WorldWideScience

Sample records for existing gas storage

  1. Report from SG 1.1: improving the performance of existing gas storages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report aims to identify underlying trends for improvements in the underground gas storage (UGS) industry. It highlights best practices and state-of-the-art technology used in operating gas storages. The core conclusions of this report are based on a survey, which was sent out to the member countries. A reply was received from 15 countries, represented by 22 companies/institutions, including more than 100 gas storage sites. This response represents some 30% of the total estimated world storage working volume. In the survey operators were asked to report on the following issues: - measures implemented to improve the performance, - current priorities for improvements, - most important drivers for improvement, - techniques used to analyze performance, - techniques used to optimize storage performance, - software packages used, - technology used for reservoir management, wells and surface facilities, - safety and environment. (author)

  2. Opportunities in independent gas storage

    International Nuclear Information System (INIS)

    Daniel, R.

    1999-01-01

    The range of business opportunities currently available for the midstream oil and gas business were discussed with particular focus on storage opportunities. Alberta Energy Co. (AEC) Ltd.'s two midstream business units include AEC Pipelines and Gas Processing, and AEC Storage and Hub Services. These two businesses provide the company with good investment returns, stable cash flow, and some significant strategic synergies with their exploration and production businesses. In 1988, the AECO C Hub in southeastern Alberta was created as an outgrowth of AEC's gas production operations on the Suffield block, where they had depleted gas reservoirs with high rock quality suitable for high deliverability storage. With the AECO C Hub, AEC was able to offer firm storage contracts of from 1 to 20 years, and to introduce short term interruptible parking and lending services, title exchange, a spot price index for greater price discovery, and an electronic nomination system. AEC is currently completing construction of their second commercial storage facility, the Wild Goose project, in northern California. D ebottlenecking' the Western Canada supply basin should provide additional opportunities for further expansion not only for AEC but also for other midstream service providers. Opportunities are especially available in the areas of new storage facilities to serve location-specific needs, replacement of declining storage capacity, replacement of retiring facilities, technological optimization of existing facilities, more flexible, higher deliverability facilities and commercial optimization of existing facilities. A map of the hubs and market centres of North America are included. 5 figs

  3. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  4. GAS STORAGE TECHNOLOGY CONSORTIUM

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the

  5. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  6. Radioactive gas storage device

    International Nuclear Information System (INIS)

    Sano, Yuji.

    1988-01-01

    Purpose: To easily and reliably detect the consumption of a sputtered cathode in a radioactive gas storage device using ion injection method. Constitution: Inert gases are sealed to the inside of a cathode. As the device is operated, the cathode is consumed and, if it is scraped to some extent, inert gases in the cathode gases are blown out to increase the inner pressure of the device. The pressure elevation is detected by a pressure detector connected with a gas introduction pipe or discharge pipe. Further, since the discharge current in the inside is increased along with the elevation of the pressure, it is possible to detect the increase of the electrical current. In this way, the consumption of the cathode can be recognized by detecting the elevation in the pressure or increase in the current. (Ikeda, J.)

  7. Radioactive gas storage device

    International Nuclear Information System (INIS)

    Seki, Eiji; Kobayashi, Yoshihiro.

    1989-01-01

    The present invention concerns a device of ionizing radioactive gases to be processed in gaseous nuclear fission products in nuclear fuel reprocessing plants, etc., and injecting them into metal substrates for storage. The device comprises a vessel for a tightly closed type outer electrode in which gases to be processed are introduced, an electrode disposed to the inside of the vessel and the target material, a high DC voltage power source for applying high voltage to the electrodes, etc. There are disposed a first electric discharging portion for preparting discharge plasma for ion injection of different electrode distance and a second electric discharging portion for causing stable discharge between the vessel and the electrode. The first electric discharging portion for the ion injection provides an electrode distance suitable to acceleration sputtering and the second electric discharging portion is used for stable discharge. Accordingly, if the gas pressure in the radioactive gas storage device is reduced by the external disturbance, etc., since the second electric discharging portion satisfies the electric discharging conditions, the device can continue electric discharge. (K.M.)

  8. Three-dimensional multiphase effects in aquifer gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.; Fuller, P.; Finsterle, S. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The underground storage of natural gas in the United States is one of the most widespread methods of storing energy in the United States. There are two main kinds of storage: (a) dry gas fields, and (b) aquifer storage fields. The storage of gas in dry gas fields involves the conversion of petroleum bearing reservoirs, usually after they have been depleted of any economic production, into a storage operation. An appropriate number of injection-withdrawal (I-W) wells are either drilled or converted from existing exploitation wells, and the storage operations begin by injecting gas to build up to some desired volume of gas in storage.

  9. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  10. Underground storage of natural gas and LPG

    International Nuclear Information System (INIS)

    1990-01-01

    The Symposium attended by over 200 participants from 23 member countries of the Economic Commission for Europe (ECE), representatives from Australia, Iraq, Israel, Kuwait as well as from 5 international organizations, provided an opportunity for existing and prospective gas markets in the ECE region to exchange experience and information on current trends and developments in natural gas and liquefied petroleum gas underground storage, especially in technical and regulatory matters, including economic, market and social considerations, that influence the planning, development and operations of gas storage facilities. Environmental and safety factors associated with such operations were also examined. A separate abstract was prepared for each of the presented papers. Refs, figs and tabs

  11. Interim Storage of Plutonium in Existing Facilities

    International Nuclear Information System (INIS)

    Woodsmall, T.D.

    1999-01-01

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  12. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  13. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  14. Which way for Europe's gas storage market?

    International Nuclear Information System (INIS)

    Hureau, Geoffroy; Cornot-Gandolphe, Sylvie

    2013-06-01

    This slide show presents in a first part the 2013 Situation of the European gas storage market (Capacity, Gas Demand vs. Gas Storage, Spreads and Volatility, LNG effect, Storage Price, Utilization of Storage Facilities, Security of supply). The future of European Gas Demand and Supply are presented in a second part (Demand and Supply Factors, Market Liberalization, Estimates of European UGS Needs by 2030, Planned Working Gas Capacities in Europe)

  15. Underground Gas Storage in the World 2013 (fifth edition)

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-06-01

    Since its first publication in 1990, 'Underground Gas Storage in the World' has been the industry's reference on underground gas storage (UGS). The updated 2013 edition includes in-depth CEDIGAZ's analyses of the latest developments and trends in the storage industry all over the world as well as extensive country analyses with complete datasets including current, under construction and planned Underground Gas Storage facilities in 48 countries. It describes the 688 existing storage facilities in the world and the 236 projects under construction and planned. Future storage demand and its main drivers are presented at global and regional levels. The study builds on the CEDIGAZ Underground Gas Storage Database, the only worldwide Underground Gas Storage database to be updated every year. This document summarizes the key findings of the Survey which includes four main parts: The first part gives an overview of underground gas storage in the world at the beginning of 2013 and analyzes future storage needs by 2030, at regional and international levels. The second part focuses on new trends and issues emerging or developing in key storage markets. It analyzes the emerging storage market in China, reviews the storage business climate in Europe, examines Gazprom's storage strategy in Europe, and reviews recent trends in storage development in the United States. The third part gives some fundamental background on technical, economic and regulatory aspects of gas storage. The fourth part gives a countrywide analysis of the 48 countries in the world holding underground gas storage facilities or planning storage projects. 48 countries are surveyed with 688 existing UGS facilities, 256 projects under construction or planned

  16. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  17. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  18. Underground gas storage in the World - 2013 (fifth Edition)

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-07-01

    Since its first publication in 1990, 'Underground Gas Storage in the World' has been the industry's reference on underground gas storage (UGS). The updated 2013 edition includes in-depth CEDIGAZ's analyses of the latest developments and trends in the storage industry all over the world as well as extensive country analyses with complete datasets including current, under construction and planned Underground Gas Storage facilities in 48 countries. It describes the 688 existing storage facilities in the world and the 236 projects under construction and planned. Future storage demand and its main drivers are presented at global and regional levels. 'Underground Gas Storage in the World 2013' builds on the CEDIGAZ Underground Gas Storage Database, the only worldwide Underground Gas Storage database to be updated every year. The Survey includes four main parts: The first part gives an overview of underground gas storage in the world at the beginning of 2013 and analyzes future storage needs by 2030, at regional and international levels. The second part focuses on new trends and issues emerging or developing in key storage markets. It analyzes the emerging storage market in China, reviews the storage business climate in Europe, examines Gazprom's storage strategy in Europe, and reviews recent trends in storage development in the United States. The third part gives some fundamental background on technical, economic and regulatory aspects of gas storage. The fourth part gives a countrywide analysis of the 48 countries in the world holding underground gas storage facilities or planning storage projects. 48 countries surveyed, 688 existing UGS facilities, 256 projects under construction or planned. The document includes 70 tables, 72 charts and figures, 44 country maps. The countries surveyed are: Europe : Albania, Austria, Belgium, Bosnia, Bulgaria, Croatia, Czech Republic, Denmark, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Netherlands, Poland

  19. Current gas storage R and D programmes at Gas Research Institute

    International Nuclear Information System (INIS)

    Shikari, Y.A.

    1990-01-01

    The Gas Research Institute (GRI) is currently involved in the development of concepts aimed at an enhancement of natural gas service to the consumer. In order to maintain the attractiveness of the gas options to industrial consumers and to reinforce the ''value-in-use'' of natural gas to residential as well as commercial customers, it is essential to develop efficient, economical, and safe means of reducing the ''cost-of-service'', including that of natural gas storage in underground formations. Specifically, research and development (R and D) is needed to explore ways to better utilize existing storage fields and also to develop new storage facilities at minimum cost. GRI is currently sponsoring research projects aimed at controlling gas migration in underground gas storage reservoirs, reducing base (or cushion) gas requirements, understanding the gas-gas phase mixing behaviour via laboratory experiments and reservoir models, developing cost-effective gas separation processes using membranes, and optimizing the operation and maintenance (O and M) costs of underground gas storage operations. This paper provides an overview of the GRI's Gas Storage R and D Programme and highlights key results achieved to date for selected research projects. (author). 16 refs, 6 figs, 3 tabs

  20. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  1. Underground storage of natural gas in Italy

    International Nuclear Information System (INIS)

    Henking, E.

    1992-01-01

    After first relating the importance of natural gas storage to the viability of Italian industrial activities, this paper discusses the geo-physical nature of different types of underground cavities which can be used for natural gas storage. These include depleted petroleum and natural gas reservoirs, aquifers and abandoned mines. Attention is given to the geologic characteristics and physical characteristics such as porosity, permeability and pressure that determine the suitability of any given storage area, and to the techniques used to resolve problems relative to partially depleted reservoirs, e.g., the presence of oil, water and salt. A review is made of Italy's main storage facilities. This review identifies the various types of storage techniques, major equipment, operating and maintenance practices. A look is then given at Italy's plans for the development of new facilities to meet rising demand expected to reach 80 billion cubic meters/year by the turn of the century. The operating activities of the two leading participants, SNAM and AGIP, in Italy's natural gas industry are highlighted. Specific problems which contribute to the high operating costs of natural gas storage are identified and a review is made of national normatives governing gas storage. The report comes complete with a glossary of the relative terminology and units of measure

  2. Gas storage - Estimation of the economic value

    International Nuclear Information System (INIS)

    1997-05-01

    The main purpose of the project is to investigate the economic benefits of underground gas storage used for seasonal smoothing and a strategical security of supply. The benefits from the storage have to be decided based on the costs of alternative have to be ways of securing the energy supply, including evaluation of: demand-dependent prices on natural gas and other fuels (both domestic and foreign markets); interruptible supply; establishment of extra production and transportation capacity from the North Sea; establishment of new connecting systems to neighbouring countries (i.a. German, Poland, Latvia); establishment for import or production and LNG; contracting of storage capacity abroad (Germany, Czech Republic, Slovakia, Latvia). In order to control the estimated costs of storage of natural gas a comparison with market prices for storage capacity and spot prices of natural gas is carried out. The market prices were estimated through a statistical analysis of seasonal variations in gas prices on the American natural gas market. Due to permanent energy taxes, the energy prices only partially reflect the demand and the price elasticity hence is very small, resulting in a need for e.g. gas storage. One purpose of the project is to investigate this system error and to present alternative suggestions for the tax structure. Additionally, the consequences of differentiating production taxes will be addressed. (EG)

  3. Gas storages - Estimation of the economic value

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The main purpose of the project is to investigate the economic benefits of underground gas storage used for seasonal smoothing and a strategical security of supply. The benefits from the storage have to be decided based on the costs of alternative have to be ways of securing the energy supply, including evaluation of: demand-dependent prices on natural gas and other fuels (both domestic and foreign markets); interruptible supply; establishment of extra production and transportation capacity from the North Sea; establishment of new connecting systems to neighbouring countries (i.a. German, Poland, Latvia); establishment for import or production and LNG; contracting of storage capacity abroad (Germany, Czech Republic, Slovakia, Latvia). In order to control the estimated costs of storage of natural gas a comparison with market prices for storage capacity and spot prices of natural gas is carried out. The market prices were estimated through a statistical analysis of seasonal variations in gas prices on the American natural gas market. Due to permanent energy taxes, the energy prices only partially reflect the demand and the price elasticity hence is very small, resulting in a need for e.g. gas storage. One purpose of the project is to investigate this system error and to present alternative suggestions for the tax structure. Additionally, the consequences of differentiating production taxes will be addressed. (EG)

  4. Technical study gas storage. Final report

    International Nuclear Information System (INIS)

    Borowka, J.; Moeller, A.; Zander, W.; Koischwitz, M.A.

    2001-01-01

    This study will answer the following questions: (a) For what uses was the storage facility designed and for what use is it currently applied? Provide an overview of the technical data per gas storage facility: for instance, what is its capacity, volume, start-up time, etc.; (b) How often has this facility been used during the past 10 years? With what purpose was the facility brought into operation at the time? How much gas was supplied at the time from the storage facility?; (c) Given the characteristics and the use of the storage facility during the past 10 years and projected gas consumption in the future, how will the storage facility be used in the future?; (d) Are there other uses for which the gas storage facility can be deployed, or can a single facility be deployed for numerous uses? What are the technical possibilities in such cases? Questions (a) and (b) are answered separately for every storage facility. Questions (c) and (d) in a single chapter each (Chapter 2 and 3). An overview of the relevant storage data relating to current use, use in the last 10 years and use in future is given in the Annex

  5. Gas storage facilities. Investigation of their social value. Supplement

    International Nuclear Information System (INIS)

    1997-02-01

    The socio-economic factors resulting from location of gas storage facilities are evaluated. Various alternatives to the existing projects are estimated, for instance 11 new pipelines, in some cases combined with new production capacity, LNG facilities, differentiated tariffs, reconstruction of decentralized heat/power plants etc. Theoretical considerations and models, among others involving gas storage abroad, are presented. Seasonal storage, emergency storage, storage controlled by economic optimization (profitable purchases, sales at highest market) are described for various types of facilities, like aquifers, caverns and LNG-stores. Natural gas supplies in Europe, infrastructure and resources are compared to the Danish conditions. Sensitivity of the Danish heating market for natural gas consumption is investigated. Reduction in energy use for space heating by 2005 will change the needs of storage of 740 Mm 3 gas to 650 Mm 3 . Extra consumption by the decentralized power/heat plants is not accounted for in this estimation. Dynamic models of the future gas consumption are based on the EU 'European Energy 2020'. (EG)

  6. Gas storage facilities. Investigation of their social value

    International Nuclear Information System (INIS)

    1997-02-01

    The socio-economic factors resulting from location of gas storage facilities are evaluated. Various alternatives to the existing projects are estimated, for instance 11 new pipelines, in some cases combined with new production capacity, LNG facilities, differentiated tariffs, reconstruction of decentralized heat/power plants etc. Theoretical considerations and models, among others involving gas storage abroad, are presented. Seasonal storage, emergency storage, storage controlled by economic optimization (profitable purchases, sales at highest market) are described for various types of facilities, like aquifers, caverns and LNG-stores. Natural gas supplies in Europe, infrastructure and resources are compared to the Danish conditions. Sensitivity of the Danish heating market for natural gas consumption is investigated. Reduction in energy use for space heating by 2005 will change the needs of storage of 740 Mm 3 gas to 650 Mm 3 . Extra consumption by the decentralized power/heat plants is not accounted for in this estimation. Dynamic models of the future gas consumption are based on the EU 'European Energy 2020'. (EG)

  7. Determination of turnover and cushion gas volume of a prospected gas storage reservoir under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Gubik, A. [RAG-AG Wien (Austria); Baffoe, J.; Schulze-Riegert, R. [SPT Group GmbH, Hamburg (Germany)

    2013-08-01

    Gas storages define a key contribution for building a reliable gas supply chain from production to consumers. In a competitive gas market with short reaction times to seasonal and other gas injection and extraction requirements, gas storages also receive a strong focus on availability and precise prediction estimates for future operation scenarios. Reservoir management workflows are increasingly built on reservoir simulation support for optimizing production schemes and estimating the impact of subsurface uncertainties on field development scenarios. Simulation models for gas storages are calibrated to geological data and accurate reproduction of historical production data are defined as a prerequisite for reliable production and performance forecasts. The underlying model validation process is called history matching, which potentially generates alternative simulation models due to prevailing geological uncertainties. In the past, a single basecase reference model was used to predict production capacities of a gas storage. The working gas volume was precisely defined over a contracted plateau delivery and the required cushion gas volume maintains the reservoir pressure during the operation. Cushion and working gas Volume are strongly dependent on reservoir parameters. In this work an existing depleted gas reservoir and the operation target as a gas storage is described. Key input data to the reservoir model description and simulation is reviewed including production history and geological uncertainties based on large well spacing, limited core and well data and a limited seismic resolution. Target delivery scenarios of the prospected gas storage are evaluated under uncertainty. As one key objective, optimal working gas and cushion gas volumes are described in a probabilistic context reflecting geological uncertainties. Several work steps are defined and included in an integrated workflow design. Equiprobable geological models are generated and evaluated based on

  8. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  9. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  10. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  11. The European Market for Seasonal Gas Storage

    International Nuclear Information System (INIS)

    Mahan, A.

    2006-02-01

    European demand for gas will grow in the years to come. Simultaneously, gas production in Europe will decrease and imported gas will be needed to replace indigenous production. Gas demand is not constant during the year. There are variations in demand on different timescales ranging from seasonal to hourly. Variations in demand are characterised by two main parameters: working volume and deliverability. Working volume - the amount of gas that can be supplied above the baseload production volume during a long (cold) period- is primarily needed to cope with the summer-winter pattern of gas consumption. Most of the summer-winter pattern comes from the temperature sensitive gas consumption by households and service industries. Gas usage by industry and the power sector are more evenly spread throughout the year and need less working volume. Deliverability - the amount of gas per hour that can be generated on a (very) cold day above the baseload capacity - is the ability to produce large volumes during short periods, e.g. for extremely cold days, or during peak periods during a day. In this paper we argue that a large amount of additional working volume will be required over the coming years. First, flexible European production will be replaced by long-distance import gas, and second, the gas market is expected to grow further. Todays market appears focus mainly on cavems for storage volume. Cavems have little working volume but are ideal for trading purposes. Consequently, Europe may be facing a deficit in working volume, i.e. the ability to cope with seasonal changes in demand. This paper aims to widen the discussion of this matter and give rise to this concern by setting out a broad analysis, exploring the market drivers for seasonal storage and identifying the public interest issues for this market. Chapter 2 gives an overview of demand for and supply characteristics of gas flexibility. Chapter 3 describes the role of gas storage facilities in the gas market

  12. Gas storage and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro.

    1988-01-01

    Purpose: To improve the gas solidification processing performance in a gas storing and processing device for solidifying treatment of radioactive gaseous wastes (krypton 85) by ion injection method. Constitution: The device according to the present invention is constituted by disposing a coil connected with a magnetic field power source to the outer circumference of an outer cathode vessel, so that axial magnetic fields are formed to the inside of the outer cathode vessel. With such a device, thermoelectrons released from the thermocathode downwardly collide against gaseous radioactive wastes at high probability while moving spirally by the magnetic fields. The thus formed gas ions are solidified by sputtering in the cathode in the vessel. (Horiuchi, T.)

  13. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  14. Underground gas storage in the World - Cedigaz survey

    International Nuclear Information System (INIS)

    Benquey, R.

    2010-01-01

    The 2010 edition of 'Underground Gas Storage in the World' provides an update to the previous survey released by CEDIGAZ in 2006. At that time, 610 underground gas storage (UGS) facilities were in operation worldwide, with a working capacity of 319 billion cubic metres (bcm). As of 1 January 2010, this number had reached 642 facilities with a working gas capacity of 333 bcm, or 10.8% of world gas consumption. By 2020, the global UGS demand is expected to grow at a pace of 3.3% per year, and according to the projects identified, more than 760 UGS sites could be active in the world with a total working capacity of approximately 465 bcm. In this survey, CEDIGAZ analyses the following trends which characterise the rapid development of underground gas storage in the world: - the strong dynamics of the European storage market, where 127 projects could add 75 bcm of working capacity by 2020, - the continued development of the UGS market in the United States (49 projects), encouraged by market-based rates allowed by the FERC, and rapid permitting processes, - the development of facilities in countries with little or no storage capacities at present, in Asia/Oceania, the C.I.S., and Eastern Europe in particular. This survey provides an analysis of the recent evolutions in the technic-economic aspects of the underground gas storage business, as well as an overview of the UGS markets and their developments in the world, country by country. A specific section is dedicated to the analysis of future UGS needs in Europe by 2020: - Technic-economic aspects of UGS: This part of the survey analyses the latest technical improvements and research axes in the field of underground gas storage. As it is more difficult to build greenfield storage facilities, a lot of work has been done to improve the performance and flexibility of existing storage sites. This section also deals with the evolution of investment and operational costs in storage over the last few years. Furthermore, the

  15. Gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  16. Underground Storage Alternative To Nigeria's Gas Flaring

    International Nuclear Information System (INIS)

    Obi, A.I

    2004-01-01

    Energy demands are increasing as the world's population of energy users grows. At the same time many nations want to decommission nuclear plants in support of a cleaner environment. Clean burning natural gas is the fuel most likely to meet society's complex requirements. Demand for natural gas will rise more strongly than for any fossil fuel. The utilization of the huge gas resources form the petroleum deposit in the Niger Delta area is the major problem confronting the oil/gas industry in Nigeria and the disposal of associated gas has been a major challenge for the barrel of oil; hence with oil production of about 2.0 million barrels per day, some 2.0 billion standard cubic feet of AG is producing everyday. An alarming proportion of the gas is wasted by flaring, while very small proportion is used by oil-producing companies and other most alarming rate of flaring in the world compared with other oil/gas producing countries. This paper highlights the numerous benefits accruing from proper utilization of natural gas using SASOL of South Africa as an example and recommends underground storage of natural gas as an industry that will help check flaring, meet fluctuating demand and create wealth for the nation

  17. Onsite gas storage for industrial customers

    International Nuclear Information System (INIS)

    Shikari, Y.A.

    1990-01-01

    The changing pattern of industrial gas marketing in the United States and other countries has placed new pressures on industrial users to assume responsibility for assuring their own supply. Technological changes in manufacturing processes have placed greater emphasis on assuring fuel quality and many processes can no longer tolerate near-substitutes such as distillate fuel oil and LPG. One way to take advantage of lower cost interruptible gas service contracts is to provide stand-by sources of gas onsite which can be used when the primary supply is curtailed. This paper describes the methods which an industrial gas consumer could use to store gas onsite (or close by an industrial factory) and their technical and economic advantages or limitations. The regulatory factors such as environmental and safety issues are reviewed and the advantages and disadvantages of each method are described. The application of emerging technologies such as storing natural gas on adsorbents at low pressure and solid absorption in LPG are reviewed and the research needed to make them acceptable is discussed. The potential applications in the marketplace are also discussed and the economics of onsite storage of natural gas is compared to other alternatives. (author). 11 refs, 5 figs, 1 tab

  18. The natural gas storage in France and in Europe

    International Nuclear Information System (INIS)

    2006-02-01

    The natural gas storages play a great role in the gas supplying security. They allow to compensate for the variations of the supply and demand. This document presents the different natural gas storage technic: in the phreatic cave, in salt hollows, in abandoned deposits and the natural liquefied gas. It includes also a map of the natural gas storage situation in France. (A.L.B.)

  19. Possibilities of rationalizing gas storage in hydrocarbon deposits

    International Nuclear Information System (INIS)

    Stricker; Gilch; Kretzschmar

    1990-01-01

    A number of criteria on the utilization of gas fields for storage and major methods for rationalizing such storage reservoirs (such as pressure optimization and increase of well performance) are indicated. The pressure reduction/ pressure increase conducted in phases and the investigations involved are discussed in detail. In particular, experiences and results for fixing the maximum allowable storage pressures are analyzed critically. Problems of gas blending in case of different compositions of residual gas and storage gas are dealt with. Finally, some recommendations are given for the necessary investigations to increase efficiency in the conversion of depleted hydrocarbon deposits to gas storage. 3 figs

  20. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  1. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  2. Gas hydrates in gas storage caverns; Gashydrate bei der Gaskavernenspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Groenefeld, P. [Kavernen Bau- und Betriebs-GmbH, Hannover (Germany)

    1997-12-31

    Given appropriate pressure and temperature conditions the storage of natural gas in salt caverns can lead to the formation of gas hydrates in the producing well or aboveground operating facilities. This is attributable to the stored gas becoming more or less saturated with water vapour. The present contribution describes the humidity, pressure, and temperature conditions conducive to gas hydrate formation. It also deals with the reduction of the gas removal capacity resulting from gas hydrate formation, and possible measures for preventing hydrate formation such as injection of glycol, the reduction of water vapour absorption from the cavern sump, and dewatering of the cavern sump. (MSK) [Deutsch] Bei der Speicherung von Erdgas in Salzkavernen kann es unter entsprechenden Druck- und Temperaturverhaeltnissen zur Gashydratbildung in den Foerdersonden oder obertaegigen Betriebseinrichtungen kommen, weil sich das eingelagerte Gas mehr oder weniger mit Wasserdampf aufsaettigt. Im Folgenden werden die Feuchtigkeits-, Druck- und Temperaturbedingungen, die zur Hydratbildung fuehren erlaeutert. Ebenso werden die Verringerung der Auslagerungskapazitaet durch die Hydratbildung, Massnahmen zur Verhinderung der Hydratbildung wie die Injektion von Glykol, die Verringerung der Wasserdampfaufnahme aus dem Kavernensumpf und die Entwaesserung der Kavernensumpfs selbst beschrieben.

  3. Existing and near future practices of spent fuel storage in Slovak Republic

    International Nuclear Information System (INIS)

    Mizov, J.

    1999-01-01

    In this paper existing and near future practices of spent fuel storage in Slovak Republic are discussed: (1) Reactor operation and spent fuel production; (2) Past policy in spent fuel storage; (3) Away-from-reactor (AFR) storage facility at Bohunice NPP site; (4) Present policy in spent fuel storage; (5) Final disposal of spent fuel

  4. STORAGE OPTIMIZATION IN AN EXISTING BUSINESS LEATHE R GOODS

    Directory of Open Access Journals (Sweden)

    MALCOCI Marina

    2014-05-01

    Full Text Available The deposit is the sector in a business where profit can be calculated exactly and improved logistics cost reduction, increased efficiency, optimization of distribution, surveillance elements of the supply chain, traceability - continuous monitoring, improved quality of supplies / services to customers. The study presented in this paper was conducted in the company of handbags S.A. Artima, in Chisinau. The organization has analyzed a large number of storage areas, all meeting the comfort function, but that is not used within the storage area. As a storage facility used deposit old buildings that are located within the enterprise and deposits from building company. Analyzing the current situation we can conclude only negative: large number of deposits, leading to loss of control and stored products; storage located at a distance from each other, which leads to the increase of the supply materials for the production sectors. To establish and analyze the negative points above, the paper calculated the actual extent of area use and storage facilities. According to figures obtained, we see that the surfaces of all deposits not used to the fullest. The best result is recording finished goods warehouse, where the coefficient of area use record figure of 0,86, which means that 14% are used for the space between the goods stored, the space motion. A result very little is recording central warehouse supplies, use the volume coefficient is 0,20. In this paper, several recommendations that will make enterprise the following benefits: improved productivity; increase in the accuracy of data; increase customer loyalty and increase their expectations.

  5. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  6. Modeling of information flows in natural gas storage facility

    Science.gov (United States)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  7. Storage tank stratification/rollover alarm management. Liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Versluijs, Pieter [Waertsilae France SAS, Calais (France). Waertsilae Whessoe PCT

    2011-03-21

    Liquefied natural gas (LNG) terminals need to be able to store multiple grades of LNG, and to have sufficient storage capacity available for all of them. Managing storage to ensure availability and to optimise the use of storage capacity is, therefore, essential. This article discusses ways of achieving these aims.

  8. Strategies for contracting gas storage and hub services

    International Nuclear Information System (INIS)

    Auld, J.

    1996-01-01

    The many efficiencies that can be gained by the natural gas industry in effectively using storage, were demonstrated. The circumstances under which the natural gas industry uses storage and how Market Centres or Hub Services can be strategically used in offering companies the highest flexibility in a tough marketplace, were explained. For example, in North America, storage played an important role during the winter of 95/96, which will be remembered for its extreme cold. That year provided the first true opportunity to test the natural gas delivery system since deregulation in 1985. The fact that natural gas supplies continued to be delivered throughout the entire winter was attributed to the use of stored gas held in reserves to meet the severe demand. The companies that did well, relied on storage and also on the services offered by Hub Services which increased margins for all players in the natural gas industry. Using storage, companies can ensure that field deliveries of gas are kept constant by having storage facilities absorb the swings in market demand. The companies that learn to use storage effectively can create competitive edges over their competition and provide more value to their customers. The three main categories of hub services were also described. These are parking (interruptible storage), gas loans (stored gas can be offered to customers on a term basis for low daily rates), and title exchange (the transfer of gas between buyer and seller). The strategic use of parking, loaned gas, title exchange, direct connections, and InterHub Services can provide customers even greater benefits than are provided by storage-based services. 6 figs

  9. Demand for storage of natural gas in northwestern Europe: Trends 2005-30

    International Nuclear Information System (INIS)

    Hoeffler, Felix; Kuebler, Madjid

    2007-01-01

    We provide an estimation of the additional need for underground storage facilities in northwestern Europe until 2030. Storage is one important source to provide supply flexibility in order to match the seasonal demand for natural gas. However, this supply flexibility is now largely provided in northwestern Europe by indigenous production. Declining reserves will increase the dependency on imports from far-off sources, which are less flexible. Hence, flexibility must be provided by additional storage. Our estimation is based on production and consumption forecasts for natural gas and observations of the relationship between the supply and demand of gas and the supply and demand of flexibility in the period 1995-2005. We provide different scenarios to check for the robustness of our results. We estimate that by 2030, between 10.2 (with no strategic storage) and 29.0 billion cubic meters (BCM) of working gas volume (with 10 percent strategic storage for imports from non-EU countries) will be required, in addition to the existing 40 BCM. We conclude that, with well-functioning markets for flexibility, market forces could close a storage gap of 10.2 BCM in time. Strategic storage obligations would require state intervention and a well-balanced relation between a regulated part of the storage market for strategic reserves and the market for the operational use of storage

  10. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  11. The necessity for storage of natural gas in the Netherlands: In particular the natural gas storage near Langelo, Drenthe, Netherlands

    International Nuclear Information System (INIS)

    1994-11-01

    The natural gas supply in the Netherlands will experience a capacity problem once the pressure of the natural gas field Slochteren in the province Groningen will decrease below a certain level. It is expected that this will already happen in the winter of 1996. Underground storage of natural gas reserves is considered to be the only appropriate solution to accommodate this problem. Four environmental organizations in the Netherlands ordered GASTEC, the Dutch research center for natural gas technology, to study the alternatives for natural gas storage in the Netherlands. 7 figs

  12. MOFs for storage of natural gas in mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Marx, S.; Arnold, L.; Gaab, M.; Maurer, S.; Weickert, M.; Mueller, U. [BASF SE, Ludwigshafen (Germany); Gummaraju, R.; SantaMaria, M.; Wilson, K.; Garbotz, C.; Lynch, J. [BASF Corporation, Iselin, NJ (United States)

    2013-11-01

    Metal-organic frameworks (MOFs) are supposed to have high potential in gas storage, particular in the storage of natural gas (NG) for mobile applications. Due to the shale gas exploration and the cost advantage of natural gas on the North American market as well as the environmental benign behavior upon combustion, storage of gaseous fuels will become more important for future mobility. The main challenge with all gaseous fuels is the limited range of the fuel stored on board of a vehicle. Instead of increasing the pressure in the tank, which would lead to heavy tanks and high compression costs, MOFs might help to improve the energy density of the gas stored in a tank resulting in an increased driving distance or reduced space needed for the gas tanks. (orig.)

  13. Separation of British Gas' transportation and storage business

    International Nuclear Information System (INIS)

    McGregor, G.

    1992-12-01

    In making his substantive reference of the transportation and storage business of British Gas to the Monopolies and Mergers Commission, the Director General of Gas Supply identified the following principal effects adverse to the public interest: ''The absence of provision for the establishment of an independent undertaking to operate the pipe-line system and other facilities used by British Gas for the conveyance and storage of gas which would not be subject to conflicting interests in securing (a) transparency of the prices charged, the costs incurred and the operating methods in respect of the conveyance and storage of gas; (b) proper allocation to various parts of the Gas Supply Business of costs incurred and returns by that business; and (c) protection of information relating to the conveyance and storage of gas from which British Gas might obtain unfair commercial advantage, and thereby avoid the restriction or distortion of competition between British Gas and other persons whose business consists of or includes the supply of gas''. This paper considers the structural issues associated with achieving effective competition and looks at how the relationship between the businesses of supply and transportation might be organised in the short and longer term. (Author)

  14. Analysis of regenerative thermal storage geometries for solar gas turbines

    CSIR Research Space (South Africa)

    Klein, P

    2014-08-01

    Full Text Available Ceramic heat regenerators are suited to providing thermal storage for concentrating solar power stations based on a recuperated gas turbine cycle. Randomly packed beds of spheres and saddles; honeycombs and checker bricks were identified...

  15. Natural gas storage in hydrates with the presence of promoters

    International Nuclear Information System (INIS)

    Sun Zhigao; Wang Ruzhu; Ma Rongsheng; Guo Kaihua; Fan Shuanshi

    2003-01-01

    Hydrate technology is being developed for the storage and transport of natural gas. Micellar surfectant solutions were found to increase the gas hydrate formation rate and storage capacity. An anionic surfactant, a nonionic surfactant, their mixtures and cyclopentane were used to improve the hydrate formation of a synthetic natural gas (methane=92.05 mol%, ethane=4.96 mol%, propane=2.99 mol%) in a quiescent system in this work. The effect of an anionic surfactant (sodium dodecyl sulfate) on natural gas storage in hydrates is more pronounced compared to the effect of a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane could reduce hydrate formation induction time but could not improve the hydrate formation rate and storage capacity

  16. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  17. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  18. Nanoporous Materials for the Onboard Storage of Natural Gas.

    Science.gov (United States)

    Kumar, K Vasanth; Preuss, Kathrin; Titirici, Maria-Magdalena; Rodríguez-Reinoso, Francisco

    2017-02-08

    Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included

  19. A new shape design method of salt cavern used as underground gas storage

    International Nuclear Information System (INIS)

    Wang, Tongtao; Yan, Xiangzhen; Yang, Henglin; Yang, Xiujuan; Jiang, Tingting; Zhao, Shuai

    2013-01-01

    Graphical abstract: Safety factor contours of four salt cavern gas storages after running 10 years. Highlights: ► We propose a new model to design the shape of salt cavern gas storage. ► The concepts of slope instability and pressure arch are introduced into the shape design. ► The max. gas pressure determines the shapes and dimensions of cavern lower structure. ► The min. gas pressure decides the shapes and dimensions of cavern upper structure. - Abstract: A new model used to design the shape and dimension of salt cavern gas storage is proposed in the paper. In the new model, the cavern is divided into two parts, namely the lower and upper structures, to design. The concepts of slope instability and pressure arch are introduced into the shape design of the lower and upper structures respectively. Calculating models are established according to the concepts. Field salt cavern gas storage in China is simulated as examples, and its shape and dimension are proposed. The effects of gas pressure, friction angle and cohesion of rock salt on the cavern stability are discussed. Moreover, the volume convergence, displacement, plastic volume rate, safety factor, and effective strain are compared with that of three other existing shapes salt caverns to validate the performance of newly proposed cavern. The results show that the max. gas pressure determines the shape and dimension of cavern lower structure, while the min. gas pressure decides that of cavern upper structure. With the increase of friction angle and cohesion of rock salt, the stability of salt cavern is increased. The newly proposed salt cavern gas storage has more notable advantages than the existing shapes of salt cavern in volume convergence, displacement, plastic volume rate, safety factor, and effective strain under the same conditions

  20. Thermal analysis elements of liquefied gas storage tanks

    Science.gov (United States)

    Yanvarev, I. A.; Krupnikov, A. V.

    2017-08-01

    Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.

  1. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  2. The welfare effects of unbundling gas storage and distribution

    International Nuclear Information System (INIS)

    Breton, Michele; Kharbach, Mohammed

    2008-01-01

    We use a stylized gas system to study the use of access-to-gas storage in a seasonal model. In a duopoly setting, we find that welfare is higher under vertical integration and open access organization than under separate management of storage and distribution. This raises questions about recent regulatory reforms in the gas sectors in the US and Europe, supporting the separation of storage and merchant activities. In the absence of other justifying reasons such as encouraging competition by creating a level playing field, separating the management and accounting functions of storage activities from those of distribution may be a better option than real divestiture, on the basis of welfare arguments. (author)

  3. Evaluating the economic cost of natural gas strategic storage restrictions

    International Nuclear Information System (INIS)

    Ejarque, Joao Miguel

    2011-01-01

    The European Commission wants to implement a single market for gas. One of the components of this market is a regulated provision for ''security of supply'' which consists of rules for the implementation and use of a given reserve stock of gas. We investigate the impact of this policy on the profitability of a storage operator, using data from Denmark and Italy. Keeping storage capacity constant, the costs of the strategic stock are around 20% of the value of the storage market for Denmark, and 16% for Italy. This cost is due to the inability to extract arbitrage profits from the captive stock. Furthermore, the strategic storage restriction induces behavior that would virtually never be replicated by a private storage operator in an unconstrained market, in particular in the first 6 months of the year when unconstrained firms empty their reservoirs much faster, suggesting the strategic restriction is unnecessarily distorting the market. (author)

  4. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  5. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  6. Evaluation of existing Hanford buildings for the storage of solid wastes

    International Nuclear Information System (INIS)

    Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

    1993-05-01

    Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft 2 of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft 2 while new construction will cost about $50 per ft 2 . Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D ampersand D) cost avoidances realized by using existing facilities

  7. Welfare effects of unbundling gas storage and distribution

    International Nuclear Information System (INIS)

    Breton, M.; Montreal Univ., PQ; Kharbach, M.

    2006-01-01

    The creation of inventories and stockpiles can help to reduce price and production fluctuations. This paper presented the results of a simulation of market architectures using a 2 period model. The aim of the paper was to provide insights on the merits of a gas unbundling policy recently adopted in many gas markets. In terms of market architecture, it was first assumed that one of the gas firms owned the storage facility and was mandated to give a second firm access to it. It was then assumed that an independent third firm was responsible for the storage activity so that the other 2 firms competed in the downstream gas market and bought storage services from the independent firm. High and low price periods in a single year were considered. The first architecture assumed an Open Access framework which introduced a Stackelberg competition component in the downstream market through the storage participation in the final goods offering. The second architecture assumed an independent storage activity, and a Cournot component was present. Seasonal storage facilities were filled during the low price period and emptied during the high price period. Results of the simulation indicated that total welfare and consumer welfare were maximized in the case of the integrated firm owning the storage facilities and operating in the downstream market. Success was attributed to the Open Access framework and the Stackelberg competition component in the downstream market. The bundled architecture led to higher consumer surplus than the unbundled architecture. It was concluded that regulatory reforms in North American and European gas sectors that foster separating storage and merchant activities can not be justified based on welfare arguments. 12 refs., 1 tab

  8. Is inexpensive natural gas hindering the grid energy storage industry?

    International Nuclear Information System (INIS)

    Hittinger, Eric; Lueken, Roger

    2015-01-01

    Grid energy storage is a maturing technology and forecasts of the industry's growth have been promising. However, recent years have realized little growth in actual deployments of grid-level storage and several high-profile storage companies and projects have failed. We hypothesize that falling natural gas prices have significantly reduced the potential profit from many U.S. energy storage projects since 2009 and quantify that effect. We use engineering–economic models to calculate the monthly revenue to energy storage devices providing frequency regulation and energy arbitrage in several electricity markets and compare that revenue to prevailing natural gas prices. We find that flywheel devices providing frequency regulation were profitable in months when natural gas prices were above $7/mcf, but face difficulties at current prices (around $4/mcf). For energy arbitrage alone, we find that the breakeven capital cost for large-scale storage was around $300/kWh in several key locations in 2004–2008, but is around $100/kWh in the same locations today. Though cost and performance improvements have been continually decreasing the effective cost of energy services from storage, fundamental market signals indicating the need for energy storage are at or near 10-year lows for both energy arbitrage and frequency regulation. - Highlights: • We use engineering–economic models to determine breakeven capital cost of storage. • Two applications are examined: frequency regulation and energy arbitrage. • For both services, potential revenue has decreased significantly since 2008. • We show a high correlation of revenue with natural gas price. • We demonstrate a causal relationship using the PHORUM grid modeling software.

  9. Production of inert gas for substitution of a part of the cushion gas trapped in an aquifer underground storage reservoir

    International Nuclear Information System (INIS)

    Berger, L.; Arnoult, J.P.

    1990-01-01

    In a natural gas storage reservoir operating over the different seasons, a varying fraction of the injected gas, the cushion gas, remains permanently trapped. This cushion gas may represent more than half the total gas volume, and more than 50% of the initial investment costs for the storage facility. Studies conducted by Gaz de France, backed up by experience acquired over the years, have shown that at least 20% of the cushion gas could be replaced by a less expensive inert gas. Nitrogen, carbon dioxide, or a mixture of the two, satisfy the specifications required for this inert gas. Two main production methods exist: recovery of natural gas combustion products (mixture of 88% N 2 and 12% Co 2 ) and physical separation of air components (more or less pure N 2 , depending on industrial conditions). For the specific needs of Gaz de France, the means of production must be suited to its programme of partial cushion gas substitution. The equipment must satisfy requirements of autonomy, operating flexibility and mobility. Gaz de France has tested two units for recovery of natural gas combustion products. In the first unit, the inert gas is produced in a combustion chamber, treated in a catalytic reactor to reduce nitrogen oxide content and then compressed by gas engine driven compressors. In the second unit, the exhaust gases of the compressor gas engines are collected, treated to eliminate nitrogen oxides and then compressed. The energy balance is improved. A PSA method nitrogen production unit by selective absorption of nitrogen in the air, will be put into service in 1989. The specific features of these two methods and the reasons for choosing them will be reviewed. (author). 1 fig

  10. Development and operation of Northern Natural's aquifer gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E V

    1969-01-01

    There are no depleted (or nondepleted) oil and gas fields in Northern Natural Gas Co.'s market area. Consequently, when the search was started for a possible underground field, the company had to resort to the possibility of locating a water-filled, porous-rock formation (aquifer) in a geological structure which would form a suitable trap for gas storage. Geological research and exploratory drilling was carried on in S. Minnesota, E. Nebraska, and W.-central Iowa. An area located about 40 miles northwest of Des Moines, Iowa, near Redfield, appeared to have the most desirable characteristics for development of a gas-storage field. Drilling of deep developmental wells was started in late 1953 on a double- plunging anticline. The geological structure is similar to that of many oil and gas fields, but the porous formations contained only fresh water. To date, 2 major reservoirs and a minor reservoir have been developed in this structure. As much as 120 billion cu ft has been stored in the 3 reservoirs which supplied 43 billion cu ft gas withdrawals this past season from a total of 85 wells. A second aquifer gas-storage field is under development in N.-central Iowa about 15 miles northeast of Ft. Dodge.

  11. Futures trading and the storage of North American natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos; Shahmoradi, Asghar [Calgary Univ., Dept. of Economics, Calgary, AB (Canada)

    2006-03-15

    This paper tests the theory of storage in North American natural gas markets, using the Fama and French (1988) indirect test. In particular, we test the theory's prediction that when inventory is high, large inventory responses to shocks imply roughly equal changes in spot and futures prices, whereas when inventory is low, smaller inventory responses to shocks imply larger changes in spot prices than in futures prices. Our tests on spot and futures North American natural gas prices confirm these predictions of the theory of storage. (Author)

  12. Gas Storage in Europe, recent developments and outlook to 2035

    International Nuclear Information System (INIS)

    Hureau, Geoffroy

    2015-01-01

    These slides present: the European gas storage market in 2014 (Review of 2014 trends, Current challenges, Role of storage); the Outlook to 2035 (Supply/Demand factors, Estimated Storage needs, Project backlog). In conclusion: an over capacity is expected until 2025.Supply and demand evolution, market liberalization and environmental constraints on coal will drive a new period of growth for UGS. Cedigaz estimates that European UGS capacity will increase by around 45 bcm by 2035. UGS projects represent 77 bcm Of which 22 bcm is under construction, there is a majority of salt-cavern projects (market liberalization), not so much new seasonal storage (security of supply?), not all planned storage will be built (Projects under competition for the same (regional) market, the situation is quite contrasted between NW Europe and South-Southeast Europe (and UK)). The challenges are the investment and the security of supply

  13. Liquefied natural gas (LNG) : production, storage and handling. 7. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, S; Jaron, K; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2003-07-01

    This Canadian Standard on the production, storage and handling of liquefied natural gas (LNG) was prepared by the Technical Committee on Liquefied Natural Gas under the jurisdiction of the Steering Committee on Oil and Gas Industry Systems and Materials. It establishes the necessary requirements for the design, installation and safe operation of LNG facilities. The Standard applies to the design, location, construction, operation and maintenance of facilities at any location of the liquefaction of natural gas and for the storage, vaporization, transfer, handling and truck transport of LNG. The training of personnel involved is also included as well as containers for LNG storage, including insulated vacuum systems. It includes non-mandatory guidelines for small LNG facilities but does not apply to the transportation of refrigerants, LNG by rail, marine vessel or pipeline. This latest edition contains changes in working of seismic design requirements and minor editorial changes to several clauses to bring the Standard closer to the US National Fire Protection Association's Committee on Liquefied Natural Gas Standard while maintaining Canadian regulatory requirements. The document is divided into 12 sections including: general requirements; plant site provisions; process equipment; stationary LNG storage containers; vaporization facilities; piping system and components; instrumentation and electrical services; transfer of LNG and refrigerants; fire protection, safety and security; and, operating, maintenance and personnel training. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2003. 6 tabs., 6 figs., 3 apps.

  14. Instabilities expected to exist in a gas centrifuge

    International Nuclear Information System (INIS)

    Sakurai, Takeo

    1977-01-01

    A typical counter current type centrifuge of long bowl geometry is schematically shown. At first glance, the main flow field in this centrifuge can be taken as a swirling pipe flow. Taking in mind the operating gas (uranium hexafluoride) the temperature of which is 20 deg C and the peripheral pressure 10 torrs, the density and pressure obey the barometric relation in which the gravity is replaced by the centrifugal acceleration; in a thermally driven centrifuge, an additional weak temperature gradient appears along the axial direction. These situations are similar to those in the earth's atmosphere. So, it is stressed that the interior of a gas centrifuge is a new kind of rotating atmosphere and offers a 'new face' in the field of geophysical fluid dynamics. Instabilities in inviscid case and the destabilizing effects of the diffusivity are thus discussed together with the effects of the mechanical vibrations of the centrifuge, and vortex breakdown phenomena

  15. Evaluation of coverage of enriched UF6 cylinder storage lots by existing criticality accident alarms

    International Nuclear Information System (INIS)

    Lee, B.L. Jr.; Dobelbower, M.C.; Woollard, J.E.; Sutherland, P.J.; Tayloe, R.W. Jr.

    1995-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) is leased from the US Department of Energy (DOE) by the United States Enrichment Corporation (USEC), a government corporation formed in 1993. PORTS is in transition from regulation by DOE to regulation by the Nuclear Regulatory Commission (NRC). One regulation is 10 CFR Part 76.89, which requires that criticality alarm systems be provided for the site. PORTS originally installed criticality accident alarm systems in all building for which nuclear criticality accidents were credible. Currently, however, alarm systems are not installed in the enriched uranium hexafluoride (UF 6 ) cylinder storage lots. This report analyzes and documents the extent to which enriched UF 6 cylinder storage lots at PORTS are covered by criticality detectors and alarms currently installed in adjacent buildings. Monte Carlo calculations are performed on simplified models of the cylinder storage lots and adjacent buildings. The storage lots modelled are X-745B, X-745C, X745D, X-745E, and X-745F. The criticality detectors modelled are located in building X-343, the building X-344A/X-342A complex, and portions of building X-330 (see Figures 1 and 2). These criticality detectors are those located closest to the cylinder storage lots. Results of this analysis indicate that the existing criticality detectors currently installed at PORTS are largely ineffective in detecting neutron radiation from criticality accidents in most of the cylinder storage lots at PORTS, except sometimes along portions of their peripheries

  16. Influence of different storage times and temperatures on blood gas ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted ...

  17. 78 FR 58529 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Science.gov (United States)

    2013-09-24

    ... Natural Gas Storage Company, LLC; Notice of Application Take notice that on September 4, 2013, Floridian Natural Gas Storage Company, LLC (Floridian Gas Storage), 1000 Louisiana Street, Suite 4361, Houston, Texas 77002, filed in Docket No. CP13-541-000 an application under section 7(c) of the Natural Gas Act...

  18. Low Pressure Storage of Natural Gas for Vehicular Applications

    International Nuclear Information System (INIS)

    Tim Burchell; Mike Rogers

    2000-01-01

    Natural gas is an attractive fuel for vehicles because it is a relatively clean-burning fuel compared with gasoline. Moreover, methane can be stored in the physically adsorbed state[at a pressure of 3.5 MPa (500 psi)] at energy densities comparable to methane compressed at 24.8 MPa (3600 psi). Here we report the development of natural gas storage monoliths[1]. The monolith manufacture and activation methods are reported along with pore structure characterization data. The storage capacities of these monoliths are measured gravimetrically at a pressure of 3.5 MPa (500 psi) and ambient temperature, and storage capacities of and gt;150 V/V have been demonstrated and are reported

  19. Modification of an existing radwaste facility to provide onsite low level waste storage

    International Nuclear Information System (INIS)

    Ault, G.M.; Reiss, J.F.; Commonwealth Edison Co., Chicago, IL)

    1985-01-01

    The decision of whether or not to install onsite storage capacity for low-level radioactive waste is dictated by individual utility circumstances. Commonwealth Edison has decided to construct facilities to store low-level radwaste onsite at each of their four operating nuclear stations, and they plan to have those facilities in operation by January, 1986. At Dresden, that onsite storage capacity is being provided by modifying an existing radwaste building which already has installed a remotely-operated precision-placement type crane. The purposes of this paper are to describe: (1) how Commonwealth Edison arrived at the decision to construct onsite storage facilities as a hedge against possible disruption of burial site availability in January, 1986; (2) why the desire to minimize the capital investment for this protection led to selection of an uncomplicated design for their ''standard'' facility and to the decision to modify an existing building at Dresden rather than construct a new one; and (3) what is being done to adapt the Dresden 1 Decontamination/Radwaste Building for extended onsite storage

  20. The performance of gas storage cavities leached in salt

    International Nuclear Information System (INIS)

    Hugout, B.; Roger, C.

    1990-01-01

    Unlike other underground gas storage techniques, the gas storage cavities leached in salt and operated by compression-expansion are able to operate at high send-out rates with relatively small amounts of immobilized gas. The entire working gas capacity can be withdrawn within a period of between a few days and a few weeks, as opposed to several months for an aquifer or depleted field storage. To evaluate the deliverability of a cavity, which varies considerably during withdrawal, it is necessary to know at all times the gas pressure and temperature in the cavity and at all points in the production well and surface equipment, up to the point of injection into the network (manifold, filter, dehydration unit, meter run, and pressure governor). For this, a code (SITHERGAZ) based on the integration of thermodynamics and fluid mechanics equations was developed by Gaz be France. It has been operational since 1980. The experience acquired by Gaz de France in the operation of around twenty cavities, some of which have been in service for years, and the results of numerous simulations using the SITHERGAZ programme have made it possible to prove the legitimacy of a certain number of simplifying hypotheses. Using these hypotheses, the performance of cavities can be evaluated with reasonable accuracy by simple means. This paper describes the test procedures which provide a simple means to determine the flow pressure-loss coefficients and presents the practical calculation of cavity performance. (author). 5 figs

  1. Gas storage services and regulation in Italy. A Delphi analysis

    International Nuclear Information System (INIS)

    Bonacina, Monica; Creti, Anna; Sileo, Antonio

    2009-01-01

    The objective of this paper is to assess to which extent gas market inefficiencies, such as weak competition, import dependence and lack of flexibility tools, affect operation and usage of storage services in Italy in the aftermath of the EU liberalization process. The analysis is supported by the empirical results of a Delphi survey that we have conducted to investigate storage service provision and regulation in Italy. We argue that the Italian storage sector is at a crossroads. The policy-driven phase of liberalization is ending and the market-driven phase has just begun. The former phase has granted fair access to storage, narrowed the likelihood of strategic behaviour by the incumbent and secured residential users against supply disruptions, but it has proved dynamically inefficient. Cost-reflective tariffs and low penalties for unbalances have both lowered incentives to expand the range of flexibility tools and penalized industrial customers demand. The market-driven phase has just started. The expected increase in working capacity and the entry of newcomers in the authorization process for new facilities are a progress towards the commercial use of storage. To this end, however, a further change in gas market design is needed: the creation of a well functioning spot market. (author)

  2. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  3. Electricity storage by gas pumping. An introduction to thermodynamic storage processes

    International Nuclear Information System (INIS)

    Ruer, Jacques

    2013-01-01

    To date, Pumped Hydro Storage (PHS) is practically the only technology used to store large quantities of electricity. There are however other ways to achieve the same goal. There are not yet well known, because the interest for large scale storage is quite new A complete family of storage technologies can be defined as 'Thermodynamic Storage Systems'. Their only common factor is that a gas is pumped and expanded in the process. If the gas is air taken from the atmosphere and discharged to it, the system is said 'an open system'. This is already developed in the form of Compressed Air Energy Storage (CAES). Different embodiments are possible, following the way the heat gene - rated during the compression stage is conserved. The compressed air is generally stored in underground caverns created in deep salt formations. 2 installations are presently operating and many projects are envisaged. if the gas circulates in closed loop within the plant, the system is said 'a closed system' In this case, the energy is stored as heat and/or cold at different temperature levels. A great variety of technologies can be imagined and are under development, using different gases (e.g. argon, CO 2 ) and different temperature ranges. PHS and CAES require specific sites for water reservoirs or underground caverns. The dosed systems can be installed basically anywhere. (author)

  4. Gas adsorption during storage of plutonium dioxide powders

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Cossonnet, C.; Germain, M.

    1984-10-01

    Adsorption phenomena occuring in plutonium dioxide containers are studied for the determination of safe conditions for storage and transportation of plutonium dioxide powders. Adsorption on dried PuO 2 of air individual gases, influence of powder isotopic composition, chemisorption, effect of moisture are determined. Adsorption of dry air obeys an Elovich's law for its kinetics it is greatly exchange by α radiolysis. Pressure in the container can be reduced by storage under dry inert gas (Ar), decreasing the PuO 2 load and using powder containing preadsorbed water or wet air then radiolysis may occur (H 2 formation)

  5. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Li, Cai; Wang, Xiaoyu

    2016-01-01

    CAES (Compressed air energy storage) is credited with its potential ability for large-scale energy storage. Generally, it is more convenient using deep aquifers than employing underground caverns for energy storage, because of extensive presence of aquifers. During the first stage in a typical process of CAESA (compressed air energy storage in aquifers), a large amount of compressed air is injected into the target aquifer to develop an initial space (a gas bubble) for energy storage. In this study, numerical simulations were conducted to investigate the influence of aquifer's permeability, geological structure and operation parameters on the formation of gas bubble and the sustainability for the later cycling operation. The SCT (system cycle times) was designed as a parameter to evaluate the reservoir performance and the effect of operation parameters. Simulation results for pressure and gas saturation results of basic model confirm the feasibility of compressed air energy storage in aquifers. The results of different permeability cases show that, for a certain scale of CAESA system, there is an optimum permeability range for a candidate aquifer. An aquifer within this permeability range will not only satisfy the injectivity requirement but also have the best energy efficiency. Structural impact analysis indicates that the anticline structure has the best performance to hold the bubble under the same daily cycling schedule with the same initial injected air mass. In addition, our results indicate that the SCT shows a logarithmic growth as the injected air mass increase. During the formation of gas bubble, compressed air should be injected into aquifers with moderate rate and the injection can be done in several stages with different injection rate to avoid onset pressure. - Highlights: • Impact of permeability, geological structure, operation parameters was investigated. • With certain air production rate, an optimum permeability exists for performance.

  6. How green can black be? Assessing the potential for equipping USA's existing coal fleet with carbon capture and storage

    Science.gov (United States)

    Patrizio, Piera; Leduc, Sylvain; Mesfun, Sennai; Yowargana, Ping; Kraxner, Florian

    2017-04-01

    The mitigation of adverse environmental impacts due to climate change requires the reduction of carbon dioxide emissions - also from the U.S. energy sector, a dominant source of greenhouse-gas emissions. This is especially true for the existing fleet of coal-fired power plants, accounting for roughly two-thirds of the U.S. energy sectors' total CO2 emissions. With this aim, different carbon mitigation options have been proposed in literature, such as increasing the energy efficiency, co-firing of biomass and/or the adoption of carbon capturing technologies (BECCS). However, the extent to which these solutions can be adopted depends on a suite of site specific factors and therefore needs to be evaluated on a site-specific basis. We propose a spatially explicit approach to identify candidate coal plants for which carbon capture technologies are economically feasible, according to different economic and policy frameworks. The methodology implies the adoption of IIASA's techno economic model BeWhere, which optimizes the cost of the entire BECCS supply chain, from the biomass resources to the storage of the CO2 in the nearest geological sink. The results shows that biomass co-firing appears to be the most appealing economic solution for a larger part of the existing U.S. coal fleet, while the adoption of CCS technologies is highly dependent on the level of CO2 prices as well as on local factors such as the type of coal firing technology and proximity of storage sites.

  7. Evolution and development of a deliverability improvement program for gas storage

    International Nuclear Information System (INIS)

    Maddox, T.D.; Sikorski, D.L.

    1994-01-01

    With the implementation in November 1993 of FERC Order 636, the responsibilities and contractual obligations for a Gas Transmission Company operating Gas Storage have changed. Among these responsibilities is the ability to deliver gas from storage in a timely manner as specified by gas storage contracts. To ensure that their deliverability obligations are met, a program has been implemented to review well performance and to re-work wells where deliverability can economically be improved. This program is aimed at maintaining or improving deliverability from wells and monitoring their future performance. Re-working existing wells has proven to be an economically successful method of maintaining deliverability compared to drilling new wells to meet this purpose. Re-working can be broken into two groups of wells: wells that have mechanical problems that need to be corrected or wells that need some type of stimulation treatment. In developing a rework program, several things need to be addressed such as: a candidate recognition program, the design of the work to be performed, execution of that work, and the evaluation of the results obtained along with the economics. The Deliverability Improvement Program is in its third year. It has developed from a small pilot program to a substantial part of normal storage activities. The purpose of this paper is to review the processes used to find candidates to work on and an evaluation of work performed

  8. Gas Storage Valuation and Hedging: A Quantification of Model Risk

    Directory of Open Access Journals (Sweden)

    Patrick Hénaff

    2018-03-01

    Full Text Available This paper focuses on the valuation and hedging of gas storage facilities, using a spot-based valuation framework coupled with a financial hedging strategy implemented with futures contracts. The contributions of this paper are two-fold. Firstly, we propose a model that unifies the dynamics of the futures curve and spot price, and accounts for the main stylized facts of the US natural gas market such as seasonality and the presence of price spikes in the spot market. Secondly, we evaluate the associated model risk, and show not only that the valuation is strongly dependent upon the dynamics of the spot price, but more importantly that the hedging strategy commonly used in the industry leaves the storage operator with significant residual price risk.

  9. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  10. 76 FR 58741 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies

    Science.gov (United States)

    2011-09-22

    ...] Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies AGENCY: Federal Energy... the semi-annual storage reporting requirements for Interstate and Intrastate Natural Gas Companies... proposes to eliminate the semi-annual storage reporting requirements for: (1) Interstate natural gas...

  11. 77 FR 4220 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies

    Science.gov (United States)

    2012-01-27

    ...; Order No. 757] Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies AGENCY... eliminates the semi-annual storage reporting requirements for Interstate and Intrastate Natural Gas Companies...-annual storage reporting requirements for (1) interstate natural gas companies subject to the Commission...

  12. 30 CFR 250.119 - Will MMS approve subsurface gas storage?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS approve subsurface gas storage? 250....119 Will MMS approve subsurface gas storage? The Regional Supervisor may authorize subsurface storage of gas on the OCS, on and off-lease, for later commercial benefit. To receive MMS approval you must...

  13. Striving for equilibrium : the changing role of storage in the North American natural gas industry

    International Nuclear Information System (INIS)

    Clifton, S.

    2003-01-01

    This presentation included an analysis of North American storage patterns and transport of natural gas. Gas-fired generation has impacted the value of storage operations significantly. The role of natural gas storage in North America is changing to meet the demands of peak-load generators, to manage tight gas supplies, and expand pipeline infrastructure. Storage facilities help in optimizing the flexibility of gas procurement. The historic role of storage was compared to the current role of storage as an economic asset. In 2002, the major developments affecting gas storage were a decline in liquidity, a decline in North American natural gas production, a recovery in forecasted gas consumption, and a capital dilemma. It is expected that the traditional role of gas storage will intensify as local distribution companies (LDCs) try to manage tight gas supplies, optimize pipeline capacity and manage price volatility. The role of storage as an economic asset will become more prominent and gas storage will be used to meet the needs of power plants. Desirable elements in future storage include a good location, high flexible performance, environmentally secure, and easy to use. The Stagecoach storage facility was presented as a case study. 1 tab., 14 figs

  14. The transition from monopoly to competition on natural gas markets in europe. The strategic stakes of underground storage

    International Nuclear Information System (INIS)

    Esnault, B.

    2000-01-01

    The liberalization of the natural gas market permits to the actors the use of the existing distribution networks, which remain managed by ancient monopolies. To manage efficiently a variable demand in spite of the importations and the bottleneck on canalizations, the monopolies have to install storages near the consumption areas. Meanwhile the storages are a rare resource owned by the historical operators, thus it reinforces their market power. The european directive proposes to define an access right to the storage. What kind of legislation should we applied? This thesis analyses the process of deregulation and the storage needs of the different actors. Propositions of regulations are presented. (A.L.B.)

  15. Underground rock storage concepts for natural gas and LPG in Finland

    International Nuclear Information System (INIS)

    Saerkkae, P.

    1990-01-01

    Natural gas storage concepts are developed in Finland for both deep, unlined rock storages and cryogenic lined, near-surface storages. For butane and propane, Neste Oy has two unlined rock storages in Porvoo. Up to now, experiences are good on storage of LPG in rock temperature and higher than hydrostatic pressure. (author). 3 refs, 8 figs

  16. Principle of gas storage in salt caverns; Principe du stockage de gaz en cavites creusees dans le sel

    Energy Technology Data Exchange (ETDEWEB)

    Durup, J.G. [Mining Research Institute, CA (United States)]|[Gaz de France (GDF), 75 - Paris (France)

    2001-08-15

    The principle of the exploitation of a gas storage cavity is analogue to the one of a cylinder of compressed gas. Such a reservoir has remarkable dimensions with a volume of several thousands of m{sup 3}, a height of few hundred meters and a diameter of about 100 m. The mechanical resistance with respect to the gas pressure is ensured by the 'pre-stress' corresponding to the weight of the geologic strata. Salt (halite) is the ideal material for the digging out of such facilities because of its excellent tightness, its solubility in water (allowing the dissolution digging technique), and its good mechanical resistance. Natural gas storage is in general performed in natural porous and permeable environments, like depleted hydrocarbon fields or aquifers. The storage in salt caverns has the advantage of allowing important emission flow rates with respect to the quantities of immobilized gases. In some Northern Europe countries, like Germany, the salt deposits are well developed and abundant, in particular near the North Sea and its important natural gas fields. In France, there exists 3 gas storage sites in salt caverns, with about 40 cavities as a whole. This document briefly presents the main elements of the gas storage technique in salt caverns: characteristics and geology of salt deposits, geo-technique, wells, dissolution digging, gas injection and exploitation. (J.S.)

  17. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  18. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    Science.gov (United States)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage

  19. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  20. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  1. U.S. Natural Gas Storage Risk-Based Ranking Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Steve [Argonne National Lab. (ANL), Argonne, IL (United States); Portante, Edgar [Argonne National Lab. (ANL), Argonne, IL (United States); Shamsuddin, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States); Tompkins, Angeli [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Kavicky, Jim [Argonne National Lab. (ANL), Argonne, IL (United States); Conzelmann, Guenter [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    This report summarizes the methodology and models developed to assess the risk to energy delivery from the potential loss of underground gas storage (UGS) facilities located within the United States. The U.S. has a total of 418 existing storage fields, of which 390 are currently active. The models estimate the impacts of a disruption of each of the active UGS facilities on their owners/operators, including (1) local distribution companies (LDCs), (2) directly connected transporting pipelines and thus on the customers in downstream States, and (3) third-party entities and thus on contracted customers expecting the gas shipment. Impacts are measured across all natural gas customer classes. For the electric sector, impacts are quantified in terms of natural gas-fired electric generation capacity potentially affected from the loss of a UGS facility. For the purpose of calculating the overall supply risk, the overall consequence of the disruption of an UGS facility across all customer classes is expressed in terms of the number of expected equivalent residential customer outages per year, which combines the unit business interruption cost per customer class and the estimated number of affected natural gas customers with estimated probabilities of UGS disruptions. All models and analyses are based on publicly available data. The report presents a set of findings and recommendations in terms of data, further analyses, regulatory requirements and standards, and needs to improve gas/electric industry coordination for electric reliability.

  2. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  3. Paradigms of underground gas storage operation; Paradigmas del funcionamiento de un almacenamiento subterraneo de gas

    Energy Technology Data Exchange (ETDEWEB)

    Bonoris, Patricia; Vizcarra, Rodolfo; Buciak, Jorge [Companias Asociadas Petroleras S.A. (Argentina)

    2004-07-01

    The main objective of the study was to determine, for the underground storage of gas, the Current Useful Volume and Maximum Useful Current of operation, as well as have an acceptable interpretation that allows calculating the investment needed to reach this Maximum Usable Volume.

  4. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme...... to solve mass balance equation for the gaseous mixture with heat and fractional mass transport equations. Temperature change resulting from fluid expansion and viscous heat dissipation is included in heat transport in addition to advection and conduction. We have used a modified version of the Peng...

  5. Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing

    International Nuclear Information System (INIS)

    Budny, Christoph; Madlener, Reinhard; Hilgers, Christoph

    2015-01-01

    Highlights: • Study of cost effectiveness of power-to-gas and storage of H 2 and renewable methane. • NPV analysis and Monte Carlo simulation to address fuel and electricity price risks. • Gas sale is compared with power and gas market arbitrage and balancing market gains. • Power-to-gas for linking the balancing markets for power and gas is not profitable. • Pipe storage is the preferred option for temporal arbitrage and balancing energy. - Abstract: This paper investigates the economic feasibility of power-to-gas (P2G) systems and gas storage options for both hydrogen and renewable methane. The study is based on a techno-economic model in which the net present value (NPV) method and Monte Carlo simulation of risks and price forward curves for the electricity and the gas market are used. We study three investment cases: a Base Case where the gas is directly sold in the market, a Storage & Arbitrage Case where temporal arbitrage opportunities between the electricity and the gas market are exploited, and a Storage & Balancing Case where the balancing markets (secondary reserve market for electricity, external balancing market for natural gas) are addressed. The optimal type and size of different centralized and decentralized storage facilities are determined and compared with each other. In a detailed sensitivity and cost analysis, we identify the key factors which could potentially improve the economic viability of the technological concepts assessed. We find that the P2G system used for bridging the balancing markets for power and gas cannot be operated profitably. For both, temporal arbitrage and balancing energy, pipe storage is preferred. Relatively high feed-in tariffs (100 € MW −1 for hydrogen, 130 € MW −1 for methane) are required to render pipe storage for P2G economically viable

  6. Refurbishment and retrofitting of SF6 gas storage tanks of the pelletron accelerator

    International Nuclear Information System (INIS)

    Reddy, G.R.; Datar, V.M.; Parulekar, Y.M.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator Facility has completed more than twenty six years of successful round-the-clock operation, serving diverse users from institutions within and outside DAE. The main accelerating structure and associated subsystems are housed in the accelerator tank under SF 6 gas medium. During maintenance of the accelerator, the SF 6 gas present in the accelerator tank is transferred in the four storage tanks located on the terrace of the building open to outside environment. These four storage tanks (with ∼ 1/4th of the main tank volume each) are ∼ 4.27 m in diameter and ∼ 10 m in height each and are supported on RCC ring beams which are monolithically connected with the RCC structure below. Over the years, the anchor bolts and the base plates of support structure of storage tanks were found corroded and the foundation RCC ring beam indicated a few corrosion cracks. Health assessment of relevant structures and components were carried out. Considering the limitations of existing anchorage and also giving due considerations for reparability and replaceability, a new anchorage system was designed. The entire refurbishment and retrofitting works pertaining to the four SF 6 gas storage tanks was executed in a time bound manner to comply with the then PASC (Particle Accelerator Safety Committee) recommendations successfully, without disrupting the operations of the round-the-clock running Pelletron Accelerator facility. In addition, the thickness measurements for the storage tanks were performed. The relief valves and rupture disc assemblies across the storage tanks were replaced and reinstalled after introducing appropriate manual valves as suggested by the PASC. A new test set up was fabricated to perform pneumatic testing at the recommended pressure off-line for these relief valves and rupture disc assemblies prior to reinstallation. This paper describes the comprehensive rehabilitation and retrofitting procedures that were carried out at the

  7. Oil spill prevention: Regulatory trends and compliance at existing storage terminals and refineries

    International Nuclear Information System (INIS)

    Janisz, A.J.

    1993-01-01

    In 1973, the Spill Prevention, Control, and Countermeasure (SPCC) regulations were promulgated. The objective of the regulations was to prevent oil spills. However, in the late 1980s and early 1990s, several catastrophic spills of oils led to review of oil spill prevention regulations by the U.S. Environmental Protection Agency, the US Coast Guard, and the Department of the Interior's Minerals Management Service. The reviews led to promulgation of various acts and regulations including the proposed revisions to the SPCC regulations, the Oil Pollution Act of 1990 (OPA-90), and others. Numerous facilities within the petroleum and chemical industry were or will be affected by these regulations. This paper discusses regulatory trends for spill planning and prevention in general, but principally concentrates on above ground storage tanks at facilities storing or refining petroleum products. The paper includes discussions of bills on above ground storage tanks and proposed national standards, as well as regulatory trends in various states. Proposed SPCC regulations and their effects on the industry are also discussed, including requirements for impermeable surfaces and increasing secondary containment capacity. Management strategies to review facility operations and prepare for upgrades are outlined. The paper discusses the types of upgrades typically necessary at existing storage terminals and refineries and discusses information necessary to prepare conceptual designs and cost estimates. Cost estimates for typical upgrades, such as raising earthen berms and installing isolation valves, are presented. Facilities in the state of New Jersey are used as examples, because regulations in New Jersey are similar to the proposed federal regulations

  8. Tritiated hydrogen gas storage systems for a fusion plant

    International Nuclear Information System (INIS)

    Bramy, W.; Hircq, B.; Peyrat, M.; Leger, D.

    1992-01-01

    This paper reports that USSI INGENIERIE has carried out a study financed by European Communities Commission concerning the NET/ITER project, on tritium Fuel Management and Storage systems of the International Thermonuclear Experimental Reactor. A processing block diagram for hydrogen isotopes represents all interfaces and possible links between these systems and tritiated gas mixtures flowing through the Fusion plant. Large quantities of hydrogen isotopes (up to several thousand moles of protium, deuterium and tritium) in gaseous form associated with torus fuelling and exhaust pellet injection, and neutral beam injection, must be stored and managed in such a plant

  9. 75 FR 80758 - Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies

    Science.gov (United States)

    2010-12-23

    ...] Storage Reporting Requirements of Interstate and Intrastate Natural Gas Companies December 16, 2010... natural gas pipelines to report semi-annually on their storage activities. This Notice of Inquiry will... reports required of interstate and intrastate natural gas companies pursuant to 18 CFR 284.13(e) and 284...

  10. 30 CFR 250.123 - Will MMS allow gas storage on unleased lands?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS allow gas storage on unleased lands? 250.123 Section 250.123 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... § 250.123 Will MMS allow gas storage on unleased lands? You may not store gas on unleased lands unless...

  11. The transition to open-access storage in U.S. natural gas markets

    International Nuclear Information System (INIS)

    Schell, L.S.; Schlesinger, B.

    1990-01-01

    In their traditional role as merchants, interstate natural gas pipelines in the U.S. sold natural gas at an aggregate price that incorporated all gathering, storage, transmission, and gas costs in a bundled service. As a result of movements toward deregulation, U.S. gas users now enjoy open-access transportation on most interstate pipeline systems as an unbundled service at a relatively unbundled price, allowing them to contract for their own gas supplies, separate and apart from the system sales gas of traditional pipeline supplier(s). Open-access storage has been slower than open-access transportation service in evolving; its limited availability is a major factor limiting the comparability of service between transportation gas and system sales gas. Open access to storage offers gas users an important tool in managing gas costs, timing of gas purchases, and deliverability imbalances

  12. Risks and mitigation options for on-site storage of wastewater from shale gas and tight oil development

    International Nuclear Information System (INIS)

    Kuwayama, Yusuke; Roeshot, Skyler; Krupnick, Alan; Richardson, Nathan; Mares, Jan

    2017-01-01

    We provide a critical review of existing research and information regarding the sources of risk associated with on-site shale gas and tight oil wastewater storage in the United States, the gaps that exist in knowledge regarding these risks, policy and technology options for addressing the risks, and the relative merits of those options. Specifically, we (a) identify the potential risks to human and ecological health associated with on-site storage of shale gas and tight oil wastewater via a literature survey and analysis of data on wastewater spills and regulatory violations, (b) provide a detailed description of government regulations or industry actions that may mitigate these risks to human and ecological health, and (c) provide a critical review of this information to help generate progress toward concrete action to make shale gas and tight oil development more sustainable and more acceptable to a skeptical public, while keeping costs down. - Highlights: • We review current research/information on shale gas and tight oil wastewater storage. • Pit overflows, tank overfills, and liner malfunctions are common spill causes. • Tanks lead to smaller and less frequent spills than pits, but are not a magic bullet. • State regulations for on-site oil and gas wastewater storage are very heterogeneous.

  13. Natural gas storage with activated carbon from a bituminous coal

    Science.gov (United States)

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  14. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  15. Natural gas storage - end user interaction. Final report, September 1992--May 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

  16. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    Science.gov (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  17. Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams

    Directory of Open Access Journals (Sweden)

    Martin Wieland

    2016-09-01

    Full Text Available The basic element in any sustainable dam project is safety, which includes the following safety elements: ① structural safety, ② dam safety monitoring, ③ operational safety and maintenance, and ④ emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. However, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be carried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that dam safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.

  18. Demand for seasonal gas storage in northwest Europe until 2030. Simulation results with a dynamic model

    International Nuclear Information System (INIS)

    De Joode, J.; Oezdemir, Oe.

    2010-01-01

    The fact that depletion of indigenous gas production increases gas import dependency is widely known and accepted. However, there is considerable less attention for the implications of indigenous resource depletion for the provision of seasonal flexibility. The traditionally largest source of seasonal flexibility in Europe is indigenous gas production, mainly based in the Netherlands and the United Kingdom. With the depletion of indigenous sources the market increasingly needs to rely on other sources for seasonal flexibility, such as gas storage facilities. We investigate the future need for gas storage as a source for seasonal flexibility provision using a dynamic gas market model (GASTALE) in which different potential sources for seasonal flexibility - gas production, imports via pipeline, LNG imports and storage facilities - compete with each other in a market-based environment. The inclusion of seasonal flexibility properties in a gas market model allows a more complex analysis of seasonal flexibility issues than previously documented in literature. This is demonstrated in an analysis of the future demand for gas storage in northwestern Europe until 2030. Our results indicate that there is substantial need for additional gas storage facilities and thus supports current project proposals for new investment in gas storage facilities. (author)

  19. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  20. 75 FR 8051 - Petal Gas Storage, L.L.C.; Notice of Application

    Science.gov (United States)

    2010-02-23

    ... Storage, L.L.C.; Notice of Application February 12, 2010. Take notice that on January 29, 2010, Petal Gas Storage, L.L.C. (Petal), 1100 Louisiana Street, Houston, Texas, 77002, filed with the Federal Energy Regulatory Commission an abbreviated application pursuant to section 7(c) of the Natural Gas Act (NGA), as...

  1. 75 FR 63452 - ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing

    Science.gov (United States)

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-67-001] ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing October 7, 2010. Take notice that on October 1, 2010, ONEOK Gas Storage, L.L.C. submitted a revised baseline filing of its Statement of Operating Conditions for services...

  2. The diversity of methoxyphenols released by pyrolysis-gas chromatography as predictor of soil carbon storage.

    Science.gov (United States)

    Jiménez-González, Marco A; Álvarez, Ana M; Carral, Pilar; González-Vila, Francisco J; Almendros, Gonzalo

    2017-07-28

    The variable extent to which environmental factors are involved in soil carbon storage is currently a subject of controversy. In fact, justifying why some soils accumulate more organic matter than others is not trivial. Some abiotic factors such as organo-mineral associations have classically been invoked as the main drivers for soil C stabilization. However, in this research indirect evidences based on correlations between soil C storage and compositional descriptors of the soil organic matter are presented. It is assumed that the intrinsic structure of soil organic matter should have a bearing in the soil carbon storage. This is examined here by focusing on the methoxyphenols released by direct pyrolysis from a wide variety of topsoil samples from continental Mediterranean ecosystems from Spain with different properties and carbon content. Methoxyphenols are typical signature compounds presumptively informing on the occurrence and degree of alteration of lignin in soils. The methoxyphenol assemblages (12 major guaiacyl- and syringyl-type compounds) were analyzed by pyrolysis-gas chromatography-mass spectrometry. The Shannon-Wiener diversity index was chosen to describe the complexity of this phenolic signature. A series of exploratory statistical analyses (simple regression, partial least squares regression, multidimensional scaling) were applied to analyze the relationships existing between chemical and spectroscopic characteristics and the carbon content in the soils. These treatments coincided in pointing out that significant correlations exist between the progressive molecular diversity of the methoxyphenol assemblages and the concentration of organic carbon stored in the corresponding soils. This potential of the diversity in the phenolic signature as a surrogate index of the carbon storage in soils is tentatively interpreted as the accumulation of plant macromolecules altered into microbially reworked structures not readily recognized by soil enzymes. From

  3. Experimental investigation into a packed bed thermal storage solution for solar gas turbine systems

    CSIR Research Space (South Africa)

    Klein, P

    2013-09-01

    Full Text Available High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage...

  4. Flexible LNG supply, storage and price formation in a global natural gas market

    Science.gov (United States)

    Hayes, Mark Hanley

    The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.

  5. Development of technology to utilize existing tobacco kilns and/or tobacco storage barns for curing (drying) and/or storage of other crops

    Energy Technology Data Exchange (ETDEWEB)

    VanHooren, D L; Scott, J J

    1988-01-01

    This report investigates methods to utilize existing bulk tobacco kilns for curing (drying) of shelled corn, peanuts, and baled hay. In recent years Ontario tobacco producers have had to reduce production levels due to a declining demand for flue-cured tobacco. Many tobacco producers are currently diversifying into other crops. Some of these crops require curing and/or storage. Because of high capital costs to purchase conventional curing and/or storage facilities, tobacco producers wish to reduce their initial diversification costs by modifying their existing tobacco kilns (tobacco drying structures) and/or tobacco storage barns for this purpose. The investigation included high profile and low profile downdraft stick kilns, bulk kilns, and tobacco storage (pack) barns. Corn, peanuts, and hay were considered in relation to bulk kiln specifications and modifications, handling, drying and storage methods, energy requirements, cost, and quality of end product. The conclusions drawn from the study of each product are presented. Results from the projects indicate that: shelled corn can be dried from about 26% moisture content (w.b.) or less; baled hay can be dried from about 27% moisture content (w.b.) or less; and peanuts cured at airflow rates ranging from 169 to 645 l/s/m/sup 3/ of peanuts exhibited no significant differences when evaluated for appearance and flavour. 1 ref., 23 figs., 15 tabs.

  6. Defining the Field of Existence of Shrouded Blades in High-Speed Gas Turbines

    Science.gov (United States)

    Belousov, Anatoliy I.; Nazdrachev, Sergeiy V.

    2018-01-01

    This work provides a method for determining the region of existence of banded blades of gas turbines for aircraft engines based on the analytical evaluation of tensile stresses in specific characteristic sections of the blade. This region is determined by the set of values of the parameter, which forms the law of distribution of the cross-sectional area of the cross-sections along the height of the airfoil. When seven independent parameters (gas-dynamic, structural and strength) are changed, the choice of the best option is proposed at the early design stage. As an example, the influence of the dimension of a turbine on the domain of the existence of banded blades is shown.

  7. Optimization of basic parameters of cyclic operation of underground gas storages

    Directory of Open Access Journals (Sweden)

    Віктор Олександрович Заєць

    2015-04-01

    Full Text Available The problem of optimization of process parameters of cyclic operation of underground gas storages in gas mode is determined in the article. The target function is defined, expressing necessary capacity of compressor station for gas injection in the storage. Its minimization will find the necessary technological parameters, such as flow and reservoir pressure change over time. Limitations and target function are reduced to a linear form. Solution of problems is made by the simplex method

  8. Equivalent formation strength as a proxy tool for exploring the existence and distribution of gas hydrates

    Science.gov (United States)

    Hamada, Y.; Yamada, Y.; Sanada, Y.; Nakamura, Y.; Kido, Y. N.; Moe, K.

    2017-12-01

    Gas hydrates bearing layer can be normally identified by a basement simulating reflector (BSR) or well logging because of their high acoustic- and electric impedance compared to the surrounding formation. These characteristics of the gas hydrate can also represent contrast of in-situ formation strength. We here attempt to describe gas hydrate bearing layers based on the equivalent strength (EST). The Indian National Gas Hydrate Program (NGHP) Expedition 02 was executed 2015 off the eastern margin of the Indian Peninsula to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. Recorded drilling performance data was converted to the EST, which is a developed mechanical strength calculated only by drilling parameters (top drive torque, rotation per minute , rate of penetration , and drill bit diameter). At a representative site, site 23, the EST shows constant trend of 5 to 10 MPa, with some positive peaks at 0 - 270 mbsf interval, and sudden increase up to 50 MPa above BSR depth (270 - 290 mbsf). Below the BSR, the EST stays at 5-10 MPa down to the bottom of the hole (378 mbsf). Comparison of the EST with logging data and core sample description suggests that the depth profiles of the EST reflect formation lithology and gas hydrate content: the EST increase in the sand-rich layer and the gas hydrate bearing zone. Especially in the gas hydrate zone, the EST curve indicates approximately the same trend with that of P-wave velocity and resistivity measured by downhole logging. Cross plot of the increment of the EST and resistivity revealed the relation between them is roughly logarithmic, indicating the increase and decrease of the EST strongly depend on the saturation factor of gas hydrate. These results suggest that the EST, proxy of in-situ formation strength, can be an indicator of existence and amount of the gas-hydrate layer. Although the EST was calculated

  9. Shale-gas wells as virtual storage for supporting intermittent renewables

    International Nuclear Information System (INIS)

    Knudsen, Brage Rugstad; Foss, Bjarne

    2017-01-01

    Mature shale-gas wells possess a property that enables cyclic production and shut-in without incurring revenue losses. Based on this property, we suggest that fields with mature shale-gas wells may act as virtual gas storage for supplying fast-ramping gas power plants which balance intermittent renewable generation. By enabling gas supply to power plants to circumvent intermediate third-party storage, we argue that the proposed integration facilitates demand-driven gas production, and discuss how the scheme may support utilization of renewables and reduce supply-related greenhouse-gas emissions in electricity generation. - Highlights: • A novel integration strategy of shale gas and renewable electricity generation. • Mature shale-gas wells enable shut-ins without incurring revenue losses. • This property enables the use mature shale-gas wells as virtual gas storage. • Proposed scheme facilitates demand-driven gas production. • Omitting intermediate gas storage reduces GHG emissions from producer to end-user.

  10. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  11. Gas storage and separation by electric field swing adsorption

    Science.gov (United States)

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  12. Study on underground gas storage in Europe and Central Asia; Etude sur le stockage souterrain du gaz en Europe et en Asie Centrale

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, R. [NlfB, Germany (Germany); Rott, W. [Wintershall AG, Celle (Germany); Rokosz, W. [POGC, Poland (PL)] (and others)

    2000-07-01

    The Working Party on Gas of the United Nations Economic Commission for Europe (UN/ECE), at its sixth session in 1996, decided to undertake a study on 'Underground gas storage in Europe and Central Asia'. The study was launched by the Working Party on Gas in the recognition of the role of underground gas storage (UGS) in the creation of unified European gas market, its liberalization, security of gas supply and cooperation among gas enterprises. The data analysed by the study was collected through the comprehensive questionnaire, circulated among gas companies/organizations of the ECE member-countries. To carry out the study, a special Ad Hoc Group of Experts, representing leading gas companies of the region, was set up. The study deals with a wide range of issues related to the underground storage of gas, such as current status of UGS in Europe and Central Asia, new and emerging technologies, new and existing UGS projects, regulatory framework, cost of storage in USA and in Europe, future gas markets development. An attempt was also made to identify the UGS facilities that play (and could provide in the future) the international contract border services. (authors)

  13. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  14. 77 FR 70434 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Offer of Settlement

    Science.gov (United States)

    2012-11-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-464-000] Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Offer of Settlement Take notice that on November 8, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C...

  15. 77 FR 34031 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application

    Science.gov (United States)

    2012-06-08

    ... Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application Take notice that on May 21, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg... pursuant to sections 7(c) and 7(b) of the Natural Gas Act (NGA), for authorization for Petal to acquire the...

  16. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  17. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  18. Evaluation of forward sales and options created through natural gas storage

    International Nuclear Information System (INIS)

    Salahor, G.S.; Laughton, D.G.

    1994-01-01

    The deregulation of natural gas markets in North America has resulted in greater quantities of gas being sold under indexed price agreements. As this is occurring, natural gas storage facilities are being developed and opened up for the use of natural gas producers and marketers. While natural gas spot prices continue to exhibit some strong seasonality reflecting higher demand peak in winter, traded futures contract prices tend to discount the expected market price. The elements which contribute to this differential are examined and some of the possible opportunities for the use of gas storage in tandem with other risk management instruments are demonstrated. The specific scenario to be evaluated takes the viewpoint of a natural gas producer considering the storage and later withdrawal of gas to take some advantage of an anticipated seasonal and/or secular price increase, with the objective of locking in future prices for current production. Gas would be stored in a low season and later withdrawn and sold, with the price covered by a futures contract or by a dynamic hedging strategy. The expected returns from a natural gas storage/withdrawal scheme are analyzed and the implications of market volatility, price of risk, the local cost of storage, and observations regarding the convenience yield (a difference between the current spot market price and futures market price for future periods) are presented. Analysis of gas storage proposals of specific duration is included as well as evaluation of potential put options created when the storage duration is not fixed. 6 refs., 4 figs., 4 tabs

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  20. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  1. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  2. North American natural gas storage levels: where things stand after the winter of 2002

    International Nuclear Information System (INIS)

    Hopper, G.

    2002-01-01

    The author talks about the winter of 2001, which saw the second warmest December in 107 years and used this example as a means of explaining how weather affects storage and prices. The status of storage is reviewed in light of the Energy Information Administration now assuming responsibility for the weekly survey of storage in the United States. New technologies are also reviewed: high injection and high deliverability. The theory of optionally driving storage values is examined while figures display the estimated futures to futures optionally value-illustrative output. Extrinsic values motivate technology investments. A brief section deals with extracting profits from storage, followed by a section on asset management. The author indicates that storage additions in the Northeast are likely to be slow. The last section discusses the new/proposed natural gas storage fields, with a slide discussing storage drivers in Gulf Coast and California. figs

  3. A validation study for the gas migration modelling of the compacted bentonite using existing experiment data

    International Nuclear Information System (INIS)

    Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Hayashi, H.

    2010-01-01

    Document available in extended abstract form only. After the field-scaled Gas Migration Test (GMT) was carried out at Grimsel Test Site (GTS) in Switzerland from 1997 through 2005, a study on advanced gas migration modelling has been conducted as a part of R and D programs of the RWMC (Radioactive Waste Management funding and Research Center) to evaluate long-term behaviour of the Engineered Barrier System (EBS) for the TRU waste disposal system in Japan. One of main objectives of this modelling study is to provide the qualified models and parameters in order to predict long-term gas migration behaviour in compacted bentonite. In addition, from a perspective of coupled THMC (Thermal, Hydrological, Mechanical and Chemical) processes, the specific processes which may have considerable impact to the gas migration behaviour are discussed by means of scoping calculations. Literature survey was conducted to collect experimental data related to gas migration in compacted bentonite in order to discuss an applicability of the existing gas migration models in the bentonite. The well-known flow rate controlled-gas injection experiment by Horseman, et al. and the pressure-controlled-gas injection test using several data with wide range of clay density and water content by Graham, et al, were selected. These literatures show the following characteristic behaviour of gas migration in high compacted and water-saturated bentonite. The observed gas flow rate from the outlet in the experiment by Horseman et al. was numerically reproduced by using the different conceptual models and computer codes, and then an applicability of the models and the identified key parameters such as relative permeability and capillary pressure were discussed. Helium gas was repeatedly injected into fully water-saturated and isotropically consolidated MX-80 bentonite (dry density: 1.6 Mg/m 3 ) in the experiment. One of the most important conclusions from this experiment is that it's impossible for

  4. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur; Loh, Wai Soong; Chakraborty, Anutosh; Saha, Bidyut Baran; Chun, Won Gee; Ng, Kim Choon

    2011-01-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation

  5. Heating and cooling system for an on-board gas adsorbent storage vessel

    Science.gov (United States)

    Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio

    2017-06-20

    In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.

  6. Supply, storage and handling of elemental sulfur derived from sour gas

    International Nuclear Information System (INIS)

    Clark, P.D.; Davis, P.M.; Dowling, N.I.; Calgary Univ., AB

    2003-01-01

    This presentation reviews the supply picture for solid elemental sulfur. It also assesses methods for its storage as well as the disposal of the precursor hydrogen sulfide (H 2 S) by acid gas injection. Both above and below ground block storage is considered environmentally acceptable for sulfur storage as long as measures are taken to minimize the physical and biological breakdown of the sulfur. The preferred option is to store solid elemental sulfur underground, particularly if it is to remain in storage for a prolonged period. Future changes in supply of sulfur will likely be controlled by incremental production of sour gas and utilization of oil sands bitumen. It is expected that future sulfur production from conventional crude oil will remain static or will slowly decrease. The degree to which acid gas injection is applied to large sour gas developments in the Middle East and the Caspian regions will have a significant impact on world sulfur supply. 9 refs., 1 tab., 5 figs

  7. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    Energy Technology Data Exchange (ETDEWEB)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  8. A Numerical Model for Caprock Analysis for Subsurface Gas Storage Applications

    Directory of Open Access Journals (Sweden)

    M. Rajabi

    2018-02-01

    Full Text Available In considering a site for gas storage, it will be important to evaluate the effects of gas storage on the formation, so as to minimize the risk of a breach occurring in the system. Gas injection will result in an increase in formation fluid pressure, especially around the injection source, which in turn results in redistribution of the stress field. The induced deformations within the reservoir can potentially result in a damage zone within the caprock formation. This mechanical failure may involve shear along many of the existing fractures or creation of new fractures that reduce the sealing properties of the caprock system. The main objective of this paper is to develop a model to estimate the growth and extension of cracks in the caprock. In order to achieve this, the smeared crack approach is used to model the process of cracking in the caprock. Smeared cracking is a continuum approach for damage mechanics which is based on the idea that a crack is modeled by modifying the strength and stiffness of the material. The main model presented in this paper has three sub-models, which are the reservoir model, the caprock model and the smeared crack model. The reservoir model is a simplified coupled hydro-mechanical model that numerically simulates the radial fluid flow and analytically estimates the associated stress and strain within the reservoir. The results of the reservoir model are used as boundary conditions for the caprock model that estimates the stress and strain within the sealing caprock due to the deformation of the reservoir. Using the calculated stress and strain, the smeared crack model predicts the growth and extension of cracks within the caprock. The caprock is assumed to be initially crack free and impermeable. The developed model is then used to study the Yort-e-shah aquifer caprock in Iran to predict the growth and extension of cracks.

  9. Moeller polarimeter for VEPP-3 storage ring based on internal polarized gas jet target

    International Nuclear Information System (INIS)

    Dyug, M.V.; Grigoriev, A.V.; Kiselev, V.A.; Lazarenko, B.A.; Levichev, E.B.; Mikaiylov, A.I.; Mishnev, S.I.; Nikitin, S.A.; Nikolenko, D.M.; Rachek, I.A.; Shestakov, Yu.V.; Toporkov, D.K.; Zevakov, S.A.; Zhilich, V.N.

    2005-01-01

    A new method to determine the polarization of an electron beam circulating in a storage ring by a non-destructive way, based on measuring the asymmetry in scattering of beam electrons on electrons of the internal polarized gas jet target, has been developed and tested at the VEPP-3 storage ring

  10. Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions

    Science.gov (United States)

    Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...

  11. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  12. Parametric analysis of a high temperature packed bed thermal storage design for a solar gas turbine

    CSIR Research Space (South Africa)

    Klein, P

    2015-08-01

    Full Text Available as the storage medium and air from the gas turbine cycle as the heat transfer fluid. A detailed model of the storage system is developed that accounts for transient heat transfer between discrete fluid and solid phases. The model includes all relevant convective...

  13. Commercial potential of natural gas storage in lined rock caverns (LRC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied

  14. Commercial potential of natural gas storage in lined rock caverns (LRC); FINAL

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied

  15. Dimensionless groups for multidimensional heat and mass transfer in adsorbed natural gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], E-mail: lasphaier@mec.uff.br

    2010-07-01

    This paper provides a new methodology for analyzing heat and mass transfer in gas storage via adsorption. The foundation behind the proposed methodology comprises a set of physically meaningful dimensionless groups. A discussion regarding the development of such groups is herein presented, providing a fully normalized multidimensional formulation for describing the transport mechanisms involved in adsorbed gas storage. After such presentation, data from previous literature studies associated with the problem of adsorbed natural gas storage are employed for determining realistic values for the developed parameters. Then, a one-dimensional test-case problem is selected for illustrating the application of the dimensionless formulation for simulating the operation of adsorbed gas reservoirs. The test problem is focused on analyzing an adsorbed gas discharge operation. This problem is numerically solved, and the solution is verified against previously published literature data. The presented results demonstrate how a higher heat of sorption values lead to reduced discharge capacities. (author)

  16. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  17. Panorama 2014 - The importance of underground storage in the security of European gas supplies

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-12-01

    While European capacity for underground gas storage has increased by 16% over the last three years, levels of stock at the beginning of the 2013/2014 winter, in relation to capacity, are the lowest that have been seen since 2010; they represent only 84% of storage capacity. The suppliers of gas have no incentive to reserve storage capacity, for which the cost is considered too high in relation to the spread, currently very low, between the price of gas in winter and in summer. They also rely on sufficient gas supply thanks to other sources of flexibility available on the market: flexibility of production or imports, spot LNG purchases, purchases in the spot market... or even use of the storage capacities of neighbouring countries via European network interconnections. Yet, the 2013/2014 winter is beginning in a gas supply context in Europe that is more difficult: imports of LNG, which had already dropped sharply in 2012, have continued to contract, faced with increased competition from Asian buyers on the international LNG market. Gas imports from Norway are also declining following production limits in that country. Only Russia has strongly increased its exports to Europe in 2013. However, the dispute between Ukraine and Russia about the price of Russian gas delivered to Ukraine still raises the spectre of a threat to the European supply of Russian gas, nearly 60% of which transits via Ukraine. Under these circumstances, as demonstrated by the gas crises of 2006 and 2009 and the cold conditions of February 2012 and March/April 2013, storage is the most efficient means of securing the supply of gas providing, of course, that the storage sites are filled at the beginning of winter. (author)

  18. Comparison of Dry Gas Seasonal Storage with CO2 Storage and Re-Use Potential

    OpenAIRE

    Killerud, Marie

    2013-01-01

    To make large-scale CO2 storage economic, many groups have proposed using CO2in EOR projects to create value for CO2 storage. However, CO2 EOR projectsgenerally require a large and variable supply of CO2 and consequently may requiretemporary storage of CO2 in geological formations. In order to store CO2 atoffshore sites as a source for CO2 EOR projects, the CO2 needs to be extractedfrom a storage site to a certain extent. Alternatively, CO2 EOR projects maybe developed alongside saline aquife...

  19. Modifications to an existing waste containment structure at Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    Paez-Restrepo, A.; Darby, J.W.

    1992-01-01

    The Niagara Falls Storage Site (NFSS), located near Lewiston, New York, is an interim waste containment facility for low-level radioactive waste. The facility was completed in 1986 and is managed for the Department of Energy (DOE) by Bechtel National, Inc. (BNI) as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The waste containment structure (WCS) at NFSS is approximately 297 m (975 ft) long and 137 m (450 ft) wide and reaches a maximum height of 10.4 m (34 ft). The peripheral slopes rise at an angle of 3:1 (h:v) for a width of about 16.8 m (55 ft), where the inclination decreases to 7.5%. The apex of the pile is higher at the south end, sloping about 1.2 m (4 ft) to the north. The interim layered cap consists of 0.9 m (3 ft) of clay overlain by 0.45 m (1.5 ft) of topsoil. The uppermost 15 cm (6 in.) of soil was loosely compacted to permit the development of a grass cover. In the summer of 1991, approximately 2,677 m 3 (3,500 yd 3 ) of additional contaminated soil and material in temporary storage elsewhere at NFSS was incorporated into the WCS. To accommodate the waste, a portion of the cap roughly centered with the pile [including 0.45 m (1.5 ft) of topsoil and 0.6 m (2 ft) of clay cap] was removed from an area 99 m (325 ft) long and 58.5 m (192 ft) wide, leaving a minimum of 0.3 m (I ft) of clay over the old waste as a radiation and radon barrier. The newly incorporated waste forms a layer 0.6 m (2 ft) thick, replacing the clay portion of the excavated cap. The waste is contained laterally by the old cap and sealed by a new cap, which also consists of 0.9 m (3 ft) of compacted clay and 0.45 m (1.5 ft) of topsoil. A transition zone about 6.1 m (20 ft) wide feathers the new cap to the old cap (see Fig. 3). Except for the uppermost 10.5 to 15.2 cm (4 to 6 in.) of vegetated topsoil, the excavated cap materials were stockpiled and reused in constructing the new cap. Additional material required to complete cap construction was imported from

  20. Electrical swing adsorption gas storage and delivery system

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  1. Evaluation of a ground thermal energy storage system for heating and cooling of an existing dwelling

    Energy Technology Data Exchange (ETDEWEB)

    Leong, W.H; Lawrence, C.J. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Tarnawski, V.R. [Saint Mary' s Univ., Halifax, NS (Canada). Dept. of Engineering; Rosen, M.A. [University of Ontario Institute of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2006-07-01

    A ground-coupled heat pump (GCHP) system for heating and cooling a residential house in Ontario was simulated. The system uses the surface ground as a thermal energy storage for storing thermal energy in the summer for later use in the winter. In the summer, the ground receives both solar energy and the heat rejected by the system during cooling operation. The relationship between a heat pump and the ground is a ground heat exchanger (GHE). This presentation described the vertical and horizontal configurations of the GHE, which are the 2 basic configurations. It also described the modelling and analysis of the GCHP system. The modelling involved both simplified and comprehensive models. The simplified models of heating and cooling loads of a building, a heat pump unit, and heat transfer at the ground heat exchanger provided a direct link to the comprehensive model of heat and moisture transfer in the ground, based on the finite element method. This combination of models provided an accurate and practical simulation tool for GCHP systems. The energy analysis was used to evaluate the performance of the system. The use of a horizontal ground heat exchanging pipe and the impact of heat deposition and extraction through it in the ground were also studied with reference to the length of pipe, depth of pipe and layout of the pipe loop. The objective of the analysis was to find ways to optimize the thermal performance of the system and environmental sustainability of the ground. 14 refs., 3 tabs., 5 figs.

  2. Extensive optimisation analyses of the piping of two large underground gas storage ariel compressors

    NARCIS (Netherlands)

    Eijk, A.; Korst, H.J.C.; Ploumen, G.; Heyer, D.

    2007-01-01

    Two large identical 6-cylinder Ariel JGB/6 compressors of each 7.5 Mw, are used for the underground gas storage (UGS) plant of Essent in Epe, Germany. The compressors can be operated at a wide range of operating conditions, e.g. variable suction and discharge pressures, 2-stage mode during gas

  3. 77 FR 7211 - Pacific Gas and Electric Company, Diablo Canyon Independent Spent Fuel Storage Installation...

    Science.gov (United States)

    2012-02-10

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 72-26; NRC-2011-0110] Pacific Gas and Electric Company...) issued NRC Materials License No. SNM-2511 to the Pacific Gas and Electric Company (PG&E) for the Diablo.... 5. TS 3.1.2, ``Spent Fuel Storage Cask (SFSC) Heat Removal System,''--revise to allow the HI-STORM...

  4. 75 FR 61478 - D'Lo Gas Storage, LLC; Notice of Petition

    Science.gov (United States)

    2010-10-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-504-000] D'Lo Gas Storage, LLC; Notice of Petition September 24, 2010. Take notice that on September 21, 2010, D'Lo Gas.... CP10-504-000, a petition for an Exemption of Temporary Acts and Operations and Request for Expedited...

  5. Method of making improved gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  6. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  7. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  8. Repowering of an Existing Power Plant by Means of Gas Turbine and Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Repowering is a process consisting in a transformation of an old power plant in order to have a greater nameplate capacity or more efficiency, which result in a net increase of power generated. As a consequence of the higher efficiency, the repow ered plant is characterized by higher power output...... and less specific CO2 emissions. Usually, a repowering is performed adding one or more gas turbines to an existing steam cycle which was built decades ago. Thus, traditional repowering results in combine d cycles (CC). High temperature fuel cells (such as SOFC) could also be used as a topping cycle......, reaching global plant efficiency even higher and specific CO2 emissions even lower. Decreasing the operating temperature in a SOFC allows the use of less compl ex materials and construction methods, consequently reducing plant and the electricity cost. A lower working temperature makes it also suitable...

  9. Modification in existing SF6 gas handling system at 14UD BARC-TIFR Pelletron Accelerator, Mumbai

    International Nuclear Information System (INIS)

    Ninawe, N.G.; Gupta, S.K.; Ramjilal; Sparrow, Hillary; Sharma, S.C.; Bhagwat, P.V.; Salvi, S.B.

    2003-01-01

    BARC-TIFR 14 UD Pelletron Accelerator facility at TIFR, Mumbai is operational since inception 1989. The accelerator is housed inside a pressure vessel of 6 metre diameter, 25 metre long and 525m 3 volume. The accelerator tank is pressurized with SF 6 at 80 to 100 psig in order to achieve 14MV. The inventory of SF 6 gas is about 18,000 Kg (approximately) at 80 psig. SF 6 gas can be transported from Accelerator tank to storage tank using gas handling system, which consists of oil free compressor, vacuum pump, dust filters, oil filters, dryers etc

  10. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  11. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  12. Horizontal drilling in a natural gas storage horizon of 4 m thickness using reservoir navigation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bastert, Thomas [E.ON Gas Storage GmbH, Essen (Germany); Liewert, Mathias; Rohde, Uwe [Baker Hughes INTEQ GmbH, Celle (Germany); Haberland, Joachim

    2010-09-15

    With a working gas capacity of 1,44 billion m{sup 3} (Vn) the natural gas storage facility at Bierwang is one of the largest storage facilities of E.ON Gas Storage (in Germany) and also one of the largest porous rock storages in Germany. The natural gas is stored in the tertiary storage horizons of the Chattian Hauptsand and Nebensand. To increase the storage capacity a second development well was planned for the Chattian Nebensand II (approx. 1680 m below ground). Following a comprehensive technical investigation the BW 502 well was planned as a horizontal well intended to provide a 300 m exposed section length through the reservoir. In a first step a pilot well was drilled to examine the Nebensand II which had been explored only to a limited extent before; the pilot well was also to provide accurate data on depth, thickness and dip. The results obtained indicated that the Nebensand II was only 4 m thick instead of 6 m as originally assumed. An azimuthal LWD resistivity tool was therefore used for reservoir navigation to allow horizontal drilling despite the lower thickness found. The technology allowed drilling of the horizontal well over its entire length of 315 m within a max. 1.5 m corridor relative to the reservoir top. Drilling confirmed that the actual formation found corresponded to the reservoir formation plan. Drilling operations were completed successfully. The well has been commissioned in the spring of 2010. (orig.)

  13. Economic efficiency of underground natural gas storage: The case of Canada

    International Nuclear Information System (INIS)

    Charette, Y.

    1990-01-01

    The paper describes the current situation of natural gas storage in Canada and attempts to provide valuable information and analytical tools so that the key players, including government and industry, will be in a better position to make enlightened choices for future investments in natural gas storage. Central to the analysis of the efficiency of storage is the notion of efficient peak-load pricing. It is usually recognized that storage may be efficient or welfare increasing because, with fixed consumption, it may allow the substitution of cheaper off-peak production for more costly production. The theoretical conclusions are used of a number of static peak-load pricing models, as well as investment decision models, to analyze the various costs and benefits of storage. The main conclusion is made that, when storage is possible, the welfare maximizing peak/off-peak price differential can be reduced, and therefore, storage can increase the efficiency of the gas transmission system. 10 refs, 2 figs, 5 tabs

  14. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel

    KAUST Repository

    Ybyraiymkul, Doskhan; Ng, Kim Choon; Кaltayev, Aidarkhan

    2017-01-01

    One of the main challenges in the adsorbed natural gas (ANG) storage system is the thermal effect of adsorption, which significantly lowers storage capacity. These challenges can be solved by efficient thermal management system. In this paper

  15. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-01

    The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. This report presents the findings of the DOE National Laboratories Well Integrity Work Group efforts in the four tasks. In addition to documenting the work of the Work Group, this report presents high priority recommendations to improve well integrity and reduce the likelihood and consequences of subsurface natural gas leaks.

  16. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  17. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.

    2017-02-01

    The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.

  18. North American natural gas storage, market and price outlook

    International Nuclear Information System (INIS)

    George, R.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which dealt with the fundamental factors and short-term considerations that will impact Canadian and U.S. natural gas pricing. The short-term pricing outlook and some transportation issues were also highlighted. The major transportation issues for 1999/2000 are: (1) Nova tolling, (2) incentive tolling and negotiations, (3) decontracting, (4) pipeline project schedules, and (5) land use and environmental considerations. The major supply issues are: (1) impact of oil prices on gas drilling and production, (2) impact of merger and acquisition activity, and (3) land use and environmental considerations. The major demand issues for the same time period are: (1) greenhouse gas emissions, (2) electricity restructuring, and (3) new end-use technologies. 3 tabs., 21 figs

  19. Storage sizing for a micro gas grid of prosumers

    NARCIS (Netherlands)

    Alkano, Desti; Nefkens, W.J.; Scherpen, Jacquelien M.A.; Volkerts, M

    2014-01-01

    This paper studies optimal control of a micro grid of biogas prosumers. The biogas production is kept at a nearly constant level due to the time and effort associated with establishing the right microbial populations. However, as (bio)gas is predominantly used for space heating, the consumption

  20. Evaluation of greenhouse gas emission risks from storage of wood residue

    International Nuclear Information System (INIS)

    Wihersaari, Margareta

    2005-01-01

    The use of renewable energy sources instead of fossil fuels is one of the most important means of limiting greenhouse gas emissions in the near future. In Finland, wood energy is considered to be a very important potential energy source in this sense. There might, however, still be some elements of uncertainty when evaluating biofuel production chains. By combining data from a stack of composting biodegradable materials and forest residue storage research there was an indication that rather great amounts of greenhouse gases maybe released during storage of wood chip, especially if there is rapid decomposition. Unfortunately, there have not been many evaluations of greenhouse gas emissions of biomass handling and storage heaps. The greenhouse gas emissions are probably methane, when the temperature in the fuel stack is above the ambient temperature, and nitrous oxide, when the temperature is falling and the decaying process is slowing down. Nowadays it is still rather unusual to store logging residue as chips, because the production is small, but in Finland storage of bark and other by-products from the forest industry is a normal process. The evaluations made indicate that greenhouse gas emissions from storage can, in some cases, be much greater than emissions from the rest of the biofuel production and transportation chain

  1. Challenges to and proposals for underground gas storage (UGS business in China

    Directory of Open Access Journals (Sweden)

    Gangxiong Zhang

    2017-05-01

    Full Text Available Underground gas storage (UGS is one of the major storage and peak-shaving means in the world among numerous storage ways via gas fields, small-scale LNG, etc. With the rapid development of natural gas industry in China, the seasonal peak-shaving issues are increasingly prominent, so how to achieve sustainable development of UGS business has become a major problem at present. In view of this, we studied the present status and trend of UGS development abroad and analyzed the following challenges encountered by UGS in China. (1 UGS construction falls behind the world and peak-shaving capacity is insufficient. (2 There is lack of quality gas sources for storage and the complicated geological conditions make the cost of UGS construction high. (3 UGS construction is still at the preliminary stage, so experience is not enough in safety and scientific operation and management. (4 UGS construction, management and operation are not unified as a whole, so its maximum efficiency fails to be exerted. (5 The economic benefit of UGS is difficult to be shown without independent cost accounting. Based on the experience of other countries, some proposals were put forward on UGS development under the actual present situation: to strengthen strategic UGS layout, intensify storage site screening in key areas and steadily promote UGS construction; to establish professional UGS technical and management teams and intensify the research of key technologies; and to set up a complete and rationally-distributed UGS construction, operation and management system.

  2. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  3. Hydro-pneumatic accumulators for vehicles kinetic energy storage: Influence of gas compressibility and thermal losses on storage capability

    International Nuclear Information System (INIS)

    Puddu, Pierpaolo; Paderi, Maurizio

    2013-01-01

    In this work the differences between the thermodynamic behaviour of real and ideal gases are analysed to determine their influence on the processes of compression and expansion of a gas-charged accumulator. The behaviour of real gas has a significant influence on the size of accumulators used for Kinetic Energy Recovery of vehicles. In particular, it is underscored that the accumulator's design, based on ideal gas behaviour, provides undersized accumulators and therefore makes impossible the complete energy recovery for Hydraulic Energy Storage Systems (HES). The analysis of the thermodynamic properties of gases has shown that the main differences between ideal and real behaviour are due to gas compressibility. A mathematical model of a gas-charged accumulator is developed in order to analyse its real behaviour in presence of irreversible heat transfer and viscous losses. The simulation process of charging and discharging of a hydro-pneumatic accumulator, makes it clear that hydrodynamic and thermal losses are responsible for the characteristic hysteresis cycle on the p–V diagram. Different gases are tested as charged fluid of a hydro-pneumatic accumulator to simulate cyclic processes of charge and discharge. Results show different characteristics in terms of volumetric gas properties, thermal time-constant and thermal efficiency of the accumulator. - Highlights: • A dynamic model of a gas charged accumulator was developed. • Gas compressibility significantly influences the size of high-pressure accumulators. • A hysteresis loop is indicative of the thermal energy losses. • Loss increases with increasing the period of the cyclic process. • Thermal time constant is different from compression to expansion

  4. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    Science.gov (United States)

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-04

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.

  5. Data compilation report: Gas and liquid samples from K West Basin fuel storage canisters

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    Forty-one gas and liquid samples were taken from spent fuel storage canisters in the K West Basin during a March 1995 sampling campaign. (Spent fuel from the N Reactor is stored in sealed canisters at the bottom of the K West Basin.) A description of the sampling process, gamma energy analysis data, and quantitative gas mass spectroscopy data are documented. This documentation does not include data analysis

  6. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  7. Use of nuclear explosions to create gas condensate storage in the USSR. LLL Treaty Verification Program

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The Soviet Union has described industrial use of nuclear explosions to produce underground hydrocarbon storage. To examples are in the giant Orenburg gas condensate field. There is good reason to believe that three additional cavities were created in bedded salt in the yet to be fully developed giant Astrakhan gas condensate field in the region of the lower Volga. Although contrary to usual western practice, the cavities are believed to be used to store H 2 S-rich, unstable gas condensate prior to processing in the main gas plants located tens of kilometers from the producing fields. Detonations at Orenburg and Astrakhan preceded plant construction. The use of nuclear explosions at several sites to create underground storage of highly corrosive liquid hydrocarbons suggests that the Soviets consider this time and cost effective. The possible benefits from such a plan include degasification and stabilization of the condensate before final processing, providing storage of condensate during periods of abnormally high natural gas production or during periods when condensate but not gas processing facilities are undergoing maintenance. Judging from information provided by Soviet specialists, the individual cavities have a maximum capacity on the order of 50,000 m 3

  8. 78 FR 56944 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation

    Science.gov (United States)

    2013-09-16

    ... process waste at the Humboldt Bay ISFSI will not significantly affect the quality of the human environment... NUCLEAR REGULATORY COMMISSION [Docket No. 72-27; NRC-2011-0115] Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION...

  9. 76 FR 62055 - Wabash Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned...

    Science.gov (United States)

    2011-10-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF11-6-000] Wabash Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned Wabash Gas Storage Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meeting The staff of the Federal Energy Regulatory Commission ...

  10. 75 FR 65475 - Tallulah Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Science.gov (United States)

    2010-10-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-494-000] Tallulah Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Tallulah Gas Storage Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review October 18, 2010. The staff of the Federal...

  11. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    DEFF Research Database (Denmark)

    Patil, Ravi; Colls, Jeremy J; Steven, Michael D

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response...... detection field facility developed at the University of Nottingham was used to inject CO2 gas at a controlled flow rate (1 l min-1) into soil to simulate build-up of soil CO2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO2....... This study showed adverse effects of CO2 gas on agro-ecosystem in case of leakage from storage sites to surface....

  12. Carbon Dioxide Capture from Flue Gas : Development and Evaluation of Existing and Novel Process Concepts

    NARCIS (Netherlands)

    Abu Zahra, M.R.M.

    2009-01-01

    One of the main global challenges in the years to come is to reduce the CO2 emissions in view of the apparent contribution to global warming. Carbon dioxide capture, transport, and storage (CCS) from fossil fuel fired power plants is drawing increased interest as an intermediate solution towards

  13. Project on effects of gas in underground storage facilities for radioactive waste (Pegasus project)

    International Nuclear Information System (INIS)

    Haijtink, B.; McMenamin, T.

    1993-01-01

    Whereas the subject of gas generation and gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular, in the fourth five-year R and D programme on management and storage of radioactive waste (1990-94), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called Pegasus, about 20 organizations and research institutes are involved. The project covers theoretical and experimental studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations such as clay, salt and granite. In this report the present status of the various research activities are described and 13 papers have been selected

  14. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    Science.gov (United States)

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  15. Operation modes research of liquefied natural gas storages as a part of the ground complexes equipment

    Directory of Open Access Journals (Sweden)

    N. S. Korolev

    2014-01-01

    Full Text Available The use of the Liquefied Natural Gas (LNG in the space-rocket equipment is motivated by some advantages. That is why a lot of tests and works are actively carried out now on rocket engines using liquefied natural gas.To provide the engine tests and subsequent rocket complex operation a creation of LNG storages is demanded as a part of ground processing equipment and support for their safe operation conditions.One of LNG danger factor is its low boiling temperature, and also changing the condition, density and LNG boiling temperature at storage due to evaporation of light component, namely methane. At refill of the storages having fuel remains with a new LNG portion these factors can lead to formation of the stratified macro-layers and cause a mode of the intensive mixing that is called "rollover", with almost instant evaporation of LNG big mass and sharp pressure boost, capable to result in the storage distraction with catastrophic effects.The work objectives are formulated such as a technique development for forecasting of the LNG parameters in operating storages including the rollover mode, a comparison of calculated results of the LNG parameters with the experimental data, and a definition of possible recommendations for safe operation of LNG storages as a part of the ground complexes equipment.The paper reviews 12 publications concerning the issues and proceeding processes at operation of LNG storages, including the rollover mode.To verify the reliability of process simulation results in the LNG, represented in models by the binary methane-ethane mixture the calculated values have been compared with the experimental data for a LNG storage mode in the reservoir of a ground test complex.The reliability of developed models of the heat-mass-exchange processes in stratified on density and temperature in LNG storage with emergence of conditions for the rollover mode has been verified by comparing the settlement characteristics to the published

  16. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the

  17. Round and round: Little consensus exists on the near-term future of natural gas

    International Nuclear Information System (INIS)

    Lunan, D.

    2004-01-01

    The various combinations of factors influencing natural gas supply and demand and the future price of natural gas is discussed. Expert opinion is that prices will continue to track higher, demand will grow with the surging American economy, and supplies will remain constrained providing more fuel for another cycle of ever-higher prices. There is also considerable concern about the continuing rise in demand and tight supply situation in the near term, and the uncertainty about when, or even whether, major new sources will become available. The prediction is that the overriding impact of declining domestic supplies will put a premium on natural gas at any given time. Overall, it appears certain that higher prices are here to stay: as a result, industrial gas users will see their competitiveness eroded, and individual consumers will see their heating bills rise. Governments, too, will be affected as the increasing cost of natural gas will slow down the pace of conversion of coal-fired power generating plants to natural gas, reducing anticipated emissions benefits and in the process compromising environmental goals. Current best estimates put prices for the 2004/2005 heating season at about US$5.40 per MMBtu, whereas the longer term price range is estimated to lie in the range of US$4.75 to US$5.25 per MMBtu. 2 figs

  18. The co-existence of hot and cold gas in debris discs

    Science.gov (United States)

    Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absil, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, Th.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moór, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.

    2018-06-01

    Context. Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial, protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars. This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. Aims: The goal of this paper is to investigate the presence of hot gas in the immediate surroundings of the cold-gas-bearing debris-disc central stars. Methods: High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of β Pic and Fomalhaut, have been obtained from La Palma (Spain), La Silla (Chile), and La Luz (Mexico) observatories. To verify the presence of hot gas around the sample of stars, we have analysed the Ca II H&K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Results: Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris-disc stars. Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths (red wings). These are the first detections of such Ca II features in 7 out of the 15 observed stars. Although an ISM origin cannot categorically be excluded, the results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment of the stars. This hot gas is detected in at least 80%, of edge-on cold-gas-bearing debris discs, while in only 10% of the discs seen close to face-on. We interpret this result as a geometrical effect, and suggest

  19. Report of working committee 1 ''exploration, production, treatment and underground storage of natural gas''; Rapport du comite de travail 1 ''exploration, production, traitement et stockage souterrain du gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Rekdal, Ottar

    2000-07-01

    This report describes the activities of Working Committee 1 during the triennium 1997 - 2000. The first part of the report gives an overview of the current situation world-wide within the basic activities of the committee, i.e. exploration, production, treatment and underground storage of natural gas. In the second part of the report analyses of three prioritized topics important to the industry are described: - Improving the performance of existing gas storages; - Use of 3-D seismic data in exploration, production and underground storage. - Development of small-scale offshore gas fields. The report will be presented during the WOC 1 sessions at the World Gas Conference 2000, together with papers selected by the committee. Other relevant papers will be presented during the poster session. Furthermore, the committee will organize a round table session addressing reductions of greenhouse gas emissions along the gas chain. Representatives from industry, environmental organisations and politicians will take part in this round table discussion. (author)

  20. Linac-augmented light sources : an incremental concept for enhancing the capabilities of existing 3rd-generation storage rings

    International Nuclear Information System (INIS)

    Lewellen, J. W.

    2003-01-01

    Planned and proposed 4th-generation x-ray sources, such as energy-recovery linacs (ERLs) and single-pass x-ray free-electron lasers (X-FELs) offer a number of potential advantages, including small source size, higher peak brightness, ultrashort pulses, and potentially temporally and transversely coherent pulses. While offering unique capabilities, such facilities will also offer several important limitations, including limited numbers of user beamlines (for FELs) and a pulse-repetition rate that may be too high for many dynamics experiments (ERLs). In addition, there are many technical challenges associated with both types of facilities. A third type of facility, exemplified by the Short Pulse Photon Source (SPPS) at SLAC [1], would support neither a large number of users simultaneously nor generate coherent pulses, but would generate very intense, short x-ray pulses. Such a facility could serve as the starting point for either an ERL or an X-FEL, or a combined, hybrid machine. For the foreseeable future, however, existing 3rd-generation light source storage rings, such as the Advanced Photon Source, will continue to play important roles in supporting scientific research utilizing high-brightness x-rays. Existing facilities offer the powerful combination of a large number of user beamlines, efficient use of electron beam energy, and established user communities, and a program of incremental investment in, and improvements to, these facilities should continue to pay dividends into the future. This document discusses potential upgrade paths based on the Advanced Photon Source (APS) as a model 3rd-generation facility. If existing 3rd-generation facilities are to remain centers of excellence for light source-based research into the future, they must not only maintain and enhance their support of their existing user base, but also seek to expand their capabilities to support additional classes of users. There are several paths available toward this goal. The APS is

  1. Optimal LNG (liquefied natural gas) regasification scheduling for import terminals with storage

    International Nuclear Information System (INIS)

    Trotter, Ian M.; Gomes, Marília Fernandes Maciel; Braga, Marcelo José; Brochmann, Bjørn; Lie, Ole Nikolai

    2016-01-01

    We describe a stochastic dynamic programming model for maximising the revenue generated by regasification of LNG (liquefied natural gas) from storage tanks at importation terminals in relation to a natural gas spot market. We present three numerical resolution strategies: a posterior optimal strategy, a rolling intrinsic strategy and a full option strategy based on a least-squares Monte Carlo algorithm. We then compare model simulation results to the observed behaviour of three LNG importation terminals in the UK for the period April 2011 to April 2012, and find that there was low correlation between the observed regasification decisions of the operators and those suggested by the three simulated strategies. However, the actions suggested by the model simulations would have generated significantly higher revenues, suggesting that the facilities might have been operated sub-optimally. A further numerical experiment shows that increasing the storage and regasification capacities of a facility can significantly increase the achievable revenue, even without altering the amount of LNG received, by allowing operators more flexibility to defer regasification. - Highlights: • We present a revenue maximisation model for LNG (liquefied natural gas) storage tanks at import terminals. • Three resolution strategies: posterior optimal, rolling intrinsic and full option. • The full option strategy is based on a least-squares Monte Carlo algorithm. • Model simulations show potential for higher revenue in three UK LNG terminals. • Numerical experiments show how storage and regasification capacities affect revenue.

  2. Stability and electronic structure of carbon capsules with superior gas storage properties: A theoretical study

    International Nuclear Information System (INIS)

    Manna, Arun K.; Pati, Swapan K.

    2013-01-01

    Highlights: • Stability and electronic structure of various carbon capsules are studied. • Effects of capsule’s sizes on electronic and optical properties are explored. • Changes in cohesive and formation energy and electronic gap are discussed. • Capsule’s gas storage propensity is addressed using DFT and ab initio MD. • Capsule’s optical absorptions are discussed with and without stored gas molecules. - Abstract: Structures, electronic and optical properties of carbon nanocapsules of varying sizes (length and diameter) are studied using first-principles density functional theory. Based on calculated cohesive energy, formation energy, electronic gap and extent of orbital delocalization, we examine structural stability and changes in low-energy physics of these carbon capsules. We find that both cohesive and formation energy decrease with increase in capsule’s sizes, indicating their greater structural rigidity and favorable formation feasibility. The electronic gap also decreases with increase in capsule’s sizes due to the larger electronic delocalization. The simulated optical absorption spectra show lowering of low-energy peak positions with increase in the capsule’s dimensions, consistent with the reduction in electronic gap. Additionally, we also provide an estimate of gas storage capacity for the larger carbon capsule (C 460 ) considered. We find 7.69 wt.% and 28.08 wt.% storage propensity for hydrogen and carbon dioxide gases, respectively, which clearly suggests their potential use as light storage materials

  3. Gas production and storage - gas transport and supply. Colloquium 7th conference proceedings; Gasfoerderung und Gasspeicherung - Gastransport und Gasversorgung. Kolloquium 7. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S. [ed.] [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bohrtechnik und Fluidbergbau; Koeckritz, V. [comp.

    1999-07-01

    The colloquium papers discuss trends in gas supply engineering, automtion of gas storages, liberalisation of the gas market, and gas management systems in integrated supply systems. Rock-mechanical problems of natural gas storage caverns are mentioned. Further subjects are gas extraction rom coal seams, power generation from gas in fuel cells, a model for blowout calculation of real gases, and vortex tubes in gas pressure reduction systems. 19 contributions have been recorded separately in this database. [German] Die einzelnen Beitraege des Kolloquiums befassen sich mit den Entwicklungen in der Gasversorgungstechnik, mit der Automatisierung von Gasspeichern, mit der Liberalisierung des Gasmarktes sowie mit Gasmanagementsystemen in Verbundnetzen. Neben der Gasspeicherung in Porenspeichern und Salzkavernen, deren Sicherheit und der Soleversenkung, sind Betraege zu gebirgsmechanischen Problemen in Erdgasspeicherkavernen enthalten. Weitere Themen sind die Gasfoerderung aus Steinkohlefloezen, die Energieerzeugung aus Gas in Brennstoffzellen, ein Modell zur Blowout-Berechnung realer Gase sowie Wirbelrohre in Anlagen zur Gasdruckminderung. Fuer die Datenbank Energy wurden 19 Beitraege separat aufgenommen.

  4. Remarks on the global existence in the dynamics of a viscous, heat-conducting, one-dimensional gas

    International Nuclear Information System (INIS)

    Song Jiang

    1994-01-01

    We consider initial boundary value problems for the equations of the motion of a viscous, heat-conducting, one-dimensional gas which is confined to a fixed tube with impermeable ends and whose viscosity varies with density, and prove the global existence of smooth (large) solutions. (author). 17 refs

  5. Analysis on tritium permeation in tritium storage bed with gas flowing calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; Suzuki, Takumi; Nishi, Masataka [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, Department of Fusion Engineering Research, Naka, Ibaraki (Japan); Yoshida, Hiroshi [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, ITER-Joint Centeral Team, Naka, Ibaraki (Japan)

    2000-10-01

    Tritium permeation amount in a tritium storage bed with gas flowing calorimetric was evaluated under a condition of new operation mode for International Thermonuclear Experimental Reactor (ITER). As a result, tritium permeation under the new operation mode was estimated to be about twice of that under the practical operation mode. This result show that it would be regardless in a view point of material control of tritium, however, it was suggested to be required additional tritium removal or evacuate system in a view points of safety control or performance of accountability or thermal insulating of the tritium storage bed. (author)

  6. Natural gas distribution operation and maintenance dissemination project Kaunas City, Lithuania. Analysis, registration and recommendations on the existing Lithuanian gas measuring practice. Appendix 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    It is recommended that the Lithuanian Gas Industry considers: (1) To adopt a base temperature (T{sub b}) of 15 deg. C in order to uniform with the European preferable base temperature [cf. clause. 3.1]. (2) To use TC domestic gas meters at outdoor located gas meters and even when the gas meter is located just inside the exterior wall, in order to avoid too large error on the annual volume measured. Such TC meters should comply with EN 1359 clause B.23 (or alternatively the more strictly Danish type approval requirements) [cf. clause 3.2]. (3) To carry out supplementary high pressure calibration on turbine gas meters intended to be used at operating pressures of 3 or 6 bar in order to check if used makes and types are sensible to Reynolds number. If so, it would result in a measuring error at operating pressures higher than as determined by calibration with air at atmospheric pressure [cf. clause 3.3]. Similar tests should be considered for the existing Vortex gas meters. (4) To adopt the Danish legislation on legal metrology on gas meters in absence of a similar Lithuanian one due to its up to date requirements towards the distribution companies [cf. clause 3.4]. The first step towards such adoption would require a draft translation of the Danish legislation, at least into English. (5) To adopt the Danish in sevice inspection programme on domestic gas meters and on larger gas meters and gas measuring systems as well as on in-situ check of gas-volume electronic conversion devices [cf. clause 3.5.2 - 2.5.4]. The first step towards such adoption would require a draft translation of the 3 existing Danish manuals on calibration and in-situ check programmes, at least into English. Another approach would be a visit at HNG by 2-3 people from the Lithuanian Gas Industry in order to get acquainted with the Danish practice on laboratory calibration and in-situ check of gas-volume electronic conversion devices. However, it should be noticed that in-situ check measuring

  7. Oil and gas to Europe - An overview of existing and planned infrastructures

    International Nuclear Information System (INIS)

    Nies, Susanne; Schuelke, Christian

    2011-04-01

    The European Union's Hydrocarbon energy supply depends heavily on imports. While the European Commission has recommended diversifying and increasing domestic resources, notably with renewable resources which should grow to 20 % by 2020, dependence on hydrocarbon imports will remain not only substantial, but will increase. Particular attention must thus be paid to the question of transportation, and also to the countries of origin, investments in infrastructures, their protection, relations with transit countries, 'competing consumers' (notably China and emerging countries, but also the United States), energy wastefulness in producing countries, and finally, price. Security of supply depends on adequate and reliable infrastructure, and must always be thought of in the long term. This entirely revised edition of the fourth study conducted by the European Governance and Geopolitics of Energy Program at Ifri includes discussions about pipeline routes and potential outputs, their current use and financial requirements for transportation, ongoing projects and those planned for the future, their cost, their financing and their probable operational start-up date. While all infrastructures are necessarily examined (including Norway, the United Kingdom, and North Africa), particular attention is paid to transportation infrastructure that connects Europe with Russia and the former Soviet Union (Central Asia, Caspian Sea). It will be immediately clear that the issue of gas is dominant in current discussions. Contents: 1. Setting up Gas and Oil Infrastructures in Europe. 2. EU Actions on Gas and Oil Infrastructure. 3. Oil Transport to the EU. IV. Gas from the North, South and East - European Demand for Gas and Sources of Supply. V. Turkey and Ukraine: Two Major Transit Countries for EU. VI. Conclusion and Prospectus. Appendix

  8. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remote locations. The present work investigates the possibility of integrating liquefaction processes on such facilities, considering two mixed-refrigerant and two expansion-based processes suitable for offshore applications. Two FPSO configurations are considered...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  9. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-02

    Introduction Motivation The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. Federal Review of Well Integrity In April of 2016, the U.S. Department of Energy (DOE), in conjunction with the U.S. Department of Transportation (DOT) through the Pipeline and Hazardous Materials Safety Administration (PHMSA), announced the formation of a new Interagency Task Force on Natural Gas Storage Safety. The Task Force enlisted a group of scientists and engineers at the DOE National Laboratories to review the state of well integrity in natural gas storage in the U.S. The overarching objective of the review is to gather, analyze, catalogue, and disseminate information and findings that can lead to improved natural gas storage safety and security and thus reduce the risk of future events. The “Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016’’ or the ‘‘PIPES Act of 2016,’’which was signed into law on June 22, 2016, created an Aliso Canyon Natural Gas Leak Task Force led by the Secretary of Energy and consisting of representatives from the DOT, Environmental Protection Agency (EPA), Department of Health and Human Services, Federal Energy Regulatory Commission (FERC), Department of Commerce and the Department of Interior. The Task Force was asked to perform an analysis of the Aliso Canyon event and make recommendations on preventing similar incidents in the future. The PIPES Act also required that DOT/PHMSA promulgate minimum safety standards for underground storage that would take effect within two years. Background on the DOE

  10. Calculation of gas Bremsstrahlung power from straight sections of storage ring at SSRF

    International Nuclear Information System (INIS)

    Hua Zhengdong; Xu Xunjiang; Fang Keming; Xu Jiaqiang

    2008-01-01

    The Shanghai Synchrotron Radiation Facility (SSRF) is a third-generation synchrotron radiation light source with 3.5 GeV in energy, which is composed of the linear accelerator, the booster and the storage ring. The storage ring provides 16 standard straight sections of 6.5 m and 4 long straight sections of 12 meters. Gas Bremsstrahlung (GB) produced by the interaction of the stored beam with the residual gas molecules in straight section, which is so intense and has a very small angular that the GB spectra, the GB power and the GB power distribution should be known. The characters of GB are studied by means of Fluka Monte Carlo code. Our result shows agreement with those obtained by the experiential formulae. (authors)

  11. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery

    Institute of Scientific and Technical Information of China (English)

    Ming-Xue Wu; Ying-Wei Yang

    2017-01-01

    Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.

  12. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur

    2011-07-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation for this study is the investigation of a gas storage system with internal thermal control. We employed a fin-tube type heat exchanger that is placed in a pressurized cylinder. A distributed-parameter model is used for the theoretical modeling and simulations are conducted at assorted charging and discharging conditions. These studies included the transient thermal behaviours of the elements within the ANG-charged cylinder and parameters such as pressure and temperature profiles of adsorbent have been obtained during charge and discharge cycles, and results are compared with a conventional compressed methane vessel. © 2011 Elsevier Ltd. All rights reserved.

  13. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  14. Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas

    International Nuclear Information System (INIS)

    Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-01-01

    We explore the phase transitions of the ideal relativistic neutral Bose gas confined in a cubic box, without assuming the thermodynamic limit nor continuous approximation. While the corresponding non-relativistic canonical partition function is essentially a one-variable function depending on a particular combination of temperature and volume, the relativistic canonical partition function is genuinely a two-variable function of them. Based on an exact expression for the canonical partition function, we performed numerical computations for up to 10 5 particles. We report that if the number of particles is equal to or greater than a critical value, which amounts to 7616, the ideal relativistic neutral Bose gas features a spinodal curve with a critical point. This enables us to depict the phase diagram of the ideal Bose gas. The consequent phase transition is first order below the critical pressure or second order at the critical pressure. The exponents corresponding to the singularities are 1/2 and 2/3, respectively. We also verify the recently observed 'Widom line' in the supercritical region.

  15. Generator of a dense atomic gas curtain (for use in Intersecting Storage Rings)

    CERN Document Server

    Zankel, K

    1975-01-01

    A supersonic beam source is described which continuously generates a gas curtain for the proton beam profile observation in the Intersecting Storage Rings at CERN. Its maximum intensity is 10/sup 20 / atoms/sr s. A commonly used theoretical model for the determination of the intensity downstream of the source is discussed. Some results about the condensation behaviour of sodium vapour on metallic substrate surfaces are reported. (8 refs).

  16. Patterns of Carbon Storage and Greenhouse Gas Losses in Urban Residential Lawns

    Science.gov (United States)

    Contosta, A.; Varner, R.; Xiao, J.

    2017-12-01

    Population density and housing age are two factors believed to impact carbon (C) storage and greenhouse gas emissions in one of the most extensively managed landscapes in the U.S.: the urban lawn. Previous research focusing on either above- or below-ground C dynamics has also not explicitly considered how they interact to affect the net carbon balance in urban residential areas. We addressed this knowledge gap by quantifying both soil and vegetative C stocks and greenhouse gas fluxes across an urban gradient in Manchester, NH, USA that included 34 lawns comprising three population density categories, five housing age classes, and the interaction between them. Using a combination of both weekly, manual measurements and continuous, automated estimates, we also sampled emissions of CH4, CO2, and N2O within a subset of these lawns that represented a range of citywide population density and housing age characteristics and management practices. We found that neither above- nor below-ground C storage varied with population density, but both differed among housing age classes. Soil C storage increased with housing age and was highest in the oldest lawns sampled. By contrast, C stocks in aboveground, woody biomass was highest at intermediate ages and lowest in older and new parcels. Unlike C stocks, soil greenhouse gas emissions did not change among population density categories, housing age classes, or with irrigation and fertilization management, but instead followed temporal trends in soil moisture and temperature. Overall, our results suggest that drivers of C storage and greenhouse gas losses in urban residential areas may not be uniform and their accurate representation in Earth system models may require a variety of approaches.

  17. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    OpenAIRE

    Shestakov, Igor; Dolgova, Anastasia; Maksimov, Vyacheslav Ivanovich

    2015-01-01

    The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characte...

  18. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.

    Science.gov (United States)

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin

    2014-01-01

    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  19. RECOMMENDATIONS ON THE MONITORING SYSTEM OF UNDERGROUND GAS STORAGE (in Russian

    Directory of Open Access Journals (Sweden)

    Victor NORDIN

    2014-07-01

    Full Text Available The article in accordance with the "process approach" ISO 9000 is substantiated the necessity of creating underground gas storage system monitoring and control, including objects, parameters, methods, frequency and corrective action, on the basis of which made structural formula monitoring cycle. Qualimetrical approach allows to define complex criteria of an estimation of efficiency of operation, which will help to make timely and effective management decisions, including from the perspective of environmental protection.

  20. Forbearance, Regulation, and Market Power in Natural Gas Storage: The Case of Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.; Ware, R.; Wetston, H.

    2007-07-01

    In late 2006 the Ontario Energy Board rendered a landmark decision to forbear from the price regulation of natural gas storage services. This paper examines the key issues and provides some economic analysis of the evidence. The decision followed a proceeding during which evidence was given on whether the market for storage is competitive or is subject to significant market power possessed by dominant and incumbent utility firms in the province. Intervenors in the proceeding were in broad agreement on the use of standard concepts from North American antitrust analysis of merger reviews: identification of the relevant product and geographic markets, analysis of market structure within the relevant market, and assessment of barriers to entry. A critical issue at the hearing was the extent of the geographic market; a broad market encompassing U.S. storage facilities in neighbouring states supports a finding of competition, whereas a narrower geographic market restricted to Ontario makes market power more likely. Since gas storage is only as functional as the pipelines connected to it, evidence was directed at assessing the availability of pipeline capacity in both primary and secondary markets. (auth)

  1. Detailed studies of a high-density polarized hydrogen gas target for storage rings

    International Nuclear Information System (INIS)

    Zapfe, K.; Brueckner, W.; Gaul, H.G.; Grieser, M.; Lin, M.T.; Moroz, Z.; Povh, B.; Rall, M.; Stechert, B.; Steffens, E.; Stenger, J.; Stock, F.; Tonhaeuser, J.; Montag, C.; Rathmann, F.; Fick, D.; Braun, B.; Graw, G.; Haeberli, W.

    1996-01-01

    A high-density target of polarized atomic hydrogen gas for applications in storage rings was produced by injecting atoms from an atomic beam source into a T-shaped storage cell. The influence of the internal gas target on electron-cooled beams of 27 MeV α-particles and 23 MeV protons in the Heidelberg Test Storage Ring has been studied in detail. Target polarization and target thickness were measured by means of 27 MeV α-particles. For hyperfine states 1+2 a target thickness of n=(0.96±0.04) x 10 14 H/cm 2 was achieved with the cell walls cooled to 100 K. Working with a weak magnetic holding field (∼5 G) the maximum target polarization was P T =0.84±0.02 when state 1 and P T =0.46±0.01 when states 1+2 were injected. The target polarization was found to be constant over a period of 3 months with a net charge of Q∼100 C passing the storage cell. (orig.)

  2. Equipment design guidance document for flammable gas waste storage tank new equipment

    International Nuclear Information System (INIS)

    Smet, D.B.

    1996-01-01

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas

  3. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  4. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  5. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  6. Methodological aspects of market study on residential, commercial and industrial sectors, of the Conversion Project for natural gas of existing network in Sao Paulo city

    International Nuclear Information System (INIS)

    Kishinami, R.I.; Perazza, A.A.

    1991-01-01

    The methodological aspects of market study, developed at the geographical area served by existing network of naphtha gas, which will be converted to natural gas in a two years conversion program are presented. (author)

  7. 78 FR 57625 - Arlington Storage Company, LLC; Notice of Availability of the Environmental Assessment for the...

    Science.gov (United States)

    2013-09-19

    ... existing salt caverns previously used for liquefied petroleum gas (LPG) storage, the proposed Gallery 2... caverns, known as Gallery 2, to natural gas storage at its Seneca Lake Storage facility in Schuyler County, New York. The conversion of the Gallery 2 caverns to natural gas storage would add 0.55 billion cubic...

  8. Large-site air-storage gas-turbine plants in electricity networks

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, H C

    1980-08-01

    The article gives a detailed description of the construction and the operation of the 290 MW air-storage gas-turbine power station at the town of Huntorf. The cavities of a 300,000 cbm storage capacity needed for accomodating compressed air have been solution-mined in a salt dome at a depth of c. 700 m. The air-mass-flow-controlled gas turbine consists of a 6-stage HP part and a 5-stage LP part with a combustion chamber each. The turbine is used to cover peak loads, whereas slack periods are covered by the generator which drives to air compressors connected in series to refill the underground compressed-air stores. Since December 1978, the plant has been in operation. As a gas turbine, it has attained a high level of start frequency, indeed, with its 400 starts within the first 5 months. Energy cost of this power station range within the optimum (between half and full load) at about 70% of the energy cost required by a conventionally natural-gas-fired turbine.

  9. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.

    Science.gov (United States)

    Inagaki, Taichi; Ishida, Toyokazu

    2016-09-14

    Thermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs. The non-natural sugar alcohol molecules are constructed in silico in accordance with the previously suggested molecular design guidelines: linear elongation of a carbon backbone, separated distribution of OH groups, and even numbers of carbon atoms. Their crystal structures are then predicted using the random search method and first-principles calculations. Our molecular simulation results clearly demonstrate that the non-natural sugar alcohols have potential ability to have thermal storage density up to ∼450-500 kJ/kg, which is significantly larger than the maximum thermal storage density of the present known organic PCMs (∼350 kJ/kg). This computational study suggests that, even in the case of H-bonded molecular crystals where the electrostatic energy contributes mainly to thermal storage density, the molecular distortion and van der Waals energies are also important factors to increase thermal storage density. In addition, the comparison between the three eight-carbon non-natural sugar alcohol isomers indicates that the selection of preferable isomers is also essential for large thermal storage density.

  10. Spatial and intertemporal arbitrage in the California natural gas transportation and storage network

    Science.gov (United States)

    Uria Martinez, Rocio

    Intertemporal and spatial price differentials should provide the necessary signals to allocate a commodity efficiently inside a network. This dissertation investigates the extent to which decisions in the California natural gas transportation and storage system are taken with an eye on arbitrage opportunities. Daily data about flows into and out of storage facilities in California over 2002-2006 and daily spreads on the NYMEX futures market are used to investigate whether the injection profile is consistent with the "supply-of-storage" curve first observed by Working for wheat. Spatial price differentials between California and producing regions fluctuate throughout the year, even though spot prices at trading hubs across North America are highly correlated. In an analysis of "residual supply", gas volumes directed to California are examined for the influence of those fluctuations in locational differentials. Daily storage decisions in California do seem to be influenced by a daily price signal that combines the intertemporal spread and the locational basis between California and the Henry Hub, in addition to strong seasonal and weekly cycles. The timing and magnitude of the response differs across storage facilities depending on the regulatory requirements they face and the type of customers they serve. In contrast, deviations in spatial price differentials from the levels dictated by relative seasonality in California versus competing regions do not trigger significant reallocations of flows into California. Available data for estimation of both the supply-of-storage and residual-supply curves aggregate the behavior of many individuals whose motivations and attentiveness to prices vary. The resulting inventory and flow profiles differ from those that a social planner would choose to minimize operating costs throughout the network. Such optimal allocation is deduced from a quadratic programming model, calibrated to 2004-2005, that acknowledges relative seasonality

  11. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  12. Proceedings of the Ontario Petroleum Institute's 48. annual conference : Ontario oil, gas and storage conference

    International Nuclear Information System (INIS)

    2009-01-01

    This conference discussed issues related to Ontario's petroleum industry and evaluated the province's potential hydrocarbon plays. Geological studies of interest to oil and gas operators were presented along with storage opportunities for hydrocarbons in underground formations. Regulatory issues related to the environmental impacts of oil and gas operations on soil and groundwater were reviewed, and various mitigation options for treating soils impacted by hydrocarbons were discussed. New technologies currently being used in Ontario's petroleum industry were presented together with various investment and exploration opportunities. An economic update of recent oil and gas activities in the region was also presented. The conference was divided into 7 sessions, and featured 17 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  13. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  14. Modeling and forecasting the supply of oil and gas: a survey of existing approaches

    International Nuclear Information System (INIS)

    Walls, M.A.

    1992-01-01

    This paper surveys the literature on empirical oil and gas supply modeling. The models fall into two broad categories: geologic/engineering and econometric. Two types of geologic/engineering models are surveyed - play analysis, or simulation models and discovery process models. A third category of supply models, 'hybrids', which contain features of both econometric and discovery process models are also discussed. Particular attention is paid to whether or not the models have linkages between a dynamic model of producer optimizing behaviour and the factors governing supply of the resource; whether or not expectations of future prices, costs, and other stochastic variables are incorporated; whether the physical characteristics of non-renewable resources are captured; and how well the models perform. The paper concludes that the best path for future research efforts is a hybrid approach where the econometric component is derived from a stochastic dynamic optimization model of exploration behaviour. 51 refs., 3 figs., 1 tab

  15. Pilot abandonment test of a very deep gas storage salt cavern

    International Nuclear Information System (INIS)

    Durup, J.G.; Vidal, F.; Rolin, C.

    2007-01-01

    As a result of knowledge gained initially from a series of succinct sealed well and cavern field tests performed in the late 1980's and early 1990's by Gaz de France (EZ58; EZ53), issues related to the long term abandonment of salt caverns became more focused. The tests were performed in cooperation with Ecole Polytechnique (France) and were partially funded by the Solution Mining Research Institute (USA). The long-term abandonment (sealing or plugging) of a solution-mined cavern in a salt formation that has been used for mineral production, hydrocarbon storage, or waste disposal has been a contemporary topic for many years. Sealing and abandonment of caverns in salt formations differs from sealing of an oil and gas well principally for two reasons: - cavern wells are generally completed with much larger casings than oil and gas exploration and production wells; - the cavern fluid pressure rises after sealing. The first difference is not a significant deterrent to effective cavern sealing and abandonment. Essentially all of the uncertainties and complexities associated with cavern sealing and abandonment are a direct result of the second difference - the fact that the cavern fluid pressure rises through time. After a short introduction to solution mining of salt caverns and their use as underground gas storages, the paper will first discuss the factors affecting cavern fluid pressure increase after sealing. The second part of the paper will highlight the practical impacts of these factors on a deep salt cavern abandonment experiment (Cavern TE02; 1500 meters deep), currently being performed on the natural gas storage of Tersanne operated for over 35 years by Gaz de France. (authors)

  16. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  17. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints

    NARCIS (Netherlands)

    Van Den Broek, Machteld; Berghout, Niels; Rubin, Edward S.

    2015-01-01

    The costs of intermittent renewable energy systems (IRES) and power storage technologies are compared on a level playing field to those of natural gas combined cycle power plants with CO2 capture and storage (NGCC-CCS). To account for technological progress over time, an "experience

  18. Modeling deformation processes of salt caverns for gas storage due to fluctuating operation pressures

    Science.gov (United States)

    Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.

    2013-12-01

    In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the

  19. Oil and gas delivery to Europe. An Overview of Existing and Planned Infrastructures

    International Nuclear Information System (INIS)

    Nies, S.

    2011-01-01

    The European Union?s hydrocarbon energy supply depends heavily on imports. While the European Commission has recommended diversifying and increasing domestic resources, notably with renewable resources which should grow to 20% by 2020, dependence on hydrocarbon imports will remain not only substantial, but will increase. Particular attention must thus be paid to the question of transportation, and also to the countries of origin, investments in infrastructure, their protection, relations with transit countries, 'competing consumers? (notably China and emerging countries, but also the United States), energy wastefulness in producing countries, and, finally, price. Security of supply depends on adequate and reliable infrastructure, and must always be thought of in the long term. This entirely revised edition of the fourth study conducted by the European Governance and Geopolitics of Energy program at Ifri includes discussions about pipeline routes and potential outputs, their current use and financial requirements for transportation, ongoing projects and those planned for the future, their cost, their financing, and their probable operational start-up date. While all infrastructures are necessarily included (including Norway, the United Kingdom, and North Africa), particular attention is paid to transportation infrastructure that connects Europe with Russia and the former Soviet Union (Central Asia, Caspian Sea). It will be immediately clear that the issue of gas is dominant in current discussions. (author)

  20. Oil and gas delivery to Europe. An Overview of Existing and Planned Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Nies, S.

    2011-07-01

    The European Union?s hydrocarbon energy supply depends heavily on imports. While the European Commission has recommended diversifying and increasing domestic resources, notably with renewable resources which should grow to 20% by 2020, dependence on hydrocarbon imports will remain not only substantial, but will increase. Particular attention must thus be paid to the question of transportation, and also to the countries of origin, investments in infrastructure, their protection, relations with transit countries, 'competing consumers? (notably China and emerging countries, but also the United States), energy wastefulness in producing countries, and, finally, price. Security of supply depends on adequate and reliable infrastructure, and must always be thought of in the long term. This entirely revised edition of the fourth study conducted by the European Governance and Geopolitics of Energy program at Ifri includes discussions about pipeline routes and potential outputs, their current use and financial requirements for transportation, ongoing projects and those planned for the future, their cost, their financing, and their probable operational start-up date. While all infrastructures are necessarily included (including Norway, the United Kingdom, and North Africa), particular attention is paid to transportation infrastructure that connects Europe with Russia and the former Soviet Union (Central Asia, Caspian Sea). It will be immediately clear that the issue of gas is dominant in current discussions. (author)

  1. Ensuring Reliable Natural Gas-Fired Generation with Fuel Contracts and Storage - DOE/NETL-2017/1816

    Energy Technology Data Exchange (ETDEWEB)

    Myles, Paul T. [National Energy Technology Lab. (NETL), Albany, OR (United States); Labarbara, Kirk A. [National Energy Technology Lab. (NETL), Albany, OR (United States); Logan, Cecilia Elise [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-11-17

    This report finds that natural gas-fired power plants purchase fuel both on the spot market and through firm supply contracts; there do not appear to be clear drivers propelling power plants toward one or the other type. Most natural gas-fired power generators are located near major natural gas transmission pipelines, and most natural gas contracts are currently procured on the spot market. Although there is some regional variation in the type of contract used, a strong regional pattern does not emerge. Whether gas prices are higher with spot or firm contracts varies by both region and year. Natural gas prices that push the generators higher in the supply curve would make them less likely to dispatch. Most of the natural gas generators discussed in this report would be unlikely to enter firm contracts if the agreed price would decrease their dispatch frequency. The price points at which these generators would be unlikely to enter a firm contract depends upon the region that the generator is in, and how dependent that region is on natural gas. The Electric Reliability Council of Texas (ERCOT) is more dependent on natural gas than either Eastern Interconnection or Western Interconnection. This report shows that above-ground storage is prohibitively expensive with respect to providing storage for an extended operational fuel reserve comparable to the amount of on-site fuel storage used for coal-fired plants. Further, both pressurized and atmospheric tanks require a significant amount of land for storage, even to support one day’s operation at full output. Underground storage offers the only viable option for 30-day operational storage of natural gas, and that is limited by the location of suitable geologic formations and depleted fields.

  2. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL's ability to meet its missions between 1998 and 2002

  3. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    International Nuclear Information System (INIS)

    Patil, Ravi H.; Colls, Jeremy J.; Steven, Michael D.

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO 2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response detection field facility developed at the University of Nottingham was used to inject CO 2 gas at a controlled flow rate (1 l min -1 ) into soil to simulate build-up of soil CO 2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO 2 concentrations was significantly higher in gassed pasture plots than in gassed fallow plots. Germination of winter bean sown in gassed fallow plots was severely hindered and the final crop stand was reduced to half. Pasture grass showed stress symptoms and above-ground biomass was significantly reduced compared to control plot. A negative correlation (r = -0.95) between soil CO 2 and O 2 concentrations indicated that injected CO 2 displaced O 2 from soil. Gassing CO 2 reduced soil pH both in grass and fallow plots (p = 0.012). The number of earthworm castings was twice as much in gassed plots than in control plots. This study showed adverse effects of CO 2 gas on agro-ecosystem in case of leakage from storage sites to surface.

  4. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Shestakov Igor A.

    2015-01-01

    Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.

  5. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    Science.gov (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  6. Relaxation rates of low-field gas-phase ^129Xe storage cells

    Science.gov (United States)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  7. Development of Gas Turbine Output Enhancement System Using Thermal Ice Storage (I)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byun Youn; Joo, Yong Jin; Lee, Kyoung Ho; Lee, Jae Bong; Kang, Myung Soo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kyung Soon [Korea Electric Power Corp. (Korea, Republic of)

    1997-12-31

    The objective of this study is to develop a system which enhances gas turbine output using ice storage in summer peak days for power supply stability in domestic power system. This study represents conceptual design, system optimization, basic design and economic analysis of system. General equations which represents capacity of chiller and storage tank were drive. Pyungtaek power plant was selected as one suitable for system application due to its space availability. The system was optimized on the basis of economic analysis and power supply situation by determination of optimal inlet cooling hour. TRNSYS simulation program was used for optimal operating factor of ice harvester under partial load operating conditions. Basic design includes capacity calculation of component, cost survey, system flow diagram, plot plan, and system guide. The system has been evaluated on the basis of economic analysis which calculates NPV, payback period and levelized generation cost. (author). 34 refs., figs., tabs.

  8. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.

    2005-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

  9. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Peking University, Beijing

    2004-08-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented. (orig.)

  10. Gas release and leachates at bark storage: Laboratory and field studies. Final report

    International Nuclear Information System (INIS)

    Jirjis, Raida; Andersson, Paal; Aronsson, Paer

    2005-01-01

    Large volumes of bark are produced as a by-product from saw mills and pulp and paper industry all year round in Sweden. Most of the bark is used as a biofuel. Due to the uneven demand for the fuel during the year, bark has to be often stored for a few months. Storage normally takes place outdoors in fairly large piles. A number of biological and chemical processes are known to occur during storage. These processes can lead to the emission and leakage of environmentally unaccepted products which can also affect working environment. The aim of this project was to evaluate the outcome of some of these processes and to asses its effect on working environment as well as the surrounding environment. This study investigates the storage of fresh bark from pine and spruce in laboratory scale experiments and a large scale storage trial. Results of the analyses of bark material, before and after storage, and the chemical constituents of the released gases and leached material are presented. Estimation of the total amounts that can be released in gas form or leached out from bark piles during storage, and possible environmental consequences are discussed. Conclusions and some practical suggestion concerning bark storage are given in this report. The laboratory experiment involved storage of fresh bark in a 34 litres cylindrical chamber at room temperature (RT) or heated to an average of 55 deg C. The chambers were designed to provide gas samples during emissions experiment and allow irrigation during leakage experiments. Sampling of the released gases (using Tenax-adsorbent) was performed during two or three weeks of storage for spruce and pine bark respectively. The total volatile organic compounds (VOC) and individual monoterpenes were determined. Changes in the chemical constituents of bark during storage were studied using different extraction methods and measuring instruments including Gas spectroscopy (GC)-flame ionization detector (FID) and GC- mass spectroscopy (MS

  11. Economic and Environmental Assessment of Natural Gas Plants with Carbon Capture and Storage (NGCC-CCS)

    Science.gov (United States)

    The CO2 intensity of electricity produced by state-of-the-art natural gas combined-cycle turbines (NGCC) isapproximately one-third that of the U.S. fleet of existing coal plants. Compared to new nuclear plants and coal plantswith integrated carbon capture, NGCC has a lower invest...

  12. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    Science.gov (United States)

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-04

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.

  13. Reducing capital and operating costs in gas processing, liquefaction, and storage

    Energy Technology Data Exchange (ETDEWEB)

    Krusen, III, L C [Phillips Petroleum Co., Bartlesville, OK (United States). Research Div.

    1997-06-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author).

  14. Reducing capital and operating costs in gas processing, liquefaction, and storage

    International Nuclear Information System (INIS)

    Krusen, L.C. III

    1997-01-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author)

  15. Criticality safety assessment on the RSG-GAS spent fuel storage for anticipating the next core conversion program

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Kuntoro, Iman; Zuhair; Liem, Peng Hong

    2003-01-01

    Criticality assessment on the spent fuel storage racks of the RSG-GAS multipurpose reactor has been conducted to support the undergoing core conversion program, in which higher uranium fuel densities of silicide (up to 4.8 gU.cm -3 ) and molybdenum (up to 8.3 gU.cm -3 ) fuel elements are adopted to enhance the reactor performance, core cycle length and reactor utilization. In the assessment, the k eff of the rack as a function of fuel density is calculated for fresh fuel elements which is a very conservative approach recommended by IAEA. Besides fuel densities, effects of water densities due to pool water temperature variation, and the fuel elements' orientation on the k eff are analyzed as well. The criticality calculations are all carried out by using MNCP4B2 Monte Carlo code with ENDF/B-VI library. For the library sensitivity, JENDL-3.3 library is also used and compared. The calculation results show the most reactive condition is for the case when the spent fuel racks are filled with fresh U-6Mo fuel element with meat density of 8.30 gU.cm -3 . For all fuel types, density and operating condition, the calculated k eff with 3 times standard deviations are confirmed less than the allowable value of 0.95. It can be concluded that the existing spent fuel storage racks can be safely used for storing the planned high density uranium fuels. (author)

  16. Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass

    Directory of Open Access Journals (Sweden)

    Jaya Shankar Tumuluru

    2015-03-01

    Full Text Available Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off‑gas emissions during storage. Storage canisters with gas‑collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO emissions at both 20 and 40 °C (1600 and 13,000 ppmv, whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO2 emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO2, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO2 is highest for switchgrass and CH4 is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.

  17. A case study of electrostatic accidents in the process of oil-gas storage and transportation

    International Nuclear Information System (INIS)

    Hu, Yuqin; Liu, Jinyu; Gao, Jianshen; Wang, Diansheng

    2013-01-01

    Ninety nine electrostatic accidents were reviewed, based on information collected from published literature. All the accidents over the last 30 years occurred during the process of oil-gas storage and transportation. Statistical analysis of these accidents was performed based on the type of complex conditions where accidents occurred, type of tanks and contents, and type of accidents. It is shown that about 85% of the accidents occurred in tank farms, gas stations or petroleum refineries, and 96% of the accidents included fire or explosion. The fishbone diagram was used to summarize the effects and the causes of the effects. The results show that three major reasons were responsible for accidents, including improper operation during loading and unloading oil, poor grounding and static electricity on human bodies, which accounted for 29%, 24% and 13% of the accidents, respectively. Safety actions are suggested to help operating engineers to handle similar situations in the future.

  18. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  19. Economics of long-distance transmission, storage, and distribution of heat from nuclear plants with existing and newer techniques

    International Nuclear Information System (INIS)

    Margen, P.H.

    1978-01-01

    Conventional and newer types of hot-water pipes are applied to the bulk transport of reject heat from central nuclear power plants to the district heating network of cities or groups of cities. With conventional pipes, the transport of 300 to 2000 MW of heat over distances of 30 to 100 km can be justified, while with newer pipe types, even longer distances would often be economic. For medium-size district heating schemes, low-temperature heat transport from simple heat-only reactors suitable for closer location to cities is of interest. For daily storage of heat on district heating systems, steel heat accumulators are currently used in Sweden. The development of more advanced cheaper heat accumulators, such as lake storage schemes, could make even seasonal heat storage economic. Newer distribution technology extends the economic field of penetration of district heating even to suburban one-family house districts. With proper design and optimization, nuclear district heating can be competitive in a wide market and achieve very substantial fossil-fuel savings

  20. Effect of growth regulators on 'Brookfield' apple gas diffusion and metabolism under controlled atmosphere storage

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2014-05-01

    Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

  1. Natural gas storage in microporous carbon obtained from waste of the olive oil production

    Directory of Open Access Journals (Sweden)

    Cecilia Solar

    2008-12-01

    Full Text Available A series of activated carbons (AC were prepared from waste of the olive oil production in the Cuyo Region, Argentine by two standard methods: a physical activation by steam and b chemical activation with ZnCl2. The AC samples were characterized by nitrogen adsorption at 77 K and evaluated for natural gas storage purposes through the adsorption of methane at high pressures. The activated carbons showed micropore volumes up to 0.50 cm³.g-1 and total pore volumes as high as 0.9 cm³.g-1. The BET surface areas reached, in some cases, more than 1000 m².g-1. The methane adsorption -measured in the range of 1-35 bar- attained values up to 59 V CH4/V AC and total uptakes of more than 120 cm³.g-1 (STP. These preliminary results suggest that Cuyo's olive oil waste is appropriate for obtaining activated carbons for the storage of natural gas.

  2. Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory

    Directory of Open Access Journals (Sweden)

    Le Yu

    2015-03-01

    Full Text Available Cusp displacement catastrophe theory can be introduced to propose a new method about instability failure of the interbed for gas storage cavern in bedded salt in solution mining. We can calculate initial fracture drawing pace of this interbed to obtain 2D and 3D gas storage shapes at this time. Moreover, Stability evaluation of strength reduction finite element method (FEM based on this catastrophe theory can used to evaluate this interbed stability after initial fracture. A specific example is simulated to obtain the influence of the interbed depth, cavern internal pressure, and cavern building time on stability safety factor (SSF. The results indicate: the value of SSF will be lower with the increase of cavern building time in solution mining and the increase of interbed depth and also this value remains a rise with the increase of cavern internal pressure Especially, we can conclude that the second-fracture of the interbed may take place when this pressure is lower than 6 MPa or after 6 days later of the interbed after initial fracture. According to above analysis, some effective measures, namely elevating the tube up to the top of the interbed, or changing the circulation of in-and-out lines, can be introduced to avoid the negative effects when the second-fracture of the interbed may occur.

  3. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  4. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  5. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    Science.gov (United States)

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other

  6. Anisotropic mechanical behaviour of sedimentary basins inferred by advanced radar interferometry above gas storage fields

    Science.gov (United States)

    Teatini, P.; Gambolati, G.; Ferretti, A.

    2010-12-01

    Natural gas is commonly stored underground in depleted oil and gas fields to provide safe storage capacity and deliverability to market areas where production is limited, or to take advantage of seasonal price swings. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts with the overlying land that moves accordingly. Depending on the field burial depth, a few kilometres of the upper lithosphere are subject to local three-dimensional deformations with the related cyclic motion of the ground surface being both vertical and horizontal. Advanced Persistent Scatterer Interferometry (PSI) data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of these seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D poro-mechanical finite-element model of the gas injection/removal occurrence. Model calibration based on the observed cyclic motions, which are on the range of 10-15 mm and 5-10 mm in the vertical and horizontal west-east directions, respectively, helps characterize the nonlinear hysteretic geomechanical properties of the basin. First, using a basin-scale relationship between the oedometric rock compressibility cM in virgin loading conditions versus the effective intergranular stress derived from previous experimental studies, the modeling results show that the ratio s between loading and unloading-reloading cM is about 4, consistent with in-situ expansions measured by the radioactive marker technique in similar reservoirs

  7. The long term storage of advanced gas-cooled reactor (AGR) fuel

    International Nuclear Information System (INIS)

    Standring, P.N.

    1999-01-01

    The approach being taken by BNFL in managing the AGR lifetime spent fuel arisings from British Energy reactors is given. Interim storage for up to 80 years is envisaged for fuel delivered beyond the life of the Thorp reprocessing plant. Adopting a policy of using existing facilities, to comply with the principles of waste minimisation, has defined the development requirements to demonstrate that this approach can be undertaken safely and business issues can be addressed. The major safety issues are the long term integrity of both the fuel being stored and structure it is being stored in. Business related issues reflect long term interactions with the rest of the Sellafield site and storage optimisation. Examples of the development programme in each of these areas is given. (author)

  8. Natural Gas Storage Seismic Monitoring Suivi sismique des stockages de gaz naturel

    Directory of Open Access Journals (Sweden)

    Mari J.L.

    2011-02-01

    Full Text Available IFP Energies nouvelles, CGGVeritas and GDF Suez have conducted together, since 1980, a series of seismic monitoring experiments in order to detect and follow the movements of the gas plume in natural gas geologic storages. Surface and well seismic surveys were carried out at different stages of the storage life. Permanent receiver arrays have been set down in wells. Permanent sources have been designed. Sources and receivers have been used to follow continuously the storage cycle during several years, providing time measurement accuracy within a tenth of a millisecond. Gas intrusion into an aquifer leads to an increase in the arrival times of reflections beneath the storage reservoir and to a variation of the reflection amplitudes at top and bottom of the reservoirs. Progressive variations of the seismic parameters may be followed during the initial infill period. Further movements of the gas plume with the annual in/out cycles are more difficult to follow, because of the simultaneous presence of gas and water in the pores. Arrival time variations of some tenths of a millisecond may be detected and measured. Saturations, using accurate picking of the arrival times, can be estimated in favourable cases. Because of the higher density of carbon dioxide, when stored in a supercritical phase, sensitivity of the seismic parameters, velocity, density and acoustic impedance to saturation variations will be about twice smaller for CO2 storages than it is for methane. IFP Energies nouvelles, la CGGVeritas et GDF Suez ont mené ensemble, depuis 1980, de nombreuses expériences de monitoring sismique afin de détecter et de suivre les mouvements du gaz dans des stockages géologiques de gaz naturel. Des acquisitions ont été réalisées à différents stades de la vie du stockage tant en sismique de surface qu’en sismique de puits. Des antennes de récepteurs permanentes ont été construites et implantées dans des puits. Des sources permanentes ont

  9. Household energy consumption: the future is in our hands. ITER, an experimental fusion reactor. Do CO2-free energies exist? Liquefied natural gas, king of the gas market

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - Household energy consumption - the future is in our hands: With energy resources growing scarcer and more expensive, everyone has a duty to conserve energy. Because combating global warming also means adopting simple habits and using the right equipment - with help from our governments to lead us to change. A practical look at what we can do. 2 - ITER, an experimental fusion reactor: The entire international community is trying to reproduce here on Earth the fusion of hydrogen atoms occurring naturally in the Sun, lured by the promise of a virtually inexhaustible source of energy. More on ITER from the project's Director General. 3 - Do CO 2 -free energies exist?: As nations struggle to reduce greenhouse gas emissions, the question is moot. Environmental engineer Jean-Marc Jancovici gives us his point of view. 4 - Liquefied natural gas, king of the gas market: LNG's many advantages are enticing industry to develop supply routes and infrastructure to meet strong demand. But the race for LNG is not without its limits

  10. Mechanical stability of a salt cavern submitted to rapid pressure variations: Application to the underground storage of natural gas, compressed air and hydrogen

    International Nuclear Information System (INIS)

    Djizanne-Djakeun, Hippolyte

    2014-01-01

    Salt caverns used for the underground storage of large volumes of natural gas are in high demand given the ever-increasing energy needs. The storage of renewable energy is also envisaged in these salt caverns for example, storage of compressed air and hydrogen mass storage. In both cases, salt caverns are more solicited than before because they are subject to rapid injection and withdrawal rates. These new operating modes raise new mechanical problems, illustrated in particular by sloughing, and falling of overhanging blocks at cavern wall. Indeed, to the purely mechanical stress related to changes in gas pressure variations, repeated dozens of degrees Celsius of temperature variation are superimposed; causes in particular during withdrawal, additional tensile stresses whom may lead to fractures at cavern wall; whose evolution could be dangerous. The mechanical behavior of rock salt is known: it is elasto-viscoplastic, nonlinear and highly thermo sensitive. The existing rock salt constitutive laws and failures and damages criteria have been used to analyze the behavior of caverns under the effects of these new loading. The study deals with the thermo mechanics of rocks and helps to analyze the effects of these new operations modes on the structural stability of salt caverns. The approach was to firstly design and validate a thermodynamic model of the behavior of gas in the cavern. This model was used to analyze blowout in gas salt cavern. Then, with the thermo mechanical coupling, to analyze the effects of rapid withdrawal, rapid injection and daily cycles on the structural stability of caverns. At the experimental level, we sought the optimal conditions to the occurrence and the development of cracks on a pastille and a block of rock salt. The creep behavior of rock salt specimens in triaxial extension also was analyzed. (author)

  11. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    Science.gov (United States)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  12. Economics of long distance transmission, storage and distribution of heat from nuclear plants with existing and newer techniques

    International Nuclear Information System (INIS)

    Margen, Peter

    1977-01-01

    Nuclear plants can provide heat for district heating in mainly two ways. Central nuclear power plants sufficiently large to be economic as electricity producers could instead be designed for heat extraction at temperatures useful for district heating. The second promising way is to design simple low temperature reactors, so simple and safe that near urban location becomes feasible. The manner of transport distribution and storage of heat is discussed in this paper which are very important especially in the cost calculations. The economic objectives can often be attained already with conventional technigues even when transport distances are large. But newer techniques of transport promise to make even cities at greater distances from major nuclear power plants economically connectible whilst new techniques for small distribution pipes help to extend the economic distribution area to the less dense one-family house districts. (M.S.)

  13. Storage of compressed air - Optimisation and measurement of an existing project example; Druckluftspeicherung: Optimierung / Ausmessung bestehendes Projektmuster

    Energy Technology Data Exchange (ETDEWEB)

    Brueckmann, P. [Brueckmann Elektronik, Davos Dorf (Switzerland); Cyphelly, I. [Cyphelly and Cie, Les Brenets (Switzerland)

    2007-06-15

    This short final report for the Swiss Federal Office of Energy (SFOE) deals with an additional project that augmented an earlier report on a compressed-air energy storage system. First tests are reported on that revealed that the chosen heat exchanger fulfils the thermal expectations with substantial reserves. Certain effects concerning the liquid piston system are described which showed that further development of the test infrastructure were required. This project was launched to further examine these problems. Difficulties with the liquids available which prohibited the intended exact series of measurements are commented on. The authors note that independent investigations by the Austrian company LINDE came to the same conclusions, thus confirming the function of the heat exchanger.

  14. Risks in the transport and storage of liquefied natural gas. Sub-project 5-2: Investigation into building damage

    Science.gov (United States)

    Gouwens, C.; Dragosavic, M.

    The large reserves and increasing use of natural gas as a source of energy have resulted in its storage and transport becoming an urgent problem. Since a liquid of the same mass occupies only a fraction of the volume of a gas, it is economical to store natural gas as a liquid. Liquefied natural gas is stored in insulated tanks and also carried by ship at a temperature of -160 C to 170 C. If a serious accident allows the LNG to escape, a gas cloud forms. The results of a possible explosion from such a gas cloud are studied. The development of a leak, escape and evaporation, size and propagation of the gas cloud, the explosive pressures to be expected and the results on the environment are investigated. Damage to buildings is examined making use of the preliminary conclusions of the other sub-projects and especially the explosive pressures.

  15. Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales

    Energy Technology Data Exchange (ETDEWEB)

    Godec, Michael [Advanced Resources International, Inc., Arlington, VA (United States)

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO2) storage in these formations. The potential storage of CO2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO2 storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO2 injection; (5) Identify and evaluate potential constraints to economic CO2 storage in gas shales, and propose development approaches that overcome these constraints

  16. Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components

    International Nuclear Information System (INIS)

    Bakalis, Diamantis P.; Stamatis, Anastassios G.

    2012-01-01

    Highlights: ► Hybrid SOFC/GT system based on existing components. ► Exergy analysis using AspenPlus™ software. ► Greenhouse gases emission is significantly affected by SOFC stack temperature. ► Comparison with a conventional GT of similar power. ► SOFC/GT is almost twice efficient in terms of second low efficiency and CO 2 emission. - Abstract: The paper deals with the examination of a hybrid system consisting of a pre-commercially available high temperature solid oxide fuel cell and an existing recuperated microturbine. The irreversibilities and thermodynamic inefficiencies of the system are evaluated after examining the full and partial load exergetic performance and estimating the amount of exergy destruction and the efficiency of each hybrid system component. At full load operation the system achieves an exergetic efficiency of 59.8%, which increases during the partial load operation, as a variable speed control method is utilized. Furthermore, the effects of the various performance parameters such as fuel cell stack temperature and fuel utilization factor are assessed. The results showed that the components in which chemical reactions occur have the higher exergy destruction rates. The exergetic performance of the system is affected significantly by the stack temperature. Based on the exergetic analysis, suggestions are given for reducing the overall system irreversibility. Finally, the environmental impact of the operation of the hybrid system is evaluated and compared with a similarly rated conventional gas turbine plant. From the comparison it is apparent that the hybrid system obtains nearly double exergetic efficiency and about half the amount of greenhouse gas emissions compared with the conventional plant.

  17. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-09-01

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  18. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  19. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    Science.gov (United States)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may

  20. Underground gas storage Lobodice geological model development based on 3D seismic interpretation

    International Nuclear Information System (INIS)

    Kopal, L.

    2015-01-01

    Aquifer type underground gas storage (UGS) Lobodice was developed in the Central Moravian part of Carpathian foredeep in Czech Republic 50 years ago. In order to improve knowledge about UGS geological structure 3D seismic survey was performed in 2009. Reservoir is rather shallow (400 - 500 m below surface) it is located in complicated locality so limitations for field acquisition phase were abundant. This article describes process work flow from 3D seismic field data acquisition to geological model creation. The outcomes of this work flow define geometry of UGS reservoir, its tectonics, structure spill point, cap rock and sealing features of the structure. Improving of geological knowledge about the reservoir enables less risky new well localization for UGS withdrawal rate increasing. (authors)

  1. Radiolytic gas production during long-term storage of nuclear wastes

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1976-01-01

    Gases produced by in situ radiolysis of sealed solidified nuclear wastes during long-term storage could conceivably breach containment. Therefore, candidate waste forms (matrices containing simulated nuclear wastes) were irradiated with 60 Co-γ and 244 Cm-α radiation. These forms were: cement containing simulated fission product sludges, vermiculite containing organic liquids, and cellulosics contaminated with α-emitting transuranic isotopes. For cement waste forms exposed to γ-radiolysis, an equilibrium hydrogen pressure was reached that was dose rate dependent. For α-radiolysis, equilibrium was not reached. With organic wastes (n-octane on vermiculite), H 2 and traces of CO 2 and CH 4 were produced, and O 2 was consumed with both radiations. Only energy absorbed by the organic material was effective in producing H 2 . At low dose rates with both α- and γ-irradiations, G(H 2 ) was 4.5 and G(-O 2 ) was 5.0. Also, equilibrium was not obtained. For cellulosic material, H 2 , CO 2 , and CO were produced in the ratio of 1.0:0.7:0.3, and O 2 was consumed. With α-radiolysis, G(gas) was dose dependent; measured values ranged from 2.2 to 0.6 as the dose increased. Implications of all these results on long-term storage of radioactive waste are discussed. Some data from an actual nuclear wasteform are also presented

  2. On the development and benchmarking of an approach to model gas transport in fractured media with immobile water storage

    Science.gov (United States)

    Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.

    2017-12-01

    In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.

  3. Design of the energy storage system for the High Energy Gas Laser Facility at LASL

    International Nuclear Information System (INIS)

    Riepe, K.B.; Kircher, M.J.

    1977-01-01

    The Antares laser is being built in the High Energy Gas Laser Facility (HEGLF) at Los Alamos to continue laser fusion experiments at very high power. The laser medium will be pumped by an electrical discharge, which requires an energy input of about 5 MJ in a few microseconds at about 500 kV. The energy storage system which will provide the pulsed power will be a bank of high-voltage pulse-forming networks. Tradeoff studies have been performed comparing the performance of multi-mesh networks with single-mesh networks. The single-mesh network requires about 20% more energy than a two-mesh network, but will tolerate three times the inductance of a two-mesh network. Analysis also shows that amplifier gain is not sensitive to impedance mismatch among the pulse-forming network, the transmission cables, and the gas discharge. A prototype pulse-forming network is being built to test components and trigger performance. It is a Marx generator storing 300 kJ at 1.2 MV open circuit, with 3 μH internal inductance

  4. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    Science.gov (United States)

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  5. The influence of woody encroachment on the nitrogen cycle: fixation, storage and gas loss

    Science.gov (United States)

    Soper, F.; Sparks, J. P.

    2015-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs potentially alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates increase with tree age and are influenced by abiotic conditions. A model of soil N accrual around individual trees, accounting for atmospheric inputs and gas losses, generates lifetimes N fixation estimates of up to 9 kg for a 100-year-old tree and current rates of 7 kg N ha-1 yr-1. However, these N inputs and increased soil cycling rates do not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions for both land cover types average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Additional lab experiments suggested that N2 losses are low and that field oxygen conditions are not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of net N accrual under ongoing encroachment.

  6. Woody encroachment impacts on ecosystem nitrogen cycling: fixation, storage and gas loss

    Science.gov (United States)

    Soper, F.; Sparks, J. P.

    2016-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs have the potential to alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates vary seasonally, inter-annually and as a function of plant age and abiotic conditions. Applying a small-scale mass balance model to soil N accrual around individual trees (accounting for atmospheric inputs, and gas and hydrologic losses) generated current fixation estimates of 11 kg N ha-1 yr-1, making symbiotic fixation the largest input of N to the ecosystem. However, soil N accrual and increased cycling rates did not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Lab incubations suggested that N2 losses are likely to be low, with field oxygen conditions not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of significant net N accrual, driven by fixation under ongoing encroachment. Given the large scale of woody legume encroachment in the USA, this process is likely to contribute

  7. 77 FR 11527 - Bluewater Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Science.gov (United States)

    2012-02-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-51-000] Bluewater Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed St. Clair River Crossing Replacement Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review The staff of the Federal...

  8. 75 FR 26220 - Notice of Intent to Prepare an Environmental Assessment for the Planned Leader One Gas Storage...

    Science.gov (United States)

    2010-05-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Leader One Energy, LLC] Notice of Intent to Prepare an Environmental Assessment for the Planned Leader One Gas Storage Project, Request for Comments on Environmental Issues, and Notice of a Site Visit April 30, 2010. The staff of the Federal Energy Regulatory Commission (FERC or...

  9. Optimal use of the Gaz de France underground gas storage facilities; Utilisation optimale des stockages souterrains de Gaz de France

    Energy Technology Data Exchange (ETDEWEB)

    Favret, F.; Rouyer, E.; Bayen, D.; Corgier, B. [Gaz de France (GDF), 75 - Paris (France)

    2000-07-01

    This paper describes the tools developed by Gaz de France to optimize the use of its whole set of underground gas storage facilities. After a short introduction about the context and the purposes, the methodology and the models are detailed. The operational results obtained during the last three years are presented, and some conclusions and perspectives are given. (authors)

  10. The Role of Natural Gas Power Plants with Carbon Capture and Storage in a Low-Carbon Future

    Science.gov (United States)

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  11. Root cause analysis of the fatigue failures of the pulsation dampers of a large underground gas storage (UGS) system

    NARCIS (Netherlands)

    Eijk, A.; Lange, D. de; Maljaars, J.; Tenbrock-Ingenhorst, A.; Gottmer, A.

    2014-01-01

    Two large identical 6-cylinder Ariel JGB/6 reciprocating compressors each of 7.5 MW, are used for an underground gas storage system (UGS) plant of RWE Gasspeicher GmbH located in Epe, Germany. The system is in operation since 2005. In 2011 several internals parts (baffle plates and baffle choke

  12. Moment tensor inversion for two micro-earthquakes occurring inside the Haje gas storage facilities, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Benetatos, C.; Málek, Jiří; Verga, F.

    2013-01-01

    Roč. 17, č. 2 (2013), s. 557-577 ISSN 1383-4649 Institutional support: RVO:67985891 Keywords : micro-earthquake * moment-tensor inversion * gas storage * ISOLA Subject RIV: DD - Geochemistry Impact factor: 1.386, year: 2013

  13. Development of new systems of natural gas storage in vehicles; Desenvolvimento de novos sistemas de armazenamento de gas natural em veiculos automotivos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose R.; Rojas, Leopoldo O.A.; Silva, Claudio F. da; Dantas, Jose H.A. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); Moraes, Caetano [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Scudelari, Ada Cristina; Villena, John Neira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Freire, Luiz G. de M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The conversion of gasoline to natural gas powered vehicles faces some problems that limit its market expansion, so as the expensive costs inherent to the conversion, low autonomy and the reduction of the available trunk space. Thus, this research focuses on the adsorbed natural gas technology. Therefore three major items were analyzed: several porous materials so as to store the NG in lower pressure, without a drastic diminishing of capacity storage; new reservoir geometries, to optimize the trunk available space and the Brazilian legislation in order to determine the possibility of using cylinders made of alternative materials looking for a weight reduction. From the analysis of the Brazilian standards, we can conclude that there is a need for standardizing the use alternative NGV alternative cylinders, for example, the composite reservoir. The adsorption study over activated carbons resulted in an increased NG storage capacity when compare with compressed gas storage at the same operation conditions, but it is still far from the GNC maximum storage capacity and commercial application. For the reservoir structural modeling, three different geometries were selected and analyzed. (author)

  14. 77 FR 6793 - D'Lo Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the PROPOSED D...

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-39-000] D'Lo Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the PROPOSED D'LO Gas Storage Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review The staff of the Federal Energy Regulatory Commission ...

  15. Evaluation of microwave cavity gas sensor for in-vessel monitoring of dry cask storage systems

    Science.gov (United States)

    Bakhtiari, S.; Gonnot, T.; Elmer, T.; Chien, H.-T.; Engel, D.; Koehl, E.; Heifetz, A.

    2018-04-01

    Results are reported of research activities conducted at Argonne to assess the viability of microwave resonant cavities for extended in-vessel monitoring of dry cask storage system (DCSS) environment. One of the gases of concern to long-term storage in canisters is water vapor, which appears due to evaporation of residual moisture from incompletely dried fuel assembly. Excess moisture could contribute to corrosion and deterioration of components inside the canister, which would in turn compromise maintenance and safe transportation of such systems. Selection of the sensor type in this work was based on a number of factors, including good sensitivity, fast response time, small form factor and ruggedness of the probing element. A critical design constraint was the capability to mount and operate the sensor using the existing canister penetrations-use of existing ports for thermocouple lances. Microwave resonant cavities operating at select resonant frequency matched to the rotational absorption line of the molecule of interest offer the possibility of highly sensitive detection. In this study, two prototype K-band microwave cylindrical cavities operating at TE01n resonant modes around the 22 GHz water absorption line were developed and tested. The sensors employ a single port for excitation and detection and a novel dual-loop inductive coupling for optimized excitation of the resonant modes. Measurement of the loaded and unloaded cavity quality factor was obtained from the S11 parameter. The acquisition and real-time analysis of data was implemented using software based tools developed for this purpose. The results indicate that the microwave humidity sensors developed in this work could be adapted to in-vessel monitoring applications that require few parts-per-million level of sensitivity. The microwave sensing method for detection of water vapor can potentially be extended to detection of radioactive fission gases leaking into the interior of the canister through

  16. Preservation and storage of food using natural gas as an energy source; Preservacao e armazenamento de alimentos usando gas natural como fonte de energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gabriel F. da; Lira, Moema de Lima; Carnelossi, Marcelo A.G.; Sousa, Mabel R [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Dept. de Engenharia Quimica; Jesus, Marcos Fabio de [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Engenharia Quimica; Campos, Michel Fabianski; Martins, Ronaldo M; Furini Filho, Roberto [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santos, Sara Macedo dos [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil)

    2004-07-01

    In this work a study on preservation and storage of agricultural products was undertaken in chambers cooled through an absorption system, which used natural gas in the power plant and the results were compared with the compression system using electric energy. For the study a refrigeration pilot unit was mounted which consisted of chiller through water/ammonia absorption with direct natural gas burning, having a maximum consumption of 2,7{sup 3}/ h and capacity of 5 TR's, three refrigerating chambers with isopanel walls polyurethane, dimensions 2mx3mx2m with maximum capacity of storage of 2.000 kg each, control panel, a system of compressed natural gas supplying two carts each containing three cylinders with capacity of 71,4{sup 3} and a compression system connected to a chamber of same characteristics. Optimization studies in the storage of some fruits and vegetables were undertaken. A program was established which takes in account the food properties and characteristics of refrigeration systems to estimate the operational cost with the two systems. A techno-economic feasibility study was carried out on the two system of absorption and compression. This project was developed in the UFS, and is part of RedeGasEnergia, support for the financial aid was provided by PETROBRAS and FINEP/CTPETRO programs. (author)

  17. Preservation and storage of food using natural gas as an energy source; Preservacao e armazenamento de alimentos usando gas natural como fonte de energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gabriel F. da; Lira, Moema de Lima; Carnelossi, Marcelo A.G.; Sousa, Mabel R. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Dept. de Engenharia Quimica; Jesus, Marcos Fabio de [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Engenharia Quimica; Campos, Michel Fabianski; Martins, Ronaldo M.; Furini Filho, Roberto [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santos, Sara Macedo dos [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil)

    2004-07-01

    In this work a study on preservation and storage of agricultural products was undertaken in chambers cooled through an absorption system, which used natural gas in the power plant and the results were compared with the compression system using electric energy. For the study a refrigeration pilot unit was mounted which consisted of chiller through water/ammonia absorption with direct natural gas burning, having a maximum consumption of 2,7{sup 3}/ h and capacity of 5 TR's, three refrigerating chambers with isopanel walls polyurethane, dimensions 2mx3mx2m with maximum capacity of storage of 2.000 kg each, control panel, a system of compressed natural gas supplying two carts each containing three cylinders with capacity of 71,4{sup 3} and a compression system connected to a chamber of same characteristics. Optimization studies in the storage of some fruits and vegetables were undertaken. A program was established which takes in account the food properties and characteristics of refrigeration systems to estimate the operational cost with the two systems. A techno-economic feasibility study was carried out on the two system of absorption and compression. This project was developed in the UFS, and is part of RedeGasEnergia, support for the financial aid was provided by PETROBRAS and FINEP/CTPETRO programs. (author)

  18. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    Science.gov (United States)

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  19. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  20. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    International Nuclear Information System (INIS)

    Buuren, L.D. van; Szczerba, D.; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a high-density polarized hydrogen/deuterium gas target internal to a medium-energy electron storage ring is presented. Compared to our previous electron scattering experiments with tensor-polarized deuterium at NIKHEF (Zhou et al., Nucl. Instr. and Meth. A 378 (1996) 40; Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; Van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 687; Zhou et al., Phys. Rev. Lett. 82 (1999) 687) the target figure of merit, (polarization) 2 xluminosity, was improved by more than an order of magnitude. The target density was increased by upgrading the flux of nuclear-polarized atoms injected into the storage cell and by using a longer (60 cm) and colder (∼70 K) storage cell. A maximal target thickness of 1.2 (1.1)±0.1x10 14 nuclei/cm 2 was achieved with deuterium (hydrogen). With typical beam currents of 110 mA, this corresponds to a luminosity of about 8.4 (7.8)±0.8x10 31 e - nuclei cm -2 s -1 . By reducing the molecular background and using a stronger target guide field, a higher polarization was achieved. The target was used in combination with a 720 MeV polarized electron beam stored in the AmPS ring (NIKHEF) to measure spin observables in electron-proton and electron-deuteron scattering. Scattered electrons were detected in a large acceptance magnetic spectrometer. Ejected hadrons were detected in a single time-of-flight scintillator array. The product of beam and target vector polarization, P e P t , was determined from the known spin-correlation parameters of e'p quasi-elastic (or elastic) scattering. With the deuterium (hydrogen) target, values up to P e P t =0.49±0.03 (0.32±0.03) were obtained with an electron beam polarization of P e =0.62±0.04 (0.56±0.03) as measured with a Compton backscattering polarimeter (Passchier et al., Nucl. Instr. and Meth. A 414 (1998) 4988). From this, we deduce a cell-averaged target polarization of P t =0.78±0.07 (0.58±0

  1. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  2. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté , Jaap S Sinninghe; Stams, Alfons J M

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  3. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  4. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    Science.gov (United States)

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  5. [Development of a hydrogen and deuterium polarized gas target for application in storage rings]: Progress report

    International Nuclear Information System (INIS)

    Haeberli, W.

    1989-01-01

    This paper briefly discusses the following topics: the Wisconsin test facility for storage cells; results of target tests; the new UHV target test system; funding request for a new atomic beam system; and planning of storage ring experiments

  6. Numerical simulations of enhanced gas recovery at the Zalezcze gas field in Poland confirm high CO2 storage capacity and mechanical integrity

    International Nuclear Information System (INIS)

    Klimkowski, Lukasz; Nagy, Stanislaw; Papiernik, Bartosz; Orlic, Bogdan; Kempka, Thomas

    2015-01-01

    Natural gas from the Zalecze gas field located in the Fore-Sudetic Monocline of the Southern Permian Basin has been produced since November 1973, and continuous gas production led to a decrease in the initial reservoir pressure from 151 bar to about 22 bar until 2010. We investigated a prospective enhanced gas recovery operation at the Zalecze gas field by coupled numerical hydro-mechanical simulations to account for the CO 2 storage capacity, trapping efficiency and mechanical integrity of the reservoir, cap-rock and regional faults. Dynamic flow simulations carried out indicate a CO 2 storage capacity of 106.6 Mt with a trapping efficiency of about 43% (45.8 Mt CO 2 ) established after 500 years of simulation. Two independent strategies on the assessment of mechanical integrity were followed by two different modeling groups resulting in the implementation of field- to regional-scale hydro-mechanical simulation models. The simulation results based on application of different constitutive laws for the lithological units show deviations of 31% to 93% for the calculated maximum vertical displacements at the reservoir top. Nevertheless, results of both simulation strategies indicate that fault reactivation generating potential leakage pathways from the reservoir to shallower units is very unlikely due to the low fault slip tendency (close to zero) in the Zechstein cap-rocks. Consequently, our simulation results also emphasise that the supra- and sub-saliferous fault systems at the Zalecze gas field are independent and very likely not hydraulically connected. Based on our simulation results derived from two independent modeling strategies with similar simulation results on fault and cap-rock integrity, we conclude that the investigated enhanced gas recovery scheme is feasible, with a negligibly low risk of relevant fault reactivation or formation fluid leakage through the Zechstein cap-rocks. (authors)

  7. Modified technology in new constructions, and cost effective remedial action in existing structures, to prevent infiltration of soil gas carrying radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmied, H.; Clavensjoe, B.

    1984-01-01

    The general principles and mechanism of how soil gas infiltrates and carries radon from the foundation bed and subsoil into buildings are discussed. The Swedish Building Research Council has funded experiments and evaluation of cost effective remedial actions. The work has concerned existing dwellings with high concentration of radon, resulting from infiltrating soil gas and/or exhalation from building materials. A review and evaluation is given of experience and results acquired up to the summer of 1984. 100 dwellings have been constructed with consideration of possible infiltration of soil gas. In general minor modifications are sufficient to prevent infiltration. (Author)

  8. Operational performace of horizontal drillings in the deep aquiferous gas storage Kalle; Betriebsverhalten von Horizontalbohrungen im tiefen Aquifergasspeicher Kalle

    Energy Technology Data Exchange (ETDEWEB)

    Klafki, M.; Kammel, D. [DBI Gas- und Umwelttechnik GmbH, Freiberg (Germany); Below, P.J. [VEW Energie AG, Dortmund (Germany)

    1998-12-31

    The aquiferous structure Kalle, located in the Emsland, has contained compressed natural gas in the middle sandstone formation of the Volpriehausen-sandstone for 20 years. The storage stratum is between 2100 and 2200 m deep, 10-13 m thick and sufficiently porous and permeable. Gas storage operation and operational performance of the horizontal holes are described in this article. Filling and injection performance are also described. (orig./MSK) [Deutsch] Die im Emsland gelegene Aquiferstruktur Kalle fuehrt im Volpriehausen-Sandstein der geologischen Formation `Mittlerer Buntsandstein` nunmehr seit fast 20 Jahren eingepresstes Erdgas. Die Speicherschicht ist dort 2100 bis 2200 m tief, 10 bis 13 m maechtig und ausreichend poroes und permeabel. Im Folgenden werden der Gasspeicherbetrieb und das Betriebsverhalten der Horizontalbohrungen beschrieben. Das Ausspeisungsverhalten und das Injektionsverhalten werden ebenfalls erlaeutert. (orig./MSK)

  9. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    KAUST Repository

    Li, Yanqiang; Ben, Teng; Zhang, Bingyao; Fu, Yao; Qiu, Shilun

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  10. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    International Nuclear Information System (INIS)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping

  11. METHODOLOGY FOR ESTIMATION OF STATIONARY AND DYNAMIC PARAMETERS FOR LIQUEFIED PETROLEUM GAS (LPG RE-LIQUEFACTION IN SPHERICAL STORAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Alexander Mendoza-Acosta

    2017-07-01

    Full Text Available Temperature difference between the environment and the liquid contained in the liquefied petroleum gas storage spheres produces: net inward heat flow, increase in stored fuel temperature, LPG partial vaporization and consequently an increase in storage pressure. In order to maintain adequate safety conditions, since uncontrolled pressure increases could lead to risky situations and economic losses, re-liquefaction systems, consisting on auto refrigeration units, are installed; this system extracts the evaporated gas, compress it and then condense it again in a closed cooling cycle. Frequently these systems are designed using heuristic criteria, without considering the calculations necessary for correct equipment sizing; this results in costly modifications or in oversized equipment. In the present article, a simple but effective methodology for the calculation of thermal loads, daily temperature increase rate and pressure accumulation and restore times is presented, the methodology was compared with real data, through data acquisition and processing during the summer months of 2015 and 2016 for 12 storage spheres in a gas company located in a coastal state of Mexico, finding that the values predicted for the rate of daily temperature increase and recovery times are statistically consistent with the experimental data.

  12. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  13. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  14. Magnox waste storage complex

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This article looks at the design and construction of British Nuclear Fuel Limited's (BNFL) Magnox waste storage complex by Costain Engineering Limited. Magnox swarf from fuel decanning is stored underwater in specially designed silos. Gas processing capabilities from Costain Engineering Limited and the experience of BNFL combined in this project to provide the necessary problem-solving skills necessary for this waste storage upgrading and extension project. A retrofitted inerting facility was fitted to an existing building and a new storage extension was fitted, both without interrupting reprocessing operations at Sellafield. (UK)

  15. Long-term management of the existing radioactive wastes and residues at the Niagara Falls Storage Site. Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1984-08-01

    The statement assesses and compares several alternatives for long-term management of the existing radioactive wastes and residues at the Niagara Falls Storage Site (NFSS), Lewiston, New York. The alternatives include: (1) no action (continued interim storage at NFSS within a diked and capped containment area), (2) long-term management at NFSS (improved containment, with or without modified form of the residues), (3) long-term management at other DOE sites (Hanford, Washington, or Oak Ridge, Tennessee), and (4) offsite management of the residues at Hanford or Oak Ridge and either leaving the wastes at NFSS or removing them for disposal in the ocean. In addition to alternatives analyzed in depth, several options are also considered, including: other modifications of residue form, modification of the basic conceptual designs, other containment design options, transportation routes, and transportation modes. The radiological health effects (primarily increased risk of cancer) associated with long-term management of the wastes and residues are expected to be smaller than the nonradiological risks of occupational and transportation-related injuries and deaths. During the action period, the risk is highest for workers if all wastes and residues are moved to Hanford. The risk is highest for the general public if the residues are moved to Hanford and the wastes are moved to the ocean. Dispersal of the slightly contaminated wastes in the ocean is not expected to result in any significant impacts on the ocean environment or pose any significant radiological risk to humans. For all alternatives, if controls ceased, there would be eventual dispersion of the radioactive materials to the environment. If it is assumed that all controls cease, predicted time for loss of covers over the buried materials ranges from several hundred years to more than two million years, depending on the use of the land surface

  16. The potential role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the data underlying the figures presented in the manuscript "The potential role of natural gas power plants with carbon capture and storage...

  17. Gas Exchanges and Dehydration in Different Intensities of Conditioning in Tifton 85 Bermudagrass: Nutritional Value during Hay Storage

    Directory of Open Access Journals (Sweden)

    M. Pasqualotto

    2015-06-01

    Full Text Available The present study aimed at evaluating the intensity of Tifton 85 conditioning using a mower conditioner with free-swinging flail fingers and storage times on dehydration curve, fungi presence, nutritional value and in vitro digestibility of Tifton 85 bermudagrass hay dry matter (DM. The dehydration curve was determined in the whole plant for ten times until the baling. The zero time corresponded to the plant before cutting, which occurred at 11:00 and the other collections were carried out at 8:00, 10:00, 14:00, and 16:00. The experimental design was randomised blocks with two intensities of conditioning (high and low and ten sampling times, with five replications. The high and low intensities related to adjusting the deflector plate of the free iron fingers (8 and 18 cm. In order to determine gas exchanges during Tifton 85 bermudagrass dehydration, there were evaluations of mature leaves, which were placed in the upper middle third of each branch before the cutting, at every hour for 4 hours. A portable gas analyser was used by an infrared IRGA (6400xt. The analysed variables were photosynthesis (A, stomatal conductance (gs, internal CO2 concentration (Ci, transpiration (T, water use efficiency (WUE, and intrinsic water use efficiency (WUEi. In the second part of this study, the nutritional value of Tifton 85 hay was evaluated, so randomised blocks were designed in a split plot through time, with two treatments placed in the following plots: high and low intensity of cutting and five different time points as subplots: cutting (additional treatment, baling and after 30, 60, and 90 days of storage. Subsequently, fungi that were in green plants as well as hay were determined and samples were collected from the grass at the cutting period, during baling, and after 30, 60, and 90 days of storage. It was observed that Tifton 85 bermudagrass dehydration occurred within 49 hours, so this was considered the best time for drying hay. Gas exchanges were

  18. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation

    International Nuclear Information System (INIS)

    Greenblatt, Jeffery B.; Succar, Samir; Denkenberger, David C.; Williams, Robert H.; Socolow, Robert H.

    2007-01-01

    The economic viability of producing baseload wind energy was explored using a cost-optimization model to simulate two competing systems: wind energy supplemented by simple- and combined cycle natural gas turbines ('wind+gas'), and wind energy supplemented by compressed air energy storage ('wind+CAES'). Pure combined cycle natural gas turbines ('gas') were used as a proxy for conventional baseload generation. Long-distance electric transmission was integral to the analysis. Given the future uncertainty in both natural gas price and greenhouse gas (GHG) emissions price, we introduced an effective fuel price, p NGeff , being the sum of the real natural gas price and the GHG price. Under the assumption of p NGeff =$5/GJ (lower heating value), 650 W/m 2 wind resource, 750 km transmission line, and a fixed 90% capacity factor, wind+CAES was the most expensive system at cents 6.0/kWh, and did not break even with the next most expensive wind+gas system until p NGeff =$9.0/GJ. However, under real market conditions, the system with the least dispatch cost (short-run marginal cost) is dispatched first, attaining the highest capacity factor and diminishing the capacity factors of competitors, raising their total cost. We estimate that the wind+CAES system, with a greenhouse gas (GHG) emission rate that is one-fourth of that for natural gas combined cycle plants and about one-tenth of that for pulverized coal plants, has the lowest dispatch cost of the alternatives considered (lower even than for coal power plants) above a GHG emissions price of $35/tC equiv. , with good prospects for realizing a higher capacity factor and a lower total cost of energy than all the competing technologies over a wide range of effective fuel costs. This ability to compete in economic dispatch greatly boosts the market penetration potential of wind energy and suggests a substantial growth opportunity for natural gas in providing baseload power via wind+CAES, even at high natural gas prices

  19. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel

    KAUST Repository

    Ybyraiymkul, Doskhan

    2017-07-08

    One of the main challenges in the adsorbed natural gas (ANG) storage system is the thermal effect of adsorption, which significantly lowers storage capacity. These challenges can be solved by efficient thermal management system. In this paper, influence of thermal management on storage capacity of the ANG vessel was studied experimentally and numerically. 3D numerical model was considered in order to understand heat transfer phenomena and analyze influence of thermal control comprehensively. In addition, a detailed 2D axisymmetric unit cell model of adsorbent layer with heat exchanger was developed, followed by optimization of heat exchanging device design to minimize volume occupied by fins and tubes. Heat transfer, mass transfer and adsorption kinetics, which occur in ANG vessel during charging process, are accounted for in models. Nelder-Mead method is implemented to obtain the geometrical parameters, which lead to the optimal characteristics of heat exchange. A new optimized configuration of ANG vessel was developed with compact heat exchanger. Results show that storage capacity of the ANG vessel increased significantly due to lowering of heat exchanger volume for 3 times from 13.5% to 4.3% and effective temperature control.

  20. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage

    KAUST Repository

    Alezi, Dalal

    2015-09-28

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum based Metal-Organic Frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized, namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-properties relationship, we performed a molecular simulation study and evaluated the methane storage performance of Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes in a wide range of pressure and temperature conditions.

  1. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage

    KAUST Repository

    Alezi, Dalal; Belmabkhout, Youssef; Suetin, Mikhail; Bhatt, Prashant; Weselinski, Lukasz Jan; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Emwas, Abdul-Hamid M.; Eddaoudi, Mohamed

    2015-01-01

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum based Metal-Organic Frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized, namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-properties relationship, we performed a molecular simulation study and evaluated the methane storage performance of Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes in a wide range of pressure and temperature conditions.

  2. Energy storage and grid for electricity, gas, fuel and heat. A system-wide approach

    Energy Technology Data Exchange (ETDEWEB)

    Benesch, Wolfgang A. [STEAG Energy Services GmbH, Essen (Germany); Kakaras, Emmanouil [Mitsubishi Hitachi Power Systems Europe GmbH, Duisburg (Germany)

    2016-07-01

    Renewable energies are asked for more and more worldwide. Even though they cannot generate electricity 8760 h/a year. This can be accomplished by flexible conventional power stations as well as storage systems. Especially the storage systems have to be developed technical wise and especially economic wise. An example of an integrated approach is the methanol production with a coal fired power plant. An overview showing the technical features as well as the strategic opportunities of such kind of approach is given.

  3. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    International Nuclear Information System (INIS)

    Haeberli, W.

    1991-01-01

    The present report contains the progress report for the second year of the 3-year budget period, and proposes work for the third year. Progress has been made on the two major components of the project, the tests of storage cells for polarized atoms under various operating conditions, and the construction of a new atomic beam source which conforms to the high vacuum requirements of storage rings

  4. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  5. Does the European natural gas market pass the competitive benchmark of the theory of storage? Indirect tests for three major trading points

    International Nuclear Information System (INIS)

    Stronzik, Marcus; Rammerstorfer, Margarethe; Neumann, Anne

    2009-01-01

    This paper presents the first comparative analysis of the relationship between natural gas storage utilization and price patterns at three major European trading points. Using two indirect tests developed by that are applied in other commodity markets, we impose the no arbitrage condition to model the efficiency of the natural gas market. The results reveal that while operators of European storage facilities realize seasonal arbitrage profits, substantial arbitrage potentials remain. We suggest that the indirect approach is well suited to provide market insights for periods with limited data. We find that overall market performance differs substantially from the competitive benchmark of the theory of storage. (author)

  6. Modified technology in new constructions, and cost effective remedial action in existing structures, to prevent infiltration of soil gas carrying radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmid, H.; Clavensjo, B.

    1984-01-01

    The general principles and mechanisms of how soil gas carrying radon infiltrates from the foundation bed and subsoil into buildings are discussed. The Swedish Building Research Council has funded experiments and evaluations of cost effective remedial actions. The work has concerned existing dwellings with high concentration of radon where this is a result of infiltrating soil gas and/or exhalation from building materials. A review is given of experience and results acquired up to the summer of 1983. 100 dwellings have been erected with consideration of possible infiltration of soil gas. Modification of design, added costs (investment and operation) and resulting concentration of radon in indoor air is discussed. In general minor modifications are sufficient. (author)

  7. Feasibility study on reduction of greenhouse gas emissions at Thanlyin oil refinery by the modernization of existing facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The feasibility study was conducted on a project in Myanmar for the energy saving effect and reduction of the greenhouse gas emissions by introducing modern refining facilities in Thanlyin Refinery of Myanmar Petrochemical Enterprise. The project items selected as a result of the study are improvement in the heat recovery efficiency of crude distillation unit, improvement in the furnace efficiency of crude distillation unit and coker plant, improvement in the efficiency of power plant, reduction of steam loss, modernization of the cooling water system, recovery and reuse of off-gas and LPG in crude distillation unit, and modernization of intermediate products run-down system. The conceptual designs and studies on these items indicate that implementation of these projects could lead to energy saving of 25,844 tons/y as crude and CO2 emission abatement of 57,457 tons/y, 46% and 33% reduction from the baseline. The total expenses for all of these items are estimated at 4,300 million yen. These are judged to be promising projects, with estimated investment recovery period of 9 years and internal profit rate of 12.9%, when the special yen loans are available. (NEDO)

  8. International Energy Agency (IEA) Greenhouse Gas (GHG) Weyburn-Midale CO₂ Monitoring and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    Sacuta, Norm [Petroleum Technology Research Centre Incorporated, Saskatchewan (Canada); Young, Aleana [Petroleum Technology Research Centre Incorporated, Saskatchewan (Canada); Worth, Kyle [Petroleum Technology Research Centre Incorporated, Saskatchewan (Canada)

    2015-12-22

    The IEAGHG Weyburn-Midale CO₂ Monitoring and Storage Project (WMP) began in 2000 with the first four years of research that confirmed the suitability of the containment complex of the Weyburn oil field in southeastern Saskatchewan as a storage location for CO₂ injected as part of enhanced oil recovery (EOR) operations. The first half of this report covers research conducted from 2010 to 2012, under the funding of the United States Department of Energy (contract DEFE0002697), the Government of Canada, and various other governmental and industry sponsors. The work includes more in-depth analysis of various components of a measurement, monitoring and verification (MMV) program through investigation of data on site characterization and geological integrity, wellbore integrity, storage monitoring (geophysical and geochemical), and performance/risk assessment. These results then led to the development of a Best Practices Manual (BPM) providing oilfield and project operators with guidance on CO₂ storage and CO₂-EOR. In 2013, the USDOE and Government of Saskatchewan exercised an optional phase of the same project to further develop and deploy applied research tools, technologies, and methodologies to the data and research at Weyburn with the aim of assisting regulators and operators in transitioning CO₂-EOR operations into permanent storage. This work, detailed in the second half of this report, involves seven targeted research projects – evaluating the minimum dataset for confirming secure storage; additional overburden monitoring; passive seismic monitoring; history-matched modelling; developing proper wellbore design; casing corrosion evaluation; and assessment of post CO₂-injected core samples. The results from the final and optional phases of the Weyburn-Midale Project confirm the suitability of CO₂-EOR fields for the injection of CO₂, and further, highlight the necessary MMV and follow-up monitoring required for these operations to be considered

  9. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Annual report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Haeberli, W.

    1986-01-01

    Insertion of an internal polarized gas target into storage rings for protons, antiprotons or electrons would permit interesting new experiments, particularly if the circulating beam is polarized as well. The purpose of the present project is the development of a polarized gas target, based on injection of polarized hydrogen or deuterium atoms into a storage cell in order to build up the required target thickness. A method has been developed and tested, which permits measurement of the target polarization under realistic conditions (i.e., in the presence of an intense ion beam) without the need for a large accelerator. First measurements with an oxidized aluminum cell have been made. It is proposed to study wall depolarization in storage cells and to search for suitable wall conditions (wall material, coating, temperature, vacuum conditions) to permit eventual construction of a polarized gas target for a storage ring

  10. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... deals with the development of a simulation tool to design and compare different vehicular storage options with respect to targets based upon storage and fueling efficiencies. The set targets represent performance improvements with regard to the state-of-the-art technology and are separately defined...... volume. Heat transfer augmentation techniques (e.g. encapsulation) are found to be the reward strategy to achieve the same stored mass and fueling time of the standard technology, while enabling ambient temperature fueling and save the energy cooling demand (4.2 MJ per fueling) at the refueling station....

  11. Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure

    DEFF Research Database (Denmark)

    Møller, Henrik Bjarne; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined...... in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20degreesC for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes...... contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre...

  12. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  13. Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves

    Directory of Open Access Journals (Sweden)

    Michael T. Kezirian

    2017-06-01

    Full Text Available Century Fathom presents an innovative process to utilize clathrate hydrates for the production, storage and transportation of natural gas from off-shore energy reserves in deep ocean environments. The production scheme was developed by considering the preferred state of natural gas in the deep ocean and addressing the hazards associated with conventional techniques to transport natural gas. It also is designed to mitigate the significant shipping cost inherent with all methods. The resulting proposed scheme restrains transport in the hydrate form to the ocean and does not attempt to supply energy to the residential consumer. Instead; the target recipients are industrial operations. The resulting operational concept is intrinsically safer by design; environmentally sustainable and significantly cost-effective compared with currently proposed schemes for the use of natural gas hydrates and has the potential to be the optimal solution for new production of reserves; depending on the distance to shore and capacity of the petroleum reserve. A potential additional benefit is the byproduct of desalinated water.

  14. Design, Development and Testing of Inconel Alloy IN718 Spherical Gas Bottle for Oxygen Storage

    Science.gov (United States)

    Chenna Krishna, S.; Agilan, M.; Sudarshan Rao, G.; Singh, Satish Kumar; Narayana Murty, S. V. S.; Venkata Narayana, Ganji; Beena, A. P.; Rajesh, L.; Jha, Abhay K.; Pant, Bhanu

    2017-11-01

    This paper describes the details of design, manufacture and testing of 200 mm diameter spherical gas bottle of Inconel 718 (IN718) with nominal wall thickness of 2.3 mm. Gas bottle was designed for the specified internal pressure loading with a thickness of 2.9 mm at the circumferential weld which was brought down to 2.3 mm at the membrane locations. Hemispherical forgings produced through closed-die hammer forging were machined and electron beam welded to produce a spherical gas bottle. Duly welded gas bottle was subjected to standard aging treatment to achieve the required tensile strength. Aged gas bottle was inspected for dimensions and other stringent quality requirements using various nondestructive testing techniques. After inspection, gas bottle was subjected to pressure test for maximum expected operating pressure and proof pressure of 25 and 37.5 MPa, respectively. Strain gauges were bonded at different locations on the gas bottle to monitor the strains during the pressure test and correlated with the predicted values. The predicted strain matched well with the experimental strain confirming the design and structural integrity.

  15. Evaporation of liquefied natural gas in conditions of compact storage containers heating

    Science.gov (United States)

    Telgozhayeva, D. S.

    2014-08-01

    Identical by its power, but located in different parts of the external surface of the tank, the heating sources are different intensity heat transfer modes is heating up, respectively, times of vapour pressure rise to critical values. Developed mathematical model and method of calculation can be used in the analysis of conditions of storage tanks for liquefied gases.

  16. Improved thermal stability of gas-phase Mg nanoparticles for hydrogen storage

    NARCIS (Netherlands)

    Krishnan, Gopi; Palasantzas, G.; Kooi, B. J.

    2010-01-01

    This work focuses on improving the thermal stability of Mg nanoparticles (NPs) for use in hydrogen storage. Three ways are investigated that can achieve this goal. (i) Addition of Cu prevents void formation during NP production and reduces the fast evaporation/voiding of Mg during annealing. (ii)

  17. Well selection in depleted oil and gas fields for a safe CO2 storage practice: A case study from Malaysia

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2017-03-01

    Full Text Available Carbon capture and sequestration technology is recognized as a successful approach taken to mitigate the amount of greenhouse gases released into the atmosphere. However, having a successful storage practice requires wise selection of suitable wells in depleted oil or gas fields to reduce the risk of leakage and contamination of subsurface resources. The aim of this paper is to present a guideline which can be followed to provide a better understanding of sophisticated wells chosen for injection and storage practices. Reviewing recent studies carried out on different aspects of geosequestration indicated that the fracture pressure of seals and borehole conditions such as cement-sheath integrity, distance from faults and fractures together with the depth of wells are important parameters, which should be part of the analysis for well selection in depleted reservoirs. A workflow was then designed covering these aspects and it was applied to a depleted gas field in Malaysia. The results obtained indicated that Well B in the field may have the potential of being a suitable conduit for injection. Although more studies are required to consider other aspects of well selections, it is recommended to employ the formation integrity analysis as part of the caprock assessment before making any decisions.

  18. Modelling of seismic reflection data for underground gas storage in the Pečarovci and Dankovci structures - Mura Depression

    Directory of Open Access Journals (Sweden)

    Andrej Gosar

    1995-12-01

    Full Text Available Two antiform structures in the Mura Depression were selected as the most promising in Slovenia for the construction of an underground gas storage facility in an aquifer. Seventeen reflection lines with a total length of 157km were recorded, and three boreholes were drilled. Structural models corresponding to two different horizons (the pre-Tertiary basement and the Badenian-Sarmatianboundary were constructed using the Sierra Mimic program. Evaluation of different velocity data (velocity analysis, sonic log, the down-hole method, and laboratory measurements on cores was carried out in order to perform correct timeto-depth conversion and to estabUsh lateral velocity variations. The porous rock in Pečarovci structure is 70m thick layer of dolomite, occurring at a depth of 1900m, whereas layers of marl, several hundred meter thick, represent the impermeable cap-rock. Due to faults, the Dankovci structure, at a depth of 1200m,where the reservoir rocks consist of thin layers of conglomerate and sandstone,was proved to be less reliable. ID synthetic seismograms were used to correlatethe geological and seismic data at the borehole locations, especially at intervals with thin layers. The raytracing method on 2D models (the Sierra Quik packagewas applied to confirm lateral continuity of some horizons and to improve the interpretation of faults which are the critical factor for gas storage.

  19. Influence of different storage times and temperatures on blood gas and acid-base balance in ovine venous blood.

    Science.gov (United States)

    Hussein, H A; Aamer, A A

    2013-01-01

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted to +4 ºC (Group I, n = 10), at RT of about 22-25 ºC (Group II, n = 10) and in an incubator adjusted to 37 ºC (Group III, n = 10) for up to 48 h. Blood samples were analysed for blood gas and acid-base indices at 0, 1, 2, 3, 4, 5, 6, 12, 24 and 48 h of storage. In comparison to the baseline value (0), there were significant decreases of blood pH of samples stored at RT and in the incubator after 1 h (ppO2 values were significantly higher for Group I after 2 h and for Groups II and III after 1 h (preference range and it may be of clinical diagnostic use for up to 6 h.

  20. Natural convection along a heated vertical plate immersed in a nonlinearly stratified medium: application to liquefied gas storage

    Science.gov (United States)

    Forestier, M.; Haldenwang, P.

    We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.

  1. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  2. 77 FR 2715 - D'Lo Gas Storage, LLC; Notice of Application

    Science.gov (United States)

    2012-01-19

    ... construct five sites for pipeline interconnections and metering with interstate and intrastate gas pipeline...: [email protected]net . Pursuant to section 157.9 of the Commission's rules, 18 CFR 157.9, within 90 days of...

  3. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  4. Consequent implementation of a LKS concept using the natural gas storage cavern as an example; Konsequente Umsetzung eines LKS-Konzeptes am Beispiel des Erdgaskavernenspeichers Jemgum

    Energy Technology Data Exchange (ETDEWEB)

    Steller, Daniel; Buhr, Klaus-Dieter; Kruemmel, Dirk [Steffel KKS GmbH, Lachendorf (Germany); Engelke, Hermann [EWE Netz GmbH, Oldenburg (Germany)

    2013-07-01

    In Jengum (Federal Republic of Germany) EWE Gasspeicher GmbH (Oldenburg, Federal Republic of Germany) and astora GmbH and Co. KG (Kassel, Federal Republic of Germany) constructed commonly the second largest natural gas storage facility in Germany. With a planned storage capacity of 2.2 billion cubic meters of natural gas, this natural gas storage facility project provides a significant contribution to the energy supply in Germany. Technical measures such as cathodic corrosion protection play an important part in the construction of the natural gas storage facilities: All underground components of this storage facility have to be protected effectively against corrosion from security aspects and value-preserving aspects. For this, challenges such as topography, geology and structural features have to be considered. Furthermore, different operational requirements of each installation (sol technology and gas operation) are to be considered previously. This was achieved by means of a consistent implementation of the system-specific LKS protection plan and by means of a continuous supervision.

  5. Development of an Alternative Corrosion Inhibitor for the Storage of Advanced Gas-Cooled Reactor Fuel

    International Nuclear Information System (INIS)

    Standring, P.N.; Hands, B.J.; Morgan, S.; Brooks, A.

    2015-01-01

    Sellafield Lt. currently stores AGR fuel in sodium hyrodxide dosed pool water to pH 11.5 to prevent susceptible AGR fuel from failing due to inter-granular attack. The exception to the above storage practice is Thorp Receipt and Storage (TR&S) where an AGR reprocessing buffer is stored in demineralised water as the expected storage durations were short term (up to 5 years). With the extended shut-down of Thorp, storage durations have increased and this has prompted a re-evaluation of the AGR storage regime in TR&S. The use of sodium hydroxide is not feasible due to a compatibility issue with aluminum components used in LWR storage furniture. The implementation process adopted by Sellafield Ltd in developing an alternative corrosion inhibitor for spent AGR fuel is outlined. The two stranded approach evaluates the impact of candidate corrosion inhibitors on fuel integrity and on plant and processes. The development studies in support of the fuel integrity strand are reported. Candidate inhibitors were first evaluated inactively in terms of their ability to arrest propagating corrosion, radiation stability, compatibility with aluminium and environmental impact. Sodium Nitrate was concluded to be the most promising inhibitor. Sodium nitrate was subsequently tested with active AGR brace material. These studies involved the use of bespoke test equipment and techniques. The studies demonstrated that propagating corrosion could be arrested using 10 ppm nitrate and showed that the resultant nitrate film required relatively high chloride concentrations to break it down over the study duration of 60 days. The development studies to date have provided the confidence that sodium nitrate has the potential to be an effective inhibitor for AGR fuel. The final phase of the fuel integrity strand involves a Lead Container Study using whole AGR pins. A staged approach is being adopted in the study programme where proceeding to a more onerous study is not progressed until positive

  6. Life Cycle Assessment Modelling of Greenhouse Gas Emissions from Existing and Proposed Municipal Solid Waste Management System of Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    Adila Batool Syeda

    2017-12-01

    Full Text Available Open Dumping of indiscriminate municipal solid waste (MSW remarkably contributes to global warming (GW. Life Cycle Assessment modelling may be a useful tool for assessing the best waste management option regarding GW potential. The current study evaluates the contribution of an existing MSW management (MSWM system to greenhouse gases in Gulberg Town, Lahore, Pakistan. This research also presents a comparison of scenarios with different waste management options. Life Cycle Assessment methodology has been used to conduct the study. EASETECH has been used for modelling. The short-term scenarios (STSs have been developed to promote the thinking of integration of treatment technologies in the current waste management system within a few months. The results show that the major contribution to the total emissions comes from the anaerobic digestion of organic material from open waste dumps. Currently, recycling is the best treatment option for reducing the CO2-eq values in the study area. It was clarified that recycling is the best option for reducing the CO2-eq values, whereas biogasification comes in second in terms of savings and reduction. The integration of recycling and biogasification techniques would be a good solution.

  7. Effects of CO{sub 2} gas as leaks from geological storage sites on agro-ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Ravi H.; Colls, Jeremy J. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, NG7 2RD, Nottingham (United Kingdom); Steven, Michael D. [School of Geography, University of Nottingham, NG7 2RD, Nottingham (United Kingdom)

    2010-12-15

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO{sub 2} leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response detection field facility developed at the University of Nottingham was used to inject CO{sub 2} gas at a controlled flow rate (1 l min{sup -1}) into soil to simulate build-up of soil CO{sub 2} concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO{sub 2} concentrations was significantly higher in gassed pasture plots than in gassed fallow plots. Germination of winter bean sown in gassed fallow plots was severely hindered and the final crop stand was reduced to half. Pasture grass showed stress symptoms and above-ground biomass was significantly reduced compared to control plot. A negative correlation (r = -0.95) between soil CO{sub 2} and O{sub 2} concentrations indicated that injected CO{sub 2} displaced O{sub 2} from soil. Gassing CO{sub 2} reduced soil pH both in grass and fallow plots (p = 0.012). The number of earthworm castings was twice as much in gassed plots than in control plots. This study showed adverse effects of CO{sub 2} gas on agro-ecosystem in case of leakage from storage sites to surface. (author)

  8. Annual survey 2013 - Natural gas in the World 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The 2013 Edition of 'Natural Gas in the World' by CEDIGAZ is built on CEDIGAZ's unique natural gas statistical database. This 170-page study, published since 1983, provides an in-depth analysis of the latest developments in the gas markets along with the most complete set of statistical data on the whole gas chain covering close to 130 countries. Topics covered by Natural Gas in the World 2013 include: proved natural gas reserves; unconventional gas status in the world; gross and marketed natural gas production; the international gas trade; existing and planned underground gas storage facilities in the world; natural gas consumption; natural gas prices

  9. Southern company energy storage study :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  10. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  11. Evaluation of cover gas impurities and their effects on the dry storage of LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Knoll, R.W.; Gilbert, E.R.

    1987-11-01

    The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO 2 fuel to produce U 3 O 8 at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is ≥300 0 C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs

  12. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.

    Science.gov (United States)

    Luo, Shuangjiang; Zhang, Qinnan; Zhang, Yizhou; Weaver, Kevin P; Phillip, William A; Guo, Ruilan

    2018-05-02

    Rigid H-shaped pentiptycene units, with an intrinsic hierarchical structure, were employed to fabricate a highly microporous organic polymer sorbent via Friedel-Crafts reaction/polymerization. The obtained microporous polymer exhibits good thermal stability, a high Brunauer-Emmett-Teller surface area of 1604 m 2 g -1 , outstanding CO 2 , H 2 , and CH 4 storage capacities, as well as good adsorption selectivities for the separation of CO 2 /N 2 and CO 2 /CH 4 gas pairs. The CO 2 uptake values reached as high as 5.00 mmol g -1 (1.0 bar and 273 K), which, along with high adsorption selectivity values (e.g., 47.1 for CO 2 /N 2 ), make the pentiptycene-based microporous organic polymer (PMOP) a promising sorbent material for carbon capture from flue gas and natural gas purification. Moreover, the PMOP material displayed superior absorption capacities for organic solvents and dyes. For example, the maximum adsorption capacities for methylene blue and Congo red were 394 and 932 mg g -1 , respectively, promoting the potential of the PMOP as an excellent sorbent for environmental remediation and water treatment.

  13. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...... change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C....

  14. Design and safety evaluation of radioactive gas handling and storage in the FFTF

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Hale, J.P.; Halverson, T.G.

    1976-01-01

    During the operation of the Fast Flux Test Facility (FFTF), radioactive gases, primarily xenon and krypton, will be produced which will require processing and storing. Two systems have been installed in the FFTF for handling these gases: (1) one to handle, primarily, the reactor cover gas system, and (2) a second to handle the cells and cover gas systems, other than the reactor, whose atmosphere may become contaminated. The system that processes the reactor cover gas, which is argon, is called the Radioactive Argon Processing System (RAPS). The effluent argon from RAPS will normally be sufficiently decontaminated to allow its reuse as the reactor cover gas. If the radioactive level in the RAPS becomes too high, the exhaust stream will be diverted to the Cell Atmosphere Processing System (CAPS), a system which can function as a backup to RAPS. The design and operation of the RAPS and CAPS systems are described and certain safety aspects of the systems are discussed. It is shown that these systems adequately provide the cleanup services required and that they provide the safety margins necessary to assure adequate safety to the public

  15. 76 FR 41235 - Tres Palacios Gas Storage LLC; Notice of Application

    Science.gov (United States)

    2011-07-13

    ... electric- driven centrifugal compressor for five not-yet-installed certificated 4,800hp gas-fired compressors and to construct associated appurtenances and facilities necessary for the safe operation of the new compressor (Compressor Substitution Project). The proposed project will be constructed within the...

  16. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    . Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/τ) (1) where the decay time τ and, correspondingly, the store time ranges from a few turns to 10 days (ISR). τ can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. (3) is the first proposal for a collider storage ring. A number of storage rings

  17. Survey report for fiscal 1998 on the conversion of the existing coal burning power plant to natural gas burning plant in Sakhalin State; 1998 nendo Saharinshu muke, kisetsu sekitandaki hatsuden no tennen gas daki tenkan chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The present survey is intended to discuss a modernization plan effective in reducing greenhouse effect gases for the two existing coal burning power plants in Sakhalin Island, Sakhalin State, the Federal Republic of Russia. The power plants are Sakhalinskaya Power Plant (GRES) and Yuzhno Sakalinskaya Power Plant (TETs-1). Simultaneously with converting the fuel from coal to natural gas, discussions are given on an optimal plan including introduction of the combined cycle and repowering technologies aiming at improving the thermal efficiency. Reduction in greenhouse effect gases, finance, and economy are evaluated. At the same time, verification will be given on environment improvement in Sakhalin Island, and influence on sustainable economic and social activation. The GRES modernization plan intends to build four combined cycle units each of 80 MW class to have nearly the same total capacity as the current total power generation facility capacity (315 MW). The TETs-1 modernization plan will convert the fuel for the existing boilers from coal to natural gas, modify one of the boilers whose construction is being suspended into gas burning boiler, and add gas turbines. (NEDO)

  18. Development Of A Hydrogen And Deuterium Polarized Gas Target For Application In Storage Rings

    International Nuclear Information System (INIS)

    Haeberli, Willy

    2009-01-01

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  19. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available in the near term. Sensible heat storage in packed beds involves a random packing of ceramic pebbles/particles in an insulated container. The temperature change of the solid during charging/discharging is used to store/release thermal energy. The primary... the packed bed due to vaporization and condensation effects. 2.3. Macro-encapsulation of PCM In the macro-encapsulation approach the PCM is retained within a hollow shell material. The shell can be preformed, filled with a molten PCM and sealed; or it can...

  20. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    Science.gov (United States)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  1. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2016-01-01

    Full Text Available Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG. The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables “vorticity – the stream function”. Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  2. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    Science.gov (United States)

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan R.; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  3. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  4. Safety implications associated with in-plant pressurized gas storage and distribution systems in nuclear power plants

    International Nuclear Information System (INIS)

    Guymon, R.H.; Casto, W.R.; Compere, E.L.

    1985-05-01

    Storage and handling of compressed gases at nuclear power plants were studied to identify any potential safety hazards. Gases investigated were air, acetylene, carbon dioxide, chlorine, Halon, hydrogen, nitrogen, oxygen, propane, and sulfur hexaflouride. Physical properties of the gases were reviewed as were applicable industrial codes and standards. Incidents involving pressurized gases in general industry and in the nuclear industry were studied. In this report general hazards such as missiles from ruptures, rocketing of cylinders, pipe whipping, asphyxiation, and toxicity are discussed. Even though some serious injuries and deaths over the years have occurred in industries handling and using pressurized gases, the industrial codes, standards, practices, and procedures are very comprehensive. The most important safety consideration in handling gases is the serious enforcement of these well-known and established methods. Recommendations are made concerning compressed gas cylinder missiles, hydrogen line ruptures or leaks, and identification of lines and equipment

  5. Understanding non-energy use and carbon storage in Italy in the context of the greenhouse gas issue

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M K [Fraunhofer-Institute for Systems and Innovation Research, Karlsruhe (Germany); Tosato, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia

    1997-10-01

    Fossil carbon dioxide emission (CO{sub 2}) are main reason for greenhouse effect and for climate changes. So far most attention has been paid to CO{sub 2} emissions from the combustion of fossil fuels. The IPCC guidelines to the calculation of national greenhouse gas emissions suggests to account for CO{sub 2} emissions from plastics and other materials produced from non energy use as emissions from wastes. In view of the refinement of IPCC guidelines, in this paper they will focus on non-energy use as a source of fossil CO{sub 2}. The first part deals with the Italian statistics on non-energy use and compares the accounting method with the practice of Germany and the Nederland. Secondly, they will try to reproduce these statistical data by developing a bottom-up model. And finally they will apply the IPCC approach for quantifying carbon storage in materials. and suggest ways to increase its accuracy.

  6. Understanding non-energy use and carbon storage in Italy in the context of the greenhouse gas issue

    International Nuclear Information System (INIS)

    Patel, M. K.; Tosato, G.

    1997-10-01

    Fossil carbon dioxide emission (CO 2 ) are main reason for greenhouse effect and for climate changes. So far most attention has been paid to CO 2 emissions from the combustion of fossil fuels. The IPCC guidelines to the calculation of national greenhouse gas emissions suggests to account for CO 2 emissions from plastics and other materials produced from non energy use as emissions from wastes. In view of the refinement of IPCC guidelines, in this paper they will focus on non-energy use as a source of fossil CO 2 . The first part deals with the Italian statistics on non-energy use and compares the accounting method with the practice of Germany and the Nederland. Secondly, they will try to reproduce these statistical data by developing a bottom-up model. And finally they will apply the IPCC approach for quantifying carbon storage in materials. and suggest ways to increase its accuracy

  7. Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen

    International Nuclear Information System (INIS)

    Anderson, Dennis; Leach, Matthew

    2004-01-01

    If intermittent renewable energy technologies such as those based on solar, wind, wave and tidal resources are eventually to supply significant shares of total energy supplies, it is crucial that the energy storage problem is solved. There are several (long-recognised) possibilities ahead including compressed air, pumped storage, further developments in batteries, regenerable fuel cells, 'super-capacitors' and so forth. But one that is being revisited extensively by industry and research establishments is the production and storage of hydrogen from electricity at off-peak times, and in times when there would be a surplus of renewable energy, for reuse in the electricity, gas and transport markets; short-term and even seasonal and longer-term storage is technically feasible with this option. This paper looks at the costs of the option both in the near-term and the long-term relative to the current costs of electricity and natural gas supplies. While the costs of hydrogen would necessarily be greater than those of natural gas (though not disruptively so), when used in conjunction with emerging technologies for decentralised generation and combined heat and power there is scope for appreciable economies in electricity supply. A lot will depend on innovation at the systems level, and on how we operate our electricity and gas grids and regulate our electricity and gas industries. We have also suggested that we now need to experiment more, at the commercial level, and in the laboratories, with the hydrogen option

  8. Geological rock property and production problems of the underground gas storage reservoir of Ketzin

    Energy Technology Data Exchange (ETDEWEB)

    Lange, W

    1966-01-01

    The purpose of the program of operation for an industrial injection of gas is briefly reviewed. It is emphasized that the works constitute the final stage of exploration. The decisive economic and extractive aspects are given. Final remarks deal with the methods of floor consolidation and tightness control. In the interest of the perspective exploration of the reservoir it is concluded and must be realized as an operating principle that the main problem, after determining the probable reservoir structure, consists in determining step-by-step (by combined theoretical, technical and economic parameters) the surface equipment needed from the geological and rock property factors, which were determined by suitable methods (hydro-exploration, gas injection). The technique and time-table of the geological exploration, and the design and construction of the installations will depend on the solution of the main problem. At the beginning, partial capacities will be sufficient for the surface installation. (12 refs.)

  9. Influence of different storage times and temperatures on blood gas and acid-base balance in ovine venous blood

    Directory of Open Access Journals (Sweden)

    H.A. Hussein

    2013-01-01

    Full Text Available The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted to +4 ºC (Group I, n = 10, at RT of about 22-25 ºC (Group II, n = 10 and in an incubator adjusted to 37 ºC (Group III, n = 10 for up to 48 h. Blood samples were analysed for blood gas and acid-base indices at 0, 1, 2, 3, 4, 5, 6, 12, 24 and 48 h of storage. In comparison to the baseline value (0, there were significant decreases of blood pH of samples stored at RT and in the incubator after 1 h (p<0.05, the pH value of refrigerated blood samples exhibited insignificant changes during the study (p<0.05. Mean values of pCO2 showed a significant increase in Group I and Group III after 1 h then a progressive decrease after 12 h in all Groups. Mean pO2 values were significantly higher for Group I after 2 h and for Groups II and III after 1 h (p<0.05. In general, base excess decreased significantly for all the groups during the study especially in Groups II and III. In comparison with baseline values, in all groups, bicarbonate (HCO3 increased between 1 h and 6 h (p<0.05, and later decreased at the end of the study (p<0.05. In conclusion, status of acid-base indices of the samples stored at refrigerator and RT were found within normal reference range and it may be of clinical diagnostic use for up to 6 h.

  10. Storage of Nitrous Oxide (NOx in Diesel Engine Exhaust Gas using Alumina-Based Catalysts: Preparation, Characterization, and Testing

    Directory of Open Access Journals (Sweden)

    A. Alsobaai

    2017-03-01

    Full Text Available This work investigated the nitrous oxide (NOx storage process using alumina-based catalysts (K2 O/Al2 O3 , CaO/Al2 O3,  and BaO/Al2 O3 . The feed was a synthetic exhaust gas containing 1,000 ppm of nitrogen monoxide (NO, 1,000 ppm i-C4 H10 , and an 8% O2  and N2  balance. The catalyst was carried out at temperatures between 250–450°C and a contact time of 20 minutes. It was found that NOx was effectively adsorbed in the presence of oxygen. The NOx storage capacity of K2 O/Al2 O3 was higher than that of BaO/Al2 O3.  The NOx storage capacity for K2 O/Al2 O3  decreased with increasing temperature and achieved a maximum at 250°C. Potassium loading higher than 15% in the catalyst negatively affected the morphological properties. The combination of Ba and K loading in the catalyst led to an improvement in the catalytic activity compared to its single metal catalysts. As a conclusion, mixed metal oxide was a potential catalyst for de-NOx process in meeting the stringent diesel engine exhaust emissions regulations. The catalysts were characterized by a number of techniques and measurements, such as X-ray diffraction (XRD, electron affinity (EA, a scanning electron microscope (SEM, Brunner-Emmett-Teller (BET to measure surface area, and pore volume and pore size distribution assessments.

  11. Almacenamiento de gas natural

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2008-12-01

    Full Text Available The largest reserves of natural gas worldwide are found in regions far of main cities, being necessary different alternatives to transport the fluid to the consumption cities, such as pipelines, CNG or ships, LNG, depending on distances between producing regions and demanding regions and the producing volumes. Consumption regions have three different markets to naturalgas; residential and commercial, industrial and power generation sector. The residential and commercial is highly seasonal and power generation sector is quite variable depending on increases of temperature during summer time. There are also external issuesthat affect the normal gas flow such as fails on the national system or unexpected interruptions on it, what imply that companies which distribute natural gas should design plans that allow supplying the requirements above mentioned. One plan is using underground natural gas storage with capacities and deliverability rates enough to supply demands. In Colombia there are no laws in this sense but it could be an exploration to discuss different ways to store gas either way as underground natural gas storage or above superficies. Existing basically three different types of underground natural gas storage; depleted reservoirs, salt caverns and aquifers. All ofthem are adequate according to geological characteristics and the needs of the distributors companies of natural gas. This paper is anexploration of technical and economical characteristics of different kind of storages used to store natural gas worldwide.

  12. Power to gas. Investigation of energy storage options in the frame of the DVGW-innovation initiative; Power to Gas. Untersuchungen im Rahmen der DVGW-Innovationsoffensive zur Energiespeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Syring, Gert; Henel, Marco [DBI-GUT, Freiberg (Germany); Rasmusson, Hans [Deutsche Vereinigung des Gas- und Wasserfaches e.V. (DVGW), Bonn (Germany); Mlaker, Herwig [E.on Ruhrgas AG, Koeln (Germany); Koeppel, Wolfgang [European Bioinformatics Institute (EBI) (United Kingdom); Hoecher, Thomas [Verbundnetz Gas AG (VNG), Leipzig (Germany); Sterner, Michael; Trost, Tobias [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany)

    2011-07-01

    The existing natural gas grid is an efficient, safe, environmental friendly and accepted energy infrastructure. This infrastructure is able to convey hydrogen and renewable methane beyond its initial purpose to transport natural gas. Using this existing infrastructure to accommodate renewable gases will support the further development of renewable energies and their integration in the energy systems. Thus the natural gas grid can be a partner of renewable energies. (orig.)

  13. Safety implications associated with in-plant pressurized gas storage and distribution systems

    International Nuclear Information System (INIS)

    Guymon, R.H.

    1986-01-01

    Storage and handling of compressed gases at nuclear power plants were studied to identify any potential safety hazards. Gases investigated were air, acetylene, carbon dioxide, chlorine, Halon, hydrogen, nitrogen, oxygen, propane, and sulfur hexafluoride. Physical properties of gases were reviewed, as were applicable industrial codes and standards. Incidents involving pressurized gases in general industry and in the nuclear industry were studied. In this report general hazards, such as missiles from ruptures, rocketing of cylinders, fires, explosions, asphyxiation, and toxicity, are discussed. Even though some serious injuries and deaths have occurred over the years in industries handling and using pressurized gases, the industrial codes, standards, practices, and procedures are very comprehensive. The most important step one can take to ensure the safe handling of gases is to enforce these well-known and established methods

  14. Computational analysis of gas-solid interactions in materials for energy storage and conversion

    DEFF Research Database (Denmark)

    Lysgaard, Steen

    . The focus is specifically on the investigation of catalytic materials for electrochemical CO2 fixation into fuels as well as ammonia storage materials, using computational methods relying on density functional theory (DFT) and effective medium theory (EMT) calculations as well as a genetic algorithm....... Nanoparticles of binary alloys have previously been shown to be catalytically active for electrochemical CO2 fixation. The stability of the nanoparticles is critical for a catalytic system. We have developed a method to determine the structure and composition of nanoparticles under reactive conditions...... found in certain experiments. We have furthermore determined a stable surface state of ammonia in SrCl2 ammines and identified its implications on the ab- and desorption kinetics. Metal salts often bind ammonia and water molecules in a similar structural coordination. We have studied the competitive...

  15. Capture and storage of hydrogen gas by zero-valent iron.

    Science.gov (United States)

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Natural-gas futures: Bias, predictive performance, and the theory of storage

    Energy Technology Data Exchange (ETDEWEB)

    Modjtahedi, Bagher [California Univ., Davis, CA (United States); California Franchise Tax Board, CA (United States); Movassagh, Nahid [California Energy Commission, MS22, Sacramento, CA (United States)

    2005-07-01

    This study reports several empirical findings concerning natural gas futures prices. First, spot and futures prices are non-stationary and the observed trends are due to positive drifts in the random-walk components of the prices rather than possible deterministic time trends. Second, market forecast errors are stationary. Third, futures are less than expected future spot prices so that futures are backdated. Fourth, the bias in the futures prices is time varying. Fifth, futures have statistically significant market-timing ability, despite the bias in the magnitude forecasts. Finally, the data lends partial support to the cost-of-carry theory of the basis determination. (Author)

  17. Natural-gas futures: Bias, predictive performance, and the theory of storage

    International Nuclear Information System (INIS)

    Modjtahedi, Bagher; Movassagh, Nahid

    2005-01-01

    This study reports several empirical findings concerning natural gas futures prices. First, spot and futures prices are non-stationary and the observed trends are due to positive drifts in the random-walk components of the prices rather than possible deterministic time trends. Second, market forecast errors are stationary. Third, futures are less than expected future spot prices so that futures are backdated. Fourth, the bias in the futures prices is time varying. Fifth, futures have statistically significant market-timing ability, despite the bias in the magnitude forecasts. Finally, the data lends partial support to the cost-of-carry theory of the basis determination. (Author)

  18. Effect of storage duration on frozen inoculum to be used for the in vitro gas production technique in rabbit

    Directory of Open Access Journals (Sweden)

    Antonino Nizza

    2010-01-01

    Full Text Available The present study aimed to investigate the effect of storage duration of frozen inoculum on fermentation parametersobtained with the in vitro gas production technique. Two non-predigested diets differing in chemical composition andespecially crude fibre content (low fibre diet: 13.8%; high-fibre diet: 22.6% were ground to pass a 1 mm screen andsubjected to fermentation with the same inoculum frozen for different periods: after 1 month (inoculum 1, after 2months (inoculum 2 and after 3 months (inoculum 3. The inoculum used was obtained from the caecal content of 75-day-old NZW rabbits. After defrosting, the caecal content was diluted with the medium 1:1 (V/V and squeezed throughsix layers of gauze to obtain the inoculum. The substrate affected several fermentation parameters. In particular, thehigh-fibre diet had lower potential and cumulative gas production (A = ml/g 220 vs 256; P vs 221; P acids (mmol/g 56.2 vs 49.8; P P values of degraded organic matter (62.4%, 62.7% and 62.7% respectively for inocula 1, 2 and 3 and similarproduction of VFA (54.0, 52.2 and 52.8 mmol/g, respectively for inocula 1, 2 and 3. This research showed it is possibleto use frozen inoculum for at least 3 months and in this time interval obtain the same parameters of in vitro fermentation.

  19. Magma genesis, storage and eruption processes at Aluto volcano, Ethiopia: lessons from remote sensing, gas emissions and geochemistry

    Science.gov (United States)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin; Pyle, David; Gleeson, Matthew; Lewi, Elias; Yirgu, Gezahgen; Caliro, Stefano; Chiodini, Giovanni; Fischer, Tobias

    2016-04-01

    One of the most intriguing aspects of magmatism during the transition from continental rifting to sea-floor spreading is that large silicic magmatic systems develop within the rift zone. In the Main Ethiopian Rift (MER) these silicic volcanoes not only pose a significant hazard to local populations but they also sustain major geothermal resources. Understanding the journey magma takes from source to surface beneath these volcanoes is vital for determining its eruption style and for better evaluating the geothermal resources that these complexes host. We investigate Aluto, a restless silicic volcano in the MER, and combine a wide range of geochemical and geophysical techniques to constrain magma genesis, storage and eruption processes and shed light on magmatic-hydrothermal-tectonic interactions. Magma genesis and storage processes at Aluto were evaluated using new whole-rock geochemical data from recent eruptive products. Geochemical modelling confirms that Aluto's peralkaline rhyolites, that constitute the bulk of recent erupted products, are generated from protracted fractionation (>80 %) of basalt that is compositionally similar to rift-related basalts found on the margins of the complex. Crustal melting did not play a significant role in rhyolite genesis and melt storage depths of ~5 km can reproduce almost all aspects of their geochemistry. InSAR methods were then used to investigate magma storage and fluid movement at Aluto during an episode of ground deformation that took place between 2008 and 2010. Combining new SAR imagery from different viewing geometries we identified an accelerating uplift pulse and found that source models support depths of magmatic and/or fluid intrusion at ~5 km for the uplift and shallower depths of ~4 km for the subsidence. Finally, gas samples collected on Aluto in 2014 were used to evaluate magma and fluid transport processes. Our results show that gases are predominantly emanating from major fault zones on Aluto and that they

  20. Feasibility of underground storage/disposal of noble gas fission products

    International Nuclear Information System (INIS)

    Winar, R.M.; Trevorrow, L.E.; Steindler, M.J.

    1979-08-01

    The quantities of 85 Kr that can be released to the environment from nuclear energy production are to be limited after 1983 by Federal regulations. Although procedures for collecting the 85 Kr released in the nuclear fuel cycle have been developed to the point that they are commercially available, procedures for terminal disposal of the collected gas are still being examined for their feasibility. In this work, the possibilities of underground disposal of 85 Kr by several techniques were evaluated. It was concluded that (1) disposal of 85 Kr as a solution in water or other solvents in deep wells would have the major disadvantages of liquid migration and the requirement of extremely large volumes of solvent; (2) disposal as bubbles entrained in cement grout injected underground presents the uncertainty of gaseous migration through permeable solid grout; (3) disposal by injection into abandoned oil fields would be favored by solubility of krypton in residual hydrocarbons, but has the disadvantages that such fields contain numerous shafts offering avenues of escape and also that the fields may be reworked in the future for their hydrocarbon residues; (4) underground retention of 85 Kr injected as a gas may be promising, given the right lithology, through entrapment in interstices between fine sand grains held together by the interfacial tension of wetted surfaces. 9 figures, 5 tables

  1. Underground gas storage Uelsen: Findings from planning, building and commissioning. Part 1: Deposit; Untertagegasspeicher Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme. Teil 1: Lagerstaette

    Energy Technology Data Exchange (ETDEWEB)

    Wallbrecht, J.; Beckmann, H.; Reiser, H.; Wilhelm, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    The underground gas storage at Uelsen which was built as a H-gas storage in a former variegated sandstone gasfield in Western Lower Saxony close to the town of Nordhorn has added to the gas supply system of the BEB Erdgas and Erdoel GmbH. The underground storage is connected to the Bunde-Rheine transport pipeline BEB-grid gas system by a 27 km pipeline and is a consequent expansion of BEB`s underground storage/transport system. Planning, building and commissioning were handled by BEB. Findings to date are described. [Deutsch] Der Untertagegasspeicher (UGS) Uelsen, der in einem ehemaligen Buntsandstein Gasfeld im westlichen Niedersachsen in der Naehe der Stadt Nordhorn als H-Gasspeicher eingerichtet wurde, hat die BEB Erdgas und Erdoel GmbH eine weitere Staerkung ihres Gasversorgungssystems erreicht. Der UGS Uelsen ist ueber eine 27 km lange Anbindungsleitung mit der zum BEB - Ferngasleitungssystems gehoerenden Bunde-Rheine Transportleitung verbunden und stellt eine konsequente Erweiterung des BEB Untertagegasspeicher-/Transportsystems dar. Planung, Bau und Inbetriebnahme erfolgten durch BEB im Rahmen einer integrierten bereichsuebergreifenden Projektbearbeitung. Die hierbei gewonnenen Erkenntnisse werden im Folgenden fuer den Untertagebereich dargestellt. (orig.)

  2. Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

    Science.gov (United States)

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) can be a promising technology to reduce CO2 emissions in the electric sector. However, the high cost and energy penalties of current carbon capture devices, as well as methane leakage from natural ga...

  3. The Potential Role of Natural Gas Power Plants with Carbon Capture and Storage as a Bridge to a Low-Carbon Future

    Science.gov (United States)

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  4. The hydrogen generated as a gas and storage in Zircaloy during water quenching

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.

    1999-01-01

    A simple one-dimensional diffusion model has been developed for the complex process of Zircaloy oxidation during water quenching, calculating the hydrogen liberated as a gas and the hydrogen stored in the metal. The model was developed on the basis of small-scale separate-effects quench experiments performed at Forschungszentrum Karlsruhe. The new oxide surface and the new metallic surface produced by cracking of the oxide during quenching are calculated for each experiment performed at 1200 , 1400 and 1600 C degrees using as-received Zircaloy-4 (no pre oxidation) and with Zircaloy specimens pre oxidised to give oxide thicknesses of 100μm and 300μm. The results are relevant to accident management in light water reactors. (author)

  5. Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, T.; Hawksworth, S. [Health and Safety Executive, Health and Safety Lab., Buxton (United Kingdom); Gosse, A. [BG Technology, Loughborough (United Kingdom)

    2000-05-01

    Fire impingement on vessels containing pressure liquefied gases can result in catastrophic failure of the vessel leading to a Boiling Liquid Expanding Vapour Explosion (BLEVE). If the gas is flammable, this can result in the formation of very large fireballs. In safety assessments where catastrophic vessel failure is identified as a real possibility, the risk of death from a fireball tends to be higher than that from missiles or blast. Since many of the physical processes which take place in a BLEVE are scale dependent, a series of tests were undertaken at a large scale where 2 tonne propane vessels were taken to failure in a jet fire and the vessel response, mode of failure and consequence of failure characterised. The measurements taken by the Health and Safety Laboratory and BG Technology relating to fireball formation are described. (Author)

  6. The hydrogen generated as a gas and storage in Zircaloy during steam quenching

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.

    2000-01-01

    A simple one-dimensional diffusion model has been developed for the complex process of Zircaloy oxidation during steam quenching, calculating the hydrogen liberated as a gas and the hydrogen stored in the metal. The model was developed on the basis of small-scale separate-effects quench experiments performed at Forschungszentrum Karlsruhe. The new oxide surface and the new metallic surface produced by cracking of the oxide during quenching are calculated for each experiment performed at 1200 centigrade, 1400 centigrade and 1600 centigrade using as-received Zircaloy-4 (no pre-oxidation) and with Zircaloy specimens pre-oxidized to give oxide thickness of 100μm and 300μm. The results are relevant to accident management in nuclear power plants. (author)

  7. Gas migration from oil and gas fields and associated hazards

    International Nuclear Information System (INIS)

    Gurevich, A.E.; Endres, B.L.; Robertson Jr, J.O.; Chilingar, G.V.

    1993-01-01

    The migration of gas from oil and gas formations to the surface is a problem that greatly affects those surface areas where human activity exists. Underground gas storage facilities and oil fields have demonstrated a long history of gas migration problems. Experience has shown that the migration of gas to the surface creates a serious potential risk of explosion, fires, noxious odors and potential emissions of carcinogenic chemicals. These risks must be seriously examined for all oil and gas operations located in urban areas. This paper presents the mechanics of gas migration, paths of migration and a review of a few of the risks that should be considered when operating a gas facility in an urban area. The gas can migrate in a continuous or discontinuous stream through porous, water-filled media to the surface. The primary force in this migration of gas is the difference between specific weights of gas and water

  8. Addendum 1 to CSER 96-025: PFP storage of 9.25/9.5 inch tall, 4.4 kg Pu cans on existing Vault 4 pedestals

    International Nuclear Information System (INIS)

    Hillesland, K.E.

    1997-01-01

    A nuclear criticality safety analysis has been performed to increase the approved plutonium mass limit for cans stored in Vault number-sign 4 cubicles at PFP. The original CSER 96-025 accommodated the storage of 4.4 kg of plutonium in PuO, (5.0 kg PuO,) in Vault number-sign 4 by requiring that half the cubicles be left vacant. This addendum allows for all the cubicles to be used, but with a fissile plutonium mass limit of 58 kg per cubicle. A mass limit for each cubical allows for storage of a larger number of cans if some have less than the 4.4 kg Pu limit per can. The highest k., calculated is 0.932 + 0.003 when an overbatched can is present in every fourth cubicle. This is below the criticality safety limit of kff 0.935, and consequently, an increase of plutonium mass to 4.4 kg per can is within acceptable safety limits for the given mass limit

  9. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  10. Hydrogenation of carbon dioxide towards synthetic natural gas. A route to effective future energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, M. [Hochschule Lausitz, Cottbus (Germany); Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis

    2012-07-01

    Ni- and Ru-based catalysts are best suited for the so-called Sabatier reaction, i.e., the hydrogenation of CO{sub 2} to synthetic natural gas (SNG). Besides using commercial materials, catalyst syntheses (5 wt% Ru or Ni) were carried out by incipient wetness impregnation of four carriers (TiO{sub 2}, SiO{sub 2}, ZrO{sub 2} and {gamma}-Al{sub 2}O{sub 3}). Some pre-tests revealed that catalysts supported on TiO{sub 2} and SiO{sub 2} mostly produced CO, and therefore, they were not studied in detail. The catalyst tests were carried out in a continuously operated tube reactor at 623-723 K and 1-20 bar. Ru/ZrO{sub 2} and Ni/{gamma}-Al{sub 2}O{sub 3} revealed best catalytic performance at ambient pressure. Methane selectivities of 99.9% at 81.2% CO{sub 2} conversion for Ru/ZrO{sub 2} (623 K) and of 98.9% at 73.8% CO{sub 2} conversion for Ni/{gamma}-Al{sub 2}O{sub 3} (673 K) were obtained. The conversion increased significantly with raising reaction pressure above 10 bar to reach more than 93% for the Ni-containing catalyst and more than 96% for the Zr catalysts. Methane as the target product was formed with a selectivity of 100%. In addition, the catalysts were characterized by various solid-state techniques such as BET, TPR, ICP-OES, XRD, XPS and TEM. (orig.)

  11. Study of Vapour Cloud Explosion Impact from Pressure Changes in the Liquefied Petroleum Gas Sphere Tank Storage Leakage

    Science.gov (United States)

    Rashid, Z. A.; Suhaimi Yeong, A. F. Mohd; Alias, A. B.; Ahmad, M. A.; AbdulBari Ali, S.

    2018-05-01

    This research was carried out to determine the risk impact of Liquefied Petroleum Gas (LPG) storage facilities, especially in the event of LPG tank explosion. In order to prevent the LPG tank explosion from occurring, it is important to decide the most suitable operating condition for the LPG tank itself, as the explosion of LPG tank could affect and cause extensive damage to the surrounding. The explosion of LPG tank usually occurs due to the rise of pressure in the tank. Thus, in this research, a method called Planas-Cuchi was applied to determine the Peak Side-On Overpressure (Po) of the LPG tank during the occurrence of explosion. Thermodynamic properties of saturated propane, (C3H8) have been chosen as a reference and basis of calculation to determine the parameters such as Explosion Energy (E), Equivalent Mass of TNT (WTNT), and Scaled Overpressure (PS ). A cylindrical LPG tank in Feyzin Refinery, France was selected as a case study in this research and at the end of this research, the most suitable operating pressure of the LPG tank was determined.

  12. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  13. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  14. Review of Quantitative Monitoring Methodologies for Emissions Verification and Accounting for Carbon Dioxide Capture and Storage for California’s Greenhouse Gas Cap-and-Trade and Low-Carbon Fuel Standard Programs

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2014-12-23

    The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of CO2 (e.g., due to leakage to the atmosphere from geologic CO2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO2 storage opportunities (in California and in other states with entities participating in California

  15. Optimization of CO2 Storage in Saline Aquifers Using Water-Alternating Gas (WAG) Scheme - Case Study for Utsira Formation

    Science.gov (United States)

    Agarwal, R. K.; Zhang, Z.; Zhu, C.

    2013-12-01

    For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the

  16. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  17. The Existence of Heavy Metals such as Pb, Cd, Fe, and Cu in Hair Samples from Gas Station Worker at Yogyakarta Special District

    International Nuclear Information System (INIS)

    Supriyanto, C.; Zainul Kamal; Samin

    2002-01-01

    The monitoring of heavy metals existence such as Pb, Cd, Fe, and Cu in hair samples from gas station worker has been carried out with atomic absorption spectrometry method. The initial preparation of sample were done by immersing them in alcohol over night, after they were dried then they were digested using the teflon bomb digester at the temperature at 150 o C for 3 hours. The content of Pb, Cd, Fe, and Cu in were determined with calibration standard curve method. The content of Pb obtained at hair samples in the range of time at 20 years tend to increase. If it was correlated to the worker who has been working, there was no significant different from the worker who has been working for 20 years there was no significant different. While the content of Cu in sample at range time 20 years showed the significant different if it was correlated to the worker who has been working. The validity of method was tested with CRM Human Hair GBW 07601 from IAEA showed that the content of Fe and Cu were in the certified range of CRM. (author)

  18. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    Science.gov (United States)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and

  19. Storage is absolutely necessary to balance supply and demand

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Before liberalization, gas storage was built to balance supply and demand (on a seasonal basis), as well as for broader security of supply concerns. With liberalization, companies started to use storage in a more flexible way as they were no longer obliged to prioritize security of supply. The decline in swing production in the North Sea should have triggered an increase in storage capacity. However, in the UK, investment in storage was neglected until too late. The major points of interest in continental Europe are as follows: due to geological constraints, Latvia is the only Baltic state to have underground storage; storage capacity represents 49% of annual Austria demand; Germany has the biggest European storage facility; in Belgium, Bulgaria, Hungary, Poland and Portugal, just one company in each country has all the storage capacity; in Romania, Romgaz has 92% of storage capacity; in the Czech Republic, RWE owns 75% of the storage; in Slovakia, GDF SUEZ and E.ON have most of the capacity; and storage in Ukraine represents a huge opportunity with a capacity of 34 bcm (billion cubic meters). In oil, strategic stocks are a reality and have been used but in gas, strategic stocks do not exist except 5.1 bcm in Italy, 1 bcm in Spain and 1.2 bcm are being built in Hungary. Some possible EU changes could have an impact on the entire European gas market. Just outside EU-27, Ukraine has a form of strategic storage which represents 10% of its suppliers' annual supplies

  20. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    Science.gov (United States)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  1. 75 FR 39680 - Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid...

    Science.gov (United States)

    2010-07-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-44-000; Docket No. PR10-46-000; Docket No. PR10-48- 000; Docket No. PR10-49-000; Docket No. PR10-50-000] Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid Continent Market Center, L.L.C...

  2. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage

    NARCIS (Netherlands)

    Blanco, Herib; Faaij, André

    2018-01-01

    A review of more than 60 studies (plus more than 65 studies on P2G) on power and energy models based on simulation and optimization was done. Based on these, for power systems with up to 95% renewables, the electricity storage size is found to be below 1.5% of the annual demand (in energy terms).

  3. Storage in Europe

    International Nuclear Information System (INIS)

    Cabanes, J.M.; Rottenberg, J.; Abiad, A.; Caudron, S.; Girault, Ph.

    2007-01-01

    Storage represents one of the key elements among the different modulation tools. How the problem of storage is put forward in Europe in front of the increasing uncertainty of the gas demand and prices? What are the policies implemented by storage facility operators? To what extend storage can amortize gas prices volatility or allow the market actors to take the best profit of this volatility? These are the questions debated at this workshop by four specialists of this domain. (J.S.)

  4. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  5. Demand management of city gas per season and study of estimating proper size of LNG storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y.H.; Kim, S.D. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-09-01

    LNG storage facilities are indispensable to satisfy demand throughout the year by saturating the time difference of supply and demand that appears due to seasonal factors. The necessity of storage facilities is more important in a country like Korea where LNG is not produced at all and imports are relied upon. The problem of deciding how much storage facilities to keep and in what pattern to import LNG is a question to solve in order to minimize the costs related to the construction of LNG storage facilities while not causing any problem in the supply and demand of LNG. This study analyzes how the import of LNG and the consumption pattern of LNG for power generation affect the decision on the size of storage facilities. How the shipping control, and how LNG demand for power generation affect the decision of requirement of storage facilities, and why the possibility of shipping control should be investigated in the aspect of costs is investigated. As a result of this study, I presented necessary basic data for drafting a policy by assessing the minimum requirements of storage facilities needed for balancing the supply and demand with the various shipping control and LNG consumption patterns through simulation up to the year 2010. 10 refs., 33 figs., 66 tabs.

  6. Energy Storage

    CSIR Research Space (South Africa)

    Bladergroen, B

    2015-10-01

    Full Text Available In commercial arena, the most recent developments in EES are in electrochemical storage, singling out Li-ion batteries and Vanadium Redox flow batteries, while power-to-gas/-fuels (electrolysis of water into hydrogen and subsequent methanisation...

  7. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  8. Regulation of gas storages in Europe. The GGPSSO as an agreement in lieu of standard at EU level; Regulierung von Gasspeichern in Europa. Die GGPSSO als eine normersetzende Absprache auf der Ebene der Europaeischen Union

    Energy Technology Data Exchange (ETDEWEB)

    Barbknecht, Klaus-Dieter

    2012-07-01

    Since the enactment of the Gas Directive in 1998 demands have been raised at the European level for the regulation of privately owned installations used for the storage of natural gas (natural gas storages). In the time after 1998 regulatory codes both legislative and non-legislative governing the access of third parties to gas storages evolved at the European and, amongst others, German national level. The present study is dedicated to legal issues arising in this connection. It endeavours to provide an understanding of the GGPSSO, its legal nature and the significance of its regulations in the context of the European natural gas economy. For this purpose it briefly describes the economic and technical environment of this branch of industry as well as the legal framework within which it has evolved in the individual countries of the EU. It takes a close look at the necessity and possibilities of storing natural gas, the macroeconomic significance of this business for Europe, the products that result from the storage of natural gas and the private or public forms of organisation of the relevant corporations. These considerations provide indications regarding the special nature of certain regulations of the GGPSSO, particularly concerning the role of storage operators as administrators of private or public resources and the role of the regulatory authorities involved.

  9. Underground gas storage Uelsen: Findings from planning, building and commissioning the surface buildings and structures; Untertagegasspeicher (UGS) Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme der obertaegigen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Focke, H.; Brueggmann, R.; Mende, F.; Steinkraus, D.; Wauer, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    The article describes the concepts of the plants and equipment and the specific features of the underground storage at Uelsen. The underground storage will be purpose-built as an H-gas storage in a nearly depleted sandstone deposit. At a nominal deliverability of 250.000 cubic m/h (Vn) the storage at Uelsen has more potential for expansion. This potential was taken into account by designing appropriate pressure stages, capacities, performance characteristics and space. (orig.). [Deutsch] Die nachfolgende Veroeffentlichung stellt das anlagentechnische Grundkonzept und die spezifischen Besonderheiten des UGS Uelsen dar. Der im suedwestlichen Niedersachsen als H-Gasspeicher in einer nahezu ausgefoerderten Buntsandsteinlagerstaette eingerichtete UGS Uelsen wird in mehreren Ausbaustufen bedarfsgerecht fertiggestellt. Bei einer Nennentnahmekapazitaet von 450.000 m{sup 3}/h (Vn) und einer Nenninjektionsleistung von 250.000 m{sup 3}/h (Vn) weist der UGS Uelsen noch weiteres Potential fuer Erweiterungen auf. Dieses Ausbaupotential wurde bei der Planung und dem Bau der bestehenden Anlagen durch Festlegung entsprechender Druckstufen, Kapazitaeten, Leistungsgroessen und Platzanordnungen beruecksichtigt. (orig.)

  10. 75 FR 78986 - East Cheyenne Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Science.gov (United States)

    2010-12-17

    ..., East Cheyenne planned to do enhanced oil recovery (EOR) of petroleum reserves remaining in the storage... proposed project amendment under these general headings: Geology and soils; Land use; Water resources...

  11. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Science.gov (United States)

    2010-07-01

    ...; (ii) Transformed by chemical reaction into materials that are not regulated materials; (iii... section for a storage vessel, the owner or operator shall prepare a design evaluation (or engineering...

  12. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    Science.gov (United States)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  13. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter.

    Science.gov (United States)

    Chang, Shenteng; Lu, Chungsying; Hsu, Shihchieh; Lai, How-Tsan; Shang, Wen-Lin; Chuang, Yeong-Song; Cho, Chi-Huang; Chen, Sheng-Han

    2011-01-01

    This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Recent developments, trends and innovations in the use of natural gas storage in the U.S.A

    International Nuclear Information System (INIS)

    Thrash, J.C.; Thrash, J.F.

    1990-01-01

    It is reported that in recent years there have been a number of changes in the control, regulation and operation of the interstate natural gas industry in the US. These changes and evolution of of the natural gas industry resulting from these changes are reviewed and discussed in the hope that the information presented will be useful in analyzing any similar conditions which might be developing in the natural gas industry in the European community of nations

  15. Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage

    International Nuclear Information System (INIS)

    Seo, Young-ju; Park, Seongmin; Kang, Hyery; Ahn, Yun-Ho; Lim, Dongwook; Kim, Se-Joon; Lee, Jaehyoung; Lee, Joo Yong; Ahn, Taewoong; Seo, Yongwon; Lee, Huen

    2016-01-01

    Highlights: • The structural sustainability of sII hydrate is demonstrated during the replacement. • The experimental evidence of isostructural replacement is revealed. • The cage-specific replacement in sII hydrates allows long-term CO 2 storage. • The compositions and extent of replacement are cross-checked by GC and NMR analyses. - Abstract: A replacement technique has been regarded as a promising strategy for both CH 4 exploitation from gas hydrates and CO 2 sequestration into deep-ocean reservoirs. Most research has been focused on replacement reactions that occur in sI hydrates due to their prevalence in natural gas hydrates. However, sII hydrates in nature have been also discovered in some regions, and the replacement mechanism in sII hydrates significantly differs from that in sI hydrates. In this study, we have intensively investigated the replacement reaction of sII (C 3 H 8 + CH 4 ) hydrate by externally injecting CO 2 /N 2 (50:50) gas mixture with a primary focus on powder X-ray diffraction, Raman spectroscopy, NMR spectroscopy, and gas chromatography analyses. In particular, it was firstly confirmed that there was no structural transformation during the replacement of C 3 H 8 + CH 4 hydrate with CO 2 /N 2 gas injection, indicating that sII hydrate decomposition followed by sI hydrate formation did not occur. Furthermore, the cage-specific replacement pattern of the C 3 H 8 + CH 4 hydrate revealed that CH 4 replacement with N 2 in the small cages of sII was more significant than C 3 H 8 replacement with CO 2 in the large cages of sII. The total extent of the replacement for the C 3 H 8 + CH 4 hydrate was cross-checked by NMR and GC analyses and found to be approximately 54%. Compared to the replacement for CH 4 hydrate with CO 2 /N 2 gas, the lower extent of the replacement for the C 3 H 8 + CH 4 hydrate with CO 2 /N 2 gas was attributable to the persistent presence of C 3 H 8 in the large cages and the lower content of N 2 in the feed gas. The

  16. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue

    Science.gov (United States)

    Charlet, Laurent; Alt-Epping, Peter; Wersin, Paul; Gilbert, Benjamin

    2017-08-01

    Clay rocks are low permeability sedimentary formations that provide records of Earth history, influence the quality of water resources, and that are increasingly used for the extraction or storage of energy resources and the sequestration of waste materials. Informed use of clay rock formations to achieve low-carbon or carbon-free energy goals requires the ability to predict the rates of diffusive transport processes for chemically diverse dissolved and gaseous species over periods up to thousands of years. We survey the composition, properties and uses of clay rock and summarize fundamental science challenges in developing confident conceptual and quantitative gas and solute transport models.

  17. Power to gas. Investigations in the context of the DVGW innovation offensive for energy storage; Power to Gas. Untersuchungen im Rahmen der DVGW-Innovationsoffensive zur Energiespeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Syring, Gert; Henel, Marco [DBI Gas- und Umwelttechnik GmbH, Leipzig (Germany); Rasmusson, Hans [DVGW Deutscher Verein des Gas-und Wasserfaches e.V., Bonn (Germany); Mlaker, Herwig [E.ON Ruhrgas AG, Koeln (Germany); Koeppel, Wolfgang [DVGW-Forschungsstelle am Engler-Bunte-Institut, Karlsruhe (Germany); Hoecher, Thomas [Verbundnetz Gas AG (VNG), Leipzig (Germany); Sterner, Michael [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany)

    2011-04-15

    The gas pipeline network is an efficient, safe, environment-friendly and socially acceptable energy infrastructure. It is suited in principle also for the transport of hydrogen or methane generated from renewable electric power. Utilization of the gas infrastructure and its components thus offers a chance for an ecologically and economically acceptable transition from a fossil power supply structure to a renewable structure and will become an indispensable part of the future power supply system.

  18. Power to gas. Investigations in the context of the DVGW innovation offensive for energy storage; Power to Gas. Untersuchungen im Rahmen der DVGW-Innovationsoffensive zur Energiespeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Syring, Gert; Henel, Marco [DBI GUT (Germany); Rasmusson, Hans [DVGW, Bonn (Germany); Mlaker, Herwig [E.ON Ruhrgas AG (Germany); Koeppel, Wolfgang [EBI (Germany); Hoecher, Thomas [VNG AG (Germany); Sterner, Michael; Trost, Tobias [Fraunhofer IWES (Germany)

    2011-07-01

    The natural gas grid is an efficient, safe, environmentally friendly and socially acceptable energy infrastructure. Due to its design in principle it is suitable for the propagation of methane or hydrogen from renewable electric power. The use of gas infrastructure and its components offers the possibility for an ecologically and economically sensible transition from fossil to renewable energy. It is an indispensable part of a future energy system.

  19. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  20. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  1. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  2. Carbon dioxide and ethylene gas in the potato storage atmosphere and their combined effect on processing colour

    NARCIS (Netherlands)

    Daniels-Lake, B.J.

    2013-01-01

    Keywords: Solanum tuberosum L., carbon dioxide, ethylene, storage, processing, fry colour, chip colour, 1-methylcyclopropene

    The finished colour of processed potato (Solanum tuberosum L.) products is a very important quality characteristic which is attributable to the

  3. Pumping characteristics for H2, CO and gas mixture of H2 and CO of distributed ion pump for the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Hirano, Nobuo; Kobari, Toshiaki; Matsumoto, Manabu

    1995-01-01

    Evacuation in the vacuum chamber of the deflection magnet part of the SPring-8 storage ring is planned to be performed with a non evaporable getter pump (NEG) as well as a distributed ion pump (DIP). Pumping characteristics for H 2 , CO and a gas mixture of H 2 and CO of DIP was investigated. The structure of the DIP constructed on a trial basis and an experimental setup to measure the DIP pumping characteristics were described. Pumping speed above 100 L/s per 1 m at the 10 -6 Pa device and pumping speed of about 500 L/s per 1 m at the 10 -7 Pa device were achieved for a gas mixture of H 2 and CO (37% and 55% CO). On the DIP saturated with CO, pumping speed for H 2 is about twice that of pumping speed for CO at the 10 -7 Pa device. Pumping speed for CO is about 1.5 times of the speed for N 2 at the 10 -6 Pa device. Pressure of 1.2 x 10 -8 Pa (9.0 x 10 -11 Torr) is achieved at a room temperature by baking at 150degC for 40 hr. Thus, it was confirmed that the DIP has sufficient pumping characteristics as a pump for the SPring-8 storage ring. (T.H.)

  4. Comparisons of sediment losses from a newly constructed cross-country natural gas pipeline and an existing in-road pipeline

    Science.gov (United States)

    Pamela J. Edwards; Bridget M. Harrison; Daniel J. Holz; Karl W.J. Williard; Jon E. Schoonover

    2014-01-01

    Sediment loads were measured for about one year from natural gas pipelines in two studies in north central West Virginia. One study involved a 1-year-old pipeline buried within the bed of a 25-year-old skid road, and the other involved a newly constructed cross-country pipeline. Both pipelines were the same diameter and were installed using similar trenching and...

  5. Adsorption based processes as alternative to common gas conditioning at underground storage facilities using Sorbead; Procedes bases sur l'adsorption comme solution de rechange dans le conditionnement du gaz dans des lieux de stockage souterrains a l'aide de Sorbead

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Th. [Engelhard Process Chemicals GmbH (Germany)

    2000-07-01

    The European gas market is continuing to expand due to increased industrial, domestic and power generation demand. As a result of this demand, and the trend toward liberalization of the market, the need for storage of gas is also increasing. One key segment of the large scale storage of gas is underground storage, either in partially depleted gas or oil fields, naturally occurring caverns, aquifers and salt cavities. In most cases the gas produced after storage requires conditioning to meet the water of hydrocarbon dew point specification of the gas transmission system. For that reason export gas from storage will require gas conditioning in order to meet pipeline specifications. Adsorption as a feasible and reliable process will be presented in detail and especially in regards to hydrocarbon dew-pointing compared with other process options. (author)

  6. Advances in gas flow metering - end of the history, peaceful co-existence or a new beginning; Les avancees dans le mesurage des debits de gaz - fin de l'histoire, coexistence pacifique ou nouveau commencement

    Energy Technology Data Exchange (ETDEWEB)

    Studzinski, W. [NOVA Research and Technology Centre, Calgary (Canada)

    2000-07-01

    Gas flow metering plays an important role in the technical and fiscal operations of pipeline systems. Over the last hundred years, the industry has gone through several technical revolutions. The recent two decades were characterized by the introduction of flow computers in the 80's and acceptance of ultrasonic meters in the 90's. These changes, associated with measurement technology, have had a profound impact on pipeline operation, deregulation of the gas industry and gas trading. Significant advances were made, however, it is certainly not the end for progress in gas flow metering. The future development of optoelectronic and mass flow meters combined with advances in telemetry and tele-calibration may significantly reduce capital and maintenance costs. Classical flow meters will be upgraded to a new level of performance and will co-exist with the newest technologies. The uncertainty of flow measurement will be improved, mainly in terms of stability over longer periods of time. Old and new meters will be able to perform in environments other than dry natural gas. Processing of flow measurement data will evolve with the progress in flow computers and smart transmitters. The advances in gas flow metering will be driven by life cycle cost reduction as well as new business and service requirements. (author)

  7. A good long-term electricity storage. Biomethanisation by Power-to-Gas; Ein guter Langzeitstromspeicher. Biomethanisierung durch Power-to-Gas

    Energy Technology Data Exchange (ETDEWEB)

    Finck, Christian

    2013-10-15

    With the Power-to-Gas process, the Centre for Solar Energy and Hydrogen Research Baden-Wuerttemberg (ZSW) developed in cooperation with the Fraunhofer IWES, in 2009, a technique that would enable to store electricity from renewable energy plants (EEA) for a long term. The underlying Sabatier process is old, the inclusion of renewable energy to biomethanisation is new. The Power-to-Gas process uses electricity produced from wind turbines for the electrolysis of water to produce hydrogen and oxygen. In a subsequent synthesis with the emitted CO{sub 2} from the biogas plants biomethane is produced with an energy efficiency of >65% kWh{sub SNG}/kWh{sub el}. [German] Mit dem Power-to-Gas-Verfahren entwickelte das Zentrum fuer Sonnenenergie und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), in Zusammenarbeit mit der Fraunhofer IWES, im Jahr 2009 eine Technik, die es ermoeglichen wuerde, Strom aus Erneuerbaren Energieanlagen (EEA) langfristig zu speichern. Der zugrunde liegende Sabatierprozess ist alt, die Einbeziehung der EE zur Biomethanisierung ist neu. Das Power-to-Gas-Verfahren nutzt den produzierten Strom aus Windenergieanlagen, um das Wasser elektrolytisch in Wasserstoff und Sauerstoff zu spalten. In einer anschliessenden Synthese mit dem emittierten CO{sub 2} aus den Biogasanlagen wird Biomethan, mit einem energetischen Wirkungsgrad >65% kWh{sub SNG}/kWh{sub el}, produziert.

  8. Assessing storage adequacy

    International Nuclear Information System (INIS)

    Amirault, P.

    2004-01-01

    Government policy encourages the use of natural gas. It is expected that liquefied natural gas (LNG) and Arctic gas will make up 20 to 25 per cent of supply. This presentation provided an outlook of storage value based on a technical analysis by the National Petroleum Counsel (NPC) report. A moderately robust growth is expected in the residential and commercial load which may be partially offset by robust growth in electricity. The net result is an increase in storage requirements. It was concluded that there is a strong case for growth in storage demand but a lack of good sites for additional capacity. This will lead to higher storage values. The NPC sees the need for 1 Tcf more storage use by 2025, of which 700 Bcf will need to come from new storage. In particular, current storage levels may not be sufficient to meet a colder than normal winter, and deliverability is affected by field inventory. Most storage capacity was built before 1985, mostly by regulated entities. It is expected that only 250 to 400 Bcf will be added over the next 25 years in North America. If storage becomes scarce, prices will move to the marginal cost of new additions, and the upper limit on price will be determined by salt cavern storage. An increase of $1.00 in the price of leasing storage would add about $0.11 to the average price of consumed gas. tabs., figs

  9. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conventional technology for gas transport

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier and an integrated receiving terminal. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. In the onshore process, the cryogenic exergy in the LNG is utilized to cool and liquefy the cold carriers, LCO 2 and LIN. The transport pressures for LNG, LIN and LCO 2 will influence the thermodynamic efficiency as well as the ship utilization; hence sensitivity analyses are performed, showing that the ship utilization for the payload will vary between 58% and 80%, and the transport chain exergy efficiency between 48% and 52%. A thermodynamically optimized process requires 319 kWh/tonne LNG. The NG lost due to power generation needed to operate the LEC processes is roughly one third of the requirement in a conventional transport chain for stranded NG gas with CO 2 capture and sequestration (CCS)

  10. Simulated effects of existing and proposed surface-water impoundments and gas-well pads on streamflow and suspended sediment in the Cypress Creek watershed, Arkansas

    Science.gov (United States)

    Hart, Rheannon M.

    2014-01-01

    Cypress Creek is located in central Arkansas and is the main tributary to Brewer Lake, which serves as the primary water supply for Conway, Arkansas, and the surrounding areas. A model of the Cypress Creek watershed was developed and calibrated in cooperation with Southwestern Energy Company using detailed precipitation, streamflow, and discrete suspended-sediment data collected from 2009 through 2012. These data were used with a Hydrologic Simulation Program—FORTRAN model to address different potential gas-extraction activities within the watershed.

  11. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an onshore integrated receiving terminal. Due to utilization of the cold exergy both in the offshore and onshore processes, and combined use of the gas carrier, the transport chain is both energy and cost effective. In this paper, the liquefied energy chain (LEC) is explained, including novel processes for both the offshore field site and onshore market site. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The LNG is transported in a combined gas carrier to the receiving terminal where it is used as a cooling agent to liquefy CO 2 and nitrogen. The LCO 2 and LIN are transported offshore using the same combined carrier. Pinch and Exergy Analyses are used to determine the optimal offshore and onshore processes and the best transport conditions. The exergy efficiency for a thermodynamically optimized process is 87% and 71% for the offshore and onshore processes, respectively, yielding a total efficiency of 52%. The offshore process is self-supported with power and can operate with few units of rotating equipment and without flammable refrigerants. The loss of natural gas due to power generation for the energy requirements in the LEC processes is roughly one third of the loss in a conventional transport chain for stranded natural gas with CO 2 sequestration. The LEC has several configurations and can be used for small scale ( 5 MTPA LNG) transport. In the example in this paper, the total costs for the simple LEC including transport of natural gas to a 400 MW net power plant and return of 85% of the corresponding carbon as CO 2 for a total sailing distance of 24 h are 58.1 EUR/tonne LNG excluding or including the cost of power. The total power requirements are 319 k

  12. Effect of damage on water retention and gas transport properties geo-materials: Application to geological storage of radioactive waste

    International Nuclear Information System (INIS)

    M'Jahad, S.

    2012-01-01

    In the context of geological disposal of radioactive waste, this work contributes to the characterization of the effect of diffuse damage on the water retention and gas transfer properties of concrete (CEM I and CEM V) selected by Andra, Callovo-Oxfordian argillite (host rock) and argillite / concrete interfaces. This study provides information on the concrete microstructure from Mercury porosimetry intrusion and water retention curves: each concrete has a distinct microstructure, CEM I concrete is characterized by a significant proportion of capillary pores while CEM V concrete has a large proportion of C-S-H pores. Several protocols have been developed in order to damage concrete. The damage reduces water retention capacity of CEM I concrete and increases its gas permeability. Indeed, gas breakthrough pressure decreases significantly for damaged concrete, and this regardless of the type of concrete. For argillite, the sample mass increases gradually at RH = 100%, which creates and increases damage in the material. This reduces its ability to retain water. Otherwise, water retention and gas transport properties of argillite are highly dependent of its initial water saturation, which is linked to its damage. Finally, we observed a clogging phenomenon at the argillite/concrete interfaces, which is first mechanical and then hydraulic (and probably chemical) after water injection. This reduces the gas breakthrough pressure interfaces. (author)

  13. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  14. Sampling and Analysis of the Headspace Gas in 3013 Type Plutonium Storage Containers at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Jackson, Jay M.; Berg, John M.; Hill, Dallas D.; Worl, Laura A.; Veirs, Douglas K.

    2012-01-01

    Department of Energy (DOE) sites have packaged approximately 5200 3013 containers to date. One of the requirements specified in DOESTD-3013, which specifies requirements for packaging plutonium bearing materials, is that the material be no greater than 0.5 weight percent moisture. The containers are robust, nested, welded vessels. A shelf life surveillance program was established to monitor these cans over their 50 year design life. In the event pressurization is detected by radiography, it will be necessary to obtain a head space gas sample from the pressurized container. This technique is also useful to study the head space gas in cans selected for random destructive evaluation. The atmosphere is sampled and the hydrogen to oxygen ratio is measured to determine the effects of radiolysis on the moisture in the container. A system capable of penetrating all layers of a 3013 container assembly and obtaining a viable sample of the enclosed gas and an estimate of internal pressure was designed.

  15. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an integrated receiving terminal. In the offshore process, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The offshore process is self-supported with power, hot and cold utilities and can operate with little rotating equipment and without flammable refrigerants. In the onshore process, the cryogenic exergy in LNG is used to cool and liquefy the cold carriers, which reduces the power requirement to 319 kWh/tonne LNG. Pinch and exergy analyses are used to determine thermodynamically optimized offshore and onshore processes with exergy efficiencies of 87% and 71%, respectively. There are very low emissions from the processes. The estimated specific costs for the offshore and onshore process are 8.0 and 14.6 EUR per tonne LNG, respectively, excluding energy costs. With an electricity price of 100 EUR per MWh, the specific cost of energy in the onshore process is 31.9 EUR per tonne LNG

  16. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  17. Coordination Control of a Novel Wind Farm Configuration Including a Hydrogen Storage System and a Gas Turbine

    DEFF Research Database (Denmark)

    Xuan, Shihua; Hu, Weihao; Yao, Jun

    2016-01-01

    This paper proposes a novel configuration that combines wind turbines, an electrolyzer, and a gas turbine with the corresponding generator. A control strategy for this configuration is also proposed. The purpose of this configuration and its control strategy is to make the wind farm work like...

  18. Carbon storage and greenhouse gas fluxes in the San Juan Bay Estuary: Current trends and likely future states.

    Science.gov (United States)

    Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San...

  19. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  20. Decree n. 2006-1034 of the 21 August 2006 relative to the access to the underground storages of the natural gas

    International Nuclear Information System (INIS)

    2006-08-01

    This document presents the 18 articles of the decree, grouped in even chapters: main principles of the storage use, determination and attribution of the access rules to the storage capacities, distribution of the storage capacities, allocation of the storage capacities, obligation of declaration and detention of suppliers stocks, access to the surplus storage capacities and others dispositions. (A.L.B.)

  1. Hydrogen storage: today, the used technologies. Evaluation of the researches at the LMARC of Besancon; Stockage de l'hydrogene: l'existant, les technologies utilisees. Un point sur cet axe de recherche au LMARC de Besancon

    Energy Technology Data Exchange (ETDEWEB)

    Chapelle, D.; Perreux, D.; Thiebaud, F.; Robinet, P. [Laboratoire de Mecanique Appliquee (LMARC), Institut Femto-ST, 25 - Besancon (France)

    2007-07-01

    Provided by many examples, this paper presents the different mode of the hydrogen storage in order to compare the performance, the reliability and the safety. In a second part the author presents the researches at the Laboratory of Applied Mechanic Raymond Chaleat of Besancon LMARC and more particularly containers for the hydrogen storage. (A.L.B.)

  2. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    OpenAIRE

    Maksimov Vyacheslav I.; Nagornova Tatiana A.; Glazyrin Viktor P.; Shestakov Igor A.

    2016-01-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity – the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that character...

  3. Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions.

    Science.gov (United States)

    Živković Semren, Tanja; Brčić Karačonji, Irena; Safner, Toni; Brajenović, Nataša; Tariba Lovaković, Blanka; Pizent, Alica

    2018-01-01

    Non-targeted metabolomics research of human volatile urinary metabolome can be used to identify potential biomarkers associated with the changes in metabolism related to various health disorders. To ensure reliable analysis of urinary volatile organic metabolites (VOMs) by gas chromatography-mass spectrometry (GC-MS), parameters affecting the headspace-solid phase microextraction (HS-SPME) procedure have been evaluated and optimized. The influence of incubation and extraction temperatures and times, coating fibre material and salt addition on SPME efficiency was investigated by multivariate optimization methods using reduced factorial and Doehlert matrix designs. The results showed optimum values for temperature to be 60°C, extraction time 50min, and incubation time 35min. The proposed conditions were applied to investigate urine samples' stability regarding different storage conditions and freeze-thaw processes. The sum of peak areas of urine samples stored at 4°C, -20°C, and -80°C up to six months showed a time dependent decrease over time although storage at -80°C resulted in a slight non-significant reduction comparing to the fresh sample. However, due to the volatile nature of the analysed compounds, more than two cycles of freezing/thawing of the sample stored for six months at -80°C should be avoided whenever possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  5. Evaluation of volatile profiles obtained for minimally-processed pineapple fruit samples during storage by headspace-solid phase microextraction gas chromatography-mass spectrometry

    Directory of Open Access Journals (Sweden)

    Francielle Crocetta TURAZZI

    Full Text Available Abstract This paper describes the application of the solid-phase microextraction (SPME technique for the determination and monitoring of the volatile profile of minimally-processed pineapple fruit stored at various temperatures (-12 °C, 4 °C and 25 °C for different periods (1, 4 and 10 days. The SPME fiber coating composed of Car/PDMS presented the best performance. The optimal extraction conditions obtained through a Doehlert design were 60 min at 35 °C. The profiles for the volatile compounds content of the fruit at each stage of storage were determined by gas chromatography-mass spectrometry (GC-MS. The variation in the volatile profile over time was greater when the fruit samples were stored at 25 °C and at -12 °C compared to 4 °C. Thus, according to the volatile profiles associated with the storage conditions evaluated in this study, packaged pineapple retains best its fresh fruit aroma when stored at 4 °C.

  6. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations

    International Nuclear Information System (INIS)

    Cunha, Álvaro; Brito, F.P.; Martins, Jorge; Rodrigues, Nuno; Monteiro, Vitor; Afonso, João L.; Ferreira, Paula

    2016-01-01

    A network of conveniently located fast charging stations is one of the possibilities to facilitate the adoption of Electric Vehicles (EVs). This paper assesses the use of fast charging stations for EVs in conjunction with VRFBs (Vanadium Redox Flow Batteries). These batteries are charged during low electricity demand periods and then supply electricity for the fast charging of EVs during day, thus implementing a power peak shaving process. Flow batteries have unique characteristics which make them especially attractive when compared with conventional batteries, such as their ability to decouple rated power from rated capacity, as well as their greater design flexibility and nearly unlimited life. Moreover, their liquid nature allows their installation inside deactivated underground gas tanks located at gas stations, enabling a smooth transition of gas stations' business model towards the emerging electric mobility paradigm. A project of a VRFB system to fast charge EVs taking advantage of existing gas stations infrastructures is presented. An energy and cost analysis of this concept is performed, which shows that, for the conditions tested, the project is technologically and economically viable, although being highly sensitive to the investment costs and to the electricity market conditions. - Highlights: • Assessment of Vanadium Redox Flow Battery use for EV fast charge in gas stations. • This novel system proposal allows power peak shaving and use of deactivated gas tanks. • Philosophy allows seamless business transition towards the Electric Mobility paradigm. • Project is technologically and economically viable, although with long payback times. • Future Cost cuts due to technology maturation will consolidate project attractiveness.

  7. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  8. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  9. Control and enhancement of the oxygen storage capacity of ceria films by variation of the deposition gas atmosphere during pulsed DC magnetron sputtering

    Science.gov (United States)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony; Venkatanarayanan, Anita; Yaremchenko, Aleksey A.; Surendran, Rajesh; McGlynn, Enda; Daniels, Stephen

    2015-04-01

    In this study, nanostructured ceria (CeO2) films are deposited on Si(100) and ITO coated glass substrates by pulsed DC magnetron sputtering using a CeO2 target. The influence on the films of using various gas ambients, such as a high purity Ar and a gas mixture of high purity Ar and O2, in the sputtering chamber during deposition are studied. The film compositions are studied using XPS and SIMS. These spectra show a phase transition from cubic CeO2 to hexagonal Ce2O3 due to the sputtering process. This is related to the transformation of Ce4+ to Ce3+ and indicates a chemically reduced state of CeO2 due to the formation of oxygen vacancies. TGA and electrochemical cyclic voltammetry (CV) studies show that films deposited in an Ar atmosphere have a higher oxygen storage capacity (OSC) compared to films deposited in the presence of O2. CV results specifically show a linear variation with scan rate of the anodic peak currents for both films and the double layer capacitance values for films deposited in Ar/O2 mixed and Ar atmosphere are (1.6 ± 0.2) × 10-4 F and (4.3 ± 0.5) × 10-4 F, respectively. Also, TGA data shows that Ar sputtered samples have a tendency to greater oxygen losses upon reduction compared to the films sputtered in an Ar/O2 mixed atmosphere.

  10. 78 FR 53749 - Gulf South Pipeline Company, LP, Petal Gas Storage, LLC; Notice of Availability of the...

    Science.gov (United States)

    2013-08-30

    ... Transmission Company, LLC's existing pipeline; and \\1\\ A ``pig'' is a tool that is inserted into and moves..., the EA is available for public viewing on the FERC's Web site ( www.ferc.gov ) using the eLibrary link... Commission's [[Page 53750

  11. Fiscal 1999 project for R and D of technology for immediately effective and innovative energy environment technology. Report on result of development concerning novel technology for natural gas storage using absorbent; 1999 nendo kyuchakuzai wo mochiita shinkina tennen gas chozo gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    R and D was conducted on a natural gas storage method using absorbent, a method having higher density compared with a conventional method in the form of liquefied or compressed natural gas, and the fiscal 1999 results were reported. In the development of materials, studies in the preceding year were continued on the synthesis of prospective organic metal complexes, with the selection and manufacturing of the materials carried out that were suitable for methane absorptive storage, for the use of bench-scale equipment for system development BOG treatment. In the development of the system, taking the need of gas holders and BOG treatment into consideration, the design of the bench-scale equipment was performed, as were the manufacturing and the installation of the equipment. In addition, with an absorptive storage simulation built, calculation under various conditions was found possible as well as calculation for the verification of concepts for the enhancement of performance. Furthermore, in the development of a fuel storage system for natural gas vehicles, studies were conducted on the reduction of weight of the fuel container, improvement in the freedom of a place for mounting the fuel container, grasp of needs of absorptive natural gas vehicles such as increase in the fuel storage, and analysis of application feasibility. (NEDO)

  12. Structural analysis within the Rožná and Olší uranium deposits (Strážek Moldanubicum) for the estimation of deformation and stress conditions of underground gas storage

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Jiří; Melichar, R.; Hájek, Antonín; Koníček, Petr; Souček, Kamil; Staš, Lubomír; Kříž, P.; Lazárek, J.

    2013-01-01

    Roč. 10, č. 2 (2013), s. 237-246 ISSN 1214-9705 Institutional support: RVO:68145535 Keywords : structural analysis * deformation * stress * underground gas storage Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_13_Ptacek_237-246.pdf

  13. Risk assessment of liquefied petroleum gas (LPG storage tanks in the process industries using the Bowtie technique

    Directory of Open Access Journals (Sweden)

    Mostafa Mirzaei aliabadi

    2016-09-01

    Full Text Available Introduction: LPG storage tanks contain of large volumes of flammable and pressurized gases. Release of these fluids can lead to disastrous accidents such BLEVE, fiery explosion. Therefore, identifying the causes, consequences, probabilities and scenarios of accidents using Bowtie technique, that is combination of Fault Tree Analyses (FTA and Event Tree Analyses (ETA, is imperative and the purpose of this study. Methods: The hazards of the mentioned in Tehran Refinery LPG tanks were identified by Fault Tree Analyses and the consequences of the top event were predicted by Event Tree Analyses. Then probabilities of the events were calculated and the accident route, from causes phase to consequences phase, was drawn by Bowtie diagram. Results: In total, 21 events and 11 minimal cut sets with their occurrence probabilities and importance measure were determined at the left side of the Bowtie diagram. Also 9 consequences and scenarios of the top event were determined at the right side of the diagram. The occurrence probability of the top event (LPG release of spherical tanks was calculated 3.45×10-2. Conclusion: All factors involved in the occurrence of accidents and their consequences are showed in the Bowtie diagram. According to the obtained data, failure of cathodic protection systems and instrumentation, and overflow of tanks are included as important defects of the LPG tanks. Due to the high probability of the consequences, preventing systems such as cooling systems and Fire stop systems are required for installing in the studied unit to reduce the consequences of accidents.

  14. Decisions on investments in photovoltaics and carbon capture and storage: A comparison between two different greenhouse gas control strategies

    International Nuclear Information System (INIS)

    Vögele, Stefan; Rübbelke, Dirk

    2013-01-01

    Decisions of electricity suppliers on investments in low-carbon energy technologies like PV (photovoltaics) and CCS (carbon capture and storage) depend on the expected profits or surpluses that can be earned. For an assessment of the profitability of investments in PV (and other renewable energy technologies), additional costs caused by the fluctuation in PV power plants' productivity and by the need for backup capacities have to be taken into account. Changes in the rest of the power plant stock will via their influence on the merit-order curve also affect the return on investment. Bearing these aspects in mind, it might become more attractive to invest in alternative technologies like CCS than to channel the investments towards PV in combination with backup power plants. In our study we compare investments in CCS and PV regarding possible merit-order effects and profitability, using investments in Germany as an example. - Highlights: • We compare CCS and PV as CO 2 reduction strategies and focus on merit-order effects. • CCS has higher marginal cost than PV, but CCS does not need backup capacities. • Merit-order effects influence the profitability of investments in CCS and PV. • CCS investments at moderate rates tend to be more beneficial than investments in PV. • However, legal restrictions and lack of acceptance constitute limiting factors

  15. Coordination Control of a Novel Wind Farm Configuration Including a Hydrogen Storage System and a Gas Turbine

    Directory of Open Access Journals (Sweden)

    Shihua Xuan

    2016-07-01

    Full Text Available This paper proposes a novel configuration that combines wind turbines, an electrolyzer, and a gas turbine with the corresponding generator. A control strategy for this configuration is also proposed. The purpose of this configuration and its control strategy is to make the wind farm work like a conventional power plant from a grid’s point of view. The final proposed configuration works properly with the proposed control strategy, the three times per revolution (3p oscillation frequency is removed and the output power fluctuations caused by wind fluctuation are compensated. The final power output of the proposed configuration is constant like that of a conventional power plant, and it can change according to the different requirements of the transmission system operator.

  16. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  17. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  18. The estimation of CO2 storage potential of gas-bearing shale complex at the early stage of reservoir characterization: the case of Baltic Basin (Poland).

    Science.gov (United States)

    Wójcicki, Adam; Jarosiński, Marek

    2017-04-01

    For the stage of shale gas production, like in the USA, prediction of the CO2 storage potential in shale reservoir can be performed by dynamic modeling. We have made an attempt to estimate this potential at an early stage of shale gas exploration in the Lower Paleozoic Baltic Basin, based on data from 3,800 m deep vertical well (without hydraulic fracking stimulation), supplemented with additional information from neighboring boreholes. Such an attempt makes a sense as a first guess forecast for company that explores a new basin. In our approach, the storage capacity is build by: (1) sorption potential of organic matter, (2) open pore space and (3) potential fracture space. the sequence. our estimation is done for 120 m long shale sequence including three shale intervals enriched with organic mater. Such an interval is possible to be fracked from a single horizontal borehole as known from hydraulic fracture treatment in the other boreholes in this region. The potential for adsorbed CO2 is determined from Langmuir isotherm parameters taken from laboratory measurements in case of both CH4 and CO2 adsorption, as well as shale density and volume. CO2 has approximately three times higher sorption capacity than methane to the organic matter contained in the Baltic Basin shales. Finally, due to low permeability of shale we adopt the common assumption for the USA shale basins that the CO2 will be able to reach effectively only 10% of theoretical total sorption volume. The pore space capacity was estimated by utilizing results of laboratory measurements of dynamic capacity for pores bigger than 10 nm. It is assumed for smaller pores adsorption prevails over free gas. Similarly to solution for sorption, we have assumed that only 10 % of the tight pore space will be reached by CO2. For fracture space we have considered separately natural (tectonic-origin) and technological (potentially produced by hydraulic fracturing treatment) fractures. From fracture density profile and

  19. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  20. Dry flue gas desulfurization by-product application effects on plant uptake and soil storage changes in a managed grassland.

    Science.gov (United States)

    Burgess-Conforti, Jason R; Brye, Kristofor R; Miller, David M; Pollock, Erik D; Wood, Lisa S

    2018-02-01

    Environmental regulations mandate that sulfur dioxide (SO 2 ) be removed from the flue gases of coal-fired power plants, which results in the generation of flue gas desulfurization (FGD) by-products. These FGD by-products may be a viable soil amendment, but the large amounts of trace elements contained in FGD by-products are potentially concerning. The objective of this study was to evaluate the effects of land application of a high-Ca dry FGD (DFGD) by-product on trace elements in aboveground biomass and soil. A high-Ca DFGD by-product was applied once at a rate of 9 Mg ha -1 on May 18, 2015 to small plots with mixed-grass vegetation. Soil and biomass were sampled prior to application and several times thereafter. Aboveground dry matter and tissue As, Co, Cr, Hg, Se, U, and V concentrations increased (P  0.05) from pre-application levels or the unamended control within 3 to 6 months of application. Soil pH in the amended treatment 6 months after application was greater (P by-product application compared to the unamended control. High-Ca DFGD by-products appear to be useful as a soil amendment, but cause at least a temporary increase in tissue concentrations of trace elements, which may be problematic for animal grazing situations.

  1. Detection of Potato Storage Disease via Gas Analysis: A Pilot Study Using Field Asymmetric Ion Mobility Spectrometry

    Directory of Open Access Journals (Sweden)

    Massimo Rutolo

    2014-08-01

    Full Text Available Soft rot is a commonly occurring potato tuber disease that each year causes substantial losses to the food industry. Here, we explore the possibility of early detection of the disease via gas/vapor analysis, in a laboratory environment, using a recent technology known as FAIMS (Field Asymmetric Ion Mobility Spectrometry. In this work, tubers were inoculated with a bacterium causing the infection, Pectobacterium carotovorum, and stored within set environmental conditions in order to manage disease progression. They were compared with controls stored in the same conditions. Three different inoculation time courses were employed in order to obtain diseased potatoes showing clear signs of advanced infection (for standard detection and diseased potatoes with no apparent evidence of infection (for early detection. A total of 156 samples were processed by PCA (Principal Component Analysis and k-means clustering. Results show a clear discrimination between controls and diseased potatoes for all experiments with no difference among observations from standard and early detection. Further analysis was carried out by means of a statistical model based on LDA (Linear Discriminant Analysis that showed a high classification accuracy of 92.1% on the test set, obtained via a LOOCV (leave-one out cross-validation.

  2. Exploring the Perspectives of Alternative Fuels Production. Towards alternative fuels with zero, or negative greenhouse gas emissions, considering coal, biomass and carbon capture and storage

    International Nuclear Information System (INIS)

    Eerhart, A.J.J.E.

    2009-05-01

    In this report it is shown that future improvements in the production process of Fischer-Tropsch fuels can reduce costs and produce CO2 neutral gasoline and diesel. Major benefits lie in the improvement of the overall temperature profile of the plant at higher temperatures and carbon capture and storage. Based on literature studies, it was found that future technologies can operate at higher temperatures, and thus a better integration of heating and cooling. It was found that the future model of a CBTL (Coal and Biomass To Liquids) plant can produce liquids at a break-even oil price (BEOP) of 58.60 USD/barrel at 100% coal, with similar greenhouse gas emissions compared to liquids produced by conventional means today. However, once biomass is introduced at a ratio of 33% - 67% biomass, a CBTL plant becomes neutral in terms of GHG emissions. The BEOP for this neutral scenario is 69.60 USD/barrel. Looking at the 100% biomass scenario, the BEOP becomes 82.77 USD/barrel. The greenhouse gas emissions at this point are negative, meaning that more CO2 is captured during the process than is needed to grow biomass. This in effect makes a CBTL plant a carbon sink. By introducing future technologies and improvements, such as membrane technology for CCS (Carbon dioxide Capture and Storage), higher FTS (Fischer-Tropsch Synthesis) catalyst selectivities and an overall better temperature profile, the BEOP for the 100% coal scenario drops from 58.60 to 45.27 USD/barrel. The BEOP for the neutral scenario drops from 69.60 to 57.99 USD/barrel. The BEOP for the 100% biomass scenario drops from 82.77 to 69.07 USD/barrel. For the neutral scenario, the BEOP drops from 69.60 to 57.99 USD/barrel. If one assumes that a BEOP of 60 USD/barrel is economically reasonable, one can calculate the level of a carbon tax, once a carbon tax regime is imposed. For SOTA (state-of-the-art) 100% coal, FS (Future Scenario) 100%, FS 50% coal and FS 33% coal, there is no need for a carbon tax to reach 60 USD

  3. Reactivity of dolomite in water-saturated supercritical carbon dioxide: Significance for carbon capture and storage and for enhanced oil and gas recovery

    International Nuclear Information System (INIS)

    Wang Xiuyu; Alvarado, Vladimir; Swoboda-Colberg, Norbert; Kaszuba, John P.

    2013-01-01

    Highlights: ► Dolomite reactivity with wet and dry supercritical CO 2 were evaluated. ► Dolomite does not react with dry CO 2 . ► H 2 O-saturated supercritical CO 2 dissolves dolomite and precipitates carbonate mineral. ► Temperature/reaction time control morphology and extent of carbonate mineralization. ► Reaction with wet CO 2 may impact trapping, caprock integrity, and CCS/EOR injectivity. - Abstract: Carbon dioxide injection in porous reservoirs is the basis for carbon capture and storage, enhanced oil and gas recovery. Injected carbon dioxide is stored at multiple scales in porous media, from the pore-level as a residual phase to large scales as macroscopic accumulations by the injection site, under the caprock and at reservoir internal capillary pressure barriers. These carbon dioxide saturation zones create regions across which the full spectrum of mutual CO 2 –H 2 O solubility may occur. Most studies assume that geochemical reaction is restricted to rocks and carbon dioxide-saturated formation waters, but this paradigm ignores injection of anhydrous carbon dioxide against brine and water-alternating-gas flooding for enhanced oil recovery. A series of laboratory experiments was performed to evaluate the reactivity of the common reservoir mineral dolomite with water-saturated supercritical carbon dioxide. Experiments were conducted at reservoir conditions (55 and 110 °C, 25 MPa) and elevated temperature (220 °C, 25 MPa) for approximately 96 and 164 h (4 and 7 days). Dolomite dissolves and new carbonate mineral precipitates by reaction with water-saturated supercritical carbon dioxide. Dolomite does not react with anhydrous supercritical carbon dioxide. Temperature and reaction time control the composition, morphology, and extent of formation of new carbonate minerals. Mineral dissolution and re-precipitation due to reaction with water-saturated carbon dioxide may affect the contact line between phases, the carbon dioxide contact angle, and the

  4. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Liquefied Natural Gas Storage of Variable Composition / Magazynowanie Skroplonego Gazu Ziemnego O Zmiennym Składzie

    Science.gov (United States)

    Łaciak, Mariusz

    2015-03-01

    Thanks to the increasing diversification of LNG supply sources, being a result of the growing number of LNG liquefaction installations over the World, increase of short-term trade contracts and general trend to globally liberalize gas markets, reception terminals have to cope with the broad range of qualitatively diversified LNG deliveries from various sources. Different LNG deliveries potentially have different density caused by different gas composition. Although the LNG composition depends on LNG source, it mainly consists of methane, ethane, propane, butane and trace nitrogen. When a new supply of LNG is transported to the tank, the LNG composition and temperature in the tank can be different from LNG as delivered. This may lead to the liquid stratification in the tank, and consequently the rollover. As a result, LNG rapidly evaporates and the pressure in the tank increases. More and more restrictive safety regulations require fuller understanding of the formation and evolution of layers. The paper is focused on the analysis of liquid stratification in the tank which may take place when storing LNG, and which process leads to the rapid evaporation of considerable quantities of LNG. The aim was to attempt modeling of the process of liquid stratification in an LNG tank. The paper is closed with the results of modelling. Dzięki rosnącej dywersyfikacji źródeł dostaw LNG, spowodowanej zwiększającą się liczbą instalacji skraplania gazu na całym świecie, wzrostem ilości kontraktów krótkoterminowych w handlu i ogólnej tendencji do globalnej liberalizacja rynków gazu, terminale do odbioru muszą radzić sobie z coraz większą gamą różnych jakościowo dostaw LNG z różnych źródeł. Różne dostawy LNG mają potencjalnie inną gęstość dzięki różnym składom gazu. Chociaż kompozycja LNG zależy od źródła, to przede wszystkim składa się z metanu, etanu, propanu, butanu i w śladowych ilościach z azotu. Gdy nowa dostawa LNG jest

  6. Maintenance Program for Existing Gas Turbines

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  7. CO{sub 2} storage in the geological ground: Integrity of drilling acceptable for CSEGR (Carbon Sequestration with Enhanced Gas Recovery); CO{sub 2} Lagerung im Geogrund: Bohrungsintegritaet akzeptabel fuer CSEGR (Carbon Sequestration with Enhanced Gas Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Reinicke, K.M.; Franz, O. [Technische Univ. Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik

    2008-10-23

    With respect to the handling of carbon dioxide, there exist long-standing experiences in the industry (a) for the injection of carbon dioxide in petroleum deposits in the context of EOR measures (EOR = Enhanced Oil Recovery); (b) for the production of high pressure sour gas from petroleum deposits and (c) for the injection of hydrogen sulfide and carbon dioxide from the production of sour gas. Extensive information about arising failure processes and consequences was compiled and used for the development of the sour gas technology. With employment of this technology, no fundamental problems are to be expected in order to guarantee a safe injection and production during the operation phase. The authors of the contribution under consideration report on the state of the art so far it is relevant for the guarantee of the drilling integrity under influence of carbon dioxide. Recommendations for the guarantee and the proof are given to the mechanical integrity for new drillings, old drillings, filled drillings and monitoring.

  8. Need for relevant timescales when crediting temporary carbon storage

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky

    2013-01-01

    carbon storage in carbon footprinting. Methods: Implications of using a 100-year accounting period is evaluated via a literature review study of the global carbon cycle, as well as by analysing the crediting approaches that are exemplified by the PAS 2050 scheme for crediting temporary carbon storage......-term climatic benefits is considered to require storage of carbon for at least thousand years. However, it has been proposed that there may exist tipping points for the atmospheric CO2 concentration beyond which irreversible climate changes occur. To reduce the risk of passing such tipping points, fast...... mitigation of the rise in atmospheric greenhouse gas concentration is required and in this perspective, shorter storage times may still provide climatic benefits. Conclusions: Both short- and long-term perspectives should be considered when crediting temporary carbon storage, addressing both acute effects...

  9. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  10. Finite Element Optimised Back Analysis of In Situ Stress Field and Stability Analysis of Shaft Wall in the Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Yifei Yan

    2016-01-01

    Full Text Available A novel optimised back analysis method is proposed in this paper. The in situ stress field of an underground gas storage (UGS reservoir in a Turkey salt cavern is analysed by the basic theory of elastic mechanics. A finite element method is implemented to optimise and approximate the objective function by systematically adjusting boundary loads. Optimising calculation is performed based on a novel method to reduce the error between measurement and calculation as much as possible. Compared with common back analysis methods such as regression method, the method proposed can further improve the calculation precision. By constructing a large circular geometric model, the effect of stress concentration is eliminated and a minimum difference between computed and measured stress can be guaranteed in the rectangular objective region. The efficiency of the proposed method is investigated and confirmed by its capability on restoring in situ stress field, which agrees well with experimental results. The characteristics of stress distribution of chosen UGS wells are obtained based on the back analysis results and by applying the corresponding fracture criterion, the shaft walls are proven safe.

  11. Pressure Build-up and Decay in Acid Gas Injection Operations in Reefs in the Zama Field, Canada, and Implications for CO2 Storage

    International Nuclear Information System (INIS)

    Pooladi-Darvish, M.; Hong, H.; Pooladi-Darvish, M.; Bachu, S.

    2011-01-01

    The objective of this paper is to examine reasons for pressure rise in the Zama X2X pool in northwestern Alberta, Canada, that was used for acid gas disposal, and whether subsequent pressure decay was a result of pressure dissipation into a larger aquifer. The Zama X2X pool, approximately 1 km 2 in size, is connected to four other nearby pools through a common underlying aquifer. Pressure analysis for all the pools indicates that they are in good hydraulic communication. Initial pressure in the Zama X2X pool was approximately 15 MPa. Pressure declined first during oil production, stabilizing at around 10 MPa in the early 1970's, after which started to increase such that it reached 26 MPa in 1986. Subsequently, pressure declined reaching 22 MPa by 1995 just prior to starting injection of acid gas (80% CO 2 and 20% H 2 S). The operator injected acid gas at lower rates and wellhead pressures than those licensed by the regulatory agency. Despite significant production of water and hydrocarbons, the pressure in the Zama X2X pool continued to be higher than the initial reservoir pressure by more than 5 MPa, such that disposal operations were suspended in late 1998. Oil production continued all this time until 2002. Numerical simulations using CMG-IMEM and corresponding sensitivity studies reported in this paper show that disposal of more than 1 million m 3 of water between 1970 and 1988 and again in 1992-1993 in the adjacent Zama YY pool, which is in good hydrodynamic communication with the Zama X2X pool through the aquifer below the oil column, is the main reason for the high pressures observed in the Zama X2X pool. Sensitivity studies indicate that pressure decay in the X2X pool was due to fluid production. The study indicates that while pressure rise has been caused by hydraulic communication between the X2X and YY pools through the common aquifer, the aquifer was not of large volume to allow dissipation of the pressure. In addition to the case study, the implications

  12. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

    2007-09-07

    This paper presents numerical simulations of reactive transport which may be induced in the caprock of an on-shore depleted gas reservoir by the geological sequestration of carbon dioxide. The objective is to verify that CO{sub 2} geological disposal activities currently being planned for the study area are safe and do not induce any undesired environmental impact. In our model, fluid flow and mineral alteration are induced in the caprock by penetration of high CO{sub 2} concentrations from the underlying reservoir, where it was assumed that large amounts of CO{sub 2} have already been injected at depth. The main focus is on the potential effect of precipitation and dissolution processes on the sealing efficiency of caprock formations. Concerns that some leakage may occur in the investigated system arise because the seal is made up of potentially highly-reactive rocks, consisting of carbonate-rich shales (calcite+dolomite averaging up to more than 30% of solid volume fraction). Batch simulations and multi-dimensional 1D and 2D modeling have been used to investigate multicomponent geochemical processes. Numerical simulations account for fracture-matrix interactions, gas phase participation in multiphase fluid flow and geochemical reactions, and kinetics of fluid-rock interactions. The geochemical processes and parameters to which the occurrence of high CO{sub 2} concentrations are most sensitive are investigated by conceptualizing different mass transport mechanisms (i.e. diffusion and mixed advection+diffusion). The most relevant mineralogical transformations occurring in the caprock are described, and the feedback of these geochemical processes on physical properties such as porosity is examined to evaluate how the sealing capacity of the caprock could evolve in time. The simulations demonstrate that the occurrence of some gas leakage from the reservoir may have a strong influence on the geochemical evolution of the caprock. In fact, when a free CO{sub 2

  13. Carbon dioxide capture and storage

    International Nuclear Information System (INIS)

    Durand, B.

    2011-01-01

    The author first highlights the reasons why storing carbon dioxide in geological formations could be a solution in the struggle against global warming and climate change. Thus, he comments various evolutions and prospective data about carbon emissions or fossil energy consumption as well as various studies performed by international bodies and agencies which show the interest of carbon dioxide storage. He comments the evolution of CO 2 contributions of different industrial sectors and activities, notably in France. He presents the different storage modes and methods which concern different geological formations (saline aquifers, abandoned oil or gas fields, not exploitable coal seams) and different processes (sorption, carbonation). He discusses the risks associated with these storages, the storable quantities, evokes some existing installations in different countries. He comments different ways to capture carbon dioxide (in post-combustion, through oxy-combustion, by pre-combustion) and briefly evokes some existing installations. He evokes the issue of transport, and discusses efficiency and cost aspects, and finally has few words on legal aspects and social acceptability

  14. What is plutonium stabilization, and what is safe storage of plutonium?

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1995-01-01

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ''What is required for safe, multidecade, plutonium storage?'' The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided

  15. The methods of hydrogen storage

    International Nuclear Information System (INIS)

    Joubert, J.M.; Cuevas, F.; Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Hydrogen may be an excellent energy vector owing to its high specific energy. Its low density is however a serious drawback for its storage. Three techniques exist to store hydrogen. Storage under pressure is now performed in composite tanks under pressures around 700 bar. Liquid storage is achieved at cryogenic temperatures. Solid storage is possible in reversible metal hydrides or on high surface area materials. The three storage means are compared in terms of performance, energetic losses and risk. (authors)

  16. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    International Nuclear Information System (INIS)

    Le Pimpec, F.; Kirby, R.E.; King, F.K.; Pivi, M.

    2006-01-01

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas

  17. Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling

    International Nuclear Information System (INIS)

    Shirazi, Ali; Najafi, Behzad; Aminyavari, Mehdi; Rinaldi, Fabio; Taylor, Robert A.

    2014-01-01

    In this study, a mathematical model of an ice thermal energy storage (ITES) system for gas turbine cycle inlet air cooling is developed and thermal, economic, and environmental (emissions cost) analyses have been applied to the model. While taking into account conflicting thermodynamic and economic objective functions, a multi-objective genetic algorithm is employed to obtain the optimal design parameters of the plant. Exergetic efficiency is chosen as the thermodynamic objective while the total cost rate of the system including the capital and operational costs of the plant and the social cost of emissions, is considered as the economic objective. Performing the optimization procedure, a set of optimal solutions, called a Pareto front, is obtained. The final optimal design point is determined using TOPSIS decision-making method. This optimum solution results in the exergetic efficiency of 34.06% and the total cost of 28.7 million US$ y −1 . Furthermore, the results demonstrate that inlet air cooling using an ITES system leads to 11.63% and 3.59% improvement in the output power and exergetic efficiency of the plant, respectively. The extra cost associated with using the ITES system is paid back in 4.72 years with the income received from selling the augmented power. - Highlights: • Mathematical model of an ITES system for a GT cycle inlet air cooling is developed. • Exergetic, economic and environmental analyses were performed on the developed model. • Exergy efficiency and total cost rate were considered as the objective functions. • The total cost rate involves the capital, maintenance, operational and emissions costs. • Multi-objective optimization was applied to obtain the Pareto front

  18. Gas transfer system

    International Nuclear Information System (INIS)

    Oberlin, J.C.; Frick, G.; Kempfer, C.; North, C.

    1988-09-01

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks [fr

  19. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    M. Hoeschele, E. Weitzel, C. Backman

    2017-06-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements.

  20. Investigations of gas entrainment in KNK II

    International Nuclear Information System (INIS)

    Hoppe, P.; Massier, H.; Mitzel, F.; Vaeth, W.

    1979-08-01

    During commissioning of KNK II operational difficulties were encountered due to gas entrainment in the coolant. This gas entrainment caused negative reactivity fluctuations which tripped the reactor repeatedly. Since first investigations indicated one main cause of the gas entrainment and the existence of an accumulation process, a technical modification (installation of a throttle valve) for remedy was performed. This report describes the investigations made after the plant modification. The main objective was to test the effectiveness of the modifications and to look into the following still open problems: Localization of the gas storage, detection and estimation of a permanent gas entrainment and the analysis of positive power overshoots being observed in connection with the gas bubbles

  1. Cost-benefit assessment of energy storage for utility and customers: A case study in Malaysia

    International Nuclear Information System (INIS)

    Chua, Kein Huat; Lim, Yun Seng; Morris, Stella

    2015-01-01

    Highlights: • Energy storage can replace the peaking plants. • The cost of electricity for the plants with energy storage is as competitive as fossil fuel power plants. • Energy storage can reduce CO_2 emissions and defer the reinforcement of transmissions and distributions infrastructure. • Energy storage can reduce peak demand charge for customers. - Abstract: Under the existing commercial framework of electricity in Malaysia, commercial and industrial customers are required to pay for the peak power demand charge every month. Usually, the peak demand charge can contribute up to 30% to their electricity bills due to the use of open-cycle gas power plants that deliver expensive electricity to the customers. Therefore, alternative means are sought after in order to reduce the peak demand for the customers. Distributed small-scaled energy storage can offer a good option to reduce the peak. This paper aims to identify the financial benefits of the energy storage system for utility companies and customers. An energy dispatch model is developed in HOMER to determine the cost of electricity. The model considers the heat rates of power plants in calculating the costs of electricity under different regulatory frameworks of natural gas with various prices of battery components. Apart from that, the cost-benefit for the customers under various electric tariff structures is evaluated. Four battery storage technologies, namely lead acid, vanadium redox flow, zinc-bromine, and lithium-ion are considered. The simulation results show that the storage system with lead acid batteries is more cost-effective than other battery technologies. The customers can reduce their electricity bills with the payback period of 2.8 years. The generation cost for the power system with energy storage is lower than that without energy storage. Besides, the system with energy storage has lower greenhouse gas emissions than that without energy storage. The deferral of the reinforcement of

  2. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Davis Energy Group, Davis, CA (United States); Weitzel, Elizabeth [Davis Energy Group, Davis, CA (United States); Backman, Christine [Davis Energy Group, Davis, CA (United States)

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  3. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-02-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  4. Noble gas geochemistry to monitor CO{sub 2} geological storages; Apports de la geochimie des gaz rares a la surveillance des sites de sequestration geologique de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lafortune, St

    2007-11-15

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO{sub 2} emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO{sub 2} could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO{sub 2} in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO{sub 2} storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO{sub 2} accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  5. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  6. Is further deregulation of the natural gas industry beneficial : discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, P.J. [Anbrer Consulting, Ottawa, ON (Canada)

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities

  7. Is further deregulation of the natural gas industry beneficial : discussion paper

    International Nuclear Information System (INIS)

    Hoey, P.J.

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities in

  8. The Spanish gas industry

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The spanish gas industry has become one of the major actors in the gas sector of the European Economic Community. This paper pictures the spanish gas industry on the basis of a study by Sedigas, the spanish member of the International Gas Union (IGU). The main subjects described are structure of gas companies, natural gas supply, transport and storage, natural gas distribution networks, statistical data on natural gas consumption, manufactured gas and Liquefied Petroleum Gases (LPG) production-consumption in Spain. 7 figs., 10 tabs

  9. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  10. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  11. Achievement report in fiscal 2000 on research and development project for immediately effective and innovative energy environment technologies. Development of new natural gas storage technology using adsorbents; 2000 nendo sokkoteki kakushinteki energy kankyo gijutsu kenkyu kaihatsu jigyo seika hokokusho. Kyuchaku zai wo mochiita shinkina ten'nen gasu chozo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In relation with natural gas which contributes to preserving the environment and reducing dependence on petroleum, research and development has been performed on a storage system using adsorbents that allows storage of natural gas at higher density than conventional systems. This paper summarizes the achievements in fiscal 2000. In material development, the current fiscal year has performed the discussions on synthesis of three dimensional complexes. An adsorbent was synthesized successfully that has adsorption performance 2.5 times greater than the secondary complex. In developing an improved activated carbon, an adsorbent was synthesized successfully that has methane adsorption performance four times greater than the compressed gas, by using monolithic activated carbon that uses no binders. Carbon briquettes were manufactured for the basic testing equipment for fuel storage container of natural gas fueled automobiles. In the system development, installation was completed on a benc