and health, when individual health care curbs own mortality but also has a spillover effect on other persons’ survival. Such spillovers arise, for instance, when health care activity at aggregate level triggers improvements in treatment through learning-by-doing (positive externality) or a deterioration in the quality of care through congestion (negative externality). We combine an age-structured optimal control model at population level with a conventional life cycle model to derive the social and private value of life. We then examine how individual incentives deviate from social incentives and how they can be aligned by way of a transfer scheme. The age-patterns of socially and individually optimal health expenditures and the transfer rate are derived. Numerical analysis illustrates the working of our model. PMID:28298810

  6. Life cycle assessment and additives: state of knowledge

    DEFF Research Database (Denmark)

    is to identify research needs within this area focusing on both risk assessment (RA) and life cycle assessment (LCA). Besides the sectors on paper and plastics also lubricants, textiles, electronics and leather are included in RiskCycle. On plastics a literature review regarding the state of knowledge......Concerns about possible toxic effects from additives/impurities accumulated in globally recycled waste/resources like paper and plastics was one of the main reasons for starting up the EU FP7 Coordination Action project RiskCycle (www.wadef.com/projects/riskcycle). A key aim of the project...... on additives/impurities in LCA has been performed within RiskCycle. Several inventory databases (LCI data) have been investigated and the result shows that most LCI databases use PlasticsEurope data for plastics production. Most of these data are aggregated and do not include additives. Regarding...

  7. Micronutrients in the life cycle: Requirements and sufficient supply

    Directory of Open Access Journals (Sweden)

    K. Biesalski Hans

    2018-06-01

    Full Text Available Macronutrients (fat, protein, carbohydrates deliver energy and important material to ensure the entire body composition. Micronutrients are needed to keep this process of continuous construction and re-construction running. Consequently, the requirement for micronutrients will differ depending on the individual need which is related to the different metabolic conditions within the life cycle. Within the first 1000 days of life, from conception to the end of the second year of life the requirement for micronutrients is high and if the supply is inadequate that might have consequences for physical and at least cognitive development. In particular, iron, iodine, vitamin D and folate are micronutrients which might become critical during that period. Due to the fact that clinical symptoms of deficiencies develop late, but inadequate supply of one or more micronutrients may have consequences for health the term hidden hunger has been introduced to describe that situation. In particular the time period of pregnancy and early childhood is critical and hidden hunger is a worldwide problem, affecting >2 billion people, primarily females and children. The importance of different requirements during the life cycle is usually not considered. In addition, we do not really know what the individual requirement is. The estimation of the requirement is based on studies calculating the supply of a micronutrient to avoid a deficiency disease within a healthy population and is not based on sound scientific methodology or data. We need to consider that at different moments in the life cycle the supply might become critical in particular in case of a disease or sudden increase of metabolic turnover. In this narrative review we summarize data from studies dealing with different micronutrient requirements in pregnancy, exercise, vegan diet, adolescents and elderly. Knowledge of critical periods and related critical micronutrients might help to avoid hidden hunger and

  8. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  9. Applying Movement Ecology to Marine Animals with Complex Life Cycles

    Science.gov (United States)

    Allen, Richard M.; Metaxas, Anna; Snelgrove, Paul V. R.

    2018-01-01

    Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.

  10. Fatigue life estimation on coke drum due to cycle optimization

    Science.gov (United States)

    Siahaan, Andrey Stephan; Ambarita, Himsar; Kawai, Hideki; Daimaruya, Masashi

    2018-04-01

    In the last decade, due to the increasing demand of petroleum product, the necessity for converting the heavy oil are increasing. Thus, demand for installing coke drum in whole world will be increase. The coke drum undergoes the cyclic high temperature and suddenly cooling but in fact is not designed to withstand that kind of cycle, thus the operational life of coke drum is much shorter in comparison to other equipment in oil refinery. Various factors determine in order to improve reliability and minimize the down time, and it is found that the cycle optimization due to cycle, temperature, and pressure have an important role. From this research it is found that the fatigue life of the short cycle is decrease by a half compare to the normal cycle. It also found that in the preheating stage, the stress peak is far exceed the yield strength of coke drum material and fall into plastic deformation. This is happened because of the temperature leap in the preheating stage that cause thermal shock in the upper part of the skirt of the coke drum.

  11. Analysis of ship life cycles: the impact of economic cycles and ship inspection

    NARCIS (Netherlands)

    Bijwaard, G.E.; Knapp, S.

    2009-01-01

    Due to the shipping industry's international legal framework, there are loopholes in the system, which can increase the risk of incidents with high economic costs due to the substandard operation of vessels. This article uses duration analysis and through the creation of ship life cycles provides

  12. Hepatitis C Virus Life Cycle and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Costin-Ioan Popescu

    2014-12-01

    Full Text Available Hepatitis C Virus (HCV infects over 150 million people worldwide. In most cases HCV infection becomes chronic, causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. HCV affects the cholesterol homeostasis and at the molecular level, every step of the virus life cycle is intimately connected to lipid metabolism. In this review, we present an update on the lipids and apolipoproteins that are involved in the HCV infectious cycle steps: entry, replication and assembly. Moreover, the result of the assembly process is a lipoviroparticle, which represents a peculiarity of hepatitis C virion. This review illustrates an example of an intricate virus-host interaction governed by lipid metabolism.

  13. Whole life cycle of femtosecond ultraviolet filaments in water

    Science.gov (United States)

    Jarnac, Amélie; Tamosauskas, Gintaras; Majus, Donatas; Houard, Aurélien; Mysyrowicz, André; Couairon, Arnaud; Dubietis, Audrius

    2014-03-01

    We present measurements fully characterizing the whole life cycle of femtosecond pulses undergoing filamentation in water at 400 nm. The complete pulse dynamics is monitored by means of a four-dimensional mapping technique for the intensity distribution I (x,y,z,t) during the nonlinear interaction. Measured events (focusing or defocusing cycles, pulse splitting and replenishment, supercontinuum generation, conical emission, nonlinear absorption peaks) are mutually connected.The filament evolution from laser energy deposition in water, which is of paramount importance for a wide range of technological and medical applications, is interpreted in light of simulation results.

  14. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle, Book 3: Activity Analysis - The Deliverables provides a comprehensive coverage of the deliverables of activity analysis. The book also details purpose of each deliverable in the context of the next tasks in the systems development cycle (SDC). The text first covers the concept of deliverables and the benefits of making deliverables visible. In the second chapter, the book introduces the main concepts and diagrammatic techniques of activity analysis. The third chapter deals with the important classes or categories of concept, while the fourth

  15. The Adult Life Spiral: A Critique of the Life Cycle Model.

    Science.gov (United States)

    Stein, Peter; Etzkowitz, Henry

    We can identify and describe alternate paths of adulthood utilizing data from interviews with single adults. Our review of major models used in adulthood studies suggests that a developmental model, such as Daniel Levinson's life cycle model, is too tied to the notion of the imminent unfolding of the life course. The age-stratification theory…

  16. A comparative life cycle assessment of marine power systems

    International Nuclear Information System (INIS)

    Ling-Chin, Janie; Roskilly, Anthony P.

    2016-01-01

    Highlights: • Correlation among resources, emissions, key components and processes was attained. • Environmental benefits of innovative power systems were verified. • New-build system showed a great advantage over retrofit and conventional systems. • Relative contribution of significant components remained or became more profound. • Influence of fuel consumption quantity over the estimates varied with impact types. - Abstract: Despite growing interest in advanced marine power systems, knowledge gaps existed as it was uncertain which configuration would be more environmentally friendly. Using a conventional system as a reference, the comparative life cycle assessment (LCA) study aimed to compare and verify the environmental benefits of advanced marine power systems i.e. retrofit and new-build systems which incorporated emerging technologies. To estimate the environmental impact attributable to each system, a bottom-up integrated system approach was applied, i.e. LCA models were developed for individual components using GaBi, optimised operational profiles and input data standardised from various sources. The LCA models were assessed using CML2001, ILCD and Eco-Indicator99 methodologies. The estimates for the advanced systems were compared to those of the reference system. The inventory analysis results showed that both retrofit and new-build systems consumed less fuels (8.28% and 29.7% respectively) and released less emissions (5.2–16.6% and 29.7–55.5% respectively) during operation whilst more resources were consumed during manufacture, dismantling and the end of life. For 14 impact categories relevant to global warming, acidification, eutrophication, photochemical ozone creation and PM/respiratory inorganic health issues, reduction in LCIA results was achieved by retrofit (2.7–6.6%) and new-build systems (35.7–50.7%). The LCIA results of the retrofit system increased in ecotoxicity (1–8%), resource depletion (1–2%) and fossil fuel depletion

  17. EVALUATING THE LIFE CYCLE COSTS OF PLANT ASSETS – A MULTIDIMENSIONAL VIEW

    Directory of Open Access Journals (Sweden)

    Markus Gram

    2012-11-01

    Full Text Available This paper shows the results of the task group "Asset life cycle management" of the AustrianScientific Maintenance and Asset Management Association (ÖVIA. One purpose of the researchactivities is to create a generic life cycle model for physical assets which includes all costs in everyphase of the asset life cycle. The first step is a literature review determining the most established lifecycle cost models. This is the input for discussing the completeness of such frameworks with theparticipating industrial companies. A general model is deducted from existing approaches and thedetermined costs are evaluated with respect to priority and practical relevance. The result of theevaluation shows which costs are taken into account for investment decisions. Another outcome ofthe study is the verification of importance of the proposed costs for industrial companies, especiallyfor the process industry. The derived life cycle cost framework is the basis for developing a calculationtool and subsequently, for further research in the flied of uncertainty-based methodologies forlife cycle cost analyzing of physical plant assets.

  18. Environmental sustainability: plastic's evolving role in the automotive life cycle

    International Nuclear Information System (INIS)

    Jekel, L.; Tam, E.K.L.

    2002-01-01

    One method of assessing the sustainability of manufactured products involves performing a life cycle analysis for a product and comparing it to alternative ones, or else examining if individual stages of the product can be modified. LCA applications are being used more extensively, especially in the automotive and related industries. Automotive plastics in particular are being scrutinized with much greater care. Plastic components have replaced metal ones in vehicle manufacturing to improve vehicle fuel efficiency and aesthetics. However, at the end of a vehicle's life, recycling rates for plastic are negligible when compared to those of steel. In order to gain the full environmental benefits of using plastic as a vehicle material, plastics must be recycled at the end of a vehicle's life, especially given their increasing use. While a variety of processes have been developed for the recycling of automotive plastics, the challenges of sorting, processing, and finally recycling a heterogeneous mixture of used plastics have yet to be effectively solved. A preliminary life cycle assessment of a plastic automotive fascia demonstrates the usefulness of this eco-balance technique in evaluating potential improvements to manufacturing and end-of-life processes. Improving the manufacturing process may reduce environmental burdens to a larger extent than just recycling the plastic. (author)

  19. INFORMATION MODELING OF LIFE CYCLE OF HIGH-RISE CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2018-02-01

    cycle of high-rise buildings, which, unlike the systems being currently used, is not targeted at the company or production but on the project. The topicality of organizational reengineering of schemes of information interaction between the project’s participants is substantiated. It is shown that consolidation of methods and technologies for data management and project management should become the basis for strategic management of the project’s full life cycle. Conclusions: analysis of the accumulated experience in the development of unique and large-scale projects of high-rise buildings shows that managing the life cycle of the high-rise development project is a topical and unsolved problem that requires serious scientific and project research. The existing concepts and schemes for the project’s life cycle management and the interaction between all participants of the high-rise construction project should be substantially modernized taking into account the use of capabilities of digital modeling of the project (BIM - Building Information Modeling together with technologies for support of its life cycle (Continuous Acquisition and Life Cycle Support. At the same time, the development of an integrated information environment for the project’s life cycle should be based on the integration of data management and project management, which will ensure a multiple increase in the efficiency and competitiveness of a high-rise building project at all stages of its life cycle.

  20. Life cycle assessment of construction and demolition waste management

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard

    2015-01-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed...... of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most...... of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing...

  1. A model for a knowledge-based system's life cycle

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  2. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III

    2007-01-01

    This paper describes a design process based on risk-informed probabilistic methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept uses probabilistic risk assessments to identify target reliabilities for facility systems and components. Target reliabilities are used in system and subsystem simulation analyses to determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The target reliabilities are also used for system based code margin exchange to reduce excessive level of margins to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. The paper includes a description of a risk informed life-cycle design process, a summary of work being done, and a discussion of work needed to implement the process. (author)

  3. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  4. A study into life cycle environmental impacts of photovoltaic technologies

    International Nuclear Information System (INIS)

    1996-01-01

    This study presents a Life Cycle Assessment of Photovoltaic Cells (LCA). It was undertaken by Environmental Resources Management (ERM) on behalf of ETSU for the United Kingdom Department of Trade and Industry (DTI). This study uses the technique of LCA to examine all aspects of the production, use and disposal of PVs and the consequent environmental effects. This allows an appraisal of the environmental effects of increasing UK production of PVs to supply more demand for electricity in the EU and the developing world. Impacts result from obtaining raw materials, manufacturing solar power generating equipment, and any final disposal or recycling requirements. The environmental impacts resulting from these phases are known as the PV LIfe Cycle impacts. (author)

  5. The cost analysis of hydrogen life cycle in China

    International Nuclear Information System (INIS)

    Yao, Fei; Jia, Yuan; Mao, Zongqiang

    2010-01-01

    Currently, the increasing price of oil and the possibility of global energy crisis demand for substitutive energy to replace fossil energy. Many kinds of renewable energy have been considered, such as hydrogen, solar energy, and wind energy. Many countries including China have their own plan to support the research of hydrogen, because of its premier features. But, at present, the cost of hydrogen energy production, storage and transportation process is higher than that of fossil energy and its commercialization progress is slow. Life cycle cost analysis (LCCA) was used in this paper to evaluate the cost of hydrogen energy throughout the life cycle focused on the stratagem selection, to demonstrate the costs of every step and to discuss their relationship. Finally, the minimum cost program is as follows: natural gas steam reforming - high-pressure hydrogen bottles transported by car to hydrogen filling stations - hydrogen internal-combustion engines. (author)

  6. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    International Nuclear Information System (INIS)

    Iosif, Ana-Maria; Hanrot, Francois; Ablitzer, Denis

    2008-01-01

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes

  7. LIFE CYCLE ASSESSMENT (LCA AS A TOOL FOR BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodrigo Salvador

    2014-09-01

    Full Text Available The growing concern about the development of sustainable production systems leads organizations to seek the support of management tools for decision-making. Considering the whole life cycle of the product, the Life Cycle Assessment (LCA has an important role in this scenario. The objective of this paper is to present, through the theoretical discussion, the role of LCA in strategic planning of the organization. It showed the enormous potential for decision making on the environmental aspect, but also the critical factor in the development shares in the competitive context. The use of LCA can reduce the environmental impacts of the system under study (primary purpose and guide the range of advantages in the fields of marketing, legislation and environmental labeling, competitive strategies, efficiency use of resources and others.

  8. The role of sustainability and life cycle thinking in U.S. biofuels policies

    International Nuclear Information System (INIS)

    Soratana, Kullapa; Harden, Cheyenne L.; Zaimes, George G.; Rasutis, Daina; Antaya, Claire L.; Khanna, Vikas; Landis, Amy E.

    2014-01-01

    A comprehensive review of the U.S. federal biofuel-related policies, from 1955 to 2012, was conducted to examine the progression of life cycle thinking within the policies. Over 1300 past and present federal and state biofuel laws and incentives were analyzed to identify the establishment of Life-cycle thinking (LCT) in the biofuel policies. The policies were searched for search terms representing the three themes: life cycle assessment, environmental impact and sustainability. LCT in policies was first seen in the Renewable Fuel Standard under the Energy Independence and Security Act of 2007, where life-cycle greenhouse gas emissions reduction of biofuels was required. Existing U.S. biofuel policies were also characterized to define types of policy as tax incentive, grants, mandate, etc. The results suggested that climate change or energy incentives, air quality or emissions, etc. should be more emphasized in fuel legislation for a continuous improvement of biofuels industry. Only 13% of both the federal and state policies reviewed in this study employed some aspect of LCT. Policies that incorporate LCT often only focused on greenhouse gas emissions; policies should include other environmental impacts to avoid any environmental tradeoffs and unintended consequences from biofuel production. - Highlights: • Identified the establishment of sustainability and life-cycle thinking in biofuel policy. • Presented the spatial distribution of state U.S. biofuels policies and production via GIS. • Analyzed past and present federal and state environmental policies progression toward biofuels. • Life-cycle thinking was only present in 13% of federal and state policies current as of 2013

  9. Life cycle thinking in impact assessment—Current practice and LCA gains

    International Nuclear Information System (INIS)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains

  10. Life cycle thinking in impact assessment—Current practice and LCA gains

    Energy Technology Data Exchange (ETDEWEB)

    Bidstrup, Morten, E-mail: Bidstrup@plan.aau.dk

    2015-09-15

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains.

  11. Using the Boston Matrix at Identification of the Corporate Life Cycle Stage

    Directory of Open Access Journals (Sweden)

    Zdeněk Konečný

    2015-01-01

    Full Text Available The main aim of this article is to develop a new model supporting the identification of the particular corporate life stage within the corporate life cycle. This model will be derived from the Boston matrix. The main reason for using this approach as the base for making new model of the corporate life cycle is the fact, that every quadrant of the Boston matrix can be assigned to one phase of the product life cycle and there is supposed, that the phase, in which are most products, determines the phase of the corporate life cycle. For application the Boston matrix by identification phases of the corporate life cycle is necessary to define low and high values of both its variables using some quantities from the model of corporate- and market life cycle by Reiners (2004. So the interval of low and high sales growth is determined by comparing sales of the company and sales of the market and furthermore, there is considered the rate of inflation to eliminate the impact of price changes. And for determination low and high market shares, there are compared the shares of sales and shares of total assets. After that, there will be possible to identify all the quadrants and thus all the individual phases unequivocally, which is the basic advantage compared to most existing models of the corporate life cycle. The following aim of this article is to compare the occurrence of individual phases, identified by this modified model, depending on the sector sensitivity to the economic cycle, measured by the coefficient of correlation between sales on the market and GDP. There are selected two sectors of the Czech economy, namely one cyclical and one neutral sector. Subsequently there is selected a sample of companies from both these sectors. The data are collected from financial statements of companies and from analytical materials by the Czech Ministry of Industry and Trade and by the Czech Statistical Office. On the basis of this research, there were recorded

  12. Multiaxial low cycle fatigue life under non-proportional loading

    International Nuclear Information System (INIS)

    Itoh, Takamoto; Sakane, Masao; Ohsuga, Kazuki

    2013-01-01

    A simple and clear method of evaluating stress and strain ranges under non-proportional multiaxial loading where principal directions of stress and strain are changed during a cycle is needed for assessing multiaxial fatigue. This paper proposes a simple method of determining the principal stress and strain ranges and the severity of non-proportional loading with defining the rotation angles of the maximum principal stress and strain in a three dimensional stress and strain space. This study also discusses properties of multiaxial low cycle fatigue lives for various materials fatigued under non-proportional loadings and shows an applicability of a parameter proposed by author for multiaxial low cycle fatigue life evaluation

  13. A life cycle assessment of destruction of ammunition

    International Nuclear Information System (INIS)

    Alverbro, K.; Bjoerklund, A.; Finnveden, G.; Hochschorner, E.; Haegvall, J.

    2009-01-01

    The Swedish Armed Forces have large stocks of ammunition that were produced at a time when decommissioning was not considered. This ammunition will eventually become obsolete and must be destroyed, preferably with minimal impact on the environment and in a safe way for personnel. The aim of this paper is to make a comparison of the environmental impacts in a life cycle perspective of three different methods of decommissioning/destruction of ammunition, and to identify the environmental advantages and disadvantages of each of these destruction methods: open detonation; static kiln incineration with air pollution control combined with metal recycling, and a combination of incineration with air pollution control, open burning, recovery of some energetic material and metal recycling. Data used are for the specific processes and from established LCA databases. Recycling the materials in the ammunition and minimising the spread of airborne pollutants during incineration were found to be the most important factors affecting the life cycle environmental performance of the compared destruction methods. Open detonation with or without metal recycling proved to be the overall worst alternative from a life cycle perspective. The results for the static kiln and combination treatment indicate that the kind of ammunition and location of the destruction plant might determine the choice of method, since the environmental impacts from these methods are of little difference in the case of this specific grenade. Different methods for destruction of ammunition have previously been discussed from a risk and safety perspective. This is however to our knowledge the first study looking specifically on environmentally aspect in a life cycle perspective.

  14. Rules of thumb in life-cycle savings models

    OpenAIRE

    Rodepeter, Ralf; Winter, Joachim

    1999-01-01

    We analyze life-cycle savings decisions when households use simple heuristics, or rules of thumb, rather than solve the underlying intertemporal optimization problem. The decision rules we explore are a simple Keynesian rule where consumption follows income; a simple consumption rule where only a fraction of positive income shocks is saved; a rule that corresponds to the permanent income hypothesis; and two rules that have been found in experimental studies. Using these rules, we simulate lif...

  15. Quality estimation methods used in product life cycle

    OpenAIRE

    M. Dudek-Burlikowska; D. Szewieczek

    2007-01-01

    Purpose: A new approach to quality control in production company with usage of quality research methods has been presented.Design/methodology/approach: The possibility of usage of quality research methods are connected with continuous quality improvement of pre-production, production and after-production spheres of organization. Interdependence of the quality research methods and product life cycle has been taken into account.Findings: At the present time the enterprises should integrate qua...

  16. Life Cycle Assessment in Management of Socially Responsible Enterprise

    Directory of Open Access Journals (Sweden)

    Tkaczyk Stanisław

    2014-12-01

    Full Text Available The following paper presents dangerous and evident phenomenon of communicational chaos in the field of environment protection and sustainable development in a turbulent external environment. It is pointed that this phenomenon gives organizations an opportunity to take pretended pro-environmental actions, such as socially critical greenwashing. As a counterbalance to those practices, a concept of Corporate Social Responsibility (CSR is presented, underlining the possibility of developing honest environmental marketing basing on methods such as Life Cycle Assessment.

  17. [Morphology, biology and life-cycle of Plasmodium parasites].

    Science.gov (United States)

    Hommel, Marcel

    2007-10-01

    Laveran first discovered that an infectious agent was responsible for malaria by using a simple microscope, without the assistance of specific stains. Our knowledge of the Plasmodium life cycle and cellular biology has progressed with each technological advance, from Romanovsky staining and histology to electron microscopy, immunocytochemistry, molecular methods and modern imaging techniques. The use of bird, primate and rodent models also made a major contribution, notably in the development of antimalarial drugs that are still in use today.

  18. Paper and Cardboard Packaging Ecodesing and Innovative Life Cycle Solutions

    OpenAIRE

    Koklacova, Sabine; Atstaja, Dzintra

    2012-01-01

    This paper discusses the findings of the research project, which explored paper and cardboard packaging ecodesign and innovative life cycle solutions in Latvia. The present article focuses on theoretical background of ecodesign that is aligned to packaging in order to create universal model and guidelines for its implementation in Latvia. The mixed research method has been used in this paper - interviews, document analysis, modelling and surveys. Ecodesign of paper and cardboard packaging in ...

  19. Life cycle assessment of metals: a scientific synthesis.

    Directory of Open Access Journals (Sweden)

    Philip Nuss

    Full Text Available We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining. For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use, and report the shares for all metals to both impact categories.

  20. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  1. Embedding Life Cycle Costing in 5D BIM

    OpenAIRE

    Kehily, Dermot; Underwood,, Jason

    2017-01-01

    Life Cycle Costing (LCC) is the consideration of all ‘relevant’ costs and revenues associated with the acquisition and ownership of an asset. LCC has a number of relevant applications, these include project appraisal; facilities management; procurement and tendering and as a means to evaluate sustainable construction. Although these advantages are well recognised, the process is underutilised due to a number of documented barriers to adoption. Notably these include lack of accurate historical...

  2. Life cycle assessment. Specific indicators for Italy in impact evaluation

    International Nuclear Information System (INIS)

    Masoni, P.

    1999-01-01

    After a brief recall and a short description of the LCA (life cycle assessment) methodology, the work is focused on the impact assessment step, discussing the state of the art and a critical identification of environmental indicators, of normalization and weighting principles for the different environmental categories specific for Italy. The application methodology to a case study concerning the production of butter by the Consorzio Granterre of Modena (Italy) is also described [it

  3. LIFE CYCLE ASSESSMENT IN HEALTHCARE SYSTEM OPTIMIZATION. INTRODUCTION

    Directory of Open Access Journals (Sweden)

    V. Sarancha

    2015-03-01

    Full Text Available Article describes the life cycle assessment method and introduces opportunities for method performance in healthcare system settings. LSA draws attention to careful use of resources, environmental, human and social responsibility. Modelling of environmental and technological inputs allows optimizing performance of the system. Various factors and parameters that may influence effectiveness of different sectors in healthcare system are detected. Performance optimization of detected parameters could lead to better system functioning, higher patient safety, economic sustainability and reduce resources consumption.

  4. Comparative life cycle assessment of industrial multi-product processes

    OpenAIRE

    Jung, Johannes

    2014-01-01

    The demand for environmentally safe industrial processes is increasing. Therefore, environmental impacts of new processes have to be examined at an early stage. A method for analyzing environmental impacts is life cycle assessment (LCA). A major trouble of LCA are multi-functionality problems. Multi-functionality problems can be fixed using alternative methods such as system expansion, avoided burden and allocation. Each of the three methods requires choices by the LCA-practitioner. The choic...

  5. Interstellar dust within the life cycle of the interstellar medium

    OpenAIRE

    Demyk K.

    2012-01-01

    Cosmic dust is omnipresent in the Universe. Its presence influences the evolution of the astronomical objects which in turn modify its physical and chemical properties. The nature of cosmic dust, its intimate coupling with its environment, constitute a rich field of research based on observations, modelling and experimental work. This review presents the observations of the different components of interstellar dust and discusses their evolution during the life cycle of the interstellar medium.

  6. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  7. Life-Cycle Finance and the Design of Pension Plans

    OpenAIRE

    Zvi Bodie; Jérôme Detemple; Marcel Rindisbacher

    2009-01-01

    This article reviews recent scientific literature on consumer financial decisions over the life cycle, outlining its implications for the design of pension plans. It begins with a review of advances in the theory of rational financial planning and wealth management. It then summarizes the recent empirical literature on the actual behavior of households regarding saving, investing, and insuring their consumption in old age. Finally, it briefly comments on the practical implications of the theo...

  8. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.

    Science.gov (United States)

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-11-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).

  9. Small business life cycle: statics and dynamics (S

    Directory of Open Access Journals (Sweden)

    Matejun Marek

    2017-12-01

    Full Text Available The aim of the paper is the presentation of theoretical foundations and the structure of original, 8-stage statics and dynamics model in the small business life cycle. Based on theoretical considerations, two hypotheses concerning the impact of dynamic and static nature of the life-cycle stages on selected determinants and effects of SMEs’ development were formulated. The hypotheses were verified based on the results of the survey conducted on a sample of 1,741 SMEs from 22 countries of the European Union. The results indicate that companies in the dynamic life-cycle stages are run by more enterprising owners, operate in more promising markets with a higher potential and make greater use of market niches thus limiting the level of competition. At the same time, such companies are characterised by higher levels of flexibility and involvement in innovative activities, which translates into obtaining a significantly higher level of business performance, in the area of quantitative as well as qualitative results.

  10. Sampling and monitoring for the mine life cycle

    Science.gov (United States)

    McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.

    2014-01-01

    Sampling and Monitoring for the Mine Life Cycle provides an overview of sampling for environmental purposes and monitoring of environmentally relevant variables at mining sites. It focuses on environmental sampling and monitoring of surface water, and also considers groundwater, process water streams, rock, soil, and other media including air and biological organisms. The handbook includes an appendix of technical summaries written by subject-matter experts that describe field measurements, collection methods, and analytical techniques and procedures relevant to environmental sampling and monitoring.The sixth of a series of handbooks on technologies for management of metal mine and metallurgical process drainage, this handbook supplements and enhances current literature and provides an awareness of the critical components and complexities involved in environmental sampling and monitoring at the mine site. It differs from most information sources by providing an approach to address all types of mining influenced water and other sampling media throughout the mine life cycle.Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices that are an integral part of the handbook. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies, and to suggest resources for further information. Extensive references are included.

  11. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  12. Life cycle assessment of palm-derived biodiesel in Taiwan

    KAUST Repository

    Maharjan, Sumit

    2016-10-01

    In Taiwan, due to the limited capacity of waste cooking oil, palm oil has been viewed as the potential low-cost imported feedstock for producing biodiesel, in the way of obtaining oil feedstock in Malaysia and producing biodiesel in Taiwan. This study aims to evaluate the cradle-to-grave life cycle environmental performance of palm biodiesel within two different Asian countries, Malaysia and Taiwan. The phases of the life cycle such as direct land-use-change impact, plantation and milling are investigated based on the Malaysia case and those of refining, and fuel production as well as engine combustion is based on Taiwan case. The greenhouse gas (GHG) emission and energy consumption for the whole life cycle were calculated as −28.29 kg CO2-equiv. and +23.71 MJ/kg of palm-derived biodiesel. We also analyze the impacts of global warming potential (GWP) and the payback time for recovering the GHG emissions when producing and using biodiesel. Various scenarios include (1) clearing rainforest or peat-forest; (2) treating or discharging palm-oil-milling effluent (POME) are further developed to examine the effectiveness of improving the environmental impacts © 2016 Springer-Verlag Berlin Heidelberg

  13. Comparative life cycle assessment of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Ceuterick, D.; Nocker, L. De; Spirinckx, C.

    1999-01-01

    Biofuels offer clear advantages in terms of greenhouse gas emissions, but do they perform better when we look at all the environmental impacts from a life cycle perspective. In the context of a demonstration project at the Flemish Institute for Technology Research (VITO) on the use of rapeseed methyl ester (RME) or biodiesel as automotive fuel, a life cycle assessment (LCA) of biodiesel and diesel was made. The primary concern was the question as to whether or not the biodiesel chain was comparable to the conventional diesel chain, from an environmental point of view, taking into account all stages of the life cycle of the two products. Additionally, environmental damage costs were calculated, using an impact pathway analysis. This paper presents the results of the two methods for evaluation of environmental impacts of RME and conventional diesel. Both methods are complementary and share the conclusion that although biodiesel has much lower greenhouse gas emissions, it still has significant impacts on other impact categories. The external costs of biodiesel are a bit lower compared to fossil diesel. For both fuels, external costs are significantly higher than the private production cost. (Author)

  14. Life cycle assessment-driven selection of industrial ecology strategies.

    Science.gov (United States)

    Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina

    2010-01-01

    The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.

  15. A CONCEPTUAL MODEL OF THE LIFE CYCLE OF THE PROGRAM

    Directory of Open Access Journals (Sweden)

    Марія Костянтинівна СУХОНОС

    2016-02-01

    Full Text Available A conceptual model of the life cycle of the program is proposed. This model is based on the value approach. As a resulting index, it uses a category of complex structural value. This model renders the process of the life cycle of the program in the context of time/result. It assumes the presence of four basic phases of the life cycle, namely, initiation, planning, executing and closing. Also, this model formalizes interconnection of management processes of integration of program and management of its community and subprocesses. Selection of a value approach for the forming of a resulting index of a program determines by a variety of results of the program. This is a result of its variety and complexity in the process of finding a criterion for evaluation. Worked out a mechanism for assessing the value of the program. It consists of four steps and involves using of conventional methods (decomposition and expert estimates. As a unit of measurement assumes to use points and rating scale with the maximum score a hundred points. A complex value, which is evaluated at one hundred points, is a result of the program. It is critically important in the process of current and final evaluation of the program.

  16. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  17. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S.

    2009-01-01

    This paper describes a design process based on risk-informed probabilistic design methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept embodies use of probabilistic risk assessments to establish target reliabilities for facility systems and components. The target reliabilities are used for system based code margin exchange and performance simulation analyses to optimize design over all phases (design, construction, operation and decommissioning) of a facility's life-cycle. System based code margin exchange reduces excessive level of construction margins for passive components to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. System and subsystem simulation analyses determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The paper includes a description of these risk-informed life-cycle design processes, a summary of work being done, and a discussion of additional work needed to implement the process.

  18. Optimal fleet conversion policy from a life cycle perspective

    International Nuclear Information System (INIS)

    Hyung Chul Kim; Ross, M.H.; Keoleian, G.A.

    2004-01-01

    Vehicles typically deteriorate with accumulating mileage and emit more tailpipe air pollutants per mile. Although incentive programs for scrapping old, high-emitting vehicles have been implemented to reduce urban air pollutants and greenhouse gases, these policies may create additional sales of new vehicles as well. From a life cycle perspective, the emissions from both the additional vehicle production and scrapping need to be addressed when evaluating the benefits of scrapping older vehicles. This study explores an optimal fleet conversion policy based on mid-sized internal combustion engine vehicles in the US, defined as one that minimizes total life cycle emissions from the entire fleet of new and used vehicles. To describe vehicles' lifetime emission profiles as functions of accumulated mileage, a series of life cycle inventories characterizing environmental performance for vehicle production, use, and retirement was developed for each model year between 1981 and 2020. A simulation program is developed to investigate ideal and practical fleet conversion policies separately for three regulated pollutants (CO, NMHC, and NO x ) and for CO 2 . According to the simulation results, accelerated scrapping policies are generally recommended to reduce regulated emissions, but they may increase greenhouse gases. Multi- objective analysis based on economic valuation methods was used to investigate trade-offs among emissions of different pollutants for optimal fleet conversion policies. (author)

  19. Life cycle assessment of products and technologies. LCA Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, H.; Nors, M. (eds.)

    2009-12-15

    VTT Technical Research Centre of Finland organised a Symposium 'Life Cycle Assessment of Products and Technologies' on the 6th of October, 2009. The Symposium gave a good overview of methods, tools and applications of Life Cycle Assessment developed and utilised in several technology fields of VTT. The 12 Symposium papers deal with recent LCA studies on products and technologies. The scope ranges from beverage cups to urban planning, from inventory databases to rating systems. Topical issues relating to climate change concern biorefineries and the overall impacts of the utilisation of biomass. The calculation of carbon footprints is also introduced through paper products and magazines. One example of LCA tools developed at VTT addresses cement manufacturing. VTT's transport emission database, LIPASTO, was introduced in detail. The use of LCA methods and life cycle thinking is described in various contexts: product development in relation to precision instruments; selection of materials and work processes in relation to sediment remediation project; and procedures of sustainability rating through VTT's office building Digitalo. The Climate Bonus project presented a demonstrated ICT support that informs about the greenhouse gas emissions and carbon footprints of households. (orig.)

  20. INTERACTION BETWEEN MODELS OF THE LIFE CYCLE OF INDUSTRIAL ENTERPRISE AND CYCLE OF ITS REORGANIZATION

    Directory of Open Access Journals (Sweden)

    Chulkov Vitaliy Olegovich

    2012-10-01

    Full Text Available The objective of this scientific research is to develop a theoretical model of organizational and technology-related processes of reorganization of industrial enterprises, as well as their interaction. Multipoint logic notions of growth and interaction phases are used as research methods. The author describes the basic stages of reorganization, the life cycle of industrial enterprises and the cycle of their transformation. The processes are presented as an infographical image that represents a concentric model of interaction. This concentric model represents interaction between two or more phases. The process is entitled infografical modeling on the polyfunctional level. The concentric model moves both clockwise and anti-clockwise. Basic organizational and technological processes of reorganization of industrial enterprises that include decision making in terms of expediency of reorganization, design, construction, and performance of industrial enterprises at full capacity, and further operation of the industrial enterprise are described in the paper. Attainment of this objective, namely, reorganization of an industrial enterprise, involves a huge amount of resources, including labour resources that need interaction with all parties of reorganization; therefore, the concentric model of interaction describing the basic cycle of reorganization, the life cycle of an industrial enterprise and the cycle of its conversion is a trustworthy representation of this process. The proposed concentric model of interaction should be used in the design of organizational and technology-related processes for integrated consideration of reorganization of enterprises required to understand and improve the efficiency of reorganizations and to control the reorganization of industrial facilities.

  1. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  2. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  3. SUNSPOT CYCLES IMPACTS ON TOURISM AND QUALITY OF LIFE

    Directory of Open Access Journals (Sweden)

    Tadeja Jere Jakulin

    2017-09-01

    Full Text Available We live under the influence of natural cycles caused by the rotation of our planet and its revolution around the sun. The nature of our nearest star is also subject to cyclical change. This article presents a study of a correlation between sunspot cycles and foreign tourists arrivals in Slovenia, based on historical data between sunspot cycles and sea salt production in Slovenia's Municipality of Piran during the Maunder Minimum period (1645-1715. The production of salt by the solar evaporation of brine in salt pans and tourist industry are seasonal economic activities that are affected by changes to the weather. The paper looks at sea salt production in Piran during a particular period in the past. The repetition of the sea salt production in the past is not possible. For this reason, the study uses mathematical tools and an additional case study, which analyses arrivals of foreign tourists to Slovenia over the past 65 years (1948-2012. The study has two purposes: to identify a linear correlation coefficient, which provides evidence of a correlation between arrivals of foreign tourists to Slovenia and sunspot cycles and to develop a causal loop diagram (CLD or so called qualitative model of a complex tourism system, which shows the interdependency of sunspot cycles, tourism system, and quality of life.

  4. Optimal Life-Cycle Investing with Flexible Labor Supply: A Welfare Analysis of Life-Cycle Funds

    OpenAIRE

    Francisco J. Gomes; Laurence J. Kotlikoff; Luis M. Viceira

    2008-01-01

    We investigate optimal consumption, asset accumulation and portfolio decisions in a realistically calibrated life-cycle model with flexible labor supply. Our framework allows for wage rate uncertainly, variable labor supply, social security benefits and portfolio choice over safe bonds and risky equities. Our analysis reinforces prior findings that equities are the preferred asset for young households, with the optimal share of equities generally declining prior to retirement. However, variab...

  5. Performance improvement: an active life cycle product management

    Science.gov (United States)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  6. Accounting for ecosystem services in life cycle assessment, Part I: a critical review.

    Science.gov (United States)

    Zhang, Yi; Singh, Shweta; Bakshi, Bhavik R

    2010-04-01

    If life cycle oriented methods are to encourage sustainable development, they must account for the role of ecosystem goods and services, since these form the basis of planetary activities and human well-being. This article reviews methods that are relevant to accounting for the role of nature and that could be integrated into life cycle oriented approaches. These include methods developed by ecologists for quantifying ecosystem services, by ecological economists for monetary valuation, and life cycle methods such as conventional life cycle assessment, thermodynamic methods for resource accounting such as exergy and emergy analysis, variations of the ecological footprint approach, and human appropriation of net primary productivity. Each approach has its strengths: economic methods are able to quantify the value of cultural services; LCA considers emissions and assesses their impact; emergy accounts for supporting services in terms of cumulative exergy; and ecological footprint is intuitively appealing and considers biocapacity. However, no method is able to consider all the ecosystem services, often due to the desire to aggregate all resources in terms of a single unit. This review shows that comprehensive accounting for ecosystem services in LCA requires greater integration among existing methods, hierarchical schemes for interpreting results via multiple levels of aggregation, and greater understanding of the role of ecosystems in supporting human activities. These present many research opportunities that must be addressed to meet the challenges of sustainability.

  7. Life cycle assessment of a multi-megawatt wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E.; Pellegrini, S. [Grupo Eolicas Riojanas, R and D Division, Carretera de Laguardia, 91-93, 26006 Logrono, La Rioja (Spain); Sanz, F.; Blanco, J. [Department of Mechanical Engineering, University of La Rioja, Logrono, La Rioja (Spain); Jimenez, E. [Department of Electrical Engineering, University of La Rioja, Logrono, La Rioja (Spain)

    2009-03-15

    At the present moment in time, renewable energy sources have achieved great significance for modern day society. The main reason for this boom is the need to use alternative sources of energy to fossil fuels which are free of CO{sub 2} emissions and contamination. Among the current renewable energy sources, the growth of wind farms has been spectacular. Wind power uses the kinetic energy of the wind to produce a clean form of energy without producing contamination or emissions. The problem it raises is that of quantifying to what extent it is a totally clean form of energy. In this sense we have to consider not only the emissions produced while they are in operation, but also the contamination and environmental impact resulting from their manufacture and the future dismantling of the turbines when they come to the end of their working life. The aim of this study is to analyse the real impact that this technology has if we consider the whole life cycle. The application of the ISO 14040 standard [ISO. ISO 14040. Environmental management - life cycle assessment - principles and framework. Geneva, Switzerland: International Standard Organization; 1998.] allows us to make an LCA study quantifying the overall impact of a wind turbine and each of its components. Applying this methodology, the wind turbine is analysed during all the phases of its life cycle, from cradle to grave, with regard to the manufacture of its key components (through the incorporation of cut-off criteria), transport to the wind farm, subsequent installation, start-up, maintenance and final dismantling and stripping down into waste materials and their treatment. (author)

  8. Life cycle assessment study of a Chinese desktop personal computer.

    Science.gov (United States)

    Duan, Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li, Jinhui

    2009-02-15

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps--i.e. the end of life phase--lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study.

  9. Life cycle assessment study of a Chinese desktop personal computer

    International Nuclear Information System (INIS)

    Duan Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li Jinhui

    2009-01-01

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps - i.e. the end of life phase - lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study

  10. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  11. Human health impacts in the life cycle of future European electricity generation

    International Nuclear Information System (INIS)

    Treyer, Karin; Bauer, Christian; Simons, Andrew

    2014-01-01

    This paper presents Life Cycle Assessment (LCA) based quantification of the potential human health impacts (HHI) of base-load power generation technologies for the year 2030. Cumulative Greenhouse Gas (GHG) emissions per kWh electricity produced are shown in order to provide the basis for comparison with existing literature. Minimising negative impacts on human health is one of the key elements of policy making towards sustainable development: besides their direct impacts on quality of life, HHI also trigger other impacts, e.g. external costs in the health care system. These HHI are measured using the Life Cycle Impact Assessment (LCIA) methods “ReCiPe” with its three different perspectives and “IMPACT2002+”. Total HHI as well as the shares of the contributing damage categories vary largely between these perspectives and methods. Impacts due to climate change, human toxicity, and particulate matter formation are the main contributors to total HHI. Independently of the perspective chosen, the overall impacts on human health from nuclear power and renewables are substantially lower than those caused by coal power, while natural gas can have lower HHI than nuclear and some renewables. Fossil fuel combustion as well as coal, uranium and metal mining are the life cycle stages generating the highest HHI. - Highlights: • Life cycle human health impacts (HHI) due to electricity production are analysed. • Results are shown for the three ReCiPe perspectives and IMPACT2002+LCIA method. • Total HHI of nuclear and renewables are much below those of fossil technologies. • Climate change and human toxicity contribute most to total HHI. • Fossil fuel combustion and coal mining are the most polluting life cycle stages

  12. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  13. Life cycle assessment of the transmission network in Great Britain

    International Nuclear Information System (INIS)

    Harrison, Gareth P.; Maclean, Edward J.; Karamanlis, Serafeim; Ochoa, Luis F.

    2010-01-01

    Analysis of lower carbon power systems has tended to focus on the operational carbon dioxide (CO 2 ) emissions from power stations. However, to achieve the large cuts required it is necessary to understand the whole-life contribution of all sectors of the electricity industry. Here, a preliminary assessment of the life cycle carbon emissions of the transmission network in Great Britain is presented. Using a 40-year period and assuming a static generation mix it shows that the carbon equivalent emissions (or global warming potential) of the transmission network are around 11 gCO 2-eq /kWh of electricity transmitted and that almost 19 times more energy is transmitted by the network than is used in its construction and operation. Operational emissions account for 96% of this with transmission losses alone totalling 85% and sulphur hexafluoride (SF 6 ) emissions featuring significantly. However, the CO 2 embodied within the raw materials of the network infrastructure itself represents a modest 3%. Transmission investment decisions informed by whole-life cycle carbon assessments of network design could balance higher financial and carbon 'capital' costs of larger conductors with lower transmission losses and CO 2 emissions over the network lifetime. This will, however, necessitate new regulatory approaches to properly incentivise transmission companies.

  14. Steam generator life cycle management: Ontario Power Generation (OPG) experience

    International Nuclear Information System (INIS)

    Maruska, C.C.

    2002-01-01

    A systematic managed process for steam generators has been implemented at Ontario Power Generation (OPG) nuclear stations for the past several years. One of the key requirements of this managed process is to have in place long range Steam Generator Life Cycle Management (SG LCM) plans for each unit. The primary goal of these plans is to maximize the value of the nuclear facility through safe and reliable steam generator operation over the expected life of the units. The SG LCM plans integrate and schedule all steam generator actions such as inspection, operation, maintenance, modifications, repairs, assessments, R and D, performance monitoring and feedback. This paper discusses OPG steam generator life cycle management experience to date, including successes, failures and how lessons learned have been re-applied. The discussion includes relevant examples from each of the operating stations: Pickering B and Darlington. It also includes some of the experience and lessons learned from the activities carried out to refurbish the steam generators at Pickering A after several years in long term lay-up. The paper is structured along the various degradation modes that have been observed to date at these sites, including monitoring and mitigating actions taken and future plans. (author)

  15. Life cycle analysis of photovoltaic cell and wind power plants

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    1997-01-01

    The paper presents life cycle analyses of net energy and CO 2 emissions on photovoltaic cell and wind power generation plants. Energy requirements associated with a plant are estimated for producing materials, manufacturing equipment, constructing facilities, acid operating plants. Energy ratio and net supplied energy are calculated by the process energy analysis that examines the entire energy inventory of input and output during life time of a plant. Life cycle CO 2 emission can also be calculated from the energy requirements obtained by the net energy analysis. The emission also includes greenhouse effect equivalent to CO 2 emission of methane gas leakage at a mining as well as CO 2 emissions from fossil fuel combustion during generating electricity, natural gas treatment at an extracting well and cement production in industry. The commercially available and future-commercial technologies are dealt with in the study. Regarding PV technologies, two different kinds of installation are investigated; roof-top typed installation of residential houses and ground installation of electric utilities. (author)

  16. Asphalt Concrete Mixtures: Requirements with regard to Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jan Mikolaj

    2015-01-01

    Full Text Available Design of asphalt concrete, required properties of constituent materials and their mixing ratios, is of tremendous significance and should be implemented with consideration given to the whole life cycle of those materials and the final construction. Conformity with requirements for long term performance of embedded materials is the general objective of the Life Cycle Assessment (LCA. Therefore, within the assessment, material properties need to be evaluated with consideration given to the whole service life—from the point of embedding in the construction until their disposal or recycling. The evaluation focuses on verification of conformity with criteria set for these materials and should guarantee serviceability and performance during their whole service life. Recycling and reuse of asphalt concrete should be preferred over disposal of the material. This paper presents methodology for LCA of asphalt concrete. It was created to ensure not only applicability of the materials in the initial stage, at the point of their embedding, but their suitability in terms of normatively prescribed service performance of the final construction. Methods described and results are presented in a case study for asphalt mixture AC 11; I design.

  17. Steam generator life cycle management - B and W perspective

    International Nuclear Information System (INIS)

    Dhar, D.; Fluit, S.; Millman, J.

    2006-01-01

    This paper is an effort towards the B and W perspective about the effective life cycle management (LCM) of the CANDU Steam Generators (SGs) based on the identification of active and plausible degradation mechanisms for various SG components and the need to achieve a safe and economic operating interval for the station. The objective of this paper is to provide the long-term effective strategy for inspections, maintenance and design modifications as necessary for the safe and reliable operation of the SGs during the plant design life. The derived activities of this strategy need to be integrated with the station outage specific work scope plan for an effective life cycle management. The technical basis for these activities is based on the review of previous field inspection records, maintenance work and modifications at the station and operational experience (OPEX) from other CANDU steam generators with similar design. These activities need to be performed in order to ensure that the SGs perform within an acceptable level of safety and reliability as per the licensing bases, while optimizing station production and cost effectiveness. (author)

  18. Generalized fish life-cycle poplulation model and computer program

    International Nuclear Information System (INIS)

    DeAngelis, D.L.; Van Winkle, W.; Christensen, S.W.; Blum, S.R.; Kirk, B.L.; Rust, B.W.; Ross, C.

    1978-03-01

    A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexually mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition

  19. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  20. Representativeness of environmental impact assessment methods regarding Life Cycle Inventories.

    Science.gov (United States)

    Esnouf, Antoine; Latrille, Éric; Steyer, Jean-Philippe; Helias, Arnaud

    2018-04-15

    Life Cycle Assessment (LCA) characterises all the exchanges between human driven activities and the environment, thus representing a powerful approach for tackling the environmental impact of a production system. However, LCA practitioners must still choose the appropriate Life Cycle Impact Assessment (LCIA) method to use and are expected to justify this choice: impacts should be relevant facing the concerns of the study and misrepresentations should be avoided. This work aids practitioners in evaluating the adequacy between the assessed environmental issues and studied production system. Based on a geometrical standpoint of LCA framework, Life Cycle Inventories (LCIs) and LCIA methods were localized in the vector space spanned by elementary flows. A proximity measurement, the Representativeness Index (RI), is proposed to explore the relationship between those datasets (LCIs and LCIA methods) through an angular distance. RIs highlight LCIA methods that measure issues for which the LCI can be particularly harmful. A high RI indicates a close proximity between a LCI and a LCIA method, and highlights a better representation of the elementary flows by the LCIA method. To illustrate the benefits of the proposed approach, representativeness of LCIA methods regarding four electricity mix production LCIs from the ecoinvent database are presented. RIs for 18 LCIA methods (accounting for a total of 232 impact categories) were calculated on these LCIs and the relevance of the methods are discussed. RIs prove to be a criterion for distinguishing the different LCIA methods and could thus be employed by practitioners for deeper interpretations of LCIA results. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Life cycle assessment of electricity generation in Mexico

    International Nuclear Information System (INIS)

    Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A.

    2011-01-01

    This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO 2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO 2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement. -- Highlights: → This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. → 129 million tonnes of CO 2 eq. per year are emitted from 225 TWh of electricity generated per year of which 87% is due to the combustion of fossil fuels. → Coal technologies generate 1094 g CO 2 eq./kWh, heavy fuel oil 964 g CO 2 eq./kWh, and gas 468 g CO 2 eq./kWh; by contrast, nuclear and hydro emit 12 g CO 2 eq./kWh. → Heavy fuel oil contributes most to the life cycle environmental impacts (59-97%). → The results show good agreement with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK.

  2. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  3. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  4. Existence and Life. Erwin Straus’s Criticism of Heidegger’s Daseinsanalytik

    Directory of Open Access Journals (Sweden)

    DE GIOVANNI, LUCA

    2017-06-01

    Full Text Available Existence and Life. Erwin Straus’s Criticism of Heidegger’s Daseinsanalytik Erwin Straus was a German psychiatrist and phenomenologist generally known as the author of Vom Sinn der Sinne, a book published in 1935. However, in what follows I will rely almost exclusively on Psychiatry and Philosophy, an essay he wrote in 1963, almost thirty years later. My main goal is to present Straus’s contribution to a phenomenological ontology of life. I will begin by presenting Straus’s criticism of Heidegger’s notion of Dasein and then I will try to sketch Straus’s positive contribution to a phenomenological theory of the living.

  5. Life cycle assessment of sewage sludge management: A review

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Scheutz, Charlotte

    2013-01-01

    In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal...... and how they were estimated in the analysis. In order to reduce these choice uncertainties, consolidation of the modelling approach in the following area are recommended: quantification of fugitive gas emissions and modelling of disposal practices. Besides harmonization of the key technical assumptions...

  6. Technology and manufacturing process selection the product life cycle perspective

    CERN Document Server

    Pecas, Paulo; Silva, Arlindo

    2014-01-01

    This book provides specific topics intending to contribute to an improved knowledge on Technology Evaluation and Selection in a Life Cycle Perspectives. Although each chapter will present possible approaches and solutions, there are no recipes for success. Each reader will find his/her balance in applying the different topics to his/her own specific situation. Case studies presented throughout will help in deciding what fits best to each situation, but most of all any ultimate success will come out of the interplay between the available solutions and the specific problem or opportunity the reader is faced with.

  7. Life cycle inventory analysis of fossil energies in Japan

    International Nuclear Information System (INIS)

    Yoon Sungyee; Yamada, Tatsuya

    1999-01-01

    Given growing concerns over global warming problems in recent years, a matter of great importance has been to grasp GHG emissions from fossil energy use as accurately as possible by figuring out how much GHGs result from a life cycle (production, transportation and consumption) of various fossil energies. The objective of this study is to make a life cycle inventory (LCI) analysis of major fossil energies (coal, oil, LNG, LPG) consumed in Japan pursuant to ISO 14040. On these fossil energies imported to Japan in 1997, LCI analysis results of GHG emissions (specifically carbon dioxide and methane) put CO 2 intensity during their combustion stage (gross heat value basis) at 100:121:138:179 among LNG:LPG:oil:coal. But, in life cycle terms, the ratios turned to be 100:110:120:154. The world average (gross heat value basis) gained from IPCC data, among others, puts the ratios among LNG:LPG:oil:coal at 100:105:110:151. In comparison, our study that focused on Japan found their corresponding figures at 100:110:120:154. COP 3 set forth country-by-country targets. Yet, global warming, that is a worldwide problem, also requires a more comprehensive assessment based on a life cycle analysis (LCA). The estimation results of our study can be of some help in shaping some criteria when considering energy and environmental policies from a global viewpoint. In addition, our study results suggest the importance of the best energy mix that is endorsed by LCI analysis results, if global warming abatement efforts should successfully be in advance. As specific institutional designs of Kyoto Mechanism are currently under examination, the introduction of LCI method deserves to be considered in discussing the baseline issue of joint implementation and clean development mechanism. In the days ahead, by gathering and analysing detailed-ever data, and through fossil-energy LCA by use, we had better consider supply and demand of the right energies in the right uses. (author)

  8. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  9. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  10. Field dodder life cycle and interaction with host plants

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2017-01-01

    Full Text Available Field dodder is a parasitic plant that attaches to stems and leaves of broadleaf plants, including weeds, field crops, vegetables and ornamentals, across most agricultural regions of the world. Effective field dodder control is extremely difficult to achieve due to the nature of attachment and close association between the host and the parasite, which require a highly effective and selective herbicide to destroy the parasite without damaging its host. To establish a strategy for controlling parasite growth and restricting the spread of field dodder in crop fields, it is important to learn more about this weed, its life cycle and development.

  11. A life-cycle comparison of alternative automobile fuels.

    Science.gov (United States)

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  12. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    The life cycle assessment (LCA) of a waste management system relies on many internal characteristics such as pollution control systems and recovery efficiencies. It also relies on technical externalities supporting the waste management system in terms of capital goods and energy and material...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...

  13. Life cycle assessment of nanoadsorbents at early stage technological development

    DEFF Research Database (Denmark)

    Kazemi, Ali; Bahramifar, Nader; Heydari, Akbar

    2018-01-01

    the process of the functionalization of nanoadsorbents leads to the increase of the adsorption capacity of nanoadsorbents, it is also paired with a significant enhancement of negative environmental impacts. The results of t-test comparing the cradle-to-use life cycle impacts of studied impact categories for 1...... in the control and removal of environmental pollutants. This application is still an emerging technology at the early stages of development. Hence, the heart of this study enables an environmental assessment of nanoadsorbents as an emerging product. In addition, the environmental impacts of synthesized...

  14. Site-dependent life-cycle impact assessment of acidification

    DEFF Research Database (Denmark)

    Potting, Josepha Maria Barbara; Schöpp, W.; Blok, Kornelis

    1998-01-01

    The lack of spatial differentiation in current life-cycle impact assessment (LCIA) affects the relevance of the assessed impact. This article first describes a framework for constructing factors relating the region of emission to the acidifying impact on its deposition areas. Next, these factors...... are established for 44 European regions with the help of the RAINS model, an integrated assessment model that combines information on regional emission levels with information on long-range atmospheric transport to estimate patterns of deposition and concentration for comparison with critical loads and thresholds...

  15. Life Cycle Assessment of a Wave Energy Converter

    OpenAIRE

    Gastelum Zepeda, Leonardo

    2017-01-01

    Renewable energies had accomplish to become part of a new era in the energy development area, making people able to stop relying on fossil fuels. Nevertheless the environmental impacts of these new energy sources also require to be quantified in order to review how many benefits these new technologies have for the environment. In this project the use of a Life Cycle Assessment (LCA) will be implemented in order to quantify the environmental impact of wave energy, an LCA is a technique for ass...

  16. Course Content for Life Cycle Engineering and EcoDesign

    DEFF Research Database (Denmark)

    Jerswiet, Jack; Duflou, Joost; Dewulf, Wim

    2007-01-01

    There is a need to create an awareness of Life Cycle Engineering and EcoDesign in Engineering students. Topics covered in an LCE/EcoDesign course will create an awareness of environmental impacts, especially in other design course projects. This paper suggests that an awareness of product impact...... upon the environment must be created at an early stage in undergraduate education. Deciding what to include in an LCE/EcoDesign Course can be difficult because there are many different views on the subject. However, there are more similarities than differences. All LCE/ EcoDesign Engineering courses...

  17. Evaluating the life cycle environmental impact of short span bridges

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2016-01-01

    impact of the construction sector. Life cycle assessment (LCA) is a systematic method for assessing the environmental impact of products and systems, but its application in bridges is scarce. In Swede, most of the bridges are short spans and the type of concrete slab-frame bridge (CFB) accounts...... for a large share. Soil steel composite bridge (SSCB) is a functional equivalent solution for CFB. In order to mitigate the environmental burdens of short span bridges, this paper performed a comparative LCA study between these two types of bridge. The results indicate that the initial material consumption...

  18. Hepatitis C virus relies on lipoproteins for its life cycle.

    Science.gov (United States)

    Grassi, Germana; Di Caprio, Giorgia; Fimia, Gian Maria; Ippolito, Giuseppe; Tripodi, Marco; Alonzi, Tonino

    2016-02-14

    Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.

  19. A Life-Cycle Comparison of Alternative Automobile Fuels.

    Science.gov (United States)

    MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable

  20. The value of the exergetic life cycle assessment besides the LCA

    NARCIS (Netherlands)

    Cornelissen, Rene; Hirs, Gerard

    2002-01-01

    In this paper the value of the exergetic life cycle assessment (ELCA) has been analysed. The ELCA uses the framework of the life cycle assessment (LCA) and can be seen as the exergy analysis of a complete life cycle. The value of the ELCA besides the LCA has been discussed. It is shown that the ELCA

  1. 76 FR 41525 - Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles Management Unit Including...

    Science.gov (United States)

    2011-07-14

    ... Parts Supply Chain, Global Product Life Cycles Management Unit Including Teleworkers Reporting to... workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit...). Since eligible workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles...

  2. LCIA framework and cross-cutting issues guidance within the UNEP/SETAC Life Cycle Initiative

    Science.gov (United States)

    Increasing needs for decision support and advances in scientific knowledge within life cycle assessment (LCA) led to substantial efforts to provide global guidance on environmental life cycle impact assessment (LCIA) indicators under the auspices of the UNEP-SETAC Life Cycle Init...

  3. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  4. Optimal Housing, Consumption, and Investment Decisions over the Life Cycle

    DEFF Research Database (Denmark)

    Kraft, Holger; Munk, Claus

    2011-01-01

    We derive explicit solutions to life-cycle utility maximization problems involving stock and bond investment, perishable consumption, and the rental and ownership of residential real estate. Prices of houses, stocks and bonds, and labor income are correlated. Because of a positive correlation...... between house prices and labor income, young individuals want little exposure to house price risk and tend to rent their home. Later in life the desired housing investment increases and will eventually reach and exceed the desired consumption, suggesting that the individual should buy his home—and either...... additional housing units (for renting out) or house price–linked financial assets. In the final years, preferences shift back to home rental. The derived strategies are still useful if housing positions are only reset infrequently. Our results suggest that markets for real estate investment trusts or other...

  5. Fuzzy Activity Based Life Cycle Costing For Repairable Equipment

    Directory of Open Access Journals (Sweden)

    Mulubrhan Freselam

    2016-01-01

    Full Text Available Life-cycle cost (LCC is the much known method used for decision making that considers all costs in the life of a system or equipment. Predicting LCCs is fraught with potential errors, owing to the uncertainty in future events, future costs, interest rates, and even hidden costs. These uncertainties have a direct impact on the decision making. Activity based LCC is used to identify the activities and cost drivers in acquisition, operation and maintenance phase. This activity based LCC is integrated with fuzzy set theory and interval mathematics to model these uncertainties. Day–Stout–Warren (DSW algorithm and the vertex method are then used to evaluate competing alternatives. A case of two pumps (Pump A and Pump B are taken and their LCC is analysed using the developed model. The equivalent annual cost of Pump B is greater than Pump A, which leads the decision maker to choose Pump A over Pump B.

  6. End-of-life flows of multiple cycle consumer products

    International Nuclear Information System (INIS)

    Tsiliyannis, C.A.

    2011-01-01

    Explicit expressions for the end-of-life flows (EOL) of single and multiple cycle products (MCPs) are presented, including deterministic and stochastic EOL exit. The expressions are given in terms of the physical parameters (maximum lifetime, T, annual cycling frequency, f, number of cycles, N, and early discard or usage loss). EOL flows are also obtained for hi-tech products, which are rapidly renewed and thus may not attain steady state (e.g. electronic products, passenger cars). A ten-step recursive procedure for obtaining the dynamic EOL flow evolution is proposed. Applications of the EOL expressions and the ten-step procedure are given for electric household appliances, industrial machinery, tyres, vehicles and buildings, both for deterministic and stochastic EOL exit, (normal, Weibull and uniform exit distributions). The effect of the physical parameters and the stochastic characteristics on the EOL flow is investigated in the examples: it is shown that the EOL flow profile is determined primarily by the early discard dynamics; it also depends strongly on longevity and cycling frequency: higher lifetime or early discard/loss imply lower dynamic and steady state EOL flows. The stochastic exit shapes the overall EOL dynamic profile: Under symmetric EOL exit distribution, as the variance of the distribution increases (uniform to normal to deterministic) the initial EOL flow rise becomes steeper but the steady state or maximum EOL flow level is lower. The steepest EOL flow profile, featuring the highest steady state or maximum level, as well, corresponds to skew, earlier shifted EOL exit (e.g. Weibull). Since the EOL flow of returned products consists the sink of the reuse/remanufacturing cycle (sink to recycle) the results may be used in closed loop product lifecycle management operations for scheduling and sizing reverse manufacturing and for planning recycle logistics. Decoupling and quantification of both the full age EOL and of the early discard flows is

  7. Overview of life cycle management - LCM (plant life management - PLiM)

    International Nuclear Information System (INIS)

    Nickerson, J.

    2006-01-01

    This paper discusses life cycle management which involves a structured and comprehensive aging management program to ensure that significant aging effects are detected as early as possible and engineering, operations and maintenance actions are undertaken to control aging degradation and wear out of components

  8. Modeling Retirees' Life Satisfaction Levels: The Role of Recreational, Life Cycle and Socio-Environmental Elements.

    Science.gov (United States)

    Romsa, Gerald; And Others

    1985-01-01

    This study investigated satisfaction with retirement as a function of life cycle forces, socioenvironmental influences, and the degree of fulfillment of Maslow's hierarchy of needs through participation in recreational leisure activities. The findings from interviews with 300 retirees are discussed. (Author/MT)

  9. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  10. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  11. System, structure, and component evaluation for life-cycle management

    International Nuclear Information System (INIS)

    Hanley, N.E.; Banerjee, A.K.; Woods, P.B.; Perrin, J.S.; Marian, F.A.

    1992-01-01

    In recent years, many nuclear organizations and utilities have studied the possibility of extending the service life of nuclear power plants beyond the original license period. From these studies, recommendations have resulted for maintaining the option of future decisions concerning operating license renewal. Several of the recommendations are considered beneficial to the management and operation of nuclear plants in meeting many of their near-term goals. In 1986, Public Service Electric and Gas (PSE and G) concluded that a full-scale nuclear plant license renewal program for their Salem 1 and 2 and Hope Creek nuclear stations was not cost-effective at that time. Rather, it would be better served if the nuclear plant life extension (PLEX) option were maintained for future consideration. To help plan for the life extension option, a strategic 5-yr life cycle management (LCM) program was begun. In support of the LCM program, evaluations for the following Salem structures and components were performed: (1) intake structures, (2) reactor vessel support, (3) containment liner, and (4) containment structure (below grade). This paper discusses the systems, structures, and components (SSC) evaluation methodology and, as an example, discusses the evaluation performed for reactor vessel support

  12. Complex life cycles and offspring provisioning in marine invertebrates.

    Science.gov (United States)

    Marshall, Dustin J; Keough, Michael J

    2006-10-01

    Offspring size can have pervasive effects throughout an organism's life history. Mothers can make either a few large or many small offspring, and the balance between these extremes is determined by the relationship between offspring size and performance. This relationship in turn is thought to be determined by the offspring's environment. Recently, it has become clear that events in one life-history stage can strongly affect performance in another. Given these strong carryover effects, we asked whether events in the larval phase can change the relationship between offspring size and performance in the adult phase. We manipulated the length of the larval period in the bryozoan Bugula neritina and then examined the relationship between offspring size and various parameters of adult performance under field conditions. We found that despite the adult stage being outplanted into identical conditions, different offspring sizes were predicted to be optimal, depending on the experience of those adults as larvae. This work highlights the fact that the strong phenotypic links between life-history stages may result in optimal offspring size being highly unpredictable for organisms with complex life cycles.

  13. Nanotechnology and Life Cycle Assessment. A systems approach to Nanotechnology and the environment

    DEFF Research Database (Denmark)

    Klöpffer, Walter; Curran, Mary Ann; Frankl, Paolo

    This report summarizes the results of “Nanotechnology and Life Cycle Assessment,” a twoday workshop jointly convened by the Woodrow Wilson Center Project on Emerging Nanotechnologies; the United States Environmental Protection Agency Office of Research and Development; and the European Commission......, RTD.G4 “Nano S&T: Converging Science and Technologies.” Held in October 2006, the workshop involved international experts from the fields of Life Cycle Assessment (LCA) and nanotechnology. The main program of the workshop consisted of introductory lectures, group discussions and a final plenary...... identified and discussed by the groups. The purpose of the workshop was to determine whether existing LCA tools and methods are adequate to use on a new technology. This document provides an overview of LCA and nanotechnology, discusses the current state of the art, identifies current knowledge gaps that may...

  14. Life Cycle Inventory Modelling of Land Use Induced by Crop Consumption

    DEFF Research Database (Denmark)

    Kløverpris, Jesper; Wenzel, Henrik; Nielsen, Per Henning

    2008-01-01

    The actual land use consequences of crop consumption are not very well reflected in existing life cycle inventories. The state of the art is that such inventories typically include data from crop production in the country in which the crop is produced, and consequently the inventories do...... establishment of a link between crop demand and technological development. Through this approach, life cycle inventories for crops reflecting the actual land use consequences of consumption can be established. Further work (based on the methodological framework in this study) will address the practical....... Based on the current market trend for crops and an analysis of basic mechanisms in crop production, concepts for modelling how crop consumption affects the global agricultural area and the intensity of crop production are suggested. It is demonstrated how the assumptions concerning drivers...

  15. Top Management Team Diversity and Company Performance: The moderating effect of Organization Life Cycle

    Directory of Open Access Journals (Sweden)

    Emil Velinov

    2016-12-01

    Full Text Available The research paper examines the moderating impact of Organizational Life Cycle on the relationship between Top Management Team Diversity and Company Performance. The study first elaborates and establishes the theoretical link between organization lifecycle and composition of management elites. Second, a quantitative empirical study is conducted to test the OLC stages moderating impact on the upper echelons diversity and firm performance of the top companies in the Czech Republic. A detailed procedure is developed to accurately classify organizations at different lifecycle stages, drawing extensively on existing literature and scales. Paper findings state that more mature the company becomes, more diversified the senior management is regardless the firm performance. Also, the industry dynamism impact has its own role in the relationship between the organization life cycle and senior management diversity which is expressed by the paper findings as well.

  16. Evaluation of two streamlined life cycle assessment methods

    International Nuclear Information System (INIS)

    Hochschomer, Elisabeth; Finnveden, Goeran; Johansson, Jessica

    2002-02-01

    Two different methods for streamlined life cycle assessment (LCA) are described: the MECO-method and SLCA. Both methods are tested on an already made case-study on cars fuelled with petrol or ethanol, and electric cars with electricity produced from hydro power or coal. The report also contains some background information on LCA and streamlined LCA, and a deschption of the case study used. The evaluation of the MECO and SLCA-methods are based on a comparison of the results from the case study as well as practical aspects. One conclusion is that the SLCA-method has some limitations. Among the limitations are that the whole life-cycle is not covered, it requires quite a lot of information and there is room for arbitrariness. It is not very flexible instead it difficult to develop further. We are therefore not recommending the SLCA-method. The MECO-method does in comparison show several attractive features. It is also interesting to note that the MECO-method produces information that is complementary compared to a more traditional quantitative LCA. We suggest that the MECO method needs some further development and adjustment to Swedish conditions

  17. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola.

    Science.gov (United States)

    Newcombe, George; Campbell, Jason; Griffith, David; Baynes, Melissa; Launchbaugh, Karen; Pendleton, Rosemary

    2016-01-01

    Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.

  18. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola.

    Directory of Open Access Journals (Sweden)

    George Newcombe

    Full Text Available Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.

  19. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  20. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.