WorldWideScience

Sample records for exhibits tissue specific

  1. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    Science.gov (United States)

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  2. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Carroll

    Full Text Available The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue, using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219 in the striatum to 12% (25/212 in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219 of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224 in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and

  3. Tissue-specific regulation of mouse MicroRNA genes in endoderm-derived tissues

    OpenAIRE

    Gao, Yan; Schug, Jonathan; McKenna, Lindsay B.; Le Lay, John; Kaestner, Klaus H.; Greenbaum, Linda E.

    2010-01-01

    MicroRNAs fine-tune the activity of hundreds of protein-coding genes. The identification of tissue-specific microRNAs and their promoters has been constrained by the limited sensitivity of prior microRNA quantification methods. Here, we determine the entire microRNAome of three endoderm-derived tissues, liver, jejunum and pancreas, using ultra-high throughput sequencing. Although many microRNA genes are expressed at comparable levels, 162 microRNAs exhibited striking tissue-specificity. After...

  4. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  5. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  6. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  7. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  8. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1.

    Science.gov (United States)

    Galeone, Antonio; Han, Seung Yeop; Huang, Chengcheng; Hosomi, Akira; Suzuki, Tadashi; Jafar-Nejad, Hamed

    2017-08-04

    Mutations in the human N- glycanase 1 ( NGLY1 ) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N -glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N -glycanase enzyme.

  9. Tissue-specific RNA expression marks distant-acting developmental enhancers.

    Directory of Open Access Journals (Sweden)

    Han Wu

    2014-09-01

    Full Text Available Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.

  10. [Tissue-specific nucleoprotein complexes].

    Science.gov (United States)

    Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh

    2000-01-01

    A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.

  11. Detection of neuronal tissue in meat using tissue specific DNA modifications

    Directory of Open Access Journals (Sweden)

    Harris N.

    2004-01-01

    Full Text Available A method has been developed to differentiate between non-muscle tissues such as liver, kidney and heart and that of muscle in meat samples using tissue specific DNA detection. Only muscle tissue is considered meat from the point of view of labelling (Food Labelling [Amendment] (England Regulations 2003 and Quantitative Ingredient Declaration (QUID, and also certain parts of the carcass are prohibited to be used in raw meat products (Meat Products [England] Regulations 2003. Included in the prohibited offal are brain and spinal cord. The described methodology has therefore been developed primarily to enforce labelling rules but also to contribute to the enforcement of BSE legislation on the detection of Central Nervous System (CNS tissue. The latter requires the removal of Specified Risk Material (SRM, such as bovine and ovine brain and spinal cord, from the food chain. Current methodologies for detection of CNS tissue include histological examination, analysis of cholesterol content and immunodetection. These can potentially be time consuming, less applicable to processed samples and may not be readily adapted to high throughput sample analysis. The objective of this work was therefore to develop a DNAbased detection assay that exploits the sensitivity and specificity of PCR and is potentially applicable to more highly processed food samples. For neuronal tissue, the DNA target selected was the promoter for Glial Fibrillary Acidic Protein (GFAP, a gene whose expression is restricted to astroglial cells within CNS tissue. The promoter fragments from both cattle and sheep have been isolated and key differences in the methylation patterns of certain CpG dinucleotides in the sequences from bovine and sheep brain and spinal cord and the corresponding skeletal muscle identified. These have been used to design a PCR assay exploiting Methylation Specific PCR (MSP to specifically amplify the neuronal tissue derived sequence and therefore identify the

  12. Tissue-specific functional networks for prioritizing phenotype and disease genes.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    Full Text Available Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.

  13. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung; Ryu, Tae Woo; Heo, Hyoungsam; Seo, Seungwon; Lee, Doheon; Hur, Cheolgoo

    2011-01-01

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  14. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  15. Tissue-specific tagging of endogenous loci in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kate Koles

    2016-01-01

    Full Text Available Fluorescent protein tags have revolutionized cell and developmental biology, and in combination with binary expression systems they enable diverse tissue-specific studies of protein function. However these binary expression systems often do not recapitulate endogenous protein expression levels, localization, binding partners and/or developmental windows of gene expression. To address these limitations, we have developed a method called T-STEP (tissue-specific tagging of endogenous proteins that allows endogenous loci to be tagged in a tissue specific manner. T-STEP uses a combination of efficient CRISPR/Cas9-enhanced gene targeting and tissue-specific recombinase-mediated tag swapping to temporally and spatially label endogenous proteins. We have employed this method to GFP tag OCRL (a phosphoinositide-5-phosphatase in the endocytic pathway and Vps35 (a Parkinson's disease-implicated component of the endosomal retromer complex in diverse Drosophila tissues including neurons, glia, muscles and hemocytes. Selective tagging of endogenous proteins allows, for the first time, cell type-specific live imaging and proteomics in complex tissues.

  16. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  17. Development of a monoclonal antibody that specifically detects tissue inhibitor of metalloproteinase-4 (TIMP-4) in formalin-fixed, paraffin-embedded human tissues.

    Science.gov (United States)

    Donover, P Scott; Wojciechowski, Brian S; Thirumaran, Rajesh; Zemba-Palko, Vlasta; Prendergast, George C; Wallon, U Margaretha

    2010-08-01

    Overexpression of the extracellular metalloproteinase inhibitor TIMP-4 in estrogen receptor-negative breast cancers was found recently to be associated with a poor prognosis for survival. To pursue exploration of the theranostic applications of TIMP-4, specific antibodies with favorable properties for immunohistochemical use and other clinical assays are needed. Here we report the characterization of a monoclonal antibody (clone 9:4-7) specific for full-length human TIMP-4 with suitable qualities. The antibody was determined to be an IgG(2b) immunoglobulin. In enzyme-linked immunosorbent assay (ELISA) and immunoblotting assays, it did not exhibit any detectable crossreactivity with recombinant forms of the other human TIMPs 1, 2, and 3. In contrast, the antibody displayed high specificity and sensitivity for TIMP-4 including in formalin-fixed and paraffin-embedded specimens of human breast specimens. An analysis of tissue microarrays of human cancer and corresponding normal tissues revealed specific staining patterns with excellent signal-to-noise ratios. This study documents TIMP-4 monoclonal antibody clone 9:4-7 as an effective tool for preclinical and clinical investigations. Published 2010 Wiley-Liss, Inc.

  18. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples.

    Science.gov (United States)

    Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E

    2014-04-01

    Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  19. TiGER: a database for tissue-specific gene expression and regulation.

    Science.gov (United States)

    Liu, Xiong; Yu, Xueping; Zack, Donald J; Zhu, Heng; Qian, Jiang

    2008-06-09

    Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation). The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  20. TiGER: A database for tissue-specific gene expression and regulation

    Directory of Open Access Journals (Sweden)

    Zack Donald J

    2008-06-01

    Full Text Available Abstract Background Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. Results The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation. The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. Conclusion We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  1. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    Science.gov (United States)

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  2. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hara, Naomi; Morata, Saori

    2016-01-01

    control ratio was also significantly increased. Maximal Protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired...... C57BL/6 mice were analyzed at either 6 hours or 24 hours. ROS-production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS...

  3. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  4. Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.

    Science.gov (United States)

    Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Zam, Azhar; Schmidt, Michael; Douplik, Alexandre; Nkenke, Emeka

    2010-04-01

    Laser surgery does not provide haptic feedback for operating layer-by-layer and thereby preserving vulnerable anatomical structures like nerve tissue or blood vessels. Diffuse reflectance spectra can facilitate remote optical tissue differentiation. It is the aim of the study to use this technique on soft tissue samples, to set a technological basis for a remote optical feedback system for tissue-specific laser surgery. Diffuse reflectance spectra (wavelength range: 350-650 nm) of ex vivo types of soft tissue (a total of 10,800 spectra) of the midfacial region of domestic pigs were remotely measured under reduced environmental light conditions and analyzed in order to differentiate between skin, mucosa, muscle, subcutaneous fat, and nerve tissue. We performed a principal components (PC) analysis (PCA) to reduce the number of variables. Linear discriminant analysis (LDA) was utilized for classification. For the tissue differentiation, we calculated the specificity and sensitivity by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Six PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. All of the types of soft tissue could be differentiated with high specificity and sensitivity. Only the tissue pairs nervous tissue/fatty tissue and nervous tissue/mucosa showed a decline of differentiation due to bio-structural similarity. However, both of these tissue pairs could still be differentiated with a specificity and sensitivity of more than 90%. Analyzing diffuse reflectance spectroscopy with PCA and LDA allows for remote differentiation of biological tissue. Considering the limitations of the ex vivo conditions, the obtained results are promising and set a basis for the further development of a feedback system for tissue-specific laser surgery. (c) 2010 Wiley-Liss, Inc.

  5. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery

    Directory of Open Access Journals (Sweden)

    Katja Tangermann-Gerk

    2013-10-01

    Full Text Available Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA and Quadratic Discriminant Analysis (QDA were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery.

  6. Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.

    Science.gov (United States)

    Ong, Chin Siang; Fukunishi, Takuma; Nashed, Andrew; Blazeski, Adriana; Zhang, Huaitao; Hardy, Samantha; DiSilvestre, Deborah; Vricella, Luca; Conte, John; Tung, Leslie; Tomaselli, Gordon; Hibino, Narutoshi

    2017-07-02

    This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials, using only cells. Cardiomyocytes, endothelial cells and fibroblasts are first isolated, counted and mixed at desired cell ratios. They are co-cultured in individual wells in ultra-low attachment 96-well plates. Within 3 days, beating spheroids form. These spheroids are then picked up by a nozzle using vacuum suction and assembled on a needle array using a 3D bioprinter. The spheroids are then allowed to fuse on the needle array. Three days after 3D bioprinting, the spheroids are removed as an intact patch, which is already spontaneously beating. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.

  7. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Hyun-Tae; Hwang, Ildoo; Han, Kyung-Hwan

    2012-06-01

    Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  8. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2004-09-01

    Full Text Available Abstract Background Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. Methods We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. Results Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. Conclusions We propose to combine the computational prediction of alternative splice isoforms with experimental validation for

  9. 40 CFR 268.32 - Waste specific prohibitions-Soils exhibiting the toxicity characteristic for metals and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Soils... Prohibitions on Land Disposal § 268.32 Waste specific prohibitions—Soils exhibiting the toxicity characteristic... from land disposal: any volumes of soil exhibiting the toxicity characteristic solely because of the...

  10. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  11. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small

  12. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  13. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca2+-ATPase

    International Nuclear Information System (INIS)

    Pestov, Nikolay B.; Dmitriev, Ruslan I.; Kostina, Maria B.; Korneenko, Tatyana V.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.

    2012-01-01

    Highlights: ► Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. ► ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. ► Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. ► Subcellular localization of SPCA2 may depend on tissue type. ► In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2 gene radiated from ATP2C1 (encoding SPCA1) during adaptation of tetrapod ancestors to terrestrial habitats.

  14. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  15. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  16. Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum.

    Science.gov (United States)

    Miyazaki, S; Koga, R; Bohnert, H J; Fukuhara, T

    1999-03-01

    Ten transcripts (Mpc1-10) homologous to protein phosphatases of the 2C family have been isolated from the halophyte Mesembryanthemum crystallinum (common ice plant). Transcripts range in size from 1.6 to 2.6 kb, and encode proteins whose catalytic domains are between 24% and 62% identical to that of the Arabidopsis PP2C, ABI1. Transcript expression is tissue specific. Two isoforms are present only in roots (Mpc1 and Mpc5), three in young leaves (Mpc6, 8 and 9), two in old leaves (Mpc6 and Mpc8), and two in post-flowering leaves (Mpc8 and Mpc9). Mpc2 is strongly expressed in roots and also in seeds, meristematic tissues and mature flowers. Mpc3 is specific for leaf meristems, and Mpc4 is found in root and leaf meristems. Mpc7 is restricted to meristematic tissues. Mpc10 is only present in mature flowers. Mpc2 (in roots and leaves), Mpc5 (in roots) and Mpc8 (weakly in leaves) are induced by salinity stress and drought conditions with different kinetics in different tissues, but other Mpcs are downregulated by stress. Cold stress (4 degrees C) leads to a decline in Mpc5 and Mp6, but low temperature provoked a long-term (days) increase in Mpc2 levels in leaves and a transient increase (less than 24 h) in roots. Four full-length transcripts have been obtained. In each case, after over-expression in E. coli, the isolated proteins exhibited (Mg2+-dependent, okadeic acid-insensitive) protein phosphatase activity, although activity against 32P-phosphocasein varied among different PP2Cs. Determination of tissue developmental and stress response specificity of PP2C will facilitate functional studies of signal-transducing enzymes in this halophytic organism.

  17. Identification of species- and tissue-specific proteins using proteomic strategy

    Science.gov (United States)

    Chernukha, I. M.; Vostrikova, N. L.; Kovalev, L. I.; Shishkin, S. S.; Kovaleva, M. A.; Manukhin, Y. S.

    2017-09-01

    Proteomic technologies have proven to be very effective for detecting biochemical changes in meat products, such as changes in tissue- and species-specific proteins. In the tissues of cattle, pig, horse and camel M. longissimus dorsi both tissue- and species specific proteins were detected using two dimensional electrophoresis. Species-specific isoforms of several muscle proteins were also identified. The identified and described proteins of cattle, pig, horse and camel skeletal muscles (including mass spectra of the tryptic peptides) were added to the national free access database “Muscle organ proteomics”. This research has enabled the development of new highly sensitive technologies for meat product quality control against food fraud.

  18. Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2009-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs. Results In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values Conclusion Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.

  19. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B., E-mail: korn@mail.ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Dmitriev, Ruslan I.; Kostina, Maria B. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Korneenko, Tatyana V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shakhparonov, Mikhail I. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  20. Tissue Specific Promoters in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    A. R. Rama

    2015-01-01

    Full Text Available Colorectal carcinoma is the third most prevalent cancer in the world. In the most advanced stages, the use of chemotherapy induces a poor response and is usually accompanied by other tissue damage. Significant progress based on suicide gene therapy has demonstrated that it may potentiate the classical cytotoxic effects in colorectal cancer. The inconvenience still rests with the targeting and the specificity efficiency. The main target of gene therapy is to achieve an effective vehicle to hand over therapeutic genes safely into specific cells. One possibility is the use of tumor-specific promoters overexpressed in cancers. They could induce a specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several promoters have been assayed into direct suicide genes to cancer cells. This review discusses the current status of specific tumor-promoters and their great potential in colorectal carcinoma treatment.

  1. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  2. A hypoxia- and {alpha}-fetoprotein-dependent oncolytic adenovirus exhibits specific killing of hepatocellular carcinomas.

    Science.gov (United States)

    Kwon, Oh-Joon; Kim, Pyung-Hwan; Huyn, Steven; Wu, Lily; Kim, Minjung; Yun, Chae-Ok

    2010-12-15

    Oncolytic adenoviruses (Ad) constitute a new promising modality of cancer gene therapy that displays improved efficacy over nonreplicating Ads. We have previously shown that an E1B 19-kDa-deleted oncolytic Ad exhibits a strong cell-killing effect but lacks tumor selectivity. To achieve hepatoma-restricted cytotoxicity and enhance replication of Ad within the context of tumor microenvironment, we used a modified human α-fetoprotein (hAFP) promoter to control the replication of Ad with a hypoxia response element (HRE). We constructed Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 that incorporated either 6 or 12 copies of HRE upstream of promoter. The promoter activity and specificity to hepatoma were examined by luciferase assay and fluorescence-activated cell sorting analysis. In addition, the AFP expression- and hypoxia-dependent in vitro cytotoxicity of Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cytopathic effect assay. In vivo tumoricidal activity on subcutaneous and liver orthotopic model was monitored by noninvasive molecular imaging. Ad-HRE(12)/hAFPΔ19 exhibited enhanced tumor selectivity and cell-killing activity when compared with Ad-hAFPΔ19. The tumoricidal activity of Ad-HRE(12)/hAFPΔ19 resulted in significant inhibition of tumor growth in both subcutaneous and orthotopic models. Histologic examination of the primary tumor after treatment confirmed accumulation of viral particles near hypoxic areas. Furthermore, Ad-HRE(12)/hAFPΔ19 did not cause severe inflammatory immune response and toxicity after systemic injection. The results presented here show the advantages of incorporating HREs into a hAFP promoter-driven oncolytic virus. This system is unique in that it acts in both a tissue-specific and tumor environment-selective manner. The greatly enhanced selectivity and tumoricidal activity of Ad-HRE(12)/hAFPΔ19 make it a promising therapeutic agent in the treatment

  3. Diagnostic radiopharmaceuticals for localization in target tissues exhibiting a regional pH shift relative to surrounding tissues

    International Nuclear Information System (INIS)

    Blau, M.; Kung, H.F.

    1985-01-01

    Diagnostic radiopharmaceutical compounds are provided which are capable of entering a target tissue or a target organ by passive diffusion through cell walls and which are effectively accumulated and retained within the target tissue or organ due to a regional pH shift. Such compounds are desirably readily accessible synthetically using readily available radionuclides. The compound comprises a radioactive isotope of an element in chemical combination with at least one amine group and preferably with at least two secondary or tertiary amine groups. The radioactive element is an element other than iodine emitting gamma ray, x-ray or positron radiation. When the element is a gamma ray emitting isotope, at least 75 percent of the number of emissions is emitted at energies of between 80 and 400 keV. The half-life of the isotope is usually between two minutes and 15 days. The compound has acid-base characteristics such that the state of ionization of the compound at the pH of the body is significantly different and usually less than its state of ionization at the intracellular pH of the target tissue. The compound has such lipid solubility characteristics that it is capable of ready penetration through cell walls, but within cells its lipid solubility is substantially decreased, whereby the ability of the compound to leave the target tissue is substantially diminished. Specific data relevant to di-beta-(piperidinoethyl)-selenide and di-beta-(morpholinoethyl)-selenide in rat brains are presented

  4. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; Fischetti, Robert F.; Hyman, Bradley; Frosch, Matthew; Gomez-Isla, Teresa; Makowski, Lee

    2016-09-15

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinct clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest

  5. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Science.gov (United States)

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  6. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  7. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    Directory of Open Access Journals (Sweden)

    Stelzle Florian

    2012-06-01

    Full Text Available Abstract Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA, followed by linear discriminant analysis (LDA. To assess the potential of tissue differentiation, area under the curve (AUC, sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%. However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85. Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the

  8. Inter-specific coral chimerism: Genetically distinct multicellular structures associated with tissue loss in Montipora capitata

    Science.gov (United States)

    Work, Thierry M.; Forsman, Zac H.; Szabo, Zoltan; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.

  9. Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome

    Science.gov (United States)

    Pinter, Stefan F.; Colognori, David; Beliveau, Brian J.; Sadreyev, Ruslan I.; Payer, Bernhard; Yildirim, Eda; Wu, Chao-ting; Lee, Jeannie T.

    2015-01-01

    In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5′ and 3′ termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease. PMID:25858912

  10. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  11. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    Science.gov (United States)

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  12. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage

    Science.gov (United States)

    Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony

    2017-01-01

    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787

  13. Tissue specific regulation of lipogenesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Blennemann, B.; Freake, H. (Univ. of Connecticut, Storrs (United States))

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  14. Tissue specific regulation of lipogenesis by thyroid hormone

    International Nuclear Information System (INIS)

    Blennemann, B.; Freake, H.

    1990-01-01

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone

  15. Age-dependent tissue-specific exposure of cell phone users

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Andreas; Gosselin, Marie-Christine; Kuehn, Sven; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland); Christopoulou, Maria [National Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Polytechniou Str., 15780 Athens (Greece)], E-mail: christ@itis.ethz.ch

    2010-04-07

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  16. Age-dependent tissue-specific exposure of cell phone users

    International Nuclear Information System (INIS)

    Christ, Andreas; Gosselin, Marie-Christine; Kuehn, Sven; Kuster, Niels; Christopoulou, Maria

    2010-01-01

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  17. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin......, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols....

  18. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  19. Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyu

    2007-12-01

    Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.

  20. Intestinal mucosa is a target tissue for pancreatic polypeptide

    International Nuclear Information System (INIS)

    Gilbert, W.R.; Kramer, J.L.; Frank, B.H.; Gingerich, R.L.

    1986-01-01

    Studies were carried out to identify mammalian tissues capable of specifically binding mammalian pancreatic polypeptide (PP). Bovine PP (bPP) radiolabeled with 125 I was purified by HPLC to yield [ 125 I]iodo-(Tyr-27) bPP. The label was injected into three pairs of fasted littermate dogs and allowed to circulate for 5 min. One of the dogs was a control which received an excess of unlabeled porcine PP to provide competition for receptor binding. Unbound bPP was removed by perfusion with Krebs-Ringer bicarbonate and the tissue fixed in situ with Karnovsky's fixative. Tissue samples from various organs were removed, weighed, and counted. The entire gastrointestinal tract demonstrated high levels of 125 I after injection of the labeled peptide. The duodenum, jejunum, ileum, and colon were the only tissues to exhibit specific binding of bPP. These tissues (mucosal and muscle layers) from experimental animals exhibited 31-76% higher binding than the corresponding tissues from the control animals. Sections of the gastrointestinal tract were scraped to separate the mucosal layer from the underlying muscle layer. The mucosal layer of the duodenum, jejunum, and ileum exhibited 145-162% increases in binding compared to the control animals. The muscle layer of these tissues demonstrated no significant increase. These findings demonstrate that mucosal layer of the small intestine is a target tissue for mammalian PP

  1. Estimating patient-specific soft-tissue properties in a TKA knee.

    Science.gov (United States)

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  3. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    Science.gov (United States)

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  4. Description of electrophoretic loci and tissue specific gene ...

    African Journals Online (AJOL)

    Protein electrophoresis was used to study the distributions and tissue specificity of gene expression of enzymes encoded by 42 loci in Rhinolophus clivosus and R. landeri, the genetically most divergent of the ten species of southern African horseshoe bats. No differences in gene expression were found between R.

  5. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Steffen Hahnel

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM and bright-field microscopy (BF. We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP as well as for post-transcriptional regulation (SmAQP. CONCLUSIONS/SIGNIFICANCE: The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved

  6. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among prot...

  7. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    Science.gov (United States)

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis

    Science.gov (United States)

    Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu; Hu, Jennifer F.; Ramroop, Johnny; Kellner, Stefanie M.; Benton, Matthew A.; Govind, Shubha; Dedon, Peter C.; Sternglanz, Rolf; Lai, Eric C.

    2015-01-01

    N6-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon–codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease. PMID:26516084

  9. Depot-Specific Response of Adipose Tissue to Diet-Induced Inflammation: The Retinoid-Related Orphan Receptor α (RORα) Involved?

    Science.gov (United States)

    Kadiri, Sarah; Auclair, Martine; Capeau, Jacqueline; Antoine, Bénédicte

    2017-11-01

    Epididymal adipose tissue (EAT), a visceral fat depot, is more closely associated with metabolic dysfunction than inguinal adipose tissue (IAT), a subcutaneous depot. This study evaluated whether the nuclear receptor RORα, which controls inflammatory processes, could be implicated. EAT and IAT were compared in a RORα loss-of-function mouse (sg/sg) and in wild-type (WT) littermates, fed a standard diet (SD) or a Western diet (WD), to evaluate the impact of RORα expression on inflammatory status and on insulin sensitivity (IS) of each fat depot according to the diet. Sg/sg mice fed the SD exhibited a decreased inflammatory status and a higher IS in their fat depots than WT mice. WD-induced obesity had distinct effects on the two fat depots. In WT mice, EAT exhibited increased inflammation and insulin resistance while IAT showed reduced inflammation and improved IS, together with a depot-specific increase of RORα, and its target gene IκBα, in the stroma vascular fraction (SVF). Conversely, in sg/sg mice, WD increased inflammation and lowered IS of IAT but not of EAT. These findings suggest an anti-inflammatory role for RORα in response to WD, which occurs at the level of SVF of IAT, thus possibly contributing to the "healthy" expansion of IAT. © 2017 The Obesity Society.

  10. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    Science.gov (United States)

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Tissue-Specific Methylation of Long Interspersed Nucleotide Element-1 of Homo Sapiens (L1Hs) During Human Embryogenesis and Roles in Neural Tube Defects.

    Science.gov (United States)

    Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T

    2015-01-01

    Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.

  12. Pyrosequencing data reveals tissue-specific expression of lineage-specific transcripts in chickpea

    OpenAIRE

    Garg, Rohini; Jain, Mukesh

    2011-01-01

    Chickpea is a very important crop legume plant, which provides a protein-rich supplement to cereal-based diets and has the ability to fix atmospheric nitrogen. Despite its economic importance, the functional genomic resources for chickpea are very limited. Recently, we reported the complete transcriptome of chickpea using next generation sequencing technologies. We analyzed the tissue-specific expression of chickpea transcripts based on RNA-seq data. In addition, we identified two sets of lin...

  13. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Science.gov (United States)

    Beery, Annaliese K.; Christensen, Jennifer D; Lee, Nicole S.; Blandino, Katrina L.

    2018-01-01

    Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social

  14. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  15. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight.

    Science.gov (United States)

    Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

  16. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer

    DEFF Research Database (Denmark)

    Zuber, Verena; Bettella, Francesco; Witoelar, Aree

    2017-01-01

    progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate cancer (PC), androgen receptor (AR) binding......Background: Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor...... the differential enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and can be used with similar effect in breast cancer (BC...

  17. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  18. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  19. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    Science.gov (United States)

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  20. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  1. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  2. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also......Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases were...

  3. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules.

    Directory of Open Access Journals (Sweden)

    Erik Limpens

    Full Text Available Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur and proximal region (where symbiosomes are mainly differentiating, as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.

  4. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    Science.gov (United States)

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.

    Science.gov (United States)

    Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L

    2017-03-23

    Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune

  6. Screening in larval zebrafish reveals tissue-specific distribution of fifteen fluorescent compounds

    Directory of Open Access Journals (Sweden)

    Yuxiao Yao

    2017-09-01

    Full Text Available The zebrafish is a prominent vertebrate model for low-cost in vivo whole organism screening. In our recent screening of the distribution patterns of fluorescent compounds in live zebrafish larvae, fifteen compounds with tissue-specific distributions were identified. Several compounds were observed to accumulate in tissues where they were reported to induce side-effects, and compounds with similar structures tended to be enriched in the same tissues, with minor differences. In particular, we found three novel red fluorescent bone-staining dyes: purpurin, lucidin and 3-hydroxy-morindone; purpurin can effectively label bones in both larval and adult zebrafish, as well as in postnatal mice, without significantly affecting bone mass and density. Moreover, two structurally similar chemotherapeutic compounds, doxorubicin and epirubicin, were observed to have distinct distribution preferences in zebrafish. Epirubicin maintained a relatively higher concentration in the liver, and performed better in inhibiting hepatic hyperplasia caused by the over-expression of krasG12V. In total, our study suggests that the transparent zebrafish larvae serve as valuable tools for identifying tissue-specific distributions of fluorescent compounds.

  7. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    Science.gov (United States)

    Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2017-08-29

    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.

  8. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs

    Directory of Open Access Journals (Sweden)

    Lambert Georgina M

    2005-10-01

    Full Text Available Abstract Background Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value. Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. Results We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. Conclusion The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.

  9. Histology-specific therapy for advanced soft tissue sarcoma and benign connective tissue tumors.

    Science.gov (United States)

    Silk, Ann W; Schuetze, Scott M

    2012-09-01

    Molecularly targeted agents have shown activity in soft tissue sarcoma (STS) and benign connective tissue tumors over the past ten years, but response rates differ by histologic subtype. The field of molecularly targeted agents in sarcoma is increasingly complex. Often, clinicians must rely on phase II data or even case series due to the rarity of these diseases. In subtypes with a clear role of specific factors in the pathophysiology of disease, such as giant cell tumor of the bone and diffuse-type tenosynovial giant cell tumor, it is reasonable to treat with newer targeted therapies, when available, in place of chemotherapy when systemic treatment is needed to control disease. In diseases without documented implication of a pathway in disease pathogenesis (e.g. soft tissue sarcoma and vascular endothelial growth factor), clear benefit from drug treatment should be established in randomized phase III trials before implementation into routine clinical practice. Histologic subtype will continue to emerge as a critical factor in treatment selection as we learn more about the molecular drivers of tumor growth and survival in different subtypes. Many of the drugs that have been recently developed affect tumor growth more than survival, therefore progression-free survival may be a more clinically relevant intermediate endpoint than objective response rate using Response Evaluation Criteria In Solid Tumors (RECIST) in early phase sarcoma trials. Because of the rarity of disease and increasing need for multidisciplinary management, patients with connective tissue tumors should be evaluated at a center with expertise in these diseases. Participation in clinical trials, when available, is highly encouraged.

  10. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves1

    Science.gov (United States)

    Hübner, Michaela; Matsubara, Shizue; Beyer, Peter

    2015-01-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. PMID:26134165

  11. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  12. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...

  13. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3 and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  14. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Science.gov (United States)

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  15. A minimal set of tissue-specific hypomethylated CpGs constitute epigenetic signatures of developmental programming.

    Directory of Open Access Journals (Sweden)

    Alejandro Colaneri

    Full Text Available Cell specific states of the chromatin are programmed during mammalian development. Dynamic DNA methylation across the developing embryo guides a program of repression, switching off genes in most cell types. Thus, the majority of the tissue specific differentially methylated sites (TS-DMS must be un-methylated CpGs.Comparison of expanded Methyl Sensitive Cut Counting data (eMSCC among four tissues (liver, testes, brain and kidney from three C57BL/6J mice, identified 138,052 differentially methylated sites of which 23,270 contain CpGs un-methylated in only one tissue (TS-DMS. Most of these CpGs were located in intergenic regions, outside of promoters, CpG islands or their shores, and up to 20% of them overlapped reported active enhancers. Indeed, tissue-specific enhancers were up to 30 fold enriched in TS-DMS. Testis showed the highest number of TS-DMS, but paradoxically their associated genes do not appear to be specific to the germ cell functions, but rather are involved in organism development. In the other tissues the differentially methylated genes are associated with tissue-specific physiological or anatomical functions. The identified sets of TS-DMS quantify epigenetic distances between tissues, generated during development. We applied this concept to measure the extent of reprogramming in the liver of mice exposed to in utero or early postnatal nutritional stress. Different protocols of food restriction reprogrammed the liver methylome in different but reproducible ways.Thus, each identified set of differentially methylated sites constituted an epigenetic signature that traced the developmental programing or the early nutritional reprogramming of each exposed mouse. We propose that our approach has the potential to outline a number of disease-associated epigenetic states. The composition of differentially methylated CpGs may vary with each situation, behaving as a composite variable, which can be used as a pre-symptomatic marker for

  16. Tissue-specific 5' heterogeneity of PPARα transcripts and their differential regulation by leptin.

    Directory of Open Access Journals (Sweden)

    Emma S Garratt

    Full Text Available The genes encoding nuclear receptors comprise multiple 5'untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1 and liver (P2 transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3-13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors.

  17. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    Science.gov (United States)

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  18. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    Science.gov (United States)

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene

  19. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation.

    Science.gov (United States)

    Li, Min; Zhang, Jiayi; Liu, Qing; Wang, Jianxin; Wu, Fang-Xiang

    2014-01-01

    Predicting disease-related genes is one of the most important tasks in bioinformatics and systems biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are available, which make it possible to identify disease-related genes at the network level. However, network-based identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the current available protein interaction networks (PIN). Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role in the development of complex diseases. A PageRank-based method was developed to identify disease-related genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN, weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-related genes on the case studies of colon cancer and leukemia. Tissue-specific data and DNA methylation are two important factors to the study of human diseases. The same method implemented on the WTSN can achieve better results compared to those being implemented on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for identifying disease-related genes from WTSN.

  20. Tissue-specific inactivation of type 2 deiodinase reveals multilevel control of fatty acid oxidation by thyroid hormone in the mouse.

    Science.gov (United States)

    Fonseca, Tatiana L; Werneck-De-Castro, Joao Pedro; Castillo, Melany; Bocco, Barbara M L C; Fernandes, Gustavo W; McAninch, Elizabeth A; Ignacio, Daniele L; Moises, Caio C S; Ferreira, Alexander R; Ferreira, Alexandre; Gereben, Balázs; Bianco, Antonio C

    2014-05-01

    Type 2 deiodinase (D2) converts the prohormone thyroxine (T4) to the metabolically active molecule 3,5,3'-triiodothyronine (T3), but its global inactivation unexpectedly lowers the respiratory exchange rate (respiratory quotient [RQ]) and decreases food intake. Here we used FloxD2 mice to generate systemically euthyroid fat-specific (FAT), astrocyte-specific (ASTRO), or skeletal-muscle-specific (SKM) D2 knockout (D2KO) mice that were monitored continuously. The ASTRO-D2KO mice also exhibited lower diurnal RQ and greater contribution of fatty acid oxidation to energy expenditure, but no differences in food intake were observed. In contrast, the FAT-D2KO mouse exhibited sustained (24 h) increase in RQ values, increased food intake, tolerance to glucose, and sensitivity to insulin, all supporting greater contribution of carbohydrate oxidation to energy expenditure. Furthermore, FAT-D2KO animals that were kept on a high-fat diet for 8 weeks gained more body weight and fat, indicating impaired brown adipose tissue (BAT) thermogenesis and/or inability to oxidize the fat excess. Acclimatization of FAT-D2KO mice at thermoneutrality dissipated both features of this phenotype. Muscle D2 does not seem to play a significant metabolic role given that SKM-D2KO animals exhibited no phenotype. The present findings are unique in that they were obtained in systemically euthyroid animals, revealing that brain D2 plays a dominant albeit indirect role in fatty acid oxidation via its sympathetic control of BAT activity. D2-generated T3 in BAT accelerates fatty acid oxidation and protects against diet-induced obesity.

  1. Radiopharmaceuticals for localization in target tissues exhibiting a regional pH shift relative to surrounding tissues

    International Nuclear Information System (INIS)

    Blau, M.; Kung, H.F.

    1981-01-01

    This patent relates to the preparation and use of radiopharmaceutical chemical compounds comprising a radioactive isotope, other than an isotope of iodine, in chemical combination with at least one primary, secondary or tertiary amino group. The compounds have a lipophilicity sufficiently high at a pH of 7.6 to permit passage of the compound from the blood of a mammal into a target organ or tissue and sufficiently low at a pH of 6.6 to prevent rapid return of the compound from the target organ or tissue to the blood. The compounds have a percent protein binding of less than ninety percent. These compounds may be selectively deposited in at least one target tissue or organ of a mammal, the tissue or organ of which has a significantly different intracellular pH than the blood of the mammal, by introducing the compound of the invention into the bloodstream of the mammal. A plurality of selenide compounds containing Se-75 isotope are claimed in relation to the patent. (U.K.)

  2. Heritability and tissue specificity of expression quantitative trait loci

    Czech Academy of Sciences Publication Activity Database

    Petretto, E.; Mangion, J.; Dickens, N. J.; Cook, S.A.; Kumaran, M. K.; Lu, H.; Fischer, J.; Maatz, H.; Křen, Vladimír; Pravenec, Michal; Hubner, N.; Aitman, T. J.

    2006-01-01

    Roč. 2, č. 10 (2006), s. 1625-1633 ISSN 1553-7390 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/06/0028; GA ČR(CZ) GA301/04/0390 Grant - others:HHMI(US) 55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : expression QTL * heritability * tissue specificity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.671, year: 2006

  3. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  4. Tissue-specific expression of type IX collagen

    International Nuclear Information System (INIS)

    Nishimura, I.; Muragaki, Y.; Ninomiya, Y.; Olsen, B.R.; Hayashi, M.

    1990-01-01

    This paper reports on the tissue-specific expression of type IX collagen, a major component of cartilage fibrils. It contains molecules with three genetically distinct subunits. The subunits form three triple-helical (CO) domains separated by non-triple-helical (NC) sequences. One of the subunits in cartilage, α1(IX), contains a large amino-terminal globular domain, NC4, while a second subunit, α2(IX), contains a covalently attached chondroitin sulfate chain. The site of attachment for this chain is located within the non-triple-helical sequence NC3, which separates the amino-terminal and central triple-helical domains of the type IX molecules. The NC3 region is 5 amino acid residues longer in the α2(IX) chain than in the α1(IX) and α3(IX) chains. This may explain why type IX molecules tend to show a sharp angle in the NC3 region, and why monoclonal antibody molecules that are specific for the stub left after chondroitinase ABC digestion of the chondroitin sulfate side chain always are located on the outside of the angle

  5. Thyroid Hormone Effects on Whole-Body Energy Homeostasis and Tissue-Specific Fatty Acid Uptake in Vivo

    NARCIS (Netherlands)

    Klieverik, Lars P.; Coomans, Claudia P.; Endert, Erik; Sauerwein, Hans P.; Havekes, Louis M.; Voshol, Peter J.; Rensen, Patrick C. N.; Romijn, Johannes A.; Kalsbeek, Andries; Fliers, Eric

    2009-01-01

    The effects of thyroid hormone (TH) status on energy metabolism and tissue-specific substrate supply in vivo are incompletely understood. To study the effects of TH status on energy metabolism and tissue-specific fatty acid (FA) fluxes, we used metabolic cages as well as C-14-labeled FA and

  6. Human active X-specific DNA methylation events showing stability across time and tissues

    Science.gov (United States)

    Joo, Jihoon Eric; Novakovic, Boris; Cruickshank, Mark; Doyle, Lex W; Craig, Jeffrey M; Saffery, Richard

    2014-01-01

    The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a ‘patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena. PMID:24713664

  7. Tissue-specific expression and regulatory networks of pig microRNAome.

    Directory of Open Access Journals (Sweden)

    Paolo Martini

    Full Text Available BACKGROUND: Despite the economic and medical importance of the pig, knowledge about its genome organization, gene expression regulation, and molecular mechanisms involved in physiological processes is far from that achieved for mouse and rat, the two most used model organisms in biomedical research. MicroRNAs (miRNAs are a wide class of molecules that exert a recognized role in gene expression modulation, but only 280 miRNAs in pig have been characterized to date. RESULTS: We applied a novel computational approach to predict species-specific and conserved miRNAs in the pig genome, which were then subjected to experimental validation. We experimentally identified candidate miRNAs sequences grouped in high-confidence (424 and medium-confidence (353 miRNAs according to RNA-seq results. A group of miRNAs was also validated by PCR experiments. We established the subtle variability in expression of isomiRs and miRNA-miRNA star couples supporting a biological function for these molecules. Finally, miRNA and mRNA expression profiles produced from the same sample of 20 different tissue of the animal were combined, using a correlation threshold to filter miRNA-target predictions, to identify tissue-specific regulatory networks. CONCLUSIONS: Our data represent a significant progress in the current understanding of miRNAome in pig. The identification of miRNAs, their target mRNAs, and the construction of regulatory circuits will provide new insights into the complex biological networks in several tissues of this important animal model.

  8. Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro.

    OpenAIRE

    Bopp, D; Jamet, E; Baumgartner, S; Burri, M; Noll, M

    1989-01-01

    Two new paired domain genes of Drosophila, Pox meso and Pox neuro, are described. In contrast to the previously isolated paired domain genes, paired and gooseberry, which contain both a paired and a homeo-domain (PHox genes), Pox meso and Pox neuro possess no homeodomain. Evidence suggesting that the new genes encode tissue-specific transcriptional factors and belong to the same regulatory cascade as the other paired domain genes includes (i) tissue-specific expression of Pox meso in the soma...

  9. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue

    International Nuclear Information System (INIS)

    Ogawa, Y.; Imanaka, K.; Ashida, C.; Takashima, H.; Imajo, Y.; Kimura, S.

    1983-01-01

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy

  10. Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns.

    Science.gov (United States)

    Sack, Laura Magill; Davoli, Teresa; Li, Mamie Z; Li, Yuyang; Xu, Qikai; Naxerova, Kamila; Wooten, Eric C; Bernardi, Ronald J; Martin, Timothy D; Chen, Ting; Leng, Yumei; Liang, Anthony C; Scorsone, Kathleen A; Westbrook, Thomas F; Wong, Kwok-Kin; Elledge, Stephen J

    2018-04-05

    Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Science.gov (United States)

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  12. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS: evidence of adipocyte hypertrophy and tissue-specific inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph S Marino

    Full Text Available Clinical research shows an association between polycystic ovary syndrome (PCOS and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC mice and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC mice showed reduced or absent ovulation. IR/LepR(POMC mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.

  13. Heavy metals in wild marine fish from South China Sea: levels, tissue- and species-specific accumulation and potential risk to humans.

    Science.gov (United States)

    Liu, Jin-Ling; Xu, Xiang-Rong; Ding, Zhen-Hua; Peng, Jia-Xi; Jin, Ming-Hua; Wang, You-Shao; Hong, Yi-Guo; Yue, Wei-Zhong

    2015-10-01

    Heavy metal pollution in marine fish has become an important worldwide concern, not only because of the threat to fish in general, but also due to human health risks associated with fish consumption. To investigate the occurrence of heavy metals in marine fish species from the South China Sea, 14 fish species were collected along the coastline of Hainan China during the spring of 2012 and examined for species- and tissue-specific accumulation. The median concentrations of Cd, Cr, Cu, Zn, Pb and As in muscle tissue of the examined fish species were not detectable (ND), 2.02, 0.24, 2.64, 0.025, and 1.13 mg kg(-1) wet weight, respectively. Levels of Cu, Zn, Cd and Cr were found to be higher in the liver and gills than in muscle, while Pb was preferentially accumulated in the gills. Differing from other heavy metals, As did not exhibit tissue-specific accumulation. Inter-species differences of heavy metal accumulation were attributed to the different habitat and diet characteristics of marine fish. Human dietary exposure assessment suggested that the amounts of both Cr and As in marine wild fish collected from the sites around Hainan, China were not compliant with the safety standard of less than 79.2 g d(-1) for wild marine fish set by the Joint FAO/WHO Expert Committee on Food Additives. Further research to identify the explicit sources of Cr and As in marine fish from South China Sea should be established.

  14. Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin

    Science.gov (United States)

    Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.

    2013-01-01

    The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665

  15. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Science.gov (United States)

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  16. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Laura A. Forney

    2018-03-01

    Full Text Available Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE containing quercetin on subcutaneous (inguinal, IWAT vs. visceral (epididymal, EWAT white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.

  17. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry : A Monte Carlo Study

    NARCIS (Netherlands)

    Moghadam, Maryam Khazaee; Asl, Alireza Kamali; Geramifar, Parham; Zaidi, Habib

    2016-01-01

    Purpose: The aim of this work is to evaluate the application of tissue-specific dose kernels instead of water dose kernels to improve the accuracy of patient-specific dosimetry by taking tissue heterogeneities into consideration. Materials and Methods: Tissue-specific dose point kernels (DPKs) and

  18. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu [College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027 (China); Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Lian, Yu [College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027 (China); Zhejiang Province Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310029 (China); Xiuyang, Guo [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Tingqing, Guo [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shengpeng, Wang [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Changde, Lu [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2006-03-31

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.

  20. Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Amélie Sevin-Pujol

    Full Text Available Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to "classical" promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.

  1. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  2. Lipidomic Adaptations in White and Brown Adipose Tissue in Response to Exercise Demonstrate Molecular Species-Specific Remodeling

    Directory of Open Access Journals (Sweden)

    Francis J. May

    2017-02-01

    Full Text Available Exercise improves whole-body metabolic health through adaptations to various tissues, including adipose tissue, but the effects of exercise training on the lipidome of white adipose tissue (WAT and brown adipose tissue (BAT are unknown. Here, we utilize MS/MSALL shotgun lipidomics to determine the molecular signatures of exercise-induced adaptations to subcutaneous WAT (scWAT and BAT. Three weeks of exercise training decrease specific molecular species of phosphatidic acid (PA, phosphatidylcholines (PC, phosphatidylethanolamines (PE, and phosphatidylserines (PS in scWAT and increase specific molecular species of PC and PE in BAT. Exercise also decreases most triacylglycerols (TAGs in scWAT and BAT. In summary, exercise-induced changes to the scWAT and BAT lipidome are highly specific to certain molecular lipid species, indicating that changes in tissue lipid content reflect selective remodeling in scWAT and BAT of both phospholipids and glycerol lipids in response to exercise training, thus providing a comprehensive resource for future studies of lipid metabolism pathways.

  3. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  4. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses.

    Science.gov (United States)

    Rieu, I; Mariani, C; Weterings, K

    2003-10-01

    Ethylene induces different sets of genes in different tissues and at different stages of development. To investigate whether these differential responses are caused by differential expression of members of the EIN3 family transcription factors, five tobacco family members were isolated. They can be divided into three subgroups, which is probably due to the amphidiploid nature of tobacco. In phylogenetic analysis, each of the subgroups clustered with one of the three tomato EIL proteins and all NtEILs proved to be most homologous to Arabidopsis EIN3 and EIL1. Although organ-specific ethylene responses have been observed before, northern blot analysis showed that all NtEILs were expressed in all organs. To study differential NtEIL expression at the cellular level, in situ hybridization was used on the tobacco ovary. It was found that different ovary tissues displayed variable ethylene-induced expression of two ethylene-responsive marker genes. By contrast, no differences were found in expression level or tissue-specificity for any of the NtEILs in the ovary, before or after ethylene treatment. This indicates that the organ and tissue-specific ethylene responses are not caused by differential expression of NtEIL family members. These results support a model in which the developmental signals that regulate the tissue-specific responses are integrated with the ethylene signal downstream of a common primary ethylene-signalling pathway.

  5. Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues

    DEFF Research Database (Denmark)

    Couchman, J R; Caterson, B; Christner, J E

    1984-01-01

    Chondroitin sulphate proteoglycans are widespread connective tissue components and chemical analysis of cartilage and other proteoglycans has demonstrated molecular speciation involving the degree and position of sulphation of the carbohydrate chains. This may, in turn, affect the properties...... of the glycosaminoglycan (GAG), particularly with respect to self-association and interactions with other extracellular matrix components. Interactions with specific molecules from different connective tissue types, such as the collagens and their associated glycoproteins, could be favoured by particular charge...... and dermatan sulphate. These provide novel opportunities to study the in vivo distribution of chondroitin sulphate proteoglycans. We demonstrate that chondroitin sulphates exhibit remarkable connective tissue specificity and furthermore provide evidence that some proteoglycans may predominantly carry only one...

  6. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice1

    Science.gov (United States)

    Welborn, Joshua P.; Davis, Matthew G.; Ebers, Steven D.; Stodden, Genna R.; Hayashi, Kanako; Cheatwood, Joseph L.; Rao, Manjeet K.; MacLean, James A.

    2015-01-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  7. Combinatorial regulation of tissue specification by GATA and FOG factors

    Science.gov (United States)

    Chlon, Timothy M.; Crispino, John D.

    2012-01-01

    The development of complex organisms requires the formation of diverse cell types from common stem and progenitor cells. GATA family transcriptional regulators and their dedicated co-factors, termed Friend of GATA (FOG) proteins, control cell fate and differentiation in multiple tissue types from Drosophila to man. FOGs can both facilitate and antagonize GATA factor transcriptional regulation depending on the factor, cell, and even the specific gene target. In this review, we highlight recent studies that have elucidated mechanisms by which FOGs regulate GATA factor function and discuss how these factors use these diverse modes of gene regulation to control cell lineage specification throughout metazoans. PMID:23048181

  8. Tissue specific MR contrast media role in the differential diagnosis of cirrhotic liver nodules.

    Science.gov (United States)

    Lupescu, Ioana Gabriela; Capsa, Razvan A; Gheorghe, Liana; Herlea, Vlad; Georgescu, Serban A

    2008-09-01

    State-of-the-art magnetic resonance (MR) imaging using tissue specific contrast media facilitates detection and characterization in most cases of hepatic nodules. According to the currently used nomenclature, in liver cirrhosis there are only two major types of hepatocellular nodular lesions: regenerative lesions and dysplastic or neoplastic lesions. The purpose of this clinical imaging review is to provide information on the properties of tissue-specific MR contrast agents and on their usefulness in the demonstration of the pathologic changes that take place at the level of the hepatobiliary and reticuloendothelial systems during the carcinogenesis in liver cirrhosis.

  9. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice.

    Science.gov (United States)

    Welborn, Joshua P; Davis, Matthew G; Ebers, Steven D; Stodden, Genna R; Hayashi, Kanako; Cheatwood, Joseph L; Rao, Manjeet K; MacLean, James A

    2015-07-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. © 2015 by the Society for the Study of Reproduction, Inc.

  10. Visceral and Somatic Disorders: Tissue Softening with Frequency-Specific Microcurrent

    OpenAIRE

    McMakin, Carolyn R.; Oschman, James L.

    2013-01-01

    Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena ...

  11. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Knowledge Enrichment Analysis for Human Tissue- Specific Genes Uncover New Biological Insights

    Directory of Open Access Journals (Sweden)

    Gong Xiu-Jun

    2012-06-01

    Full Text Available The expression and regulation of genes in different tissues are fundamental questions to be answered in biology. Knowledge enrichment analysis for tissue specific (TS and housekeeping (HK genes may help identify their roles in biological process or diseases and gain new biological insights.In this paper, we performed the knowledge enrichment analysis for 17,343 genes in 84 human tissues using Gene Set Enrichment Analysis (GSEA and Hypergeometric Analysis (HA against three biological ontologies: Gene Ontology (GO, KEGG pathways and Disease Ontology (DO respectively.The analyses results demonstrated that the functions of most gene groups are consistent with their tissue origins. Meanwhile three interesting new associations for HK genes and the skeletal muscle tissuegenes are found. Firstly, Hypergeometric analysis against KEGG database for HK genes disclosed that three disease terms (Parkinson’s disease, Huntington’s disease, Alzheimer’s disease are intensively enriched.Secondly, Hypergeometric analysis against the KEGG database for Skeletal Muscle tissue genes shows that two cardiac diseases of “Hypertrophic cardiomyopathy (HCM” and “Arrhythmogenic right ventricular cardiomyopathy (ARVC” are heavily enriched, which are also considered as no relationship with skeletal functions.Thirdly, “Prostate cancer” is intensively enriched in Hypergeometric analysis against the disease ontology (DO for the Skeletal Muscle tissue genes, which is a much unexpected phenomenon.

  13. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  14. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques.

    Science.gov (United States)

    Au, Bryan C; Lee, Chyan-Jang; Lopez-Perez, Orlay; Foltz, Warren; Felizardo, Tania C; Wang, James C M; Huang, Ju; Fan, Xin; Madden, Melissa; Goldstein, Alyssa; Jaffray, David A; Moloo, Badru; McCart, J Andrea; Medin, Jeffrey A

    2016-02-19

    Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag)-specific responses through direct injections of recombinant lentivectors (LVs) that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA)-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months-the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an "off-the-shelf" anti-cancer vaccine that could be made at large scale and injected into patients-even on an out-patient basis.

  15. TISSUE POLYPEPTIDE-SPECIFIC ANTIGEN - A DISCRIMINATIVE PARAMETER BETWEEN PROSTATE-CANCER AND BENIGN PROSTATIC HYPERTROPHY

    NARCIS (Netherlands)

    MARRINK, J; OOSTEROM, R; BONFRER, HMG; SCHRODER, FH; MENSINK, HJA

    1993-01-01

    The serum concentration of the cell proliferation marker TPS (tissue polypeptide-specific antigen) was compared with the tumour marker PSA (prostate specific antigen). PSA was found elevated in 50% of the benign prostatic hypertrophy (BPH) patients, in 88% of the patients with active prostate cancer

  16. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus)

    International Nuclear Information System (INIS)

    Gebbink, Wouter A.; Sonne, Christian; Dietz, Rune; Kirkegaard, Maja; Riget, Frank F.; Born, Erik W.; Muir, Derek C.G.; Letcher, Robert J.

    2008-01-01

    Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO 2 -PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO 2 -PCB and PBDE congener patterns showed significant differences (p ≤ 0.05) mainly in the liver and the brain relative to the adipose tissue and the blood. OH-PBDEs and MeO-PBDEs were not detected in the brain and liver, but had different patterns in blood versus the adipose tissue. Novel OH-polybrominated biphenyls (OH-PBBs), one tri- and two tetra-brominated OH-PBBs were detected in all tissues and blood. Congener pattern differences among tissues and blood are likely due to a combination of factors, e.g., biotransformation and retention in the liver, retention in the blood and blood-brain barrier transport. Our findings suggest that different congener pattern exposures to these classes of contaminants should be considered with respect to potential target tissue-specific effects in East Greenland polar bears. - Tissues-specific (adipose tissue, liver, brain and blood) differences exist for the congener patterns of PCBs, PBDEs and their metabolites/degradation products in East Greenland polar bears

  17. Determination of 35S-aminoacyl-transfer ribonucleic acid specific radioactivity in small tissue samples

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ogunro, E.A.; Ferguson, A.G.; Lesch, M.

    1981-01-01

    Rate determination of protein synthesis utilizing tracer amino acid incorporation requires accurate assessment of the specific radioactivity of the labeled precursor aminoacyl-tRNA pool. Previously published methods presumably useful for the measurement of any aminoacyl-tRNA were unsuccessful when applied to [ 35 S]methionine, due to the unique chemical properties of this amino acid. Herein we describe modifications of these methods necessary for the measurement of 35 S-aminoacyl-tRNA specific radioactivity from small tissue samples incubated in the presence of [ 35 S]methionine. The use of [ 35 S]methionine of high specific radioactivity enables analysis of the methionyl-tRNA from less than 100 mg of tissue. Conditions for optimal recovery of 35 S-labeled dansyl-amino acid derivatives are presented and possible applications of this method are discussed

  18. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  19. Automated tissue classification of pediatric brains from magnetic resonance images using age-specific atlases

    Science.gov (United States)

    Metzger, Andrew; Benavides, Amanda; Nopoulos, Peg; Magnotta, Vincent

    2016-03-01

    The goal of this project was to develop two age appropriate atlases (neonatal and one year old) that account for the rapid growth and maturational changes that occur during early development. Tissue maps from this age group were initially created by manually correcting the resulting tissue maps after applying an expectation maximization (EM) algorithm and an adult atlas to pediatric subjects. The EM algorithm classified each voxel into one of ten possible tissue types including several subcortical structures. This was followed by a novel level set segmentation designed to improve differentiation between distal cortical gray matter and white matter. To minimize the req uired manual corrections, the adult atlas was registered to the pediatric scans using high -dimensional, symmetric image normalization (SyN) registration. The subject images were then mapped to an age specific atlas space, again using SyN registration, and the resulting transformation applied to the manually corrected tissue maps. The individual maps were averaged in the age specific atlas space and blurred to generate the age appropriate anatomical priors. The resulting anatomical priors were then used by the EM algorithm to re-segment the initial training set as well as an independent testing set. The results from the adult and age-specific anatomical priors were compared to the manually corrected results. The age appropriate atlas provided superior results as compared to the adult atlas. The image analysis pipeline used in this work was built using the open source software package BRAINSTools.

  20. Fuz regulates craniofacial development through tissue specific responses to signaling factors.

    Directory of Open Access Journals (Sweden)

    Zichao Zhang

    Full Text Available The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz(-/- mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz(-/- mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckel's cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel's cartilage is expanded in the Fuz(-/- mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling.

  1. Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Thiago Lopes [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, Tânia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo (Norway); Mestre, Nélia C.; Cardoso, Cátia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, Maria João, E-mail: mbebian@ualg.pt [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2015-12-15

    Highlights: • Mussel gills are the main target for oxidative stress induced by Cd-based QDs. • Antioxidants responses induced by Cd-based QDs and dissolved Cd are mediated by different mechanisms. • CdTe QDs are more pro-oxidant Cd form when compared to dissolved Cd. • Differential tissue response indicated nano-specific effects. - Abstract: In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 μgCd L{sup −1} and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels’ antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent

  2. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fat- and muscle-type samples of the pig.

    Science.gov (United States)

    Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W

    2011-08-01

    To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.

  3. Tissue concentrations of prostate-specific antigen in prostatic carcinoma and benign prostatic hyperplasia.

    Science.gov (United States)

    Pretlow, T G; Pretlow, T P; Yang, B; Kaetzel, C S; Delmoro, C M; Kamis, S M; Bodner, D R; Kursh, E; Resnick, M I; Bradley, E L

    1991-11-11

    Prostate-specific antigen (PSA), as measured in peripheral blood, is currently the most widely used marker for the assessment of tumor burden in the longitudinal study of patients with carcinoma of the prostate (PCA). Studies from other laboratories have led to the conclusion that a given volume of PCA causes a much higher level of PSA in the peripheral circulation of patients than a similar volume of prostate without carcinoma. We have evaluated PSA in the resected tissues immunohistochemically and in extracts of PCA and of prostates resected because of benign prostatic hyperplasia (BPH) with an enzyme-linked immunosorbent assay. Immunohistochemical results were less quantitative than but consistent with the results of the ELISA of tissue extracts. Immunohistochemically, there was considerable heterogeneity in the expression of PSA by both PCA and BPH both within and among prostatic tissues from different patients. While the levels of expression of PSA in these tissues overlap broadly, PSA is expressed at a lower level in PCA than in BPH when PSA is expressed as a function of wet weight of tissue (p = 0.0095), wet weight of tissue/% epithelium (p less than 0.0001), protein extracted from the tissue (p = 0.0039), or protein extracted/% epithelium (p less than 0.0001).

  4. Fluorescently labaled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture

    NARCIS (Netherlands)

    Krahn, K.B.N.; Bouten, C.V.C.; Tuijl, van S.; Zandvoort, van M.; Merkx, M.

    2006-01-01

    Visualization of the formation and orientation of collagen fibers in tissue engineering experiments is crucial for understanding the factors that determine the mechanical properties of tissues. In this study, collagen-specific fluorescent probes were developed using a new approach that takes

  5. Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools.

    Science.gov (United States)

    Rasinger, J D; Marbaix, H; Dieu, M; Fumière, O; Mauro, S; Palmblad, M; Raes, M; Berntssen, M H G

    2016-09-16

    The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥133°C, at 3bar for 20min) protein feed ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs

    Directory of Open Access Journals (Sweden)

    Girgis Hani Z

    2012-02-01

    Full Text Available Abstract Background Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF binding sites (TFBSs. Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed. Results We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was

  7. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  8. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  9. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  10. Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Xiaofen Li

    2013-01-01

    Full Text Available Gambogic acid (GA is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  11. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    Science.gov (United States)

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  12. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus.

    Science.gov (United States)

    Bondarenko, Semen M; Artemov, Gleb N; Sharakhov, Igor V; Stegniy, Vladimir N

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO-a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.

  13. [Chromosome variability in the tissue culture of rare Gentiana species].

    Science.gov (United States)

    Tvardovs'ka, M O; Strashniuk, N M; Mel'nyk, V M; Adonin, V I; Kunakh, V A

    2008-01-01

    Cytogenetic analysis of plants and tissue culture of Gentiana lutea, G. punctata, G. acaulis has been carried out. Culturing in vitro was found to result in the changes of chromosome number in the calluses of the species involved. Species specificity for variation of the cultured cell genomes was shown. Contribution of the original plant genotypes to the cytogenetic structure of the tissue culture was established. Gentiana callus tissues (except for in vitro culture of G. punctata, derived from plant of Breskul'ska population) were found to exhibit modal class with the cells of diploid and nearly diploid chromosome sets.

  14. FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications.

    Science.gov (United States)

    Backenroth, Daniel; He, Zihuai; Kiryluk, Krzysztof; Boeva, Valentina; Pethukova, Lynn; Khurana, Ekta; Christiano, Angela; Buxbaum, Joseph D; Ionita-Laza, Iuliana

    2018-05-03

    We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we show that eQTLs in specific tissues tend to be most enriched among the predicted functional variants in relevant tissues in Roadmap. We further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlation matrix of various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex traits, and FUN-LDA yielded higher enrichment estimates than existing methods. Finally, using experimentally validated functional variants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each ENCODE and Roadmap tissue are available online (see Web Resources). Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  16. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    Science.gov (United States)

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (pmethylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Visceral and somatic disorders: tissue softening with frequency-specific microcurrent.

    Science.gov (United States)

    McMakin, Carolyn R; Oschman, James L

    2013-02-01

    Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena are often observed with successful acupuncture, cranial-sacral, and other energy-based techniques. This article explores possible mechanisms involved in tissue softening. In the 1970s, neuroscientist and osteopathic researcher Irvin Korr developed a "γ-loop hypothesis" to explain the persistence of increased systemic muscle tone associated with various somatic dysfunctions. This article summarizes how physiologists, neuroscientists, osteopaths, chiropractors, and fascial researchers have expanded on Korr's ideas by exploring various mechanisms by which injury or disease increase local muscle tension or systemic muscle tone. Following on Korr's hypothesis, it is suggested that most patients actually present with elevated muscle tone or tense areas due to prior traumas or other disorders, and that tissue softening indicates that FSM or other methods are affecting the cause of their pathophysiology. The authors believe this concept and the research it has led to will be of interest to a wide range of energetic, bodywork, and movement therapists.

  18. Tissue-Specific Transcriptome and Hormonal Regulation of Pollinated and Parthenocarpic Fig (Ficus carica L. Fruit Suggest that Fruit Ripening is Coordinated by the Reproductive Part of the Syconium

    Directory of Open Access Journals (Sweden)

    Yogev Rosianski

    2016-11-01

    Full Text Available In the unconventional climacteric fig (Ficus carica fruit, pollinated and parthenocarpic fruit of the same genotype exhibit different ripening characteristics. Integrative comparative analyses of tissue-specific transcript and of hormone levels during fruit repining from pollinated vs. parthenocarpic fig fruit were employed to unravel the similarities and differences in their regulatory processes during fruit repining. Assembling tissue-specific transcripts into 147,000 transcripts with 53,000 annotated genes provided new insights into the spatial distribution of many classes of regulatory and structural genes, including those related to color, taste and aroma, storage, protein degradation, seeds and embryos, chlorophyll, and hormones. Comparison of the pollinated and parthenocarpic tissues during fruit ripening showed differential gene expression, especially in the fruit inflorescence. The distinct physiological green phase II and ripening phase III differed significantly in their gene-transcript patterns in both pulp and inflorescence tissues. Gas chromatographic analysis of whole fruits enabled the first determination of ripening-related hormone levels from pollinated and non-pollinated figs. Ethylene and auxin both increased during fruit ripening, irrespective of pollination, whereas no production of active gibberellins or cytokinins was found in parthenocarpic or pollinated ripening fruit. Tissue-specific transcriptome revealed apparent different metabolic gene patterns for ethylene, auxin and ABA in pollinated vs. parthenocarpic fruit, mostly in the fruit inflorescence. Our results demonstrate that the production of abscisic acid (ABA, non-active ABA–GE conjugate and non-active indoleacetic acid (IAA–Asp conjugate in pollinated fruits is much higher than in parthenocarpic fruits. We suggest that fruit ripening is coordinated by the reproductive part of the syconium and the differences in ABA production between pollinated and

  19. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    Science.gov (United States)

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  20. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  1. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box

    International Nuclear Information System (INIS)

    Short, Stephen; Malartre, Marianne; Sharpe, Colin

    2005-01-01

    SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT

  2. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  3. Determination of /sup 35/S-aminoacyl-transfer ribonucleic acid specific radioactivity in small tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    Samarel, A.M.; Ogunro, E.A.; Ferguson, A.G.; Lesch, M.

    1981-11-15

    Rate determination of protein synthesis utilizing tracer amino acid incorporation requires accurate assessment of the specific radioactivity of the labeled precursor aminoacyl-tRNA pool. Previously published methods presumably useful for the measurement of any aminoacyl-tRNA were unsuccessful when applied to (/sup 35/S)methionine, due to the unique chemical properties of this amino acid. Herein we describe modifications of these methods necessary for the measurement of /sup 35/S-aminoacyl-tRNA specific radioactivity from small tissue samples incubated in the presence of (/sup 35/S)methionine. The use of (/sup 35/S)methionine of high specific radioactivity enables analysis of the methionyl-tRNA from less than 100 mg of tissue. Conditions for optimal recovery of /sup 35/S-labeled dansyl-amino acid derivatives are presented and possible applications of this method are discussed.

  4. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E.; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  5. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  6. Tissue-specific Differences in Immune Cell Subsets Located in the Naso-oropharyngeal-associated Lymphoid Tissues.

    Science.gov (United States)

    Bankvall, M; Jontell, M; Wold, A; Östman, S

    2018-01-01

    Defining the immune cells within the naso-oropharyngeal-associated lymphoid tissues would promote the development of efficient orally and nasally delivered immunotherapies. The aim was to compare murine antigen-presenting cells (APCs) and T cell subsets in the nose-associated lymphoid tissues (NALT), cervical lymph nodes (CLN), mesenteric lymph nodes (MLN) and peripheral lymph nodes (PLN) using flow cytometry and in vitro proliferation assays. Overall, the NALT contained a higher proportion of APCs and a lower proportion of T cells compared to the CLN, MLN and PLN. The APCs of the NALT more often belonged to the CD11c + CD11b + and the CD11c neg CD11b + subsets as compared to the other sites. Both of these APC populations showed little sign of activation, that is low expression of the markers CD40, CD86 and IAd. Instead, the APCs of the NALT more often co-expressed CX3CR1 and CD206, markers associated with a tolerogenic function. No increase in the proportion of regulatory T cells was observed in the NALT. Instead, the T cells frequently exhibited a memory/effector phenotype, expressing the homing markers α4β7, CCR4 and CCR9, but rarely the naïve phenotype cell surface marker CD45RB. In contrast, the T cells at the other sites were mostly of the naïve phenotype. In addition, cells from the NALT did not proliferate upon in vitro stimulation with Con A, whereas the cells from the other sites did. Taken together, these results suggest that the NALT is primarily an effector site rather than one for activation and differentiation, despite it being regarded as a site of induction. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  7. Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses.

    Science.gov (United States)

    Bishu, Shrinivas; Su, Ee Wern; Wilkerson, Erich R; Reckley, Kelly A; Jones, Donald M; McGeachy, Mandy J; Gaffen, Sarah L; Levesque, Marc C

    2014-02-11

    Accumulating data implicate the CD4+ T cell subset (Th17 cells) in rheumatoid arthritis (RA). IL-17 is an inflammatory cytokine that induces tumor necrosis factor (TNF)α, IL-1β and IL-6, all of which are targets of biologic therapies used to treat RA. RA patients are well documented to experience more infections than age-matched controls, and biologic therapies further increase the risk of infection. The Th17/IL-17 axis is vital for immunity to fungi, especially the commensal fungus Candida albicans. Therefore, we were prompted to examine the relationship between RA and susceptibility to C. albicans because of the increasing interest in Th17 cells and IL-17 in driving autoimmunity, and the advent of new biologics that target this pathway. We analyzed peripheral blood and saliva from 48 RA and 33 healthy control subjects. To assess C. albicans-specific Th17 responses, PBMCs were co-cultured with heat-killed C. albicans extract, and IL-17A levels in conditioned supernatants were measured by ELISA. The frequency of Th17 and Th1 cells was determined by flow cytometry. As a measure of IL-17A-mediated effector responses, we evaluated C. albicans colonization rates in the oral cavity, salivary fungicidal activity and levels of the antimicrobial peptide β-defensin 2 (BD2) in saliva. Compared to controls, PBMCs from RA subjects exhibited elevated baseline production of IL-17A (P = 0.004), although they had similar capacity to produce IL-17A in response to Th17 cell differentiating cytokines (P = 0.91). However RA PBMCs secreted less IL-17A in response to C. albicans antigens (P = 0.006). Significantly more RA patients were colonized with C. albicans in the oral cavity than healthy subjects (P = 0.02). Concomitantly, RA saliva had reduced concentrations of salivary BD2 (P = 0.02). Nonetheless, salivary fungicidal activity was preserved in RA subjects (P = 0.70). RA subjects exhibit detectable impairments in oral immune responses to C. albicans, a

  8. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Science.gov (United States)

    Yang, Cheng-Hong; Chuang, Li-Yeh; Shih, Tsung-Mu; Chang, Hsueh-Wei

    2010-12-17

    SAGE (serial analysis of gene expression) is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM) and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  9. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  10. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

    Directory of Open Access Journals (Sweden)

    Edward Coulstock

    Full Text Available Interferon alpha (IFNα is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR. Our results show that the murine IFNα2 homolog (mIFNα2 fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.

  11. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus.

    Science.gov (United States)

    Chen, Siyu; Qu, Mengjie; Ding, Jiawei; Zhang, Yifei; Wang, Yi; Di, Yanan

    2018-04-18

    Both benzo(α)pyrene (BaP) and metals are frequently found in marine ecosystem and can cause detrimental effects in marine organism, especially the filter feeder-marine mussels. Although the biological responses in mussels have been well-studied upon the single metal or BaP exposure, the information about antioxidant defense, especially in different tissues of mussels, are still limited. Considering the variety of contaminants existing in the actual marine environment, single BaP (56 μg/L) and the co-exposure with Cu, Cd and Pb (50 μg/L, 50 μg/L and 3 mg/L respectively) were applied in a 6 days exposure followed by 6 days depuration experiment. The alterations of superoxide dismutase (SOD), catalase (CAT) activities and total antioxidant capacity (TAC) level were assessed in haemolymph, gills and digestive glands of marine mussels, Mytilus coruscus. An unparalleled change in antioxidant biomarkers was observed in all cells/tissues, with the SOD activity showing higher sensitivity to exposure. A tissue-specific response showing unique alteration in gill was investigated, indicating the different function of tissues during stress responses. Depressed antioxidant effects were induced by BaP-metals co-exposure, indicating the interaction may alter the intact properties of BaP. To our knowledge, this is the first research to explore the antioxidant defense induced by combined exposure of BaP-metals regarding to tissue-specific responses in marine mussels. The results and experimental model will provide valuable information and can be utilized in the investigation of stress response mechanisms, especially in relation to tissue functions in marine organism in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Rong

    2010-03-01

    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  13. Tissue-Specific Fatty Acids Response to Different Diets in Common Carp (Cyprinus carpio L.)

    Science.gov (United States)

    Böhm, Markus; Schultz, Sebastian; Koussoroplis, Apostolos-Manuel; Kainz, Martin J.

    2014-01-01

    Fish depend on dietary fatty acids (FA) to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio), one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively) in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue) of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO) with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption. PMID:24733499

  14. Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Böhm, Markus; Schultz, Sebastian; Koussoroplis, Apostolos-Manuel; Kainz, Martin J

    2014-01-01

    Fish depend on dietary fatty acids (FA) to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio), one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively) in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue) of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO) with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption.

  15. Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L..

    Directory of Open Access Journals (Sweden)

    Markus Böhm

    Full Text Available Fish depend on dietary fatty acids (FA to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio, one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption.

  16. Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner.

    Science.gov (United States)

    González, Carmen Ruth; Caminos, Jorge Eduardo; Gallego, Rosalía; Tovar, Sulay; Vázquez, María Jesús; Garcés, María Fernanda; Lopez, Miguel; García-Caballero, Tomás; Tena-Sempere, Manuel; Nogueiras, Rubén; Diéguez, Carlos

    2010-01-12

    The aim of the present work was to study the regulation of circulating adiponectin levels and the expression of adiponectin receptor 2 (Adipo-R2) in several rat tissues in relation to fasting, leptin challenge, pregnancy, and chronic undernutrition. Using real-time PCR, we found Adipo-R2 mRNA expression in the liver, stomach, white and brown adipose tissues (WAT and BAT) of adult rats. Immunohistochemical studies confirmed protein expression in the same tissues. Adipo-R2 mRNA levels were decreased in liver after fasting, with no changes in the other tissues. Leptin decreased Adipo-R2 expression in liver and stomach, but increased its expression in WAT and BAT. Chronic caloric restriction in normal rats increased Adipo-R2 gene expression in stomach, while it decreased hepatic Adipo-R2 levels in pregnant rats. Using radioimmunoassay, we found that plasma adiponectin levels were diminished by fasting and leptin. Conversely, circulating adiponectin was increased in food-restricted rats, whereas its levels decreased in food-restricted pregnant rats by the end of gestation. In conclusion our findings provide the first evidence that (a) Adipo-R2 mRNA is regulated in a tissue-specific manner by fasting, but leptin is not responsible for those changes; (b) chronic caloric restriction in normal and pregnant rats also regulate Adipo-R2 mRNA in a tissue-specific manner; and (c) Adipo-R2 mRNA does not show a clear correlation with plasma adiponectin levels.

  17. Tissue-specific MR contrast agents. Impact on imaging diagnosis and future prospects

    International Nuclear Information System (INIS)

    Yoshimitsu, Kengo; Nakayama, Tomohiro; Kakihara, Daisuke; Irie, Hiroyuki; Tajima, Tsuyoshi; Asayama, Yoshiki; Hirakawa, Masakazu; Ishigami, Kousei; Honda, Hiroshi

    2005-01-01

    Superparamagnetic iron oxide (SPIO) is the only tissue-specific MR agent currently available in Japan. It is quickly taken up by Kupffer cells at the first pass (either arterial or portal) and becomes clustered in the lysosome, providing characteristic T2 * and T2 shortening effects that suppresses the signal of normal or non-tumorous liver tissue. SPIO has dramatically changed the diagnostic algorithm of liver metastasis in clinical practice, now serving as the gold standard instead of CT during arterial portography (CTAP). Its role in the diagnosis of hepatocellular carcinoma (HCC), however, is somewhat complicated, owing to its heterogeneous uptake by the background cirrhotic liver, as well as by some of the HCCs themselves. It has been shown to be useful in the diagnosis of pseudolesions (arterioportal shunts) and some benign hepatocellular lesions (focal nodular hyperplasia or adenoma) by their complete or partial uptake of SPIO, in contrast to an absence of uptake by true liver lesions. It has also been suggested that the histological grade of HCC affects the degree of SPIO uptake. Thus, SPIO serves as a complementary tool to the primary modalities of vascular survey, namely, dynamic CT/MR and CT during hepatic arteriography (CTHA)/CTAP, in the diagnosis of HCC. Gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a novel hepatobiliary contrast agent that is not yet available but is supposed to be approved by the Ministry of Health, Labour, and Welfare of Japan in the near future. It is taken up by hepatocytes and excreted into the bile, providing a T1-shortening effect that enhances the normal or non-tumorous liver tissue. It has also been shown to have the effect of positive enhancement of hypervascular liver tumors on the arterial phase, just like the usual extracellular contrast agent (gadopentetate dimeglumine: Gd-DTPA). Thus, Gd-EOB-DTPA was once thought to be an ideal contrast agent for liver tumors, providing information on both

  18. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    Science.gov (United States)

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  19. Antibodies against Escherichia coli O24 and O56 O-Specific Polysaccharides Recognize Epitopes in Human Glandular Epithelium and Nervous Tissue

    Science.gov (United States)

    Korzeniowska-Kowal, Agnieszka; Kochman, Agata; Gamian, Elżbieta; Lis-Nawara, Anna; Lipiński, Tomasz; Seweryn, Ewa; Ziółkowski, Piotr; Gamian, Andrzej

    2015-01-01

    Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, contains the O-polysaccharide, which is important to classify bacteria into different O-serological types within species. The O-polysaccharides of serotypes O24 and O56 of E. coli contain sialic acid in their structures, already established in our previous studies. Here, we report the isolation of specific antibodies with affinity chromatography using immobilized lipopolysaccharides. Next, we evaluated the reactivity of anti-O24 and anti-O56 antibody on human tissues histologically. The study was conducted under the assumption that the sialic acid based molecular identity of bacterial and tissue structures provides not only an understanding of the mimicry-based bacterial pathogenicity. Cross-reacting antibodies could be used to recognize specific human tissues depending on their histogenesis and differentiation, which might be useful for diagnostic purposes. The results indicate that various human tissues are recognized by anti-O24 and anti-O56 antibodies. Interestingly, only a single specific reactivity could be found in the anti-O56 antibody preparation. Several tissues studied were not reactive with either antibody, thus proving that the presence of cross-reactive antigens was tissue specific. In general, O56 antibody performed better than O24 in staining epithelial and nervous tissues. Positive staining was observed for both normal (ganglia) and tumor tissue (ganglioneuroma). Epithelial tissue showed positive staining, but an epitope recognized by O56 antibody should be considered as a marker of glandular epithelium. The reason is that malignant glandular tumor and its metastasis are stained, and also epithelium of renal tubules and glandular structures of the thyroid gland are stained. Stratified epithelium such as that of skin is definitely not stained. Therefore, the most relevant observation is that the epitope recognized by anti-O56 antibodies is a new marker

  20. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice.

    Science.gov (United States)

    Andrisse, Stanley; Billings, Katelyn; Xue, Ping; Wu, Sheng

    2018-04-01

    Hyperandrogenemia and hyperinsulinemia are believed to play prominent roles in polycystic ovarian syndrome (PCOS). We explored the effects of low-dose dihydrotestosterone (DHT), a model of PCOS, on insulin signaling in metabolic and reproductive tissues in a female mouse model. Insulin resistance in the energy storage tissues is associated with type 2 diabetes. Insulin signaling in the ovaries and pituitary either directly or indirectly stimulates androgen production. Energy storage and reproductive tissues were isolated and molecular assays were performed. Livers and white adipose tissue (WAT) from DHT mice displayed lower mRNA and protein expression of insulin signaling intermediates. However, ovaries and pituitaries of DHT mice exhibited higher expression levels of insulin signaling genes/proteins. Insulin-stimulated p-AKT levels were blunted in the livers and WAT of the DHT mice but increased or remained the same in the ovaries and pituitaries compared with controls. Glucose uptake decreased in liver and WAT but was unchanged in pituitary and ovary of DHT mice. Plasma membrane GLUTs were decreased in liver and WAT but increased in ovary and pituitary of DHT mice. Skeletal muscle insulin-signaling genes were not lowered in DHT mice compared with control. DHT mice did not display skeletal muscle insulin resistance. Insulin-stimulated glucose transport increased in skeletal muscles of DHT mice compared with controls. DHT mice were hyperinsulinemic. However, the differential mRNA and protein expression pattern was independent of hyperinsulinemia in cultured hepatocytes and pituitary cells. These findings demonstrate a differential effect of DHT on the insulin-signaling pathway in energy storage vs. reproductive tissues independent of hyperinsulinemia.

  1. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    Science.gov (United States)

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  2. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: SAGE (serial analysis of gene expression is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. METHODOLOGY/PRINCIPAL FINDINGS: To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. CONCLUSIONS/SIGNIFICANCE: The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  3. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  4. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process.

    Science.gov (United States)

    Espina, Virginia; Edmiston, Kirsten H; Heiby, Michael; Pierobon, Mariaelena; Sciro, Manuela; Merritt, Barbara; Banks, Stacey; Deng, Jianghong; VanMeter, Amy J; Geho, David H; Pastore, Lucia; Sennesh, Joel; Petricoin, Emanuel F; Liotta, Lance A

    2008-10-01

    Little is known about the preanalytical fluctuations of phosphoproteins during tissue procurement for molecular profiling. This information is crucial to establish guidelines for the reliable measurement of these analytes. To develop phosphoprotein profiles of tissue subjected to the trauma of excision, we measured the fidelity of 53 signal pathway phosphoproteins over time in tissue specimens procured in a community clinical practice. This information provides strategies for potential surrogate markers of stability and the design of phosphoprotein preservative/fixation solutions. Eleven different specimen collection time course experiments revealed augmentation (+/-20% from the time 0 sample) of signal pathway phosphoprotein levels as well as decreases over time independent of tissue type, post-translational modification, and protein subcellular location (tissues included breast, colon, lung, ovary, and uterus (endometrium/myometrium) and metastatic melanoma). Comparison across tissue specimens showed an >20% decrease of protein kinase B (AKT) Ser-473 (p 20% increases within 90-min postprocurement. Endothelial nitric-oxide synthase Ser-1177 did not change over the time period evaluated with breast or leiomyoma tissue. Treatment with phosphatase or kinase inhibitors alone revealed that tissue kinase pathways are active ex vivo. Combinations of kinase and phosphatase inhibitors appeared to stabilize proteins that exhibited increases in the presence of phosphatase inhibitors alone (ATF-2 Thr-71, SAPK/JNK Thr-183/Tyr-185, STAT1 Tyr-701, JAK1 Tyr-1022/1023, and PAK1/PAK2 Ser-199/204/192/197). This time course study 1) establishes the dynamic nature of specific phosphoproteins in excised tissue, 2) demonstrates augmented phosphorylation in the presence of phosphatase inhibitors, 3) shows that kinase inhibitors block the upsurge in phosphorylation of phosphoproteins, 4) provides a rational strategy for room temperature preservation of proteins, and 5) constitutes a

  5. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    Science.gov (United States)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-01-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets. PMID:28593951

  6. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    Science.gov (United States)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-06-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.

  7. Detection of Mycobacterium bovis in bovine and bubaline tissues using nested-PCR for TbD1.

    Science.gov (United States)

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Kláudia S G; Ramos, Carlos Alberto N; Filho, Antonio Francisco S; Vidal, Carlos Eugênio S; Roxo, Eliana; Nishibe, Christiane; Almeida, Nalvo F; Júnior, Antônio A F; Silva, Marcio R; Neto, José Diomedes B; Cerqueira, Valíria D; Zumárraga, Martín J; Araújo, Flábio R

    2014-01-01

    In the present study, a nested-PCR system, targeting the TbD1 region, involving the performance of conventional PCR followed by real-time PCR, was developed to detect Mycobacterium bovis in bovine/bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. In terms of analytical sensitivity, the DNA of M. bovis AN5 was detected up to 1.56 ng with conventional PCR, 97.6 pg with real-time PCR, and 1.53 pg with nested-PCR in the reaction mixture. The nested-PCR exhibited 100% analytical specificity for M. bovis when tested with the DNA of reference strains of environmental mycobacteria and closely-related Actinomycetales. A clinical sensitivity value of 76.0% was detected with tissue samples from animals that exhibited positive results in the comparative intradermal tuberculin test (CITT), as well as from those with lesions compatible with tuberculosis (LCT) that rendered positive cultures. A clinical specificity value of 100% was detected with tissue samples from animals with CITT- results, with no visible lesions (NVL) and negative cultures. No significant differences were found between the nested-PCR and culture in terms of detecting CITT+ animals with LCT or with NVL. No significant differences were recorded in the detection of CITT- animals with NVL. However, nested-PCR detected a significantly higher number of positive animals than the culture in the group of animals exhibiting LCT with no previous records of CITT. The use of the nested-PCR assay to detect M. bovis in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  8. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    NARCIS (Netherlands)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Acha, Moshe Ray; Newton-Cheh, Christopher; Pfeufer, Arne; Lyneh, Stacey N.; Olesen, Soren-Peter; Brunak, Soren; Ellinor, Patrick T.; Jukema, J. Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Ikea W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I. W.; Lage, Kasper; Olsen, Jesper V.

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes

  9. Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.

    Science.gov (United States)

    Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L

    2017-04-07

    The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in

  10. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome

    DEFF Research Database (Denmark)

    Feizi, Amir; Gatto, Francesco; Uhlén, Mathias

    2017-01-01

    Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level...... in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post......-translational modifications in each tissue's secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications....

  11. Artefacts and the performance of an exhibition

    DEFF Research Database (Denmark)

    Svabo, Connie

    2008-01-01

    The article explores the role of mediating artefacts in children's encounters with a museum of natural history. Using actor network theory it explores how a specific artefact shapes the way users relate to exhibited objects and how the artefact guides users' movements in the exhibition....... The mediated performance of an exhibition is explored through an empirical case....

  12. The tissue microarray data exchange specification: A document type definition to validate and enhance XML data

    Science.gov (United States)

    Nohle, David G; Ayers, Leona W

    2005-01-01

    Background The Association for Pathology Informatics (API) Extensible Mark-up Language (XML) TMA Data Exchange Specification (TMA DES) proposed in April 2003 provides a community-based, open source tool for sharing tissue microarray (TMA) data in a common format. Each tissue core within an array has separate data including digital images; therefore an organized, common approach to produce, navigate and publish such data facilitates viewing, sharing and merging TMA data from different laboratories. The AIDS and Cancer Specimen Resource (ACSR) is a HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers HIV-related malignancies and uninfected control tissues in microarrays (TMA) accompanied by de-identified clinical data to approved researchers. Exporting our TMA data into the proposed API specified format offers an opportunity to evaluate the API specification in an applied setting and to explore its usefulness. Results A document type definition (DTD) that governs the allowed common data elements (CDE) in TMA DES export XML files was written, tested and evolved and is in routine use by the ACSR. This DTD defines TMA DES CDEs which are implemented in an external file that can be supplemented by internal DTD extensions for locally defined TMA data elements (LDE). Conclusion ACSR implementation of the TMA DES demonstrated the utility of the specification and allowed application of a DTD to validate the language of the API specified XML elements and to identify possible enhancements within our TMA data management application. Improvements to the specification have additionally been suggested by our experience in importing other institution's exported TMA data. Enhancements to TMA DES to remove ambiguous situations and clarify the data should be considered. Better specified identifiers and hierarchical relationships will make automatic use of the data possible. Our tool can be

  13. Long-term culture of human liver tissue with advanced hepatic functions.

    Science.gov (United States)

    Ng, Soon Seng; Xiong, Anming; Nguyen, Khanh; Masek, Marilyn; No, Da Yoon; Elazar, Menashe; Shteyer, Eyal; Winters, Mark A; Voedisch, Amy; Shaw, Kate; Rashid, Sheikh Tamir; Frank, Curtis W; Cho, Nam Joon; Glenn, Jeffrey S

    2017-06-02

    A major challenge for studying authentic liver cell function and cell replacement therapies is that primary human hepatocytes rapidly lose their advanced function in conventional, 2-dimensional culture platforms. Here, we describe the fabrication of 3-dimensional hexagonally arrayed lobular human liver tissues inspired by the liver's natural architecture. The engineered liver tissues exhibit key features of advanced differentiation, such as human-specific cytochrome P450-mediated drug metabolism and the ability to support efficient infection with patient-derived inoculums of hepatitis C virus. The tissues permit the assessment of antiviral agents and maintain their advanced functions for over 5 months in culture. This extended functionality enabled the prediction of a fatal human-specific hepatotoxicity caused by fialuridine (FIAU), which had escaped detection by preclinical models and short-term clinical studies. The results obtained with the engineered human liver tissue in this study provide proof-of-concept determination of human-specific drug metabolism, demonstrate the ability to support infection with human hepatitis virus derived from an infected patient and subsequent antiviral drug testing against said infection, and facilitate detection of human-specific drug hepatotoxicity associated with late-onset liver failure. Looking forward, the scalability and biocompatibility of the scaffold are also ideal for future cell replacement therapeutic strategies.

  14. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars

    Directory of Open Access Journals (Sweden)

    Sha Xie

    2015-12-01

    Full Text Available Yan73, a teinturier (dyer grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73 or white flesh (Muscat Hamburg based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes in both varieties by quantitative RT-PCR. The results revealed that the transcripts of GST, OMT, AM3, CHS3, UFGT, MYBA1, F3′5′H, F3H1 and LDOX were barely detectable in the white flesh of Muscat Hamburg. In particular, GST, OMT, AM3, CHS3 and F3H1 showed approximately 50-fold downregulation in the white flesh of Muscat Hamburg compared to the red flesh of Yan73. A correlation analysis between the accumulation of different types of anthocyanins and gene expression indicated that the cumulative expression of GST, F3′5′H, LDOX and MYBA1 was more closely associated with the acylated anthocyanins and the 3′5′-OH anthocyanins, while OMT and AM3 were more closely associated with the total anthocyanins and methoxylated anthocyanins. Therefore, the transcripts of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 explained most of the variation in the amount and composition of anthocyanins in skin and flesh of Yan73. The data suggest that the specific localization of anthocyanins in the flesh tissue of Yan73 is most likely due to the tissue-specific expression of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 in the flesh.

  15. Investigating Design Research Landscapes through Exhibition

    DEFF Research Database (Denmark)

    Jönsson, Li; Hansen, Flemming Tvede; Mäkelä, Maarit

    2013-01-01

    What characterizes a design research exhibition compared to a traditional design and art exhibition? How do you show the very materialities of the design experiments as a means for communicating knowledge of research and of practice? How do you present, review and utilize such an exhibition......? With those questions in mind, the intention and challenge for the Nordes 2013 Design Research Exhibition was to expand on current notions of staging research enquires in design research conference contexts. Artefacts, installations, performances, and other materialities that relate to the theme...... of the conference - Experiments in Design Research – were displayed as tools to express and communicate different design research enquires. Through this paper we will describe the Nordes exhibition as a specific case that renders questions visible in relation to how to utilize a design research exhibition...

  16. Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism.

    Science.gov (United States)

    Alfadda, Assim A; Sallam, Reem M; Chishti, Muhammad Azhar; Moustafa, Amr S; Fatma, Sumbul; Alomaim, Waleed S; Al-Naami, Mohammed Y; Bassas, Abdulelah F; Chrousos, George P; Jo, Hyunsun

    2012-06-01

    Chemerin, a recognized chemoattractant, is expressed in adipose tissue and plays a role in adipocytes differentiation and metabolism. Gender- and adipose tissue-specific differences in human chemerin expression have not been well characterized. Therefore, these differences were assessed in the present study. The body mass index (BMI) and the circulating levels of chemerin and other inflammatory, adiposity and insulin resistance markers were assessed in female and male adults of varying degree of obesity. Chemerin mRNA expression was also measured in paired subcutaneous and visceral adipose tissue samples obtained from a subset of the study subjects. Serum chemerin concentrations correlated positively with BMI and serum leptin levels and negatively with high density lipoprotein (HDL)-cholesterol levels. No correlation was found between serum chemerin concentrations and fasting glucose, total cholesterol, low density lipoprotein (LDL)-cholesterol, triglycerides, insulin, C-reactive protein or adiponectin. Similarly, no relation was observed with the homeostasis model assessment for insulin resistance (HOMA-IR) values. Gender- and adipose tissue-specific differences were observed in chemerin mRNA expression levels, with expression significantly higher in women than men and in subcutaneous than visceral adipose tissue. Interestingly, we found a significant negative correlation between circulating chemerin levels and chemerin mRNA expression in subcutaneous fat. Among the subjects studied, circulating chemerin levels were associated with obesity markers but not with markers of insulin resistance. At the tissue level, fat depot-specific differential regulation of chemerin mRNA expression might contribute to the distinctive roles of subcutaneous vs. visceral adipose tissue in human obesity.

  17. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    Science.gov (United States)

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  18. A procedure for the production of steel exhibiting a low specific activity of gamma emitters

    International Nuclear Information System (INIS)

    Dolenek, J.; Raska, P.; Kodrle, L. et al.

    1989-01-01

    Steel exhibiting low specific gamma activity can be obtained from a metallic charge containing liquid and solid pig iron produced from ores, sinters, coke, limestone and other components. This charge is worked up in a metallurgical fining unit using predetermined amounts of slag-forming substances such as lime, limestone and dolomite; fining ore can also be present. The smelt must be kept in constant motion. The pig iron smelt for the production of this steel contains 0.1-1.1% Si and 0.1-1.0% Mn. All equipment with which the charge and steel will come in contact must be free from remains of previous productions and, preferrably, fitted with new lining. This concerns runners, pig iron transportation mixers, ladles and the production unit. (P.A.)

  19. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  20. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  1. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yao, K.; Niu, P.D.; Le Gac, F.; Le Bail, P.Y. (Laboratoire de Physiologie des Poissons, INRA, Rennes, (France))

    1991-01-01

    The present work outlines the presence of specific binding for chinook salmon growth hormone (sGH) in different tissue preparations of rainbow trout. Optimal incubation conditions (pH, Tris, MgCl{sub 2}) were determined. Specific binding was very sensitive to salt concentration during incubation. The specific binding reached a plateau after 15 and 25 hr of incubation at 12 and 4 {degree}. At 20 {degree}, specific and nonspecific binding were not stable. Specific binding dissociation was slower than association and was only partial. The binding was saturable (Bmax = 187 +/- 167 pmol), of high affinity (Ka = 2.4 +/- 0.8 10(9) M-1), and very specific for GH, properties which are in agreement with the characteristics of hormonal receptors. Sea bream and mammalian GH appeared 2- and 30-fold, respectively, less potent than cold sGH2 for displacing {sup 125}I-sGH2. Tissue preparations from ovary, testis, fat, skin, cartilage, gill, blood pellet, brain, spleen, kidney, and muscle showed significant saturable binding.

  2. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor

    International Nuclear Information System (INIS)

    Yao, K.; Niu, P.D.; Le Gac, F.; Le Bail, P.Y.

    1991-01-01

    The present work outlines the presence of specific binding for chinook salmon growth hormone (sGH) in different tissue preparations of rainbow trout. Optimal incubation conditions (pH, Tris, MgCl 2 ) were determined. Specific binding was very sensitive to salt concentration during incubation. The specific binding reached a plateau after 15 and 25 hr of incubation at 12 and 4 degree. At 20 degree, specific and nonspecific binding were not stable. Specific binding dissociation was slower than association and was only partial. The binding was saturable (Bmax = 187 +/- 167 pmol), of high affinity (Ka = 2.4 +/- 0.8 10(9) M-1), and very specific for GH, properties which are in agreement with the characteristics of hormonal receptors. Sea bream and mammalian GH appeared 2- and 30-fold, respectively, less potent than cold sGH2 for displacing 125 I-sGH2. Tissue preparations from ovary, testis, fat, skin, cartilage, gill, blood pellet, brain, spleen, kidney, and muscle showed significant saturable binding

  3. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  4. Tissue Specificity of a Response of the Pro- and Antioxidative System After Resuscitation

    Directory of Open Access Journals (Sweden)

    A. G. Zhukova

    2005-01-01

    Full Text Available This investigation was undertaken to study the resistance of membrane structures and the level of the intracellular defense systems of the heart, brain, and liver in animals with active versus passive behavior in different periods (days 7 and 30 after resuscitation made 10 minutes following systemic circulatory arrest. All the animals in which systemic circulation had been stopped were survivors with the cession of neurological deficit. The activity of antioxidative defense enzymes, such as cata-lase and superoxide dismutase, in cardiac, cerebral, and hepatic tissues was assayed by spectrophotometry using the conventional methods. The level of stress-induced protein HSP70 was measured in the tissue cytosolic fraction by the Western blotting assay. The activity of Ca2+ transport in the myocardial sarcoplasmic reticulum was determined on an Orion EA 940 ionomer («Orion Research», USA having a Ca2+-selective electrode. The findings show a significant tissue specificity in different postresuscitative periods (days 7 and 30 and varying (protective to damaging cardiac, cerebral, and hepatic responses in active and passive animals to hypoxia.

  5. Raising an Antibody Specific to Breast Cancer Subpopulations Using Phage Display on Tissue Sections

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Meldgaard, Theresa; Fridriksdottir, Agla Jael Rubner

    2016-01-01

    BACKGROUND/AIM: Primary tumors display a great level of intra-tumor heterogeneity in breast cancer. The current lack of prognostic and predictive biomarkers limits accurate stratification and the ability to predict response to therapy. The aim of the present study was to select recombinant antibody...... fragments specific against breast cancer subpopulations, aiding the discovery of novel biomarkers. MATERIALS AND METHODS: Recombinant antibody fragments were selected by phage display. A novel shadowstick technology enabled the direct selection using tissue sections of antibody fragments specific against...

  6. Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome.

    Science.gov (United States)

    Denier, Colette C; Brisson-Lougarre, Andrée A; Biasini, Ghislaine G; Grozdea, Jean J; Fournier, Didier D

    2002-01-01

    In humans, there are four alkaline phosphatases, and each form exhibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnant with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60-80% of activity. Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome.

  7. Considerations of anthropometric, tissue volume, and tissue mass scaling for improved patient specificity of skeletal S values

    International Nuclear Information System (INIS)

    Bolch, W.E.; Patton, P.W.; Shah, A.P.; Rajon, D.A.; Jokisch, D.W.

    2002-01-01

    It is generally acknowledged that reference man (70 kg in mass and 170 cm in height) does not adequately represent the stature and physical dimensions of many patients undergoing radionuclide therapy, and thus scaling of radionuclide S values is required for patient specificity. For electron and beta sources uniformly distributed within internal organs, the mean dose from self-irradiation is noted to scale inversely with organ mass, provided no escape of electron energy occurs at the organ boundaries. In the skeleton, this same scaling approach is further assumed to be correct for marrow dosimetry; nevertheless, difficulties in quantitative assessments of marrow mass in specific skeletal regions of the patient make this approach difficult to implement clinically. Instead, scaling of marrow dose is achieved using various anthropometric parameters that presumably scale in the same proportion. In this study, recently developed three-dimensional macrostructural transport models of the femoral head and humeral epiphysis in three individuals (51-year male, 82-year female, and 86-year female) are used to test the abilities of different anthropometric parameters (total body mass, body surface area, etc.) to properly scale radionuclide S values from reference man models. The radionuclides considered are 33 P, 177 Lu, 153 Sm, 186 Re, 89 Sr, 166 Ho, 32 P, 188 Re, and 90 Y localized in either the active marrow or endosteal tissues of the bone trabeculae. S value scaling is additionally conducted in which the 51-year male subject is assigned as the reference individual; scaling parameters are then expanded to include tissue volumes and masses for both active marrow and skeletal spongiosa. The study concludes that, while no single anthropometric parameter emerges as a consistent scaler of reference man S values, lean body mass is indicated as an optimal scaler when the reference S values are based on 3D transport techniques. Furthermore, very exact patient-specific scaling of

  8. Tissue- and Condition-Specific Isoforms of Mammalian Cytochrome c Oxidase Subunits: From Function to Human Disease

    Directory of Open Access Journals (Sweden)

    Christopher A. Sinkler

    2017-01-01

    Full Text Available Cytochrome c oxidase (COX is the terminal enzyme of the electron transport chain and catalyzes the transfer of electrons from cytochrome c to oxygen. COX consists of 14 subunits, three and eleven encoded, respectively, by the mitochondrial and nuclear DNA. Tissue- and condition-specific isoforms have only been reported for COX but not for the other oxidative phosphorylation complexes, suggesting a fundamental requirement to fine-tune and regulate the essentially irreversible reaction catalyzed by COX. This article briefly discusses the assembly of COX in mammals and then reviews the functions of the six nuclear-encoded COX subunits that are expressed as isoforms in specialized tissues including those of the liver, heart and skeletal muscle, lung, and testes: COX IV-1, COX IV-2, NDUFA4, NDUFA4L2, COX VIaL, COX VIaH, COX VIb-1, COX VIb-2, COX VIIaH, COX VIIaL, COX VIIaR, COX VIIIH/L, and COX VIII-3. We propose a model in which the isoforms mediate the interconnected regulation of COX by (1 adjusting basal enzyme activity to mitochondrial capacity of a given tissue; (2 allosteric regulation to adjust energy production to need; (3 altering proton pumping efficiency under certain conditions, contributing to thermogenesis; (4 providing a platform for tissue-specific signaling; (5 stabilizing the COX dimer; and (6 modulating supercomplex formation.

  9. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Science.gov (United States)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-03-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  10. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    International Nuclear Information System (INIS)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-01-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed

  11. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Energy Technology Data Exchange (ETDEWEB)

    Samani, Abbas [Department of Medical Biophysics/Electrical and Computer Engineering, University of Western Ontario, Medical Sciences Building, London, Ontario, N6A 5C1 (Canada); Zubovits, Judit [Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Plewes, Donald [Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)

    2007-03-21

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  12. Characterization of human breast cancer tissues by infrared imaging.

    Science.gov (United States)

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  13. Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal.

    Science.gov (United States)

    Cho, Woo Kyung; Ankrum, James A; Guo, Dagang; Chester, Shawn A; Yang, Seung Yun; Kashyap, Anurag; Campbell, Georgina A; Wood, Robert J; Rijal, Ram K; Karnik, Rohit; Langer, Robert; Karp, Jeffrey M

    2012-12-26

    North American porcupines are well known for their specialized hairs, or quills that feature microscopic backward-facing deployable barbs that are used in self-defense. Herein we show that the natural quill's geometry enables easy penetration and high tissue adhesion where the barbs specifically contribute to adhesion and unexpectedly, dramatically reduce the force required to penetrate tissue. Reduced penetration force is achieved by topography that appears to create stress concentrations along regions of the quill where the cross sectional diameter grows rapidly, facilitating cutting of the tissue. Barbs located near the first geometrical transition zone exhibit the most substantial impact on minimizing the force required for penetration. Barbs at the tip of the quill independently exhibit the greatest impact on tissue adhesion force and the cooperation between barbs in the 0-2 mm and 2-4 mm regions appears critical to enhance tissue adhesion force. The dual functions of barbs were reproduced with replica molded synthetic polyurethane quills. These findings should serve as the basis for the development of bio-inspired devices such as tissue adhesives or needles, trocars, and vascular tunnelers where minimizing the penetration force is important to prevent collateral damage.

  14. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    Science.gov (United States)

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  15. High Expression of Antiviral Proteins in Mucosa from Individuals Exhibiting Resistance to Human Immunodeficiency Virus.

    Directory of Open Access Journals (Sweden)

    Sandra Milena Gonzalez

    Full Text Available Several soluble factors have been reported to have the capacity of inhibiting HIV replication at different steps of the virus life cycle, without eliminating infected cells and through enhancement of specific cellular mechanisms. Yet, it is unclear if these antiviral factors play a role in the protection from HIV infection or in the control of viral replication. Here we evaluated two cohorts: i one of 58 HIV-exposed seronegative individuals (HESNs who were compared with 59 healthy controls (HCs, and ii another of 13 HIV-controllers who were compared with 20 HIV-progressors. Peripheral blood, oral and genital mucosa and gut-associated lymphoid tissue (GALT samples were obtained to analyze the mRNA expression of ELAFIN, APOBEC3G, SAMHD1, TRIM5α, RNase 7 and SerpinA1 using real-time PCR.HESNs exhibited higher expression of all antiviral factors in peripheral blood mononuclear cells (PBMCs, oral or genital mucosa when compared with HCs. Furthermore, HIV-controllers exhibited higher levels of SerpinA1 in GALT.These findings suggest that the activity of these factors is compartmentalized and that these proteins have a predominant role depending on the tissue to avoid the infection, reduce the viral load and modulate the susceptibility to HIV infection.

  16. Tissue-Specific Peroxisome Proliferator Activated Receptor Gamma Expression and Metabolic Effects of Telmisartan

    Czech Academy of Sciences Publication Activity Database

    Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Landa, Vladimír; Kazdová, L.; Pravenec, Michal; Kurtz, T. W.

    2013-01-01

    Roč. 26, č. 6 (2013), s. 829-835 ISSN 0895-7061 R&D Projects: GA ČR(CZ) GAP303/10/0505; GA MŠk(CZ) LH11049; GA MŠk(CZ) LL1204; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : telmisartan * metabolic effects * tissue-specific Pparg knockout mice Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.402, year: 2013

  17. Tissue-specific Calibration of Real-time PCR Facilitates Absolute Quantification of Plasmid DNA in Biodistribution Studies

    Directory of Open Access Journals (Sweden)

    Joan K Ho

    2016-01-01

    Full Text Available Analysis of the tissue distribution of plasmid DNA after administration of nonviral gene delivery systems is best accomplished using quantitative real-time polymerase chain reaction (qPCR, although published strategies do not allow determination of the absolute mass of plasmid delivered to different tissues. Generally, data is expressed as the mass of plasmid relative to the mass of genomic DNA (gDNA in the sample. This strategy is adequate for comparisons of efficiency of delivery to a single site but it does not allow direct comparison of delivery to multiple tissues, as the mass of gDNA extracted per unit mass of each tissue is different. We show here that by constructing qPCR standard curves for each tissue it is possible to determine the dose of intact plasmid remaining in each tissue, which is a more useful parameter when comparing the fates of different formulations of DNA. We exemplify the use of this tissue-specific qPCR method by comparing the delivery of naked DNA, cationic DNA complexes, and neutral PEGylated DNA complexes after intramuscular injection. Generally, larger masses of intact plasmid were present 24 hours after injection of DNA complexes, and neutral complexes resulted in delivery of a larger mass of intact plasmid to the spleen.

  18. Affinity imaging mass spectrometry (AIMS): high-throughput screening for specific small molecule interactions with frozen tissue sections.

    Science.gov (United States)

    Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O

    2015-11-07

    A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs.

  19. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish

    International Nuclear Information System (INIS)

    Gombeau, Kewin; Pereira, Sandrine; Ravanat, Jean-Luc; Camilleri, Virginie; Cavalie, Isabelle; Bourdineaud, Jean-Paul; Adam-Guillermin, Christelle

    2016-01-01

    We examined the effects of chronic exposure to different concentrations (2 and 20 μg L"−"1) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5′-CCGG-3′) and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L"−"1 DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L"−"1 DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L"−"1 DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects. - Highlights: • This study demonstrates a sex-related effect of DU exposure on DNA methylation patterns. • Impacts on DNA methylation patterns revealed a tissue-specific effect of DU exposure. • The MS–AFLP and HPLC–MS/MS sensitively and complementarily demonstrated the responses to environmental concentrations of DU.

  20. Evaluation of Specific Metabolic Rates of Major Organs and Tissues: Comparison Between Nonobese and Obese Women

    OpenAIRE

    Wang, ZiMian; Ying, Zhiliang; Bosy-Westphal, Anja; Zhang, Junyi; Heller, Martin; Later, Wiebke; Heymsfield, Steven B.; Müller, Manfred J.

    2011-01-01

    Elia (1992) identified the specific resting metabolic rates (Ki) of major organs and tissues in young adults with normal weight: 200 for liver, 240 for brain, 440 for heart and kidneys, 13 for skeletal muscle, 4.5 for adipose tissue and 12 for residual mass (all units in kcal/kg per day). The aim of the present study was to assess the applicability of Elia’s Ki values for obese adults. A sample of young women (n = 80) was divided into two groups, nonobese (BMI

  1. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    Science.gov (United States)

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase

    NARCIS (Netherlands)

    H.J. Dubbink (Erik Jan); N.S. Verkaik (Nicole); P.W. Faber; J. Trapman (Jan); F.H. Schröder (Fritz); J.C. Romijn (Johannes)

    1996-01-01

    textabstractTransglutaminases (TGases) are calcium-dependent enzymes catalysing the post-translational cross-linking of proteins. In the prostate at least two TGases are present, the ubiquitously expressed tissue-type TGase (TGC), and a prostate-restricted TGase (TGP).

  3. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  4. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    Science.gov (United States)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  5. Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products.

    Directory of Open Access Journals (Sweden)

    Sandra L Diaz

    Full Text Available Humans are genetically defective in synthesizing the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc, but can metabolically incorporate it from dietary sources (particularly red meat and milk into glycoproteins and glycolipids of human tumors, fetuses and some normal tissues. Metabolic incorporation of Neu5Gc from animal-derived cells and medium components also results in variable contamination of molecules and cells intended for human therapies. These Neu5Gc-incorporation phenomena are practically significant, because normal humans can have high levels of circulating anti-Neu5Gc antibodies. Thus, there is need for the sensitive and specific detection of Neu5Gc in human tissues and biotherapeutic products. Unlike monoclonal antibodies that recognize Neu5Gc only in the context of underlying structures, chicken immunoglobulin Y (IgY polyclonal antibodies can recognize Neu5Gc in broader contexts. However, prior preparations of such antibodies (including our own suffered from some non-specificity, as well as some cross-reactivity with the human sialic acid N-acetylneuraminic acid (Neu5Ac.We have developed a novel affinity method utilizing sequential columns of immobilized human and chimpanzee serum sialoglycoproteins, followed by specific elution from the latter column by free Neu5Gc. The resulting mono-specific antibody shows no staining in tissues or cells from mice with a human-like defect in Neu5Gc production. It allows sensitive and specific detection of Neu5Gc in all underlying glycan structural contexts studied, and is applicable to immunohistochemical, enzyme-linked immunosorbent assay (ELISA, Western blot and flow cytometry analyses. Non-immune chicken IgY is used as a reliable negative control. We show that these approaches allow sensitive detection of Neu5Gc in human tissue samples and in some biotherapeutic products, and finally show an example of how Neu5Gc might be eliminated from such products, by using a human cell

  6. Individual Polychlorinated Biphenyl (PCB) Congeners Produce Tissue- and Gene-Specific Effects on Thyroid Hormone Signaling during Development

    Science.gov (United States)

    Giera, Stefanie; Bansal, Ruby; Ortiz-Toro, Theresa M.; Taub, Daniel G.

    2011-01-01

    Polychlorinated biphenyls (PCB) are industrial chemicals linked to developmental deficits that may be caused in part by disrupting thyroid hormone (TH) action by either reducing serum TH or interacting directly with the TH receptor (TR). Individual PCB congeners can activate the TR in vitro when the metabolic enzyme cytochrome P4501A1 (CYP1A1) is induced, suggesting that specific PCB metabolites act as TR agonists. To test this hypothesis in vivo, we compared two combinations of PCB congeners that either activate the TR (PCB 105 and 118) or not (PCB 138 and 153) in the presence or absence of a PCB congener (PCB 126) that induces CYP1A1 in vitro. Aroclor 1254 was used as a positive control, and a group treated with propylthiouracil was included to characterize the effects of low serum TH. We monitored the effects on TH signaling in several peripheral tissues by measuring the mRNA expression of well-known TH-response genes in these tissues. Aroclor 1254 and its component PCB 105/118/126 reduced total T4 to the same extent as that of propylthiouracil but increased the expression of some TH target genes in liver. This effect was strongly correlated with CYP1A1 expression supporting the hypothesis that metabolism is necessary. Effects were gene and tissue specific, indicating that tissue-specific metabolism is an important component of PCB disruption of TH action and that PCB metabolites interact in complex ways with the TR. These are essential mechanisms to consider when evaluating the health risks of contaminant exposures, for both PCB and other polycyclic compounds known to interact with nuclear hormone receptors. PMID:21540284

  7. MFehi adipose tissue macrophages compensate for tissue iron pertubations in mice.

    Science.gov (United States)

    Hubler, Merla J; Erikson, Keith M; Kennedy, Arion J; Hasty, Alyssa H

    2018-05-16

    Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess FFAs and regulation of extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe hi ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron handling genes. While studies have demonstrated iron homeostasis is important for adipocyte health, little is known about how MFe hi ATMs may respond to and influence AT iron availability. Two methodologies were used to address this question - dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe hi ATMs accumulated excess iron, while the iron content of MFe lo ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe hi ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe hi ATMs incorporated high levels of iron and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe hi ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe lo ATM incorporation into the MFe hi pool. The MFe hi ATM population maintained its low inflammatory profile and iron cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.

  8. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  9. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Science.gov (United States)

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  10. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Directory of Open Access Journals (Sweden)

    Bruno Chausse

    Full Text Available Intermittent fasting (IF is a dietary intervention often used as an alternative to caloric restriction (CR and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  11. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes.

    Science.gov (United States)

    Bastiani, Michele; Liu, Libin; Hill, Michelle M; Jedrychowski, Mark P; Nixon, Susan J; Lo, Harriet P; Abankwa, Daniel; Luetterforst, Robert; Fernandez-Rojo, Manuel; Breen, Michael R; Gygi, Steven P; Vinten, Jorgen; Walser, Piers J; North, Kathryn N; Hancock, John F; Pilch, Paul F; Parton, Robert G

    2009-06-29

    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.

  12. Spectroscopy of Multilayered Biological Tissues for Diabetes Care

    Science.gov (United States)

    Yudovsky, Dmitry

    Neurological and vascular complications of diabetes mellitus are known to cause foot ulceration in diabetic patients. Present clinical screening techniques enable the diabetes care provider to triage treatment by identifying diabetic patients at risk of foot ulceration. However, these techniques cannot effectively identify specific areas of the foot at risk of ulceration. This study aims to develop non-invasive optical techniques for accurate assessment of tissue health and viability with spatial resolution on the order of 1 mm². The thesis can be divided into three parts: (1) the use of hyperspectral tissue oximetry to detect microcirculatory changes prior to ulcer formation, (2) development of a two-layer tissue spectroscopy algorithm and its application to detection of callus formation or epidermal degradation prior to ulceration, and (3) multi-layered tissue fluorescence modeling for identification of bacterial growth in existing diabetic foot wounds. The first part of the dissertation describes a clinical study in which hyperspectral tissue oximetry was performed on multiple diabetic subjects at risk of ulceration. Tissue oxyhemoglobin and deoxyhemoglobin concentrations were estimated using the Modified Beer-Lambert law. Then, an ulcer prediction algorithm was developed based on retrospective analysis of oxyhemoglobin and deoxyhemoglobin concentrations in sites that were known to ulcerate. The ulcer prediction algorithm exhibited a large sensitivity but low specificity of 95 and 80%, respectively. The second part of the dissertation revisited the hyperspectral data presented in part one with a new and novel two-layer tissue spectroscopy algorithm. This algorithm was able to detect not only oxyhemoglobin and deoxyhemoglobin concentrations, but also the thickness of the epidermis, and the tissue's scattering coefficient. Specifically, change in epidermal thickness provided insight into the formation of diabetic foot ulcers over time. Indeed, callus formation or

  13. An unsupervised MVA method to compare specific regions in human breast tumor tissue samples using ToF-SIMS.

    Science.gov (United States)

    Bluestein, Blake M; Morrish, Fionnuala; Graham, Daniel J; Guenthoer, Jamie; Hockenbery, David; Porter, Peggy L; Gamble, Lara J

    2016-03-21

    Imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component analysis (PCA) were used to investigate two sets of pre- and post-chemotherapy human breast tumor tissue sections to characterize lipids associated with tumor metabolic flexibility and response to treatment. The micron spatial resolution imaging capability of ToF-SIMS provides a powerful approach to attain spatially-resolved molecular and cellular data from cancerous tissues not available with conventional imaging techniques. Three ca. 1 mm(2) areas per tissue section were analyzed by stitching together 200 μm × 200 μm raster area scans. A method to isolate and analyze specific tissue regions of interest by utilizing PCA of ToF-SIMS images is presented, which allowed separation of cellularized areas from stromal areas. These PCA-generated regions of interest were then used as masks to reconstruct representative spectra from specifically stromal or cellular regions. The advantage of this unsupervised selection method is a reduction in scatter in the spectral PCA results when compared to analyzing all tissue areas or analyzing areas highlighted by a pathologist. Utilizing this method, stromal and cellular regions of breast tissue biopsies taken pre- versus post-chemotherapy demonstrate chemical separation using negatively-charged ion species. In this sample set, the cellular regions were predominantly all cancer cells. Fatty acids (i.e. palmitic, oleic, and stearic), monoacylglycerols, diacylglycerols and vitamin E profiles were distinctively different between the pre- and post-therapy tissues. These results validate a new unsupervised method to isolate and interpret biochemically distinct regions in cancer tissues using imaging ToF-SIMS data. In addition, the method developed here can provide a framework to compare a variety of tissue samples using imaging ToF-SIMS, especially where there is section-to-section variability that makes it difficult to use a serial hematoxylin

  14. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering.

    Science.gov (United States)

    Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S

    2017-03-01

    The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the

  15. Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues.

    Directory of Open Access Journals (Sweden)

    Charissa de Bekker

    Full Text Available Fungal entomopathogens rely on cellular heterogeneity during the different stages of insect host infection. Their pathogenicity is exhibited through the secretion of secondary metabolites, which implies that the infection life history of this group of environmentally important fungi can be revealed using metabolomics. Here metabolomic analysis in combination with ex vivo insect tissue culturing shows that two generalist isolates of the genus Metarhizium and Beauveria, commonly used as biological pesticides, employ significantly different arrays of secondary metabolites during infectious and saprophytic growth. It also reveals that both fungi exhibit tissue specific strategies by a distinguishable metabolite secretion on the insect tissues tested in this study. In addition to showing the important heterogeneous nature of these two entomopathogens, this study also resulted in the discovery of several novel destruxins and beauverolides that have not been described before, most likely because previous surveys did not use insect tissues as a culturing system. While Beauveria secreted these cyclic depsipeptides when encountering live insect tissues, Metarhizium employed them primarily on dead tissue. This implies that, while these fungi employ comparable strategies when it comes to entomopathogenesis, there are most certainly significant differences at the molecular level that deserve to be studied.

  16. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N. [Donald Danforth Plant Science Center, St. Louis, MO (United States); Dai, Shunhong [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  17. Apoptosis of antigen-specific CTLs contributes to low immune response in gut-associated lymphoid tissue post vaccination.

    Science.gov (United States)

    Shimada, Masaru; Yoshizaki, Shinji; Ichino, Motohide; Klinman, Dennis M; Okuda, Kenji

    2014-09-08

    The gut-associated lymphoid tissue (GALT) represents a major reservoir of HIV in infected individuals. Vaccines can induce strong systemic immune responses but these have less impact on CD4 T cells activity and numbers in GALT. In this study, we vaccinated mice with an adenovirus vector that expressed the envelope gene from HIV and observed immune responses in the peripheral blood, spleen, liver, mesenteric lymph nodes, and Peyer's patches. We found that (1) the number of HIV-specific CD8 T cells was dramatically lower in GALT than in other tissues; (2) the programmed cell death protein-1 (PD-1) was expressed at high levels in HIV-specific CD8 T cells including memory T cells in GALT; and (3) high levels of HIV-specific CD8 T cell apoptosis were occurring in GALT. These results suggest that contributing to GALT becoming an HIV reservoir during infection is a combination of exhaustion and/or dysfunction of HIV-specific CTLs at that site. These results emphasize the importance of developing of an effective mucosal vaccine against HIV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Tissue Specific Roles of Dynein Light Chain 1 in Regulating Germ Cell Apoptosis in Ceanorhabditis elegans

    DEFF Research Database (Denmark)

    Morthorst, Tine Hørning

    2015-01-01

    in the etiology of many diseases, including cancer, neurodegenerative, cardiovascular and autoimmune diseases. Several of the first genes found to regulate apoptosis were discovered in the nematode Caenorhabditis elegans. In this project, two different and tissue specific roles of C. elegans dynein light chain 1...

  19. Nasal-Associated Lymphoid Tissue Is a Mucosal Inductive Site for Virus-Specific Humoral and Cellular Immune Responses

    Czech Academy of Sciences Publication Activity Database

    Zuercher, A. W.; Coffin, S. E.; Thurnheer, M. CH.; Fundová, Petra; Cebra, J. J.

    2002-01-01

    Roč. 168, - (2002), s. 1796-1803 ISSN 0022-1767 Institutional research plan: CEZ:AV0Z5020903 Keywords : lymphoid tissue * virus-specific * humoral Subject RIV: EE - Microbiology, Virology Impact factor: 7.014, year: 2002

  20. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity

    Directory of Open Access Journals (Sweden)

    Rachel S. Lee

    2011-01-01

    Full Text Available The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ.

  1. Students-exhibits interaction at a science center

    Science.gov (United States)

    Botelho, Agostinho; Morais, Ana M.

    2006-12-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological foundation to assess the exhibit-student interaction and allowed analysis of the influence of the characteristics of students, exhibits, and interactions on students' learning. Eight students (ages 12ndash;13 years of age) with distinct sociological characteristics participated in the study. Several findings emerged from the results. First, the characteristics of the students, exhibits, and interactions appeared to influence student learning. Second, to most students, what they did interactively (procedures) seems not to have had any direct consequence on what they learned (concept understanding). Third, the data analysis suggest an important role for designers and teachers in overcoming the limitations of exhibit-student interaction.

  2. The tissue micro-array data exchange specification: a web based experience browsing imported data

    Science.gov (United States)

    Nohle, David G; Hackman, Barbara A; Ayers, Leona W

    2005-01-01

    Background The AIDS and Cancer Specimen Resource (ACSR) is an HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers to approved researchers HIV infected biologic samples and uninfected control tissues including tissue cores in micro-arrays (TMA) accompanied by de-identified clinical data. Researchers interested in the type and quality of TMA tissue cores and the associated clinical data need an efficient method for viewing available TMA materials. Because each of the tissue samples within a TMA has separate data including a core tissue digital image and clinical data, an organized, standard approach to producing, navigating and publishing such data is necessary. The Association for Pathology Informatics (API) extensible mark-up language (XML) TMA data exchange specification (TMA DES) proposed in April 2003 provides a common format for TMA data. Exporting TMA data into the proposed format offers an opportunity to implement the API TMA DES. Using our public BrowseTMA tool, we created a web site that organizes and cross references TMA lists, digital "virtual slide" images, TMA DES export data, linked legends and clinical details for researchers. Microsoft Excel® and Microsoft Word® are used to convert tabular clinical data and produce an XML file in the TMA DES format. The BrowseTMA tool contains Extensible Stylesheet Language Transformation (XSLT) scripts that convert XML data into Hyper-Text Mark-up Language (HTML) web pages with hyperlinks automatically added to allow rapid navigation. Results Block lists, virtual slide images, legends, clinical details and exports have been placed on the ACSR web site for 14 blocks with 1623 cores of 2.0, 1.0 and 0.6 mm sizes. Our virtual microscope can be used to view and annotate these TMA images. Researchers can readily navigate from TMA block lists to TMA legends and to clinical details for a selected tissue core. Exports for 11

  3. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  4. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes

    Directory of Open Access Journals (Sweden)

    Dasgupta Dipayan

    2005-05-01

    Full Text Available Abstract Background Global regulatory mechanisms involving chromatin assembly and remodelling in the promoter regions of genes is implicated in eukaryotic transcription control especially for genes subjected to spatial and temporal regulation. The potential to utilise global regulatory mechanisms for controlling gene expression might depend upon the architecture of the chromatin in and around the gene. In-silico analysis can yield important insights into this aspect, facilitating comparison of two or more classes of genes comprising of a large number of genes within each group. Results In the present study, we carried out a comparative analysis of chromatin characteristics in terms of the scaffold/matrix attachment regions, nucleosome formation potential and the occurrence of repetitive sequences, in the upstream regulatory regions of housekeeping and tissue specific genes. Our data show that putative scaffold/matrix attachment regions are more abundant and nucleosome formation potential is higher in the 5' regions of tissue specific genes as compared to the housekeeping genes. Conclusion The differences in the chromatin features between the two groups of genes indicate the involvement of chromatin organisation in the control of gene expression. The presence of global regulatory mechanisms mediated through chromatin organisation can decrease the burden of invoking gene specific regulators for maintenance of the active/silenced state of gene expression. This could partially explain the lower number of genes estimated in the human genome.

  5. Depth profile analysis of non-specific fluorescence and color of tooth tissues after peroxide bleaching.

    Science.gov (United States)

    Klukowska, Malgorzata; Götz, Hermann; White, Donald J; Zoladz, James; Schwarz, Björn-Olaf; Duschner, Heinz

    2013-02-01

    To examine laboratory changes of endogenous non-specific fluorescence and color throughout subsurface of tooth structures prior to and following peroxide bleaching. Extracted human teeth were cross sectioned and mounted on glass slides. Cross sections were examined for internal color (digital camera) and nonspecific fluorescence (microRaman spectroscopy) throughout the tooth structure at specified locations. Surfaces of sections were then saturation bleached for 70 hours with a gel containing 6% hydrogen peroxide. Cross sections were reexamined for color and non-specific fluorescence changes. Unbleached enamel, dentin-enamel junction and dentin exhibit different CIELab color and non-specific fluorescence properties. Bleaching of teeth produced significant changes in color of internal cross sections and substantial reductions of non-specific fluorescence levels within enamel dentin and DEJ. Enamel and dentin non-specific fluorescence were reduced to common values with bleaching with enamel and the DEJ showing larger reductions than dentin.

  6. Let's push things forward: disruptive technologies and the mechanics of tissue assembly.

    Science.gov (United States)

    Varner, Victor D; Nelson, Celeste M

    2013-09-01

    Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems - embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly.

  7. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  8. Radioimmunodetection of rat and rabbit cartilage using a monoclonal antibody specific to link proteins

    Energy Technology Data Exchange (ETDEWEB)

    Cassiede, P.; Amedee, J.; Rouais, F.; Bareille, R.; Bordenave, L.; Basse-Cathalinat, B.; Harmand, M.F. (Institut National de la Sante et de la Recherche Medicale (INSERM), 33 - Bordeaux (France)); Vuillemin, L.; Ducassou, D. (Hopital du Haut-Leveque, 33 - Pessac (France))

    1993-10-01

    Biodistribution analysis using [[sup 125]I]Fab-6F3 specific to link proteins from human articular cartilage performed in rats by autoradiography showed a high concentration of radioactivity in all cartilaginous tissues. Preliminary immunoscinitgraphic assays were performed in rabbits. Front and side view images of whole animals exhibited high uptake in cartilage tissue of the knee articulation, in the invertebral disk and the humeral head. This fixation was still detected 24 h post-injection, although high washout of radioactivity was observed. (Author).

  9. Soft tissue modelling with conical springs.

    Science.gov (United States)

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  10. Assessment of tissue-specific cortisol activity with regard to degeneration of the suspensory ligaments in horses with pituitary pars intermedia dysfunction.

    Science.gov (United States)

    Hofberger, Sina C; Gauff, Felicia; Thaller, Denise; Morgan, Ruth; Keen, John A; Licka, Theresia F

    2018-02-01

    OBJECTIVE To identify signs of tissue-specific cortisol activity in samples of suspensory ligament (SL) and neck skin tissue from horses with and without pituitary pars intermedia dysfunction (PPID). SAMPLE Suspensory ligament and neck skin tissue samples obtained from 26 euthanized horses with and without PPID. PROCEDURES Tissue samples were collected from 12 horses with and 14 horses without PPID (controls). Two control horses had received treatment with dexamethasone; data from those horses were not used in statistical analyses. The other 12 control horses were classified as old horses (≥ 14 years old) and young horses (≤ 9 years old). Standard histologic staining, staining for proteoglycan accumulation, and immunostaining of SL and neck skin tissue sections for glucocorticoid receptors, insulin, 11β hydroxysteroid dehydrogenase type 1, and 11β hydroxysteroid dehydrogenase type 2 were performed. Findings for horses with PPID were compared with findings for young and old horses without PPID. RESULTS Compared with findings for old and young control horses, there were significantly more cells stained for glucocorticoid receptors in SL samples and for 11 β hydroxysteroid dehydrogenase type 1 in SL and skin tissue samples from horses with PPID. Insulin could not be detected in any of the SL or skin tissue samples. Horses with PPID had evidence of SL degeneration with significantly increased proteoglycan accumulation. Neck skin tissue was found to be significantly thinner in PPID-affected horses than in young control horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that tissue-specific dysregulation of cortisol metabolism may contribute to the SL degeneration associated with PPID in horses.

  11. Construction and Development of a Cardiac Tissue-Specific and Hypoxia-Inducible Expression Vector

    Directory of Open Access Journals (Sweden)

    Shahrooz Ghaderi

    2018-03-01

    Full Text Available Purpose: Cardiovascular gene therapy is a sophisticated approach, thanks to the safety of vectors, stable transgene expression, delivery method, and different layers of the heart. To date, numerous expression vectors have been introduced in biotechnology and biopharmacy industries in relation to genetic manipulation. Despite the rapid growth of these modalities, they must be intelligently designed, addressing the cardiac-specific transgene expression and less side effects. Herein, we conducted a pilot project aiming to design a cardiac-specific hypoxia-inducible expression cassette. Methods: We explored a new approach to design an expression cassette containing cardiac specific enhancer, hypoxia response elements (HRE, cardiac specific promoter, internal ribosome entry site (IRES, and beta globin poly A sequence to elicit specific and inducible expression of the gene of interest. Enhanced green fluorescent protein (eGFP was sub-cloned by BglII and NotI into the cassette. The specificity and inducible expression of the cassette was determined in both mouse myoblast C2C12 and mammary glandular tumor 4T1 as ‘twin’ cells. eGFP expression was evaluated by immunofluorescence microscope and flow cytometry at 520 nm emission peak. Results: Our data revealed that the designed expression cassette provided tissue specific and hypoxia inducible (O2<1% transgene expression. Conclusion: It is suggested that cardiac-specific enhancer combined with cardiac-specific promoter are efficient for myoblast specific gene expression. As well, this is for the first time that HRE are derived from three well known hypoxia-regulated promoters. Therefore, there is no longer need to overlap PCR process for one repeated sequence just in one promoter.

  12. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as Novel Tissue-Specific Secretory Factors in Mouse.

    Directory of Open Access Journals (Sweden)

    Jibin Zhang

    Full Text Available Secretory factors in animals play an important role in communication between different cells, tissues and organs. Especially, the secretory factors with specific expression in one tissue may reflect important functions and unique status of that tissue in an organism. In this study, we identified potential tissue-specific secretory factors in the fat, muscle, heart, lung, kidney and liver in the mouse by analyzing microarray data from NCBI's Gene Expression Omnibus (GEO public repository and searching and predicting their subcellular location in GeneCards and WoLF PSORT, and then confirmed tissue-specific expression of the genes using semi-quantitative PCR reactions. With this approach, we confirmed 11 lung, 7 liver, 2 heart, 1 heart and muscle, 7 kidney and 2 adipose and liver-specific secretory factors. Among these genes, 1 lung-specific gene--CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha, 3 kidney-specific genes--SERPINA1F (serpin peptidase inhibitor, Clade A, member 1F, WFDC15B (WAP four-disulfide core domain 15B and DEFB29 (defensin beta 29 and 1 liver-specific gene--MUP19 (major urinary protein 19 have not been reported as secretory factors. These genes were tagged with hemagglutinin at the 3'end and then transiently transfected to HEK293 cells. Through protein detection in cell lysate and media using Western blotting, we verified secretion of the 5 genes and predicted the potential pathways in which they may participate in the specific tissue through data analysis of GEO profiles. In addition, alternative splicing was detected in transcripts of CTLA2A and SERPINA1F and the corresponding proteins were found not to be secreted in cell culture media. Identification of novel secretory factors through the current study provides a new platform to explore novel secretory factors and a general direction for further study of these genes in the future.

  13. The tissue microarray data exchange specification: Extending TMA DES to provide flexible scoring and incorporate virtual slides

    Directory of Open Access Journals (Sweden)

    Alexander Wright

    2011-01-01

    Full Text Available Background: Tissue MicroArrays (TMAs are a high throughput technology for rapid analysis of protein expression across hundreds of patient samples. Often, data relating to TMAs is specific to the clinical trial or experiment it is being used for, and not interoperable. The Tissue Microarray Data Exchange Specification (TMA DES is a set of eXtensible Markup Language (XML-based protocols for storing and sharing digitized Tissue Microarray data. XML data are enclosed by named tags which serve as identifiers. These tag names can be Common Data Elements (CDEs, which have a predefined meaning or semantics. By using this specification in a laboratory setting with increasing demands for digital pathology integration, we found that the data structure lacked the ability to cope with digital slide imaging in respect to web-enabled digital pathology systems and advanced scoring techniques. Materials and Methods: By employing user centric design, and observing behavior in relation to TMA scoring and associated data, the TMA DES format was extended to accommodate the current limitations. This was done with specific focus on developing a generic tool for handling any given scoring system, and utilizing data for multiple observations and observers. Results: DTDs were created to validate the extensions of the TMA DES protocol, and a test set of data containing scores for 6,708 TMA core images was generated. The XML was then read into an image processing algorithm to utilize the digital pathology data extensions, and scoring results were easily stored alongside the existing multiple pathologist scores. Conclusions: By extending the TMA DES format to include digital pathology data and customizable scoring systems for TMAs, the new system facilitates the collaboration between pathologists and organizations, and can be used in automatic or manual data analysis. This allows complying systems to effectively communicate complex and varied scoring data.

  14. Influence of menopause on adipose tissue clock gene genotype and its relationship with metabolic syndrome in morbidly obese women

    Science.gov (United States)

    Menopausal women exhibit a loss of circadian coordination, a process that runs parallel with a redistribution of adipose tissue. However, the specific genetic mechanisms underlying these alterations have not been studied. Thus, the aim of the present study was to determine whether the development of...

  15. Mouse Nkrp1-Clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available The Nkrp1 (Klrb1-Clr (Clec2 genes encode a receptor-ligand system utilized by NK cells as an MHC-independent immunosurveillance strategy for innate immune responses. The related Ly49 family of MHC-I receptors displays extreme allelic polymorphism and haplotype plasticity. In contrast, previous BAC-mapping and aCGH studies in the mouse suggest the neighboring and related Nkrp1-Clr cluster is evolutionarily stable. To definitively compare the relative evolutionary rate of Nkrp1-Clr vs. Ly49 gene clusters, the Nkrp1-Clr gene clusters from two Ly49 haplotype-disparate inbred mouse strains, BALB/c and 129S6, were sequenced. Both Nkrp1-Clr gene cluster sequences are highly similar to the C57BL/6 reference sequence, displaying the same gene numbers and order, complete pseudogenes, and gene fragments. The Nkrp1-Clr clusters contain a strikingly dissimilar proportion of repetitive elements compared to the Ly49 clusters, suggesting that certain elements may be partly responsible for the highly disparate Ly49 vs. Nkrp1 evolutionary rate. Focused allelic polymorphisms were found within the Nkrp1b/d (Klrb1b, Nkrp1c (Klrb1c, and Clr-c (Clec2f genes, suggestive of possible immune selection. Cell-type specific transcription of Nkrp1-Clr genes in a large panel of tissues/organs was determined. Clr-b (Clec2d and Clr-g (Clec2i showed wide expression, while other Clr genes showed more tissue-specific expression patterns. In situ hybridization revealed specific expression of various members of the Clr family in leukocytes/hematopoietic cells of immune organs, various tissue-restricted epithelial cells (including intestinal, kidney tubular, lung, and corneal progenitor epithelial cells, as well as myocytes. In summary, the Nkrp1-Clr gene cluster appears to evolve more slowly relative to the related Ly49 cluster, and likely regulates innate immunosurveillance in a tissue-specific manner.

  16. Science Fiction Exhibits as STEM Gateways

    Science.gov (United States)

    Robie, Samantha

    Women continue to hold less than a quarter of all STEM jobs in the United States, prompting many museums to develop programs and exhibits with the express goal of interesting young girls in scientific fields. At the same time, a number of recent museum exhibits have harnessed the popularity of pop culture and science fiction in order to interest general audiences in STEM subject matter, as well as using the exhibits as springboards to expand or shift mission goals and focus. Because science fiction appears to be successful at raising interest in STEM fields, it may be an effective way to garner the interest of young girls in STEM in particular. This research seeks to describe the ways in which museums are currently using science fiction exhibits to interest young girls in STEM fields and careers. Research focused on four institutions across the country hosting three separate exhibits, and included staff interviews and content analysis of exhibit descriptions, promotional materials, a summative evaluation and supplementary exhibit productions. In some ways, science fiction exhibits do serve young girls, primarily through the inclusion of female role models, staff awareness, and prototype testing to ensure interactives are attractive to girls as well as to boys. However, STEM appears to be underutilized, which may be partly due to a concern within the field that the outcome of targeting a specific gender could be construed as "stereotyping".

  17. Alzheimer’s Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Maria José Menal

    2018-01-01

    Full Text Available BackgroundEvidence from patients and animal models suggests that obstructive sleep apnea (OSA may increase the risk of Alzheimer’s disease (AD and that AD is associated with reduced brain tissue stiffness.AimTo investigate whether intermittent hypoxia (IH alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA.MethodsSix-eight month old (B6C3-Tg(APPswe,PSEN1dE985Dbo/J AD mutant mice and wild-type (WT littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day or normoxia for 8 weeks. After euthanasia, the stiffness (E of 200-μm brain cortex slices was measured by atomic force microscopy.ResultsTwo-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT, but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice.ConclusionAD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

  18. France at CERN – Industrial exhibition

    CERN Multimedia

    FP Department

    2012-01-01

    Industrial Exhibition Administration Building Bldg 61 – 1st Floor Tuesday 27 March: 9 a.m. – 5.30 p.m. Wednesday 28 March: 9 a.m. – 2 p.m.   About thirty French companies are presenting their latest technological advances during the industrial exhibition "France at CERN", featuring products and technologies specifically related to CERN activities. Individual B2B meetings can be organized with the sales and technical representatives of participating firms and will take place at either the companies’ exhibition stands or in conference rooms in the Main Building. Individuals wishing to make contact with one or more companies must use the contact details available from each secretariat of department or by using this link. B2B meetings will be coordinated by UBIFRANCE. You will also find the list of exhibiting and participating companies online here. This event is sponsored by the French subsidiary of RS Components, the most important distri...

  19. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.

    Science.gov (United States)

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  20. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    Science.gov (United States)

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  1. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    Science.gov (United States)

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  2. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  3. Variation in DNA Methylation Patterns is More Common among Maize Inbreds than among Tissues

    Directory of Open Access Journals (Sweden)

    Steven R. Eichten

    2013-07-01

    Full Text Available Chromatin modifications, such as DNA methylation, can provide heritable, epigenetic regulation of gene expression in the absence of genetic changes. A role for DNA methylation in meiotically stable marking of repetitive elements and other sequences has been demonstrated in plants. Methylation of DNA is also proposed to play a role in development through providing a mitotic memory of gene expression states established during cellular differentiation. We sought to clarify the relative levels of DNA methylation variation among different genotypes and tissues in maize ( L.. We have assessed genomewide DNA methylation patterns in leaf, immature tassel, embryo, and endosperm tissues of two inbred maize lines: B73 and Mo17. There are hundreds of regions of differential methylation present between the two genotypes. In general, the same regions exhibit differential methylation between B73 and Mo17 in each of the tissues that were surveyed. In contrast, there are few examples of tissue-specific DNA methylation variation. Only a subset of regions with tissue-specific variation in DNA methylation show similar patterns in both genotypes of maize and even fewer are associated with altered gene expression levels among the tissues. Our data indicates a limited impact of DNA methylation on developmental gene regulation within maize.

  4. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  5. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  6. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    Science.gov (United States)

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  7. α-Fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy.

    Directory of Open Access Journals (Sweden)

    Yuan-Fei Peng

    Full Text Available RNA interference (RNAi has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment.Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1 was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3 and non-HCC cell lines (L-02, Hela and SW1116 were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5 was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo.The AFP-miRNA system could silence target gene (Beclin 1 but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1 in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo.An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA was successfully established. The system provides a usable tool for HCC-specific RNAi

  8. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    Science.gov (United States)

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  9. Strain-specific helper T cell profile in the gut-associated lymphoid tissue.

    Science.gov (United States)

    Stanisavljević, Suzana; Đedović, Neda; Vujičić, Milica; Saksida, Tamara; Jevtić, Bojan; Milovanović, Boško; Momčilović, Miljana; Miljković, Đorđe; Stojanović, Ivana

    2017-10-01

    C57BL/6, BALB/c and NOD mice are among the most frequently used strains in autoimmunity research. NOD mice spontaneously develop type 1 diabetes (T1D) and they are prone to induction of experimental autoimmune encephalomyelitis (EAE). Both diseases can be routinely induced in C57BL/6 mice, but not in BALB/c mice. Also, C57BL/6 mice are generally considered T helper (Th)1-biased and BALB/c Th2-biased mice. Having in mind increasingly appreciated role of gut associated lymphoid tissue (GALT) cells in autoimmunity, especially in relation to gut Th17 and regulatory T (Treg) cells, our aim was to determine if there are differences in proportion of CD4 + T cell populations in mesenteric lymph nodes and Peyer's patches of these mouse strains. Lower proportion of Treg was observed in NOD PP, Th2 cells dominated in BALB/c mice in mesenteric lymph nodes (MLN) and Peyer's patches (PP), while Th1 cells prevailed in C57BL/6 MLN. Intradermal immunization of mice with complete Freund's adjuvant resulted in significant difference in Th cell distribution in GALT of NOD mice. Differences were less pronounced in C57BL/6 mice, while GALT of BALB/c mice was almost unresponsive to the immunization. The observed strain- and tissue-dependent changes in Treg proportion after the immunization was probably a consequence of different CCR2 or CCR6-related migration patterns and/or in situ Treg proliferation. In conclusion, NOD, a highly autoimmunity-prone mouse strain, exhibits more profound GALT-related immune response upon immunization compared to the strains that are less prone to autoimmunity. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  10. Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene

    International Nuclear Information System (INIS)

    Miura, Shinji; Tsunoda, Nobuyo; Ikeda, Shinobu; Kai, Yuko; Cooke, David W.; Lane, M. Daniel; Ezaki, Osamu

    2004-01-01

    Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between -551 and -506 in the 5'-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases -701 and -552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases -700 and -688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5' or 3' half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a -551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT

  11. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yannan Fan

    Full Text Available The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26(stopMet knock-in context (Del-R26(Met reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an

  12. Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples.

    Science.gov (United States)

    Springer, Jan; Lackner, Michaela; Ensinger, Christian; Risslegger, Brigitte; Morton, Charles Oliver; Nachbaur, David; Lass-Flörl, Cornelia; Einsele, Hermann; Heinz, Werner J; Loeffler, Juergen

    2016-12-01

    Molecular diagnostic assays can accelerate the diagnosis of fungal infections and subsequently improve patient outcomes. In particular, the detection of infections due to Mucorales is still challenging for laboratories and physicians. The aim of this study was to evaluate a probe-based Mucorales-specific real-time PCR assay (Muc18S) using tissue and serum samples from patients suffering from invasive mucormycosis (IMM). This assay can detect a broad range of clinically relevant Mucorales species and can be used to complement existing diagnostic tests or to screen high-risk patients. An advantage of the Muc18S assay is that it exclusively detects Mucorales species allowing the diagnosis of Mucorales DNA without sequencing within a few hours. In paraffin-embedded tissue samples this PCR-based method allowed rapid identification of Mucorales in comparison with standard methods and showed 91 % sensitivity in the IMM tissue samples. We also evaluated serum samples, an easily accessible material, from patients at risk from IMM. Mucorales DNA was detected in all patients with probable/proven IMM (100 %) and in 29 % of the possible cases. Detection of IMM in serum could enable an earlier diagnosis (up to 21 days) than current methods including tissue samples, which were gained mainly post-mortem. A screening strategy for high-risk patients, which would enable targeted treatment to improve patient outcomes, is therefore possible.

  13. Experimental study on active specific immunotherapy utilizing the immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 3

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Imanaka, Kazufumi; Gose, Kyuhei; Imajo, Yoshinari; Kimura, Shuji

    1982-01-01

    We have already demonstrated the remarkable effect of the active specific immunotherapy utilizing tumor cells and infiltrating lymphocytes prepared from a low-dose irradiated tumor tissue after cytoreductive radiotherapy. In the present study, the active specific immunotherapy using the tumor cells and infiltrating lymphocytes which were cryopreserved at -196 0 C in liquid nitrogen was investigated in female C3H/He mice inoculated MM46 tumor. Irradiation with the dose of 3,000 rads was performed on the sixth day. The tumor cells and lymphocytes which were separated from 2,000 rads-irradiated tumor tissue were frozen by the program freezer to be preserved at -196 0 C for two months and were thawed to inject into the tumor-bearing mice on the thirteenth day. Anti-tumor effect was evaluated by the regression of the tumor and survival curves. The remarkable regression of the tumor (p < 0.01) and significant elongation of the survival period (p < 0.1) were observed in the group which received the active specific immunotherapy using the cryopreserved tumor cells and lymphocytes as well as the group using the fresh tumor cells and lymphocytes prepared from a low-dose irradiated tumor tissue. (author)

  14. “Accelerating Science” exhibition zooms to Turkey

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    'Accelerating Science', CERN’s travelling science outreach exhibition, has just arrived at the Middle East Technical University (METU) in Ankara, Turkey for a four-month stay there. This is the first time it has moved outside the circle of the Member States. The Turkish venue will inaugurate some new exhibits that have recently been developed by CERN’s software developers.   “It’s been a very busy day,” says Bilge Demirkoz, an associate professor of physics at METU and a member of AMS-02, who had been overseeing the unloading of the lorries when we spoke to her. “As the University doesn’t have a specific exhibition space, the CERN exhibits are going to be housed in the covered tennis courts just behind the cultural and congress centre. It’s a beautiful venue, and there are plenty of parking spaces.” The University has sent invitations to the exhibition to high schools and to about 100 ...

  15. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  16. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L; Eriksson, S

    2010-06-01

    Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.

  17. Protein profiles of Taenia solium cysts obtained from skeletal muscles and the central nervous system of pigs: Search for tissue-specific proteins.

    Science.gov (United States)

    Navarrete-Perea, José; Moguel, Bárbara; Bobes, Raúl José; Villalobos, Nelly; Carrero, Julio César; Sciutto, Edda; Soberón, Xavier; Laclette, Juan Pedro

    2017-01-01

    Taeniasis/cysticercosis caused by the tapeworm Taenia solium is a parasite disease transmitted among humans and pigs, the main intermediate host. The larvae/cysts can lodge in several tissues of the pig, i.e. skeletal muscles and different locations of the central nervous system. The molecular mechanisms associated to tissue preferences of the cysts remain poorly understood. The major public health concern about this zoonosis is due to the human infections by the larval form in the central nervous system, causing a highly pleomorphic and debilitating disease known as neurocysticercosis. This study was aimed to explore the 2DE protein maps of T. solium cysts obtained from skeletal muscles and central nervous system of naturally infected pigs. The gel images were analyzed through a combination of PDQuest™ and multivariate analysis. Results showed that differences in the protein patterns of cysts obtained from both tissues were remarkably discrete. Only 7 protein spots were found specifically associated to the skeletal muscle localization of the cysts; none was found significantly associated to the central nervous system. The use of distinct protein fractions of cysts allowed preliminary identification of several tissue-specific antigenic bands. The implications of these findings are discussed, as well as several strategies directed to achieve the complete characterization of this parasite's proteome, in order to extend our understanding of the molecular mechanisms underlying tissue localization of the cysts and to open avenues for the development of immunological tissue-specific diagnosis of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties

    Directory of Open Access Journals (Sweden)

    Aldo Pagano

    2012-09-01

    Full Text Available We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III.

  19. Retention of Ag-specific memory CD4+ T cells in the draining lymph node indicates lymphoid tissue resident memory populations.

    Science.gov (United States)

    Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R

    2017-05-01

    Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gene-specific correlation of RNA and protein levels in human cells and tissues

    DEFF Research Database (Denmark)

    Edfors, Fredrik; Danielsson, Frida; Hallström, Björn M.

    2016-01-01

    An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring...... to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP...

  1. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  2. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss.

    Science.gov (United States)

    Zachut, M; Honig, H; Striem, S; Zick, Y; Boura-Halfon, S; Moallem, U

    2013-09-01

    The periparturient period in dairy cows is associated with alterations in insulin action in peripheral tissues; however, the molecular mechanism underlying this process is not completely understood. The objective was to examine the response to a glucose tolerance test (GTT) and to analyze insulin signaling in liver and adipose tissues in pre- and postpartum dairy cows. Liver and adipose tissue biopsies were taken before and after GTT, at 17d prepartum and again at 3 to 5d postpartum from 8 high-yielding Israeli Holstein dairy cows. Glucose clearance rate after GTT was similar pre- and postpartum. Basal insulin concentrations and the insulin response to GTT were approximately 4-fold higher prepartum than postpartum. In accordance, phosphorylation of the hepatic insulin receptor after GTT was higher prepartum than postpartum. Across periods, a positive correlation was observed between the basal and peak plasma insulin and phosphorylated insulin receptor after GTT in the liver. Hepatic phosphorylation of protein kinase B after GTT was elevated pre- and postpartum. Conversely, in adipose tissue, phosphorylation of protein kinase B after GTT pre- and postpartum was increased only in 4 out of 8 cows that lost less body weight postpartum. Our results demonstrate that hepatic insulin signaling is regulated by plasma insulin concentrations as part of the homeorhetic adjustments toward calving, and do not support a model of hepatic insulin resistance in periparturient cows. Nevertheless, we suggest that specific insulin resistance in adipose tissue occurs pre- and postpartum only in cows prone to high weight loss. The different responses among these cows imply that genetic background may affect insulin responsiveness in adipose tissue pre- and postpartum. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Highly Tissue Substructure-Specific Effects of Human Papilloma Virus in Mucosa of HIV-Infected Patients Revealed by Laser-Dissection Microscopy-Assisted Gene Expression Profiling

    Science.gov (United States)

    Baumgarth, Nicole; Szubin, Richard; Dolganov, Greg M.; Watnik, Mitchell R.; Greenspan, Deborah; Da Costa, Maria; Palefsky, Joel M.; Jordan, Richard; Roederer, Mario; Greenspan, John S.

    2004-01-01

    Human papilloma virus (HPV) causes focal infections of epithelial layers in skin and mucosa. HIV-infected patients on highly active antiretroviral therapy (HAART) appear to be at increased risk of developing HPV-induced oral warts. To identify the mechanisms that allow long-term infection of oral epithelial cells in these patients, we used a combination of laser-dissection microscopy (LDM) and highly sensitive and quantitative, non-biased, two-step multiplex real-time RT-PCR to study pathogen-induced alterations of specific tissue subcompartments. Expression of 166 genes was compared in three distinct epithelial and subepithelial compartments isolated from biopsies of normal mucosa from HIV-infected and non-infected patients and of HPV32-induced oral warts from HIV-infected patients. In contrast to the underlying HIV infection and/or HAART, which did not significantly elaborate tissue substructure-specific effects, changes in oral warts were strongly tissue substructure-specific. HPV 32 seems to establish infection by selectively enhancing epithelial cell growth and differentiation in the stratum spinosum and to evade the immune system by actively suppressing inflammatory responses in adjacent underlying tissues. With this highly sensitive and quantitative method tissue-specific expression of hundreds of genes can be studied simultaneously in a few cells. Because of its large dynamic measurement range it could also become a method of choice to confirm and better quantify results obtained by microarray analysis. PMID:15331396

  4. Immersive Exhibitions

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2015-01-01

    The immersive exhibition is a specialized exhibition genre in museums, which creates the illusion of time and place by representing key characteristics of a reference world and by integrating the visitor in this three-dimensionally reconstructed world (Mortensen 2010). A successful representation...... of the reference world depends on three criteria: whether the exhibition is staged as a coherent whole with all the displayed objects supporting the representation, whether the visitor is integrated as a component of the exhibition, and whether the content and message of the exhibition become dramatized...

  5. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    Famiano, M.A.

    1997-01-01

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137 Cs gamma rays, and electrons from a 90 Sr/ 90 Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  6. Diet-induced obesity alters protein synthesis: Tissue-specific effects in fasted vs. fed mice

    OpenAIRE

    Anderson, Stephanie R.; Gilge, Danielle A.; Steiber, Alison L.; Previs, Stephen F.

    2008-01-01

    The influence of obesity on protein dynamics is not clearly understood. We have designed experiments to test the hypothesis that obesity impairs the stimulation of tissue-specific protein synthesis following nutrient ingestion. C57BL/6J mice were randomized into two groups: group 1 (control, n = 16) were fed a low-fat, high-carbohydrate diet and group 2 (experimental, n = 16) were fed a high-fat, low-carbohydrate diet ad libitum for 9 weeks. On the experiment day, all mice were fasted for 6 h...

  7. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  8. Tissue and stage-specific distribution of Wolbachia in Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Kerstin Fischer

    2011-05-01

    Full Text Available BACKGROUND: Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle. METHODS/PRINCIPAL FINDINGS: A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i., a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i. Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. CONCLUSIONS: Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the

  9. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire.

    Science.gov (United States)

    Feyaerts, D; Kuret, T; van Cranenbroek, B; van der Zeeuw-Hingrez, S; van der Heijden, O W H; van der Meer, A; Joosten, I; van der Molen, R G

    2018-02-13

    Is the natural killer (NK) cell receptor repertoire of endometrial NK (eNK) cells tissue-specific? The NK cell receptor (NKR) expression profile in pre-pregnancy endometrium appears to have a unique tissue-specific phenotype, different from that found in NK cells in peripheral blood, suggesting that these cells are finely tuned towards the reception of an allogeneic fetus. NK cells are important for successful pregnancy. After implantation, NK cells encounter extravillous trophoblast cells and regulate trophoblast invasion. NK cell activity is amongst others regulated by C-type lectin heterodimer (CD94/NKG2) and killer cell immunoglobulin-like (KIR) receptors. KIR expression on decidual NK cells is affected by the presence of maternal HLA-C and biased towards KIR2D expression. However, little is known about NKR expression on eNK cells prior to pregnancy. In this study, matched peripheral and menstrual blood (a source of endometrial cells) was obtained from 25 healthy females with regular menstrual cycles. Menstrual blood was collected during the first 36 h of menstruation using a menstrual cup, a non-invasive technique to obtain endometrial cells. KIR and NKG2 receptor expression on eNK cells was characterized by 10-color flow cytometry, and compared to matched pbNK cells of the same female. KIR and HLA-C genotypes were determined by PCR-SSOP techniques. Anti-CMV IgG antibodies in plasma were measured by chemiluminescence immunoassay. KIR expression patterns of eNK cells collected from the same female do not differ over consecutive menstrual cycles. The percentage of NK cells expressing KIR2DL2/L3/S2, KIR2DL3, KIR2DL1, LILRB1 and/or NKG2A was significantly higher in eNK cells compared to pbNK cells, while no significant difference was observed for NKG2C, KIR2DL1/S1, and KIR3DL1. The NKR repertoire of eNK cells was clearly different from pbNK cells, with eNK cells co-expressing more than three NKR simultaneously. In addition, outlier analysis revealed 8 and 15 NKR

  10. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    Science.gov (United States)

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  11. Scrapie-specific pathology of sheep lymphoid tissues.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases often result in accumulation of disease-associated PrP (PrP(d in the lymphoreticular system (LRS, specifically in association with follicular dendritic cells (FDCs and tingible body macrophages (TBMs of secondary follicles. We studied the effects of sheep scrapie on lymphoid tissue in tonsils and lymph nodes by light and electron microscopy. FDCs of sheep were grouped according to morphology as immature, mature or regressing. Scrapie was associated with FDC dendrite hypertrophy and electron dense deposit or vesicles. PrP(d was located using immunogold labelling at the plasmalemma of FDC dendrites and, infrequently, mature B cells. Abnormal electron dense deposits surrounding FDC dendrites were identified as immunoglobulins suggesting that excess immune complexes are retained and are indicative of an FDC dysfunction. Within scrapie-affected lymph nodes, macrophages outside the follicle and a proportion of germinal centre TBMs accumulated PrP(d within endosomes and lysosomes. In addition, TBMs showed PrP(d in association with the cell membrane, non-coated pits and vesicles, and also with discrete, large and random endoplasmic reticulum networks, which co-localised with ubiquitin. These observations suggest that PrP(d is internalised via the caveolin-mediated pathway, and causes an abnormal disease-related alteration in endoplasmic reticulum structure. In contrast to current dogma, this study shows that sheep scrapie is associated with cytopathology of germinal centres, which we attribute to abnormal antigen complex trapping by FDCs and abnormal endocytic events in TBMs. The nature of the sub-cellular changes in FDCs and TBMs differs from those of scrapie infected neurones and glial cells suggesting that different PrP(d/cell membrane interactions occur in different cell types.

  12. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F.

    2017-01-01

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  13. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F

    2017-04-25

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  14. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Directory of Open Access Journals (Sweden)

    Kheng Lim Goh

    2017-04-01

    Full Text Available Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs. The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre

  15. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  16. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    International Nuclear Information System (INIS)

    Silva Meirelles, Lindolfo da; Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre

    2016-01-01

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  17. Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2011-05-01

    Full Text Available Abstract Background Gene expression is regulated at both the DNA sequence level and through modification of chromatin. However, the effect of chromatin on tissue/cell-type specific gene regulation (TCSR is largely unknown. In this paper, we present a method to elucidate the relationship between histone modification/variation (HMV and TCSR. Results A classifier for differentiating CD4+ T cell-specific genes from housekeeping genes using HMV data was built. We found HMV in both promoter and gene body regions to be predictive of genes which are targets of TCSR. For example, the histone modification types H3K4me3 and H3K27ac were identified as the most predictive for CpG-related promoters, whereas H3K4me3 and H3K79me3 were the most predictive for nonCpG-related promoters. However, genes targeted by TCSR can be predicted using other type of HMVs as well. Such redundancy implies that multiple type of underlying regulatory elements, such as enhancers or intragenic alternative promoters, which can regulate gene expression in a tissue/cell-type specific fashion, may be marked by the HMVs. Finally, we show that the predictive power of HMV for TCSR is not limited to protein-coding genes in CD4+ T cells, as we successfully predicted TCSR targeted genes in muscle cells, as well as microRNA genes with expression specific to CD4+ T cells, by the same classifier which was trained on HMV data of protein-coding genes in CD4+ T cells. Conclusion We have begun to understand the HMV patterns that guide gene expression in both tissue/cell-type specific and ubiquitous manner.

  18. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  19. Optical density measurements on the examination of colon cancer tissues

    International Nuclear Information System (INIS)

    Touati, E.; Ajaal, T.; Hamassi, A.

    2015-01-01

    Automated quantitative image analysis can aid in cancer diagnosis and, in general, mange medical treatments managements and improve routine medical diagnosis. Early diagnosis can make big difference between life and death. Microscopic images from two tissue types forty-four normal and fifty-eight cancers, was evaluated based on their ability to identify abnormalities in colon images. Optical density approach is applied to extract parameters that exhibit cancer behavior on colon tissues images. Using statistical toolbox, a significant result of (p<0.0001) for the mean and the variance of the optical density parameter were detected, and only (p<0.001) for skewness optical density. based on linear discrimination method, the obtained result shows 905 accuracy for both sensitivity and specificity, and with an overall accuracy of 90% (author)

  20. Angiofibroma of soft tissue: clinicopathologic study of 2 cases of a recently characterized benign soft tissue tumor.

    Science.gov (United States)

    Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping

    2013-01-01

    Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor.

  1. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  2. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums

    Energy Technology Data Exchange (ETDEWEB)

    Shakoor, N; Nair, R; Crasta, O; Morris, G; Feltus, A; Kresovich, S

    2014-01-23

    Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.

  3. Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Simonsen, Karina Trankjær; Olsen, Louise Cathrine Braun

    2011-01-01

    -deficient yeast cells, and that they exhibit distinct temporal- and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however we find that functional loss of ACBP-1 leads to reduced triglyceride...... storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans....... of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs; four basal forms and three ACBP-domain proteins. We find that each of these paralogues is capable of complementing growth of ACBP...

  4. Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation

    DEFF Research Database (Denmark)

    Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb

    2016-01-01

    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined...... with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell...... lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic...

  5. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    2016-01-01

    Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  6. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.

    Science.gov (United States)

    Park, Dae Woo

    2015-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.

  7. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Larsen, P.F.; Eg Nielsen, Einar; Hansen, M.M.

    2013-01-01

    Recent genetic analyses of candidate genes and gene expression in marine fishes have provided evidence of local adaptation in response to environmental differences, despite the lack of strong signals of population structure from conventional neutral genetic markers. In this study expression...... in flounder. In gill tissue a plastic response to salinity treatments was observed with general up-regulation of these genes concomitant with higher salinity. For liver tissue a population specific expression differences was observed with lower expression at simulated non-native compared to native salinities...... in high gene flow marine fishes. © 2013 The Genetics Society of Korea...

  8. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    Science museums define the objectives of their exhibitions in terms of visitor learning outcomes. Yet, exhibit designers lack theoretical and empirical research findings on which to base the creation of such educational environments. Here, this shortcoming is addressed through the development...... of tools and processes to guide the design of educational science exhibits. The guiding paradigm for this development is design-based research, which is characterised by an iterative cycle of design, enactment, and analysis. In the design phase, an educational intervention is planned and carried out based...... on the generation of theoretical ideas for exhibit design is offered in a fourth and parallel research undertaking, namely the application of the notion of cultural border-crossing to a hypothetical case of exhibit design....

  11. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    Directory of Open Access Journals (Sweden)

    Robert Illingworth

    2008-01-01

    Full Text Available CpG islands (CGIs are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  12. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR.

    Science.gov (United States)

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Klaudia S G; Ramos, Carlos A N; Souza Filho, Antonio F; Vidal, Carlos E S; Vargas, Agueda P C; Roxo, Eliana; Rocha, Adalgiza S; Suffys, Philip N; Fonseca, Antônio A; Silva, Marcio R; Barbosa Neto, José D; Cerqueira, Valíria D; Araújo, Flábio R

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  13. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline.

    Science.gov (United States)

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-06-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. © 2016 by The American Society for Biochemistry and

  15. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline*

    Science.gov (United States)

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-01-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207

  16. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    Science.gov (United States)

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as

  17. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna

    2009-10-15

    Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the

  18. Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents

    Science.gov (United States)

    Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-01-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  19. Immunocapture-based fluorometric assay for the measurement of neprilysin-specific enzyme activity in brain tissue homogenates and cerebrospinal fluid.

    NARCIS (Netherlands)

    Miners, J.S.; Verbeek, M.M.; Olde Rikkert, M.G.M.; Kehoe, P.G.; Love, S.

    2008-01-01

    Neprilysin, a zinc-metalloendopeptidase, has important roles in the physiology and pathology of many diseases such as hypertension, cancer and Alzheimer's disease. We have developed an immunocapture assay to measure the specific enzyme activity of neprilysin in brain tissue homogenates and

  20. Tissue polypeptide-specific antigen (TPS) determinations before and during intermittent maximal androgen blockade in patients with metastatic prostatic carcinoma

    NARCIS (Netherlands)

    Kil, P. J. M.; Goldschmidt, H. M. J.; Wieggers, B. J. A.; Kariakine, O. B.; Studer, U. E.; Whelan, P.; Hetherington, J.; de Reijke, Th M.; Hoekstra, J. W.; Collette, L.

    2003-01-01

    To evaluate the prognostic significance of serially measured tissue polypeptide-specific antigen (TPS) levels in patients with metastatic prostatic carcinoma treated with intermittent maximal androgen blockade (MAB). To determine its value with respect to predicting response to treatment and time to

  1. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to beta-catenin recruitment to cis-regulatory modules

    NARCIS (Netherlands)

    Nakamura, Y.; de Paiva Alves, E.; Veenstra, G.J.C.; Hoppler, S.

    2016-01-01

    Key signalling pathways, such as canonical Wnt/beta-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear beta-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling,

  2. Use of positron emission tomography for determination of tissue specific kinetics

    International Nuclear Information System (INIS)

    Miller, L.F.; Kabalka, G.; Khan, M.; Rahim, A.; Wyatt, M.; Thie, J.; Apostoaei, I.; Nichols, T.; Smith, G.

    2000-01-01

    Dynamic PET scans from several patients with GBM are analyzed to determine the biokinetic characteristics of various tissue types. Time-dependent responses are extracted from several regions of interest (ROIs), and these time-dependent data sets are analyzed to obtain biokinetic information from normal brain tissue, from various regions of tumors, and from areas that represent concentration in blood. Uptake rates, time constants, and other biokinetic data are obtained. It is noted that rates of uptake in tumor regions are approximately twice as fast as in normal tissue and that two rates of uptake are clearly identified in each tissue region and in blood. This information is useful for optimization of BNCT treatment protocols and for determining rate constants that can be related to cellular-level distributions of pharmaceuticals. (author)

  3. HE4 Transcription- and Splice Variants-Specific Expression in Endometrial Cancer and Correlation with Patient Survival

    Directory of Open Access Journals (Sweden)

    Shi-Wen Jiang

    2013-11-01

    Full Text Available We investigated the HE4 variant-specific expression patterns in various normal tissues as well as in normal and malignant endometrial tissues. The relationships between mRNA variants and age, body weight, or survival are analyzed. ICAT-labeled normal and endometrial cancer (EC tissues were analyzed with multidimensional liquid chromatography followed by tandem mass spectrometry. Levels of HE4 mRNA variants were measured by real-time PCR. Mean mRNA levels were compared among 16 normal endometrial samples, 14 grade 1 and 14 grade 3 endometrioid EC, 15 papillary serous EC, and 14 normal human tissue samples. The relationship between levels of HE4 variants and EC patient characteristics was analyzed with the use of Pearson correlation test. We found that, although all five HE4 mRNA variants are detectable in normal tissue samples, their expression is highly tissue-specific, with epididymis, trachea, breast and endometrium containing the highest levels. HE4-V0, -V1, and -V3 are the most abundant variants in both normal and malignant tissues. All variants are significantly increased in both endometrioid and papillary serous EC, with higher levels observed in grade 3 endometrioid EC. In the EC group, HE4-V1, -V3, and -V4 levels inversely correlate with EC patient survival, whereas HE4-V0 levels positively correlate with age. HE4 variants exhibit tissue-specific expression, suggesting that each variant may exert distinct functions in normal and malignant cells. HE4 levels appear to correlate with EC patient survival in a variant-specific manner. When using HE4 as a biomarker for EC management, the effects of age should be considered.

  4. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  5. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    Nakayama, Kohzo; Nagase, Kazuko; Tokutake, Yuriko; Koh, Chang-Sung; Hiratochi, Masahiro; Ohkawara, Takeshi; Nakayama, Noriko

    2004-01-01

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  6. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

    International Nuclear Information System (INIS)

    Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.; Torbett, Bruce E.; Elder, John H.; Stout, C. David

    2011-01-01

    Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC 50 values in the nanomolar range

  7. Tissue-specific bioaccumulation and oxidative stress responses in juvenile Japanese flounder ( Paralichthys olivaceus) exposed to mercury

    Science.gov (United States)

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Lin, Longshan; Chen, Quanzhen; Dou, Shuozeng

    2012-07-01

    To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder ( Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 μg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, bone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dosedependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S -transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.

  8. Technology Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-09-15

    Linked to the 25th Anniversary celebrations, an exhibition of some of CERN's technological achievements was opened on 22 June. Set up in a new 600 m{sup 2} Exhibition Hall on the CERN site, the exhibition is divided into eight technology areas — magnets, vacuum, computers and data handling, survey and alignment, radiation protection, beam monitoring and handling, detectors, and workshop techniques.

  9. Purification and partial characterization of a new mannose/glucose-specific lectin from Dialium guineense Willd seeds that exhibits toxic effect.

    Science.gov (United States)

    Bari, Alfa U; Silva, Helton C; Silva, Mayara T L; Pereira Júnior, Francisco N; Cajazeiras, João B; Sampaio, Alexandre H; Leal, Rodrigo B; Teixeira, Edson H; Rocha, Bruno A M; Nascimento, Kyria S; Nagano, Celso S; Cavada, Benildo S

    2013-08-01

    A new mannose/glucose-specific lectin, named DigL, was purified from seeds of Dialium guineense by a single step using a Sepharose 4b-Mannose affinity chromatography column. DigL strongly agglutinated rabbit erythrocytes and was inhibited by d-mannose, d-glucose, and derived sugars, especially α-methyl-d-mannopyranoside and N-acetyl-d-glucosamine. DigL has been shown to be a stable protein, maintaining its hemagglutinating activity after incubation at a wide range of temperature and pH values and after incubation with EDTA. DigL is a glycoprotein composite by approximately 2.9% of carbohydrates by weight. By sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, the purified DigL exhibited an electrophoretic profile consisting of a broad band of 28-30 kDa. Analysis using electrospray ionization mass spectrometry indicated that purified DigL possesses a molecular average mass of 28 452 ± 2 Da and shows the presence of possible glycoforms. In addition, DigL exhibited an intermediary toxic effect on Artemia sp. nauplii, and this effect was both dependent on native structure and mediated by a carbohydrate-binding site. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue

    International Nuclear Information System (INIS)

    Imanaka, Kazufumi; Tanaka, Koji; Sasai, Keisuke

    1984-01-01

    We have already reported the effectiveness of active specific immunotherapy based on the immune reaction of low-dose irradiated tumor tissue. In the present study, three kinds of immunotherapeutic methods subdivided by used cells were performed in order to compare each effectiveness. C3H/He mice bearing MM 46 tumor transplanted in the right hind paws received local irradiation with the dose of 3,000 rad on the 6th day, and the above-mentioned three methods, using tumor cells, lymphocytes, and tumor cells combining lymphocytes which were all separated from the topical tumor tissue exposed to 2,000 rad, were applied respectively on the 14 th day. The most effective data were obtained from two groups treated by the immunotherapy with tumor cells combining lymphocytes, which virtually caused the longest survival and best tumor growth control. (author)

  11. A four step model for the IL-6 amplifier, a regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Masaaki eMurakami

    2011-06-01

    Full Text Available It is thought autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases. In several cases, however, even for diseases associated with class II MHC alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established. Rheumatoid arthritis (RA and arthritis in F759 knock-in mouse line (F759 mice are such examples, even though evidences support a pathogenic role for CD4+ T cells in both diseases. We have recently shown local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice. For example, local microbleeding-mediated CCL20 expression induced such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non hematopoietic cells in the joint. We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier. Thus, certain class II MHC–associated, tissue-specific autoimmune diseases may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. To explain this hypothesis, we have proposed a Four Step Model for MHC class II associated autoimmune diseases. The interaction of four local events results in chronic activation of the IL-6 amplifier, leading to the manifestation of autoimmune diseases. Thus, we have concluded the IL-6 amplifier is a critical regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases.

  12. Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep.

    Science.gov (United States)

    Bloor, Ian D; Sébert, Sylvain P; Saroha, Vivek; Gardner, David S; Keisler, Duane H; Budge, Helen; Symonds, Michael E; Mahajan, Ravi P

    2013-10-01

    Sex is a major factor determining adipose tissue distribution and the subsequent adverse effects of obesity-related disease including type 2 diabetes. The role of gender on juvenile obesity and the accompanying metabolic and inflammatory responses is not well established. Using an ovine model of juvenile onset obesity induced by reduced physical activity, we examined the effect of gender on metabolic, circulatory, and related inflammatory and energy-sensing profiles of the major adipose tissue depots. Despite a similar increase in fat mass with obesity between genders, males demonstrated a higher storage capacity of lipids within perirenal-abdominal adipocytes and exhibited raised insulin. In contrast, obese females became hypercortisolemic, a response that was positively correlated with central fat mass. Analysis of gene expression in perirenal-abdominal adipose tissue demonstrated the stimulation of inflammatory markers in males, but not females, with obesity. Obese females displayed increased expression of genes involved in the glucocorticoid axis and energy sensing in perirenal-abdominal, but not omental, adipose tissue, indicating a depot-specific mechanism that may be protective from the adverse effects of metabolic dysfunction and inflammation. In conclusion, young males are at a greater risk than females to the onset of comorbidities associated with juvenile-onset obesity. These sex-specific differences in cortisol and adipose tissue could explain the earlier onset of the metabolic-related diseases in males compared with females after obesity.

  13. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 7

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Maeda, Tomoho; Yoshida, Shoji; Yamamoto, Yoichi; Morita, Masaru

    1983-01-01

    We have already reported the remarkable effect of the active specific immunotherapy utilizing cryopreserved tumor cells and infiltrating mononuclear cells prepared from a lowdose irradiated tumor tissue after cytoreductive radiotherapy. In the present study, the effect of a biological response modifier, PSK combined with this active specific immunotherapy was investigated. Twelve-week-aged female C3H/He mice transplanted with MM46 tumor cells were received local radiotherapy with the dose of 3,000 rads by high energy electron beam on the fifth day after tumor inoculation. This active specific immunotherapy was performed on the twelveth day, and daily dose of 200 mg/kg of PSK was injected intraperitoneally from the sixth day to the tenth day. The more inhibition of the tumor growth was observed in the group which received this active specific immunotherapy combined with a biological response modifier, PSK compared with that received this active specific immunotherapy alone. (author)

  14. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 5

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Imanaka, Kazufumi; Gose, Kyuhei; Imajo, Yoshinari; Kimura, Shuji

    1982-01-01

    We have already reported the remarkable effect of the active specific immunotherapy utilizing cryopreserved tumor cells and infiltrating mononuclear cells prepared from a low-dose irradiated tumor tissue after cytoreductive radiotherapy. In the present study, the effect of a biological response modifier, OK-432 combined with this active specific immunotherapy was investigated. Twelve-week-aged female C3H/He mice transplanted with MM46 tumor cells were received local radiotherapy with the dose of 3,000 rads by high energy electron beam on the sixth day after inoculation. This active specific immunotherapy was performed on the thirteenth day, and daily dose of 1.0 KE of OK-432 was injected intraperitoneally from the thirteenth day to the seventeenth day. The inhibition of the tumor growth was observed in the group which received this active specific immunotherapy combined with a biological response modifier, OK-432 compared with that received this active specific immunotherapy alone. (author)

  15. Specific detection of Pasteurella multocida in chickens with fowl cholera and in pig lung tissues using fluorescent rRNA in situ hybridization

    DEFF Research Database (Denmark)

    Mbuthia, P.G.; Christensen, H.; Boye, Mette

    2001-01-01

    in formalin-fixed paraffin-embedded lung tissues from experimental fowl cholera in chickens and infections in pigs. In chicken lung tissues P. multocida cells were detected singly, in pairs, as microcolonies, and as massive colonies within air capillaries (septa and lumen), parabronchial septa, and blood...... and fast method for specific detection of P. multocida in histological formalin-fixed tissues. The test was replicable and reproducible and is recommended as a supplementary test for diagnosis and as a tool in pathogenesis studies of fowl cholera and respiratory tract infections in pigs due to P. multocida....

  16. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    Science.gov (United States)

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  17. Cell-Type-Specific Splicing of Piezo2 Regulates Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Marcin Szczot

    2017-12-01

    Full Text Available Summary: Piezo2 is a mechanically activated ion channel required for touch discrimination, vibration detection, and proprioception. Here, we discovered that Piezo2 is extensively spliced, producing different Piezo2 isoforms with distinct properties. Sensory neurons from both mice and humans express a large repertoire of Piezo2 variants, whereas non-neuronal tissues express predominantly a single isoform. Notably, even within sensory ganglia, we demonstrate the splicing of Piezo2 to be cell type specific. Biophysical characterization revealed substantial differences in ion permeability, sensitivity to calcium modulation, and inactivation kinetics among Piezo2 splice variants. Together, our results describe, at the molecular level, a potential mechanism by which transduction is tuned, permitting the detection of a variety of mechanosensory stimuli. : Szczot et al. find that the mechanoreceptor Piezo2 is extensively alternatively spliced, generating multiple distinct isoforms. Their findings indicate that these splice products have specific tissue and cell type expression patterns and exhibit differences in receptor properties. Keywords: Piezo, touch, sensation, ion-channel, splicing

  18. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  19. Life-long Maternal Cafeteria Diet Promotes Tissue-Specific Morphological Changes in Male Offspring Adult Rats

    Directory of Open Access Journals (Sweden)

    CAROLYNE D.S. SANTOS

    Full Text Available ABSTRACT Here, we evaluated whether the exposure of rats to a cafeteria diet pre- and/or post-weaning, alters histological characteristics in the White Adipose Tissue (WAT, Brown Adipose Tissue (BAT, and liver of adult male offspring. Female Wistar rats were divided into Control (CTL; fed on standard rodent chow and Cafeteria (CAF; fed with the cafeteria diet throughout life, including pregnancy and lactation. After birth, only male offspring (F1 were maintained and received the CTL or CAF diets; originating four experimental groups: CTL-CTLF1; CTL-CAFF1; CAF-CTLF1; CAF-CAFF1. Data of biometrics, metabolic parameters, liver, BAT and WAT histology were assessed and integrated using the Principal Component Analysis (PCA. According to PCA analysis worse metabolic and biometric characteristics in adulthood are associated with the post-weaning CAF diet compared to pre and post weaning CAF diet. Thus, the CTL-CAFF1 group showed obesity, higher deposition of fat in the liver and BAT and high fasting plasma levels of glucose, triglycerides and cholesterol. Interestingly, the association between pre and post-weaning CAF diet attenuated the obesity and improved the plasma levels of glucose and triglycerides compared to CTL-CAFF1 without avoiding the higher lipid accumulation in BAT and in liver, suggesting that the impact of maternal CAF diet is tissue-specific.

  20. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears.

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W

    2012-11-06

    Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.

  1. Radioimmunoassay of renin in human renal tissues

    International Nuclear Information System (INIS)

    Wowra, B.

    1981-01-01

    A method has been developed to quantitatively determine renin in human kidney tissue. The angiotensin I split off angiotensinogs by renin was radioimmunologically determined. The renin-renin substrate reaction rate followed a saturation kinetics, as it increased the larger the substrate content in the incubation medium until it acquired a maximum value; the reaction rate decreased with substrate concentrations over 40 mg/ml incubation medium. The discontinuance of the renin reaction after incubation by adding acid, boiling and neutralizing again, gave highest renin values. The RIA scattering was 8.3% for double determination of the same sample, for the determination in different RIA additions 7.0%. The detection limit was 20 pg angiotensin I. A direct comparison of radioimmunoassay and bioassay exhibited a very significant agreement of both methods, where the radioimmunologically measured renin values were on average four times larger than those obtained using biological technique. The definition of the so-called normal values for absolute and specific renin concentration in human kidney tissue enabled one to assess the renin values in various syndromes. (orig./MG) [de

  2. Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Juan M Pacheco

    Full Text Available Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95% and dorsal soft palate (71.43%. FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT. Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE was identified for IP-10 (RE = 0.198, IFN-β (RE = 0.269, IL-12 (RE = 0.275, and IL-2 (RE = 0.312. Increased relative expression was detected for IL-6 (RE = 2.065. Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.

  3. Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell

    Science.gov (United States)

    Villarino, Gonzalo H.; Hu, Qiwen; Scanlon, Michael J.; Mueller, Lukas; Mattson, Neil S.

    2017-01-01

    One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq) has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1), a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species. PMID:28771200

  4. Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell

    Directory of Open Access Journals (Sweden)

    Gonzalo H. Villarino

    2017-08-01

    Full Text Available One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1, a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species.

  5. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment.

    Science.gov (United States)

    Zhu, Bin; Liu, Wenjia; Zhang, Hao; Zhao, Xicong; Duan, Yan; Li, Dehua; Jin, Yan

    2017-06-01

    Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2 defects predicts differential effects on aminoacylation

    Directory of Open Access Journals (Sweden)

    Liliya eEuro

    2015-02-01

    Full Text Available The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19 is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations.The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change p.R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.

  7. A Unique Immunofluorescence Protocol to Detect Protein Expression in Vascular Tissues: Tacking a Long Standing Pathological Hitch

    Directory of Open Access Journals (Sweden)

    Puneet GANDHI

    2018-01-01

    Full Text Available Objective: Autofluorescence induced interference is one of the major drawbacks in immunofluorescence analysis of formalin-fixed paraffin-embedded tissues, as it decreases the signal-to-noise ratio of specific labeling. Apart from aldehyde-fixation induced artifacts; collagen and elastin, red blood cells and endogenous fluorescent pigment lipofuscin are prime sources of autofluorescence in vascular and aging tissues. We describe herein, an optimized indirect-immunofluorescence method for archival formalin-fixed paraffin-embedded tissues tissues and cryo sections, using a combination of 3-reagents in a specific order, to achieve optimal fluorescence signals and imaging. Material and Method: Human telomerase reverse transcriptase, a protein implicated as a proliferation marker, was chosen relevant to its expression in solid tumors along with 3 other intracellular proteins exhibiting nuclear and/or cytoplasmic expression. Staining was performed on 10 glioma tissue sections along with 5 of their cryo sections, 5 sections each of hepatocellular, lung, papillary-thyroid and renal cell carcinoma, with 10 non-malignant brain tissue samples serving as control. Specimens were imaged using epifluorescence microscopy, followed by software-based quantification of fluorescence signals for statistical analysis and validation. Results: We observed that the combined application of sodium-borohydride followed by crystal violet before antigen retrieval and a Sudan black B treatment after secondary antibody application proved to be most efficacious for masking autofluorescence/non-specific background in vascular tissues. Conclusion: This unique trio-methodology provides quantifiable observations with maximized fluorescence signal intensity of the target protein for longer retention time of the signal even after prolonged storage. The results can be extrapolated to other human tissues for different protein targets.

  8. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 8

    International Nuclear Information System (INIS)

    Imanaka, Kazufumi; Gose, Kyuhei; Ichiyanagi, Akihiro

    1983-01-01

    The effectiveness of active specific immunotherapy prepared from a low-dose irradiated tumor tissue has already reported. The present study was designed to investigate the effect of Mitomycin C-treated active specific immunotherapy. Twelve-week-aged female C3H/He mice transplanted with MM 46 tumors were exposed to local electron radiotherapy with a dose of 3,000 rad on the 5th day after tumor inoculation. Tumor cells prepared for active specific immunotherapy were pretreated with Mitomycin C at concentration of 20 μg/10 7 cells in Eagle MEM Earle containing 100 IU/ml penicillin. The cell suspension was incubated at 37 0 C for 15 minutes. Mitomycin C-treated active specific immunotherapy was performed on the 12th day. Antitumor effect was evaluated by the regression of the tumor and survival curve. The remarkable regression of the tumor and significant elongation of the survival period were observed in the group which received Mitomycin C-treated active specific immunotherapy and the group which received active specific immunotherapy without the treatment of Mitomycin C. (author)

  9. Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues.

    Directory of Open Access Journals (Sweden)

    J Muse Davis

    2009-06-01

    Full Text Available Leptospirosis is an extremely widespread zoonotic infection with outcomes ranging from subclinical infection to fatal Weil's syndrome. Despite the global impact of the disease, key aspects of its pathogenesis remain unclear. To examine in detail the earliest steps in the host response to leptospires, we used fluorescently labelled Leptospira interrogans serovar Copenhageni to infect 30 hour post fertilization zebrafish embryos by either the caudal vein or hindbrain ventricle. These embryos have functional innate immunity but have not yet developed an adaptive immune system. Furthermore, they are optically transparent, allowing direct visualization of host-pathogen interactions from the moment of infection. We observed rapid uptake of leptospires by phagocytes, followed by persistent, intracellular infection over the first 48 hours. Phagocytosis of leptospires occasionally resulted in formation of large cellular vesicles consistent with apoptotic bodies. By 24 hours, clusters of infected phagocytes were accumulating lateral to the dorsal artery, presumably in early hematopoietic tissue. Our observations suggest that phagocytosis may be a key defense mechanism in the early stages of leptospirosis, and that phagocytic cells play roles in immunopathogenesis and likely in the dissemination of leptospires to specific target tissues.

  10. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    Science.gov (United States)

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  11. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells

    Directory of Open Access Journals (Sweden)

    W Ando

    2012-09-01

    Full Text Available The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  12. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells.

    Science.gov (United States)

    Ando, Wataru; Fujie, Hiromichi; Moriguchi, Yu; Nansai, Ryosuke; Shimomura, Kazunori; Hart, David A; Yoshikawa, Hideki; Nakamura, Norimasa

    2012-09-28

    The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC) derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  13. Reprimo tissue-specific expression pattern is conserved between zebrafish and human.

    Directory of Open Access Journals (Sweden)

    Ricardo J Figueroa

    Full Text Available Reprimo (RPRM, a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb, RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH and fluorescent in situ hybridization (FISH, we demonstrate that rprm (rprma/rprmb and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS. We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.

  14. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.

    Science.gov (United States)

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W; Rupp, Jonathan D

    2009-11-13

    Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472+/-0.097 and the mean failure stress is 34.80+/-12.62 kPa. A first-order Ogden material model with ground-state shear modulus (mu) of 23.97+/-5.52 kPa and exponent (alpha(1)) of 3.66+/-1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.

  15. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.; Torbett, Bruce E.; Elder, John H.; Stout, C. David, E-mail: dave@scripps.edu [The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2011-06-01

    Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC{sub 50} values in the nanomolar range.

  16. Myositis specific autoantibodies; specificity and clinical applications.

    NARCIS (Netherlands)

    Hengstman, G.J.D.

    2005-01-01

    The sera of about half of the patients with myositis contain autoantibodies that are specific for this group of diseases compared to other inflammatory connective tissue disorders. In a recent study we showed that these myositis specific autoantibodies (MSAs) are also specific for myositis as

  17. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  18. Characterization of Smoc-1 uncovers two transcript variants showing differential tissue and age specific expression in Bubalus bubalis

    Science.gov (United States)

    Srivastava, Jyoti; Premi, Sanjay; Kumar, Sudhir; Parwez, Iqbal; Ali, Sher

    2007-01-01

    Background Secreted modular calcium binding protein-1 (Smoc-1) belongs to the BM-40 family which has been implicated with tissue remodeling, angiogenesis and bone mineralization. Besides its anticipated role in embryogenesis, Smoc-1 has been characterized only in a few mammalian species. We made use of the consensus sequence (5' CACCTCTCCACCTGCC 3') of 33.15 repeat loci to explore the buffalo transcriptome and uncovered the Smoc-1 transcript tagged with this repeat. The main objective of this study was to gain an insight into its structural and functional organization, and expressional status of Smoc-1 in water buffalo, Bubalus bubalis. Results We cloned and characterized the buffalo Smoc-1, including its copy number status, in-vitro protein expression, tissue & age specific transcription/translation, chromosomal mapping and localization to the basement membrane zone. Buffalo Smoc-1 was found to encode a secreted matricellular glycoprotein containing two EF-hand calcium binding motifs homologous to that of BM-40/SPARC family. In buffalo, this single copy gene consisted of 12 exons and was mapped onto the acrocentric chromosome 11. Though this gene was found to be evolutionarily conserved, the buffalo Smoc-1 showed conspicuous nucleotide/amino acid changes altering its secondary structure compared to that in other mammals. In silico analysis of the Smoc-1 proposed its glycoprotein nature with a calcium dependent conformation. Further, we unveiled two transcript variants of this gene, varying in their 3'UTR lengths but both coding for identical protein(s). Smoc-1 evinced highest expression of both the variants in liver and modest to negligible in other tissues. The relative expression of variant-02 was markedly higher compared to that of variant-01 in all the tissues examined. Moreover, expression of Smoc-1, though modest during the early ages, was conspicuously enhanced after 1 year and remained consistently higher during the entire life span of buffalo with gradual

  19. Dealing with the problem of non-specific in situ mRNA hybridization signals associated with plant tissues undergoing programmed cell death

    Directory of Open Access Journals (Sweden)

    Jokela Anne

    2010-02-01

    Full Text Available Abstract Background In situ hybridization is a general molecular method typically used for the localization of mRNA transcripts in plants. The method provides a valuable tool to unravel the connection between gene expression and anatomy, especially in species such as pines which show large genome size and shortage of sequence information. Results In the present study, expression of the catalase gene (CAT related to the scavenging of reactive oxygen species (ROS and the polyamine metabolism related genes, diamine oxidase (DAO and arginine decarboxylase (ADC, were localized in developing Scots pine (Pinus sylvestris L. seeds. In addition to specific signals from target mRNAs, the probes continually hybridized non-specifically in the embryo surrounding region (ESR of the megagametophyte tissue, in the remnants of the degenerated suspensors as well as in the cells of the nucellar layers, i.e. tissues exposed to cell death processes and extensive nucleic acid fragmentation during Scots pine seed development. Conclusions In plants, cell death is an integral part of both development and defence, and hence it is a common phenomenon in all stages of the life cycle. Our results suggest that extensive nucleic acid fragmentation during cell death processes can be a considerable source of non-specific signals in traditional in situ mRNA hybridization. Thus, the visualization of potential nucleic acid fragmentation simultaneously with the in situ mRNA hybridization assay may be necessary to ensure the correct interpretation of the signals in the case of non-specific hybridization of probes in plant tissues.

  20. Quantitative Time-Resolved Fluorescence Imaging of Androgen Receptor and Prostate-Specific Antigen in Prostate Tissue Sections.

    Science.gov (United States)

    Krzyzanowska, Agnieszka; Lippolis, Giuseppe; Helczynski, Leszek; Anand, Aseem; Peltola, Mari; Pettersson, Kim; Lilja, Hans; Bjartell, Anders

    2016-05-01

    Androgen receptor (AR) and prostate-specific antigen (PSA) are expressed in the prostate and are involved in prostate cancer (PCa). The aim of this study was to develop reliable protocols for reproducible quantification of AR and PSA in benign and malignant prostate tissue using time-resolved fluorescence (TRF) imaging techniques. AR and PSA were detected with TRF in tissue microarrays from 91 PCa patients. p63/ alpha-methylacyl-CoA racemase (AMACR) staining on consecutive sections was used to categorize tissue areas as benign or cancerous. Automated image analysis was used to quantify staining intensity. AR intensity was significantly higher in AMACR+ and lower in AMACR- cancer areas as compared with benign epithelium. The PSA intensity was significantly lower in cancer areas, particularly in AMACR- glands. The AR/PSA ratio varied significantly in the AMACR+ tumor cells as compared with benign glands. There was a trend of more rapid disease progression in patients with higher AR/PSA ratios in the AMACR- areas. This study demonstrates the feasibility of developing reproducible protocols for TRF imaging and automated image analysis to study the expression of AR and PSA in benign and malignant prostate. It also highlighted the differences in AR and PSA protein expression within AMACR- and AMACR+ cancer regions. © 2016 The Histochemical Society.

  1. Tissue-Specific Contributions of Paternally Expressed Gene 3 in Lactation and Maternal Care of Mus musculus.

    Directory of Open Access Journals (Sweden)

    Wesley D Frey

    Full Text Available Paternally Expressed Gene 3 (Peg3 is an imprinted gene that controls milk letdown and maternal-caring behaviors. In this study, a conditional knockout allele has been developed in Mus musculus to further characterize these known functions of Peg3 in a tissue-specific manner. The mutant line was first crossed with a germline Cre. The progeny of this cross displayed growth retardation phenotypes. This is consistent with those seen in the previous mutant lines of Peg3, confirming the usefulness of the new mutant allele. The mutant line was subsequently crossed individually with MMTV- and Nkx2.1-Cre lines to test Peg3's roles in the mammary gland and hypothalamus, respectively. According to the results, the milk letdown process was impaired in the nursing females with the Peg3 mutation in the mammary gland, but not in the hypothalamus. This suggests that Peg3's roles in the milk letdown process are more critical in the mammary gland than in the hypothalamus. In contrast, one of the maternal-caring behaviors, nest-building, was interrupted in the females with the mutation in both MMTV- and Nkx2.1-driven lines. Overall, this is the first study to introduce a conditional knockout allele of Peg3 and to further dissect its contribution to mammalian reproduction in a tissue-specific manner.

  2. Tissue- and Cell Type-Specific Expression of the Long Noncoding RNA Klhl14-AS in Mouse

    Directory of Open Access Journals (Sweden)

    Sara Carmela Credendino

    2017-01-01

    Full Text Available lncRNAs are acquiring increasing relevance as regulators in a wide spectrum of biological processes. The extreme heterogeneity in the mechanisms of action of these molecules, however, makes them very difficult to study, especially regarding their molecular function. A novel lncRNA has been recently identified as the most enriched transcript in mouse developing thyroid. Due to its genomic localization antisense to the protein-encoding Klhl14 gene, we named it Klhl14-AS. In this paper, we highlight that mouse Klhl14-AS produces at least five splicing variants, some of which have not been previously described. Klhl14-AS is expressed with a peculiar pattern, characterized by diverse relative abundance of its isoforms in different mouse tissues. We examine the whole expression level of Klhl14-AS in a panel of adult mouse tissues, showing that it is expressed in the thyroid, lung, kidney, testis, ovary, brain, and spleen, although at different levels. In situ hybridization analysis reveals that, in the context of each organ, Klhl14-AS shows a cell type-specific expression. Interestingly, databases report a similar expression profile for human Klhl14-AS. Our observations suggest that this lncRNA could play cell type-specific roles in several organs and pave the way for functional characterization of this gene in appropriate biological contexts.

  3. Characterization of the omega-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types

    International Nuclear Information System (INIS)

    Cruz, L.J.; Johnson, D.S.; Olivera, B.M.

    1987-01-01

    Omega-Conotoxin GVIA (omega-CgTx-VIA) is a 27 amino acid peptide from the venom of the fish-hunting snail, Conus geographus, that blocks voltage-activated Ca channels. The characterization of a biologically active, homogeneous 125 I-labeled monoiodinated Tyr 22 derivative of omega-conotoxin GVIA and its use in binding and cross-linking studies are described. The 125 I-labeled toxin is specifically cross-linked to a receptor protein with an apparent M/sub r/ of 135,000. The stoichiometry between omega-conotoxin and nitrendipine binding sites in different chick tissues was determined. Skeletal muscle has a high concentration of [ 3 H]nitrendipine binding sites but no detectable omega-conotoxin sites. Brain microsomes have both binding sites, but omega-conotoxin targets are in excess. These results, combined with recent electrophysiological studies define four types of Ca channels in chick tissues, N, T, L/sub n/ (omega sensitive), and L/sub m/ (omega insensitive), and are consistent with the hypothesis that the α-subunits of certain neuronal Ca 2+ channels (L/sub n/, N) are the molecular targets of omega-conotoxin GVIA

  4. Dose-specific transcriptional responses in thyroid tissue in mice after 131I administration

    International Nuclear Information System (INIS)

    Rudqvist, Nils; Schüler, Emil; Parris, Toshima Z.; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    Introduction: In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after 131 I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with 131 I exposure in normal mouse thyroid tissue and 2) propose biomarkers for 131 I exposure of the thyroid. Methods: Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of 131 I and killed 24 h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. Results: In total, 497, 546, and 90 transcripts were regulated (fold change ≥ 1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. Conclusion: Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to 131 I exposure of thyroid. Advances in knowledge: During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low

  5. Tissue-specific signatures in the transcriptional response to Anaplasma phagocytophilum infection of Ixodes scapularis and Ixodes ricinus tick cell lines

    Directory of Open Access Journals (Sweden)

    Pilar eAlberdi

    2016-02-01

    Full Text Available Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum

  6. Boudin trafficking reveals the dynamic internalisation of specific septate junction components in Drosophila.

    Science.gov (United States)

    Tempesta, Camille; Hijazi, Assia; Moussian, Bernard; Roch, Fernando

    2017-01-01

    The maintenance of paracellular barriers in invertebrate epithelia depends on the integrity of specific cell adhesion structures known as septate junctions (SJ). Multiple studies in Drosophila have revealed that these junctions have a stereotyped architecture resulting from the association in the lateral membrane of a large number of components. However, little is known about the dynamic organisation adopted by these multi-protein complexes in living tissues. We have used live imaging techniques to show that the Ly6 protein Boudin is a component of these adhesion junctions and can diffuse systemically to associate with the SJ of distant cells. We also observe that this protein and the claudin Kune-kune are endocytosed in epidermal cells during embryogenesis. Our data reveal that the SJ contain a set of components exhibiting a high membrane turnover, a feature that could contribute in a tissue-specific manner to the morphogenetic plasticity of these adhesion structures.

  7. [Influence of tissue-specific superoxide dismutase genes expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability].

    Science.gov (United States)

    Vitushynska, M V; Matiytsiv, N P; Chernyk, Y

    2015-01-01

    The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.

  8. Statistical properties of chaotic dynamical systems which exhibit strange attractors

    International Nuclear Information System (INIS)

    Jensen, R.V.; Oberman, C.R.

    1981-07-01

    A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping

  9. Presentation and exhibition activities for promoting theexportof transport services

    Directory of Open Access Journals (Sweden)

    Darya Vladimirovna Nesterova

    2012-03-01

    Full Text Available Development of presentation and exhibition activities is considered as an important factor in providing new competitive advantages at the strategic markets for exporting of transportation services. A specific role for exhibition activities as a factor to overcome market failures arose from imperfect information and incomplete markets is displayed. Exhibitions are considered as a true reflection of most market parameters, as a means to get correct information concerning market capacity and its borders, as an instrument to access to new markets. At the firm level presentation and branding activities should be considered as a modern technology (especially it concerns Russian companies which provide to hold up already existed markets and to conquer new ones. Presentation and branding activities are an effective technology to promote company trade-mark, competitive advantages for market demand increasing. Comparative analysis of the main exhibitions on transport and logistics issues is fulfilled on the data basecollected by authors. Data observes geographical distribution of transport exhibition and exhibition facilities development at several regions for the last years. The analyses allow to revealing a geographical structure of the exhibitions and its distribution by type of transport. The most promising and economically favorable exhibition areas for the promotion of Russian transport services are shown.

  10. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  11. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    Science.gov (United States)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  12. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  13. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Dong, Xiaorong; Kuehne, Martin; Fricke, Andreas; Kaestner, Lars; Lipp, Peter; Ruebe, Christian

    2008-01-01

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive γH2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating γH2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that γH2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for γH2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis

  14. DipA, a pore-forming protein in the outer membrane of Lyme disease spirochetes exhibits specificity for the permeation of dicarboxylates.

    Directory of Open Access Journals (Sweden)

    Marcus Thein

    Full Text Available Lyme disease Borreliae are highly dependent on the uptake of nutrients provided by their hosts. Our study describes the identification of a 36 kDa protein that functions as putative dicarboxylate-specific porin in the outer membrane of Lyme disease Borrelia. The protein was purified by hydroxyapatite chromatography from Borrelia burgdorferi B31 and designated as DipA, for dicarboxylate-specific porin A. DipA was partially sequenced, and corresponding genes were identified in the genomes of B. burgdorferi B31, Borrelia garinii PBi and Borrelia afzelii PKo. DipA exhibits high homology to the Oms38 porins of relapsing fever Borreliae. B. burgdorferi DipA was characterized using the black lipid bilayer assay. The protein has a single-channel conductance of 50 pS in 1 M KCl, is slightly selective for anions with a permeability ratio for cations over anions of 0.57 in KCl and is not voltage-dependent. The channel could be partly blocked by different di- and tricarboxylic anions. Particular high stability constants up to about 28,000 l/mol (in 0.1 M KCl were obtained among the 11 tested anions for oxaloacetate, 2-oxoglutarate and citrate. The results imply that DipA forms a porin specific for dicarboxylates which may play an important role for the uptake of specific nutrients in different Borrelia species.

  15. Analytical formulae in fractionated irradiation of normal tissue

    International Nuclear Information System (INIS)

    Kozubek, S.

    1982-01-01

    The new conception of the modeling of the cell tissue kinetics after fractionated irradiation is proposed. The formulae given earlier are compared with experimental data on various normal tissues and further adjustments are considered. The tissues are shown to exhibit several general patterns of behaviour. The repopulation, if it takes place, seems to start after some time, independently of fractionation in first approximation and can be treated as simple autogenesis. The results are compared with the commonly used NSD conception and the well-known Cohen cell tissue kinetic model

  16. Tissue- and Cell-Specific Co-localization of Intracellular Gelatinolytic Activity and Matrix Metalloproteinase 2

    Science.gov (United States)

    Solli, Ann Iren; Fadnes, Bodil; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2013-01-01

    Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme that degrades extracellular matrix proteins. Recent studies indicate that MMP-2 also has a role in intracellular proteolysis during various pathological conditions, such as ischemic injuries in heart and brain and in tumor growth. The present study was performed to map the distribution of intracellular MMP-2 activity in various mouse tissues and cells under physiological conditions. Samples from normal brain, heart, lung, liver, spleen, pancreas, kidney, adrenal gland, thyroid gland, gonads, oral mucosa, salivary glands, esophagus, intestines, and skin were subjected to high-resolution in situ gelatin zymography and immunohistochemical staining. In hepatocytes, cardiac myocytes, kidney tubuli cells, epithelial cells in the oral mucosa as well as in excretory ducts of salivary glands, and adrenal cortical cells, we found strong intracellular gelatinolytic activity that was significantly reduced by the metalloprotease inhibitor EDTA but not by the cysteine protease inhibitor E-64. Furthermore, the gelatinolytic activity was co-localized with MMP-2. Western blotting and electron microscopy combined with immunogold labeling revealed the presence of MMP-2 in different intracellular compartments of isolated hepatocytes. Our results indicate that MMP-2 takes part in intracellular proteolysis in specific tissues and cells during physiological conditions. PMID:23482328

  17. Exhibition

    CERN Document Server

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  18. Tissue-specific transcriptomic profiling provides new insights into the reproductive ecology and biology of the iconic seagrass species Posidonia oceanica.

    Science.gov (United States)

    Entrambasaguas, Laura; Jahnke, Marlene; Biffali, Elio; Borra, Marco; Sanges, Remo; Marín-Guirao, Lázaro; Procaccini, Gabriele

    2017-10-01

    Seagrasses form extensive meadows in shallow coastal waters and are among the world's most productive ecosystems. Seagrasses can produce both clonally and sexually, and flowering has long been considered infrequent, but important for maintaining genetically diverse stands. Here we investigate the molecular mechanisms involved in flowering of the seagrass Posidonia oceanica, an iconic species endemic to the Mediterranean. We generated a de novo transcriptome of this non-model species for leaf, male and female flower tissue of three individuals, and present molecular evidence for genes that may be involved in the flowering process and on the reproductive biology of the species. We present evidence that suggests that P. oceanica exhibits a strategy of protogyny, where the female part of the hermaphroditic flower develops before the male part, in order to avoid self-fertilization. We found photosynthetic genes to be up-regulated in the female flower tissues, indicating that this may be capable of photosynthesis. Finally, we detected a number of interesting genes, previously known to be involved in flowering pathways responding to light and temperature cues and in pathways involved in anthocyanin and exine synthesis. This first comparative transcriptomic approach of leaf, male and female tissue provides a basis for functional genomics research on flower development in P. oceanica and other seagrass species. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.

    OpenAIRE

    Buckley, SM; Delhove, JM; Perocheau, DP; Karda, R; Rahim, AA; Howe, SJ; Ward, NJ; Birrell, MA; Belvisi, MG; Arbuthnot, P; Johnson, MR; Waddington, SN; McKay, TR

    2015-01-01

    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruse...

  20. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    International Nuclear Information System (INIS)

    Ehler, E; Sterling, D; Higgins, P

    2015-01-01

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology

  1. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Sterling, D; Higgins, P [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.

  2. Isolation of Precursor Cells from Waste Solid Fat Tissue

    Science.gov (United States)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  3. An exploratory study of relational, persuasive, and nonverbal communication in requests for tissue donation.

    Science.gov (United States)

    Siminoff, Laura A; Traino, Heather M; Gordon, Nahida H

    2011-10-01

    This study explores the effects of tissue requesters' relational, persuasive, and nonverbal communication on families' final donation decisions. One thousand sixteen (N = 1,016) requests for tissue donation were audiotaped and analyzed using the Siminoff Communication Content and Affect Program, a computer application specifically designed to code and assist with the quantitative analysis of communication data. This study supports the important role of communication strategies in health-related decision making. Families were more likely to consent to tissue donation when confirmational messages (e.g., messages that expressed validation or acceptance) or persuasive tactics such as credibility, altruism, or esteem were used during donation discussions. Consent was also more likely when family members exhibited nonverbal immediacy or disclosed private information about themselves or the patient. The results of a hierarchical log-linear regression revealed that the use of relational communication during requests directly predicted family consent. The results provide information about surrogate decision making in end-of-life situations and may be used to guide future practice in obtaining family consent to tissue donation.

  4. Exhibiting Epistemic Objects

    DEFF Research Database (Denmark)

    Tybjerg, Karin

    2017-01-01

    of exhibiting epistemic objects that utilize their knowledge-generating potential and allow them to continue to stimulate curiosity and generate knowledge in the exhibition. The epistemic potential of the objects can then be made to work together with the function of the exhibition as a knowledge-generating set...

  5. Protein signature of lung cancer tissues.

    Directory of Open Access Journals (Sweden)

    Michael R Mehan

    Full Text Available Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan to compare protein expression signatures of non small-cell lung cancer (NSCLC tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment.

  6. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    -rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified...... release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans....

  7. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    Science.gov (United States)

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  8. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qiongshi Lu

    2017-07-01

    Full Text Available Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD. Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  9. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    Science.gov (United States)

    Lu, Qiongshi; Powles, Ryan L; Abdallah, Sarah; Ou, Derek; Wang, Qian; Hu, Yiming; Lu, Yisi; Liu, Wei; Li, Boyang; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-07-01

    Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  10. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Science.gov (United States)

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  11. Tissue-Specific Reduction in Splicing Efficiency of IKBKAP Due to the Major Mutation Associated with Familial Dysautonomia

    Science.gov (United States)

    Cuajungco, Math P.; Leyne, Maire; Mull, James; Gill, Sandra P.; Lu, Weining; Zagzag, David; Axelrod, Felicia B.; Maayan, Channa; Gusella, James F.; Slaugenhaupt, Susan A.

    2003-01-01

    We recently identified a mutation in the I-κB kinase associated protein (IKBKAP) gene as the major cause of familial dysautonomia (FD), a recessive sensory and autonomic neuropathy. This alteration, located at base pair 6 of the intron 20 donor splice site, is present on >99.5% of FD chromosomes and results in tissue-specific skipping of exon 20. A second FD mutation, a missense change in exon 19 (R696P), was seen in only four patients heterozygous for the major mutation. Here, we have further characterized the consequences of the major mutation by examining the ratio of wild-type to mutant (WT:MU) IKBKAP transcript in EBV-transformed lymphoblast lines, primary fibroblasts, freshly collected blood samples, and postmortem tissues from patients with FD. We consistently found that WT IKBKAP transcripts were present, albeit to varying extents, in all cell lines, blood, and postmortem FD tissues. Further, a corresponding decrease in the level of WT protein is seen in FD cell lines and tissues. The WT:MU ratio in cultured lymphoblasts varied with growth phase but not with serum concentration or inclusion of antibiotics. Using both densitometry and real-time quantitative polymerase chain reaction, we found that relative WT:MU IKBKAP RNA levels were highest in cultured patient lymphoblasts and lowest in postmortem central and peripheral nervous tissues. These observations suggest that the relative inefficiency of WT IKBKAP mRNA production from the mutant alleles in the nervous system underlies the selective degeneration of sensory and autonomic neurons in FD.Therefore, exploration of methods to increase the WT:MU IKBKAP transcript ratio in the nervous system offers a promising approach for developing an effective therapy for patients with FD. PMID:12577200

  12. Tissue-specific control of latent CMV reactivation by regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Maha Almanan

    2017-08-01

    Full Text Available Cytomegalovirus (CMV causes a persistent, lifelong infection. CMV persists in a latent state and undergoes intermittent subclinical viral reactivation that is quelled by ongoing T cell responses. While T cells are critical to maintain control of infection, the immunological factors that promote CMV persistence remain unclear. Here, we investigated the role of regulatory T cells (Treg in a mouse model of latent CMV infection using Foxp3-diphtheria toxin receptor (Foxp3-DTR mice. Eight months after infection, MCMV had established latency in the spleen, salivary gland, lung, and pancreas, which was accompanied by an increased frequency of Treg. Administration of diphtheria toxin (DT after establishment of latency efficiently depleted Treg and drove a significant increase in the numbers of functional MCMV-specific CD4+ and CD8+ T cells. Strikingly, Treg depletion decreased the number of animals with reactivatable latent MCMV in the spleen. Unexpectedly, in the same animals, ablation of Treg drove a significant increase in viral reactivation in the salivary gland that was accompanied with augmented local IL-10 production by Foxp3-CD4+T cells. Further, neutralization of IL-10 after Treg depletion significantly decreased viral load in the salivary gland. Combined, these data show that Treg have divergent control of MCMV infection depending upon the tissue. In the spleen, Treg antagonize CD8+ effector function and promote viral persistence while in the salivary gland Treg prevent IL-10 production and limit viral reactivation and replication. These data provide new insights into the organ-specific roles of Treg in controlling the reactivation of latent MCMV infection.

  13. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    Science.gov (United States)

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  14. Migration and Tissue Tropism of Innate Lymphoid Cells

    Science.gov (United States)

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  15. SU-E-J-31: Biodynamic Imaging of Cancer Tissue and Response to Chemotherapy

    International Nuclear Information System (INIS)

    Nolte, D; Turek, J; Childress, M; An, R; Merrill, D; Matei, D

    2014-01-01

    Purpose: To measure intracellular motions inside three-dimensional living cancer tissue samples to establish a novel set of biodynamic biomarkers that assess tissue proliferative activity and sensitivity or resistance to chemotherapy. Methods: Biodynamic imaging (BDI) uses digital holography with low-coherence low-intensity light illumination to construct 3D holograms from depths up to a millimeter deep inside cancer tissue models that include multicellular tumor spheroids and ex vivo cancer biopsies from canine non-Hodgkins lymphoma and epithelial ovarian cancer (EOC) mouse explants. Intracellular motions modulate the holographic intensity with frequencies related to the Doppler effect caused by the motions of a wide variety of intracellular components. These motions are affected by applied therapeutic agents, and BDI produces unique fingerprints of the action of specific drugs on the motions in specific cell types. In this study, chemotherapeutic agents (doxorubicin for canine lymphoma and oxoplatin for ovarian) are applied to the living tissue models and monitored over 10 hours by BDI. Results: Multicellular spheroids and patient biopsies are categorized as either sensitive or insensitive to applied therapeutics depending on the intracellular Doppler signatures of chemotherapy response. For both lymphoma and EOC there is strong specificity to the two types of sensitivities, with sensitive cell lines and biopsies exhibiting a global cessation of proliferation and strong suppression of metabolic activity, while insensitive cell lines and biopsies show moderate activation of Doppler frequencies associated with membrane processes and possible membrane trafficking. Conclusion: This work supports the hypothesis that biodynamic biomarkers from three-dimensional living tumor tissue, that includes tissue heterogeneity and measured within 24 hours of surgery, is predictive of near-term patient response to therapy. Future work will correlate biodynamic biomarkers with

  16. SU-E-J-31: Biodynamic Imaging of Cancer Tissue and Response to Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nolte, D; Turek, J; Childress, M; An, R; Merrill, D [Purdue University, West Lafayette, IN (United States); Matei, D [Indiana University School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: To measure intracellular motions inside three-dimensional living cancer tissue samples to establish a novel set of biodynamic biomarkers that assess tissue proliferative activity and sensitivity or resistance to chemotherapy. Methods: Biodynamic imaging (BDI) uses digital holography with low-coherence low-intensity light illumination to construct 3D holograms from depths up to a millimeter deep inside cancer tissue models that include multicellular tumor spheroids and ex vivo cancer biopsies from canine non-Hodgkins lymphoma and epithelial ovarian cancer (EOC) mouse explants. Intracellular motions modulate the holographic intensity with frequencies related to the Doppler effect caused by the motions of a wide variety of intracellular components. These motions are affected by applied therapeutic agents, and BDI produces unique fingerprints of the action of specific drugs on the motions in specific cell types. In this study, chemotherapeutic agents (doxorubicin for canine lymphoma and oxoplatin for ovarian) are applied to the living tissue models and monitored over 10 hours by BDI. Results: Multicellular spheroids and patient biopsies are categorized as either sensitive or insensitive to applied therapeutics depending on the intracellular Doppler signatures of chemotherapy response. For both lymphoma and EOC there is strong specificity to the two types of sensitivities, with sensitive cell lines and biopsies exhibiting a global cessation of proliferation and strong suppression of metabolic activity, while insensitive cell lines and biopsies show moderate activation of Doppler frequencies associated with membrane processes and possible membrane trafficking. Conclusion: This work supports the hypothesis that biodynamic biomarkers from three-dimensional living tumor tissue, that includes tissue heterogeneity and measured within 24 hours of surgery, is predictive of near-term patient response to therapy. Future work will correlate biodynamic biomarkers with

  17. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human Tissues.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available The expression pattern of Sohlh1 (spermatogenesis and oogenesis specific basic helix-loop-helix 1 and Sohlh2 in mice has been reported in previous studies. Sohlh1 and Sohlh2 are specifically expressed in spermatogonia, prespermatogonia in male mice and oocytes of primordial and primary follicles in female mice. In this report, we studied the expression pattern of Sohlh1 and Sohlh2 in human adult tissues. Immunohistochemical staining of Sohlh1 and Sohlh2 was performed in 5 samples of normal ovaries and testes, respectively. The results revealed that Sohlh genes are not only expressed in oocytes and spermatogonia, but also in granular cells, theca cells, Sertoli cells and Leydig cells, and in smooth muscles of blood vessel walls. To further investigate the expression of Sohlh genes in other adult human tissues, we collected representative normal adult tissues developed from three embryonic germ layers. Compared with the expression in mice, Sohlhs exhibited a much more extensive expression pattern in human tissues. Sohlhs were detected in testis, ovary and epithelia developed from embryonic endoderm, ectoderm and tissues developed from embryonic mesoderm. Sohlh signals were found in spermatogonia, Sertoli cells and also Leydig cells in testis, while in ovary, the expression was mainly in oocytes of primordial and primary follicles, granular cells and theca cells of secondary follicles. Compared with Sohlh2, the expression of Sohlh1 was stronger and more extensive. Our study explored the expression of Sohlh genes in human tissues and might provide insights for functional studies of Sohlh genes.

  18. Molecular cloning and tissue-specific expression analysis of mouse spinesin, a type II transmembrane serine protease 5

    International Nuclear Information System (INIS)

    Watanabe, Yoshihisa; Okui, Akira; Mitsui, Shinichi; Kawarabuki, Kentaro; Yamaguchi, Tatsuyuki; Uemura, Hidetoshi; Yamaguchi, Nozomi

    2004-01-01

    We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression

  19. Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter.

    Science.gov (United States)

    Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea

    2016-01-01

    Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but

  20. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Alison Marshall

    Full Text Available The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP. In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK, and the H357 oral cancer cell line in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP. The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.

  1. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay

    Energy Technology Data Exchange (ETDEWEB)

    Long, Alexandra S., E-mail: alexandra.long@hc-sc.gc.ca [Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON (Canada); Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON (Canada); Lemieux, Christine L. [Air Health Science Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON (Canada); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King' s College London, London (United Kingdom); White, Paul A. [Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON (Canada); Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON (Canada)

    2016-01-01

    haematopoietic tissue. • Tissue-specific results are likely related to metabolism, repair, and proliferation. • For oral exposures, it is important to examine effects at the site-of-contact.

  2. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  3. Effect of implant vs. tissue reconstruction on cancer specific survival varies by axillary lymph node status in breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Qian Ouyang

    Full Text Available To compare the breast cancer-specific survival (BCSS between patients who underwent tissue or implant reconstruction after mastectomy.We used the database from Surveillance, Epidemiology, and End Results (SEER registries and compared the BCSS between patients who underwent tissue and implant reconstruction after mastectomy. Cox-regression models were fitted, adjusting for known clinicopathological features. The interaction between the reconstruction types (tissue/implant and nodal status (N-stage was investigated.A total of 6,426 patients with a median age of 50 years were included. With a median follow up of 100 months, the 10-year cumulative BCSS and non-BCSS were 85.1% and 95.4%, respectively. Patients who underwent tissue reconstruction had tumors with a higher T-stage, N-stage, and tumor grade and tended to be ER/PR-negative compared to those who received implant reconstruction. In univariate analysis, implant-reconstruction was associated with a 2.4% increase (P = 0.003 in the BCSS compared with tissue-reconstruction. After adjusting for significant risk factors of the BCSS (suggested by univariate analysis and stratifying based on the N-stage, there was only an association between the reconstruction type and the BCSS for the N2-3 patients (10-year BCSS of implant vs. tissue-reconstruction: 68.7% and 59.0%, P = 0.004. The 10-year BCSS rates of implant vs. tissue-reconstruction were 91.7% and 91.8% in N0 patients (P>0.05 and 84.5% and 84.4% in N1 patients (P>0.05, respectively.The implant (vs. tissue reconstruction after mastectomy was associated with an improved BCSS in N2-3 breast cancer patients but not in N0-1 patients. A well-designed, prospective study is needed to further confirm these findings.

  4. Method to reduce non-specific tissue heating of small animals in solenoid coils.

    Science.gov (United States)

    Kumar, Ananda; Attaluri, Anilchandra; Mallipudi, Rajiv; Cornejo, Christine; Bordelon, David; Armour, Michael; Morua, Katherine; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.

  5. Grass-specific CD4+ T-cells exhibit varying degrees of cross-reactivity, implications for allergen-specific immunotherapy

    Science.gov (United States)

    Archila, LD; DeLong, JH; Wambre, E; James, EA; Robinson, DM; Kwok, WW

    2014-01-01

    Background Conceptually, allergic responses may involve cross-reactivity by antibodies or T-cells. While IgE cross-reactivity amongst grass pollen allergens has been observed, cross-reactivity at the allergen-specific T-cell level has been less documented. Identification of the patterns of cross-reactivity may improve our understanding, allowing optimization of better immunotherapy strategies. Objectives We use Phleum pratense as model for the studying of cross-reactivity at the allergen-specific CD4+ T cell level amongst DR04:01 restricted Pooideae grass pollen T-cell epitopes. Methods After In vitro culture of blood mononucleated cells from Grass-pollen allergic subjects with specific Pooideae antigenic epitopes, dual tetramer staining with APC-labeled DR04:01/Phleum pratense tetramers and PE-labeled DR04:01/Pooideae grass homolog tetramers was assessed to identify cross-reactivity amongst allergen-specific DR04:01-restricted T-cells in 6 subjects. Direct ex vivo staining enabled the comparison of frequency and phenotype of different Pooideae grass pollen reactive T-cells. Intracellular cytokine staining (ICS) assays were also used to examine phenotypes of these T-cells. Results T-cells with various degree of cross reactive profiles could be detected. Poa p 1 97-116, Lol p 1 221-240, Lol p 5a 199-218, and Poa p 5a 199-218 were identified as minimally-cross-reactive T-cell epitopes that do not show cross reactivity to Phl p 1 and Phl p 5a epitopes. Ex vivo tetramer staining assays demonstrated T-cells that recognized these minimally-cross reactive T-cell epitopes are present in Grass-pollen allergic subjects. Conclusions Our results suggest that not all Pooideae grass epitopes with sequence homology are cross-reactive. Non-cross reactive T-cells with comparable frequency, phenotype and functionality to Phl p-specific T-cells, suggest that a multiple allergen system should be considered for immunotherapy instead of a mono allergen system. PMID:24708411

  6. Grass-specific CD4(+) T-cells exhibit varying degrees of cross-reactivity, implications for allergen-specific immunotherapy.

    Science.gov (United States)

    Archila, L D; DeLong, J H; Wambre, E; James, E A; Robinson, D M; Kwok, W W

    2014-07-01

    Conceptually, allergic responses may involve cross-reactivity by antibodies or T-cells. While IgE cross-reactivity among grass-pollen allergens has been observed, cross-reactivity at the allergen-specific T-cell level has been less documented. Identification of the patterns of cross-reactivity may improve our understanding, allowing optimization of better immunotherapy strategies. We use Phleum pratense as model for the studying of cross-reactivity at the allergen-specific CD4(+) T cell level among DR04:01 restricted Pooideae grass-pollen T-cell epitopes. After in vitro culture of blood mono-nucleated cells from grass-pollen-allergic subjects with specific Pooideae antigenic epitopes, dual tetramer staining with APC-labelled DR04:01/Phleum pratense tetramers and PE-labelled DR04:01/Pooideae grass homolog tetramers was assessed to identify cross-reactivity among allergen-specific DR04:01-restricted T-cells in six subjects. Direct ex vivo staining enabled the comparison of frequency and phenotype of different Pooideae grass-pollen reactive T-cells. Intracellular cytokine staining (ICS) assays were also used to examine phenotypes of these T-cells. T-cells with various degrees of cross-reactive profiles could be detected. Poa p 1 97-116 , Lol p 1 221-240 , Lol p 5a 199-218 , and Poa p 5a 199-218 were identified as minimally cross-reactive T-cell epitopes that do not show cross-reactivity to Phl p 1 and Phl p 5a epitopes. Ex vivo tetramer staining assays demonstrated T-cells that recognized these minimally cross-reactive T-cell epitopes are present in Grass-pollen-allergic subjects. Our results suggest that not all Pooideae grass epitopes with sequence homology are cross-reactive. Non-cross-reactive T-cells with comparable frequency, phenotype and functionality to Phl p-specific T-cells suggest that a multiple allergen system should be considered for immunotherapy instead of a mono-allergen system. © 2014 John Wiley & Sons Ltd.

  7. Evaluating Education and Science in the KSC Visitor Complex Exhibits

    Science.gov (United States)

    Erickson, Lance K.

    2000-01-01

    The continuing development of exhibits at the Kennedy Space Center's Visitor Complex is an excellent opportunity for NASA personnel to promote science and provide insight into NASA programs and projects for the approximately 3 million visitors that come to KSC annually. Stated goals for the Visitor Complex, in fact, emphasize science awareness and recommend broadening the appeal of the displays and exhibits for all age groups. To this end, this summer project seeks to evaluate the science content of planned exhibits/displays in relation to these developing opportunities and identify specific areas for enhancement of existing or planned exhibits and displays. To help expand the educational and science content within the developing exhibits at the Visitor Complex, this project was structured to implement the goals of the Visitor Center Director. To accomplish this, the exhibits and displays planned for completion within the year underwent review and evaluation for science content and educational direction. Planning emphasis for the individual displays was directed at combining the elements of effective education with fundamental scientific integrity, within an appealing format.

  8. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue.

    Science.gov (United States)

    Fritsch, Michael K; Bridge, Julia A; Schuster, Amy E; Perlman, Elizabeth J; Argani, Pedram

    2003-01-01

    Pediatric small round cell tumors still pose tremendous diagnostic problems. In difficult cases, the ability to detect tumor-specific gene fusion transcripts for several of these neoplasms, including Ewing sarcoma/peripheral primitive neuroectodermal tumor (ES/PNET), synovial sarcoma (SS), alveolar rhabdomyosarcoma (ARMS), and desmoplastic small round cell tumor (DSRCT) using reverse transcriptase-polymerase chain reaction (RT-PCR), can be extremely helpful. Few studies to date, however, have systematically examined several different tumor types for the presence of multiple different fusion transcripts in order to determine the specificity and sensitivity of the RT-PCR method, and no study has addressed this issue for formalin-fixed material. The objectives of this study were to address the specificity, sensitivity, and practicality of such an assay applied strictly to formalin-fixed tissue blocks. Our results demonstrate that, for these tumors, the overall sensitivity for detecting each fusion transcript is similar to that reported in the literature for RT-PCR on fresh or formalin-fixed tissues. The specificity of the assay is very high, being essentially 100% for each primer pair when interpreting the results from visual inspection of agarose gels. However, when these same agarose gels were examined using Southern blotting, a small number of tumors also yielded reproducibly detectable weak signals for unexpected fusion products, in addition to a strong signal for the expected fusion product. Fluorescence in situ hybridization (FISH) studies in one such case indicated that a rearrangement that would account for the unexpected fusion was not present, while another case was equivocal. The overall specificity for each primer pair used in this assay ranged from 94 to 100%. Therefore, RT-PCR using formalin-fixed paraffin-embedded tissue sections can be used to detect chimeric transcripts as a reliable, highly sensitive, and highly specific diagnostic assay. However, we

  9. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.

    Science.gov (United States)

    Haberman, Yael; Tickle, Timothy L; Dexheimer, Phillip J; Kim, Mi-Ok; Tang, Dora; Karns, Rebekah; Baldassano, Robert N; Noe, Joshua D; Rosh, Joel; Markowitz, James; Heyman, Melvin B; Griffiths, Anne M; Crandall, Wallace V; Mack, David R; Baker, Susan S; Huttenhower, Curtis; Keljo, David J; Hyams, Jeffrey S; Kugathasan, Subra; Walters, Thomas D; Aronow, Bruce; Xavier, Ramnik J; Gevers, Dirk; Denson, Lee A

    2014-08-01

    Interactions between the host and gut microbial community likely contribute to Crohn disease (CD) pathogenesis; however, direct evidence for these interactions at the onset of disease is lacking. Here, we characterized the global pattern of ileal gene expression and the ileal microbial community in 359 treatment-naive pediatric patients with CD, patients with ulcerative colitis (UC), and control individuals. We identified core gene expression profiles and microbial communities in the affected CD ilea that are preserved in the unaffected ilea of patients with colon-only CD but not present in those with UC or control individuals; therefore, this signature is specific to CD and independent of clinical inflammation. An abnormal increase of antimicrobial dual oxidase (DUOX2) expression was detected in association with an expansion of Proteobacteria in both UC and CD, while expression of lipoprotein APOA1 gene was downregulated and associated with CD-specific alterations in Firmicutes. The increased DUOX2 and decreased APOA1 gene expression signature favored oxidative stress and Th1 polarization and was maximally altered in patients with more severe mucosal injury. A regression model that included APOA1 gene expression and microbial abundance more accurately predicted month 6 steroid-free remission than a model using clinical factors alone. These CD-specific host and microbe profiles identify the ileum as the primary inductive site for all forms of CD and may direct prognostic and therapeutic approaches.

  10. Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5' untranslated regions

    International Nuclear Information System (INIS)

    Irminger, J.C.; Rosen, K.M.; Humble, R.E.; Villa-Komaroff, L.

    1987-01-01

    The authors have used RNA from human hypothalamus as template for the production of cDNAs encoding insulin-like growth factor II (IGF-II). The prohormone coding sequence of brain IGF-II RNA is identical to that found in liver; however, the 5' untranslated sequence of the brain cDNA has no homology to the 5' untranslated sequence of the previously reported liver cDNAs. By using hybridization to specific probes as well as a method based on the properties of RNase H, they found that the human IGF-II gene has at least three exons that encode alternative 5' untranslated regions and that are expressed in a tissue-specific manner. A probe specific to the brain cDNA 5' untranslated region hybridizes to a 6.0-kilobase transcript present in placenta, hypothalamus, adrenal gland, kidney, Wilms tumor, and a pheochromocytoma. The 5' untranslated sequence of the brain cDNA does not hybridize to a 5.3-kilobase transcript found in liver or to a 5.0-kb transcript found in pheochromocytoma. By using RNase H to specifically fragment the IGF-II transcripts into 3' and 5' fragments, they found that the RNAs vary in size due to differences in the 5' end but not the 3' end

  11. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients

    Directory of Open Access Journals (Sweden)

    Thomas Greither

    2017-12-01

    Full Text Available The capillary morphogenesis gene 2 (CMG2, also known as the anthrax toxin receptor 2 (ANTXR2, is a transmembrane protein putatively involved in extracellular matrix (ECM adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027. CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013, especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  12. CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.

    Science.gov (United States)

    Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias

    2017-12-07

    The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.

  13. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  14. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae).

    Science.gov (United States)

    Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S

    2012-08-19

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.

  15. Tissue-specific alternative splicing and expression of ATP1B2 gene ...

    African Journals Online (AJOL)

    After heat-stress, the expression levels of the different transcripts were lower in different tissues; however, the expression of the ATP1B2-complete transcript increased in heart and lung tissues. The results of this research provide some useful information for further studies into the function of the bovine ATP1B2 gene.

  16. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes...... involved in the Mendelian disorder long QT syndrome (LOTS). We integrated the LOTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LOTS protein...... network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy...

  17. Tissue-specific down-regulation of RIPK 2 in Mycobacterium leprae-infected nu/nu mice

    Directory of Open Access Journals (Sweden)

    Gue-Tae Chae

    1992-01-01

    Full Text Available RIPK 2 is adapter molecule in the signal pathway involved in Toll-like receptors. However, there has been no reported association between receptor-interacting serine/threonine kinase 2 (RIPK 2 expression and the infectious diseases involving mycobacterial infection. This study found that its expression was down-regulated in the footpads and skin but was up-regulated in the liver of Mycobacterium leprae-infected nu/nu mice compared with those of the M. leprae non-infected nu/nu mice. It was observed that the interlukin-12p40 and interferon-γ genes involved in the susceptibility of M. leprae were down-regulated in the skin but were up-regulated in the liver. Overall, this suggests that regulation of RIPK 2 expression is tissue-specifically associated with M. leprae infection.

  18. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities.

    Directory of Open Access Journals (Sweden)

    Alyssa J Reiffel

    Full Text Available Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and their respective molds that would precisely mimic the normal anatomy of the patient-specific external ear as well as recapitulate the complex biomechanical properties of native auricular elastic cartilage while avoiding the morbidity of traditional autologous reconstructions.Three-dimensional structures of normal pediatric ears were digitized and converted to virtual solids for mold design. Image-based synthetic reconstructions of these ears were fabricated from collagen type I hydrogels. Half were seeded with bovine auricular chondrocytes. Cellular and acellular constructs were implanted subcutaneously in the dorsa of nude rats and harvested after 1 and 3 months.Gross inspection revealed that acellular implants had significantly decreased in size by 1 month. Cellular constructs retained their contour/projection from the animals' dorsa, even after 3 months. Post-harvest weight of cellular constructs was significantly greater than that of acellular constructs after 1 and 3 months. Safranin O-staining revealed that cellular constructs demonstrated evidence of a self-assembled perichondrial layer and copious neocartilage deposition. Verhoeff staining of 1 month cellular constructs revealed de novo elastic cartilage deposition, which was even more extensive and robust after 3 months. The equilibrium modulus and hydraulic permeability of cellular constructs were not significantly different from native bovine auricular cartilage after 3 months.We have developed high-fidelity, biocompatible, patient-specific tissue-engineered constructs for auricular reconstruction which largely mimic the native auricle both biomechanically and histologically, even after an extended

  19. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease

    Science.gov (United States)

    Abdallah, Sarah; Ou, Derek; Wang, Qian; Hu, Yiming; Lu, Yisi; Liu, Wei; Li, Boyang; Mukherjee, Shubhabrata; Crane, Paul K.; Zhao, Hongyu

    2017-01-01

    Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer’s disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson’s disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:28742084

  20. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  1. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 9

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Maeda, Tomoho; Yoshida, Shoji

    1983-01-01

    We have already reported the remarkable effect of an active specific immunotherapy using cryopreserved tumor cells and infiltrating mononuclear cells prepared from a low-dose irradiated tumor tissue after cytoreductive radiotherapy. In the present study, the effect of a biological response modifier, OK-432 combined with the active specific immunotherapy was investigated. Twelve-week-aged female C3H/He mice transplanted with MM 46 tumor cells were received local radiotherapy with a dose of 3,000 rads by high energy electron beams on the fifth day after inoculation. The tumor cells and infiltrating mononuclear cells cryopreserved for two months were thawed and treated with mitomycin-C at concentration of 20 μg/10 7 cells at 37 0 C for 30 min. Then, these cells were injected subcutaneously into the left hind paws as a mitomycin C-treated, cryopreserved active specific immunotherapy on the thirteenth day, and daily dose of 1 KE of OK-432 was injected intraperitoneally from the sixth to the tenth days. The inhibition of the tumor growth was similarly observed in the group which received this active specific immunotherapy combined with a biological response modifier, OK-432. (author)

  2. Tissue specificity for incorporation of [3H]thymidine by the 10- to 12-somite mouse embryo: alteration by acute exposure to hydroxyurea

    International Nuclear Information System (INIS)

    Miller, S.A.; Runner, M.N.

    1978-01-01

    Radioautograms from 10- to 12-somite mouse embryos labelled for 30 min in vitro with [ 3 H]thymidine were examined for frequency and intensity of incorporation. Results from ten tissues showed that values ranged from 82% of nuclei with a mean of 16.6 grains for visceral yolk sac to 17% of nuclei labelled with a mean of 4.4 grains for epithelium of the anterior gut tube. Labelling in the ten tissues indicated (1) a tissue-specific spectrum of incorporation of [ 3 H]thymidine, (2) close correlation between frequency and intensity of labelling within a tissue and (3) asymmetrical quantities of incorporation between right and left somatopleure. Treatment with hydroxyurea in vitro reduced the frequency of labelled nuclei by 85% to 17% of control values. Mean numbers of grains over treated nuclei, 3.3 to 4.6 grains, were well above background but were clustered below the low end of the control range. Tissues exposed to hydroxyurea showed (1) labelling of significant numbers of nuclei, (2) inhibition of labelling in selected tissues and (3) equalization of bilateral asymmetry in quantity (frequency and intensity) of incorporation in somatopleure. The selective reduction of thymidine incorporation and equalization of asymmetrical rates of proliferation may constitute mechanisms by which hydroxyurea causes abnormal morphogenesis. (author)

  3. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  4. Combined Bisulfite Restriction Analysis for brain tissue identification.

    Science.gov (United States)

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  6. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  7. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  8. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  9. Bipartite recognition of DNA by TCF/Pangolin is remarkably flexible and contributes to transcriptional responsiveness and tissue specificity of wingless signaling.

    Directory of Open Access Journals (Sweden)

    Hilary C Archbold

    2014-09-01

    Full Text Available The T-cell factor (TCF family of transcription factors are major mediators of Wnt/β-catenin signaling in metazoans. All TCFs contain a High Mobility Group (HMG domain that possesses specific DNA binding activity. In addition, many TCFs contain a second DNA binding domain, the C-clamp, which binds to DNA motifs referred to as Helper sites. While HMG and Helper sites are both important for the activation of several Wnt dependent cis-regulatory modules (W-CRMs, the rules of what constitutes a functional HMG-Helper site pair are unknown. In this report, we employed a combination of in vitro binding, reporter gene analysis and bioinformatics to address this question, using the Drosophila family member TCF/Pangolin (TCF/Pan as a model. We found that while there were constraints for the orientation and spacing of HMG-Helper pairs, the presence of a Helper site near a HMG site in any orientation increased binding and transcriptional response, with some orientations displaying tissue-specific patterns. We found that altering an HMG-Helper site pair from a sub-optimal to optimal orientation/spacing dramatically increased the responsiveness of a W-CRM in several fly tissues. In addition, we used the knowledge gained to bioinformatically identify two novel W-CRMs, one that was activated by Wnt/β-catenin signaling in the prothoracic gland, a tissue not previously connected to this pathway. In sum, this work extends the importance of Helper sites in fly W-CRMs and suggests that the type of HMG-Helper pair is a major factor in setting the threshold for Wnt activation and tissue-responsiveness.

  10. Morphology of urethral tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  11. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance.

    Science.gov (United States)

    Wai, T; Grumet, R

    1995-09-01

    The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20-30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.

  12. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model.

    Science.gov (United States)

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.

  13. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  14. Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.

    Science.gov (United States)

    Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui

    2017-07-01

    Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    Science.gov (United States)

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  16. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  17. Dicer expression exhibits a tissue-specific diurnal pattern that is lost during aging and in diabetes.

    Directory of Open Access Journals (Sweden)

    Yuanqing Yan

    Full Text Available Dysregulation of circadian rhythmicity is identified as a key factor in disease pathogenesis. Circadian rhythmicity is controlled at both a transcriptional and post-transcriptional level suggesting the role of microRNA (miRNA and double-stranded RNA (dsRNA in this process. Endonuclease Dicer controls miRNA and dsRNA processing, however the role of Dicer in circadian regulation is not known. Here we demonstrate robust diurnal oscillations of Dicer expression in central and peripheral clock control systems including suprachiasmatic nucleolus (SCN, retina, liver, and bone marrow (BM. The Dicer oscillations were either reduced or phase shifted with aging and Type 2 diabetes. The decrease and phase shift of Dicer expression was associated with a similar decrease and phase shift of miRNAs 146a and 125a-5p and with an increase in toxic Alu RNA. Restoring Dicer levels and the diurnal patterns of Dicer-controlled miRNA and RNA expression may provide new therapeutic strategies for metabolic disease and aging-associated complications.

  18. O6-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-01-01

    O 6 -Methylguanine methyltransferase (O 6 -MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O 6 -MT. S9 homogenates were incubated with a heat depurinated [ 3 H]-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O 6 -MT. There did not appear to be any significant difference of O 6 -MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O 6 -MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O 6 -MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O 6 -MT can not be explained by racial or smoking factors, but may be modulated by certain drugs

  19. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    Science.gov (United States)

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.

    Science.gov (United States)

    Garg, Anchal; Agrawal, Lalit; Misra, Rajesh Chandra; Sharma, Shubha; Ghosh, Sumit

    2015-09-02

    Kalmegh (Andrographis paniculata) has been widely exploited in traditional medicine for the treatment of infectious diseases and health disorders. Ent-labdane-related diterpene (ent-LRD) specialized (i.e., secondary) metabolites of kalmegh such as andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, are known for variety of pharmacological activities. However, due to the lack of genomic and transcriptomic information, underlying molecular basis of ent-LRDs biosynthesis has remained largely unknown. To identify candidate genes of the ent-LRD biosynthetic pathway, we performed comparative transcriptome analysis using leaf and root tissues that differentially accumulate ent-LRDs. De novo assembly of Illumina HiSeq2000 platform-generated paired-end sequencing reads resulted into 69,011 leaf and 64,244 root transcripts which were assembled into a total of 84,628 unique transcripts. Annotation of these transcripts to the Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active Enzymes (CAZy) databases identified candidate transcripts of the ent-LRD biosynthetic pathway. These included transcripts that encode enzymes of the plastidial 2C-methyl-D-erythritol-4-phosphate pathway which provides C5 isoprenoid precursors for the ent-LRDs biosynthesis, geranylgeranyl diphosphate synthase, class II diterpene synthase (diTPS), cytochrome P450 monooxygenase and glycosyltransferase. Three class II diTPSs (ApCPS1, ApCPS2 and ApCPS3) that showed distinct tissue-specific expression profiles and are phylogenetically related to the dicotyledon ent-copalyl diphosphate synthases, are identified. ApCPS1, ApCPS2 and ApCPS3 encode for 832-, 817- and 797- amino acids proteins of 55-63 % identity, respectively. Spatio-temporal patterns of transcripts and ent-LRDs accumulation are consistent with the involvement of ApCPS1 in general (i.e., primary) metabolism for the biosynthesis of phytohormone gibberellin, ApCPS2 in leaf specialized ent

  1. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  2. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  3. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  4. An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

    Directory of Open Access Journals (Sweden)

    Marc Galland

    2017-11-01

    Full Text Available Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

  5. Detection of Chlamydia in postmortal formalin-fixed tissue

    DEFF Research Database (Denmark)

    Lundemose, AG; Lundemose, JB; Birkelund, Svend

    1989-01-01

    A procedure to detect Chlamydia in postmortal formalin-fixed tissue is described. Monoclonal antibodies against a genus specific chlamydia epitope were used in immunofluorescence to detect chlamydia inclusions in formalin-fixed tissue sections. Lung sections from chlamydia-infected mice were....... Background and non-specific fluorescence were reduced by treating the tissue sections with trypsin, rabbit serum and Evans blue counterstain. Besides giving an exact diagnosis at autopsy, the method provides the possibility of determining the occurrence of chlamydia infections in various tissues, based...

  6. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    Science.gov (United States)

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  7. Comparison of the effect between an active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue and that using irradiated tumor cells

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Maeda, Tomoho; Yoshida, Shoji; Yamamoto, Yoichi; Morita, Masaru

    1983-01-01

    The effect of the active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was compared with that of irradiated (10,000 rads) tumor cells on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 6th day, irradiation with a dose of 3,000 rads was performed. On the 14th day, tumor cells and concomitant mononuclear cells which were separated from the low-dose irradiated tumor tissue (2,000 rads on the 6th day) were injected into the left hind paws of one group of the tumor-bearing mice. On the same day, irradiated MM46 tumor cells were injected into the left hind paws of another group of the tumor-bearing mice. Effectiveness of these two methods of active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. The active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was far more effective than irradiated tumor cells on this tumor system involved. (author)

  8. Isolation of Mal d 1 and Api g 1 - specific recombinant antibodies from mouse IgG Fab fragment libraries - Mal d 1-specific antibody exhibits cross-reactivity against Bet v 1.

    Science.gov (United States)

    Haka, Jaana; Niemi, Merja H; Iljin, Kristiina; Reddy, Vanga Siva; Takkinen, Kristiina; Laukkanen, Marja-Leena

    2015-05-27

    Around 3-5% of the population suffer from IgE-mediated food allergies in Western countries and the number of food-allergenic people is increasing. Individuals with certain pollen allergies may also suffer from a sensitisation to proteins in the food products. As an example a person sensitised to the major birch pollen allergen, Bet v 1, is often sensitised to its homologues, such as the major allergens of apple, Mal d 1, and celery, Api g 1, as well. Development of tools for the reliable, sensitive and quick detection of allergens present in various food products is essential for allergic persons to prevent the consumption of substances causing mild and even life-threatening immune responses. The use of monoclonal antibodies would ensure the specific detection of the harmful food content for a sensitised person. Mouse IgG antibody libraries were constructed from immunised mice and specific recombinant antibodies for Mal d 1 and Api g 1 were isolated from the libraries by phage display. More detailed characterisation of the resulting antibodies was carried out using ELISA, SPR experiments and immunoprecipitation assays. The allergen-specific Fab fragments exhibited high affinity towards the target recombinant allergens. Furthermore, the Fab fragments also recognised native allergens from natural sources. Interestingly, isolated Mal d 1-specific antibody bound also to Bet v 1, the main allergen eliciting the cross-reactivity syndrome between the birch pollen and apple. Despite the similarities in Api g 1 and Bet v 1 tertiary structures, the isolated Api g 1-specific antibodies showed no cross-reactivity to Bet v 1. Here, high-affinity allergen-specific recombinant antibodies were isolated with interesting binding properties. With further development, these antibodies can be utilised as tools for the specific and reliable detection of allergens from different consumable products. This study gives new preliminary insights to elucidate the mechanism behind the pollen

  9. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  10. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    Science.gov (United States)

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  11. Asian Martial Art Exhibitions at the Swiss Castle of Morges

    Directory of Open Access Journals (Sweden)

    Nicolae Gothard Bialokur

    2012-07-01

    Full Text Available This article reports on two unique cultural exhibitions (2005 and 2007 held in Morges, Switzerland. The main theme for these exhibitions was Asian martial arts with a focus on those from Japan, including presentations by notable masters in aikido, karate, judo, kyudo, iaido, kenjutsu, jodo, juttejutsu, kusarigamajutsu, naginatajutsu, tameshigiri, and kendo. On exhibit were artifacts from Morges Castle museum collections as well as numerous ancient objects borrowed specifically for these exhibitions from other Swiss museums and private collections. There was also a lecture on Japanese sword collecting and care, and presentations of Japanese dance, flower arranging (ikebana, the art of tea (châ no yu, châdo, paper folding (origami, traditional kimono dress, and detailed demonstrations on the manufacture of bladed weapons. Text and photography were arranged to record these events for this article, showing how excellent organization and cooperation can introduce high-quality martial traditions to the public.

  12. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector.

    Science.gov (United States)

    Iatrou, K; Meidinger, R G

    1990-01-01

    A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186

  13. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue.

    Science.gov (United States)

    Azaripour, Adriano; Lagerweij, Tonny; Scharfbillig, Christina; Jadczak, Anna Elisabeth; Willershausen, Brita; Van Noorden, Cornelis J F

    2016-08-01

    For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  15. A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.

    Science.gov (United States)

    Cerchiari, Alec E; Garbe, James C; Jee, Noel Y; Todhunter, Michael E; Broaders, Kyle E; Peehl, Donna M; Desai, Tejal A; LaBarge, Mark A; Thomson, Matthew; Gartner, Zev J

    2015-02-17

    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.

  16. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.

    Science.gov (United States)

    Huth, Troy J; Place, Sean P

    2013-11-20

    The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a

  17. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    Directory of Open Access Journals (Sweden)

    Teng Shaolei

    2013-01-01

    Full Text Available Abstract Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs and Support Vector Machines (SVMs were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.

  18. Fabrication and Characterization of three dimensional Scaffolds for tissue engineering application via microstereolithography technique

    International Nuclear Information System (INIS)

    Marina Talib; Covington, J.A.; Dove, A.; Bolarinwa, A.; Grover, L.

    2012-01-01

    Microstereolithography is a method used for rapid proto typing of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer-per-layer fabrication curing a liquid resin with UV-light or laser source. However, the use of stereo lithography in tissue engineering has not been significantly explored possibly due to the lack of commercially available implantable or biocompatible materials from the SL industry. This study seeks to develop a range of new bio-compatible/degradable materials that are compatible with a commercial 3D direct manufacture system (envisionTEC Desktop). Firstly, a selection of multifunctional polymer and calcium phosphate were studied in order to formulate biodegradable photo polymer resin for specific tissue engineering applications. A 3D structure was successfully fabricated from the formulated photo curable resins. The photo polymer of ceramic suspension was prepared with the addition of 50-70 wt % of calcium pyrophosphate (CPP) and hydroxyapatite (HA). They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. Mechanical properties, morphology and calcium phosphate content of the sintered polymers were characterised and investigated with SEM and XRD, respectively. The addition of calcium phosphate coupled with high temperature sintering, had a significant effect on the mechanical properties exhibited by the bio ceramic. The successful fabrication of novel bio ceramic polymer composite with MSL technique offers the possibility of designing complex tissue scaffolds with optimum mechanical properties for specific tissue engineering applications. (author)

  19. Brown adipose tissue (BAT specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation

    Directory of Open Access Journals (Sweden)

    Juliane Weiner

    2017-06-01

    Full Text Available Objective: Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT biology. Methods: We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Results: Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF or high-sugar (HS fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Conclusions: Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function. Keywords: Brown adipose tissue, Browning, Cold exposure, DNA methylation, High-fat diet, High-sucrose diet, SerpinA12, Thermogenesis

  20. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing

    Directory of Open Access Journals (Sweden)

    Elsie Gonzalez-Hurtado

    2018-01-01

    Full Text Available Objective: To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Methods: Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2A−/−, that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Results: Chronic administration of β3-adrenergic (CL-316243 or thyroid hormone (GC-1 agonists induced a loss of BAT morphology and UCP1 expression in Cpt2A−/− mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C stimulation induced UCP1 and thermogenic programming in both control and Cpt2A−/− adipose tissue albeit to a lesser extent in Cpt2A−/− mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2A−/− mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2A−/− BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2A−/− mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Conclusion: Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Keywords: Fatty acid oxidation, Brown adipose tissue, Cold induced thermogenesis, Adrenergic signaling, Adipose macrophage

  1. Motility-driven glass and jamming transitions in biological tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2017-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum Soft Glassy Rheology model precisely captures this transition in the limit of small persistence times, and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with Epithelial-to-Mesenchymal transition in these tissues. PMID:28966874

  2. Adipose tissue (PRR regulates insulin sensitivity, fat mass and body weight

    Directory of Open Access Journals (Sweden)

    Zulaykho Shamansurova

    2016-10-01

    Full Text Available Objective: We previously demonstrated that the handle-region peptide, a prorenin/renin receptor [(PRR] blocker, reduces body weight and fat mass and may improve insulin sensitivity in high-fat fed mice. We hypothesized that knocking out the adipose tissue (PRR gene would prevent weight gain and insulin resistance. Methods: An adipose tissue-specific (PRR knockout (KO mouse was created by Cre-loxP technology using AP2-Cre recombinase mice. Because the (PRR gene is located on the X chromosome, hemizygous males were complete KO and had a more pronounced phenotype on a normal diet (ND diet compared to heterozygous KO females. Therefore, we challenged the female mice with a high-fat diet (HFD to uncover certain phenotypes. Mice were maintained on either diet for 9 weeks. Results: KO mice had lower body weights compared to wild-types (WT. Only hemizygous male KO mice presented with lower total fat mass, higher total lean mass as well as smaller adipocytes compared to WT mice. Although food intake was similar between genotypes, locomotor activity during the active period was increased in both male and female KO mice. Interestingly, only male KO mice had increased O2 consumption and CO2 production during the entire 24-hour period, suggesting an increased basal metabolic rate. Although glycemia during a glucose tolerance test was similar, KO males as well as HFD-fed females had lower plasma insulin and C-peptide levels compared to WT mice, suggesting improved insulin sensitivity. Remarkably, all KO animals exhibited higher circulating adiponectin levels, suggesting that this phenotype can occur even in the absence of a significant reduction in adipose tissue weight, as observed in females and, thus, may be a specific effect related to the (PRR. Conclusions: (PRR may be an important therapeutic target for the treatment of obesity and its associated complications such as type 2 diabetes. Keywords: (Prorenin receptor, Renin-angiotensin system, Adipose

  3. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    Science.gov (United States)

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  4. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  5. Discrimination? - Exhibition of posters

    OpenAIRE

    Jakimovska, Jana

    2017-01-01

    Participation in the exhibition with the students form the Art Academy. The exhibition consisted of 15 posters tackling the subjects of hate speech and discrimination. The exhibition happened thanks to the invitation of the Faculty of Law at UGD, and it was a part of a larger event of launching books on the aforementioned subjects.

  6. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    International Nuclear Information System (INIS)

    Shi, Sixiang; Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D.; Graves, Stephen A.; Nickles, Robert J.; Liu, Bai; Wong, Hing C.; Cai, Weibo

    2015-01-01

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and 64 Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of 64 Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of 64 Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. 64 Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  7. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment.

    Science.gov (United States)

    Shi, Sixiang; Hong, Hao; Orbay, Hakan; Graves, Stephen A; Yang, Yunan; Ohman, Jakob D; Liu, Bai; Nickles, Robert J; Wong, Hing C; Cai, Weibo

    2015-07-01

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and (64)Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of (64)Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of (64)Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. (64)Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management.

  8. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Sixiang [University of Wisconsin, Materials Science Program, Madison, WI (United States); Hong, Hao; Orbay, Hakan; Yang, Yunan; Ohman, Jakob D. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Liu, Bai; Wong, Hing C. [Altor BioScience, Miramar, FL (United States); Cai, Weibo [University of Wisconsin, Materials Science Program, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin, Departments of Radiology and Medical Physics, Madison, WI (United States)

    2015-07-15

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and {sup 64}Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of {sup 64}Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of {sup 64}Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. {sup 64}Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management. (orig.)

  9. Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Jingjing Fang

    Full Text Available Four different parts, hypocotyl and radicle (HR, inner cotyledon (IC, outer cotyledon (OC, seed coat and endosperm (SE, were sampled from mature rapeseed (Brassica napus L. by laser microdissection. Subsequently, major secondary metabolites, glucosinolates and sinapine, as well as three minor ones, a cyclic spermidine conjugate and two flavonoids, representing different compound categories, were qualified and quantified in dissected samples by high-performance liquid chromatography with diode array detection and mass spectrometry. No qualitative and quantitative difference of glucosinolates and sinapine was detected in embryo tissues (HR, IC and OC. On the other hand, the three minor compounds were observed to be distributed unevenly in different rapeseed tissues. The hypothetic biological functions of the distribution patterns of different secondary metabolites in rapeseed are discussed.

  10. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  11. Stem cell-derived angiogenic/vasculogenic cells: Possible therapies for tissue repair and tissue engineering

    NARCIS (Netherlands)

    Zwaginga, J. J.; Doevendans, P.

    2003-01-01

    1. The recent ability to isolate stem cells and study their specific capacity of self-renewal with the formation of different cell types has opened up exciting vistas to help the repair of damaged tissue and even the formation of new tissue. In the present review, we deal with the characteristics

  12. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering.

    Science.gov (United States)

    Galler, Kerstin M; Brandl, Ferdinand P; Kirchhof, Susanne; Widbiller, Matthias; Eidt, Andreas; Buchalla, Wolfgang; Göpferich, Achim; Schmalz, Gottfried

    2018-02-01

    Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide, as well as to collagen and fibrin. Cell viability of dental pulp stem cells in test materials was assessed over two weeks. Cells in selected test materials laden with dentin-derived growth factors were inserted into human tooth roots and implanted subcutaneously into immunocompromised mice. In vitro cell culture exhibited distinct differences between scaffold types, where viability was significantly higher in natural compared to synthetic materials. In vivo experiments showed considerable differences regarding scaffold degradation, soft tissue formation, vascularization, and odontoblast-like cell differentiation. Fibrin appeared most suitable to enable generation of a pulp-like tissue and differentiation of cells into odontoblasts at the cell-dentin interface. In conclusion, natural materials, especially fibrin, proved to be superior compared to synthetic scaffolds regarding cell viability and dental pulp-like tissue formation.

  13. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  14. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  15. Exhibiting the Human/Exhibiting the Cyborg: “Who Am I?”

    Directory of Open Access Journals (Sweden)

    Sophia C. Vackimes

    2013-08-01

    Full Text Available The role of the museum in shaping our relationship to science and technology, particularly cyborgization, is illuminated by a close examination of the Who Am I permanent exhibition in the Wellcome Wing of the Science Museum of London. This innovative exhibition raises real questions both about the human-technology-science relationship but also about museography. In the context of the history and current practices of museums engaging contemporary technological developments the evidence suggest that even as the Who am I? exhibit did break somewhat from previous approaches, especially the didactic presentation of the socially useful, it has not changed the feld as a whole.

  16. Influence of parasite density and sample storage time on the reliability of Entamoeba histolytica-specific PCR from formalin-fixed and paraffin-embedded tissues.

    Science.gov (United States)

    Frickmann, Hagen; Tenner-Racz, Klara; Eggert, Petra; Schwarz, Norbert G; Poppert, Sven; Tannich, Egbert; Hagen, Ralf M

    2013-12-01

    We report on the reliability of polymerase chain reaction (PCR) for the detection of Entamoeba histolytica from formalin-fixed, paraffin-embedded tissue in comparison with microscopy and have determined predictors that may influence PCR results. E. histolytica-specific and Entamoeba dispar-specific real-time PCR and microscopy from adjacent histologic sections were performed using a collection of formalin-fixed, paraffin-embedded tissue specimens obtained from patients with invasive amebiasis. Specimens had been collected during the previous 4 decades. Association of sample age, parasite density, and reliability of PCR was analyzed. E. histolytica PCR was positive in 20 of 34 biopsies (58.8%); 2 of these 20 were microscopically negative for amebae in neighboring tissue sections. PCR was negative in 9 samples with visible amebae in neighboring sections and in 5 samples without visible parasites in neighboring sections. PCR was negative in all specimens that were older than 3 decades. Low parasite counts and sample ages older than 20 years were predictors for false-negative PCR results. All samples were negative for E. dispar DNA. PCR is suitable for the detection of E. histolytica in formalin-fixed, paraffin-embedded tissue samples that are younger than 2 decades and that contain intermediate to high parasite numbers. Negative results in older samples were due to progressive degradation of DNA over time as indicated by control PCRs targeting the human 18S rRNA gene. Moreover, our findings support previous suggestions that only E. histolytica but not E. dispar is responsible for invasive amebiasis.

  17. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    Science.gov (United States)

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-10-01

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Application of an imaging system to a museum exhibition for developing interactive exhibitions

    Science.gov (United States)

    Miyata, Kimiyoshi; Inoue, Yuka; Takiguchi, Takahiro; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2009-10-01

    In the National Museum of Japanese History, 215,759 artifacts are stored and used for research and exhibitions. In museums, due to the limitation of space in the galleries, a guidance system is required to satisfy visitors' needs and to enhance their understanding of the artifacts. We introduce one exhibition using imaging technology to improve visitors' understanding of a kimono (traditional Japanese clothing) exhibition. In the imaging technology introduced, one data projector, one display with touch panel interface, and magnifiers were used as exhibition tools together with a real kimono. The validity of this exhibition method was confirmed by results from a visitors' interview survey. Second, to further develop the interactive guidance system, an augmented reality system that consisted of cooperation between the projector and a digital video camera was also examined. A white paper board in the observer's hand was used as a projection screen and also as an interface to control the images projected on the board. The basic performance of the proposed system was confirmed; however continuous development was necessary for applying the system to actual exhibitions.

  19. Reduced generation of lung tissue-resident memory T cells during infancy.

    Science.gov (United States)

    Zens, Kyra D; Chen, Jun Kui; Guyer, Rebecca S; Wu, Felix L; Cvetkovski, Filip; Miron, Michelle; Farber, Donna L

    2017-10-02

    Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant-T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet-regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage. © 2017 Zens et al.

  20. Nanotopography-guided tissue engineering and regenerative medicine☆

    Science.gov (United States)

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2017-01-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841

  1. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    Science.gov (United States)

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  2. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.

    Science.gov (United States)

    Kim, Byoung Soo; Kwon, Yang Woo; Kong, Jeong-Sik; Park, Gyu Tae; Gao, Ge; Han, Wonil; Kim, Moon-Bum; Lee, Hyungseok; Kim, Jae Ho; Cho, Dong-Woo

    2018-06-01

    3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment. In this study, we investigated the capability of skin-derived extracellular matrix (S-dECM) bioink for 3D cell printing-based skin tissue engineering. S-dECM was for the first time formulated as a printable material and retained the major ECM compositions of skin as well as favorable growth factors and cytokines. This bioink was used to print a full thickness 3D human skin model. The matured 3D cell-printed skin tissue using S-dECM bioink was stabilized with minimal shrinkage, whereas the collagen-based skin tissue was significantly contracted during in vitro tissue culture. This physical stabilization and the tissue-specific microenvironment from our bioink improved epidermal organization, dermal ECM secretion, and barrier function. We further used this bioink to print 3D pre-vascularized skin patch able to promote in vivo wound healing. In vivo results revealed that endothelial progenitor cells (EPCs)-laden 3D-printed skin patch together with adipose-derived stem cells (ASCs) accelerates wound closure, re-epithelization, and neovascularization as well as blood flow. We envision that the results of this paper can provide an insightful step towards the next generation source for bioink manufacturing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Modulation of differentiation and self-renewal of tissue specific stem cells for effective mitigation of radiation injury

    International Nuclear Information System (INIS)

    Bandekar, Mayuri; Patwardhan, R.S.; Maurya, Dharmendra K.; Bhilwade, Hari N.; Sharma, Deepak; Sandur, Santosh Kumar

    2017-01-01

    The use of stem cells in regenerative medicine for the treatment of various human diseases is one of the active research areas. The aim of regenerative medicine is to restore normal tissue functions by replenishing injured tissues using either cell-based therapy or by inducing certain factors that can aid endogenous repair and regeneration. The approach for inducing endogenous repair and regeneration requires in vivo modulation of tissue-specific stem cells by therapeutic agents and enhance their abundance through activation, proliferation, differentiation, or reprogramming. Here we describe three different approaches to enhance the abundance of hematopoietic stem cells in vivo for mitigation of radiation induced toxicity. Baicalein, a flavonoid derived from Chinese and Indian medicinal plants like Scutellaria baicalensis and Terminalia ariuna enhanced the abundance of hematopoietic stem cells through activation of Nrf-2 in the lineage negative cells. Another anti-oxidant, chlorophyllin derived from green plant pigment, chlorophyll also enhanced the abundance of hematopoietic stem cells through modulation of cell cycle in cells of the bone marrow. Treatment of mice with Cobaltus chloride (CoCl_2), a well-known activator of hypoxia inducible factor-1α (HIP-1α), also led to increase in the number of hematopoietic stem cells in the bone marrow. Whereas chlorophyllin offered up to 100 % protection against whole body irradiation (WBI, 8 Gy) induced mortality in mice, baicalein offered up to70%protection. Cobaltus chloride treatment offered 40% protection against 8 Gy of WBI. These studies indicate potential use of stem cell modulating agents as effective mitigators of radiation induced toxicity in vivo. (author)

  4. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  5. Specification and tests of three prototypes from tissue-equivalent ionization chamber

    International Nuclear Information System (INIS)

    Teixeira, D.L.; Cardoso, D.O.; Pereira, O.S.; Nobre Filho, L.S.; Cabral, T.S.

    1992-01-01

    Three prototypes of tissue-equivalent ionization chamber are specified and tested. The results obtained by these prototypes are presented, aiming the determination of operation parameters, defined by IEC 395 standard. (C.G.C.)

  6. Sex-related and tissue-specific effects of tobacco smoking on brain atrophy: assessment in a large longitudinal cohort of healthy elderly

    Directory of Open Access Journals (Sweden)

    Quentin eDuriez

    2014-11-01

    Full Text Available We investigated the cross-sectional and longitudinal effects of tobacco smoking on brain atrophy in a large cohort of healthy elderly participants (65 to 80 years. MRI was used for measuring whole brain (WB, gray matter (GM, white matter (WM, and hippocampus (HIP volumes at study entry time (baseline, N=1,451, and the annualized rates of variation of these volumes using a 4-year follow-up MRI in a subpart of the cohort (N=1,111. Effects of smoking status (never, former, or current smoker at study entry and of lifetime tobacco consumption on these brain phenotypes were studied using sex-stratified AN(COVAs, including other health parameters as covariates. At baseline, male current smokers had lower GM, while female current smokers had lower WM. In addition, female former smokers exhibited reduced baseline HIP, the reduction being correlated with lifetime tobacco consumption. Longitudinal analyses demonstrated that current smokers, whether men or women, had larger annualized rates of HIP atrophy, as compared to either current or former smokers, independent of their lifetime consumption of tobacco. There was no effect of smoking on the annualized rate of WM loss. In all cases, measured sizes of these tobacco-smoking effects were of the same order of magnitude than those of age, and larger than effect sizes of any other covariate. These results demonstrate gender- and tissue specific effects of tobacco smoking on brain atrophy. They indicate that tobacco smoking is a major factor of brain aging, with notable effects on the hippocampus annualized-rate of atrophy after the age of 65.

  7. Exhibition; Image display agency

    International Nuclear Information System (INIS)

    Normazlin Ismail

    2008-01-01

    This article touches on the role of Malaysian Nuclear Agency as nuclear research institutions to promote, develop and encourage the peaceful uses of nuclear technology in its agricultural, medical, manufacturing, industrial, health and environment for the development of the country running successfully. Maturity of Malaysian Nuclear Agency in dealing with nuclear technology that are very competitive and globalization cannot be denied. On this basis Malaysian Nuclear Agency was given the responsibility to strengthen the nuclear technology in Malaysia. One way is through an exhibition featuring the research, discoveries and new technology products of the nuclear technology. Through this exhibition is to promote the nuclear technology and introduce the image of the agency in the public eye. This article also states a number of exhibits entered by the Malaysian Nuclear Agency and achievements during the last exhibition. Authors hope that the exhibition can be intensified further in the future.

  8. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    Science.gov (United States)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  9. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    Science.gov (United States)

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  10. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops

    Directory of Open Access Journals (Sweden)

    Shiva Ram Bhandari

    2015-08-01

    Full Text Available Glucosinolate (GSL profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g−1 and sprouts (162.19 µmol·g−1, whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g−1 and roots (73.61 µmol·g−1. The lowest GSL concentrations were observed in radish across all tissues examined.

  11. Piezoelectric polymers as biomaterials for tissue engineering applications.

    Science.gov (United States)

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  13. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region

    International Nuclear Information System (INIS)

    Zhao, Jian-Liang; Liu, You-Sheng; Liu, Wang-Rong; Jiang, Yu-Xia; Su, Hao-Chang; Zhang, Qian-Qian; Chen, Xiao-Wen; Yang, Yuan-Yuan; Chen, Jun; Liu, Shuang-Shuang; Pan, Chang-Gui; Huang, Guo-Yong; Ying, Guang-Guo

    2015-01-01

    We investigated the bioaccumulation of antibiotics in bile, plasma, liver and muscle tissues of wild fish from four rivers in the Pearl River Delta region. In total, 12 antibiotics were present in at least one type of fish tissues from nine wild fish species in the four rivers. The mean values of log bioaccumulation factors (log BAFs) for the detected antibiotics in fish bile, plasma, liver, and muscle tissues were at the range of 2.06–4.08, 1.85–3.47, 1.41–3.51, and 0.48–2.70, respectively. As the digestion tissues, fish bile, plasma, and liver showed strong bioaccumulation ability for some antibiotics, indicating a different bioaccumulation pattern from hydrophobic organic contaminants. Human health risk assessment based on potential fish consumption indicates that these antibiotics do not appear to pose an appreciable risk to human health. To the best of our knowledge, this is first report of bioaccumulation patterns of antibiotics in wild fish bile and plasma. - Highlights: • We investigated the bioaccumulation of antibiotics in wild fish from the Pearl River Delta region. • Twelve antibiotics were found in fish bile, plasma, liver and muscle tissues. • High log bioaccumulation factors suggested strong bioaccumulation ability for some antibiotics in wild fish tissues. • The presence of antibiotics in fish bile and plasma tissues indicates a novel bioaccumulation pattern. • Potential adverse effects are possibly caused by the high internal antibiotic concentrations in tissues. - Fish bile and plasma displayed strong bioaccumulation ability for some antibiotics, indicating a novel bioaccumulation pattern for antibiotics in the contaminated environment

  14. Is the macromolecule signal tissue-specific in healthy human brain? A (1)H MRS study at 7 Tesla in the occipital lobe.

    Science.gov (United States)

    Schaller, Benoît; Xin, Lijing; Gruetter, Rolf

    2014-10-01

    The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short-TE (1) H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance. The aim of this study was to investigate, at 7T for healthy subjects, the neurochemical profile differences provided by macromolecule signal measured in two different tissues in the occipital lobe, predominantly composed of white matter tissue or of grey matter tissue. White matter-rich macromolecule signal was relatively lower than the gray matter-rich macromolecule signal from 1.5 to 1.8 ppm and from 2.3 to 2.5 ppm with mean difference over these regions of 7% and 12% (relative to the reference peak at 0.9 ppm), respectively. The neurochemical profiles, when using either of the two macromolecule signals, were similar for 11 reliably quantified metabolites (CRLB occipital lobe at 7T in healthy human brain. Copyright © 2013 Wiley Periodicals, Inc.

  15. Genetic evaluations of Chinese patients with odontohypophosphatasia resulting from heterozygosity for mutations in the tissue-non-specific alkaline phosphatase gene.

    Science.gov (United States)

    Wan, Jia; Zhang, Li; Liu, Tang; Wang, Yewei

    2017-08-01

    Hypophosphatasia is a rare heritable metabolic disorder characterized by defective bone and tooth mineralization accompanied by a deficiency of tissue-non-specific (liver/bone/kidney) isoenzyme of alkaline phosphatase activity, caused by a number of loss-of-function mutations in the alkaline phosphatase liver type gene. We seek to explore the clinical manifestations and identify the mutations associated with the disease in a Chinese odonto- hypophosphatasia family. The proband and his younger brother affected with premature loss of primary teeth at their 2-year-old. They have mild abnormal serum alkaline phosphatase and 25-hydroxy vitamin D values, but the serum alkaline phosphatase activity of their father, mother and grandmother, who showed no clinical symptoms of hypophosphatasia, was exhibited significant decreased. In addition to premature loss of primary teeth, the proband and his younger brother showed low bone mineral density, X-rays showed that they had slight metaphyseal osteoporosis changes, but no additional skeletal abnormalities. Deoxyribonucleic acid sequencing and analysis revealed a single nucleotide polymorphism c.787T>C (p.Y263H) in exon 7 and/or a novel mutation c.-92C>T located at 5'UTR were found in the affected individuals. We examined all individuals of an odonto- hypophosphatasia family by clinical and radiographic examinations as well as laboratory assays. Furthermore, all 12 exons and the exon-intron boundaries of the alkaline phosphatase liver type gene were amplified and directly sequenced for further analysis and screened for mutations. Our present findings suggest the single nucleotide polymorphism c.787T>C and c.-92C>T should be responsible for the odonto- hypophosphatasia disorders in this family.

  16. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  17. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.

    Science.gov (United States)

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Wolfgang, Michael J

    2018-01-01

    To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2 A-/- ), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Chronic administration of β3-adrenergic (CL-316243) or thyroid hormone (GC-1) agonists induced a loss of BAT morphology and UCP1 expression in Cpt2 A-/- mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT) and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C) stimulation induced UCP1 and thermogenic programming in both control and Cpt2 A-/- adipose tissue albeit to a lesser extent in Cpt2 A-/- mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2 A-/- mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2 A-/- BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2 A-/- mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing...

  19. In vitro neoplastic transformation of plant callus tissue by γ-radiation

    International Nuclear Information System (INIS)

    Pandey, K.N.; Sabharwal, P.S.

    1979-01-01

    Tumours have been induced by γ-radiation in callus tissue derived from a monocotyledonous flowering plant, Haworthia mirabilis Haw. The transformed tissue exhibited compact texture, excessive cell proliferation and loss of capacity for organogenesis. Tumors were characterized by their ability to undergo continuous autonomous growth on minimal media in the subsequent 4 generations of subculture. In contrast, the nonirradiated control tissue grew with friable texture, required inositol or growth hormones and showed prolific differentiation of vegetative buds. (Auth.)

  20. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi.

    Directory of Open Access Journals (Sweden)

    Anja S Strauss

    Full Text Available Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi.In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp. RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration.We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant-derived compounds and