WorldWideScience

Sample records for exhibit enhanced osteoblast

  1. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    Genetic mutations in the LRP5 gene affect Wnt signaling and lead to changes in bone mass in humans. Our in vivo and in vitro results show that activated mutation T253I of LRP5 enhances osteogenesis and inhibits adipogenesis. Inactivating mutation T244M of LRP5 exerts opposite effects. Introduction......: Mutations in the Wnt co-receptor, LRP5, leading to decreased or increased canonical Wnt signaling, result in osteoporosis or a high bone mass (HBM) phenotype, respectively. However, the mechanisms whereby mutated LRP5 causes changes in bone mass are not known. Materials and Methods: We studied bone marrow composition...... in iliac crest bone biopsies from patients with the HBM phenotype and controls. We also used retrovirus-mediated gene transduction to establish three different human mesenchymal stem cell (hMSC) strains stably expressing wildtype LRP5 (hMSC-LRP5WT), LRP5T244 (hMSC-LRP5T244, inactivation mutation leading...

  2. Irisin Enhances Osteoblast Differentiation In Vitro

    Directory of Open Access Journals (Sweden)

    Graziana Colaianni

    2014-01-01

    Full Text Available It has been recently demonstrated that exercise activity increases the expression of the myokine Irisin in skeletal muscle, which is able to drive the transition of white to brown adipocytes, likely following a phenomenon of transdifferentiation. This new evidence supports the idea that muscle can be considered an endocrine organ, given its ability to target adipose tissue by promoting energy expenditure. In accordance with these new findings, we hypothesized that Irisin is directly involved in bone metabolism, demonstrating its ability to increase the differentiation of bone marrow stromal cells into mature osteoblasts. Firstly, we confirmed that myoblasts from mice subjected to 3 weeks of free wheel running increased Irisin expression compared to nonexercised state. The conditioned media (CM collected from myoblasts of exercised mice induced osteoblast differentiation in vitro to a greater extent than those of mice housed in resting conditions. Furthermore, the differentiated osteoblasts increased alkaline phosphatase and collagen I expression by an Irisin-dependent mechanism. Our results show, for the first time, that Irisin directly targets osteoblasts, enhancing their differentiation. This finding advances notable perspectives in future studies which could satisfy the ongoing research of exercise-mimetic therapies with anabolic action on the skeleton.

  3. Osteoblastic Metastases Mimickers on Contrast Enhanced CT

    Directory of Open Access Journals (Sweden)

    Fahad Al-Lhedan

    2017-01-01

    Full Text Available Secondary osseous involvement in lymphoma is more common compared to primary bone lymphoma. The finding of osseous lesion can be incidentally discovered during the course of the disease. However, osseous metastases are infrequently silent. Detection of osseous metastases is crucial for accurate staging and optimal treatment planning of lymphoma. The aim of imaging is to identify the presence and extent of osseous disease and to assess for possible complications such as pathological fracture of the load-bearing bones and cord compression if the lesion is spinal. We are presenting two patients with treated lymphoma who were in complete remission. On routine follow-up contrast enhanced CT, there were new osteoblastic lesions in the spine worrisome for metastases. Additional studies were performed for further evaluation of both of them which did not demonstrate any corresponding suspicious osseous lesion. The patients have a prior history of chronic venous occlusive thrombosis that resulted in collaterals formation. Contrast enhancement of the vertebral body marrow secondary to collaterals formation and venous flow through the vertebral venous plexus can mimic the appearance of spinal osteoblastic metastases.

  4. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  5. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... of a large number of proinflammatory genes involved in osteoclast (OC) differentiation. Consistently, serum obtained from Terc(-/-) mice enhanced OC formation of wild-type bone marrow cultures. Our data demonstrate two mechanisms for age-related bone loss caused by telomerase deficiency: intrinsic...... osteoblastic defects and creation of a proinflammatory osteoclast-activating microenvironment. Thus telonnerization of MSCs may provide a novel approach for abolishing age-related bone loss. (C) 2011 American Society for Bone and Mineral Research....

  6. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Directory of Open Access Journals (Sweden)

    Michael Pujari-Palmer

    Full Text Available Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2 or prostaglandin E2 (PGE2, are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2, BMP-2 and vascular endothelial growth factor (VEGF, in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage. Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM, and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  7. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation.

    Science.gov (United States)

    Benoit, Danielle S W; Durney, Andrew R; Anseth, Kristi S

    2006-06-01

    Hydrogels were prepared by copolymerizing a degradable macromer, poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) endcapped with methacrylate groups (PEG-LA-DM), with a nondegradable macromer, poly(ethylene glycol) dimethacrylate (PEGDM). Copolymer networks consisted of 100:0, 83:17, 67:33, and 50:50 PEGDM:PEG-LA-DM mass%, essentially creating scaffolds that exhibit 0, 17, 33, and 50% degradation over the time course of the experiment. Osteoblasts were photoencapsulated in these copolymer hydrogels and cultured for 3 weeks in vitro. Metabolic activity, proliferation, and alkaline phosphatase production were enhanced by an increase PEG-LADM content and corresponding degradation. Gene expression of the cultured osteoblasts, normalized to beta-actin, was analyzed, and osteopontin and collagen type I gene expression increased with degradation. Finally, as a measure of mineralized tissue formation, calcium and phosphate deposition was analyzed biochemically and histologically. Mineralization increased with increasing concentration of PEG-LA-DM and biochemically resembled that of hydroxyapatite.

  8. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  9. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xu; Liu Xiaoli; Sun Jialun [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); He Shuojie [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); Department of Physics, Pusan National University, Pusan (Korea, Republic of); Lee, Imshik [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China)], E-mail: ilee@nankai.edu.cn2; Pak, Hyuk Kyu [Department of Physics, Pusan National University, Pusan (Korea, Republic of)

    2008-09-15

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E{sup *}. The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E{sup *}-values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus.

  10. Craniosynostosis-Associated Fgfr2C342Y Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation

    Directory of Open Access Journals (Sweden)

    J. Liu

    2013-01-01

    Full Text Available We recently reported that cranial bones of craniosynostotic mice are diminished in density when compared to those of wild type mice, and that cranial bone cells isolated from the mutant mice exhibit inhibited late stage osteoblast differentiation. To provide further support for the idea that craniosynostosis-associated Fgfr mutations lead to cell autonomous defects in osteoblast differentiation and mineralized tissue formation, here we tested bone marrow stromal cells isolated from mice for their ability to differentiate into osteoblasts. Additionally, to determine if the low bone mass phenotype of Crouzon syndrome includes the appendicular skeleton, long bones were assessed by micro CT. cells showed increased osteoblastic gene expression during early osteoblastic differentiation but decreased expression of alkaline phosphatase mRNA and enzyme activity, and decreased mineralization during later stages of differentiation, when cultured under 2D in vitro conditions. Cells isolated from mice also formed less bone when allowed to differentiate in a 3D matrix in vivo. Cortical bone parameters were diminished in long bones of mice. These results demonstrate that marrow stromal cells of mice have an autonomous defect in osteoblast differentiation and bone mineralization, and that the mutation influences both the axial and appendicular skeletons.

  11. Exhibits Enhanced by Stand-Alone Computers.

    Science.gov (United States)

    Van Rennes, Eve C.

    Both the development and evaluation of one of a set of computer programs designed for use by visitors as adjuncts to museum exhibits are described. Museum displays used were (1) a static, behind-glass exhibit on evolution; (2) a hands-on primitive stone age tools exhibit; and (3) a Foucault pendulum. A computer placed next to each exhibit served…

  12. Voriconazole Enhances the Osteogenic Activity of Human Osteoblasts In Vitro through a Fluoride-Independent Mechanism

    Science.gov (United States)

    Allen, Kahtonna C.; Sanchez, Carlos J.; Niece, Krista L.; Wenke, Joseph C.

    2015-01-01

    Periostitis, which is characterized by bony pain and diffuse periosteal ossification, has been increasingly reported with prolonged clinical use of voriconazole. While resolution of clinical symptoms following discontinuation of therapy suggests a causative role for voriconazole, the biological mechanisms contributing to voriconazole-induced periostitis are unknown. To elucidate potential mechanisms, we exposed human osteoblasts in vitro to voriconazole or fluconazole at 15 or 200 μg/ml (reflecting systemic or local administration, respectively), under nonosteogenic or osteogenic conditions, for 1, 3, or 7 days and evaluated the effects on cell proliferation (reflected by total cellular DNA) and osteogenic differentiation (reflected by alkaline phosphatase activity, calcium accumulation, and expression of genes involved in osteogenic differentiation). Release of free fluoride, vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) was also measured in cell supernatants of osteoblasts exposed to triazoles, with an ion-selective electrode (for free fluoride) and enzyme-linked immunosorbent assays (ELISAs) (for VEGF and PDGF). Voriconazole but not fluconazole significantly enhanced the proliferation and differentiation of osteoblasts. In contrast to clinical observations, no increases in free fluoride levels were detected following exposure to either voriconazole or fluconazole; however, significant increases in the expression of VEGF and PDGF by osteoblasts were observed following exposure to voriconazole. Our results demonstrate that voriconazole can induce osteoblast proliferation and enhance osteogenic activity in vitro. Importantly, and in contrast to the previously proposed mechanism of fluoride-stimulated osteogenesis, our findings suggest that voriconazole-induced periostitis may also occur through fluoride-independent mechanisms that enhance the expression of cytokines that can augment osteoblastic activity. PMID:26324277

  13. Voriconazole Enhances the Osteogenic Activity of Human Osteoblasts In Vitro through a Fluoride-Independent Mechanism.

    Science.gov (United States)

    Allen, Kahtonna C; Sanchez, Carlos J; Niece, Krista L; Wenke, Joseph C; Akers, Kevin S

    2015-12-01

    Periostitis, which is characterized by bony pain and diffuse periosteal ossification, has been increasingly reported with prolonged clinical use of voriconazole. While resolution of clinical symptoms following discontinuation of therapy suggests a causative role for voriconazole, the biological mechanisms contributing to voriconazole-induced periostitis are unknown. To elucidate potential mechanisms, we exposed human osteoblasts in vitro to voriconazole or fluconazole at 15 or 200 μg/ml (reflecting systemic or local administration, respectively), under nonosteogenic or osteogenic conditions, for 1, 3, or 7 days and evaluated the effects on cell proliferation (reflected by total cellular DNA) and osteogenic differentiation (reflected by alkaline phosphatase activity, calcium accumulation, and expression of genes involved in osteogenic differentiation). Release of free fluoride, vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) was also measured in cell supernatants of osteoblasts exposed to triazoles, with an ion-selective electrode (for free fluoride) and enzyme-linked immunosorbent assays (ELISAs) (for VEGF and PDGF). Voriconazole but not fluconazole significantly enhanced the proliferation and differentiation of osteoblasts. In contrast to clinical observations, no increases in free fluoride levels were detected following exposure to either voriconazole or fluconazole; however, significant increases in the expression of VEGF and PDGF by osteoblasts were observed following exposure to voriconazole. Our results demonstrate that voriconazole can induce osteoblast proliferation and enhance osteogenic activity in vitro. Importantly, and in contrast to the previously proposed mechanism of fluoride-stimulated osteogenesis, our findings suggest that voriconazole-induced periostitis may also occur through fluoride-independent mechanisms that enhance the expression of cytokines that can augment osteoblastic activity. Copyright © 2015

  14. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Shi, Kaikai; Frary, Charles Edward

    2015-01-01

    expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...

  15. Collagen-lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation.

    Science.gov (United States)

    Vandrovcova, Marta; Douglas, Timothy E L; Heinemann, Sascha; Scharnweber, Dieter; Dubruel, Peter; Bacakova, Lucie

    2015-02-01

    Lactoferrin is a milk-derived glycoprotein with anabolic effects on the bone tissue. In this study, artificial extracellular matrices (aECM) consisting of collagen type I fibrils formed in the presence of lactoferrin at two different concentrations (0.5 and 1 mg mL(-1) ) were prepared on the surface of poly(lactic-co-glycolic acid) (PLGA) foils. The aim of the study was to investigate the effects of aECM on the adhesion, growth and osteogenic differentiation of human osteoblast-like Saos-2 cells. On days 1 and 3 after seeding, higher numbers of cells were found on samples with collagen and collagen-lactoferrin coatings (particularly on those formed at the higher concentration of lacroferrin) than on control microscopic glass coverslips. Cells on coatings formed in the presence of lactoferrin had more numerous and better developed vinculin-containing focal adhesion plaques. On day 7, cells on coatings with and without lactoferrin produced significantly higher levels of osteocalcin than cells on control polystyrene cell culture dishes, the highest average values being found on samples with the lower concentration of lactoferrin. Expression of collagen I and alkaline phosphatase was on a similar level in cells on all tested samples and control polystyrene. Thus, lactoferrin promotes adhesion, growth and osteogenic differentiation of Saos-2 cells and is promising as a bone implant coating component. © 2014 Wiley Periodicals, Inc.

  16. Electrical polarization of titanium surfaces for the enhancement of osteoblast differentiation.

    Science.gov (United States)

    Gittens, Rolando A; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J; Alamgir, Faisal M; Boyan, Barbara D; Schwartz, Zvi

    2013-12-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. © 2013 Wiley Periodicals, Inc.

  17. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yun [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Eung-Sam [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Jeon, Gumhye [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Choi, Kwan Yong, E-mail: kchoi@postech.ac.kr [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Jin Kon, E-mail: jkkim@postech.ac.kr [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF{sub 4} and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF{sub 4} plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic.

  18. CCAAT/enhancer binding protein homologous protein (DDIT3) induces osteoblastic cell differentiation.

    Science.gov (United States)

    Pereira, Renata C; Delany, Anne M; Canalis, Ernesto

    2004-04-01

    CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP/DDIT3), a member of the C/EBP family of transcription factors, plays a role in cell survival and differentiation. CHOP/DDIT3 binds to C/EBPs to form heterodimers that do not bind to consensus Cebp sequences, acting as a dominant-negative inhibitor. CHOP/DDIT3 blocks adipogenesis, and we postulated it could induce osteoblastogenesis. We investigated the effects of constitutive CHOP/DDIT3 overexpression in murine ST-2 stromal cells transduced with retroviral vectors. ST-2 cells differentiated toward osteoblasts, and CHOP/DDIT3 accelerated and enhanced the appearance of mineralized nodules, and the expression of osteocalcin and alkaline phosphatase mRNAs, particularly in the presence of bone morphogenetic protein-2. CHOP/DDIT3 overexpression opposed adipogenesis, and did not cause substantial changes in cell number. CHOP/DDIT3 overexpression did not modify C/EBPalpha or -beta mRNA levels but decreased C/EBPdelta after 24 d of culture. Electrophoretic mobility shift and supershift assays demonstrated that overexpression of CHOP/DDIT3 decreased the binding of C/EBPs to their consensus sequence by interacting with C/EBPalpha and -beta, confirming its dominant-negative role. In addition, CHOP/DDIT3 enhanced bone morphogenetic protein-2/Smad signaling. In conclusion, CHOP/DDIT3 enhances osteoblastic differentiation of stromal cells, in part by interacting with C/EBPalpha and -beta and also by enhancing Smad signaling.

  19. Lin28a enhances in vitro osteoblastic differentiation of human periosteum-derived cells.

    Science.gov (United States)

    Park, Jin-Ho; Park, Bong-Wook; Kang, Young-Hoon; Byun, Sung-Hoon; Hwang, Sun-Chul; Kim, Deok Ryong; Woo, Dong Kyun; Byun, June-Ho

    2017-12-01

    Despite a capacity for proliferation and an ability to differentiate into multiple cell types, in long-term culture and with ageing, stem cells show a reduction in growth, display a decrease in differentiation potential, and enter senescence without evidence of transformation. The Lin28a gene encodes an RNA-binding protein that plays a role in regulating stem cell activity, including self-renewal and differentiation propensity. However, the effect of the Lin28a gene on cultured human osteoprecursor cells is poorly understood. In the present study, alkaline phosphatase activity, alizarin red-positive mineralization, and calcium content, positive indicators of osteogenic differentiation, were significantly higher in cultured human periosteum-derived cells (hPDCs) with Lin28a overexpression compared with cells without Lin28a overexpression. Lin28a overexpression by hPDCs also increased mitochondrial activity, which is essential for cellular proliferation, as suggested by a reduced presence of reactive oxygen species and significantly enhanced lactate levels and ATP production. Our results suggest that, in hPDCs, the Lin28a gene enhances osteoblastic differentiation and increases mitochondrial activity. Although Lin28a is known as a marker of undifferentiated human embryogenic stem cell, there is limited evidence regarding the influence of Lin28a on osteoblastic differentiation of cultured osteoprecursor cells. This study was to examine the impact of Lin28a on osteogenic phenotypes of human periosteum-derived cells. Their phenotypes can be similar to those of mesenchymal stem cells. Our results suggest that the Lin28a gene enhances the osteoblastic differentiation of human periosteum-derived cells. In addition, the Lin28a gene increases mitochondrial activity in human periosteum-derived cells. Copyright © 2017 John Wiley & Sons, Ltd.

  20. MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix.

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    Full Text Available Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK and focal adhesion kinase (FAK and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63

  1. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone

    Science.gov (United States)

    Olivares-Navarrete, Rene; Gittens, Rolando A.; Schneider, Jennifer M.; Hyzy, Sharon L.; Haithcock, David A.; Ullrich, Peter F.; Schwartz, Zvi; Boyan, Barbara D.

    2013-01-01

    Background Context Multiple biomaterials are clinically available to spine surgeons for performing interbody fusion. Poly-ether-ether-ketone (PEEK) is used frequently for lumbar spine interbody fusion, but alternative materials are also used, including titanium (Ti) alloys. Previously, we showed that osteoblasts exhibit a more differentiated phenotype when grown on machined or grit-blasted titanium aluminum vanadium (Ti6Al4V) alloys with micron-scale roughened surfaces than when grown on smoother Ti6Al4V surfaces or on tissue culture polystyrene (TCPS). We hypothesized that osteoblasts cultured on rough Ti alloy substrates would present a more mature osteoblast phenotype than cells cultured on PEEK, suggesting that textured Ti6Al4V implants may provide a more osteogenic surface for interbody fusion devices. Purpose The aim of the present study was to compare osteoblast response to smooth Ti6Al4V (sTiAlV) and roughened Ti6Al4V (rTiAlV) with their response to PEEK with respect to differentiation and production of factors associated with osteogenesis. Study Design This in vitro study compared the phenotype of human MG63 osteoblast-like cells cultured on PEEK, sTiAlV, or rTiAlV surfaces and their production of bone morphogenetic proteins (BMPs). Methods Surface properties of PEEK, sTiAlV, and rTiAlV discs were determined. Human MG63 cells were grown on TCPS and the discs. Confluent cultures were harvested, and cell number, alkaline phosphatase–specific activity, and osteocalcin were measured as indicators of osteoblast maturation. Expression of messenger RNA (mRNA) for BMP2 and BMP4 was measured by real-time polymerase chain reaction. Levels of BMP2, BMP4, and BMP7 proteins were also measured in the conditioned media of the cell cultures. Results Although roughness measurements for sTiAlV (Sa=0.09±0.01), PEEK (Sa=0.43±0.07), and rTiAlV (Sa= 1.81±0.51) varied, substrates had similar contact angles, indicating comparable wettability. Cell morphology differed

  2. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation.

    Science.gov (United States)

    Hirota, Makoto; Hayakawa, Tohru; Yoshinari, Masao; Ametani, Akihiro; Shima, Takaki; Monden, Yuka; Ozawa, Tomomichi; Sato, Mitsunobu; Koyama, Chika; Tamai, Naoto; Iwai, Toshinori; Tohnai, Iwai

    2012-10-01

    This study investigated the bone regeneration properties of titanium fibre mesh as a tissue engineering material. A thin hydroxyapatite (HA) coating on the titanium fibre web was created using the developed molecular precursor method without losing the complex interior structure. HA-coated titanium fibre mesh showed apatite crystal formation in vitro in a human osteoblast culture. Titanium fibre mesh discs with or without a thin HA coating were implanted into rat cranial bone defects, and the animals were killed at 2 and 4 weeks. The in vivo experience revealed that the amount of newly formed bone was significantly higher in the HA-coated titanium fibre mesh than in the non-coated titanium fibre mesh 2 weeks after implantation. These results suggest that thin HA coating enhances osteoblast activity and bone regeneration in the titanium fibre mesh scaffold. Thin HA-coating improved the ability of titanium fibre mesh to act as a bone regeneration scaffold. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. In vitro vitamin K(2) and 1α,25-dihydroxyvitamin D(3) combination enhances osteoblasts anabolism of diabetic mice.

    Science.gov (United States)

    Poon, Christina C W; Li, Rachel W S; Seto, Sai Wang; Kong, Siu Kai; Ho, Ho Pui; Hoi, Maggie P M; Lee, Simon M Y; Ngai, Sai Ming; Chan, Shun Wan; Leung, George P H; Kwan, Yiu Wa

    2015-11-15

    In this study, we evaluated the anabolic effect and the underlying cellular mechanisms involved of vitamin K2 (10 nM) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10 nM), alone and in combination, on primary osteoblasts harvested from the iliac crests of C57BL/KsJ lean (+/+) and obese/diabetic (db/db) mice. A lower alkaline phosphatase (ALP) activity plus a reduced expression of bone anabolic markers and bone formation transcription factors (osteocalcin, Runx2, Dlx5, ATF4 and OSX) were consistently detected in osteoblasts of db/db mice compared to lean mice. A significantly higher calcium deposits formation in osteoblasts was observed in lean mice when compared to db/db mice. Co-administration of vitamin K2 (10 nM) and 1,25(OH)2D3 (10 nM) caused an enhancement of calcium deposits in osteoblasts in both strains of mice. Vitamins K2 and 1,25(OH)2D3 co-administration time-dependently (7, 14 and 21 days) increased the levels of bone anabolic markers and bone formation transcription factors, with a greater magnitude of increase observed in osteoblasts of db/db mice. Combined vitamins K2 plus 1,25(OH)2D3 treatment significantly enhanced migration and the re-appearance of surface microvilli and ruffles of osteoblasts of db/db mice. Thus, our results illustrate that vitamins K2 plus D3 combination could be a novel therapeutic strategy in treating diabetes-associated osteoporosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Knowledge Generation in Technology-Enhanced Health Exhibitions

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Kharlamov, Nikita; Zachariasssen, Maria

    2016-01-01

    This paper presents results from eye-tracking studies of audience interaction and knowledge generation in the technology-enhanced health promotion exhibition PULSE at a science centre in Copenhagen, Denmark. The main purpose of the study was to understand what types of knowledge audiences build...... in health promotion exhibitions designed to include direct physical interaction. The current study is part of the larger PULSE project, which aims to develop innovative health promotion activities that include a science museum exhibition as a key setting. The primary target group is families with children...... the science centre. Eye-tracking glasses and qualitative interviews were used to collect data. Before entering the PULSE exhibition, one adult in each family group and one child in each school group were asked to wear eye-tracking equipment while interacting with various installations. Primarily adult test...

  5. Surface Conductive Graphene-Wrapped Micromotors Exhibiting Enhanced Motion.

    Science.gov (United States)

    Ma, Xing; Katuri, Jaideep; Zeng, Yongfei; Zhao, Yanli; Sanchez, Samuel

    2015-10-01

    Surface-conductive Janus spherical motors are fabricated by wrapping silica particles with reduced graphene oxide capped with a thin Pt layer. These motors exhibit a 100% enhanced velocity as compared to standard SiO2 -Pt motors. Furthermore, the versatility of graphene may open up possibilities for a diverse range of applications from active drug delivery systems to water remediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  7. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    Encounters Hanne Blitz From February 1st to 12th 2016 CERN Meyrin, Main Building What is our reaction to a first encounter with a tourist attraction? Contemporary Dutch painter Hanne Blitz captures visitors' responses to art and architecture, sweeping vistas and symbolic memorials. Encounters, a series of oil paintings curated specially for this CERN exhibition, depicts tourists visiting cultural highlights around the world. A thought-provoking journey not to be missed, and a tip of the hat to CERN's large Hadron Collider.

  8. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.

    Science.gov (United States)

    Kumeria, Tushar; Mon, Htwe; Aw, Moom Sinn; Gulati, Karan; Santos, Abel; Griesser, Hans J; Losic, Dusan

    2015-06-01

    Here, we report on the development of advanced biopolymer-coated drug-releasing implants based on titanium (Ti) featuring titania nanotubes (TNTs) on its surface. These TNT arrays were fabricated on the Ti surface by electrochemical anodization, followed by the loading and release of a model antibiotic drug, gentamicin. The osteoblastic adhesion and antibacterial properties of these TNT-Ti samples are significantly improved by loading antibacterial payloads inside the nanotubes and modifying their surface with two biopolymer coatings (PLGA and chitosan). The improved osteoblast adhesion and antibacterial properties of these drug-releasing TNT-Ti samples are confirmed by the adhesion and proliferation studies of osteoblasts and model Gram-positive bacteria (Staphylococcus epidermidis). The adhesion of these cells on TNT-Ti samples is monitored by fluorescence and scanning electron microscopies. Results reveal the ability of these biopolymer-coated drug-releasing TNT-Ti substrates to promote osteoblast adhesion and proliferation, while effectively preventing bacterial colonization by impeding their proliferation and biofilm formation. The proposed approach could overcome inherent problems associated with bacterial infections on Ti-based implants, simultaneously enabling the development of orthopedic implants with enhanced and synergistic antibacterial functionalities and bone cell promotion. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  9. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Sørensen, O H

    2004-01-01

    D), 100 nM Dex, and/or 100 ng/ml BMP-2. The osteoblast phenotype was assessed as alkaline phosphatase (AP) activity/staining, production of osteocalcin and procollagen type 1 (P1NP), parathyroid hormone (PTH)-induced cyclic adenosine mono-phosphate (cAMP) production, and in vitro mineralization. AP...... osteoblastic cells with different phenotypic characteristics, and a selective activation of some of the most important genes and functions of the mature osteoblast can thus be performed in vitro....

  10. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Sintropie Flavio Pellegrini From 13 to 24 March 2017 CERN Meyrin, Main Building Energia imprigionata - Flavio Pellegrini. The exhibition is composed by eleven wood artworks with the expression of movement as theme. The artworks are the result of harmonics math applied to sculpture. The powerful black colour is dominated by the light source, generating reflexes and modulations. The result is a continuous variation of perspective visions. The works generate, at a first approach, an emotion of mystery and incomprehension, only a deeper contemplation lets one discover entangling and mutative details, evidencing the elegance of the lines and letting the meaning emerge. For more information : staff.association@cern.ch | Tél: 022 766 37 38

  11. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive G{sub s}–G protein signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok (Thailand); Wang, Liping, E-mail: lipingwang05@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Millard, Susan M., E-mail: susan.millard@mater.uq.edu.au [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Lu, Wei-Dar, E-mail: weidar_lu@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); O’Carroll, Dylan, E-mail: dylancocarroll@gmail.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Hsiao, Edward C., E-mail: Edward.Hsiao@ucsf.edu [Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA (United States); Conklin, Bruce R., E-mail: bconklin@gladstone.ucsf.edu [Gladstone Institute of Cardiovascular Disease, San Francisco, CA (United States); Department of Medicine, University of California, San Francisco, CA (United States); Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA (United States); Nissenson, Robert A., E-mail: Robert.Nissenson@ucsf.edu [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States)

    2015-05-01

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in

  12. Strategies to prepare TiO{sub 2} thin films, doped with transition metal ions, that exhibit specific physicochemical properties to support osteoblast cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Dhayal, Marshal, E-mail: marshal@ccmb.res.in [CSIR-Center for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007 (India); Kapoor, Renu; Sistla, Pavana Goury [CSIR-Center for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007 (India); Pandey, Ravi Ranjan [CSIR-National Physical Laboratory, Dr K S Krishnan Marg, New Delhi (India); Kar, Satabisha [CSIR-Center for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007 (India); Saini, Krishan Kumar [CSIR-National Physical Laboratory, Dr K S Krishnan Marg, New Delhi (India); Pande, Gopal, E-mail: gpande@ccmb.res.in [CSIR-Center for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007 (India)

    2014-04-01

    Metal ion doped titanium oxide (TiO{sub 2}) thin films, as bioactive coatings on metal or other implantable materials, can be used as surfaces for studying the cell biological properties of osteogenic and other cell types. Bulk crystallite phase distribution and surface carbon–oxygen constitution of thin films, play an important role in determining the biological responses of cells that come in their contact. Here we present a strategy to control the polarity of atomic interactions between the dopant metal and TiO{sub 2} molecules and obtain surfaces with smaller crystallite phases and optimal surface carbon–oxygen composition to support the maximum proliferation and adhesion of osteoblast cells. Our results suggest that surfaces, in which atomic interactions between the dopant metals and TiO{sub 2} were less polar, could support better adhesion, spreading and proliferation of cells. - Highlights: • Electrochemical properties of dopants control the nature of TiO{sub 2} thin films. • A model explains the correlation of dopant properties and behaviour of TiO{sub 2} films. • Dopants with less polar interaction with TiO{sub 2} exhibit better biological activity.

  13. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Wang, Zhecun; Li, Xiaoyu; Zhang, Lifang

    2015-07-01

    Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (sbnd COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that sbnd COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which gives beneficial information of its potential use in orthopedic or dental implants.

  14. A combination of CO{sub 2} laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Wang, Zhecun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-07-30

    Highlights: • COOH and microgrooves containing micropores or microcraters structure were constructed on PEEK surface by a combination of CO{sub 2} laser and plasma treatment. • The mechanical properties of PEEK are maintained after single or dual surface treatment. • Pre-osteoblast cells (MC3T3-E1) adhesion, spreading and proliferation were improved remarkably on dual treated PEEK surface. • Cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (−COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that −COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which

  15. Dioxinodehydroeckol Enhances the Differentiation of Osteoblasts by Regulating the Expression of Phospho-Smad1/5/8

    Directory of Open Access Journals (Sweden)

    Byul-Nim Ahn

    2016-09-01

    Full Text Available Lack of bone formation-related health problems are a major problem for the aging population in the modern world. As a part of the ongoing trend of developing natural substances that attenuate osteoporotic bone loss conditions, dioxinodehydroeckol (DHE from edible brown alga Ecklonia cava was tested for its effects on osteoblastogenic differentiation in MC3T3-E1 pre-osteoblasts. DHE was observed to successfully enhance osteoblast differentiation, as indicated by elevated cell proliferation, alkaline phosphatase activity, intracellular cell mineralization, along with raised levels of osteoblastogenesis indicators at the concentration of 20 μM. Results suggested a possible intervening of DHE on the bone morphogenetic protein (BMP signaling pathway, according to elevated protein levels of BMP-2, collagen-I, and Smads. In addition, the presence of DHE was also able to raise the phosphorylated extracellular signal–regulated kinase (ERK and c-Jun N-terminal kinase (JNK levels which are also activated by the BMP signaling pathway. In conclusion, DHE is suggested to be a potential bioactive compound against bone loss that could enhance osteoblastogenesis with a suggested BMP pathway interaction.

  16. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    Science.gov (United States)

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Directory of Open Access Journals (Sweden)

    Julia Matena

    2015-04-01

    Full Text Available To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF, high mobility group box 1 (HMGB1 and chemokine (C-X-C motif ligand 12 (CXCL12. As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI. Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.

  18. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release. PMID:25849656

  19. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Ho-Jin; Yun, Young-Pil [Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Han, Choong-Wan; Kim, Min Sung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Institute of Oral Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Sung Eun; Bae, Min Soo [Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Gyu-Tae; Choi, Yong-Suk; Hwang, Eui-Hwan [Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Institute of Oral Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Lee, Joon Woo [Department of Technology Commercialization Information, Korea Institute of Science and Technology Information (KISTI), 66, Hoegi-ro, Dongdaemun-gu, Seoul 130-741 (Korea, Republic of); Lee, Jin-Moo; Lee, Chang-Hoon [Department of Oriental Gynecology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Duck-Su [Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kwon, Il Keun, E-mail: kwoni@khu.ac.kr [Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Institute of Oral Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2011-09-23

    Highlights: {yields} We examine bone metabolism of engineered alendronate attached to Ti surfaces. {yields} Alendronate-immobilized Ti enhances activation of osteoblast differentiation. {yields} Alendronate-immobilized Ti inhibits osteoclast differentiation. {yields} Alendronate-immobilized Ti may be a bioactive implant with dual functions. -- Abstract: The failure of orthopedic and dental implants has been attributed mainly to loosening of the implant from host bone, which may be due to weak bonding of the implant material to bone tissue. Titanium (Ti) is used in the field of orthopedic and dental implants because of its excellent biocompatibility and outstanding mechanical properties. Therefore, in the field of materials science and tissue engineering, there has been extensive research to immobilize bioactive molecules on the surface of implant materials in order to provide the implants with improved adhesion to the host bone tissue. In this study, chemically active functional groups were introduced on the surface of Ti by a grafting reaction with heparin and then the Ti was functionalized by immobilizing alendronate onto the heparin-grafted surface. In the MC3T3-E1 cell osteogenic differentiation study, the alendronate-immobilized Ti substrates significantly enhanced alkaline phosphatase activity (ALP) and calcium content. Additionally, nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells was inhibited with the alendronate-immobilized Ti as confirmed by TRAP analysis. Real time PCR analysis showed that mRNA expressions of osteocalcin and osteopontin, which are markers for osteogenesis, were upregulated in MC3T3-E1 cells cultured on alendronate-immobilized Ti. The mRNA expressions of TRAP and Cathepsin K, markers for osteoclastogenesis, in RAW264.7 cells cultured on alendronate-immobilized Ti were down-regulated. Our study suggests that alendronate-immobilized Ti may be a bioactive implant with dual functions to enhance

  20. Osteoblast-derived WNT-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126.

    Science.gov (United States)

    Tai, Huai-Ching; Chang, An-Chen; Yu, Hong-Jeng; Huang, Chao-Yuan; Tsai, Yu-Chieh; Lai, Yu-Wei; Sun, Hui-Lung; Tang, Chih-Hsin; Wang, Shih-Wei

    2014-09-15

    Bone metastases of prostate cancer (PCa) may cause intractable pain. Wnt-1-induced secreted protein 1 (WISP-1) belongs to the CCN family (CTGF/CYR61/NOV) that plays a key role in bone formation. We found that osteoblast-conditioned medium (OBCM) stimulates migration and vascular adhesion molecule-1 (VCAM)-1 expression in human PCa (PC3 and DU145) cells. Osteoblast transfection with WISP-1 shRNA reduced OBCM-mediated PCa migration and VCAM-1 expression. Stimulation of PCa with OBCM or WISP-1 elevated focal adhesion kinase (FAK) and p38 phosphorylation. Either FAK and p38 inhibitors or siRNA abolished osteoblast-derived WISP-1-induced migration and VCAM-1 expression. Osteoblast-derived WISP-1 inhibited miR-126 expression. Moreover, miR-216 mimic reversed the WISP-1-enhanced migration and VCAM-1 expression. This study suggests that osteoblast-derived WISP-1 promotes migration and VCAM-1 expression in human PCa cells by down-regulating miR-126 expression via αvβ1 integrin, FAK, and p38 signaling pathways. Thus, WISP-1 may be a new molecular therapeutic target in PCa bone metastasis.

  1. Osteoblast-derived WISP-1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126

    Science.gov (United States)

    Tai, Huai-Ching; Chang, An-Chen; Yu, Hong-Jeng; Huang, Chao-Yuan; Tsai, Yu-Chieh; Lai, Yu-Wei; Sun, Hui-Lung; Tang, Chih-Hsin; Wang, Shih-Wei

    2014-01-01

    Bone metastases of prostate cancer (PCa) may cause intractable pain. Wnt-induced secreted protein-1 (WISP-1) belongs to the CCN family (CTGF/CYR61/NOV) that plays a key role in bone formation. We found that osteoblast-conditioned medium (OBCM) stimulates migration and vascular cell adhesion molecule-1 (VCAM-1) expression in human PCa (PC3 and DU145) cells. Osteoblast transfection with WISP-1 shRNA reduced OBCM-mediated PCa migration and VCAM-1 expression. Stimulation of PCa with OBCM or WISP-1 elevated focal adhesion kinase (FAK) and p38 phosphorylation. Either FAK and p38 inhibitors or siRNA abolished osteoblast-derived WISP-1-induced migration and VCAM-1 expression. Osteoblast-derived WISP-1 inhibited miR-126 expression. Moreover, miR-216 mimic reversed the WISP-1-enhanced migration and VCAM-1 expression. This study suggests that osteoblast-derived WISP-1 promotes migration and VCAM-1 expression in human PCa cells by down-regulating miR-126 expression via αvβ1 integrin, FAK, and p38 signaling pathways. Thus, WISP-1 may be a new molecular therapeutic target in PCa bone metastasis. PMID:25277191

  2. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    Science.gov (United States)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  3. Enhanced teleoperation exhibiting tele-autonomy and tele-collaboration.

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. S.; Ewing, T. F.; Yule, T. J.; Colgate, E.; Peshkin, M.

    2002-05-17

    This paper presents enhanced remote manipulation of tools for D&D tasks by extending teleoperation with teleautonomy and tele-collaboration. This work builds on a reactive, agent-based control architecture, which is well suited to unstructured and unpredictable environments, and cobot control technology, which implements a virtual fixture that can be used to guide the application of tools with passive force-feedback control. Developed methodologies are tested using simulation, and then planned to be implemented using a structured light sensor and cobot hand controller on a dual-arm system to measure the enhanced performance of key tool operations that are tedious and difficult to perform purely by teleoperation. This work significantly leverages some 2000 hours of operational experience gained during the D&D of the CP-5 reactor at ANL using a dual-arm remote manipulator system, as well as DOE's investment in the dual-arm system itself, which will serve as a test bed for the proposed investigations.

  4. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  5. PTH1–34 Blocks Radiation-induced Osteoblast Apoptosis by Enhancing DNA Repair through Canonical Wnt Pathway*

    Science.gov (United States)

    Chandra, Abhishek; Lin, Tiao; Zhu, Ji; Tong, Wei; Huo, Yanying; Jia, Haoruo; Zhang, Yejia; Liu, X. Sherry; Cengel, Keith; Xia, Bing; Qin, Ling

    2015-01-01

    Focal radiotherapy for cancer patients has detrimental effects on bones within the radiation field and the primary clinical signs of bone damage include the loss of functional osteoblasts. We reported previously that daily injection of parathyroid hormone (PTH, 1–34) alleviates radiation-induced osteopenia in a preclinical radiotherapy model by improving osteoblast survival. To elucidate the molecular mechanisms, we irradiated osteoblastic UMR 106-01 cells and calvarial organ culture and demonstrated an anti-apoptosis effect of PTH1–34 on these cultures. Inhibitor assay indicated that PTH exerts its radioprotective action mainly through protein kinase A/β-catenin pathway. γ-H2AX foci staining and comet assay revealed that PTH efficiently promotes the repair of DNA double strand breaks (DSBs) in irradiated osteoblasts via activating the β-catenin pathway. Interestingly, Wnt3a alone also blocked cell death and accelerated DNA repair in primary osteoprogenitors, osteoblastic and osteocytic cells after radiation through the canonical signaling. Further investigations revealed that both Wnt3a and PTH increase the amount of Ku70, a core protein for initiating the assembly of DSB repair machinery, in osteoblasts after radiation. Moreover, down-regulation of Ku70 by siRNA abrogated the prosurvival effect of PTH and Wnt3a on irradiated osteoblasts. In summary, our results identify a novel role of PTH and canonical Wnt signaling in regulating DSB repair machinery and apoptosis in osteoblasts and shed light on using PTH1–34 or Wnt agonist as possible therapy for radiation-induced osteoporosis. PMID:25336648

  6. Enhancement of Osteoblastic-Like Cell Activity by Glow Discharge Plasma Surface Modified Hydroxyapatite/β-Tricalcium Phosphate Bone Substitute

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2017-11-01

    Full Text Available Glow discharge plasma (GDP treatments of biomaterials, such as hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composites, produce surfaces with fewer contaminants and may facilitate cell attachment and enhance bone regeneration. Thus, in this study we used argon glow discharge plasma (Ar-GDP treatments to modify HA/β-TCP particle surfaces and investigated the physical and chemical properties of the resulting particles (HA/β-TCP + Ar-GDP. The HA/β-TCP particles were treated with GDP for 15 min in argon gas at room temperature under the following conditions: power: 80 W; frequency: 13.56 MHz; pressure: 100 mTorr. Scanning electron microscope (SEM observations showed similar rough surfaces of HA/β-TCP + Ar-GDP HA/β-TCP particles, and energy dispersive spectrometry analyses showed that HA/β-TCP surfaces had more contaminants than HA/β-TCP + Ar-GDP surfaces. Ca/P mole ratios in HA/β-TCP and HA/β-TCP + Ar-GDP were 1.34 and 1.58, respectively. Both biomaterials presented maximal intensities of X-ray diffraction patterns at 27° with 600 a.u. At 25° and 40°, HA/β-TCP + Ar-GDP and HA/β-TCP particles had peaks of 200 a.u., which are similar to XRD intensities of human bone. In subsequent comparisons, MG-63 cell viability and differentiation into osteoblast-like cells were assessed on HA/β-TCP and HA/β-TCP + Ar-GDP surfaces, and Ar-GDP treatments led to improved cell growth and alkaline phosphatase activities. The present data indicate that GDP surface treatment modified HA/β-TCP surfaces by eliminating contaminants, and the resulting graft material enhanced bone regeneration.

  7. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo.

    Science.gov (United States)

    Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai

    2017-06-08

    Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.

  8. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Zhong-Rong Zhang

    2017-06-01

    Full Text Available Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L. Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB. Blockage of cAMP/CREB downstream signals with protein kinase A (PKA inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.

  9. Enhancement of Differentiation and Mineralisation of Osteoblast-like Cells by Degenerate Electrical Waveform in an In Vitro Electrical Stimulation Model Compared to Capacitive Coupling

    Science.gov (United States)

    Griffin, Michelle; Sebastian, Anil; Colthurst, James; Bayat, Ardeshir

    2013-01-01

    Electrical stimulation (ES) is effective in enhancing bone healing, however the best electrical waveform, mode of application and mechanisms remains unclear. We recently reported the in vitro differential healing response of a novel electrical waveform called degenerate sine wave (DW) compared to other forms of ES. This study further explores this original observation on osteoblast cells. Here, we electrically stimulated SaOS-2 osteoblast-like cells with DW in an in vitro ES chamber (referred to as ‘DW stimulation’) and compared the intracellular effects to capacitive coupling (CC) stimulation. ES lasted for 4 h, followed by an incubation period of 20 h and subsequent ES for 4 additional hours. Cytotoxicity, proliferation, differentiation and mineralisation of the osteoblast-like cells were evaluated to determine the cell maturation process. DW significantly enhanced the differentiation of cells when compared to CC stimulation with increased alkaline phosphatase and collagen I gene expression by quantitative real time- polymerase chain reaction analysis (p<0.01). Moreover, DW significantly increased the mineralisation of cells compared to CC stimulation. Furthermore the transcription of osteocalcin, osteonectin, osteopontin and bone sialoprotein (p<0.05) was also up regulated by DW. However, ES did not augment the proliferation of cells. Translational analysis by immunocytochemistry and Western blotting showed increased collagen I, osteocalcin and osteonectin expression after DW than CC stimulation. In summary, we have demonstrated for the first time that DW stimulation in an in vitro ES chamber has a significant effect on maturation of osteoblast-like cells compared to CC stimulation of the same magnitude. PMID:24039834

  10. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts.

    Science.gov (United States)

    Kogan, Natalya M; Melamed, Eitan; Wasserman, Elad; Raphael, Bitya; Breuer, Aviva; Stok, Kathryn S; Sondergaard, Rachel; Escudero, Ana V Villarreal; Baraghithy, Saja; Attar-Namdar, Malka; Friedlander-Barenboim, Silvina; Mathavan, Neashan; Isaksson, Hanna; Mechoulam, Raphael; Müller, Ralph; Bajayo, Alon; Gabet, Yankel; Bab, Itai

    2015-10-01

    Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femurs from rats given a mixture of CBD and Δ(9) -tetrahydrocannabinol (THC) for 8 weeks were markedly increased by CBD. This effect is not shared by THC (the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks postfracture followed by attenuation of the CBD effect at 8 weeks. Using micro-computed tomography (μCT), the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier transform infrared (FTIR) spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes. © 2015 American Society for Bone and Mineral Research.

  11. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway.

    Science.gov (United States)

    Saeed, Hamid; Qiu, Weimin; Li, Chen; Flyvbjerg, Allan; Abdallah, Basem M; Kassem, Moustapha

    2015-12-01

    The contribution of deficient telomerase activity to age-related decline in osteoblast functions and bone formation is poorly studied. We have previously demonstrated that telomerase over-expression led to enhanced osteoblast differentiation of human bone marrow skeletal (stromal) stem cells (hMSC) in vitro and in vivo. Here, we investigated the signaling pathways underlying the regulatory functions of telomerase in osteoblastic cells. Comparative microarray analysis and Western blot analysis of telomerase-over expressing hMSC (hMSC-TERT) versus primary hMSC revealed significant up-regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin. In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc(-/-)). The low bone mass exhibited by Terc(-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced skeletal mRNA expression of Igf1, Igf2, Igf2r, Igfbp5 and Igfbp6. IGF1-induced osteoblast differentiation was also impaired in Terc(-/-) MSC. In conclusion, our data demonstrate that impaired IGF/AKT signaling contributes to the observed decreased bone mass and bone formation exhibited by telomerase deficient osteoblastic cells.

  12. Enhanced osteoblastic differentiation and bone formation in co-culture of human bone marrow mesenchymal stromal cells and peripheral blood mononuclear cells with exogenous VEGF.

    Science.gov (United States)

    Joensuu, K; Uusitalo, L; Alm, J J; Aro, H T; Hentunen, T A; Heino, T J

    2015-05-01

    Despite recent advances in bone tissue engineering, efficient bone formation and vascularization remains a challenge for clinical applications. The aim of this study was to investigate if the osteoblastic differentiation of human mesenchymal stromal cells (MSCs) can be enhanced by co-culturing them with peripheral blood (PB) mononuclear cells (MNCs), with and without vascular endothelial growth factor (VEGF), a coupling factor of bone formation and angiogenesis. Human bone marrow (BM) derived MSCs were co-cultured with PB-MNCs in osteogenic medium with or without VEGF. Osteoblastic differentiation and mineral deposition were studied by staining for alkaline phosphatase (ALP), and von Kossa, respectively, and measurements for ALP activity and calcium concentration (Ca). Cell proliferation was assayed with Alamar blue. The mechanism(s) were further studied by Transwell(®) cell culture experiments. Both ALP and mineralization (von Kossa and Ca) were significantly higher in the MSC-MNC co-cultures compared to plain MSC cultures. VEGF alone had no effect on osteoblastic differentiation of MSCs, but further enhanced differentiation in co-culture settings. The mechanism was shown to require cell-cell contact between MSCs and MNCs and the factors contributing to further differentiation appear to be soluble. No differences were observed in cell proliferation. Our study demonstrates that the in vitro ALP activity and mineralization of human BM-MSCs is more efficient in the presence of PB-MNCs, and exogenously added VEGF further enhances the stimulatory effect. This indicates that PB-MNCs could be a potential cell source in development of co-culture systems for novel tissue engineering applications for enhanced bone healing. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Enhanced growth and osteogenic differentiation of human osteoblast-like cells on boron-doped nanocrystalline diamond thin films.

    Directory of Open Access Journals (Sweden)

    Lubica Grausova

    Full Text Available Intrinsic nanocrystalline diamond (NCD films have been proven to be promising substrates for the adhesion, growth and osteogenic differentiation of bone-derived cells. To understand the role of various degrees of doping (semiconducting to metallic-like, the NCD films were deposited on silicon substrates by a microwave plasma-enhanced CVD process and their boron doping was achieved by adding trimethylboron to the CH(4:H(2 gas mixture, the B∶C ratio was 133, 1000 and 6700 ppm. The room temperature electrical resistivity of the films decreased from >10 MΩ (undoped films to 55 kΩ, 0.6 kΩ, and 0.3 kΩ (doped films with 133, 1000 and 6700 ppm of B, respectively. The increase in the number of human osteoblast-like MG 63 cells in 7-day-old cultures on NCD films was most apparent on the NCD films doped with 133 and 1000 ppm of B (153,000 ± 14,000 and 152,000 ± 10,000 cells/cm(2, respectively, compared to 113,000 ± 10,000 cells/cm(2 on undoped NCD films. As measured by ELISA per mg of total protein, the cells on NCD with 133 and 1000 ppm of B also contained the highest concentrations of collagen I and alkaline phosphatase, respectively. On the NCD films with 6700 ppm of B, the cells contained the highest concentration of focal adhesion protein vinculin, and the highest amount of collagen I was adsorbed. The concentration of osteocalcin also increased with increasing level of B doping. The cell viability on all tested NCD films was almost 100%. Measurements of the concentration of ICAM-1, i.e. an immunoglobuline adhesion molecule binding inflammatory cells, suggested that the cells on the NCD films did not undergo significant immune activation. Thus, the potential of NCD films for bone tissue regeneration can be further enhanced and tailored by B doping and that B doping up to metallic-like levels is not detrimental for cells.

  14. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.

    Directory of Open Access Journals (Sweden)

    Akihiro Horii

    Full Text Available A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG and 2-unit RGD binding sequence PGR (PRGDSGYRGDS. We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration.

  15. Isolation and characterization of a novel plasma membrane protein, osteoblast induction factor (obif, associated with osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Minami Takashi

    2009-12-01

    Full Text Available Abstract Background While several cell types are known to contribute to bone formation, the major player is a common bone matrix-secreting cell type, the osteoblast. Chondrocytes, which plays critical roles at several stages of endochondral ossification, and osteoblasts are derived from common precursors, and both intrinsic cues and signals from extrinsic cues play critical roles in the lineage decision of these cell types. Several studies have shown that cell fate commitment within the osteoblast lineage requires sequential, stage-specific signaling to promote osteoblastic differentiation programs. In osteoblastic differentiation, the functional mechanisms of transcriptional regulators have been well elucidated, however the exact roles of extrinsic molecules in osteoblastic differentiation are less clear. Results We identify a novel gene, obif (osteoblast induction factor, encoding a transmembrane protein that is predominantly expressed in osteoblasts. During mouse development, obif is initially observed in the limb bud in a complementary pattern to Sox9 expression. Later in development, obif is highly expressed in osteoblasts at the stage of endochondral ossification. In cell line models, obif is up-regulated during osteoblastic differentiation. Exogenous obif expression stimulates osteoblastic differentiation and obif knockdown inhibits osteoblastic differentiation in preosteblastic MC3T3-E1 cells. In addition, the extracellular domain of obif protein exhibits functions similar to the full-length obif protein in induction of MC3T3-E1 differentiation. Conclusions Our results suggest that obif plays a role in osteoblastic differentiation by acting as a ligand.

  16. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to α5β1 integrins in osteoblasts

    Science.gov (United States)

    Rapuano, Bruce E.; Lee, Jani Jae Eun; MacDonald, Daniel E.

    2012-01-01

    Our laboratory has previously demonstrated that heat (600 °C) or radiofrequency plasma glow discharge (RFGD) pretreatment of a titanium alloy (Ti6Al4V) increases the net-negative charge of the alloy’s surface oxide and the attachment of osteoblastic cells to adsorbed fibronectin. The purpose of the current study was to investigate the biological mechanism by which these surface pretreatments enhance the capacity of fibronectin to stimulate osteoblastic cell attachment. Each pretreatment was found to increase the binding (measured by ELISA) of a monoclonal anti-fibronectin Ig to the central integrin-binding domain of adsorbed fibronectin, and to increase the antibody’s inhibition of osteogenic cell attachment (measured using the hexosaminidase assay). Pretreatments also increased the binding (measured by ELISA) of anti-integrin Igs to the α5 and β1 integrin subunits that became attached to fibronectin during cell incubation. These findings suggest that negatively charged surface oxides of Ti6Al4V cause conformational changes in fibronectin that increase the availability of its integrin-binding domain to α5β1 integrins. PMID:22607334

  17. Nrp2 deficiency leads to trabecular bone loss and is accompanied by enhanced osteoclast and reduced osteoblast numbers.

    Science.gov (United States)

    Verlinden, Lieve; Kriebitzsch, Carsten; Beullens, Ine; Tan, Biauw Keng; Carmeliet, Geert; Verstuyf, Annemieke

    2013-08-01

    Neuropilin 1 (Nrp1) and Nrp2 are transmembrane receptors that can bind class 3 semaphorins (Sema3A-G) in addition to VEGF family members to play important roles in axonal guidance, vascularization and angiogenesis, as well as immune responses. Moreover, recent evidence implicates Sema3A/Nrp-mediated signaling in bone regulation. However, to date the expression of Nrp2 in bone has not been investigated and a possible role for Nrp2 in the maintenance of bone homeostasis in vivo remains unexplored. Here we show that Nrp2, together with its possible coreceptors (Plexin A family members and Plexin D1) and class 3 semaphorin ligands, were expressed during in vitro osteogenic differentiation of bone marrow stromal cells. Moreover, Nrp2 transcript and protein levels were highly induced in hematopoietic bone marrow cell-derived osteoclast cultures. Osteoblastic as well as osteoclastic Nrp2 expression was confirmed by immunohistochemistry of the long bones of mice. Interestingly, Nrp2 knockout mice were characterized by a low bone mass phenotype which was accompanied by an increased number of osteoclasts and a decreased osteoblast count. Collectively, these data point to a physiological role for Nrp2 in bone homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis.

    Science.gov (United States)

    Delion, Martial; Braux, Julien; Jourdain, Marie-Laure; Guillaume, Christine; Bour, Camille; Gangloff, Sophie; Pimpec-Barthes, Françoise Le; Sermet-Gaudelus, Isabelle; Jacquot, Jacky; Velard, Frédéric

    2016-09-01

    Bone fragility and loss are a significant cause of morbidity in patients with cystic fibrosis (CF), and the lack of effective therapeutic options means that treatment is more often palliative rather than curative. A deeper understanding of the pathogenesis of CF-related bone disease (CFBD) is necessary to develop new therapies. Defective CF transmembrane conductance regulator (CFTR) protein and chronic inflammation in bone are important components of the CFBD development. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) drive the regulation of bone turnover. To investigate their roles in CFBD, we evaluated the involvement of defective CFTR in their production level in CF primary human osteoblasts with and without inflammatory stimulation, in the presence or not of pharmacological correctors of the CFTR. No major difference in cell ultrastructure was noted between cultured CF and non-CF osteoblasts, but a delayed bone matrix mineralization was observed in CF osteoblasts. Strikingly, resting CF osteoblasts exhibited strong production of RANKL protein, which was highly localized at the cell membrane and was enhanced in TNF (TNF-α) or IL-17-stimulated conditions. Under TNF stimulation, a defective response in OPG production was observed in CF osteoblasts in contrast to the elevated OPG production of non-CF osteoblasts, leading to an elevated RANKL-to-OPG protein ratio in CF osteoblasts. Pharmacological inhibition of CFTR chloride channel conductance in non-CF osteoblasts replicated both the decreased OPG production and the enhanced RANKL-to-OPG ratio. Interestingly, using CFTR correctors such as C18, we significantly reduced the production of RANKL by CF osteoblasts, in both resting and TNF-stimulated conditions. In conclusion, the overexpression of RANKL and high membranous RANKL localization in osteoblasts are related to defective CFTR, and may worsen bone resorption, leading to bone loss in patients with CF. Targeting

  19. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    Science.gov (United States)

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  20. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia

    Science.gov (United States)

    Romee, Rizwan; Rosario, Maximillian; Berrien-Elliott, Melissa M.; Wagner, Julia A.; Jewell, Brea A.; Schappe, Timothy; Leong, Jeffrey W.; Abdel-Latif, Sara; Schneider, Stephanie E.; Willey, Sarah; Neal, Carly C.; Yu, Liyang; Oh, Stephen T.; Lee, Yi-Shan; Mulder, Arend; Claas, Frans; Cooper, Megan A.; Fehniger, Todd A.

    2017-01-01

    Natural killer (NK) cells are an emerging cellular immunotherapy for patients with acute myeloid leukemia (AML); however, the best approach to maximize NK cell antileukemia potential is unclear. Cytokine-induced memory-like NK cells differentiate after a brief preactivation with interleukin-12 (IL-12), IL-15, and IL-18 and exhibit enhanced responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We hypothesized that memory-like NK cells exhibit enhanced antileukemia functionality. We demonstrated that human memory-like NK cells have enhanced interferon-γ production and cytotoxicity against leukemia cell lines or primary human AML blasts in vitro. Using mass cytometry, we found that memory-like NK cell functional responses were triggered against primary AML blasts, regardless of killer cell immunoglobulin-like receptor (KIR) to KIR-ligand interactions. In addition, multidimensional analyses identified distinct phenotypes of control and memory-like NK cells from the same individuals. Human memory-like NK cells xenografted into mice substantially reduced AML burden in vivo and improved overall survival. In the context of a first-in-human phase 1 clinical trial, adoptively transferred memory-like NK cells proliferated and expanded in AML patients and demonstrated robust responses against leukemia targets. Clinical responses were observed in five of nine evaluable patients, including four complete remissions. Thus, harnessing cytokine-induced memory-like NK cell responses represents a promising translational immunotherapy approach for patients with AML. PMID:27655849

  1. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance.

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    Full Text Available Alfalfa (Medicago sativa L., a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye under the control of an oxidative stress-inducible peroxidase (SWPA2 promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants, three lines (SOR2, SOR3, and SOR8 selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.

  2. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening).

    Science.gov (United States)

    Dutt, Manjul; Barthe, Gary; Irey, Michael; Grosser, Jude

    2015-01-01

    Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  3. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening.

    Directory of Open Access Journals (Sweden)

    Manjul Dutt

    Full Text Available Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB, a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2 promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  4. Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Tutak, Wojtek; Fanchini, Giovanni; Chhowalla, Manish [Materials Science and Engineering, School of Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Park, Ki Ho; Vasilov, Anatoly; Cai Shiqing; Partridge, Nicola C; Sesti, Federico [Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Starovoytov, Valentin [Department of Cell Biology and Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ 08855 (United States)], E-mail: sestife@umdnj.edu, E-mail: manish1@rci.rutgers.edu

    2009-06-24

    A central effort in biomedical research concerns the development of materials for sustaining and controlling cell growth. Carbon nanotube based substrates have been shown to support the growth of different kinds of cells (Hu et al 2004 Nano Lett. 4 507-11; Kalbacova et al 2006 Phys. Status Solidi b 13 243; Zanello et al 2006 Nano Lett. 6 562-7); however the underlying molecular mechanisms remain poorly defined. To address the fundamental question of mechanisms by which nanotubes promote bone mitosis and histogenesis, primary calvariae osteoblastic cells were grown on single-walled carbon nanotube thin film (SWNT) substrates. Using a combination of biochemical and optical techniques we demonstrate here that SWNT networks promote cell development through two distinct steps. Initially, SWNTs are absorbed in a process that resembles endocytosis, inducing acute toxicity. Nanotube-mediated cell destruction, however, induces a release of endogenous factors that act to boost the activity of the surviving cells by stimulating the synthesis of extracellular matrix.

  5. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production.

    Science.gov (United States)

    Holmberg, N; Lilius, G; Bailey, J E; Bülow, L

    1997-03-01

    The gene for Vitreoscilla hemoglobin (VHb) has been introduced and expressed in Nicotiana tabaccum (tobacco). Transgenic tobacco plants expressing VHb exhibited enhanced growth, on average 80-100% more dry weight after 35 days of growth compared to wild-type controls. Furthermore, germination time is reduced from 6-8 days for wild-type tobacco to 3-4 days and the growth phase from germination to flowering was 3-5 days shorter for the VHb-expressing transgenes. Transgenic plants contained, on average, 30-40% more chlorophyll and 34% more nicotine than controls. VHb expression also resulted in an altered distribution of secondary metabolites: In the trangenic tobacco plants anabasine content was decreased 80% relative to control plants.

  6. Constitutive β-catenin activation in osteoblasts impairs terminal osteoblast differentiation and bone quality

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Quanwei; Chen, Sixu; Qin, Hao [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China); Feng, Jianquan [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A& M Health Science Center, Dallas, TX 75246 (United States); Liu, Huayu; Liu, Daocheng; Li, Ang; Shen, Yue; Zhong, Xiaozheng; Li, Junfeng [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China); Zong, Zhaowen, E-mail: zongzhaowen@sina.cn [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China)

    2017-01-01

    Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice. Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength. - Highlights: • Wnt/β-catenin signaling plays a central role in controlling bone mass. • CA-β-catenin has side effects on the bone

  7. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  8. Differential interactions of Streptococcus gordonii and Staphylococcus aureus with cultured osteoblasts.

    Science.gov (United States)

    Jauregui, C E; Mansell, J P; Jepson, M A; Jenkinson, H F

    2013-08-01

    The impedance of normal osteoblast function by microorganisms is at least in part responsible for the failure of dental or orthopedic implants. Staphylococcus aureus is a major pathogen of bone, and exhibits high levels of adhesion and invasion of osteoblasts. In this article we show that the commensal oral bacterium Streptococcus gordonii also adheres to and is internalized by osteoblasts. Entry of S. gordonii cells had typical features of phagocytosis, similar to S. aureus, with membrane protrusions characterizing initial uptake, and closure of the osteoblast membrane leading to engulfment. The sensitivities of S. gordonii internalization to inhibitors cytochalasin D, colchicine and monensin indicated uptake through endocytosis, with requirement for actin accumulation. Internalization levels of S. gordonii were enhanced by expression of S. aureus fibronectin-binding protein A (FnBPA) on the S. gordonii cell surface. Lysosomal-associated membrane protein-1 phagosomal membrane marker accumulated with intracellular S. aureus and S. gordonii FnBPA, indicating trafficking of bacteria into the late endosomal/lysosomal compartment. Streptococcus gordonii cells did not survive intracellularly for more than 12 h, unless expressing FnBPA, whereas S. aureus showed extended survival times (>48 h). Both S. aureus and S. gordonii DL-1 elicited a rapid interleukin-8 response by osteoblasts, whereas S. gordonii FnBPA was slower. Only S. aureus elicited an interleukin-6 response. Hence, S. gordonii invades osteoblasts by a mechanism similar to that exhibited by S. aureus, and elicits a proinflammatory response that may promote bone resorption. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect.

    Directory of Open Access Journals (Sweden)

    Silvia Panseri

    Full Text Available In case of degenerative disease or lesion, bone tissue replacement and regeneration is an important clinical goal. In particular, nowadays, critical size defects rely on the engineering of scaffolds that are 3D structural supports, allowing cellular infiltration and subsequent integration with the native tissue. Several ceramic hydroxyapatite (HA scaffolds with high porosity and good osteointegration have been developed in the past few decades but they have not solved completely the problems related to bone defects. In the present study we have developed a novel porous ceramic composite made of HA that incorporates magnetite at three different ratios: HA/Mgn 95/5, HA/Mgn 90/10 and HA/Mgn 50/50. The scaffolds, consolidated by sintering at high temperature in a controlled atmosphere, have been analysed in vitro using human osteoblast-like cells. Results indicate high biocompatibility, similar to a commercially available HA bone graft, with no negative effects arising from the presence of magnetite or by the use of a static magnetic field. HA/Mgn 90/10 was shown to enhance cell proliferation at the early stage. Moreover, it has been implanted in vivo in a critical size lesion of the rabbit condyle and a good level of histocompatibility was observed. Such results identify this scaffold as particularly relevant for bone tissue regeneration and open new perspectives for the application of a magnetic field in a clinical setting of bone replacement, either for magnetic scaffold fixation or magnetic drug delivery.

  10. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  11. Sequential Delivery of BMP-2 and IGF-1 Using a Chitosan Gel with gelatin Microspheres Enhances Early osteoblastic Differentiation

    Science.gov (United States)

    2012-01-18

    derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 2009;30(20):3486...49. [23] Chen FM, Zhao YM, Wu H, Deng ZH, Wang QT, Jin Y. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin

  12. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling.

    Science.gov (United States)

    Janning, C; Willbold, E; Vogt, C; Nellesen, J; Meyer-Lindenberg, A; Windhagen, H; Thorey, F; Witte, F

    2010-05-01

    Repeated observations of enhanced bone growth around various degradable magnesium alloys in vivo raise the question: what is the major mutual origin of this biological stimulus? Several possible origins, e.g. the metal surface properties, electrochemical interactions and biological effects of alloying elements, can be excluded by investigating the sole bone response to the purified major corrosion product of all magnesium alloys, magnesium hydroxide (Mg(OH)(2)). Isostatically compressed cylinders of pure Mg(OH)(2) were implanted into rabbit femur condyles for 2-6 weeks. We observed a temporarily increased bone volume (BV/TV) in the vicinity of Mg(OH)(2) at 4 weeks that returned to a level that was equal to the control at 6 weeks. The osteoclast surface (OcS/BS) was significantly reduced during the first four weeks around the Mg(OH)(2) cylinder, while an increase in osteoid surface (OS/BS) was observed at the same time. At 6 weeks, the OcS/BS adjacent to the Mg(OH)(2) cylinder was back within the same range of the control. The mineral apposition rate (MAR) was extensively enhanced until 4 weeks in the Mg(OH)(2) group before matching the control. Thus, the enhanced bone formation and temporarily decreased bone resorption resulted in a higher bone mass around the slowly dissolving Mg(OH)(2) cylinder. These data support the hypothesis that the major corrosion product Mg(OH)(2) from any magnesium alloy is the major origin of the observed enhanced bone growth in vivo. Further studies have to evaluate if the enhanced bone growth is mainly due to the local magnesium ion concentration or the local alkalosis accompanying the Mg(OH)(2) dissolution. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes

    Directory of Open Access Journals (Sweden)

    Toshihisa Komori

    2016-12-01

    Full Text Available Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced.

  14. A Nanotube Surface Reinforced Graphite Fiber Exhibiting Significantly Enhanced Properties Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nanotechnology which includes carbon nanotubes has the potential to produce materials that exhibit properties beyond those expected from conventional materials which...

  15. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  16. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dun [Population Council, 1230 York Avenue, New York, NY 10065 (United States); Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000 (China); Chen, Hai-Xiao, E-mail: Hxchen-1@163.net [Orthopedic Department, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang 317000 (China); Yu, Hai-Qiang [Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Liang, Yong; Wang, Carrie [Population Council, 1230 York Avenue, New York, NY 10065 (United States); Lian, Qing-Quan [The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000 (China); Deng, Hai-Teng, E-mail: dengh@mail.rockefeller.edu [Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Ge, Ren-Shan, E-mail: rge@popcbr.rockefeller.edu [Population Council, 1230 York Avenue, New York, NY 10065 (United States); The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000 (China)

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  17. Nano-sized 58S bioactive glass enhances proliferation and osteogenic genes expression of osteoblast-like cells.

    Science.gov (United States)

    Gong, Wei Yu; Dong, Yan Mei; Chen, Xiao Feng; Karabucak, Bekir

    2012-01-01

    To observe the effects of ionic dissolution products on nano-sized 58S bioactive glass (nano-58S) on proliferation and specific osteogenic genes expression in MG-63 cells. Ionic dissolution products were prepared by incubating nano-58S or sol-gel bioactive glass 58S (58S) particulates in Dulbecco's modified Eagle's medium (DMEM) at 1% w/v for 24 hr and filtrated through 0.22 µm filters to remove the particulates. MG-63 cells were cultured in the nano-58S extraction, 58S extraction, and DMEM, respectively, for different time periods to assay the proliferation, mRNA expression of alkaline phosphatase (ALP), Cbfa1, Collagen type I (Col-I) and osteocalcin (OCN), as well as ALP staining, activity and matrix mineralisation. In the nano-58S group, cell proliferation and mRNA expression of ALP, Cbfa1 and OCN were significantly enhanced in a time-dependent manner compared with the control group. mRNA expression of Cbfa1 on day 4 and OCN on day 7 was significantly higher than that in the 58S group. Moreover, there was significantly more ALP protein expression and mineralisation in the nano-58S group than in the 58S group. The nano-58S enhanced proliferation, osteogenic markers expression in MG-63 cells and induced stronger mineralization than 58S.

  18. Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses.

    Science.gov (United States)

    Moon, Byeong-Seok; Kim, Sungwon; Kim, Hyoun-Ee; Jang, Tae-Sik

    2017-04-01

    Hierarchical micro-nano (HMN) surface structuring of dental implants is a fascinating strategy for achieving fast and mechanically stable fixation due to the synergetic effect of micro- and nano-scale surface roughness with surrounding tissues. However, the introduction of a well-defined nanostructure on a microstructure having complex surface geometry is still challenging. As a means of fabricating HMN surface on Ti6Al4V-ELI, target-ion induced plasma sputtering (TIPS) was used onto a sand-blasted, large-grit and acid-etched substrate. The HMN surface topography was simply controlled by adjusting the tantalum (Ta) target power of the TIPS technique, which is directly related to the Ta ion flux and the surface chemical composition of the substrate. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and laser scanning microscopy (LSM) verified that well-defined nano-patterned surface structures with a depth of ~300 to 400nm and a width of ~60 to 70nm were uniformly distributed and followed the complex micron-sized surface geometry. In vitro cellular responses of pre-osteoblast cells (MC3T3-E1) were assessed by attachment and proliferation of cells on flat, nano-roughened, micro-roughened, and an HMN surface structure of Ti6Al4V-ELI. Moreover, an in vivo dog mandible defect model study was used to investigate the biological effect of the HMN surface structure compared with the micro-roughened surface. The results showed that the surface nanostructure significantly increased the cellular activities of flat and micro-roughened Ti, and the bone-to-implant contact area and new bone volume were significantly improved on the HMN surface structured Ti. These results support the idea that an HMN surface structure on Ti6Al4V-ELI alloy has great potential for enhancing the biological performance of dental implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Osterix acetylation at K307 and K312 enhances its transcriptional activity and is required for osteoblast differentiation

    DEFF Research Database (Denmark)

    Lu, Jianlei; Qu, Shuang; Yao, Bing

    2016-01-01

    increased after treatment with histone deacetylase inhibitors Trichostatin A and hydroxamic acid. Meanwhile, the results of immunoprecipitation indicated that Osx was an acetylated protein and that the CREB binding protein (CBP), and less efficiently p300, acetylated Osx. The interaction and colocalization...... of CBP and Osx were demonstrated by Co-immunoprecipitation and immunofluorescence, respectively. In addition, K307 and K312 were identified as the acetylated sites of Osx. By contrast, HDAC4, a histone deacetylase (HDAC), was observed to interact and co-localize with Osx. HDAC4 was demonstrated...... to mediate the deacetylation of Osx. Moreover, we found that acetylation of Osx enhanced its stability, DNA binding ability and transcriptional activity. Finally, we demonstrated that acetylation of Osx was required for the osteogenic differentiation of C2C12 cells. Taken together, our results provide...

  20. Enhancing the passing moments: An educational criticism of family visits to an early childhood science exhibition

    Science.gov (United States)

    Munroe, Elizabeth Ann

    This educational criticism describes and interprets the nature of family visits to an early childhood science exhibition, Working Wonders, at The Science Centre in Calgary, Alberta. The specific exhibits are described and features that contributed to exhibit popularity are examined. Examples of visitors' interactions with each exhibit are given. The visit experiences of four families are described in detail and analyzed. Typical family visitors' reactions, expectations, and experiences are summarized. Because one of the mutual expectations of the granting agency, The Science Centre, and the adult visitors was that a visit to the exhibition would be educational, the family visits are examined for instances of learning and analyzed to determine the factors that influenced the learning. Constructivism forms the basis for understanding the process of learning during family visits. The analysis is supported by reference to research from the fields of museum studies, education, and environmental design. The analysis of the educational significance and potential of family visits to an early childhood exhibition leads to the conclusion that specific features may facilitate learning in such an environment. Those features are represented in a set of guidelines for the development and evaluation of early childhood exhibitions. The guidelines suggest attention must be given to the ambience of the space, the general layout of the space, the exhibits, the copy and graphics, additional programs and information, the subtle influences of the building and the staff, and the learning processes of young children, adults, and intergenerational groups. The guidelines suggest specific issues to consider to develop a space that is stimulating and memorable, responsive to the needs of the two distinct visitor groups (young children and adults), and conducive to learning.

  1. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement.

    Science.gov (United States)

    Campbell, Stuart G; Hatfield, P Chris; Campbell, Kenneth S

    2011-09-01

    A skeletal muscle fiber that is stimulated to contract and then stretched from L₁ to L₂ produces more force after the initial transient decays than if it is stimulated at L₂. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed) was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement.

  2. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement.

    Directory of Open Access Journals (Sweden)

    Stuart G Campbell

    2011-09-01

    Full Text Available A skeletal muscle fiber that is stimulated to contract and then stretched from L₁ to L₂ produces more force after the initial transient decays than if it is stimulated at L₂. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement.

  3. Enhanced bone formation in the vicinity of porous β-TCP scaffolds exhibiting slow release of collagen-derived tripeptides.

    Science.gov (United States)

    Kamikura, Keita; Minatoya, Tsutomu; Terada-Nakaishi, Michiko; Yamamoto, Shoko; Sakai, Yasuo; Furusawa, Toshitake; Matsushima, Yuta; Unuma, Hidero

    2017-09-01

    It has been experimentally proven that orally ingested collagen-derived tripeptides (Ctp) are quickly absorbed in the body and effectively promote the regeneration of connective tissues including bone and skin. Ctp are capable to activate osteoblasts and fibroblasts, which eventually promotes tissue regeneration. Based on these findings, a hypothesis was formulated in this study that direct delivery of Ctp to bone defect would also facilitate tissue regeneration as well as oral administration. To test the hypothesis, we prepared a bone augmentation material with the ability to slowly release Ctp, and investigated its in vivo bone regeneration efficacy. The implant material was porous β-tricalcium phosphate (β-TCP) scaffold which was coated with a co-precipitated layer of bone-like hydroxyapatite and Ctp. The β-TCP was impregnated with approximately 0.8%(w/w) Ctp. Then, the Ctp-modified β-TCP was implanted into bone defects of Wistar rats to evaluate in vivo efficacy of Ctp directly delivered from the material to the bone defects. The control was pristine porous β-TCP. In vitro tests showed that Ctp were steadily released from the co-precipitated layer for approximately two weeks. The Ctp-modified scaffolds significantly promoted new bone formation in vivo in their vicinity as compared with pristine β-TCP scaffolds; 6 weeks after the implantation, Ctp-modified scaffolds promoted twice as much bone formation as the control implants. Consequently, we achieved the slow and steady release of Ctp, and found that direct delivery of Ctp from implant materials was effective for bone regeneration as well as oral administration. A β-TCP scaffold capable of slowly releasing bone-enhancing substances significantly promoted bone formation.

  4. Notch 1 impairs osteoblastic cell differentiation.

    Science.gov (United States)

    Sciaudone, Maria; Gazzerro, Elisabetta; Priest, Leah; Delany, Anne M; Canalis, Ernesto

    2003-12-01

    Notch receptors are single pass transmembrane receptors activated by membrane-bound ligands with a role in cell proliferation and differentiation. As Notch 1 and 2 mRNAs are expressed by osteoblasts and induced by cortisol, we postulated that Notch could regulate osteoblastogenesis. We investigated the effects of retroviral vectors directing the constitutive expression of the Notch 1 intracellular domain (NotchIC) in murine ST-2 stromal and in MC3T3 cells. NotchIC overexpression was documented by increased Notch 1 transcripts and activity of the Notch-dependent Hairy Enhancer of Split promoter. In the presence of bone morphogenetic protein-2 (BMP-2), ST-2 cells differentiated toward osteoblasts forming mineralized nodules, and Notch 1 opposed this effect and decreased the expression of osteocalcin, type I collagen, and alkaline phosphatase transcripts and Delta2Delta FosB protein. Further, NotchIC decreased Wnt/beta-catenin signaling. As cells differentiated in the presence of BMP-2, they underwent apoptosis, and Notch opposed this event. In the presence of cortisol, NotchIC induced the formation of mature adipocytes and enhanced the effect of cortisol on adipsin, peroxisome proliferator-activated receptor-gamma2 and CCAAT enhancer binding protein alpha and delta mRNA levels. NotchIC also opposed MC3T3 cell differentiation and the expression of a mature osteoblastic phenotype. In conclusion, NotchIC impairs osteoblast differentiation and enhances adipogenesis in stromal cell cultures.

  5. Effects of nano-emulsion preparations of tocopherols and tocotrienols on oxidative stress and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Song Liang-Song

    2017-01-01

    Full Text Available Tocopherols and tocotrienols are two groups of compounds in the vitamin E family, of which the tocopherols are widely used as antioxidant dietary supplements. Recent studies have shown mixed observations for tocopherol functions in bone homeostasis. We have evaluated the potency of suspension- and nano-emulsion formulation-based delivery of different vitamin E family members in lipopolysaccharide (LPS-induced oxidative stress and osteoblast differentiation. Our results showed the both tocopherols and tocotrienols could reduce oxidative stress as evaluated by the levels of reactive oxygen species (ROS. Their effects were enhanced when applied in the nano-emulsion mode of delivery due to increased bioavailability. In addition, our results showed that tocotrienols increased osteoblast differentiation, while tocopherols showed reduced osteoblast differentiation, which may be due to their differential effects on SMAD and p65 signaling. Together, these findings indicate that tocotrienols delivered through nano-emulsion exhibit superior antioxidant properties and osteoblast differentiation, and could serve as a better alternative to tocopherol-based vitamin E supplements.

  6. Osteogenic response of human MSCs and osteoblasts to hydrophilic and hydrophobic nanostructured titanium implant surfaces.

    Science.gov (United States)

    Lotz, Ethan M; Olivares-Navarrete, Rene; Berner, Simon; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Microstructured implant surfaces created by grit blasting and acid etching titanium (Ti) support osseointegration. This effect is further enhanced by storing in aqueous solution to retain hydrophilicity, but this also leads to surface nanostructure formation. The purpose of this study was to assess the contributions of nanostructures on the improved osteogenic response of osteoblast lineage cells to hydrophilic microstructured Ti. Human mesenchymal stem cells (MSCs) and normal human osteoblasts (NHOsts) were cultured separately on non-nanostructured/hydrophobic (SLA), nanostructured/hydrophilic (modSLA), or nanostructured/hydrophobic (SLAnano) Ti surfaces. XPS showed elevated carbon levels on SLA and SLAnano compared to modSLA. Contact angle measurements indicated only modSLA was hydrophilic. Confocal laser microscopy revealed minor differences in mean surface roughness. SEM showed the presence of nanostructures on modSLA and SLAnano. MSCs and NHOst cells exhibited similar morphology on the substrates and osteoblastic differentiation and maturation were greatest on modSLA. These results suggest that when the appropriate microstructure is present, hydrophilicity may play a greater role in stimulating MSC and NHOst osteoblastic differentiation and maturation than the presence of nanostructures generated during storage in an aqueous environment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3137-3148, 2016. © 2016 Wiley Periodicals, Inc.

  7. Steroid receptors in osteoblasts.

    Science.gov (United States)

    Yoshioka, T; Sato, B; Matsumoto, K; Ono, K

    1980-05-01

    Using the whole-cell incubation system at 37 degrees C, the specific bindings for 3H-dexamethasone, 3H-estradiol-17 beta, 3H-dihydrotestosterone and 3H-R5020 were measured in the purified, putative osteoblasts isolated from fetal rat calvaria by collagenase digestion. More than 90% of the purified cells contained intense alkaline phosphatase activity. The specific binding for 3H-dexamethasone with high affinity and low capacity was demonstrated in the isolated osteoblasts. Most of the binding was found in the nuclear fraction, indicating nucler binding of the 3H-dexamethasone-receptor complex. The apparent dissociation constant (Kd) for 3H-dexamethasone was estimated to be 3.3 x 10(-9)M and the number of binding sites was calculated to be 65 fmol/ml (4 x 10(6) cells) or 9,750 binding sites per cell. High salt: sucrose gradient analysis of nuclear extracts revealed a radioactive 4.0 S peak. These results indicate that the purified osteoblasts are among the target cells for glucocorticoids. On the other hand, the specific bindings for 3H-estradiol-17 beta and 3H-dihydrotestosterone were not detectable in the isolated osteoblasts, which suggests that estrogens and androgens act on osteoblasts only indirectly.

  8. Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors

    Directory of Open Access Journals (Sweden)

    Garrison Sheldon R

    2012-09-01

    Full Text Available Abstract Background Sickle cell disease (SCD is associated with both acute vaso-occlusive painful events as well as chronic pain syndromes, including heightened sensitivity to touch. We have previously shown that mice with severe SCD (HbSS mice; express 100% human sickle hemoglobin in red blood cells; RBCs have sensitized nociceptors, which contribute to increased mechanical sensitivity. Yet, the hypersensitivity in these neural populations alone may not fully explain the mechanical allodynia phenotype in mouse and humans. Findings Using the Light Touch Behavioral Assay, we found HbSS mice exhibited increased responses to repeated application of both innocuous punctate and dynamic force compared to control HbAA mice (100% normal human hemoglobin. HbSS mice exhibited a 2-fold increase in percent response to a 0.7mN von Frey monofilament when compared to control HbAA mice. Moreover, HbSS mice exhibited a 1.7-fold increase in percent response to the dynamic light touch “puffed” cotton swab stimulus. We further investigated the mechanisms that drive this behavioral phenotype by focusing on the cutaneous sensory neurons that primarily transduce innocuous, light touch. Low threshold cutaneous afferents from HbSS mice exhibited sensitization to mechanical stimuli that manifested as an increase in the number of evoked action potentials to suprathreshold force. Rapidly adapting (RA Aβ and Aδ D-hair fibers showed the greatest sensitization, each with a 75% increase in suprathreshold firing compared to controls. Slowly adapting (SA Aβ afferents had a 25% increase in suprathreshold firing compared to HbAA controls. Conclusions These novel findings demonstrate mice with severe SCD exhibit mechanical allodynia to both punctate and dynamic light touch and suggest that this behavioral phenotype may be mediated in part by the sensitization of light touch cutaneous afferent fibers to suprathreshold force. These findings indicate that Aβ fibers can be

  9. Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects

    OpenAIRE

    Armijo, Kenneth Miguel

    2011-01-01

    This research investigates the impact of Marangoni phenomena, with low mixture concentrations of alcohol and water, to enhance thermal transport capability of gravity-assisted heat pipes. The use of binary mixture working fluids in gravity-assisted heat pipes are shown to improve the critical heat flux (CHF) and operating performance, more so than with pure fluids. The CHF is responsible for dryout when the pumping rate of a liquid flow structure is not sufficient to provide enough fluid to t...

  10. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Kelly J Gauger

    Full Text Available The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1, is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO. Sfrp1(-/- mice fed a high fat diet (HFD exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1 and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3 in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1, and glucose transporters are repressed (Slc2a2 and Slc2a4 in Sfrp1(-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1(-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1(-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.

  11. Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny

    Directory of Open Access Journals (Sweden)

    Chadwick Nanette E

    2008-04-01

    Full Text Available Abstract Background Aggregated settlement of kin larvae in sessile marine invertebrates may result in a complex array of compatible and incompatible allogeneic responses within each assemblage. Each such aggregate can, therefore, be considered as a distinct self-organizing biological entity representing adaptations that have evolved to maximize the potential benefits of gregarious settlement. However, only sparse information exists on the selective forces and ecological consequences of allogeneic coalescence. Results We studied the consequences of aggregated settlement of kin larvae of Stylophora pistillata (a Red Sea stony coral, under controlled laboratory settings. When spat came into contact, they either fused, establishing a chimera, or rejected one another. A one-year study on growth and survivorship of 544 settled S. pistillata genotypes revealed six types of biological entities: (1 Single genotypes (SG; (2 Bi-chimeras (BC; (3 Bi-rejecting genotypes (BR; (4 Tri-chimera entities (TC; (5 Three-rejecting genotypes (TR; and (6 Multi-partner entities (MP; consisting of 7.5 ± 2.6 partners. Analysis of allorecognition responses revealed an array of effector mechanisms: real tissue fusions, transitory fusions and six other histoincompatible reactions (borderline formation, sutures, overgrowth, bleaching, rejection, and partner death, disclosing unalike onsets of ontogeny and complex modes of appearance within each aggregate. Evaluations at the entity level revealed that MP entities were the largest, especially in the first two months (compared with SG: 571% in the first month and 162% in the seventh month. However, at the genotype level, the SG entities were the largest and the colonies with the highest-cost-per-genotype were the TR and the MP colonies. The cost was calculated as reduced average genotype size, from 27% and 12% in the first month to 67% and 64% in the seventh month, respectively. In general, MP exhibited the highest survivorship

  12. Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny.

    Science.gov (United States)

    Amar, Keren-Or; Chadwick, Nanette E; Rinkevich, Baruch

    2008-04-30

    Aggregated settlement of kin larvae in sessile marine invertebrates may result in a complex array of compatible and incompatible allogeneic responses within each assemblage. Each such aggregate can, therefore, be considered as a distinct self-organizing biological entity representing adaptations that have evolved to maximize the potential benefits of gregarious settlement. However, only sparse information exists on the selective forces and ecological consequences of allogeneic coalescence. We studied the consequences of aggregated settlement of kin larvae of Stylophora pistillata (a Red Sea stony coral), under controlled laboratory settings. When spat came into contact, they either fused, establishing a chimera, or rejected one another. A one-year study on growth and survivorship of 544 settled S. pistillata genotypes revealed six types of biological entities: (1) Single genotypes (SG); (2) Bi-chimeras (BC); (3) Bi-rejecting genotypes (BR); (4) Tri-chimera entities (TC); (5) Three-rejecting genotypes (TR); and (6) Multi-partner entities (MP; consisting of 7.5 +/- 2.6 partners). Analysis of allorecognition responses revealed an array of effector mechanisms: real tissue fusions, transitory fusions and six other histoincompatible reactions (borderline formation, sutures, overgrowth, bleaching, rejection, and partner death), disclosing unalike onsets of ontogeny and complex modes of appearance within each aggregate. Evaluations at the entity level revealed that MP entities were the largest, especially in the first two months (compared with SG: 571% in the first month and 162% in the seventh month). However, at the genotype level, the SG entities were the largest and the colonies with the highest-cost-per-genotype were the TR and the MP colonies. The cost was calculated as reduced average genotype size, from 27% and 12% in the first month to 67% and 64% in the seventh month, respectively. In general, MP exhibited the highest survivorship rate (85%, after one year) and

  13. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    Science.gov (United States)

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-03-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light.

  14. Eleclazine exhibits enhanced selectivity for long QT syndrome type 3-associated late Na(+) current.

    Science.gov (United States)

    El-Bizri, Nesrine; Xie, Cheng; Liu, Lynda; Limberis, James; Krause, Michael; Hirakawa, Ryoko; Nguyen, Steven; Tabuena, Dennis R; Belardinelli, Luiz; Kahlig, Kristopher M

    2017-10-07

    Eleclazine (GS-6615) is a sodium channel blocker designed to improve the selectivity for cardiac late Na(+) current (INa) over peak INa. The goals of this study were to investigate the inhibition of late INa by eleclazine using a sample of long QT syndrome type 3 (LQT3) and overlap LQT3/Brugada syndrome mutant channels; to compare the apparent binding rates for eleclazine with those for other class 1 antiarrhythmic agents; and to investigate the binding site. Wild-type human cardiac voltage-gated sodium channel (hNaV1.5) and 21 previously reported variants were studied using patch clamp recordings from a heterologous expression system. Eleclazine inhibited anemone toxin II-enhanced late INa from wild-type hNaV1.5 with a drug concentration that causes 50% block of 0.62 ± 0.12 μM (84-fold selectivity over peak INa). The drug concentration that causes 50% block of eleclazine to inhibit the enhanced late INa from LQT3 mutant channels ranged from 0.33 to 1.7 μM. At predicted therapeutic concentrations, eleclazine and ranolazine inhibited peak INa to a similar degree as assessed with 4 overlap LQT3/Brugada syndrome mutations. Eleclazine was found to interact with hNaV1.5 significantly faster than ranolazine and 6 other class 1 antiarrhythmic agents. Engineered mutations (F1760A/Y1767A) located within the local anesthetic binding site decreased the inhibition of late INa and peak INa by eleclazine. At predicted therapeutic concentrations, eleclazine elicits potent inhibition of late INa across a cohort of NaV1.5 mutant channels. These properties are consistent with a class 1b antiarrhythmic agent that associates with unusually rapid binding/unbinding rates. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Landry, L.G.; Last, R.L. [Cornell Univ., Ithaca, NY (United States); Chapple, C.C.S. [Purdue Univ., West Lafayette, IN (United States)

    1995-12-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah 1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydryoxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. 36 refs., 6 figs.

  16. One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis.

    Science.gov (United States)

    Chen, Yu-Fon; Shiau, Ai-Li; Chang, Sue-Joan; Fan, Nai-Shin; Wang, Chung-Teng; Wu, Chao-Liang; Jan, Jeng-Shiung

    2017-06-01

    Herein, we report the oncolytic activity of cationic, one-dimensional (1D) fibril assemblies formed from coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides for cancer therapy. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via the mitochondria-lytic effect. The concept is analogous to that of 1D drug carriers that exhibit enhanced cell penetration. In comparison to free PLL chains, PLL-b-PLT fibril assemblies exhibit selective cytotoxicity toward cancer cells, low hemolysis activity, enhanced membranolytic activity, and a different apoptosis pathway, which may be due to differences in the peptide-membrane interactions. Antitumor studies using a metastatic LL2 lung carcinoma model indicate that the fibril assemblies significantly inhibited tumor growth, improved survival in tumor-bearing mice and suppressed lung metastasis without obvious body weight loss. An additive efficacy was also observed for treatment with both PLL-b-PLT and cisplatin. These results support the feasibility of using 1D fibril assemblies as potential apoptotic anticancer therapeutics. We report that cationic, one-dimensional (1D) fibril assemblies formed by coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides exhibited potent anticancer activity by enhancing membranolysis. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via mitochondria-lytic effect. Moreover, the fibril assemblies exhibited low hemolytic activity and selective cytotoxicity toward cancer cell, which is advantageous as compared to PLL and most antimicrobial/anticancerous peptides. This study provides a new concept of using cationic, 1D fibril assemblies for cancer therapy

  17. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    Science.gov (United States)

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  18. Giant larvaceans: biologically equivalent flapping flexible foils exhibit bending modes that enhance fluid transport

    Science.gov (United States)

    Katija, Kakani; Sherman, Alana; Robison, Bruce

    2016-11-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. A group of midwater organisms, known as giant larvaceans (genus Bathochordaeus), beat their tails to drive food and particle-laden water through complex, mucus filtering structures to feed. Giant larvaceans, whose motion and kinematics resemble flapping flexible foils, range in size from 1 to 10 cm in length, and can be found between the surface and 400 m. Using remotely-operated vehicles and DeepPIV, an instrument that enables in situ particle image velocimetry (PIV) measurements, the filtration rates and kinematics of giant larvaceans were investigated. These measurements yielded filtration rates for giant larvaceans as high as 80 L/hr, which exceeds expected filtration rates by a factor of 2 when compared with other larvacean groups. Comparing tail kinematics between Bathochordeaus and smaller larvaceans reveals differences in tail bending modes, where a hinge is present throughout the tail beat in giant larvaceans. Using laboratory PIV measurements with swimming animals and soft-bodied mechanical mimics, we reveal how these differences in tail kinematics can lead to enhanced fluid transport. This work has been supported by the Packard Foundation.

  19. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro.

    Science.gov (United States)

    Bacáková, L; Starý, V; Kofronová, O; Lisá, V

    2001-03-15

    Carbon fiber-reinforced carbon composites (CFRC) are considered to be promising materials for orthopedic and dental surgery. Their mechanical properties can be tailored to be similar to those of bone, and their chemical composition (close to pure carbon) promises that they will be tolerated well by the surrounding tissue. In this study, CFRC composites were fabricated from phenolic resin and unidirectionally oriented Torayca carbon fibers by carbonization (1000 degrees C) and graphitization (2500 degrees C). The material then was cut with a diamond saw into sheets of 8 x 10 x 3 mm, and the upper surface was polished by colloidal SiO2 and/or covered with a carbon-titanium (C:Ti) layer (3.3 microm) using the plasma-enhanced physical vapor deposition method. Three different kinds of modified samples were prepared: polished only, covered only, and polished + covered. Untreated samples served as a control. The surface roughness of these samples, measured by a Talysurf profilometer, decreased significantly after polishing but usually did not decrease after coating with a C:Ti layer. On all three modified surfaces, human osteoblast-like cells of the MG63 line and rat vascular smooth muscle cells (both cultured in a Dulbecco's minimum essential medium with 10% fetal bovine serum) adhered at higher numbers (by 21-87% on day 1 after seeding) and exhibited a shorter population doubling time (by 13-40%). On day 4 after seeding, these cells attained higher population densities (by 61-378%), volume (by 18-37%), and protein content (by 16-120%). These results were more pronounced in VSMC than in MG63 cells and in both groups of C:Ti-covered samples than in the polished only samples. The release of carbon particles from the CFRC composites was significantly decreased--by 8 times in the polished only, 24 times in the covered only, and 42 times in the polished + covered samples. These results show that both polishing and carbon-titanium covering significantly improve the

  20. Nonbinding site-directed mutants of transferrin binding protein B exhibit enhanced immunogenicity and protective capabilities.

    Science.gov (United States)

    Frandoloso, Rafael; Martínez-Martínez, Sonia; Calmettes, Charles; Fegan, Jamie; Costa, Estela; Curran, Dave; Yu, Rong-Hua; Gutiérrez-Martín, César B; Rodríguez-Ferri, Elías F; Moraes, Trevor F; Schryvers, Anthony B

    2015-03-01

    Host-adapted Gram-negative bacterial pathogens from the Pasteurellaceae, Neisseriaceae, and Moraxellaceae families normally reside in the upper respiratory or genitourinary tracts of their hosts and rely on utilizing iron from host transferrin (Tf) for growth and survival. The surface receptor proteins that mediate this critical iron acquisition pathway have been proposed as ideal vaccine targets due to the critical role that they play in survival and disease pathogenesis in vivo. In particular, the surface lipoprotein component of the receptor, Tf binding protein B (TbpB), had received considerable attention as a potential antigen for vaccines in humans and food production animals but this has not translated into the series of successful vaccine products originally envisioned. Preliminary immunization experiments suggesting that host Tf could interfere with development of the immune response prompted us to directly address this question with site-directed mutant proteins defective in binding Tf. Site-directed mutants with dramatically reduced binding of porcine transferrin and nearly identical structure to the native proteins were prepared. A mutant Haemophilus parasuis TbpB was shown to induce an enhanced B-cell and T-cell response in pigs relative to native TbpB and provide superior protection from infection than the native TbpB or a commercial vaccine product. The results indicate that binding of host transferrin modulates the development of the immune response against TbpBs and that strategies designed to reduce or eliminate binding can be used to generate superior antigens for vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid.

    Directory of Open Access Journals (Sweden)

    Sujit Roy

    Full Text Available Abscisic acid (ABA acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ pathway genes, and mutants related to homologous recombination (HR pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0 during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0 and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis.

  2. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    Science.gov (United States)

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  3. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    Viger, Jean-Francois; Mohammadi, Mahmood; Barriault, Diane [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada); Sylvestre, Michel, E-mail: Michel.Sylvestre@iaf.inrs.ca [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAE{sub LB400}) metabolizes PCBs. Black-Right-Pointing-Pointer Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. Black-Right-Pointing-Pointer We tested how the mutations affect the PCB-degrading abilities of BphAE{sub LB400} variants. Black-Right-Pointing-Pointer The same mutations also broaden the PCB substrate range of BphAE{sub LB400} variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE{sub RR41}, a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE{sub LB400}, metabolized a broader range of PCBs than BphAE{sub LB400}. Hence, BphAE{sub RR41} was able to metabolize 2,6,2 Prime ,6 Prime -, 3,4,3 Prime ,5 Prime - and 2,4,3 Prime ,4 Prime -tetrachlorobiphenyl that BphAE{sub LB400} is unable to metabolize. BphAE{sub RR41} was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE{sub LB400} to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.

  4. Early osteoblast responses to orthopedic implants: Synergy of surface roughness and chemistry of bioactive ceramic coating.

    Science.gov (United States)

    Aniket; Reid, Robert; Hall, Benika; Marriott, Ian; El-Ghannam, Ahmed

    2015-06-01

    Pro-osteogenic stimulation of bone cells by bioactive ceramic-coated orthopedic implants is influenced by both surface roughness and material chemistry; however, their concomitant impact on osteoblast behavior is not well understood. The aim of this study is to investigate the effects of nano-scale roughness and chemistry of bioactive silica-calcium phosphate nanocomposite (SCPC50) coated Ti-6Al-4V on modulating early bone cell responses. Cell attachment was higher on SCPC50-coated substrates compared to the uncoated controls; however, cells on the uncoated substrate exhibited greater spreading and superior quality of F-actin filaments than cells on the SCPC50-coated substrates. The poor F-actin filament organization on SCPC50-coated substrates is thought to be due to the enhanced calcium uptake by the ceramic surface. Dissolution analyses showed that an increase in surface roughness was accompanied by increased calcium uptake, and increased phosphorous and silicon release, all of which appear to interfere with F-actin assembly and osteoblast morphology. Moreover, cell attachment onto the SCPC50-coated substrates correlated with the known adsorption of fibronectin, and was independent of surface roughness. High-throughput genome sequencing showed enhanced expression of extracellular matrix and cell differentiation related genes. These results demonstrate a synergistic relationship between bioactive ceramic coating roughness and material chemistry resulting in a phenotype that leads to early osteoblast differentiation. © 2014 Wiley Periodicals, Inc.

  5. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liu, Wen-ying; Zeng, Qiang; Hou, Fang [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Xu, Jian-zhong, E-mail: xjzspine@163.com [Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Yang, Zhong, E-mail: zyang1999@163.com [Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.

  6. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation.

    Directory of Open Access Journals (Sweden)

    Vedavathi Madhu

    Full Text Available Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs but suggest that delivery of mesenchymal stem cells (MSCs might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9 and the combination of VEGF with BMP-6 (most potent BMP. We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.

  7. Osteoblast role in osteoarthritis pathogenesis.

    Science.gov (United States)

    Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P

    2017-11-01

    Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  8. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells

    Science.gov (United States)

    Ion, Raluca; Vizireanu, Sorin; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2016-07-01

    The response of MC3T3-E1 pre-osteoblasts to vertically aligned, interconnected carbon nanowalls prepared by plasma enhanced chemical vapor deposition on silicon substrate has been evaluated in terms of cell adhesion, viability and cell proliferation. The behavior of osteoblasts seeded on carbon nanowalls was analyzed in parallel and compared with the behavior of the cells maintained in contact with tissue culture polystyrene (TCPS). The results demonstrate that osteoblasts adhere and remain viable in the long term on carbon nanowalls. Moreover, on the investigated scaffold cell proliferation was significantly promoted, although to a lower extent than on TCPS. Overall, the successful culture of osteoblasts on carbon nanowalls coated substrate confirms the biocompatibility of this scaffold, which could have potential applications in the development of orthopedic biomaterials.

  9. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    Nagarajan Selvamurugan

    2017-01-01

    Full Text Available Pulsed electromagnetic fields (PEMFs have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs’ cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-β signaling pathway and microRNA 21 (miR21 were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-β signaling pathway, was found to be miR21-5p’s putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-β signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

  10. Transgenic Mice Overexpressing the Divalent Metal Transporter 1 Exhibit Iron Accumulation and Enhanced Parkin Expression in the Brain.

    Science.gov (United States)

    Zhang, Cheng-Wu; Tai, Yee Kit; Chai, Bing-Han; Chew, Katherine C M; Ang, Eng-Tat; Tsang, Fai; Tan, Bryce W Q; Hong, Eugenia T E; Asad, Abu Bakar Ali; Chuang, Kai-Hsiang; Lim, Kah-Leong; Soong, Tuck Wah

    2017-07-10

    Exposure to divalent metals such as iron and manganese is thought to increase the risk for Parkinson's disease (PD). Under normal circumstances, cellular iron and manganese uptake is regulated by the divalent metal transporter 1 (DMT1). Accordingly, alterations in DMT1 levels may underlie the abnormal accumulation of metal ions and thereby disease pathogenesis. Here, we have generated transgenic mice overexpressing DMT1 under the direction of a mouse prion promoter and demonstrated its robust expression in several regions of the brain. When fed with iron-supplemented diet, DMT1-expressing mice exhibit rather selective accumulation of iron in the substantia nigra, which is the principal region affected in human PD cases, but otherwise appear normal. Alongside this, the expression of Parkin is also enhanced, likely as a neuroprotective response, which may explain the lack of phenotype in these mice. When DMT1 is overexpressed against a Parkin null background, the double-mutant mice similarly resisted a disease phenotype even when fed with iron- or manganese-supplemented diet. However, these mice exhibit greater vulnerability toward 6-hydroxydopamine-induced neurotoxicity. Taken together, our results suggest that iron accumulation alone is not sufficient to cause neurodegeneration and that multiple hits are required to promote PD.

  11. Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity.

    Science.gov (United States)

    Dent, Matthew; Hurtado, Jonathan; Paul, Amber M; Sun, Haiyan; Lai, Huafang; Yang, Ming; Esqueda, Adrian; Bai, Fengwei; Steinkellner, Herta; Chen, Qiang

    2016-12-01

    The mAb E60 has the potential to be a desirable therapeutic molecule since it efficiently neutralizes all four serotypes of dengue virus (DENV). However, mammalian-cell-produced E60 exhibits antibody-dependent enhancement of infection (ADE) activity, rendering it inefficacious in vivo, and treated animals more susceptible to developing more severe diseases during secondary infection. In this study, we evaluated a plant-based expression system for the production of therapeutically suitable E60. The mAb was transiently expressed in Nicotiana benthamianaWT and a ∆XFT line, a glycosylation mutant lacking plant-specific N-glycan residues. The mAb was efficiently expressed and assembled in leaves and exhibited highly homogenous N-glycosylation profiles, i.e. GnGnXF3 or GnGn structures, depending on the expression host. Both E60 glycovariants demonstrated equivalent antigen-binding specificity and in vitro neutralization potency against DENV serotypes 2 and 4 compared with their mammalian-cell-produced counterpart. By contrast, plant-produced E60 exhibited reduced ADE activity in Fc gamma receptor expressing human cells. Our results suggest the ability of plant-produced antibodies to minimize ADE, which may lead to the development of safe and highly efficacious antibody-based therapeutics against DENV and other ADE-prone viral diseases. Our study provides so far unknown insight into the relationship between mAb N-glycosylation and ADE, which contributes to our understanding of how sugar moieties of antibodies modulate Fc-mediated functions and viral pathogenesis.

  12. Nck influences preosteoblastic/osteoblastic migration and bone mass.

    Science.gov (United States)

    Aryal A C, Smriti; Miyai, Kentaro; Izu, Yayoi; Hayata, Tadayoshi; Notomi, Takuya; Noda, Masaki; Ezura, Yoichi

    2015-12-15

    Migration of the cells in osteoblastic lineage, including preosteoblasts and osteoblasts, has been postulated to influence bone formation. However, the molecular bases that link preosteoblastic/osteoblastic cell migration and bone formation are incompletely understood. Nck (noncatalytic region of tyrosine kinase; collectively referred to Nck1 and Nck2) is a member of the signaling adaptors that regulate cell migration and cytoskeletal structures, but its function in cells in the osteoblastic lineage is not known. Therefore, we examined the role of Nck in migration of these cells. Nck is expressed in preosteoblasts/osteoblasts, and its knockdown suppresses migration as well as cell spreading and attachment to substrates. In contrast, Nck1 overexpression enhances spreading and increases migration and attachment. As for signaling, Nck double knockdown suppresses migration toward IGF1 (insulin-like growth factor 1). In these cells, Nck1 binds to IRS-1 (insulin receptor substrate 1) based on immunoprecipitation experiments using anti-Nck and anti-IRS-1 antibodies. In vivo, Nck knockdown suppresses enlargement of the pellet of DiI-labeled preosteoblasts/osteoblasts placed in the calvarial defects. Genetic experiments indicate that conditional double deletion of both Nck1 and Nck2 specifically in osteoblasts causes osteopenia. In these mice, Nck double deficiency suppresses the levels of bone-formation parameters such as bone formation rate in vivo. Interestingly, bone-resorption parameters are not affected. Finally, Nck deficiency suppresses repair of bone injury after bone marrow ablation. These results reveal that Nck regulates preosteoblastic/osteoblastic migration and bone mass.

  13. Effects of exogenous phosphorus and silicon on osteoblast differentiation at the interface with bioactive ceramics.

    Science.gov (United States)

    Gupta, Gautam; Kirakodu, Sreenatha; El-Ghannam, Ahmed

    2010-12-01

    In this study, we have investigated the effects of dissolved phosphorus and silicon on osteoblast differentiation in vitro. Neonatal rat calvarial osteoblasts were seeded on silica-calcium phosphate composites (SCPCS), hydroxyapatite (HA-200), and tissue culture polystyrene (TCPS) and incubated over 4 days in media containing 0 {minimal essential medium [MEM] (-)} or 3 mM β-glycerophosphate [MEM (+)]. Inductively coupled plasma analysis showed that P-content in original MEM (+) was 225% higher than that in MEM (-). Moreover, P-content in MEM (+) significantly increased to 3.4-4.4 mM and 3.6-4.7 mM after 2 and 4 days incubation with SCPC, respectively, owing to material dissolution and exogenous phosphate supplementation. In contrast, P-content in MEM (+) showed no change upon incubation with HA or TCPS. The P-content in MEM (-) incubated with SCPC was considerably lower than that in MEM (+). SCPC exhibited controlled Si-release in cell culture media [MEM (-) or MEM (+)], with Si-rich SCPC showing a significantly greater dissolution than Si-poor SCPC. Moreover, SCPC, unlike HA, demonstrated a cell- and solution-mediated dissolution over 4 days. Quantitative real-time PCR showed that in MEM (-), osteocalcin and osteopontin mRNA expression on Si-rich SCPC was significantly greater than that on HA, suggesting that Si plays an important role in enhancing bone-cell differentiation. However, osteoblast phenotypic expression on SCPC was significantly decreased after 4 days incubation in MEM (+), indicating that sustained exposure to elevated P-levels in the media can downregulate osteoblast function. Our results demonstrate that the controlled dissolution of SCPC provides a natural stimulus for bone-cell differentiation in vitro and could obviate the need of exogenous phosphate supplementation. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  14. Osteoblast Role in Rheumatic Diseases

    Directory of Open Access Journals (Sweden)

    Addolorata Corrado

    2017-06-01

    Full Text Available Alterations in osteoblast growth, differentiation and activity play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, osteoarthritis, and osteoporosis. In fact, in these rheumatic diseases, abnormal activity of Wnt signaling, receptor activator of nuclear factor-κB (RANK-RANK ligand (RANKL-osteoprotegerin (OPG signaling, bone morphogenetic proteins (BMPs pathway and other mechanisms have been described in osteoblasts. This review article is focused on current knowledge on the role of osteoblast dysregulation occurring in rheumatic diseases.

  15. Cooperative effects in differentiation and proliferation between PDGF-BB and matrix derived synthetic peptides in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Vordemvenne Thomas

    2011-11-01

    Full Text Available Abstract Background Enhancing osteogenic capabilities of bone matrix for the treatment of fractures and segmental defects using growth factors is an active area of research. Recently, synthetic peptides like AC- 100, TP508 or p-15 corresponding to biologically active sequences of matrix proteins have been proven to stimulate bone formation. The platelet-derived growth factor (PDGF BB has been identified as an important paracrine factor in early bone healing. We hypothesized that the combined use of PDGF-BB with synthetic peptides could result in an increase in proliferation and calcification of osteoblast-like cells. Methods Osteoblast-like cell cultures were treated with PDGF and synthetic peptides, singly and as combinations, and compared to non-treated control cell cultures. The cultures were evaluated at days 2, 5, and 10 in terms of cell proliferation, calcification and gene expression of alkaline phosphate, collagen I and osteocalcin. Results Experimental findings revealed that the addition of PDGF, p-15 and TP508 and combinations of PDGF/AC-100, PDGF/p-15 and PDGF/TP508 resulted in an increase in proliferating osteoblasts, especially in the first 5 days of cultivation. Proliferation did not significantly differ between single factors and factor combinations (p > 0.05. The onset of calcification in osteoblasts occurred earlier and was more distinct compared to the corresponding control or PDGF stimulation alone. Significant difference was found for the combined use of PDGF/p-15 and PDGF/AC-100 (p Conclusions Our findings indicate that PDGF exhibits cooperative effects with synthetic peptides in differentiation and proliferation. These cooperative effects cause a significant early calcification of osteoblast-like cells (p

  16. Raspberry ketone promotes the differentiation of C3H10T1/2 stem cells into osteoblasts.

    Science.gov (United States)

    Takata, Tomoyo; Morimoto, Chie

    2014-03-01

    The decrease in the bone mass associated with osteoporosis caused by ovariectomy, aging, and other conditions is accompanied by an increase in bone marrow adipose tissue. The balance between osteoblasts and adipocytes is influenced by a reciprocal relationship. The development of modalities to promote local/systemic bone formation by inhibiting bone marrow adipose tissue is important in the treatment of fractures or metabolic bone diseases such as osteoporosis. In this study, we examined whether raspberry ketone [4-(4-hydroxyphenyl)butan-2-one; RK], which is one of the major aromatic compounds of red raspberry and exhibits anti-obesity action, could promote osteoblast differentiation in C3H10T1/2 stem cells. Confluent C3H10T1/2 stem cells were treated for 6 days with 10-100 μg/mL of RK in culture medium containing 10 nM all-trans-retinoic acid (ATRA) or 300 ng/mL recombinant human bone morphogenetic protein (rhBMP)-2 protein as an osteoblast-differentiating agent. RK in the presence of ATRA increased alkaline phosphatase (ALP) activity in a dose-dependent manner. RK in the presence of rhBMP-2 also increased ALP activity. RK in the presence of ATRA also increased the levels of mRNAs of osteocalcin, α1(I) collagen, and TGF-βs (TGF-β1, TGF-β2, and TGF-β3) compared with ATRA only. RK promoted the differentiation of C3H10T1/2 stem cells into osteoblasts. However, RK did not affect the inhibition of early-stage adipocyte differentiation. Our results suggest that RK enhances the differentiation of C3H10T1/2 stem cells into osteoblasts, and it may promote bone formation by an action unrelated to adipocyte differentiation.

  17. Nemo-like kinase (NLK) expression in osteoblastic cells and suppression of osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Nifuji, Akira, E-mail: nifuji-a@tsurumi-u.ac.jp [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama (Japan); Ideno, Hisashi [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Ohyama, Yoshio [Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo (Japan); Takanabe, Rieko; Araki, Ryoko; Abe, Masumi [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Noda, Masaki [Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo (Japan); Shibuya, Hiroshi [Department of Molecular Cell Biology, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo (Japan)

    2010-04-15

    Mitogen-activated protein kinases (MAPKs) regulate proliferation and differentiation in osteoblasts. The vertebral homologue of nemo, nemo-like kinase (NLK), is an atypical MAPK that targets several signaling components, including the T-cell factor/lymphoid enhancer factor (TCF/Lef1) transcription factor. Recent studies have shown that NLK forms a complex with the histone H3-K9 methyltransferase SETDB1 and suppresses peroxisome proliferator-activated receptor (PPAR)-gamma:: action in the mesenchymal cell line ST2. Here we investigated whether NLK regulates osteoblastic differentiation. We showed that NLK mRNA is expressed in vivo in osteoblasts at embryonic day 18.5 (E18.5) mouse calvariae. By using retrovirus vectors, we performed forced expression of NLK in primary calvarial osteoblasts (pOB cells) and the mesenchymal cell line ST2. Wild-type NLK (NLK-WT) suppressed alkaline phosphatase activity and expression of bone marker genes such as alkaline phosphatase, type I procollagen, runx2, osterix, steopontin and osteocalcin in these cells. NLK-WT also decreased type I collagen protein expression in pOB and ST2 cells. Furthermore, mineralized nodule formation was reduced in pOB cells overexpressing NLK-WT. In contrast, kinase-negative form of NLK (NLK-KN) did not suppress or partially suppress ALP activity and bone marker gene expression in pOB and ST2 cells. NLK-KN did not suppress nodule formation in pOB cells. In addition to forced expression, suppression of endogenous NLK expression by siRNA increased bone marker gene expression in pOB and ST2 cells. Finally, transcriptional activity analysis of gene promoters revealed that NLK-WT suppressed Wnt1 activation of TOP flash promoter and Runx2 activation of the osteocalcin promoter. Taken together, these results suggest that NLK negatively regulates osteoblastic differentiation.

  18. Initial Characterization of Osteoblast Differentiation and Loss of RUNX2 Stability in the Newly Established SK11 Human Embryonic Stem Cell-Derived Cell Line

    Science.gov (United States)

    YU, JIA-LI; ADISETIYO, HELTY; LITTLE, GILLIAN H.; VANGSNESS, C. THOMAS; JIANG, JIANJIE; STERNBERG, HAL; WEST, MICHAEL D.; FRENKEL, BARUCH

    2018-01-01

    We describe a novel model for investigation of genetically normal human osteoblasts in culture. SK11 is a clonal progenitor cell line derived from human embryonic stem cells. Initially selected based on the expression of chondrogenic markers when differentiated in micromass culture, SK11 cells display typical mRNA expression patterns of bone phenotypic genes under osteogenic conditions. These include osterix, α1(I) collagen, alkaline phosphatase, osteonectin, osteopontin, and osteocalcin. Similar to well-characterized murine osteoblast cultures, the osteoblast master regulator RUNX2 was present during the first few days after plating, but the protein disappeared during the first week of culture. Loss of RUNX2 expression is considered an important regulatory feature for osteoblast maturation. Indeed, following ~2 weeks of differentiation, SK11 cultures exhibited robust calcium deposition, evidenced by alizarin red staining. We also introduced a lentiviral vector encoding doxycycline (dox)-inducible FLAG-tagged RUNX2 into SK11 cells. Dox-mediated enhancement of RUNX2 expression resulted in accelerated mineralization, which was further increased by co-treatment with BMP-2. Like the endogenous RUNX2, expression of the virally coded FLAG-RUNX2 was lost during the first week of culture despite persistent dox treatment. By following RUNX2 decay after dox withdrawal from day-5 versus day-3 cultures, we demonstrated a developmentally regulated decrease in RUNX2 stability. Availability of culture models for molecular investigation of genetically normal human osteoblasts is important because differences between murine and human osteoblasts, demonstrated here by the regulation of matrix Gla Protein, may have significant biomedical implications. PMID:25160731

  19. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines.

    Science.gov (United States)

    Fenger, Joelle M; Roberts, Ryan D; Iwenofu, O Hans; Bear, Misty D; Zhang, Xiaoli; Couto, Jason I; Modiano, Jaime F; Kisseberth, William C; London, Cheryl A

    2016-10-10

    MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified

  20. Conglutinin exhibits a complement-dependent enhancement of the respiratory burst of phagocytes stimulated by E. coli

    DEFF Research Database (Denmark)

    Friis, P; Svehag, S E; Andersen, Ove

    1991-01-01

    . Conglutinin enhances, in a dose-dependent manner, the respiratory burst of spleen cells stimulated with serum-opsonized Escherichia coli. The enhancement was only demonstrable in the presence of a functional complement system. The conglutinin-mediated enhancement of the respiratory burst was inhibited...

  1. Immersive Exhibitions

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2015-01-01

    The immersive exhibition is a specialized exhibition genre in museums, which creates the illusion of time and place by representing key characteristics of a reference world and by integrating the visitor in this three-dimensionally reconstructed world (Mortensen 2010). A successful representation...... of the reference world depends on three criteria: whether the exhibition is staged as a coherent whole with all the displayed objects supporting the representation, whether the visitor is integrated as a component of the exhibition, and whether the content and message of the exhibition become dramatized...... as a result of the visitor’s interaction with the exhibit....

  2. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Takayuki [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hibino, Ayaka; Asai, Midori [Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hojo, Hironori [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cha, Byung-Yoon [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Teruya, Toshiaki [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Nagai, Kazuo [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Chung, Ung-Il [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yagasaki, Kazumi [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo Noko University, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509 (Japan); and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  3. Effect of hydroxyapatite-based biomaterials on human osteoblast phenotype.

    Science.gov (United States)

    Trombelli, L; Penolazzi, L; Torreggiani, E; Farina, R; Lambertini, E; Vecchiatini, R; Piva, R

    2010-03-01

    The present study evaluated human primary osteoblasts and two different osteoblast-like cell lines behaviour when cultured in presence of different hydroxyapatite-based (HA) biomaterials (SINTlife-FIN-CERAMICA S.p.a., Faenza, Italy; Bio-Oss, Geistlich Biomaterials, Woulhusen, Switzerland; Biostite-GABA Vebas, San Giuliano Milanese, MI, Italy), focusing attention on the effect of HA/Biostite in terms of modulation of osteoblastic differentiation. Analysis were about adhesion, proliferation and mineralization activity. Runt-related transcription factor 2 (Runx2), Estrogen Receptor alpha (ERalfa) expression and alkaline phosphatase activity (ALP) were measured as osteoblastic differentiation markers. Determination of viable cells was done with MTT colorimetric assay. Scanning electron microscopy (SEM) analysis was performed on biomaterial-treated cells. All hydroxyapatite-based biomaterials didn't affect cells morphology and viability, whereas only presence of HA/Biostite improved cells adhesion, growth and differentiation. Adhesion and spreading of the primary cells on HA/Biostite were the same showed by two different osteoblast-like cell lines. These results have important implications for both tissue-engineered bone grafts and enhancement of HA implants performance, to develop new teeth's supporting structure therapies and replacement.

  4. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    Science.gov (United States)

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  5. Misexpression of CCAAT/enhancer binding protein beta causes osteopenia.

    Science.gov (United States)

    Zanotti, Stefano; Stadmeyer, Lisa; Smerdel-Ramoya, Anna; Durant, Deena; Canalis, Ernesto

    2009-05-01

    CCAAT/enhancer binding proteins (C/EBPs) are expressed by osteoblasts and adipocytes during differentiation. C/EBP beta is critical for adipogenesis; however, its role in osteoblastogenesis is unclear, and its function in the postnatal skeleton is not known. To study C/EBP beta in osteoblasts in vivo, we created transgenic mice expressing full length C/EBP beta under the control of a 3.8 kb fragment of the human osteocalcin promoter. Two transgenic lines were established in a friend leukemia virus strain B genetic background, and compared with wild type littermate controls. Both C/EBP beta transgenic lines exhibited osteopenia, with a 30% decrease in bone volume, due to a decrease in trabecular number. The number of osteoblasts and osteoclasts per bone perimeter was not changed. Bone marrow stromal cells from C/EBP beta transgenics showed reduced mineralization, and reduced alkaline phosphatase mRNA levels. Calvarial osteoblasts from C/EBP beta transgenics displayed reduced alkaline phosphatase activity. To determine the consequences of the Cebpb deletion in vivo, the phenotype of Cebpb null mice was compared with that of wild type controls of identical genetic composition. Cebpb null mice exhibited reduced weight, body fat, and bone mineral density, and decreased bone volume, due to a decrease in trabecular number. The number of osteoblasts and osteoclasts per bone perimeter was not changed. C/EBP beta downregulation by RNA interference in calvarial osteoblasts had no effect on osteoblast differentiation/function. The phenotype of the Cebpb inactivation may be secondary to systemic indirect effects, and to direct effects of C/EBP beta in osteoblasts. In conclusion, C/EBP beta plays a role in mesenchymal cell differentiation and its misexpression in vivo causes osteopenia.

  6. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    From 1870s to 1910s, more than 50 exhibitions of so-called exotic people took place in Denmark. Here large numbers of people of Asian and African origin were exhibited for the entertainment and ‘education’ of a mass audience. Several of these exhibitions took place in Copenhagen Zoo. Here differe...

  7. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation.

    Science.gov (United States)

    Yin, Chong; Zhang, Yan; Hu, Lifang; Tian, Ye; Chen, Zhihao; Li, Dijie; Zhao, Fan; Su, Peihong; Ma, Xiaoli; Zhang, Ge; Miao, Zhiping; Wang, Liping; Qian, Airong; Xian, Cory J

    2017-12-08

    Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation. © 2017 Wiley Periodicals, Inc.

  8. Enhancing Visitors' Interest in Science--A Possibility or a Paradox? A Study of What Scientific Content Staff Members Focus on when Planning a New Exhibition

    Science.gov (United States)

    Davidsson, Eva

    2009-01-01

    Within the enterprise of science and technology centres there exists explicit aims and ambitions to enhance visitors' interest in and knowledge about science. Meanwhile, several researchers question the choice of the scientific content in exhibitions when arguing that a too unproblematic view of science commonly is presented. But how do staff…

  9. Conglutinin exhibits a complement-dependent enhancement of the respiratory burst of phagocytes stimulated by E. coli

    DEFF Research Database (Denmark)

    Friis, P; Svehag, S E; Andersen, Ove

    1991-01-01

    . Conglutinin enhances, in a dose-dependent manner, the respiratory burst of spleen cells stimulated with serum-opsonized Escherichia coli. The enhancement was only demonstrable in the presence of a functional complement system. The conglutinin-mediated enhancement of the respiratory burst was inhibited......Conglutinin is a mammalian C-type lectin which shows anti-bacterial activity when tested in vivo and in vitro. This study concerns the effect of conglutinin on the respiratory burst of murine spleen cells, using a chemiluminescence assay for measurement of generated reactive oxygen metabolites...

  10. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    ) a synthesis of the findings from the first two studies with findings from the literature to generate two types of results: a coherent series of suggestions for a design iteration of the studied exhibit as well as a more general normative model for exhibit engineering. Finally, another perspective...

  11. N-terminal Dentin Sialoprotein fragment induces type I collagen production and upregulates dentinogenesis marker expression in osteoblasts.

    Science.gov (United States)

    Jaha, Haytham; Husein, Dina; Ohyama, Yoshio; Xu, Dongliang; Suzuki, Shigeki; Huang, George T-J; Mochida, Yoshiyuki

    2016-06-01

    Bone and dentin are mineralized extracellular matrices produced by osteoblasts and odontoblasts, respectively, and their major organic portion is type I collagen. Dentinogenesis Imperfecta (DGI) is one of the most common clinically- and genetically-based disturbances of dentin formation, causing irreversible dentin defects. Among several types of DGI, patients with DGI type II exhibit opalescent dentin with partial or complete pulp obliteration. It has been previously reported that the non-sense mutation (c.133C>T) in Dentin Sialophosphoprotein (DSPP) was identified in DGI type II patients at glutamine residue 45, resulting in the premature stop codon (p.Q45X). DSPP is known to be synthesized as a single gene product and further processed at Gly(462)-Asp(463), resulting in the production of Dentin Sialoprotein (DSP) and Dentin Phosphoprotein (DPP). We hypothesized that the shorter form (Q45X) of N-terminal Dentin Sialoprotein (N-DSP) may cause over-production of type I collagen protein as obliterated pulp is occupied by dentin. To test this hypothesis, we generated mouse recombinant Glutathione-S-Transferase (GST)-N-DSP fusion protein, and the effect of GST-N-DSP was investigated in calvarial bone explant culture and MC3T3-E1 osteoblastic culture systems. Here we show that a significant increase in calvarial bone formation is observed by GST-N-DSP. GST-N-DSP accelerates MC3T3-E1 osteoblast cell growth and proliferation and subsequent osteoblast differentiation by inducing the expression of certain osteogenic markers such as type I collagen, Runx2, Osterix and ATF4. Interestingly, GST-N-DSP significantly enhances dentinogenesis marker gene expression including Dspp and Dmp1 gene expression in non-odontogenic MC3T3-E1 cells. To rule out any artificial effect of GST-tag, we also used the synthetic peptide of N-DSP and confirmed the results of N-DSP peptide were essentially similar to those of GST-N-DSP. Taken together, our data suggest that N-DSP promotes bone

  12. Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast-like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Zhang, Yu; Andrukhov, Oleh; Berner, Simon; Matejka, Michael; Wieland, Marco; Rausch-Fan, Xiaohui; Schedle, Andreas

    2010-11-01

    Osteogenesis on titanium (Ti) surfaces is a complex process involving cell-substrate and cell-cell interaction of osteoblasts and endothelial cells. The aim of this study was to investigate the osteogenic properties of Ti surfaces on osteoblasts in the presence of endothelial cells (ECs). Osteoblast-like cells (MG63 cells) and human umbilical vein endothelial cells (HUVECs) were grown in cocultures on four kinds of Ti surfaces: acid-etched (A), coarse-grit-blasted and acid-etched (SLA), hydrophilic A (modA) and hydrophilic SLA (modSLA) surfaces. MG63 cells in single cultures served as controls. Cell ratios and cell types in cocultures were determined and isolated using flow cytometry. Cell numbers were obtained by direct cell counting. In MG63 cells, alkaline phosphatase (ALP) activity was determined and protein levels of osteocalcin (OC) and osteoprotegerin (OPG) were detected with enzyme-linked immunosorbant assay (ELISA). The mRNA levels of ALP, OC and OPG of sorted MG63 cells were determined with real time polymerase chain reaction (PCR). MG63 cells proliferated in the presence of HUVECs, which showed higher cell numbers on Ti surfaces (A, SLA, modSLA) after 72h, and lower cell numbers on Ti surfaces (modA, SLA, modSLA) after 120h in comparison to single cultures. Protein and mRNA levels of ALP and OPG were higher in cocultures than in single cultures, while OC exhibited a lower expression. These three parameters were higher expressed on modA, SLA and modSLA surfaces compared to A surfaces. Cocultures of osteoblasts and endothelial cells represent the most recently developed research model for investigating osteogenesis and angiogenesis which play both a major role in bone healing. This paper investigates for the first time the osteogenic properties of titanium surfaces used for dental implants with a coculture system with osteoblast-like cells and endothelial cells: (1) In cocultures with ECs (HUVECs) osteoblast-like cells (MG63 cells) show enhanced expression

  13. VDR dependent and independent effects of 1,25-dihydroxyvitamin D3 on nitric oxide production by osteoblasts

    NARCIS (Netherlands)

    Willems, H.M.E.; van den Heuvel, E.G.H.M.; Carmeliet, G.; Schaafsma, A.; Klein-Nulend, J.; Bakker, A.D.

    2012-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) strongly mediates bone mass. Mechanical stimulation also affects bone mass, partly via enhancing nitric oxide (NO) production by osteoblasts. We aimed to determine whether 1,25(OH)2D3 affects NO production by osteoblasts in the presence or absence of mechanical

  14. Bone Regulates Browning and Energy Metabolism Through Mature Osteoblast/Osteocyte PPARγ Expression.

    Science.gov (United States)

    Brun, Julia; Berthou, Flavien; Trajkovski, Mirko; Maechler, Pierre; Foti, Michanlegelo; Bonnet, Nicolas

    2017-10-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of energy metabolism. In bone, it is known to regulate osteoblast differentiation and osteoclast activity. Whether PPARγ expression in bone cells, particularly osteocytes, regulates energy metabolism remains unknown. Here, we show that mature osteoblast/osteocyte-specific ablation of PPARγ in mice (Ocy-PPARγ-/-) alters body composition with age, namely, to produce less fat and more lean mass, and enhances insulin sensitivity and energy expenditure compared with wild-type mice. In addition, Ocy-PPARγ-/- mice exhibit more bone density, structure, and strength by uncoupling bone formation from resorption. When challenged with a high-fat diet, Ocy-PPARγ-/- mice retain glycemic control, with increased browning of the adipose tissue, decreased gluconeogenesis, and less hepatic steatosis. Moreover, these metabolic effects, particularly an increase in fatty acid oxidation, cannot be explained by decarboxylated osteocalcin changes, suggesting existence of other osteokines that are under the control of PPARγ. We further identify bone morphogenetic protein 7 as one of them. Hence, osteocytes coregulate bone and glucose homeostasis through a PPARγ regulatory pathway, and its inhibition could be clinically relevant for the prevention of glucose metabolic disorders. © 2017 by the American Diabetes Association.

  15. Cellular automata simulation of osteoblast growth on microfibrous-carbon-based scaffolds.

    Science.gov (United States)

    Czarnecki, Jarema S; Jolivet, Simon; Blackmore, Mary E; Lafdi, Khalid; Tsonis, Panagiotis A

    2014-12-01

    The objective of this study was to investigate the use of three fibrous carbon materials (T300, P25, and P120) for bone repair and develop and validate theoretical and computational methods in which bone tissue regeneration and repair could be accurately predicted. T300 was prepared from polyacrylonitrile precursor while P25 and P120 fibers were prepared from pitch, both common fiber precursors. Results showed that osteoblast growth on carbon scaffolds was enhanced with increased crystallinity, surface roughness, and material orientation. For unidirectional scaffolds at 120 h, there was 33% difference in cell growth between T300 and P25 fibers and 64% difference between P25 and P120 fibers. Moreover, for multidirectional fibers at 120 h, there was 35% difference in cell growth between T300 and P25 fibers and 43% difference between P25 and P120 fibers. Results showed that material alignment was integral to promoting cell growth with multidirectional scaffolds having the capacity for greater growth over unidirectional scaffolds. At 120 h there was 24% increase in cell growth between unidirectional alignment and multidirectional alignment on high-crystalline carbon fibers. Ultimately, data indicated that carbon scaffolds exhibited excellent bioactivity and may be tuned to stimulate unique reactions. Additionally, numerical and computational simulations provided evidence that corroborated experimental data with simulations. Results illustrated the capability of cellular automata models for assessing osteoblast cell response to biomaterials.

  16. A novel GH secretagogue, A233, exhibits enhanced growth activity and innate immune system stimulation in teleosts fish.

    Science.gov (United States)

    Martinez, Rebeca; Ubieta, Kenia; Herrera, Fidel; Forellat, Alina; Morales, Reynold; de la Nuez, Ania; Rodriguez, Rolando; Reyes, Osvaldo; Oliva, Ayme; Estrada, Mario P

    2012-09-01

    In teleosts fish, secretion of GH is regulated by several hypothalamic factors that are influenced by the physiological state of the animal. There is an interaction between immune and endocrine systems through hormones and cytokines. GH in fish is involved in many physiological processes that are not overtly growth related, such as saltwater osmoregulation, antifreeze synthesis, and the regulation of sexual maturation and immune functions. This study was conducted to characterize a decapeptide compound A233 (GKFDLSPEHQ) designed by molecular modeling to evaluate its function as a GH secretagogue (GHS). In pituitary cell culture, the peptide A233 induces GH secretion and it is also able to increase superoxide production in tilapia head-kidney leukocyte cultures. This effect is blocked by preincubation with the GHS receptor antagonist [d-Lys(3)]-GHRP6. Immunoneutralization of GH by addition of anti-tilapia GH monoclonal antibody blocked the stimulatory effect of A233 on superoxide production. These experiments propose a GH-mediated mechanism for the action of A233. The in vivo biological action of the decapeptide was also demonstrated for growth stimulation in goldfish and tilapia larvae (P<0.001). Superoxide dismutase levels, antiprotease activity, and lectin titer were enhanced in tilapia larvae treated with this novel molecule. The decapeptide A233 designed by molecular modeling is able to function as a GHS in teleosts and enhance parameters of the innate immune system in the fish larvae.

  17. Exhibiting design

    DEFF Research Database (Denmark)

    Christensen, Line Hjorth

    2017-01-01

    This article explores how co-curatorial strategies and partnerships can work as driving forces for representing design, and how they can vitalize the exhibition as a media between enlightenment and experience. Focusing on Design Museum DK, drawing on historical as well as recent cases, it identif......This article explores how co-curatorial strategies and partnerships can work as driving forces for representing design, and how they can vitalize the exhibition as a media between enlightenment and experience. Focusing on Design Museum DK, drawing on historical as well as recent cases...

  18. Osteoblasts in Bone Physiology—Mini Review

    Directory of Open Access Journals (Sweden)

    Orit Rosenberg

    2012-04-01

    Full Text Available Bone structural integrity and shape are maintained by removal of old matrix by osteoclasts and in-situ synthesis of new bone by osteoblasts. These cells comprise the basic multicellular unit (BMU. Bone mass maintenance is determined by the net anabolic activity of the BMU, when the matrix elaboration of the osteoblasts equals or exceeds the bone resorption by the osteoclasts. The normal function of the BMU causes a continuous remodeling process of the bone, with deposition of bony matrix (osteoid along the vectors of the generated force by gravity and attached muscle activity. The osteoblasts are derived from mesenchymal stem cells (MSCs. Circulating hormones and locally produced cytokines and growth factors modulate the replication and differentiation of osteoclast and osteoblast progenitors. The appropriate number of the osteoblasts in the BMU is determined by the differentiation of the precursor bone-marrow stem cells into mature osteoblasts, their proliferation with subsequent maturation into metabolically active osteocytes, and osteoblast degradation by apoptosis. Thus, the two crucial points to target when planning to control the osteoblast population are the processes of cell proliferation and apoptosis, which are regulated by cellular hedgehog and Wnt pathways that involve humoral and mechanical stimulations. Osteoblasts regulate both bone matrix synthesis and mineralization directly by their own synthetic activities, and bone resorption indirectly by its paracrinic effects on osteoclasts. The overall synthetic and regulatory activities of osteoblasts govern bone tissue integrity and shape.

  19. Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and "self-renewal" through downregulation of agr

    DEFF Research Database (Denmark)

    Dai, Lu; Yang, Liang; Parsons, Chris

    2012-01-01

    Background: In recent years, Staphylococcus epidermidis (Se) has become a major nosocomial pathogen and the most common cause of infections of implanted prostheses and other indwelling devices. This is due in part to avid biofilm formation by Se on device surfaces. However, it still remains unknown...... of the autolysin gene atlE. Isogenic deletion of the agr system in Se 1457 confirmed that agr negatively regulating atlE resulted in enhanced initial cell attachment, extracellular DNA release, cell autolysis and biofilm formation abilities. In contrast, double deletion of agr and atlE significantly abolished...... these features.Conclusions: Collectively, these data reveal the role of agr system in long-term biofilm development and pathogenesis during Se caused indwelling devices-related relapsed infection....

  20. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits.

    Science.gov (United States)

    Schmidt, Monica A; Parrott, Wayne A; Hildebrand, David F; Berg, R Howard; Cooksey, Amanda; Pendarvis, Ken; He, Yonghua; McCarthy, Fiona; Herman, Eliot M

    2015-05-01

    Transgenic soya bean (Glycine max) plants overexpressing a seed-specific bacterial phytoene synthase gene from Pantoea ananatis modified to target to plastids accumulated 845 μg β carotene g(-1) dry seed weight with a desirable 12:1 ratio of β to α. The β carotene accumulating seeds exhibited a shift in oil composition increasing oleic acid with a concomitant decrease in linoleic acid and an increase in seed protein content by at least 4% (w/w). Elevated β-carotene accumulating soya bean cotyledons contain 40% the amount of abscisic acid compared to nontransgenic cotyledons. Proteomic and nontargeted metabolomic analysis of the mid-maturation β-carotene cotyledons compared to the nontransgenic did not reveal any significant differences that would account for the altered phenotypes of both elevated oleate and protein content. Transcriptomic analysis, confirmed by RT-PCR, revealed a number of significant differences in ABA-responsive transcripton factor gene expression in the crtB transgenics compared to nontransgenic cotyledons of the same maturation stage. The altered seed composition traits seem to be attributed to altered ABA hormone levels varying transcription factor expression. The elevated β-carotene, oleic acid and protein traits in the β-carotene soya beans confer a substantial additive nutritional quality to soya beans. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro.

    Science.gov (United States)

    Furuta, Ken'ya; Toyoshima, Yoko Yano

    2008-01-22

    Drosophila Ncd, a kinesin-14A family member, is essential for meiosis and mitosis. Ncd is a minus-end-directed motor protein that has an ATP-independent microtubule binding site in the tail region, which enables it to act as a dynamic crosslinker of microtubules to assemble and maintain the spindle. Although a tailless Ncd has been shown to be nonprocessive, the role of the Ncd tail in single-molecule motility is unknown. Here, we show that individual Ncd dimers containing the tail region can move processively along microtubules at very low ionic strength, which provides the first evidence of processivity for minus-end-directed kinesins. The movement of GFP-Ncd consists of both a unidirectional and a diffusive element, and it was sensitive to ionic strength. Motility of a truncation series of Ncd and removal of the tubulin tail suggested that the Ncd tail serves as an electrostatic tether to microtubules. Under higher ionic conditions, Ncd showed only a small bias in diffusion along "single" microtubules, whereas it exhibited processive movement along "bundled" microtubules. This property may allow Ncd to accumulate preferentially in the vicinity of focused microtubules and then to crosslink and slide microtubules, possibly contributing to dynamic spindle self-organization.

  2. Emdogain stimulates matrix degradation by osteoblasts.

    Science.gov (United States)

    Goda, S; Inoue, H; Kaneshita, Y; Nagano, Y; Ikeo, T; Ikeo, Y T; Iida, J; Domae, N

    2008-08-01

    Emdogain has been used clinically for periodontal regeneration, although the underlying molecular mechanisms are not clear at present. In this study, we hypothesized that Emdogain stimulated degradation of type I collagen via osteoblasts. We showed that Emdogain enhanced cell-mediated degradation of type I collagen in an MMP-dependent manner. Although MG-63 cells spontaneously produced a zymogen form of MMP-1, treatment with Emdogain significantly induced the generation of the active form of this enzyme. We demonstrated that MMP-3 was produced from MG63 cells in response to Emdogain in a MEK1/2-dependent manner. Concomitantly, blocking of MEK1/2 activation by U0126 significantly inhibited the generation of the active form of MMP-1 without affecting the total production of this collagenase. These results suggest that Emdogain facilitates tissue regeneration through the activation of the collagenase, MMP-1, that degrades matrix proteins in bone tissue microenvironments.

  3. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    Full Text Available Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF. CF-related bone disease (CFBD is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR, the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/- mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+ littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl mRNA was detected, significantly less osteoprotegerin (Opg was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt

  4. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts

    Science.gov (United States)

    Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme

    2010-01-01

    Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300

  5. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.

    Science.gov (United States)

    Kment, Stepan; Schmuki, Patrik; Hubicka, Zdenek; Machala, Libor; Kirchgeorg, Robin; Liu, Ning; Wang, Lei; Lee, Kiyoung; Olejnicek, Jiri; Cada, Martin; Gregora, Ivan; Zboril, Radek

    2015-07-28

    Hematite, α-Fe2O3, is considered as one of the most promising materials for sustainable hydrogen production via photoelectrochemical water splitting with a theoretical solar-to-hydrogen efficiency of 17%. However, the poor electrical conductivity of hematite is a substantial limitation reducing its efficiency in real experimental conditions. Despite of computing models suggesting that the electrical conductivity is extremely anisotropic, revealing up to 4 orders of magnitude higher electron transport with conduction along the (110) hematite crystal plane, synthetic approaches allowing the sole growth in that direction have not been reported yet. Here, we present a strategy for controlling the crystal orientation of very thin hematite films by adjusting energy of ion flux during advanced pulsed reactive magnetron sputtering technique. The texture and effect of the deposition mode on the film properties were monitored by XRD, conversion electron Mössbauer spectroscopy, XPS, SEM, AFM, PEC water splitting, IPCE, transient photocurrent measurements, and Mott-Schottky analysis. The precise control of the synthetic conditions allowed to fabricate hematite photoanodes exhibiting fully textured structures along (110) and (104) crystal planes with huge differences in photocurrents of 0.65 and 0.02 mA cm(-2) (both at 1.55 V versus RHE), respectively. The photocurrent registered for fully textured (110) film is among record values reported for thin planar films. Moreover, the developed fine-tuning of crystal orientation having a huge impact on the photoefficiency would induce further improvement of thin hematite films mainly if cation doping will be combined with the controllable texture.

  6. [Glucocorticoid and Bone. The effect of glucocorticoid and PTH in osteoblast apoptosis and differentiation via interleukin 11 expression].

    Science.gov (United States)

    Endo, Itsuro

    2014-09-01

    Intermittent PTH administration stimulates bone formation and counteracts the inhibition of bone formation by glucocorticoid excess. We have previously demonstrated that PTH enhances interleukin (IL) -11 gene transcription by a rapid induction of delta-fosB expression and Smad1/5 phosphorylation. On the other hand, glucocorticoid can suppress osteoblast differentiation and enhance apoptosis of osteoblast cells via down-regulation of IL-11 expression. PTH could reverse glucocorticoid-induced these damage of osteoblast via stimulation of IL-11 expression. Our data also suggested that IL-11 mediates stimulatory and inhibitory signals of osteoblast differentiation by affecting Wnt signaling. These data demonstrates that PTH and glucocorticoid may regulate osteoblast differentiation and apoptosis via their effect on IL-11 expression.

  7. Dental pulp stem cells from traumatically exposed pulps exhibited an enhanced osteogenic potential and weakened odontogenic capacity.

    Science.gov (United States)

    Wang, Yanping; Yan, Ming; Wang, Zhanwei; Wu, Jintao; Wang, Zilu; Zheng, Yangyu; Yu, Jinhua

    2013-11-01

    Traumatic pulp exposure can bring about some permanent damages to tooth tissues including dental pulps. This study was designed to evaluate the effects of traumatic pulp exposure on the osteo/odontogenic capacity of dental pulp stem cells (DPSCs). Rat incisors were artificially fractured and dental pulps were exposed to the oral environment for 48 h. Then, multi-colony-derived DPSCs from the injured pulps (iDPSCs) were isolated. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. iDPSCs presented a lower proliferative capacity than normal DPSCs (nDPSCs), as indicated by MTT and FCM assay. ALP levels in iDPSCs were significantly higher (Ppulp complex while all iDPSCs pellets formed the osteodentin-like tissues which were immunopositive for OCN. Mechanistically, iDPSCs expressed the higher levels of cytoplasmic phosphorylated IκBα/P65 and nuclear P65 than nDPSCs, indicating an active cellular NF-κB pathway in iDPSCs. After the inhibition of NF-κB pathway, the osteogenic potential in iDPSCs was significantly down-regulated while odontogenic differentiation was up-regulated, as indicated by the decreased Alp/Runx2/Ocn and uprised Dspp expression. Pulp exposure for 48 h decreased the odontogenic capacity and enhanced the osteogenic potential of DPSCs via the NF-κB signalling pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Museum Exhibit

    Science.gov (United States)

    1991-01-01

    A TSP from NASA Tech Briefs provided the solution to an electrical problem at a Florida museum. When a model train would not start without a jerk, a Marshall Space Flight Center development called pulse width control was adapted. The new circuit enables the train to start smoothly and reduces construction and maintenance costs. The same technology is also used in another hands-on exhibit. Applications of other TSPs are anticipated.

  9. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells

    DEFF Research Database (Denmark)

    Twine, Natalie A.; Harkness, Linda; Kassem, Moustapha

    2016-01-01

    Background The differentiation of human bone marrow derived skeletal stem cells (known as human bone marrow stromal or mesenchymal stem cells, hMSCs) into osteoblasts involves the activation of a small number of well-described transcription factors. To identify additional osteoblastic transcription...... containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast...... differentiation of hMSC, we showed that the ZNF25 protein exhibits nuclear localization and is expressed in osteoblastic and osteocytic cells in vivo. ZNF25 is conserved in tetrapod vertebrates and contains a KRAB (Krueppel-associated box) transcriptional repressor domain. Conclusions This study shows...

  10. Tetrandrine, an alkaloid from S. tetrandra exhibits anti-hypertensive and sleep-enhancing effects in SHR via different mechanisms.

    Science.gov (United States)

    Huang, Yuan-Li; Cui, Su-Ying; Cui, Xiang-Yu; Cao, Qing; Ding, Hui; Song, Jin-Zhi; Hu, Xiao; Ye, Hui; Yu, Bin; Sheng, Zhao-Fu; Wang, Zi-Jun; Zhang, Yong-He

    2016-12-15

    Sleep disorders have been found to be associated with hypertension in both cross-sectional and longitudinal epidemiological studies. Tetrandrine, a major component of Stephania tetrandra, is well known as an antihypertensive agent. The anti-hypertension mechanism mainly relies on its L-type calcium channel blocking property. In the previous study, tetrandrine revealed both anti-hypertension and hypnotic effects in spontaneously hypertensive rats (SHRs). This study aims to elucidate whether the antihypertensive mechanism of tetrandrine in SHRs is relevant to its hypnotic effect. Sleep-wake behavior of the SHRs was detected by electroencephalography (EEG) and electromyography (EMG) recordings. Blood pressure was measured by noninvasive blood pressure tail cuff test. Immunohistochemistry was performed to evaluate the noradrenergic neuronal activity. The level of norepinephrine (NE) was detected by HPLC-ECD. Amlodipine (100mg/kg, i.g.), the well-known L-type Ca2+ channel blockers (CCBs) exhibited remarkable antihypertensive activities in SHRs, but did not show effects on sleep of SHRs. Tetrandrine (30 and 60mg/kg/day, i.g.) significantly suppressed blood pressure of SHRs. Meanwhile, tetrandrine (60mg/kg/day, i.g.) remarkably increased non-rapid eye movement sleep (NREMS) time, bouts and mean duration. The hypnotic effect of tetrandrine was potentiated by prazosin (0.5mg/kg, i.p.) but attenuated by yohimbine (2mg/kg, i.p.). Administration of tetrandrine (60mg/kg/day, i.g.) not only significantly decreased c-Fos positive ratio of noradrenergic neurons in the locus coeruleus (LC), but also significantly decrease NE in the endogenous sleep-wake regulating pathways including LC, hypothalamus and ventrolateral preoptic nucleus (VLPO). In spite of a good potency in blocking L-type Ca2+ channel, the hypnotic effects of tetrandrine may be related to its suppressing effects on the noradrenergic system other than to block calcium channels. As a multi-targets drug, tetrandrine

  11. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    Science.gov (United States)

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Enhancement of the optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Suarez, A; Benami, A; Tamayo-Rivera L; Reyes-Esqueda, J A; Cheang-Wong, J C; Rodriguez-Fernandez, L; Crespo-Sosa, A; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, D. F. 04510 (Mexico); R Rangel-Rojo [Departamento de Optica, Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Torres-Torres, C, E-mail: rrangel@cicese.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, D.F. 07738 (Mexico)

    2011-01-01

    We present nonlinear refractive results for three different systems produced by ion implantation: high purity silica substrates with silicon quantum dots (Si-QDs), silver nanoparticles (Ag-NPs), and one sample containing both. We used a femtosecond optical Kerr gate (OKG) with 80 fs pulses at 830 nm to investigate the magnitude and response time of their nonlinear response. The Ag-NPs samples were prepared implanting 2 MeV Ag{sup 2+} ions at different fluencies. A sample with 1x10{sup 17} ions/cm{sup 2} showed no discernible Kerr signal, while for one with 2.4x10{sup 17} ions/cm{sup 2} we measured |{chi}{sup (3)}|{sub 1111} = 5.1x10{sup -11} esu. The Si-QDs sample required irradiation with 1.5 MeV Si{sup 2+} ions, at a 2.5x10{sup 17} ions/cm{sup 2} fluence in order that the OKG results for this sample yielded a similar |{chi}{sup (3)}|{sub 1111} value. The sample containing the Si-QDs was then irradiated by 1 MeV Ag2+ ions at a 4.44 x 10{sup 16} ions/cm{sup 2} fluence and thermally treated, for which afterward we measured |{chi}{sup (3)}|{sub 1111} 1.7x10{sup -10} esu. In all cases the response time was quasi-instantaneous. These results imply that the inclusion of Ag-NPs at low fluence, enhances the nonlinearity of the composite by a factor of around three, and that this is purely electronic in nature. Pump-probe results show that there is not any nonlinear absorption present. We estimate that the confinement effect of the Si-QDs in the sample plays an important role for the excitation of the Surface Plasmon Resonance (SPR) related to the Ag-NPs. A theoretical model that describes the modification of the third order nonlinearity is also presented.

  13. Biglycan Modulates Osteoblast Differentiation and Matrix Mineralization

    National Research Council Canada - National Science Library

    Parisuthiman, Duenpim; Mochida, Yoshiyuki; Duarte, Wagner R; Yamauchi, Mitsuo

    2005-01-01

    .... The processes of cell differentiation and matrix mineralization were accelerated in S but delayed in AS, indicating that BGN modulates osteoblastic cell differentiation. Introduction : Biglycan (BGN...

  14. Modulation of Osteoblastic Cell Efferocytosis by Bone Marrow Macrophages.

    Science.gov (United States)

    Michalski, Megan N; Koh, Amy J; Weidner, Savannah; Roca, Hernan; McCauley, Laurie K

    2016-12-01

    Apoptosis occurs at an extraordinary rate in the human body and the effective clearance of dead cells (efferocytosis) is necessary to maintain homeostasis and promote healing, yet the contribution and impact of this process in bone is unclear. Bone formation requires that bone marrow stromal cells (BMSCs) differentiate into osteoblasts which direct matrix formation and either become osteocytes, bone lining cells, or undergo apoptosis. A series of experiments were performed to identify the regulators and consequences of macrophage efferocytosis of apoptotic BMSCs (apBMSCs). Bone marrow derived macrophages treated with the anti-inflammatory cytokine interleukin-10 (IL-10) exhibited increased efferocytosis of apBMSCs compared to vehicle treated macrophages. Additionally, IL-10 increased anti-inflammatory M2-like macrophages (CD206(+) ), and further enhanced efferocytosis within the CD206(+) population. Stattic, an inhibitor of STAT3 phosphorylation, reduced the IL-10-mediated shift in M2 macrophage polarization and diminished IL-10-directed efferocytosis of apBMSCs by macrophages implicating the STAT3 signaling pathway. Cell culture supernatants and RNA from macrophages co-cultured with apoptotic bone cells showed increased secretion of monocyte chemotactic protein 1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) and transforming growth factor beta 1 (TGF-β1) and increased ccl2 gene expression. In conclusion, IL-10 increases M2 macrophage polarization and enhances macrophage-mediated engulfment of apBMSCs in a STAT3 phosphorylation-dependent manner. After engulfment of apoptotic bone cells, macrophages secrete TGF-β1 and MCP-1/CCL2, factors which fuel the remodeling process. A better understanding of the role of macrophage efferocytosis as it relates to normal and abnormal bone turnover will provide vital information for future therapeutic approaches to treat bone related diseases. J. Cell. Biochem. 117: 2697-2706, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley

  15. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...... light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...

  16. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    , this book draws on unique archival material, including photographs, documentary evidence and newspaper articles, newly discovered in Copenhagen. This opens for new insights and perspectives on these European exhibitions. The book employs post-colonial and feminist approaches to the material to shed fresh...... of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...

  17. Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation.

    Science.gov (United States)

    Johnson, Rachelle W; White, Jason D; Walker, Emma C; Martin, T John; Sims, Natalie A

    2014-07-01

    Muscle and bone are intimately linked by bi-directional signals regulating both muscle and bone cell gene expression and proliferation. It is generally accepted that muscle cells secrete factors (myokines) that influence adjacent bone cells, but these myokines are yet to be identified. We have previously shown that osteocyte-specific deletion of the co-receptor subunit utilized by IL-6 family cytokines, glycoprotein 130 (gp130), resulted in impaired bone formation in the trabecular bone, but enhanced periosteal expansion, suggesting a gp130-dependent periosteum-specific inhibition of osteoblast function, potentially induced by the local muscle fibres. We report here that differentiated primary calvarial osteoblasts cultured in myotube-conditioned media (CM) from myogenic C2C12 cells show reduced mRNA levels of genes associated with osteoblast differentiation. Alkaline phosphatase protein activity and all mRNA markers of osteoblast differentiation in the tested panel (runx2, osterix, alkaline phosphatase, parathyroid hormone (PTH) receptor, osteoprotegerin, osteocalcin, sclerostin) were reduced following culture with myotube CM. The exception was RANKL, which was significantly elevated in differentiated primary osteoblast cultures expressing osteocytic genes. A cytokine array of the C2C12 myotube-conditioned media identified TIMP-1 and MCP-1 as the most abundant myokines, but treatment with recombinant TIMP-1 or MCP-1 did not inhibit osteoblast gene expression. Rather, the IL-6 family cytokine ciliary neurotrophic factor (CNTF), which we found abundantly expressed by mouse muscle at the transcript and protein level, reduced osteoblast gene expression, although not to the same extent as the myotube-conditioned media. These data indicate that muscle cells secrete abundant TIMP-1, MCP-1, and CNTF, and that of these, only CNTF has the ability to suppress osteoblast function and gene expression in a similar manner to myotube-conditioned medium. This suggests that CNTF is

  18. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces.

    Science.gov (United States)

    Gittens, Rolando A; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L; Schneider, Jennifer M; Schwartz, Zvi; Sandhage, Kenneth H; Boyan, Barbara D

    2012-12-01

    Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  20. Human Spinal Bone Dust as a Potential Local Autograft: In vitro Potent Anabolic Effect on Human Osteoblasts.

    Science.gov (United States)

    Gao, Ryan; Street, Matthew; Tay, Mei Lin; Callon, Karen E; Naot, Dorit; Lock, Alistair; Munro, Jacob T; Cornish, Jillian; Ferguson, John; Musson, David

    2017-07-18

    In Vitro Study. To evaluate the effect that factors released from human posterior spinal bone dust have on primary human osteoblast growth and maturation. Bone dust, created during spinal fusion surgeries has the potential to be used as an autologous bone graft by providing a source of viable autologous osteoblasts and mesenchymal stem cells with osteogenic potential. To date, no information is available on whether bone dust also provides a source of anabolic factors with the potential to enhance osteoblast proliferation and maturation, which would enhance its therapeutic potential. Bone dust was collected from consenting patients undergoing elective posterior spinal fusion surgeries, and primary human osteoblasts were cultured from patients undergoing elective hip or knee arthroplasty. Growth factors and cytokines released by bone dust were quantified using enzyme-linked immunosorbent assay (ELISA). Primary human osteoblast proliferation and gene expression in response to bone dust were assessed using H-thymidine incorporation and real-time polymerase chain reaction (qPCR), respectively. Human bone dust released anabolic cytokines (IL-1β and IL-6) and growth factors (TGF-β, VEGF, FGF-Basic and PDGF-BB) in increasing concentrations over a 7-day period. In vitro, the anabolic factors released by bone dust increased osteoblast proliferation by 7-fold, compared with osteoblasts cultured alone. In addition, the factors released from bone dust up-regulated a number of osteoblastic genes integral to osteoblast differentiation, maturation and angiogenesis. This study is the first to demonstrate that human posterior spinal bone dust released anabolic factors that potently enhance osteoblast proliferation and the expression of genes that favor bone healing and bone union. Given that bone dust is anabolic and its harvest is fast, simple, and safe to perform, spinal surgeons should be encouraged to 'recycle' bone dust and harness the regenerative potential of this free

  1. Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway.

    Science.gov (United States)

    Yang, Yue-Hua; Chen, Ke; Li, Bo; Chen, Jiang-Wei; Zheng, Xin-Feng; Wang, Yu-Ren; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2013-11-01

    activation of Caspase-3 and induced autophagy through inhibition of phospho-mammalian target of rapamycin (p-mTOR). Both 3-methyladenine (3MA) and U0126 led to increase of apoptosis in osteoblasts with serum deprivation. Estradiol failed to over-ride the inhibitory effect of 3MA on phosphorylation of AKT but directly led to dephosphorylation of mTOR and upregulation of LC3 protein expression. However, the estradiol-enhanced LC3 protein expression was significantly suppressed by U0126 through inhibition of phosphorylation of extracellular signal-regulated kinase (ERK). Estradiol rescued osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway.

  2. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  3. Phosphoproteome analysis reveals a critical role for hedgehog signalling in osteoblast morphological transitions.

    Science.gov (United States)

    Marumoto, Ariane; Milani, Renato; da Silva, Rodrigo A; da Costa Fernandes, Célio Junior; Granjeiro, José Mauro; Ferreira, Carmen V; Peppelenbosch, Maikel P; Zambuzzi, Willian F

    2017-10-01

    The reciprocal and adaptive interactions between cells and substrates governing morphological transitions in the osteoblast compartment remain largely obscure. Here we show that osteoblast cultured in basement membrane matrix (Matrigel™) exhibits significant morphological changes after ten days of culture, and we decided to exploit this situation to investigate the molecular mechanisms responsible for guiding osteoblast morphological transitions. As almost all aspects of cellular physiology are under control of kinases, we generated more or less comprehensive cellular kinome profiles employing PepChip peptide arrays that contain over 1000 consensus substrates of kinase peptide. The results obtained were used to construct interactomes, and these revealed an important role for FoxO in mediating morphological changes of osteoblast, which was validated by Western blot technology when FoxO was significantly up-expressed in response to Matrigel™. As FoxO is a critical protein in canonical hedgehog signalling, we decided to explore the possible involvement of hedgehog signalling during osteoblast morphological changes. It appeared that osteoblast culture in Matrigel™ stimulates release of a substantial amounts Shh while concomitantly inducing upregulation of the expression of the bona fide hedgehog target genes Gli-1 and Patched. Functional confirmation of the relevance of these results for osteoblast morphological transitions came from experiments in which Shh hedgehog signalling was inhibited using the well-established pathway inhibitor cyclopamine (Cyc). In the presence of Cyc, culture of osteoblasts in Matrigel™ is not capable of inducing morphological changes but appears to provoke a proliferative response as evident from the upregulation of Cyclin D3 and cdk4. The most straightforward interpretation of our results is that hedgehog signalling is both necessary and sufficient for membrane matrix-based morphological transitions. Copyright © 2017 Elsevier Inc

  4. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts

    DEFF Research Database (Denmark)

    Christiansen, M; Kveiborg, Marie; Kassem, M

    2000-01-01

    -transformed human lung fibroblast cell line MRC5V2 have 20 to 40% higher levels of CBFA1 mRNA. Similar levels of CBFA1 mRNA are detectable in normal human skin fibroblasts, and these cells also exhibit an age-related decline to the same extent. In addition, the expression of topoisomerase I is reduced by 40......% in senescent osteoblasts, and the mRNA levels are significantly higher (40-70%) in transformed osteoblasts and fibroblasts. These changes in gene expression may be among the causes of impaired osteoblast functions, resulting in reduced bone formation during aging....

  5. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential

    Directory of Open Access Journals (Sweden)

    Guo Yong

    2012-10-01

    Full Text Available Abstract Background The extracellular matrix (ECM provides a supportive microenvironment for cells, which is suitable as a tissue engineering scaffold. Mechanical stimulus plays a significant role in the fate of osteoblast, suggesting that it regulates ECM formation. Therefore, we investigated the influence of mechanical stimulus on ECM formation and bioactivity. Methods Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with mechanical tensile strain. After removing the cells, the ECMs coated on dishes were prepared. The ECM protein and calcium were assayed and MC3T3-E1 cells were re-seeded on the ECM-coated dishes to assess osteoinductive potential of the ECM. Results The cyclic tensile strain increased collagen, bone morphogenetic protein 2 (BMP-2, BMP-4, and calcium levels in the ECM. Compared with the ECM produced by unstrained osteoblasts, those of mechanically stimulated osteoblasts promoted alkaline phosphatase activity, elevated BMP-2 and osteopontin levels and mRNA levels of runt-related transcriptional factor 2 (Runx2 and osteocalcin (OCN, and increased secreted calcium of the re-seeded MC3T3-E1 cells. Conclusion Mechanical strain promoted ECM production of osteoblasts in vitro, increased BMP-2/4 levels, and improved osteoinductive potential of the ECM. This study provided a novel method to enhance bioactivity of bone ECM in vitro via mechanical strain to osteoblasts.

  6. Cherubism gene Sh3bp2 is important for optimal bone formation, osteoblast differentiation, and function.

    Science.gov (United States)

    Mukherjee, Padma M; Wang, Chiachien J; Chen, I-Ping; Jafarov, Toghrul; Olsen, Bjorn R; Ueki, Yasuyoshi; Reichenberger, Ernst J

    2010-08-01

    Cherubism is a human genetic disorder that causes bilateral symmetrical enlargement of the maxilla and the mandible in children. It is caused by mutations in SH3BP2. The exact pathogenesis of the disorder is an area of active research. Sh3bp2 knock-in mice were developed by introducing a Pro416Arg mutation (Pro418Arg in humans) in the mouse genome. The osteoclast phenotype of this mouse model was recently described. We examined the bone phenotype of the cherubism mouse model, the role of Sh3bp2 during bone formation, osteoblast differentiation, and osteoblast function. We observed delays in early postnatal development of homozygous Sh3bp2(KI/KI) mice, which exhibited increased growth plate thickness and significantly decreased trabecular bone thickness and bone mineral density. Histomorphometric and microcomputed tomography analyses showed bone loss in the cranial and appendicular skeletons. Sh3bp2(KI/KI) mice also exhibited a significant decrease in osteoid formation that indicated a defect in osteoblast function. Calvarial osteoblast cell cultures had decreased alkaline phosphatase expression and mineralization, suggesting reduced differentiation potential. Gene expression of osteoblast differentiation markers such as collagen type I, alkaline phosphatase, and osteocalcin were decreased in osteoblast cultures from Sh3bp2(KI/KI) mice. These data suggest that Sh3bp2 regulates bone homeostasis through not only osteoclast-specific effects, but also through effects on osteoblast differentiation and function. Copyright (c) 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition.

    Directory of Open Access Journals (Sweden)

    Ryan C Riddle

    Full Text Available The canonical Wnt signaling pathway is critical for skeletal development and maintenance, but the precise roles of the individual Wnt co-receptors, Lrp5 and Lrp6, that enable Wnt signals to be transmitted in osteoblasts remain controversial. In these studies, we used Cre-loxP recombination, in which Cre-expression is driven by the human osteocalcin promoter, to determine the individual contributions of Lrp5 and Lrp6 in postnatal bone acquisition and osteoblast function. Mice selectively lacking either Lrp5 or Lrp6 in mature osteoblasts were born at the expected Mendelian frequency but demonstrated significant reductions in whole-body bone mineral density. Bone architecture measured by microCT revealed that Lrp6 mutant mice failed to accumulate normal amounts of trabecular bone. By contrast, Lrp5 mutants had normal trabecular bone volume at 8 weeks of age, but with age, these mice also exhibited trabecular bone loss. Both mutants also exhibited significant alterations in cortical bone structure. In vitro differentiation was impaired in both Lrp5 and Lrp6 null osteoblasts as indexed by alkaline phosphatase and Alizarin red staining, but the defect was more pronounced in Lrp6 mutant cells. Mice lacking both Wnt co-receptors developed severe osteopenia similar to that observed previously in mice lacking β-catenin in osteoblasts. Likewise, calvarial cells doubly deficient for Lrp5 and Lrp6 failed to form osteoblasts when cultured in osteogenic media, but instead attained a chondrocyte-like phenotype. These results indicate that expression of both Lrp5 and Lrp6 are required within mature osteoblasts for normal postnatal bone development.

  8. Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model

    Science.gov (United States)

    2014-01-01

    Background Porphyromonas gingivalis has been shown to invade osteoblasts and inhibit their differentiation and mineralization in vitro. However, it is unclear if P. gingivalis can invade osteoblasts in vivo and how this would affect alveolar osteoblast/osteoclast dynamics. This study aims to answer these questions using a periodontitis mouse model under repetitive P. gingivalis inoculations. Methods For 3-month-old BALB/cByJ female mice, 109 CFU of P. gingivalis were inoculated onto the gingival margin of maxillary molars 4 times at 2-day intervals. After 2 weeks, another 4 inoculations at 2-day intervals were applied. Calcein was injected 7 and 2 days before sacrificing animals to label the newly formed bone. Four weeks after final inoculation, mice were sacrificed and maxilla collected. Immunohistochemistry, micro-CT, and bone histomorphometry were performed on the specimens. Sham infection with only vehicle was the control. Results P. gingivalis was found to invade gingival epithelia, periodontal ligament fibroblasts, and alveolar osteoblasts. Micro-CT showed alveolar bone resorption and significant reduction of bone mineral density and content in the infected mice compared to the controls. Bone histomorphometry showed a decrease in osteoblasts, an increase in osteoclasts and bone resorption, and a surprisingly increased osteoblastic bone formation in the infected mice compared to the controls. Conclusions P. gingivalis invades alveolar osteoblasts in the periodontitis mouse model and cause alveolar bone loss. Although P. gingivalis appears to suppress osteoblast pool and enhance osteoclastic bone resorption, the bone formation capacity is temporarily elevated in the infected mice, possibly via some anti-microbial compensational mechanisms. PMID:25027664

  9. Human osteoblast damage after antiseptic treatment.

    Science.gov (United States)

    Vörös, Pauline; Dobrindt, Oliver; Perka, Carsten; Windisch, Christoph; Matziolis, Georg; Röhner, Eric

    2014-01-01

    Antiseptics are powerful medical agents used for wound treatment and decontamination and have a high potential for defeating joint infections in septic surgery. Both chlorhexidine and polyhexanide are frequently used in clinical practice and have a broad antimicrobial range, but their effect on human osteoblasts has not been sufficiently studied. Our objective was to investigate the toxic effects of polyhexanide and chlorhexidine on human osteoblasts in vitro to evaluate their clinical applicability in septic surgery. We isolated and cultivated human osteoblasts in vitro and assayed the toxic effects of chlorhexidine 0.1% and polyhexanide 0.04%, concentrations commonly applied in clinical practice. Toxicity analysis was performed by visualisation of cell structure, lactate dehydrogenase (LDH) activity and evaluation of vital cells. Toxicity was evaluated by microscopic inspection of cell morphology, trypan blue staining and determination of LDH release. Damaged cell structure could be shown by microscopy. Both antiseptics promoted LDH activity after incubation with osteoblasts. The evaluation of vital osteoblasts showed a significant decrease of vital cells. Both antiseptics induced significant cell death of osteoblasts at optimum exposure. We therefore recommend cautious use of polyhexanide and chlorhexidine in septic surgery to avoid severe osteoblast toxicity.

  10. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells

    DEFF Research Database (Denmark)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen

    2010-01-01

    Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co-cultivation of h...

  11. The Arsenic Resistance-Associated Listeria Genomic Island LGI2 Exhibits Sequence and Integration Site Diversity and a Propensity for Three Listeria monocytogenes Clones with Enhanced Virulence.

    Science.gov (United States)

    Lee, Sangmi; Ward, Todd J; Jima, Dereje D; Parsons, Cameron; Kathariou, Sophia

    2017-11-01

    In the foodborne pathogen Listeria monocytogenes , arsenic resistance is encountered primarily in serotype 4b clones considered to have enhanced virulence and is associated with an arsenic resistance gene cluster within a 35-kb chromosomal region, Listeria genomic island 2 (LGI2). LGI2 was first identified in strain Scott A and includes genes putatively involved in arsenic and cadmium resistance, DNA integration, conjugation, and pathogenicity. However, the genomic localization and sequence content of LGI2 remain poorly characterized. Here we investigated 85 arsenic-resistant L. monocytogenes strains, mostly of serotype 4b. All but one of the 70 serotype 4b strains belonged to clonal complex 1 (CC1), CC2, and CC4, three major clones associated with enhanced virulence. PCR analysis suggested that 53 strains (62.4%) harbored an island highly similar to LGI2 of Scott A, frequently (42/53) in the same location as Scott A ( LMOf2365_2257 homolog). Random-primed PCR and whole-genome sequencing revealed seven novel insertion sites, mostly internal to chromosomal coding sequences, among strains harboring LGI2 outside the LMOf2365_2257 homolog. Interestingly, many CC1 strains harbored a noticeably diversified LGI2 (LGI2-1) in a unique location ( LMOf2365_0902 homolog) and with a novel additional gene. With few exceptions, the tested LGI2 genes were not detected in arsenic-resistant strains of serogroup 1/2, which instead often harbored a Tn 554 -associated arsenic resistance determinant not encountered in serotype 4b. These findings indicate that in L. monocytogenes , LGI2 has a propensity for certain serotype 4b clones, exhibits content diversity, and is highly promiscuous, suggesting an ability to mobilize various accessory genes into diverse chromosomal loci. IMPORTANCE Listeria monocytogenes is widely distributed in the environment and causes listeriosis, a foodborne disease with high mortality and morbidity. Arsenic and other heavy metals can powerfully shape the

  12. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency.

    Science.gov (United States)

    Terashima, Asuka; Okamoto, Kazuo; Nakashima, Tomoki; Akira, Shizuo; Ikuta, Koichi; Takayanagi, Hiroshi

    2016-06-21

    Sepsis is a host inflammatory response to severe infection associated with high mortality that is caused by lymphopenia-associated immunodeficiency. However, it is unknown how lymphopenia persists after the accelerated lymphocyte apoptosis subsides. Here we show that sepsis rapidly ablated osteoblasts, which reduced the number of common lymphoid progenitors (CLPs). Osteoblast ablation or inducible deletion of interleukin-7 (IL-7) in osteoblasts recapitulated the lymphopenic phenotype together with a lower CLP number without affecting hematopoietic stem cells (HSCs). Pharmacological activation of osteoblasts improved sepsis-induced lymphopenia. This study demonstrates a reciprocal interaction between the immune and bone systems, in which acute inflammation induces a defect in bone cells resulting in lymphopenia-associated immunodeficiency, indicating that bone cells comprise a therapeutic target in certain life-threatening immune reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Azadirachta indica triterpenoids promote osteoblast differentiation and mineralization in vitro and in vivo.

    Science.gov (United States)

    Kushwaha, Priyanka; Khedgikar, Vikram; Haldar, Saikat; Gautam, Jyoti; Mulani, Fayaj A; Thulasiram, Hirekodathakallu V; Trivedi, Ritu

    2016-08-01

    Terpenoids were isolated using chromatographic purification through solvent purification technique and identified as Azadirone (1), Epoxyazadiradione (2) Azadiradione (3) Gedunin (4) Nimbin (5) Salannin (6) Azadirachtin A (7) and Azadirachtin B (8) from Azadirachta indica. Out of eight compounds, only three compounds had osteogenic activity and enhanced osteoblast proliferation, differentiation and mineralization in osteoblast cells. Active compounds stimulated osteogenic genes ALP, RunX-2 and OCN expressions in vitro, but Azadirachtin A had a maximum ability to stimulate osteoblast differentiation and mineralization compared to other two active compounds. For in vivo study, Azadirachtin A injected subcutaneously in pups, which enhanced osteogenic gene expressions and promoted bone formation rate significantly. Here, we conclude that active compounds of Azadirachta indica have osteogenic activity and Azadirachtin A has a beneficial effects on bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway

    DEFF Research Database (Denmark)

    Saeed, Hamid; Qiu, Weimin; Li, Chen

    2015-01-01

    MSC) in vitro and in vivo. Here, we investigated the signaling pathways underlying the regulatory functions of telomerase in osteoblastic cells. Comparative microarray analysis and Western blot analysis of telomerase-over expressing hMSC (hMSC-TERT) versus primary hMSC revealed significant up......The contribution of deficient telomerase activity to age-related decline in osteoblast functions and bone formation is poorly studied. We have previously demonstrated that telomerase over-expression led to enhanced osteoblast differentiation of human bone marrow skeletal (stromal) stem cells (h......-regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin...

  15. Wnt/β-catenin signaling in osteoblasts regulates global energy metabolism.

    Science.gov (United States)

    Yao, Qianqian; Yu, Caixia; Zhang, Xiuzhen; Zhang, Keqin; Guo, Jun; Song, Lige

    2017-04-01

    Obesity, diabetes and osteoporosis have become a major public heath burden, and understanding the underlying mechanisms of these pathophysiological process will benefit their treatment. Osteoblast lineage cells in charge of the bone formation have been showed to participate in the whole-body energy metabolism. In this study, we identify that wnt/β-catenin signaling in osteoblasts could regulate global energy metabolism, including glucose homeostasis, fat accumulation and energy expenditure. Mice lacking β-catenin specifically in osteoblasts postnatally exhibit decreased bone mass, increased glucose level, decreased insulin production, decreased fat accumulation and increased energy expenditure. Osteocalcin supplement can rescue the impaired glucose balance by improving insulin production but cannot influence the abnormal fat accumulation and energy expenditure. Osteoprotegerin (OPG) overexpression exclusively in osteoblasts in β-catenin deletion mice can normalize not only the decreased bone mass but also the decreased fat accumulation and increased energy expenditure. The effect of β-catenin deletion and OPG overexpression in osteoblasts on global energy metabolism had no relation with inguinal fat browning. These results suggest that the regulation of bone on energy metabolism and fat accumulation is not mediated exclusively by osteocalcin. Our findings may provide a new insight into the regulation of bone on fat accumulation and energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Hou, Yi; Xiang, Lin; Wu, Yingying; Qu, Yili; Man, Yi

    2017-07-01

    Collagen membranes possess ideal biological properties and can be served as a barrier for supporting infiltration and proliferation of osteoblasts in guided bone regeneration (GBR). However, pure collagen lacks desirable mechanical properties and also leads to inflammation, resulting in progressive bone resorption. In our previous study, EGCG cross-linked collagen membranes exhibit better mechanical properties and anti-inflammatory effect. However, higher concentration of EGCG may not improve cell viability. Herein, we present an enhanced EGCG cross-linked collagen membranes with surface modification of PEG to improve cell viability and cell adhesion, considering the better biocompatibility of PEG. Scanning electron microscope images showed that PEG-EGCG-collagen membrane exhibited smoother surface fiber aggregates. Fourier transform infrared spectroscopy demonstrated that the structure characteristics were maintained after addition of EGCG and PEG. Cell viability was significantly increased after modification of PEG, as determined by the Cell Counting Kit-8 (CCK-8) and live/dead assay. Better shapes of cytoskeleton were observed in immunostaining images. Additionally, enzyme-linked immunosorbent assay showed PEG-EGCG-collagen membrane significantly decreased the level of inflammatory factors secreted by MG63 cells. Collectively, with respect to all the aspects including intact structure, cell viability promotion and mediation of pro-inflammatory cytokine secretion, our results indicate that PEG-EGCG-collagen membrane might be used in GBR applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential.

    Science.gov (United States)

    Zheng, Yu-Liang; Sun, Yang-Peng; Zhang, Hong; Liu, Wen-Jing; Jiang, Rui; Li, Wen-Yu; Zheng, You-Hua; Zhang, Zhi-Guang

    2015-01-01

    Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs) from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs). CD146-STRO-1-SFMSCs were reprogrammed into iPSCs by transduction with lentivirus-mediated Sox2, Oct-3/4, klf4, and c-Myc. SFMSC-iPSCs were maintained with mTeSR1 medium in Matrigel-coated culture plates. Single dissociated cells were obtained by digesting the SFMSC-iPSCs with trypsin. The dissociated cells were then plated into Matrigel-coated culture plate with alpha minimum essential medium supplemented with 10% fetal bovine serum, 1× Glutamax, and the ROCK inhibitor Y-27632. Cells were then passaged in standard cell culture plates with alpha minimum essential medium supplemented with 10% fetal bovine serum and 1× Glutamax. After passaging in vitro, the cells showed a homogenous spindle-shape similar to their ancestor cells (SFMSCs), but with more robust proliferative activity. Flow cytometric analysis revealed typical MSC surface markers, including expression of CD73, CD90, CD105, and CD44 and lack of CD45, CD34, CD11b, CD19, and HLA-DR. However, these cells were positive for CD146 and stro-1, which the ancestor cells were not. Moreover, the cells could also be induced to differentiate in osteogenic, chondrogenic, and adipogenic lineages in vitro. The differentiation potential was improved compared with the ancestor cells in vitro. The cells were not found to exhibit oncogenicity in vivo. Therefore, the method presented herein facilitated the generation of STRO-1+CD146+ MSCs from SFMSC-iPSCs exhibiting enhanced proliferation and differentiation potential.

  18. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential.

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zheng

    Full Text Available Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs. CD146-STRO-1-SFMSCs were reprogrammed into iPSCs by transduction with lentivirus-mediated Sox2, Oct-3/4, klf4, and c-Myc. SFMSC-iPSCs were maintained with mTeSR1 medium in Matrigel-coated culture plates. Single dissociated cells were obtained by digesting the SFMSC-iPSCs with trypsin. The dissociated cells were then plated into Matrigel-coated culture plate with alpha minimum essential medium supplemented with 10% fetal bovine serum, 1× Glutamax, and the ROCK inhibitor Y-27632. Cells were then passaged in standard cell culture plates with alpha minimum essential medium supplemented with 10% fetal bovine serum and 1× Glutamax. After passaging in vitro, the cells showed a homogenous spindle-shape similar to their ancestor cells (SFMSCs, but with more robust proliferative activity. Flow cytometric analysis revealed typical MSC surface markers, including expression of CD73, CD90, CD105, and CD44 and lack of CD45, CD34, CD11b, CD19, and HLA-DR. However, these cells were positive for CD146 and stro-1, which the ancestor cells were not. Moreover, the cells could also be induced to differentiate in osteogenic, chondrogenic, and adipogenic lineages in vitro. The differentiation potential was improved compared with the ancestor cells in vitro. The cells were not found to exhibit oncogenicity in vivo. Therefore, the method presented herein facilitated the generation of STRO-1+CD146+ MSCs from SFMSC-iPSCs exhibiting enhanced proliferation and differentiation potential.

  19. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  20. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    Science.gov (United States)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  1. Effect of lactoferrin on rat osteoblast proliferation

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-10-01

    Full Text Available Objective: To investigate the effect of lactoferrin on osteoblastic proliferation of rats and to explore the possible mechanisms. Methods: Isolation and purification of rat osteoblasts were performed, the second generation of osteoblasts in the logarithmic growth phase were tested. Osteoblast cells were seeded into the porous plate, adding lactoferrin solution to the final concentration 0.1 μg/mL, 1 μg/mL, 10 μg/mL and 100 μg/mL, respectively, set up the control group (lactoferrin concentration was 0 μg/mL, rat osteoblast cells proliferation was detected by MTT method, insulin-like growth factor-1 (IGF-1 mRNA expression was detected by fluorescence quantitative PCR (real-time PCR. Results: MTT results showed that compared with the 0 μg/mL group, the number of rat osteoblast cells in the other concentration groups increased significantly (P<0.05 except in the 0.1 μg/mL group; The number of 3 d and 5 d rat osteoblasts in 1 μg/mL group was significantly higher than that in 0 μg/mL group, the number of 1 d, 3 d, 5 d and 7 d rat osteoblasts in 10 μg/mL and 100 μg/mL group was significantly higher than that in 0 μg/mL group (P<0.05; With the extension of time, the number of rat osteoblasts in each concentration group was significantly increased with the increase of the concentration, the number of 7 d rat osteoblasts in the 100 μg/mL group was the highest. Real-time PCR results showed that different concentrations of lactoferrin could promote rat osteoblast cells IGF-1 mRNA expression and was dose dependent. The 7 d IGF-1 mRNA expression in 0.1 μg/mL group was significantly higher than that in 0 μg/mL group, the 3 d, 5 d and 7 d IGF-1 mRNA expression in 1 μg/mL and 10 μg/mL were significantly higher than that in 0 μg/mL group, the 1 d, 3 d, 5 d and 7 d IGF-1 mRNA expression in 100 μg/mL were significantly higher than that in 0 μg/mL group (P<0.05; With the extension of time, the expression of rat osteoblasts IGF-1 mRNA in each

  2. Toxicity of iron oxide nanoparticles against osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Sifeng [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China); Jia Jingfu [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Guo Xiaokui [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Zhao Yaping [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Liu Boyu [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Chen Desheng; Guo Yongyuan; Zhang Xianlong, E-mail: zhangxianlong20101@163.com [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China)

    2012-09-15

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 {mu}g/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 {mu}g/mL and 25.9 % in 500 {mu}g/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 {mu}g/mL, 23.40 % of apoptosis in a concentration of 300 {mu}g/mL and 28.49 % in a concentration of 500 {mu}g/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  3. Biocompatibility of Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants

    Science.gov (United States)

    Fahlgren, Anna; Bratengeier, Cornelia; Gelmi, Amy; Semeins, Cornelis M.; Klein-Nulend, Jenneke; Jager, Edwin W. H.; Bakker, Astrid D.

    2015-01-01

    Polypyrrole (PPy) is a conducting polymer that enables controlled drug release upon electrical stimulation. We characterized the biocompatibility of PPy with human primary osteoblasts, and the effect of dopants. We investigated the biocompatibility of PPy comprising various dopants, i.e. p-toluene sulfonate (PPy-pTS), chondroitin sulfate (PPy-CS), or dodecylbenzenesulfonate (PPy-DBS), with human primary osteoblasts. PPy-DBS showed the roughest appearance of all surfaces tested, and its wettability was similar to the gold-coated control. The average number of attached cells was 45% higher on PPy-DBS than on PPy-CS or PPy-pTS, although gene expression of the proliferation marker Ki-67 was similar in osteoblasts on all surfaces tested. Osteoblasts seeded on PPy-DBS or gold showed similar vinculin attachment points, vinculin area per cell area, actin filament structure, and Feret’s diameter, while cells seeded on PPY-CS or PPY-pTS showed disturbed focal adhesions and were enlarged with disorganized actin filaments. Osteoblasts grown on PPy-DBS or gold showed enhanced alkaline phosphatase activity and osteocalcin gene expression, but reduced osteopontin gene expression compared to cells grown on PPy-pTS and PPy-CS. In conclusion, PPy doped with DBS showed excellent biocompatibility, which resulted in maintaining focal adhesions, cell morphology, cell number, alkaline phosphatase activity, and osteocalcin gene expression. Taken together, conducting polymers doped with DBS are well tolerated by osteoblasts. Our results could provide a basis for the development of novel orthopedic or dental implants with controlled release of antibiotics and pharmaceutics that fight infections or focally enhance bone formation in a tightly controlled manner. PMID:26225862

  4. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.

    NARCIS (Netherlands)

    Glass, D.A.; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, J.C.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; Karsenty, G.

    2005-01-01

    Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast

  5. Skeletal Collagen Turnover by the Osteoblast

    Science.gov (United States)

    Partridge, Nicola C.

    1997-01-01

    Among the most overt negative changes experienced by man and experimental animals under conditions of weightlessness are the loss of skeletal mass and attendant hypercalciuria. These clearly result from some disruption in the balance between bone formation and bone resorption (i.e. remodelling) which appears to be due to a decrease in the functions of the osteoblast. In the studies funded by this project, the clonal osteoblastic cell line, UMR 106-01, has been used to investigate the regulation of collagenase and Tissue Inhibitors of MetalloProteases (TIMPs). This project has shed light on the comprehensive role of the osteoblast in the remodelling process, and, in so doing, provided some insight into how the process might be disrupted under conditions of microgravity.

  6. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Trinquier, Anne Marie-Pierre Emilie

    2011-01-01

    factors, and intrinsic mechanisms caused by the osteoblast cellular senescence. The aim of this review is to provide a summary of the intrinsic senescence mechanisms affecting osteoblastic functions and how they can be targeted in order to abolish age-related osteoblastic dysfunction and bone loss...

  7. Epigallocatechin-3-gallate Promotes Osteoblastic Activity in Human ...

    African Journals Online (AJOL)

    Osteoblasts, known as bone-forming cells, are the major osteoprogenitor cells, whose proliferation and differentiation will eventually result in the formation of the mineralized extracellular matrix. [4]. To date, one effective solution to treat osteoporosis is targeted on osteoblasts by increasing the proliferation of the osteoblastic.

  8. Sirtuin 6 Modulates Hypoxia-induced Apoptosis in Osteoblasts via Inhibition of Glycolysis: Implication for Pathogenesis of Periapical Lesions.

    Science.gov (United States)

    Kok, Sang-Heng; Hou, Kuo-Liang; Hong, Chi-Yuan; Chao, Ling-Hsiu; Hsiang-Hua Lai, Eddie; Wang, Han-Wei; Yang, Hsiang; Shun, Chia-Tung; Wang, Juo-Song; Lin, Sze-Kwan

    2015-10-01

    Osteoblast apoptosis is important in the regulation of inflammatory bone resorption. Hypoxia resulting from inflammation enhances glycolysis and apoptosis. Sirtuin 6 (SIRT6) is a modulator of glucose metabolism and apoptosis. In the study we assessed the role of SIRT6 in hypoxia-induced glycolysis and apoptosis in osteoblasts, with special attention on the significance of these cellular processes in periapical lesions. Human bone marrow-derived osteoblasts were cultured under hypoxia. Expression of lactate dehydrogenase A was examined by Western blot, and production of lactate was measured by colorimetric assay. Cleavage of poly (adenosine diphosphate ribose) polymerase was used as an apoptosis marker and assessed by Western blot. SIRT6 was overexpressed in osteoblasts by lentiviral gene transduction, and then glycolytic and apoptotic responses were studied. In a rat model of bacteria-induced periapical lesions, expressions of SIRT6 and markers of glycolysis and apoptosis in osteoblasts were examined. Hypoxia enhanced lactate dehydrogenase A expression and lactate production in osteoblasts. Poly (adenosine diphosphate ribose) polymerase cleavage was induced by hypoxia or lactate treatment. SIRT6 suppressed hypoxia-augmented glycolysis and inhibited apoptosis induced by hypoxia or lactate treatment. Expression of SIRT6 in osteoblasts was downregulated by hypoxia and inflammatory mediators. Development of periapical lesions in rats was associated with decreased expression of SIRT6 and increased glycolysis and apoptosis in osteoblasts. Our study suggested that hypoxia-induced apoptosis of osteoblasts is dependent on glycolytic activity. SIRT6 is a negative regulator of inflammation and may alleviate periapical lesions by suppressing osteoblastic glycolysis and apoptosis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Rasigade

    Full Text Available Epidemic community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA is associated with more severe and acute forms of osteomyelitis than healthcare-associated (HA- MRSA. Although S. aureus is now recognized as a facultative intracellular pathogen, the contribution of osteoblast invasion by CA-MRSA to the pathogenesis of osteomyelitis is unknown. Using an ex vivo model of intracellular infection of human osteoblasts, we demonstrated that CA-MRSA strains of diverse lineages share an enhanced ability to kill infected osteoblasts compared to HA-MRSA. Cytotoxicity comparisons of CA-MRSA isogenic deletion mutants revealed that phenol-soluble modulins (PSMs, a class of membrane-damaging exoproteins that are expressed at higher levels in CA-MRSA than in HA-MRSA, are involved in this osteoblast killing, whereas other major CA-MRSA virulence determinants, the Panton-Valentine leukocidin and alpha-toxin, are not involved. Similarly, functional agr and sarA regulators, which control the expression of PSMs and alpha-toxin, were required for the expression of the intracellular cytotoxic phenotype by CA-MRSA, whereas the saeRS regulator, which controls the expression of alpha-toxin but not PSMs, had no impact on cytotoxicity. Finally, PSM transcript levels determined by quantitative reverse-transcriptase PCR were significantly higher in CA-MRSA than in HA-MRSA strains and associated with cell damage in MRSA-infected osteoblasts. These findings provide new insights into the pathogenesis of severe CA-MRSA osteomyelitis and unravel a novel virulence strategy of CA-MRSA, based on the invasion and subsequent killing of osteoblasts by PSMs acting as intracellular toxins.

  10. Functional and transcriptomic analysis of the regulation of osteoblasts by mechano-growth factor E peptide.

    Science.gov (United States)

    Xin, Juan; Wang, Yuanliang; Wang, Zhen; Lin, Fuchun

    2014-01-01

    Mechano-growth factor (MGF), a splice variant of insulin-like growth factor I (IGF-I), was discovered by Goldspink and colleagues in 1996; since then many studies have implicated MGF as an important local tissue repair factor. Although the short 24-amino-acid C-terminal peptide of MGF (MGF-Ct24E) has a variety of biological activities, its role in bone formation has not yet been clarified. Accordingly, the aim of this study was to investigate the role of MGF-Ct24E in the proliferation, differentiation, and mineralization of rat calvarial osteoblasts. Interestingly, although MGF-Ct24E significantly increased the proliferation and retarded the differentiation of osteoblasts during the first 3 days, prolonged treatment with MGF-Ct24E for up to 3 weeks promoted cell differentiation. To determine the molecular mechanisms behind this plurality, we carried out global transcriptional profiling of osteoblasts in response to MGF-Ct24E and identified differentially expressed genes by bioinformatics analysis. Gene ontology analysis indicated that MGF-Ct24E enhanced the expression of genes associated with osteoblast proliferation and the cell cycle and downregulated genes involved with osteoblast differentiation, skeletal system, and bone development. Moreover, KEGG pathway-based analysis indicated that MGF-Ct24E directly altered focal adhesion and cell cycle progression, in addition to regulating the actin cytoskeleton and gap junctions. In conclusion, MGF-Ct24E has a marked ability to increase bone formation by increasing cell proliferation and delaying cell differentiation during prophase, as well as by stimulating osteoblast differentiation during the advanced stage. The mechanism of action of MGF-Ct24E during the initial stages of bone formation in vitro involves upregulation of the expression of genes involved in proliferation and cell cycle progression, and the repression of differentiation-related genes. © 2013 International Union of Biochemistry and Molecular Biology

  11. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.C. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Kocovski, P.; Jovic, T.; Walia, M.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Chandraratna, R.A.S. [IO Therapeutics, Inc., Santa Ana, CA 92705 (United States); Martin, T.J.; Baker, E.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Purton, L.E., E-mail: lpurton@svi.edu.au [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia)

    2017-01-01

    Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenic cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice. - Graphical abstract: Schematic shows RAR ligand regulation of osteoblast differentiation in vitro. RARγ antagonists±RARα antagonists promote osteoblast differentiation. RARγ and RARα agonists alone or in combination block osteoblast differentiation, which correlates with upregulation of Sfrp4, and downregulation of nuclear and cytosolic β-catenin and reduced expression of the Wnt target gene Axin2. Red arrows indicate effects of RAR agonists on mediators of Wnt signalling.

  12. Direct effects of caffeine on osteoblastic cells metabolism: the possible causal effect of caffeine on the formation of osteoporosis

    Science.gov (United States)

    Tsuang, Yang-Hwei; Sun, Jui-Sheng; Chen, Li-Ting; Sun, Samuel Chung-Kai; Chen, San-Chi

    2006-01-01

    Background Caffeine consumption has been reported to decrease bone mineral density (BMD), increase the risk of hip fracture, and negatively influence calcium retention. In this study, we investigated the influence of caffeine on the osteoblasts behaviour. Method Osteoblasts derived from newborn Wistar-rat calvaria was used in this study. The effects of various concentrations of caffeine on bone cell activities were evaluated by using MTT assay. Alkaline phosphatase (ALP) staining, von Kossa staining and biochemical parameters including ALP, lactate dehydrogenase (LDH), prostaglandin E2 (PGE2) and total protein were performed at day 1, 3, and 7. DNA degradation analysis under the caffeine influence was also performed. Results and discussion The results showed that the viability of the osteoblasts, the formation of ALP positive staining colonies and mineralization nodules formation in the osteoblasts cultures decreased significantly in the presence of 10 mM caffeine. The intracellular LDH, ALP and PGE2 content decreased significantly, the LDH and PGE2 secreted into the medium increased significantly. The activation of an irreversible commitment to cell death by caffeine was clearly demonstrated by DNA ladder staining. Conclusion In summary, our results suggest that caffeine has potential deleterious effect on the osteoblasts viability, which may enhance the rate of osteoblasts apoptosis. PMID:17150127

  13. Direct effects of caffeine on osteoblastic cells metabolism: the possible causal effect of caffeine on the formation of osteoporosis

    Directory of Open Access Journals (Sweden)

    Chen Li-Ting

    2006-10-01

    Full Text Available Abstract Background Caffeine consumption has been reported to decrease bone mineral density (BMD, increase the risk of hip fracture, and negatively influence calcium retention. In this study, we investigated the influence of caffeine on the osteoblasts behaviour. Method Osteoblasts derived from newborn Wistar-rat calvaria was used in this study. The effects of various concentrations of caffeine on bone cell activities were evaluated by using MTT assay. Alkaline phosphatase (ALP staining, von Kossa staining and biochemical parameters including ALP, lactate dehydrogenase (LDH, prostaglandin E2 (PGE2 and total protein were performed at day 1, 3, and 7. DNA degradation analysis under the caffeine influence was also performed. Results and discussion The results showed that the viability of the osteoblasts, the formation of ALP positive staining colonies and mineralization nodules formation in the osteoblasts cultures decreased significantly in the presence of 10 mM caffeine. The intracellular LDH, ALP and PGE2 content decreased significantly, the LDH and PGE2 secreted into the medium increased significantly. The activation of an irreversible commitment to cell death by caffeine was clearly demonstrated by DNA ladder staining. Conclusion In summary, our results suggest that caffeine has potential deleterious effect on the osteoblasts viability, which may enhance the rate of osteoblasts apoptosis.

  14. Pro416Arg cherubism mutation in Sh3bp2 knock-in mice affects osteoblasts and alters bone mineral and matrix properties.

    Science.gov (United States)

    Wang, Chiachien J; Chen, I-Ping; Koczon-Jaremko, Boguslawa; Boskey, Adele L; Ueki, Yasuyoshi; Kuhn, Liisa; Reichenberger, Ernst J

    2010-05-01

    Cherubism is an autosomal dominant disorder in children characterized by unwarranted symmetrical bone resorption of the jaws with fibrous tissue deposition. Mutations causing cherubism have been identified in the adaptor protein SH3BP2. Knock-in mice with a Pro416Arg mutation in Sh3bp2 exhibit a generalized osteoporotic bone phenotype. In this study, we examined the effects of this "cherubism" mutation on spectroscopic indices of "bone quality" and on osteoblast differentiation. Fourier-transform infrared imaging (FTIRI) analysis of femurs from wild-type and Sh3bp2 knock-in mice showed decreased mineral content, decreased mineral crystallinity/crystal size, and increased collagen maturity in homozygous mutants. To assess osteoblast maturation in vivo, knock-in mice were crossed with transgenic mice over-expressing GFP driven by 3.6-kb or 2.3-kb Col1a1 promoter fragments. Reduced numbers of mature osteoblasts were observed in homozygous mice. Neonatal calvarial cultures, which were enriched for osteoblasts by depletion of hematopoietic cells (negative selection for Ter119- and CD45-positive cells) were investigated for osteoblast-specific gene expression and differentiation, which demonstrated that differentiation and mineralization in homozygous osteoblast cultures was impaired. Co-cultures with calvarial osteoblasts and bone marrow macrophages showed that mutant osteoblasts appear to increase osteoclastogenesis resulting in increased bone resorption on bone chips. In summary, the Sh3bp2 mutation in cherubism mice alters bone quality, reduces osteoblast function, and may contribute to excessive bone resorption by osteoclasts. Our data, together with previous osteoclast studies, demonstrate a critical role of Sh3bp2 in bone remodeling and osteoblast differentiation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. Osteoblastic meningioma of the fourth ventricle.

    Science.gov (United States)

    Johnson, M D; Tulipan, N; Whetsell, W O

    1989-04-01

    Meningiomas of the fourth ventricle are rare neoplasms. Only meningothelial and fibroblastic subtypes, purportedly arising from the tela choroidea, have been described. In this report we describe clinical, neuroradiological and pathological findings in a 52-year-old man with mild hydrocephalus produced by a large, calcified, osteoblastic meningioma of the fourth ventricle.

  16. Inhibition of osteoblast activity by zoledronic acid

    Directory of Open Access Journals (Sweden)

    Fernanda Gonçalves Basso

    2013-10-01

    Full Text Available INTRODUCTION: Patients treated with nitrogen-containing bisphosphonates, such as zoledronic acid (ZA, have frequently shown oral bone exposure areas, termed osteonecrosis. In addition, these patients may also present low repair and regeneration potential, mainly after tooth extractions. These side-effects caused by bisphosphonates may be due to their inhibitory effects on oral mucosa and local bone cells. OBJECTIVE: To evaluate the effects of ZA on the mineralization capacity of cultured osteoblasts. MATERIALS AND METHODS: Human immortalized osteoblasts (SaOs-2 were grown in plain culture medium (Dulbecco's Modified Eagle Medium [DMEM] + 10% fetal bovine serum [FBS] in wells of 24-well plates. After 48-hour incubation, the plain DMEM was replaced by a solution with ZA at 5 µM which was maintained in contact with cells for seven, 14 or 21 days. After these periods, cells were evaluated regarding alkaline phosphatase (ALP activity and mineral nodule formation (alizarin red. Data were statistically analyzed by Mann-Whitney test, at 5% of significance level. RESULTS: ZA caused significant reduction on ALP activity and mineral nodules formation by cultured osteoblasts in all evaluated periods (p < 0.05. CONCLUSION: These data indicate that ZA causes inhibition on the osteogenic phenotype of cultured human osteoblasts, which, in turn, may reduce bone repair in patients subjected to ZA therapy.

  17. Effects of Emdogain on osteoblast gene expression.

    Science.gov (United States)

    Carinci, F; Piattelli, A; Guida, L; Perrotti, V; Laino, G; Oliva, A; Annunziata, M; Palmieri, A; Pezzetti, F

    2006-05-01

    Emdogain (EMD) is a protein extract purified from porcine enamel and has been introduced in clinical practice to obtain periodontal regeneration. EMD is composed mainly of amelogenins (90%), while the remaining 10% is composed of non-amelogenin enamel matrix proteins such as enamelins, tuftelin, amelin and ameloblastin. Enamel matrix proteins seem to be involved in root formation. EMD has been reported to promote proliferation, migration, adhesion and differentiation of cells associated with healing periodontal tissues in vivo. How this protein acts on osteoblasts is poorly understood. We therefore attempted to address this question by using a microarray technique to identify genes that are differently regulated in osteoblasts exposed to enamel matrix proteins. By using DNA microarrays containing 20,000 genes, we identified several upregulated and downregulated genes in the osteoblast-like cell line (MG-63) cultured with enamel matrix proteins (Emd). The differentially expressed genes cover a broad range of functional activities: (i) signaling transduction, (ii) transcription, (iii) translation, (iv) cell cycle regulation, proliferation and apoptosis, (v) immune system, (vi) vesicular transport and lysosome activity, and (vii) cytoskeleton, cell adhesion and extracellular matrix production. The data reported are the first genome-wide scan of the effect of enamel matrix proteins on osteoblast-like cells. These results can contribute to our understanding of the molecular mechanisms of bone regeneration and as a model for comparing other materials with similar clinical effects.

  18. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Okito, Asuka [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Akiyama, Masako [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Ono, Takashi [Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan)

    2015-03-06

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment. - Highlights: • RANKL expression was increased in osteoblasts under acidosis via cAMP/PKA pathway. • GRP4 knockdown resulted in decrease of RANKL expression. • GRP4 overexpression resulted in increase of RANKL expression. • Osteoblast mineralization was reduced under acidic condition.

  19. Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Moorthi, A.; Parihar, P.R.; Saravanan, S.; Vairamani, M.; Selvamurugan, N., E-mail: selvamurugan.n@ktr.srmuniv.ac.in

    2014-10-01

    At nanoscale, bioglass ceramic (nBGC) particles containing calcium oxide (lime), silica and phosphorus pentoxide promote osteoblast proliferation. However, the role of varied amounts of calcium and silica present in nBGC particles on osteoblast proliferation is not yet completely known. Hence, the current work was aimed at synthesizing two different nBGC particles with varied amounts of calcium oxide and silica, nBGC-1: SiO{sub 2}:CaO:P{sub 2}O{sub 5}; mol% ∼ 70:25:5 and nBGC-2: SiO{sub 2}:CaO:P{sub 2}O{sub 5}; mol% ∼ 64:31:5, and investigating their role on osteoblast proliferation. The synthesized nBGC particles were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) studies. They exhibited their size at nanoscale and were non-toxic to human osteoblastic cells (MG-63). The nBGC-2 particles were found to have more effect on stimulation of osteoblast proliferation and promoted entering of more cells into G2/M cell cycle phase compared to nBGC-1 particles. There was a differential expression of cyclin proteins in MG-63 cells by nBGC-1 and nBGC-2 treatments, and the expression of cyclin B1 and E proteins was found to be more by nBGC-2 treatment. Thus, these results provide us a new insight in understanding the design of various nBGC particles by altering their ionic constituents with desirable biological properties thereby supporting bone augmentation. - Highlights: • nBGC particles with varied amounts of calcium and silica were synthesized. • They were non-toxic to human osteoblastic cells. • nBGC-2 particles had more effect on stimulation of osteoblast proliferation. • nBGC-2 particles promoted entering of osteoblasts into G2/M cell cycle phase. • Expression of cyclin B1 and E proteins was found to be more by nBGC-2 treatment.

  20. Osteoblast response to zirconia surfaces with different topographies

    Energy Technology Data Exchange (ETDEWEB)

    Herath, H.M.T.U. [Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya (Sri Lanka); Di Silvio, L. [Guy' s, King' s and St Thomas' Medical and Dental Institute, King' s College London, London SE1 9RT (United Kingdom); Evans, J.R.G., E-mail: j.r.g.evans@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-12-01

    Zirconia-3 mol% yttria ceramics were prepared with as-sintered, abraded, polished, and porous surfaces in order to explore the attachment, proliferation and differentiation of osteoblast-like cells. After modification, all surfaces were heated to 600 °C to extinguish traces of organic contamination. All surfaces supported cell attachment, proliferation and differentiation but the surfaces with grain boundary grooves or abraded grooves provided conditions for enhanced initial cell attachment. Nevertheless, overall cell proliferation and total DNA were highest on the polished surface. Zirconia sintered at a lower temperature (1300 °C vs. 1450 °C) had open porosity and presented reduced proliferation as assessed by alamarBlue™ assay, possibly because the openness of the pores prevented cells developing a local microenvironment. All cells retained the typical polygonal morphology of osteoblast-like cells with variations attributable to the underlying surface notably alignment along the grooves of the abraded surface. - Highlights: • Biocompatibility of chemically identical, topologically different ZrO{sub 2} was tested. • ZrO{sub 2} promoted cell adhesion, proliferation, differentiation and nodule formation. • Proliferation was high on polished ZrO{sub 2} but initial recruitment was high on abraded ZrO{sub 2}. • With open porosity, proliferation was low; cells cannot establish a microenvironment.

  1. Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing.

    Directory of Open Access Journals (Sweden)

    Brandon D Riehl

    Full Text Available Despite the important role of mechanical signals in bone remodeling, relatively little is known about how fluid shear affects osteoblastic cell migration behavior. Here we demonstrated that MC3T3-E1 osteoblast migration could be activated by physiologically-relevant levels of fluid shear in a shear stress-dependent manner. Interestingly, shear-sensitive osteoblast migration behavior was prominent only during the initial period after the onset of the steady flow (for about 30 min, exhibiting shear stress-dependent migration speed, displacement, arrest coefficient, and motility coefficient. For example, cell speed at 1 min was 0.28, 0.47, 0.51, and 0.84 μm min-1 for static, 2, 15, and 25 dyne cm-2 shear stress, respectively. Arrest coefficient (measuring how often cells are paused during migration assessed for the first 30 min was 0.40, 0.26, 0.24, and 0.12 respectively for static, 2, 15, and 25 dyne cm-2. After this initial period, osteoblasts under steady flow showed decreased migration capacity and diminished shear stress dependency. Molecular interference of RhoA kinase (ROCK, a regulator of cytoskeletal tension signaling, was found to increase the shear-sensitive window beyond the initial period. Cells with ROCK-shRNA had increased migration in the flow direction and continued shear sensitivity, resulting in greater root mean square displacement at the end of 120 min of measurement. It is notable that the transient osteoblast migration behavior was in sharp contrast to mesenchymal stem cells that exhibited sustained shear sensitivity (as we recently reported, J. R. Soc. Interface. 2015; 12:20141351. The study of fluid shear as a driving force for cell migration, i.e., "flowtaxis", and investigation of molecular mechanosensors governing such behavior (e.g., ROCK as tested in this study may provide new and improved insights into the fundamental understanding of cell migration-based homeostasis.

  2. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  3. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated.

    Science.gov (United States)

    Chávez-Díaz, Mercedes Paulina; Escudero-Rincón, María Lorenza; Arce-Estrada, Elsa Miriam; Cabrera-Sierra, Román

    2017-04-23

    In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800) and above (Ti6Al4V1050) its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO₂ during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO₂ and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO₂ formed in discrete α-phase regions (hcp) depending on its microstructure (grains).

  4. Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation.

    Science.gov (United States)

    Izquierdo-Barba, Isabel; García-Martín, José Miguel; Álvarez, Rafael; Palmero, Alberto; Esteban, Jaime; Pérez-Jorge, Concepción; Arcos, Daniel; Vallet-Regí, María

    2015-03-01

    Bacterial colonization and biofilm formation on orthopedic implants is one of the worst scenarios in orthopedic surgery, in terms of both patient prognosis and healthcare costs. Tailoring the surfaces of implants at the nanoscale to actively promote bone bonding while avoiding bacterial colonization represents an interesting challenge to achieving better clinical outcomes. Herein, a Ti6Al4V alloy of medical grade has been coated with Ti nanostructures employing the glancing angle deposition technique by magnetron sputtering. The resulting surfaces have a high density of nanocolumnar structures, which exhibit strongly impaired bacterial adhesion that inhibits biofilm formation, while osteoblasts exhibit good cell response with similar behavior to the initial substrates. These results are discussed on the basis of a "lotus leaf effect" induced by the surface nanostructures and the different sizes and biological characteristics of osteoblasts and Staphylococcus aureus. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Lu, Pei-Shan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Chih-Hsin [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Wen-Cheng [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2014-09-30

    Highlights: • Fluorescent microscopy images show that BG-M has excellent cellular affinity. • Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. • Cells cultured on BG-M had approximately 1.4 times higher proliferation activity. - Abstract: The main objective of this study was to compare the responses of fibroblasts and osteoblasts to bioglass (BG) and bioglass-containing mesoporous structure (BG-M) powders. The BG-M powders exhibited specific surface areas approximately three times larger than those of the BG powders. The formation of a hysteresis loop also signified the presence of mesoporous structures in the BG-M samples; however, a hysteresis loop was not observed for the BG samples, resulting in 1/5 the pore volume of the BG-M samples. The viabilities of the fibroblasts and osteoblasts cultured in media containing the BG-M powders for 1, 2, and 3 days were greater than 90%. Importantly, the results of fluorescent microscopy images show that BG-M has excellent cellular affinity. Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. However, cells cultured on BG-M had approximately 1.4 times higher proliferation activity.

  6. Osteogenic potential of osteoblasts from neonatal rats born to mothers treated with caffeine throughout pregnancy.

    Science.gov (United States)

    Reis, Amanda Maria Sena; Ribeiro, Lorena Gabriela Rocha; Ocarino, Natália de Melo; Goes, Alfredo Miranda; Serakides, Rogéria

    2015-02-04

    Caffeine is an active alkaloid that can cause damage to bones in formation during prenatal life into adulthood. This compound can pass across the placenta and into the mother's milk, causing a reduction in bone formation, growth and mass. The objective of this study was to examine the osteogenic potential of osteoblasts extracted from neonatal rats born to mothers treated with caffeine throughout pregnancy. Twenty-four adult Wistar rats were randomly divided into four groups, consisting of one control group and three groups that were treated with 25, 50, or 100 mg/kg of caffeine by an oral-gastric probe throughout the duration of the experimental period (pregnancy). At birth, three puppies from each dam in each group were euthanized, and osteoblasts were extracted from the calvaria of these pups for in vitro testing. The osteoblasts extracted from the pups of rats that received 50 mg/kg caffeine during pregnancy exhibited increased expression of osteocalcin, osteopontin, sialoprotein, runx-2, alkaline phosphatase and type I collagen transcripts, resulting in increased synthesis of mineralization nodules. Neonates from rats treated with 50 mg/kg caffeine during pregnancy contained osteoblasts with a higher osteogenic potential characterized by increased expression of osteocalcin, osteopontin, sialoprotein, runx-2, alkaline phosphatase and type I collagen and increased synthesis of mineralization nodules.

  7. Response of Human Osteoblast to n-HA/PEEK—Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite

    Science.gov (United States)

    Zhao, Minzhi; Li, Haiyun; Liu, Xiaochen; Wei, Jie; Ji, Jianguo; Yang, Shu; Hu, Zhiyuan; Wei, Shicheng

    2016-03-01

    Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn’t increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca2+ concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery.

  8. Response of Human Osteoblast to n-HA/PEEK—Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite

    Science.gov (United States)

    Zhao, Minzhi; Li, Haiyun; Liu, Xiaochen; Wei, Jie; Ji, Jianguo; Yang, Shu; Hu, Zhiyuan; Wei, Shicheng

    2016-01-01

    Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn’t increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca2+ concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery. PMID:26956660

  9. Vitamin D and gene networks in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Jeroen evan de Peppel

    2014-04-01

    Full Text Available Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3 through the stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct effects on osteoblasts and bone formation have also been established. The vitamin D receptor (VDR is expressed in osteoblasts and 1,25D3 modifies gene expression of various osteoblast differentiation and mineralization-related genes, such as alkaline phosphatase (ALPL, osteocalcin (BGLAP and osteopontin (SPP1. 1,25D3 is known to stimulate mineralization of human osteoblasts in vitro, and recently it was shown that 1,25D3 induces mineralization via effects in the period preceding mineralization during the pre-mineralization period. For a full understanding of the action of 1,25D3 in osteoblasts it is important to get an integrated network view of the 1,25D3-regulated genes during osteoblast differentiation and mineralization. The current data will be presented and discussed alluding to future studies to fully delineate the 1,25D3 action in osteoblast. Describing and understanding the vitamin D regulatory networks and identifying the dominant players in these networks may help develop novel (personalized vitamin D-based treatments. The following topics will be discussed in this overview: 1 Bone metabolism and osteoblasts, 2 Vitamin D, bone metabolism and osteoblast function, 3 Vitamin D induced transcriptional networks in the context of osteoblast differentiation and bone formation.

  10. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway

    Science.gov (United States)

    Ma, Xiaoqing; Xu, Zhongyang; Ding, Shaofeng; Yi, Guangkun; Wang, Qian

    2018-01-01

    Alendronate is commonly used for the treatment of postmenopausal osteoporosis; however, the underlying pathological molecular mechanisms of its action remain unclear. In the present study, the alendronate-treated signaling pathway in bone metabolism in rats with ovariectomy induced by osteoporosis was investigated. Rats with osteoporosis were orally administered alendronate or phosphate-buffered saline (control). In addition, the interferon-β (IFN-β)/signal transducer and activator of transcription 1 (STAT1) signaling pathway was investigated in osteoblasts following treatment with alendronate in vitro and in vivo. During the differentiation period, IFN-β (100 ng/ml) was used to treat the osteoblast cells, and the activity, viability and bone metabolism-associated gene expression levels (STAT1, p-STAT1, Fra1, TRAF6 and SOCS1) were analyzed in osteoblast cells. Histopathological changes were used to evaluate osteoblasts, osteoclasts, inflammatory phase of bone healing and osteonecrotic areas. The results demonstrated that alendronate significantly inhibited the activity of osteoporotic osteoclasts by stimulating expression of IFN-β, as well as markedly improved the viability and activity of osteoblasts compared with the control group. In addition, alendronate increased the expression and phosphorylation levels of STAT1 in osteoclasts, enhanced osteoblast differentiation, upregulated the expression levels of alkaline phosphatase and osteocalcin, and increased the expression of osteoblast differentiation-associated genes (osteocalcin, osterix and Runx2). Inhibition of IFN-β expression canceled the benefits of alendronate-mediated osteoblast differentiation. Notably, alendronate enhanced bone formation in rats with osteoporosis induced by ovariectomy. In conclusion, these findings suggest that alendronate can regulate osteoblast differentiation and bone formation in rats with osteoporosis induced by ovariectomy through upregulation of IFN-β/STAT1 signaling

  11. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells

    Directory of Open Access Journals (Sweden)

    J.Z. Fan

    2015-07-01

    Full Text Available We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α. Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.

  12. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells.

    Science.gov (United States)

    Fan, J Z; Yang, X; Bi, Z G

    2015-07-01

    We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.

  13. ORALLY LACTATE CALCIUM AND SWIMMING DECREASE OSTEOCLAST AND INCREASE OSTEOBLAST IN RADIAL PERIMENOPAUSAL MICE (MUS MUSCULUS BONE

    Directory of Open Access Journals (Sweden)

    Muliani **

    2013-04-01

    Full Text Available Calcium and moderate intensity swimming exercise can increase bone density. The aim of this research is to see the effect of orally calcium consumption and swimming activity to decrease osteoclast and increase osteoblast in radial perimenopausal mice (Mus musculus bone. Pretest and pos#est control group design was used in this research. Research subject used 15-16 aged mice (Mus musculus which divided into 4 groups (each group consisted of 13 mice, that was control, lactate calcium, swimming and lactate calcium and swimming. Treatment was given 90 days. This study showed a significant difference of the mean of the pos#est osteoblast between control and experimental groups (P<0.05. There was no significant difference between lactate calcium and swimming groups (P>0.05. Enhancement of osteoblast mean in combination group was greater than the other experimental groups. There was a significant difference of the mean of the pos#est  osteoclast between control and experimental groups (P<0.05, without significant difference between lactate calcium,   swimming groups and combination of lactate calcium and swimming group (P>0.05.  Conclusion: either lactate calcium or swimming decreases osteoclast and increases osteoblast of the mice but the osteoblast enhancement will be bigger when they are given together at once

  14. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.Z.; Yang, X.; Bi, Z.G. [Department of Orthopedic Surgery, First Affiliated Hospital, Harbin Medicine University, Harbin (China)

    2015-04-28

    We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.

  15. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites.

    Science.gov (United States)

    Lehmann, Giorgia; Cacciotti, Ilaria; Palmero, Paola; Montanaro, Laura; Bianco, Alessandra; Campagnolo, Luisa; Camaioni, Antonella

    2012-10-01

    Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.

  16. Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells.

    Science.gov (United States)

    Yukita, Akira; Hosoya, Akihiro; Ito, Yuzuru; Katagiri, Takenobu; Asashima, Makoto; Nakamura, Hiroaki

    2012-05-01

    SUMO (small ubiquitin-related modifier) modification (SUMOylation) has been reported to regulate various biological events such as cell-cycle progression, proliferation, and survival. Bone morphogenetic proteins (BMPs) play an important role in osteoblast differentiation and maturation. Although Smad4, which acts as a transcriptional factor in the BMP signaling, is a target of SUMOylation, the involvement of SUMOylation in osteoblast differentiation remains unclear. In this report, we demonstrated spatial expression patterns of SUMO proteins and Ubc9 (ubiquitin conjugating enzyme 9), which is a unique E2-SUMOylation enzyme, in mouse tibia. Furthermore, siRNA knockdown of Ubc9 enhanced osteoblastic differentiation induced by BMP2 in C2C12 mouse myoblasts and ST2 mouse bone-marrow derived stromal cells. Ubc9 knockdown elevated the BMP signaling transduction and reduced the expression of muscle-related genes in cooperation with BMP2. Finally, a luciferase assay using an Id1 (target gene of BMP signaling) reporter revealed that Smad4 mutants prevented from SUMOylation at their Lys158 possessed more potent transcriptional activity than wild-type Smad4. Taken together, these findings suggest that Ubc9 negatively regulates osteoblastic differentiation induced by BMP via, at least in part, SUMOylation of Smad4. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and Biodentine.

    Science.gov (United States)

    Rodrigues, E M; Gomes-Cornélio, A L; Soares-Costa, A; Salles, L P; Velayutham, M; Rossa-Junior, C; Guerreiro-Tanomaru, J M; Tanomaru-Filho, M

    2017-12-01

    To evaluate the effect of MTA and Biodentine on viability, osteogenic differentiation and BMP-2 expression in osteogenic cells. Saos-2 cells were used as a model of osteoblastic cells. Overexpression of BMP-2 was induced by transfection of a CMV-driven plasmid construct including the human BMP-2 coding sequence, and stably transfected cells were selected. Cell viability was assessed by the mitochondrial dehydrogenase enzymatic (MTT) assay. The bioactivity of the materials was evaluated by the alkaline phosphatase (ALP) assay and detection of calcium deposits with alizarin red staining (ARS). The gene expression of BMP-2 and ALP was quantified with real-time PCR. Statistical analysis was performed with analysis of variance and Bonferroni or Tukey post-test (α = 0.05). Viability tests revealed that MTA and Biodentine were not cytotoxic at the higher dilution (1 : 8) to BMP-2-transfected cells. MTA and Biodentine exhibited the highest ALP activity when compared to the Saos-BMP-2-unexposed control group (P Biodentine and MTA had a significant stimulatory effect on the formation of mineralized nodules (P Biodentine in non-osteogenic medium in relation to Saos-BMP-2-unexposed control cells (P Biodentine showed biocompatibility and bioactivity in Saos-BMP-2 overexpressing cells. Biodentine had a significantly greater effect on mineralization than MTA. Both MTA and Biodentine enhanced BMP-2 mRNA expression in the transfected system. Both MTA and Biodentine are suitable materials to improve osteoblastic cell mineralization. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture.

    Science.gov (United States)

    Dong, Xin; Bi, Long; He, Shu; Meng, Guolin; Wei, Boyuan; Jia, Shuaijun; Liu, Jian

    2014-06-01

    The accumulation of adipocytes in bone marrow is common in a variety of pathophysiological conditions, including obesity, insulin resistance, type 2 diabetes, and aging. Adipocytes in bone marrow exhibit severe adverse effect on osteoblast differentiation, proliferation, and function. However, the molecular mechanism of adipocytes lipotoxicity on osteoblasts is still far from completely understood. The present study was designed to investigate the signaling pathway responsible for adipocytes lipotoxicity on osteoblasts. Using a co-culture system, we have identified that free fatty acids (FFAs) released by the adipocytes inhibited osteoblasts proliferation and function and induced osteoblasts apoptosis, evidenced by decreased cell viability/proliferation, ALP activity, expression of runt-related transcription factor 2 (RunX2), type I collagen (ColA1) and osteocalcin and alizarin red staining. Dexamethasone (Dex) promoted the inhibitory effect of adipocytes on osteoblasts through stimulating FFAs release. Dex-exacerbated FFAs release from adipocytes contributes to reactive oxygen species (ROS) production. In the co-culture system, the phosphorylation of extracellular signal-regulated kinase (ERK)/P38 was increased and inhibition of ERK/P38 significantly suppressed adipocytes lipotoxicity. FFAs-generated ROS was responsible for adipocytes-induced activation of ERK/P38 signaling. In conclusion, FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. The evidence provides new insights into the mechanisms underlying the lipotoxic effect of adipocytes on bone within the marrow microenvironment and prevention of lipotoxicity on bone metabolism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing.

    Science.gov (United States)

    Czekanska, E M; Stoddart, M J; Ralphs, J R; Richards, R G; Hayes, J S

    2014-08-01

    Immortalized cell lines are used more frequently in basic and applied biology research than primary bone-derived cells because of their ease of access and repeatability of results in experiments. It is clear that these cell models do not fully resemble the behavior of primary osteoblast cells. Although the differences will affect the results of biomaterials testing, they are not clearly defined. Here, we focused on comparing proliferation and maturation potential of three osteoblast cell lines, SaOs2, MG-63, and MC3T3-E1 with primary human osteoblast (HOb) cells to assess their suitability as in vitro models for biomaterials testing. We report similarities in cell proliferation and mineralization between primary cells and MC3T3-E1. Both, SaOs2 and MG-63 cells demonstrated a higher proliferation rate than HOb cells. In addition, SaOs2, but not MG-63, cells demonstrated similar ALP activity, mineralization potential and gene regulation to HOb's. Our results demonstrate that despite SaOs-2, MG63, and MC3T3 cells being popular choices for emulating osteoblast behavior, none can be considered appropriate replacements for HOb's. Nevertheless, these cell lines all demonstrated some distinct similarities with HOb's, thus when applied in the correct context are a valuable in vitro pilot model of osteoblast functionality, but should not be used to replace primary cell studies. © 2013 Wiley Periodicals, Inc.

  20. Effects of microgravity on osteoblast growth

    Science.gov (United States)

    Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V.

    1998-01-01

    Studies from space flights over the past two decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. Recently analyzed data from the 1973-1974 Skylabs disclose that there is a rise in the systemic hormone, cortisol, which may play a role in bone loss in flight. In two flights where bone growth was measured (Skylabs 3 and 4), the crew members had a significant loss of calcium accompanied by a rise in 24 hour urinary cortisol during the entire flight period. In ground-based work on osteoblasts, we have demonstrated that equivalent amounts of glucocorticoids can inhibit osteoblast cell growth. In addition, this laboratory has recently studied gene growth and activation of mouse osteoblasts (MC3T3-E1) during spaceflight. Osteoblast cells were grown on glass coverslips, loaded in the Biorack plunger boxes 18 hours before launch and activated 19 hours after launch in the Biorack incubator under microgravity conditions. The osteoblasts were launched in a serum deprived state, activated and collected in microgravity. Samples were collected at 29 hours after sera activation (0-g, n=4; 1-g, n=4). The osteoblasts were examined for changes in gene expression and cell morphology. Approximately one day after growth activation, remarkable differences were observed in gene expression in 0-g and 1-g flight samples. The 0-g activated cells had increased c-fos mRNA when compared to flight 1-g controls. The message of immediate early growth gene, cox-2 was decreased in the microgravity activated cells when compared to ground or 1-g flight controls. Cox-1 was not

  1. Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation.

    Science.gov (United States)

    Moorthi, A; Parihar, P R; Saravanan, S; Vairamani, M; Selvamurugan, N

    2014-10-01

    At nanoscale, bioglass ceramic (nBGC) particles containing calcium oxide (lime), silica and phosphorus pentoxide promote osteoblast proliferation. However, the role of varied amounts of calcium and silica present in nBGC particles on osteoblast proliferation is not yet completely known. Hence, the current work was aimed at synthesizing two different nBGC particles with varied amounts of calcium oxide and silica, nBGC-1: SiO2:CaO:P2O5; mol%~70:25:5 and nBGC-2: SiO2:CaO:P2O5; mol%~64:31:5, and investigating their role on osteoblast proliferation. The synthesized nBGC particles were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) studies. They exhibited their size at nanoscale and were non-toxic to human osteoblastic cells (MG-63). The nBGC-2 particles were found to have more effect on stimulation of osteoblast proliferation and promoted entering of more cells into G2/M cell cycle phase compared to nBGC-1 particles. There was a differential expression of cyclin proteins in MG-63 cells by nBGC-1 and nBGC-2 treatments, and the expression of cyclin B1 and E proteins was found to be more by nBGC-2 treatment. Thus, these results provide us a new insight in understanding the design of various nBGC particles by altering their ionic constituents with desirable biological properties thereby supporting bone augmentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-12-01

    Full Text Available High dose glucocorticoid (GC administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex, Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8 assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  3. Human eosinophils express RAGE, produce RAGE ligands, exhibit PKC-delta phosphorylation and enhanced viability in response to the RAGE ligand, S100B

    OpenAIRE

    Curran, Colleen S.; Bertics, Paul J.

    2011-01-01

    This study tested the hypothesis that human eosinophils produce ligands for the receptor for advanced glycation end-products (RAGE), express RAGE and exhibit RAGE-mediated responses. In examining our microarray data, we identified the presence of RAGE and RAGE ligand (S100A4, S100A6, S100A8, S100A9, S100A11, S100P, HMGB1) transcripts. Expression of eosinophil RAGE mRNA was also compared with a known positive control and further assessed via bioinformatics and sequence analysis of RAGE cDNA. P...

  4. Britain exhibition at CERN

    CERN Document Server

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  5. Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis

    Science.gov (United States)

    Josse, Jérôme; Velard, Frédéric; Gangloff, Sophie C.

    2015-01-01

    Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the over-production of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics. PMID:26636047

  6. Lef1ΔN Binds β-Catenin and Increases Osteoblast Activity and Trabecular Bone Mass*

    Science.gov (United States)

    Hoeppner, Luke H.; Secreto, Frank J.; Razidlo, David F.; Whitney, Tiffany J.; Westendorf, Jennifer J.

    2011-01-01

    Lymphoid enhancer-binding factor (Lef) 1 is a high mobility group protein best known as a Wnt-responsive transcription factor that associates with β-catenin. Lef1ΔN is a short isoform of Lef1 that lacks the first 113 amino acids and a well characterized high affinity β-catenin binding domain present in the full-length protein. Both Lef1 isoforms bind DNA and regulate gene expression. We previously reported that Lef1 is expressed in proliferating osteoblasts and blocks osteocalcin expression. In contrast, Lef1ΔN is only detectable in the later stages of osteoblast differentiation and promotes osteogenesis in vitro. Here, we show that Lef1ΔN retains the ability to interact physically and functionally with β-catenin. Unlike what has been reported in T cells and colon cancer cell lines, Lef1ΔN activated gene transcription in the absence of exogenous β-catenin and cooperated with constitutively active β-catenin to stimulate gene transcription in mesenchymal and osteoblastic cells. Residues at the N terminus of Lef1ΔN were required for β-catenin binding and the expression of osteoblast differentiation genes. To determine the role of Lef1ΔN on bone formation in vivo, a Lef1ΔN transgene was expressed in committed osteoblasts using the 2.3-kb fragment of the type 1 collagen promoter. The Lef1ΔN transgenic mice had higher trabecular bone volume in the proximal tibias and L5 vertebrae. Histological analyses of tibial sections revealed no differences in osteoblast, osteoid, or osteoclast surface areas. However, bone formation and mineral apposition rates as well as osteocalcin levels were increased in Lef1ΔN transgenic mice. Together, our data indicate that Lef1ΔN binds β-catenin, stimulates Lef/Tcf reporter activity, and promotes terminal osteoblast differentiation. PMID:21270130

  7. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage.

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar Satija

    Full Text Available Human mesenchymal stem cells (hMSCs present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1 and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20 were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1 were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.

  8. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage.

    Science.gov (United States)

    Satija, Neeraj Kumar; Sharma, Deepa; Afrin, Farhat; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2013-01-01

    Human mesenchymal stem cells (hMSCs) present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP) activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1) and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20) were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1) were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.

  9. Serotonin regulates osteoblast proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S.Q.; Yu, L.P. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Shi, X. [Department of Obstetrics and Gynecology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wu, H. [Emergency Department, The First Affiliated Hospital, Soochow University, Suzhou (China); Shao, P.; Yin, G.Y.; Wei, Y.Z. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-08-01

    The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT{sub 1A}, 5-HT{sub 1B}, 5-HT{sub 1D}, 5-HT{sub 2A}, 5-HT{sub 2B}, and 5-HT{sub 2C}) were found to exist in rat osteoblasts. Of these, 5-HT{sub 2A} and 5-HT{sub 1B} receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro.

  10. Extracellular Phosphate Induces the Expression of Dentin Matrix Protein 1 Through the FGF Receptor in Osteoblasts.

    Science.gov (United States)

    Nishino, Jin; Yamazaki, Miwa; Kawai, Masanobu; Tachikawa, Kanako; Yamamoto, Keiko; Miyagawa, Kazuaki; Kogo, Mikihiko; Ozono, Keiichi; Michigami, Toshimi

    2017-05-01

    Dentin matrix protein 1 (Dmp1) is an extracellular matrix protein involved in phosphate metabolism and biomineralization, and its expression markedly increases during the maturation of osteoblasts into osteocytes. We previously reported that an increased level of inorganic phosphate (Pi) in media up-regulated the expression of Dmp1 in primary osteocytes isolated from mouse bones. In the present study, we found that elevated extracellular Pi strongly induced the expression of Dmp1 in osteoblasts and explored its underlying mechanism of action. In an osteoblastic cell line MC3T3-E1, increases in extracellular Pi induced the phosphorylation of ERK1/2 and up-regulated the expression of Dmp1, fibroblast growth factor 2 (Fgf2), and Fgf receptor 1 (Fgfr1). A co-treatment with the MEK inhibitor U0126 abolished the increase in the expression of Dmp1 and Fgfr1 by elevated Pi, suggesting the involvement of the MEK/ERK pathway in this up-regulation. Elevated extracellular Pi also resulted in the phosphorylation of FGF receptor substrate 2α (FRS2α), which was diminished by knockdown of Slc20a1 encoding Pit1 sodium-phosphate co-transporter. The co-treatment with an inhibitor against FGFR (SU5402) abolished the up-regulation of Dmp1 induced by elevated extracellular Pi. In primary osteoblasts, a treatment with 4 mM Pi transiently increased the expression of early growth response 1 (Egr1) before the up-regulation of Dmp1. These results indicate that FGFR mediates the direct effects of extracellular Pi on the expression of Dmp1 in osteoblasts and enhance the close relationship between the signaling evoked by elevated extracellular Pi and FGF/FGFR signaling. J. Cell. Biochem. 118: 1151-1163, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. ALDH+ tumor-initiating cells exhibiting gain in NOTCH1 gene copy number have enhanced regrowth sensitivity to a γ-secretase inhibitor and irinotecan in colorectal cancer.

    Science.gov (United States)

    Arcaroli, John J; Powell, Rebecca W; Varella-Garcia, Marileila; McManus, Martine; Tan, Aik Choon; Quackenbush, Kevin S; Pitts, Todd M; Gao, Dexiang; Spreafico, Anna; Dasari, Arvind; Touban, Basel M; Messersmith, Wells A

    2012-06-01

    The Notch signaling pathway has been shown to be upregulated in colorectal cancer (CRC) and important for the self-renewal of cancer stem cells. In this study, we evaluated the efficacy of PF-03084014, a γ-secretase inhibitor, in combination with irinotecan to identify the effects of treatment on tumor recurrence and the tumor-initiating population in our CRC preclinical explant model. The combination of PF-03084014 and irinotecan had the greatest effect at reducing tumor growth on four CRC tumors when compared with treatment with PF-03084014 or irinotecan alone. The combination significantly reduced tumor recurrence in two CRC explants (CRC001 and CRC036) after treatment was discontinued. Both of these tumors exhibited elevated baseline levels of Notch pathway activation as well as an increase in NOTCH1 gene copy number when compared with the two CRC explants (CRC026 and CRC027) where tumors reappeared quickly after termination of treatment. Isolation and injection of aldehyde dehydrogenase (ALDH(+) and ALDH(-)) cells in an in vivo explant model demonstrated that the ALDH(+) cell population were tumorigenic. Evaluation of the ALDH(+) cells after 28 days of treatment showed that the combination reduced the ALDH(+) population in the tumors that did not regrow. Furthermore, ALDH(+) cells from CRC001 and CRC027 were injected in vivo and treated immediately for 28 days. Two months after treatment, tumors were evident in the combination treatment group for CRC027 but not for CRC036. These results indicate the combination of PF-03084014 and irinotecan may be effective in reducing tumor recurrence in CRC patients whose tumors exhibit elevated levels of the Notch pathway. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Dual Effect of Chrysanthemum indicum Extract to Stimulate Osteoblast Differentiation and Inhibit Osteoclast Formation and Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2014-01-01

    Full Text Available The risk of bone-related diseases increases due to the imbalance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively. The goal in the development of antiosteoporotic treatments is an agent that will improve bone through simultaneous osteoblast stimulation and osteoclast inhibition without undesirable side effects. To achieve this goal, numerous studies have been performed to identify novel approaches using natural oriental herbs to treat bone metabolic diseases. In the present study, we investigated the effect of Chrysanthemum indicum extract (CIE on the differentiation of osteoclastic and osteoblastic cells. CIE inhibited the formation of TRAP-positive mature osteoclasts and of filamentous-actin rings and disrupted the bone-resorbing activity of mature osteoclasts in a dose-dependent manner. CIE strongly inhibited Akt, GSK3β, and IκB phosphorylation in RANKL-stimulated bone marrow macrophages and did not show any effects on MAP kinases, including p38, ERK, and JNK. Interestingly, CIE also enhanced primary osteoblast differentiation via upregulation of the expression of alkaline phosphatase and the level of extracellular calcium concentrations during the early and terminal stages of differentiation, respectively. Our results revealed that CIE could have a potential therapeutic role in bone-related disorders through its dual effects on osteoclast and osteoblast differentiation.

  13. [Impact of different degree pulpitis on cell proliferation and osteoblastic differentiation of dental pulp stem cell in Beagle immature premolars].

    Science.gov (United States)

    Ling, L; Zhao, Y M; Ge, L H

    2016-10-18

    To compare the proliferation and osteoblastic differentiation of dental pulp stem cell (DPSC) isolated from normal and inflamed pulps of different degrees in Beagle immature premolars, and provide evidence for the use of inflammatory DPSC (IDPSC). This study evaluated 14 Beagle's young premolars (21 roots). In the experiment group, irreversible pulpitis was induced by pulp exposure and the inflamed pulps were extracted 2 weeks and 6 weeks after the pulp chamber opening.For the control group, normal pulps were extracted immediately after the exposure. HE staining and real-time PCR were performed to confirm the inflammation. The cells were isolated from the inflamed and normal pulps (IDPSC and DPSC). Cell proliferation and osteoblastic differentiation potentials of the two cells were compared. Inflammation cells infiltration was observed in the inflamed pulps by HE staining. The expression of inflammatory factor was much higher in the 6 week inflamed pulp. IDPSC had higher potential of cell proliferation and osteoblastic differentiation potentials. Furthermore, the osteoblastic differentiation potentials of IDPSC from 2 week inflamed pulp were higher than those from 6 week inflamed pulp. The potential of cell proliferation and osteoblastic differentiation of DPSC was enhanced at early stage of irreversible pulpitis, and reduced at late stage in Beagle immature premolars.

  14. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation.

    Science.gov (United States)

    Spinella-Jaegle, S; Roman-Roman, S; Faucheu, C; Dunn, F W; Kawai, S; Galléa, S; Stiot, V; Blanchet, A M; Courtois, B; Baron, R; Rawadi, G

    2001-10-01

    Several members of the transforming growth factor-beta (TGF-beta) superfamily have been demonstrated to play regulatory roles in osteoblast differentiation and maturation, but the mechanisms by which they act on different cells at different developmental stages remain largely unknown. We studied the effects of TGF-beta1 and bone morphogenetic protein-2 (BMP-2) on the differentiation/maturation of osteoblasts using the murine cell lines MC3T3-E1 and C3H10T1/2. BMP-2 induced or enhanced the expression of the osteoblast differentiation markers alkaline phosphatase (ALP) and osteocalcin (OC) in both cells. In contrast, TGF-beta1 was not only unable to induce these markers, but it dramatically inhibited BMP-2-mediated OC gene expression and ALP activity. In addition, TGF-beta1 inhibited the ability of BMP-2 to induce MC3T3-E1 mineralization. TGF-beta1 did not sensibly modify the increase of Osf2/Cbfa1 gene expression mediated by BMP-2, thus demonstrating that the inhibitory effect of TGF-beta1 on osteoblast differentiation/maturation mediated by BMP-2 was independent of Osf2/Cbfa1 gene expression. Finally, it is shown that TGF-beta1 does not affect BMP-2-induced Smad1 transcriptional activity in the mesenchymal pluripotent cells studied herein. Our data indicate that in vitro BMP-2 and TGF-beta1 exert opposite effects on osteoblast differentiation and maturation.

  15. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics.

    Science.gov (United States)

    Sun, Hongli; Wu, Chengtie; Dai, Kerong; Chang, Jiang; Tang, Tingting

    2006-11-01

    In the present study, the effects of a calcium magnesium silicate bioactive ceramic (akermanite) on proliferation and osteoblastic differentiation of human bone marrow stromal cells (hBMSC) have been investigated and compared with the classical ceramic (beta-tricalcium phosphate, beta-TCP). Akermanite and beta-TCP disks were seeded with hBMSC and kept in growth medium or osteogenic medium for 10 days. Proliferation and osteoblastic differentiation were evaluated on day 1, 4, 7 and 10. The data from the Alamar Blue assay and lactic acid production assay showed that hBMSC proliferated more significantly on akermanite than on beta-TCP. The analysis of osteoblast-related genes, including alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OC), indicated that akermanite ceramics enhanced the expression of osteoblast-related genes, but type I collagen (COL I) showed no noticeable difference among akermanite and beta-TCP ceramics. Furthermore, this stimulatory effect was observed not only in osteogenic medium, but also in normal growth medium without osteogenic reagents such as l-ascorbic acid, glycerophosphate and dexamethasone. This result suggests that akermanite can promote osteoblastic differentiation of hBMSC in vitro even without osteogenic reagents, and may be used as a bioactive material for bone regeneration and tissue engineering applications.

  16. Universal Stress Protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress

    Directory of Open Access Journals (Sweden)

    Jung eYoung Jun

    2015-12-01

    Full Text Available Although a wide range of physiological information on Universal Stress Proteins (USPs is available from many organisms, their biochemical and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990 from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW species to high molecular weight (HMW complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.

  17. Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses.

    Science.gov (United States)

    Yu, Y; Cui, Y C; Ren, C; Rocha, P S C F; Peng, M; Xu, G Y; Wang, M L; Xia, X J

    2016-02-05

    Plasma membrane proteolipid 3 (PMP3) is a class of small hydrophobic proteins found in many organisms including higher plants. Some plant PMP3 genes have been shown to respond to abiotic stresses and to participate in the processes of plant stress tolerance. In this study, we isolated the cassava (Manihot esculenta Crantz) MePMP3-2 gene and functionally characterized its role in tolerance to abiotic stress by expressing it in rice (Oryza sativa L.). MePMP3-2 encodes a 77-amino acid protein belonging to a subgroup of plant PMP3s that have long hydrophylic C-terminal tails of unknown function. In silico analysis and co-localization studies indicated that MePMP3-2 is a plasma membrane protein with two transmembrane domains, similar to other PMP3s. In cassava leaves, MePMP3-2 expression was up-regulated by salt and drought stresses. Heterologous constitutive expression of MePMP3-2 in rice did not alter plant growth and development but increased tolerance to salt and drought stresses. In addition, under stress conditions MePMP3-2 transgenic plants accumulated less malondialdehyde, had increased levels of proline, and exhibited greater up-regulation of the stress-related genes OsProT and OsP5CS, but led to only minor changes in OsDREB2A and OsLEA3 expression. These findings indicate that MePMP3-2 may play an important role in salt and drought stress tolerance in transgenic rice.

  18. A Modified Bacillus Calmette-Guérin (BCG) Vaccine with Reduced Activity of Antioxidants and Glutamine Synthetase Exhibits Enhanced Protection of Mice despite Diminished in Vivo Persistence

    Science.gov (United States)

    Shoen, Carolyn M.; DeStefano, Michelle S.; Hager, Cynthia C.; Tham, Kyi-Toe; Braunstein, Miriam; Allen, Alexandria D.; Gates, Hiriam O.; Cynamon, Michael H.; Kernodle, Douglas S.

    2013-01-01

    Early attempts to improve BCG have focused on increasing the expression of prominent antigens and adding recombinant toxins or cytokines to influence antigen presentation. One such modified BCG vaccine candidate has been withdrawn from human clinical trials due to adverse effects. BCG was derived from virulent Mycobacterium bovis and retains much of its capacity for suppressing host immune responses. Accordingly, we have used a different strategy for improving BCG based on reducing its immune suppressive capacity. We made four modifications to BCG Tice to produce 4dBCG and compared it to the parent vaccine in C57Bl/6 mice. The modifications included elimination of the oxidative stress sigma factor SigH, elimination of the SecA2 secretion channel, and reductions in the activity of iron co-factored superoxide dismutase and glutamine synthetase. After IV inoculation of 4dBCG, 95% of vaccine bacilli were eradicated from the spleens of mice within 60 days whereas the titer of BCG Tice was not significantly reduced. Subcutaneous vaccination with 4dBCG produced greater protection than vaccination with BCG against dissemination of an aerosolized challenge of M. tuberculosis to the spleen at 8 weeks post-challenge. At this time, 4dBCG-vaccinated mice also exhibited altered lung histopathology compared to BCG-vaccinated mice and control mice with less well-developed lymphohistiocytic nodules in the lung parenchyma. At 26 weeks post-challenge, 4dBCG-vaccinated mice but not BCG-vaccinated mice had significantly fewer challenge bacilli in the lungs than control mice. In conclusion, despite reduced persistence in mice a modified BCG vaccine with diminished antioxidants and glutamine synthetase is superior to the parent vaccine in conferring protection against M. tuberculosis. The targeting of multiple immune suppressive factors produced by BCG is a promising strategy for simultaneously improving vaccine safety and effectiveness. PMID:26343849

  19. Enhanced Burst-Suppression and Disruption of Local Field Potential Synchrony in a Mouse Model of Focal Cortical Dysplasia Exhibiting Spike-Wave Seizures.

    Science.gov (United States)

    Williams, Anthony J; Zhou, Chen; Sun, Qian-Quan

    2016-01-01

    Focal cortical dysplasias (FCDs) are a common cause of brain seizures and are often associated with intractable epilepsy. Here we evaluated aberrant brain neurophysiology in an in vivo mouse model of FCD induced by neonatal freeze lesions (FLs) to the right cortical hemisphere (near S1). Linear multi-electrode arrays were used to record extracellular potentials from cortical and subcortical brain regions near the FL in anesthetized mice (5-13 months old) followed by 24 h cortical electroencephalogram (EEG) recordings. Results indicated that FL animals exhibit a high prevalence of spontaneous spike-wave discharges (SWDs), predominately during sleep (EEG), and an increase in the incidence of hyper-excitable burst/suppression activity under general anesthesia (extracellular recordings, 0.5%-3.0% isoflurane). Brief periods of burst activity in the local field potential (LFP) typically presented as an arrhythmic pattern of increased theta-alpha spectral peaks (4-12 Hz) on a background of low-amplitude delta activity (1-4 Hz), were associated with an increase in spontaneous spiking of cortical neurons, and were highly synchronized in control animals across recording sites in both cortical and subcortical layers (average cross-correlation values ranging from +0.73 to +1.0) with minimal phase shift between electrodes. However, in FL animals, cortical vs. subcortical burst activity was strongly out of phase with significantly lower cross-correlation values compared to controls (average values of -0.1 to +0.5, P field potential synchrony between cortical and subcortical brain regions near the site of the cortical malformation. Monitoring the altered electrophysiology of burst activity under general anesthesia with multi-dimensional micro-electrode arrays may serve to define distinct neurophysiological biomarkers of epileptogenesis in human brain and improve techniques for surgical resection of epileptogenic malformed brain tissue.

  20. Expression of LRP1 by human osteoblasts: a mechanism for the delivery of lipoproteins and vitamin K1 to bone.

    Science.gov (United States)

    Niemeier, Andreas; Kassem, Moustapha; Toedter, Klaus; Wendt, Dorte; Ruether, Wolfgang; Beisiegel, Ulrike; Heeren, Joerg

    2005-02-01

    Accumulating clinical and experimental data show the importance of dietary lipids and lipophilic vitamins, such as vitamin K1, for bone formation. The molecular mechanism of how they enter the osteoblast is unknown. Here we describe the expression of the multifunctional LRP1 by human osteoblasts in vitro and in vivo. We provide evidence that LRP1 plays an important role in the uptake of postprandial lipoproteins and vitamin K1 by human osteoblasts. Chylomicrons (CM) and their remnants (CR) represent the postprandial plasma carriers of dietary lipids. Dietary vitamin K1 is known to be transported in the circulation as part of CM/CR and is required by osteoblasts as an essential co-factor for the gamma-carboxylation of bone matrix proteins. The molecular mechanisms underlying the delivery of lipophilic substances to bone are not understood. In this study, the expression and function of CM/CR receptors was examined in human osteoblasts. Four human osteoblast-like cell lines were analyzed: two osteosarcoma lines (MG63, SaOS-2) and two telomerase-immortalized human bone marrow stromal cell lines (hMSC-TERT [4] and [20]) after 1,25(OH)2 vitamin D3 induction of osteoblastic differentiation (hMSC-TERT-OB). Receptor expression was examined by Western blotting and immunohistochemistry of normal human bone sections. Endocytotic receptor function was analyzed by cellular uptake assays using fluorescent and radiolabeled human CR. Vitamin K1-enriched CR (CR-K1) were generated in vivo after oral vitamin administration and vitamin K1 uptake by osteoblasts was measured by HPLC. The effect of CR-K1 uptake on osteocalcin carboxylation was measured by ELISA. Osteoblasts exhibit high levels of protein expression of the CR receptors LRP1 and LDLR. VLDLR is expressed to a lower degree. Immunohistochemistry of normal human bone sections showed strong LRP1 expression by osteoblasts and marrow stromal cells. Uptake of fluorescent CR by osteoblasts resulted in the typical pattern of receptor

  1. Enhanced Burst-Suppression and Disruption of Local Field Potential Synchrony in a Mouse Model of Focal Cortical Dysplasia Exhibiting Spike-Wave Seizures

    Directory of Open Access Journals (Sweden)

    Anthony J. Williams

    2016-11-01

    Full Text Available Focal cortical dysplasias (FCDs are a common cause of brain seizures and are often associated with intractable epilepsy. Here we evaluated aberrant brain neurophysiology in an in vivo mouse model of FCD induced by neonatal freeze lesions (FLs to the right cortical hemisphere (near S1. Linear multi-electrode arrays were used to record extracellular potentials from cortical and subcortical brain regions near the FL in anesthetized mice (5-13 months old followed by 24 h cortical EEG recordings. Results indicated that FL animals exhibit a high prevalence of spontaneous spike-wave discharges (SWDs, predominately during sleep (EEG, and an increase in the incidence of hyper-excitable burst/suppression activity under general anesthesia (extracellular recordings, 0.5-3.0% isoflurane. Brief periods of burst activity in the local field potential (LFP typically presented as an arrhythmic pattern of increased theta-alpha spectral peaks (4-12 Hz on a background of low-amplitude delta activity (1-4 Hz, were associated with an increase in spontaneous spiking of cortical neurons, and were highly synchronized in control animals across recording sites in both cortical and subcortical layers (average cross-correlation values ranging from +0.73 to +1.0 with minimal phase shift between electrodes. However, in FL animals, cortical vs. subcortical burst activity was strongly out of phase with significantly lower cross-correlation values compared to controls (average values of -0.1 to +0.5, P<0.05 between groups. In particular, a marked reduction in the level of synchronous burst activity was observed the closer the recording electrodes were to the malformation (Pearson’s Correlation = 0.525, P<0.05. In a subset of FL animals (3/9, burst activity also included a spike or spike-wave pattern similar to the SWDs observed in unanesthetized animals. In summary, neonatal FLs increased the hyperexcitable pattern of burst activity induced by anesthesia and disrupted field

  2. Transgenic tobacco plants over expressing cold regulated protein CbCOR15b from Capsella bursa-pastoris exhibit enhanced cold tolerance.

    Science.gov (United States)

    Wu, Lihua; Zhou, Mingqi; Shen, Chen; Liang, Jing; Lin, Juan

    2012-09-15

    Low temperature is among the most significant abiotic stresses, restricting the habitats of sessile plants and reducing crop productivity. Cold regulated (COR) genes are low temperature-responsive genes expressing under regulation of a specific signal transduction pathway, which is designated C-repeat-binding-factor (CBF) signaling pathway. In the present article, cold bioassay showed that the transcript level of cold regulated gene CbCOR15b from shepherd's purse (Capsella bursa-pastoris) was obviously elevated under cold treatments. Reverse transcription-PCR (RT-PCR) and GUS report system revealed that unlike AtCOR15b, CbCOR15b expressed not only in leaves but also in stems and maturation zone of roots. When transgenic tobacco plants ectopically expressing CbCOR15b were exposed to chilling and freezing temperatures, they displayed more cold tolerance compared to control plants. According to the electrolyte leakage, the relative water content, the glucose content and the phenotype observation, CbCOR15b transformants suffered less damage under cold stress. Further investigation of the subcellular localization of CbCOR15b by transient expression of fusion protein CbCOR15b-GFP revealed that it was localized exclusively in the chloroplasts of tobacco mesophyll cells and in the cytoplasm of onion epidermal cells. It can be concluded that CbCOR15b which located in the chloroplasts and in the cytoplasm of cells without chloroplasts was involved in cold response of C. bursa-pastoris and conferred enhanced cold tolerance in transgenic tobacco plants. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Lysyl oxidase (lox) gene deficiency affects osteoblastic phenotype

    NARCIS (Netherlands)

    Pischon, N.; Mäki, J.M.; Weisshaupt, P.; Heng, N.; Palamakumbura, A.H.; N'Guessan, P.; Ding, A.; Radlanski, R; Renz, H.; Bronckers, T.A.L.J.J.; Myllyharju, J.; Kielbassa, A.; Kleber, B.M.; Bernimoulin, J.P.; Trackman, P.C.

    2009-01-01

    Lysyl oxidase (LOX) catalyzes cross-linking of elastin and collagen, which is essential for the structural integrity and function of bone tissue. The present study examined the role of Lox gene deficiency for the osteoblast phenotype in primary calvarial osteoblasts from E18.5 Lox knockout (Lox −/−

  4. Response of human rheumatoid arthritis osteoblasts and osteoclasts to adiponectin.

    Science.gov (United States)

    Krumbholz, Grit; Junker, Susann; Meier, Florian M P; Rickert, Markus; Steinmeyer, Jürgen; Rehart, Stefan; Lange, Uwe; Frommer, Klaus W; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena

    2017-01-01

    Adiponectin is an effector molecule in the pathophysiology of rheumatoid arthritis, e.g. by inducing cytokines and matrix degrading enzymes in synovial fibroblasts. There is growing evidence that adiponectin affects osteoblasts and osteoclasts although the contribution to the aberrant bone metabolism in rheumatoid arthritis is unclear. Therefore, the adiponectin effects on rheumatoid arthritis-derived osteoblasts and osteoclasts were evaluated. Adiponectin and its receptors were examined in bone tissue. Primary human osteoblasts and osteoclasts were stimulated with adiponectin and analysed using realtime polymerase chain-reaction and immunoassays. Effects on matrix-production by osteoblasts and differentiation and resorptive activity of osteoclasts were examined. Immunohistochemistry of rheumatoid arthritis bone tissue showed adiponectin expression in key cells of bone remodelling. Adiponectin altered gene expression and cytokine release in osteoblasts and increased IL-8 secretion by osteoclasts. Adiponectin inhibited osterix and induced osteoprotegerin mRNA in osteoblasts. In osteoclasts, MMP-9 and tartrate resistant acid phosphatase expression was increased. Accordingly, mineralisation capacity of osteoblasts decreased whereas resorptive activity of osteoclasts increased. The results confirm the proinflammatory potential of adiponectin and support the idea that adiponectin influences rheumatoid arthritis bone remodelling through alterations in osteoblast and osteoclast.

  5. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  6. Ethics on Exhibit

    Science.gov (United States)

    Vick, Randy M.

    2011-01-01

    This article discusses ethical questions raised by an exhibition of work by an artist with a history of mental illness and the exhibition's relevance to art therapy and “outsider art” discourse on the subject. Considerations for how such an exhibit could be handled had the circumstances included an art therapist and art therapy client are…

  7. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity.

    Directory of Open Access Journals (Sweden)

    Zhousheng Xiao

    Full Text Available Polycystin-1 (Pkd1 interacts with polycystin-2 (Pkd2 to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined. To this end, we conditionally inactivated Pkd2 in mature osteoblasts by crossing Osteocalcin (Oc-Cre;Pkd2+/null mice with floxed Pkd2 (Pkd2flox/flox mice. Oc-Cre;Pkd2flox/null (Pkd2Oc-cKO mice exhibited decreased bone mineral density, trabecular bone volume, cortical thickness, mineral apposition rate and impaired biomechanical properties of bone. Pkd2 deficiency resulted in diminished Runt-related transcription factor 2 (Runx2 expressions in bone and impaired osteoblastic differentiation ex vivo. Expression of osteoblast-related genes, including, Osteocalcin, Osteopontin, Bone sialoprotein (Bsp, Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex, Dentin matrix protein 1 (Dmp1, Sclerostin (Sost, and Fibroblast growth factor 23 (FGF23 were reduced proportionate to the reduction of Pkd2 gene dose in bone of Oc-Cre;Pkd2flox/+ and Oc-Cre;Pkd2flox/null mice. Loss of Pkd2 also resulted in diminished peroxisome proliferator-activated receptor γ (PPARγ expression and reduced bone marrow fat in vivo and reduced adipogenesis in osteoblast culture ex vivo. Transcriptional co-activator with PDZ-binding motif (TAZ and Yes-associated protein (YAP, reciprocally acting as co-activators and co-repressors of Runx2 and PPARγ, were decreased in bone of Oc-Cre;Pkd2flox/null mice. Thus, Pkd1 and Pkd2 have coordinate effects on osteoblast differentiation and opposite effects on adipogenesis, suggesting that Pkd1 and Pkd2 signaling pathways can have independent effects on mesenchymal lineage commitment in bone.

  8. Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V.

    Science.gov (United States)

    Felgueiras, Helena P; Evans, Margaret D M; Migonney, Véronique

    2015-12-01

    This study is focused on understanding the underlying mechanisms involved in the improved in vitro and in vivo responses of osteoblasts on poly(sodium styrene sulfonate) (poly(NaSS)) functionalized Ti6Al4V surfaces. We probed the contribution of cell-adhesive glycoproteins fibronectin (Fn) and vitronectin (Vn) in the initial adhesion of MC3T3-E1 osteoblastic cells to poly(NaSS) functionalized and control Ti6Al4V surfaces. Firstly, culture media containing serum depleted of Fn and Vn (DD) were used to establish the contribution of Fn and Vn in the adhesion and spreading of cells on poly(NaSS) grafted and control surfaces. Compared to ungrafted surfaces, poly(NaSS) grafted surfaces enhanced the levels of cell adhesion, cell spreading and the formation of intracellular actin cytoskeleton and focal contacts in serum treatments where Fn or Vn were present (FBS, DD+Fn, DD+Vn). Cell responses to Fn were more significant than to Vn. Secondly, blocking Fn and Vn integrin receptors using antibodies to α5β1 (Fn) and αvβ1 (Vn) showed that adhesion of cells to poly(NaSS) grafted surfaces principally involved the Fn integrin receptor α5β1. Thirdly, blocking of the heparin and cell-binding regions of Fn molecule (RGD, C-HB, N-HB) showed that grafting with poly(NaSS) altered the conformation of Fn. Together these outcomes explained why the presence of sulfonate (SO3(-)) groups grafted on the Ti6Al4V surface enhanced the early cell adhesion and spreading processes which determine clinical success for applications that require osseointegration. This study is devoted to the basic analysis of the mechanism at the origin of the improved in vitro and in vivo osteoblast cell responses exhibited by poly(sodium styrene sulfonate) (poly(NaSS)) functionalized Ti6Al4V surfaces. The aim was to probe the contribution of cell adhesive glycoproteins fibronectin and vitronectin in the initial adhesion of MC3T3-E1 osteoblastic cells to poly(NaSS) functionalized Ti6Al4V surfaces. The outcomes

  9. Hydrocarbon Deposition Attenuates Osteoblast Activity on Titanium

    Science.gov (United States)

    Hayashi, R.; Ueno, T.; Migita, S.; Tsutsumi, Y.; Doi, H.; Ogawa, T.; Hanawa, T.; Wakabayashi, N.

    2014-01-01

    Although the reported percentage of bone-implant contact is far lower than 100%, the cause of such low levels of bone formation has rarely been investigated. This study tested the negative biological effect of hydrocarbon deposition onto titanium surfaces, which has been reported to be inevitable. Osteogenic MC3T3-E1 cells were cultured on titanium disks on which the carbon concentration was experimentally regulated to achieve carbon/titanium (C/Ti) ratios of 0.3, 0.7, and 1.0. Initial cellular activities such as cell attachment and cell spreading were concentration-dependently suppressed by the amount of carbon on the titanium surface. The osteoblastic functions of alkaline phosphatase activity and calcium mineralization were also reduced by more than 40% on the C/Ti (1.0) surface. These results indicate that osteoblast activity is influenced by the degree of hydrocarbon contamination on titanium implants and suggest that hydrocarbon decomposition before implant placement may increase the biocompatibility of titanium. PMID:24868012

  10. Porphyromonas gingivalis Lipids Inhibit Osteoblastic Differentiation and Function▿

    Science.gov (United States)

    Wang, Yu-Hsiung; Jiang, Jin; Zhu, Qiang; AlAnezi, Amer Z.; Clark, Robert B.; Jiang, Xi; Rowe, David W.; Nichols, Frank C.

    2010-01-01

    Porphyromonas gingivalis produces unusual sphingolipids that are known to promote inflammatory reactions in gingival fibroblasts and Toll-like receptor 2 (TLR2)-dependent secretion of interleukin-6 from dendritic cells. The aim of the present study was to examine whether P. gingivalis lipids inhibit osteoblastic function. Total lipids from P. gingivalis and two fractions, phosphoglycerol dihydroceramides and phosphoethanolamine dihydroceramides, were prepared free of lipid A. Primary calvarial osteoblast cultures derived from 5- to 7-day-old CD-1 mice were used to examine the effects of P. gingivalis lipids on mineralized nodule formation, cell viability, apoptosis, cell proliferation, and gene expression. P. gingivalis lipids inhibited osteoblast differentiation and fluorescence expression of pOBCol2.3GFP in a concentration-dependent manner. However, P. gingivalis lipids did not significantly alter osteoblast proliferation, viability, or apoptosis. When administered during specific intervals of osteoblast growth, P. gingivalis total lipids demonstrated inhibitory effects on osteoblast differentiation only after the proliferation stage of culture. Reverse transcription-PCR confirmed the downregulation of osteoblast marker genes, including Runx2, ALP, OC, BSP, OPG, and DMP-1, with concurrent upregulation of RANKL, tumor necrosis factor alpha, and MMP-3 genes. P. gingivalis total lipids and lipid fractions inhibited calvarial osteoblast gene expression and function in vivo, as determined by the loss of expression of another osteoblast differentiation reporter, pOBCol3.6GFPcyan, and reduced uptake of Alizarin complexone stain. Finally, lipid inhibition of mineral nodule formation in vitro was dependent on TLR2 expression. Our results indicate that inhibition of osteoblast function and gene expression by P. gingivalis lipids represents a novel mechanism for altering alveolar bone homeostasis at periodontal disease sites. PMID:20584977

  11. Regulation of subchondral bone osteoblast metabolism by cyclic compression.

    Science.gov (United States)

    Sanchez, Christelle; Pesesse, Laurence; Gabay, Odile; Delcour, Jean-Pierre; Msika, Philippe; Baudouin, Caroline; Henrotin, Yves E

    2012-04-01

    Recent data have shown that abnormal subchondral bone remodeling plays an important role in osteoarthritis (OA) onset and progression, and it was suggested that abnormal mechanical pressure applied to the articulation was responsible for these metabolic changes. This study was undertaken to evaluate the effects of cyclic compression on osteoblasts from OA subchondral bone. Osteoblasts were isolated from sclerotic and nonsclerotic areas of human OA subchondral bone. After 28 days, the osteoblasts were surrounded by an abundant extracellular matrix and formed a resistant membrane, which was submitted to cyclic compression (1 MPa at 1 Hz) for 4 hours. Gene expression was evaluated by reverse transcription-polymerase chain reaction. Protein production in culture supernatants was quantified by enzyme-linked immunosorbent assay or visualized by immunohistochemistry. Compression increased the expression of genes coding for interleukin-6 (IL-6), cyclooxygenase 2, RANKL, fibroblast growth factor 2, IL-8, matrix metalloproteinase 3 (MMP-3), MMP-9, and MMP-13 but reduced the expression of osteoprotegerin in osteoblasts in both sclerotic and nonsclerotic areas. Colα1(I) and MMP-2 were not significantly affected by mechanical stimuli. Nonsclerotic osteoblasts were significantly more sensitive to compression than sclerotic ones, but after compression, differences in messenger RNA levels between nonsclerotic and sclerotic osteoblasts were largely reduced or even abolished. Under basal conditions, sclerotic osteoblasts expressed similar levels of α5, αv, β1, and β3 integrins and CD44 as nonsclerotic osteoblasts but 30% less connexin 43, an important mechanoreceptor. Genes involved in subchondral bone sclerosis are mechanosensitive. After compression, nonsclerotic and sclerotic osteoblasts expressed a similar phenotype, suggesting that compression could be responsible for the phenotype changes in OA subchondral osteoblasts. Copyright © 2012 by the American College of

  12. Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses

    Science.gov (United States)

    Shih, Chi-Jen; Lu, Pei-Shan; Hsieh, Chih-Hsin; Chen, Wen-Cheng; Chen, Jian-Chih

    2014-09-01

    The main objective of this study was to compare the responses of fibroblasts and osteoblasts to bioglass (BG) and bioglass-containing mesoporous structure (BG-M) powders. The BG-M powders exhibited specific surface areas approximately three times larger than those of the BG powders. The formation of a hysteresis loop also signified the presence of mesoporous structures in the BG-M samples; however, a hysteresis loop was not observed for the BG samples, resulting in 1/5 the pore volume of the BG-M samples. The viabilities of the fibroblasts and osteoblasts cultured in media containing the BG-M powders for 1, 2, and 3 days were greater than 90%. Importantly, the results of fluorescent microscopy images show that BG-M has excellent cellular affinity. Both the BG and BG-M substrates had positive effects on the proliferation of the osteoblastic cells. However, cells cultured on BG-M had approximately 1.4 times higher proliferation activity.

  13. Lysyl oxidase modulates the osteoblast differentiation of primary mouse calvaria cells.

    Science.gov (United States)

    Sharma-Bhandari, Anjali; Park, Sun-Hyang; Kim, Ju-Young; Oh, Jaemin; Kim, Youngho

    2015-12-01

    Lysyl oxidase (LOX) is an extracellular amine oxidase that mediates the formation of collagen fibers. Thus far, five LOX family genes [LOX, lysyl oxidase-like (LOXL)1, LOXL2, LOXL3 and LOXL4] have been identified in humans, each encoding the characteristic C-terminal domains that are required for amine oxidase activity. During osteoblastogenesis, collagen fibers function as a three-dimensional scaffold for organizing mineral deposition. In this study, to assess the functional roles of the LOX family members in osteoblastogenesis, we investigated the temporal expression of these genes as a function of phenotypic development during the osteoblast differentiation of primary cultured mouse calvaria cells. Of the LOX family members, only LOX was prominently expressed during osteoblast differentiation. LOX expression was highest on day 9 of differentiation, as shown by RT-PCR and western blot analysis. The expression pattern of collagen, type I, alpha 2 (COL1A2), which encodes the α2-chain of mouse collagen type I, was similar to that of LOX. The total amine oxidase activity of the differentiating calvaria cells exhibited a temporal pattern that paralleled LOX expression, reaching the highest level on day 9 of differentiation. We also noted that the inhibition of the amine oxidase activity of LOX significantly suppressed both mineral nodule formation and the expression of osteoblast marker genes during the differentiation of primary calvaria cells. Taken together, these findings suggest that the LOX-mediated organization of collagen fibers in the extracellular matrix is an important regulator of osteoblastogenesis.

  14. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    Science.gov (United States)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    hypergravity and activate distinct matrix-dependent FAK signaling pathways that can enhance proliferation. Our results also imply that brief exposures to hypergravity accelerate cell adhesion and spreading processes via the focal adhesion-signaling axis. These results support the role of the ECM/integrin-signaling axis in osteoblast response to hypergravity loading.

  15. The synthetic progestin, gestodene, affects functional biomarkers in neonatal rat osteoblasts through an estrogen receptor-related mechanism of action.

    Science.gov (United States)

    Enríquez, Juana; García, Gustavo; Herrero, Bertha; Larrea, Fernando

    2017-11-01

    Clinical studies have shown that gestodene (GDN), a potent third-generation synthetic progestin, affects bone resorption. However, its mode of action in bone cells is not fully understood. The aim of this study was to establish whether GDN affects bone directly or through its bioconversion to other metabolites with different biological activities. In this study, we investigated the effects of GDN and its A-ring reduced metabolites on proliferation, differentiation, and mineralization of calvarial osteoblasts isolated from neonatal rat and their capacity to displace [ 3 H]-E 2 at ER binding sites. In contrast to progesterone, gestodene did exert significant effects on osteoblast activities. The most striking finding was the observation that the A-ring reduced derivatives 3β,5α-tetrahydro-GDN and 3α,5α-tetrahydro-GDN, though to a lesser extent, had greater stimulatory effects on the osteoblast activity than those observed with GDN. The effects on osteoblast proliferation and differentiation induced by GDN-reduced derivatives were abolished by the antiestrogen ICI 182780, consistent with their binding affinities for the estrogen receptor. In addition, the presence of a 5α-reductase inhibitor or inhibitors of aldo-keto hydroxysteroid dehydrogenases abolished the GDN-induced enhancement of osteoblast differentiation. These results indicated that GDN is metabolized to the A-ring reduced metabolites with estrogen-like activities and through this mechanism, GDN may affect the osteoblast activity. Together, the data suggest that synthetic progestins derived from 19-nortestosterone such as GDN, have beneficial effects on bone due to their biotransformation into metabolites with intrinsic estrogenic activity.

  16. Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging.

    Science.gov (United States)

    Liu, Jin; Liang, Chao; Guo, Baosheng; Wu, Xiaohao; Li, Defang; Zhang, Zongkang; Zheng, Kang; Dang, Lei; He, Xiaojuan; Lu, Changwei; Peng, Songlin; Pan, Xiaohua; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2017-04-01

    Emerging evidence indicates that the dysregulation of protein ubiquitination plays a crucial role in aging-associated diseases. Smad-dependent canonical BMP signaling pathway is indispensable for osteoblastic bone formation, which could be disrupted by the ubiquitination and subsequent proteasomal degradation of Smad1/5, the key molecules for BMP signaling transduction. However, whether the dysregulation of Smad1/5 ubiquitination and disrupted BMP signaling pathway is responsible for the age-related bone formation reduction is still underexplored. Pleckstrin homology domain-containing family O member 1 (PLEKHO1) is a previously identified ubiquitination-related molecule that could specifically target the linker region between the WW domains of Smurf1 to promote the ubiquitination of Smad1/5. Here, we found an age-related increase in the expression of PLEKHO1 in bone specimens from either fractured patients or aging rodents, which was associated with the age-related reduction in Smad-dependent BMP signaling and bone formation. By genetic approach, we demonstrated that loss of Plekho1 in osteoblasts could promote the Smad-dependent BMP signaling and alleviated the age-related bone formation reduction. In addition, osteoblast-specific Smad1 overexpression had beneficial effect on bone formation during aging, which could be counteracted after overexpressing Plekho1 within osteoblasts. By pharmacological approach, we showed that osteoblast-targeted Plekho1 siRNA treatment could enhance Smad-dependent BMP signaling and promote bone formation in aging rodents. Taken together, it suggests that the increased PLEKHO1 could suppress Smad-dependent BMP signaling to inhibit bone formation during aging, indicating the translational potential of targeting PLEKHO1 in osteoblast as a novel bone anabolic strategy for reversing established osteoporosis during aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression.

    Science.gov (United States)

    Hsieh, Tsai-Pei; Sheu, Shiow-Yunn; Sun, Jui-Sheng; Chen, Ming-Hong; Liu, Man-Hai

    2010-05-01

    Epimedii herba is one of the most frequently used herbs in formulas prescribed for the treatment of osteoporosis in China. The main active flavonoid glucoside extracted from Epimedium pubescens is Icariin, which has been reported to enhance bone healing and reduce osteoporosis occurrence. However, the detailed molecular mechanisms remain unclear. In this present study, we examine the molecular mechanisms of icariin by using primary osteoblast cell cultures obtained from adult mice. The osteoblast cells were harvested from 8-month old female Imprinting Control Region (ICR) mice. The effects of icariin stimulation on the proliferation, differentiation and maturation of osteoblasts were examined. The production of nitric oxide (NO) and caspase-3 were analyzed, along with the gene expressions of bone morphogenetic protein-2 (BMP-2), SMAD4, Cbfa1/Runx2, OPG, and RANKL. The viability of the osteoblasts reached its maximum at 10(-8)M icariin. At this concentration, icariin increased the proliferation and matrix mineralization of osteoblasts and promoted NO synthesis. With icariin treatment, the BMP-2, SMAD4, Cbfa1/Runx2, and OPG gene expressions were up-regulated; the RANKL gene expression was however down-regulated. Concurrent treatment involving the BMP antagonist (Noggin) or the NOS inhibitor (L-NAME) diminished the icariin-induced cell proliferation, ALP activity, NO production, as well as the BMP-2, SMAD4, Cbfa1/Runx2, OPG, RANKL gene expressions. In this study, we demonstrate that in vitro icariin is a bone anabolic agent that may exert its osteogenic effects through the induction of BMP-2 and NO synthesis, subsequently regulating Cbfa1/Runx2, OPG, and RANKL gene expressions. This effect may contribute to its action on the induction of osteoblasts proliferation and differentiation, resulting in bone formation. Copyright 2009 Elsevier GmbH. All rights reserved.

  18. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells.

    Science.gov (United States)

    Ghanaati, Shahram; Unger, Ronald E; Webber, Matthew J; Barbeck, Mike; Orth, Carina; Kirkpatrick, Jenny A; Booms, Patrick; Motta, Antonella; Migliaresi, Claudio; Sader, Robert A; Kirkpatrick, C James

    2011-11-01

    Successful cell-based tissue engineering requires a rapid and thorough vascularization in order to ensure long-term implant survival and tissue integration. The vascularization of a scaffold is a complex process, and is modulated by the presence of transplanted cells, exogenous and endogenous signaling proteins, and the host tissue reaction, among other influencing factors. This paper presents evidence for the significance of pre-seeded osteoblasts for the in vivo vascularization of a biodegradable scaffold. Human osteoblasts, cultured on silk fibroin micronets in vitro, migrated throughout the interconnected pores of the scaffold and produced extensive bone matrix. When these constructs were implanted in SCID mice, a rapid and thorough vascularization of the scaffold by the host blood capillaries occurred. This profound response was not seen for the silk fibroin scaffold alone. Moreover, when the pre-cultivation time of human osteoblasts was reduced from 14 days to only 24 h, the significant effect these cells exerted on vascularization rate in vivo was still detectable. From these studies, we conclude that matrix and soluble factors produced by osteoblasts can serve to instruct host endothelial cells to migrate, proliferate, and initiate the process of scaffold vascularization. This finding represents a potential paradigm shift for the field of tissue engineering, especially in bone, as traditional strategies to enhance scaffold vascularization have focused on endovascular cells and regarded osteoblasts primarily as cell targets for mineralization. In addition, the migration of host macrophages and multinucleated giant cells into the scaffold was also found to influence the vascularization of the biomaterial. Therefore, the robust effect on scaffold vascularization seen by pre-culturing with osteoblasts appears to occur in concert with the pro-angiogenic stimuli arising from host immune cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effect of porous titanium coating thickness on in vitro osteoblast phenotype expression

    Directory of Open Access Journals (Sweden)

    Antonio Canabarro

    2011-03-01

    Full Text Available Aim: This study aimed at determining the effect of different thickness of porous titanium (Ti coating, 0.5, 1.0 and 1.5 mm thick (PC-0.5, PC-1.0 and PC-1.5, on osteoblast phenotype expression. Materials and methods: Dense Ti discs coated with 0.5, 1.0 and 1.5 mm of porous Ti (PC-0.5, PC-1.0 and PC-1.5, respectively were fabricated by powder metallurgy process with pore size typically between 50 and 400 μm and porosity of 60%. Osteoblastic cells obtained from human alveolar bone were cultured on dense Ti (D-Ti and PC-Ti discs for periods of up to 17 days. Results: Cultures grown on PC-Ti exhibited higher cell proliferation rate than on D-Ti. By comparing PC-Ti groups, it was observed statistical differences on culture grown only at day 10 (PC-0.5osteoblastic cell proliferation. In addition, they increased gene expression of osteoblastic markers and higher content of mineralized matrix was observed on the thicker PC-Ti coating (PC-1.5. Therefore, further in vivo evaluations should be done in order to investigate whether this structure should be considered for clinical implant applications.

  20. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Xiao Xu

    2015-11-01

    Full Text Available Background/Aims: Promyelocytic leukemia (PML protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα to contribute to the initiation of acute promyelocytic leukemia (APL. Arsenic trioxide (ATO upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Methods: Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. Results: ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conclusion: These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts.

  1. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces.

    Science.gov (United States)

    Miron, Richard J; Oates, Christine J; Molenberg, Aart; Dard, Michel; Hamilton, Douglas W

    2010-01-01

    Modifications of implant surface topography and chemistry have proven a means to enhance osseointegration, a process that ensures the stability of bone-contacting devices, including titanium dental implants. The commercial product Emdogain is an enamel matrix derivative (EMD) extracted from porcine teeth commonly used in periodontal surgery, where it has been shown to potentiate regeneration of bone. The aim of the present study was to evaluate the effect of EMD on the attachment, proliferation and differentiation of osteoblasts on titanium surfaces in vitro. Pickled (smooth) and SLA (roughened) titanium discs were coated with EMD or left uncoated. Primary rat calvarial osteoblasts were cultured on each surface from 1h to 4 weeks. EMD significantly increased cell spreading and proliferation at time points ranging from 3 to 7 days on both topographies. Alkaline phosphatase activity was significantly increased on EMD-coated titanium compared with titanium alone. Moreover, there was a 6 fold increase in levels of mRNA encoding bone sialoprotein and osteocalcin in osteoblasts cultured on EMD-coated titanium surfaces compared with uncoated surfaces. We conclude that coating of titanium with EMD enhances the proliferation and differentiation of osteoblasts irrespective of the titanium substratum topography.

  2. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    Science.gov (United States)

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  3. Visitors Center Exhibits

    Science.gov (United States)

    1997-01-01

    A child enjoys building his own LEGO model at a play table which was included in the exhibit 'Travel in Space' World Show. The exhibit consisted of 21 displays designed to teach children about flight and space travel from the Wright brothers to future generations of space vehicles.

  4. Sonnesgade 11 - Exhibition

    DEFF Research Database (Denmark)

    Carbone, Claudia; Toft, Anne Elisabeth

    2013-01-01

    This exhibition consists of site specific installations; a collection of work by students from Studio Constructing an Archive at the Aarhus School of Architecture, and SLETH Architects. The exhibition showcases the culmination of a common project which began in February 2013. The project has been...

  5. Exhibition in Sight

    Science.gov (United States)

    Wasserman, Burton

    1977-01-01

    The traveling exhibition titled "The Wild Beasts: Fauvism and its Affinities" opened first at the Museum of Modern Art in New York City and was then moved to the San Francisco Museum of Modern Art in 1976. Discusses the exhibition's historic value, how Fauvism passed through three fairly distinct stylistic phases, and the social…

  6. Effect of recombinant human bone morphogenetic protein-2 on bisphosphonate-treated osteoblasts

    Science.gov (United States)

    Kwon, Taek-Kyun; Song, Jae-Min; Kim, In-Ryoung; Park, Bong-Soo; Kim, Chul-Hoon; Cheong, In-Kyo

    2014-01-01

    Objectives Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphophonate therapy that has been reported in recent years. Osteoclastic inactivity by bisphosphonate is the known cause of BRONJ. Bone morphogenetic protein-2 (BMP-2) plays an important role in the development of bone. Recombinant human BMP-2 (rhBMP-2) is potentially useful as an activation factor for bone repair. We hypothesized that rhBMP-2 would enhance the osteoclast-osteoblast interaction related to bone remodeling. Materials and Methods Human fetal osteoblast cells (hFOB 1.19) were treated with 100 µM alendronate, and 100 ng/mL rhBMP-2 was added. Cells were incubated for a further 48 hours, and cell viability was measured using an MTT assay. Expression of the three cytokines from osteoblasts, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF), were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results Cell viability was decreased to 82.75%±1.00% by alendronate and then increased to 110.43%±1.35% after treatment with rhBMP-2 (PrhBMP2 does not affect OPG gene expression in hFOB, but it may increase RANKL and M-CSF gene expression. PMID:25551094

  7. Regulating effect of borosilicate bioglass extract on the osteoblast proliferation activity and osteogenesis signaling pathway function

    Directory of Open Access Journals (Sweden)

    Xiao-Hui He

    2017-11-01

    Full Text Available Objective: To study the regulating effect of borosilicate bioglass extract on the osteoblast proliferation activity and osteogenesis signaling pathway function. Methods: Osteoblasts MG-63 were cultured and divided into borosilicate group and control group that were treated with the culture medium containing borosilicate bioglass extract and the culture medium without extract respectively. After 24 h of treatment, the cell proliferation activity as well as the expression of proliferation activity markers, Wnt signaling pathway molecules and PI3K/ AKT signaling pathway molecules was measured. Results: After 24 h of treatment, MTT cell viability of borosilicate group was significantly higher than that of control group, and ALP, OC, OPN, COL-I, Runx2, Wnt1, Wnt3a, β-catenin, LRP5, LRP6, p-PI3K, p-AKT, Bcl-2 and BMP protein expression in cells were significantly higher than those of control group. Conclusion: Borosilicate bioglass extract can enhance the proliferation activity of osteoblasts by activating Wnt pathway and PI3K/AKT pathway.

  8. Mice Lacking Pten in Osteoblasts Have Improved Intramembranous and Late Endochondral Fracture Healing

    Science.gov (United States)

    Burgers, Travis A.; Hoffmann, Martin F.; Collins, Caitlyn J.; Zahatnansky, Juraj; Alvarado, Martin A.; Morris, Michael R.; Sietsema, Debra L.; Mason, James J.; Jones, Clifford B.; Ploeg, Heidi L.; Williams, Bart O.

    2013-01-01

    The failure of an osseous fracture to heal (development of a non-union) is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cretg/+;Ptenflox/flox). Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cretg/+;Ptenflox/flox mice were studied via micro-computed tomography (µCT) scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cretg/+;Ptenflox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF) and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing. PMID:23675511

  9. Space physics exhibits underway

    Science.gov (United States)

    DeVito, M. Catherine

    AGU is planning a new space science exhibit for the Smithsonian Institution's National Air and Space Museum in Washington that will help visitors come to an understanding of space science as a comprehensive, interdisciplinary, and exciting field. The title of the exhibit is “Electric Space: Our Earth-Sun Environment.” The exhibit's five modules will include demonstrations of the effects of particle and field radiation on humans and satellites in space and on human technology on the ground. The project also includes a larger traveling version that will visit science and technology centers throughout the United States. The first exhibit is planned to open at the Air and Space Museum in late summer or early fall 1992, in time for International Space Year activities; the traveling exhibit will begin touring in early 1993.

  10. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene B; Levin Andersen, Thomas; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling...... is lacking. We addressed this question by quantifying cell densities, cell proliferation, osteoblast differentiation markers, and capillaries in human iliac crest biopsy specimens. We found that recruitment occurs on both reversal and bone-forming surfaces, as shown by the cell density and osterix levels...

  11. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aisha, M.D. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); Nor-Ashikin, M.N.K. [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Sharaniza, A.B.R. [DDH, Universiti Teknologi MARA, ShahAlam 40450, Selangor (Malaysia); Nawawi, H. [Center for Pathology Diagnostic and Research Laboratories, Clinical Training Center, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia); Froemming, G.R.A., E-mail: gabriele@salam.uitm.edu.my [Institute of Medical Molecular Biotechnology and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor (Malaysia); I-PPerForM, Universiti Teknologi MARA, Selayang 47000 Selangor (Malaysia)

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  12. The effects of bone pâté on human osteoblasts cell cultures.

    Science.gov (United States)

    Quaranta, Nicola; Buccoliero, Cinzia; De Luca, Concetta; Mori, Giorgio; Brunetti, Giacomina; Colucci, Silvia; Colaianni, Graziana; Grano, Maria

    2016-06-01

    The aim of the present study was to evaluate the effect of bone pate on human osteoblast differentiation by measuring cell viability, alkaline phosphatase activity and expression of the transcription factors and of the major components of the extracellular matrix. Although bone paté has been used in ear surgery for many years and when placed in contact with mastoid and external auditory canal bone become viable, the cellular mechanisms that lead to its osteointegration have never been described. Bone paté taken from four patients subjected to mastoidectomy and affected by middle ear and mastoid cholesteatoma was placed in contact with osteoblast-like cell cultures. Four experimental conditions were obtained: cell cultures treated with bone patè, with bone paté mixed with fibrin glue, with fibrin glue and untreated. After 24 h, the viability of the cells was evaluated; after 1 week, alkaline phosphatase activity and the expression of transcription factors and bone matrix proteins were assessed by quantitative polymerase chain reaction. After 24 h osteoblasts showed increased viability when treated with bone paté (19 % increase) and bone pate mixed with fibrin glue (34 % increase). After 1 week, the number of alkaline phosphatase positive cells increased by 97 and 94 % in cultures treated with bone paté alone and bone pate mixed with fibrin glue. Treatment with bone patè upregulated transcription factors and components of the extracellular matrix. The present data show that bone paté has a high osteoinductive potential on human osteoblasts, enhancing their activity.

  13. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pareta, Rajesh A; Webster, Thomas J [Division of Engineering and Department of Orthopedics, Brown University, Providence, RI 02912 (United States); Taylor, Erik [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)], E-mail: Thomas_Webster@Brown.edu

    2008-07-02

    Bone diseases (including osteoporosis, osteoarthritis and bone cancer) are of great concern to the medical world. Drugs are available to treat such diseases, but often these drugs are not specifically targeted to the site of the disease and, thus, lack an immediate directed therapeutic effect. The optimal drug delivery system should enhance healthy bone growth with high specificity to the site of bone disease. It has been previously shown that magnetic nanoparticles can be directed in the presence of a magnetic field to any part of the body, allowing for site-specific drug delivery and possibly an immediate increase in bone density. The objective of the present study was to build off of this evidence and determine the density of osteoblasts (bone forming cells) in the presence of various uncoated and coated magnetic nanoparticles that could eventually be used in drug delivery applications. Results showed that some magnetic nanoparticles (specifically, {gamma}-Fe{sub 2}O{sub 3}) significantly promoted osteoblast density (that is, cells per well) after 5 and 8 days of culture compared to controls (no particles). These magnetic nanoparticles were further coated with calcium phosphate (CaP; the main inorganic component of bone) to tailor them for treating various bone diseases. The coatings were conducted in the presence of either bovine serum albumin (BSA) or citric acid (CA) to reduce magnetic nanoparticle agglomeration, a common problem resulting from the use of nanoparticles which decreases their effectiveness. Results with these coatings showed that magnetic nanoparticles, specifically ({gamma}-Fe{sub 2}O{sub 3}), coated in the presence of BSA significantly increased osteoblast density compared to controls after 1 day. In this manner, this study provided unexpected evidence that CaP-coated {gamma}-Fe{sub 2}O{sub 3} magnetic nanoparticles increased osteoblast density (compared to no particles) and, thus, should be further studied to treat numerous bone diseases.

  14. SSH-BM-I, a tryptamine derivative, stimulates mineralization in terminal osteoblast differentiation but inhibits osteogenesis of pre-committed progenitor cells.

    Science.gov (United States)

    Mikami, Yoshikazu; Somei, Masanori; Tsuda, Hiromasa

    2011-01-01

    SSH-BM-I was synthesized from tryptamine by using a newly developed synthetic method, and it has structural similarity to bromomelatonin. Recently, it had been reported that SSH-BM-I increases osteoblasts in scales of gold fish. However, the effect of SSH-BM-I on osteoblast differentiation in mammalian cells has not yet been examined. Therefore, this study examined the effect of SSH-BM-I on osteoblast differentiation in mesenchymal progenitor-like cells and mature osteoblast-like cells. SSH-BM-I enhanced terminal osteoblast differentiation, as indicated by mineralization, which was accompanied by upregulation of the osteogenic marker genes bone sialoprotein (BSP) and osteocalcin (OC). However, in mesenchymal progenitor ROB-C26 cultures, no mineralized nodules were observed regardless of SSH-BM-I treatment, although BMP-2 was able to induce nodule formation in these cells. Furthermore, BMP-2-induced nodule formation was suppressed by SSH-BM-I treatment in ROB-C26 cultures. We further investigated the impact of the timing and duration of SSH-BM-I treatment on osteoblast differentiation. The effect of SSH-BM-I treatment on osteoblast differentiation of ROB-C26 in the presence of BMP-2 switches from negative to positive sometime between day 6 and 9, because SSH-BM-I treatment enhanced the formation of mineralized nodules when it was started on day 9, but suppressed nodule formation when it was started at day 6 or earlier. These results suggest that the stimulatory effects of SSH-BM-I on the formation of mineralized nodules depend on the degree of cell differentiation.

  15. Communicating Science through Exhibitions

    Science.gov (United States)

    Dusenbery, Paul

    2005-04-01

    It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. Science exhibitions also provide a marvelous opportunity for scientists to become engaged in the exhibit development process. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). The focus of this presentation will be on two of its exhibit projects: MarsQuest (on tour for four years) and Alien Earths (its tour began early in 2005). MarsQuest is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. Alien Earths will bring origins-related research and discoveries to students and the American public. It has four interrelated exhibit areas: Our Place in Space, Star Birth, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. SSI is also developing interactive web sites based on exhibit themes. New technologies are transforming the Web from a static medium to an interactive environment with tremendous potential for informal education and inquiry-based investigations. This talk will focus on the role informal science projects play in effectively communicating science to a broad, public audience.

  16. In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite

    Science.gov (United States)

    Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; De Angelis, Maria Gabriella Cusella; Magenes, Giovanni; Benazzo, Francesco

    2009-01-01

    One of the key challenges in reconstructive bone surgery is to provide living constructs that possess the ability to integrate in the surrounding tissue. Bone graft substitutes, such as autografts, allografts, xenografts, and biomaterials have been widely used to heal critical-size long bone defects due to trauma, tumor resection, congenital deformity, and tissue degeneration. In particular, porous hydroxyapatite is widely used in reconstructive bone surgery owing to its biocompatibility. In addition, the in vitro modification of hydroxyapatite with osteogenic signals enhances the tissue regeneration in vivo, suggesting that the biomaterial modification could play an important role in tissue engineering. In this study we have followed a biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix inside a porous hydroxyapatite scaffold. The electromagnetic stimulus had the following parameters: intensity of the magnetic field equal to 2 mT, amplitude of the induced electric tension equal to 5 mV, frequency of 75 Hz, and pulse duration of 1.3 ms. In comparison with control conditions, the electromagnetic stimulus increased the cell proliferation and the surface coating with bone proteins (decorin, osteocalcin, osteopontin, type-I collagen, and type-III collagen). The physical stimulus aimed at obtaining a better modification of the biomaterial internal surface in terms of cell colonization and coating with bone matrix. PMID:19827111

  17. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers.

    Science.gov (United States)

    Shao, Shijun; Zhou, Shaobing; Li, Long; Li, Jinrong; Luo, Chao; Wang, Jianxin; Li, Xiaohong; Weng, Jie

    2011-04-01

    The electrospinning process was utilized successfully to fabricate the random oriented and aligned electrically conductive nanofibers of biodegradable poly-DL-lactide (PLA) in which multiwalled carbon nanotubes (MWCNTs) were embedded. The topographical features of the composite nanofibers were characterized by SEM. The dispersion and alignment of MWCNTs in nanofiber matrix were observed by TEM. The in vitro degradation was characterized in terms of the morphological change, the mass loss and the reduction of polymer molecular weight as well as the decrease of pH value of degradation media. In particular, these conductive nanofiber meshes offered a unique system to study the synergistic effect of topographic cues and electrical stimulation on osteoblasts outgrowth as a way of exploring their potential application in bone tissue engineering. The results of obsteoblasts assay unstimulated showed that the aligned nanofibers as topographic cues could enhance the extension and direct the outgrowth of obsteoblasts better than random fibers. In the presence of direct current (DC) of 100 μA, the obsteoblasts on all samples grew along the electrical current direction. The cellular elongation and proliferation were mainly dependent on the electrical stimulation whereas the topographical features played a minor role in them. Therefore, electrical stimulation with an appropriate DC value imparted on conductive substrate had great potential in application of bone tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  19. The effect of Platelet Lysate on osteoblast proliferation associated with a transient increase of the inflammatory response in bone regeneration.

    Science.gov (United States)

    Ruggiu, Alessandra; Ulivi, Valentina; Sanguineti, Francesca; Cancedda, Ranieri; Descalzi, Fiorella

    2013-12-01

    Platelet Lysate (PL) contains a cocktail of growth factors and cytokines, which actively participates in tissue repair and its clinical application has been broadly described. The aim of this study was to assess the regenerative potential of PL for bone repair. We demonstrated that PL stimulation induces a transient increase of the inflammatory response in quiescent human osteoblasts, via NF-kB activation, COX-2 induction, PGE2 production and secretion of pro-inflammatory cytokines. Furthermore, we showed that long-term PL stimulation enhances proliferation of actively replicating osteoblasts, without affecting their differentiation potential, along with changes of cell morphology, resulting in increased cell density at confluence. In confluent resting osteoblasts, PL treatment induced resumption of proliferation, change in cell morphology and increase of cell density at confluence. A burst of PL treatment (24-h) was sufficient to trigger such processes in both conditions. These results correlated with up-regulation of the proliferative and survival pathways ERKs and Akt and with cell cycle re-activation via induction of CyclinD1 and phosphorylation of Rb, following PL stimulation. Our findings demonstrate that PL treatment results in activation and expansion of resting osteoblasts, without affecting their differentiation potential. Therefore PL represents a good therapeutic candidate in regenerative medicine for bone repair. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohee [Department of Internal Medicine, Dankook University College of Medicine, Cheonan (Korea, Republic of); Yang, Jae-Yeon [Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Chongno-Gu, Seoul 110-744 (Korea, Republic of); Shin, Chan Soo, E-mail: csshin@snu.ac.kr [Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Chongno-Gu, Seoul 110-744 (Korea, Republic of)

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.

  1. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  2. Icariin influences adipogenic differentiation of stem cells affected by osteoblast-osteoclast co-culture and clinical research adipogenic.

    Science.gov (United States)

    Zhang, Shuncong; Feng, Pengbo; Mo, Guoye; Li, Daxing; Li, Yongxian; Mo, Ling; Yang, Zhidong; Liang, De

    2017-04-01

    To build mouse osteoblast MC3T3-E1 and mouse osteoclast RAW264.7 co-culture system and to study the effect of icariin on the activity of osteoblasts and osteoclasts in the co-culture system. In vitro acquisition and cultivation of mouse osteoblasts MC3T3-E1 and mouse RAW264.7 cells were conducted. Osteoblast and osteoclast activities of cells were detected by CCK-8 staining experiment, alizarin red staining and tartaric-resistant acid phosphatase (TRAP) staining. We used different concentrations of icariin to interfere in osteoblast-osteoclast co-culture system. The effects of icariin on various genes were detected by PCR and Western blot methods The correction between the expression of PPARγ and BMD was analyzed in patients with osteoporosis. Mouse osteoblast-osteoclast co-culture system was built, and the osteogenic differentiation effect was enhanced. Icariin can improve the MC3T3-E1 osteogenic differentiation activity, enhance the expression of OPG and RANKL gene protein, reduce the NF-κb gene and protein expression, increase of ALP, TGF-b1 and RANKL gene expression level and reduce RANK gene expression. Icariin can act on MC3T3-E1 cells-RAW264.7 cells co-culture system, and promote the osteogenic activity of MC3T3-E1 cells, inhibit the osteoclast activity of RAW264.7 cells and reduce the level of BMSCs adipogenic differentiation. The expression level of PPAR-γ gene was negatively correlated with the level of BMD. Mouse MC3T3-E1 cells and mouse RAW264.7 cells could be co-cultured in vitro, and icariin could improve the osteogenic activity of MC3T3 cells-RAW264.7 cells and decrease the osteoclast activity. Icariin could inhibit adipogenic differentiation of BMSCs in the osteoblast-osteoclast co-culture, promoting osteogenic differentiation and inhibiting osteoclast differentiation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. In vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co-substituted tricalcium phosphate ceramics.

    Science.gov (United States)

    Parra, Juan; García Páez, Ismael H; De Aza, Antonio H; Baudin, Carmen; Rocío Martín, M; Pena, Pilar

    2017-08-01

    The objective of this work was to study the feasibility of the solid state sintering, a conventional ceramic processing method, to obtain Mg and Si co-substituted tricalcium phosphate bioceramics and composites containing diopside. A series of new Ca3 (PO4 )2 based ceramics has been prepared from attrition milled mixtures of synthetic Ca3 (PO4 )2 and CaMg(SiO3 )2 powders, isostatically pressed and sintered at 1250-1300°C. Materials containing 0, 1, and 5 wt % of CaMg(SiO3 )2 were constituted by β + α - Ca3 (PO4 )2 solid solutions while the material containing 60 wt % of CaMg(SiO3 )2 was a constituted by β- Ca3 (PO4 )2 and CaMg(SiO3 )2 . The biological responses of the developed ceramics were studied in vitro using human fetal osteoblast cultures. Culture times ranged from 1 to 21 days. The new family of materials promotes the adhesion and proliferation of human osteoblasts cultured onto their surface forming a monolayer and showing a normal morphology. The results of the MTT and Alamar Blue assays showed that the soluble components extracted from the Mg/Si- co-substituted Ca3 (PO4 )2 and the Ca3 (PO4 )2 -CaMg(SiO3 )2 composite were noncytotoxic. The specimens with diopside exhibited a better in vitro behavior which is attributed to the release of Si and Mg ions to the culture medium, enhancing the activity of cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2266-2275, 2017. © 2017 Wiley Periodicals, Inc.

  4. Mechanisms of palmitate-induced cell death in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Krishanthi Gunaratnam

    2013-11-01

    Lipotoxicity is an overload of lipids in non-adipose tissues that affects function and induces cell death. Lipotoxicity has been demonstrated in bone cells in vitro using osteoblasts and adipocytes in coculture. In this condition, lipotoxicity was induced by high levels of saturated fatty acids (mostly palmitate secreted by cultured adipocytes acting in a paracrine manner. In the present study, we aimed to identify the underlying mechanisms of lipotoxicity in human osteoblasts. Palmitate induced autophagy in cultured osteoblasts, which was preceded by the activation of autophagosomes that surround palmitate droplets. Palmitate also induced apoptosis though the activation of the Fas/Jun kinase (JNK apoptotic pathway. In addition, osteoblasts could be protected from lipotoxicity by inhibiting autophagy with the phosphoinositide kinase inhibitor 3-methyladenine or by inhibiting apoptosis with the JNK inhibitor SP600125. In summary, we have identified two major molecular mechanisms of lipotoxicity in osteoblasts and in doing so we have identified a new potential therapeutic approach to prevent osteoblast dysfunction and death, which are common features of age-related bone loss and osteoporosis.

  5. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Tasat, D.R. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Orona, N.S. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Mandalunis, P.M. [Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Cabrini, R.L. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Ubios, A.M. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina)

    2007-05-15

    Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 {mu}M) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 {mu}M UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 {mu}M UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage. (orig.)

  6. The role of osteoblasts in peri-prosthetic osteolysis.

    LENUS (Irish Health Repository)

    O'Neill, S C

    2013-08-01

    Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition.

  7. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    Science.gov (United States)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  8. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells

    Directory of Open Access Journals (Sweden)

    Puri Christina

    2007-03-01

    Full Text Available Abstract Background Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells. Results We cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly

  9. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  10. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  11. Combined Effects of Soy Isoflavones and β-Carotene on Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    Yoriko Nishide

    2015-10-01

    Full Text Available Soy isoflavones, genistein, daidzein and its metabolite equol, as well as β-carotene have been reported to be effective for maintaining bone health. However, it remains to be elucidated whether combining soy isoflavones with β-carotene is beneficial to bone formation. This study investigated the combined effect of soy isoflavones and β-carotene on the differentiation of MC3T3-E1 preosteoblastic cells. Daidzein and genistein alone did not affect cell growth but increased alkaline phosphatase (ALP activity. Beta-carotene alone inhibited cell growth and markedly enhanced ALP activity. Soy isoflavones combined with β-carotene resulted in higher ALP activity than treatment with isoflavones or β-carotene alone. We observed significant main effects of β-carotene on the enhanced expression of Runx2, ALP, and ostepontin mRNA, whereas there was a significant main effect of soy isoflavones on the expression of osterix mRNA. To investigate how β-carotene affected osteoblast differentiation, MC3T3-E1 cells were treated with retinoic acid receptor (RAR pan-antagonist combined with β-carotene. Osteopontin and ALP mRNA expression levels, which were increased following treatment with β-carotene, were significantly suppressed by the RAR pan-antagonist. This suggests treatment with β-carotene enhanced early osteoblastic differentiation, at least in part via RAR signaling. These results indicate that a combination of isoflavones and β-carotene may be useful for maintaining a positive balance of bone turnover by inducing osteoblast differentiation.

  12. Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity.

    Directory of Open Access Journals (Sweden)

    Jong Ryeol Eun

    Full Text Available SK Hep-1 cells (SK cells derived from a patient with liver adenocarcinoma have been considered a human hepatoma cell line with mesenchymal origin characteristics, however, SK cells do not express liver genes and exhibit liver function, thus, we hypothesized whether mesenchymal cells might contribute to human liver primary cancers. Here, we characterized SK cells and its tumourigenicity.We found that classical mesenchymal stem cell (MSC markers were presented on SK cells, but endothelial marker CD31, hematopoietic markers CD34 and CD45 were negative. SK cells are capable of differentiate into adipocytes and osteoblasts as adipose-derived MSC (Ad-MSC and bone marrow-derived MSC (BM-MSC do. Importantly, a single SK cell exhibited a substantial tumourigenicity and metastatic capacity in immunodefficient mice. Metastasis not only occurred in circulating organs such as lung, liver, and kidneys, but also in muscle, outer abdomen, and skin. SK cells presented greater in vitro invasive capacity than those of Ad-MSC and BM-MSC. The xenograft cells from subcutaneous and metastatic tumors exhibited a similar tumourigenicity and metastatic capacity, and showed the same relatively homogenous population with MSC characteristics when compared to parental SK cells. SK cells could unlimitedly expand in vitro without losing MSC characteristics, its tumuorigenicity and metastatic capacity, indicating that SK cells are oncogenic MSC with enhanced self-renewal capacity. We believe that this is the first report that human MSC appear to be transformed into cancer stem cells (CSC, and that their derivatives also function as CSCs.Our findings demonstrate that SK cells represent a transformation mechanism of normal MSC into an enhanced self-renewal CSC with metastasis capacity, SK cells and their xenografts represent a same relative homogeneity of CSC with substantial metastatic capacity. Thus, it represents a novel mechanism of tumor initiation, development and

  13. Osteoblast behavior on TiO{sub 2} microgrooves prepared by soft-lithography and sol-gel methods

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Lili [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Lu Xiong, E-mail: luxiong_2004@163.com [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China) and Department of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Leng Yang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Qu Shuxin; Feng Bo; Weng Jie [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Watari, Fumio [Department of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan)

    2012-05-01

    This study focused on the effects of microgrooved TiO{sub 2} surfaces on osteoblast behavior. Microgrooved TiO{sub 2} surfaces with different widths (12 {mu}m and 40 {mu}m) and flat surfaces were fabricated on glass substrates based on the combination of a sol-gel technique and soft-lithography. Osteoblasts (MC3T3-E1) were cultured on the as-prepared microgrooved and flat TiO{sub 2} surfaces. Optical microscopy and scanning electron microscopy were used to analyze the adherent cell behavior by examining the cell morphology. Orientation angle analysis indicated that the cells tended to align along the microgrooves. This tendency was stronger on the microgrooves with smaller widths and became weak with increasing width. Alamar Blue assay indicated that the microgrooves restricted cell proliferation and the alkaline phosphatase assay revealed that the microgrooves limited the differentiation rate. This restriction increased with decreasing microgroove width. The surface energy of the TiO{sub 2} surfaces was size-dependent and followed the order {gamma}{sub 12{mu}m} < {gamma}{sub 40{mu}m} < {gamma}{sub flatsurfaces}. Osteoblast proliferation and differentiation on the surface with high surface energy exhibited high proliferation and differentiation rates. These results indicated that surface energy appeared to be a dominant factor for cell activity. Thus, surface energy would be a valuable index for the cell compatibility of a micropatterned surface. - Highlights: Black-Right-Pointing-Pointer The micropatterned TiO{sub 2} was prepared by soft-lithography and sol-gel technique. Black-Right-Pointing-Pointer TiO{sub 2} microgrooves change the morphology and orientation of osteoblasts. Black-Right-Pointing-Pointer Micropatterns with certain dimensions restrict the activity of osteoblasts. Black-Right-Pointing-Pointer The cell activity is correlated with the surface energies of different substrates.

  14. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts.

    Science.gov (United States)

    Maeda, Aya; Bandow, Kenjiro; Kusuyama, Joji; Kakimoto, Kyoko; Ohnishi, Tomokazu; Miyawaki, Shouichi; Matsuguchi, Tetsuya

    2015-05-01

    Mechanical stresses including pressure force induce chemokine expressions in osteoblasts resulting in inflammatory reactions and bone remodeling. However, it has not been well elucidated how mechanical stresses induce inflammatory chemokine expressions in osteoblasts. IL-1β has been identified as an important pathogenic factor in bone loss diseases, such as inflammatory arthritis and periodontitis. Myeloid differentiation factor 88 (MyD88) is an essential downstream adaptor molecule of IL-1 receptor signaling. This study was to examine the gene expression profiles of inflammatory chemokines and the role of MyD88 in osteoblasts stimulated by pressure force. Pressure force (10g/cm(2)) induced significant mRNA increases of CXCL2, CCL2, and CCL5, as well as prompt phosphorylation of MAP kinases (ERK, p38 and JNK), in wild-type primary osteoblasts. The CXCL2 and CCL2 mRNA increases and MAP kinase phosphorylation were severely impaired in MyD88(-/-) osteoblasts. Constitutive low-level expression of IL-1β mRNA was similarly observed in both wild-type and MyD88(-/-) osteoblasts, which was not altered by pressure force stimulation. Notably, neutralization of IL-1β with a specific antibody significantly impaired pressure force-induced mRNA increases of CXCL2 and CCL2, as well as MAP kinase phosphorylation, in wild-type osteoblasts. Furthermore, pre-treatment with recombinant IL-1β significantly enhanced MAP kinase phosphorylation and mRNA increases of CXCL2 and CCL2 by pressure force in wild-type but not MyD88(-/-) osteoblasts. These results have suggested that the activation of MyD88 pathway by constitutive low-level IL-1β expression is essential for pressure force-induced CXCL2 and CCL2 expression in osteoblasts. Thus MyD88 signal in osteoblasts may be required for bone resorption by pressure force through chemokine induction. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation.

    Science.gov (United States)

    Reddi, Srinu; Shanmugam, Venkatesa Perumal; Tanedjeu, Kemgang Sonfack; Kapila, Suman; Kapila, Rajeev

    2016-11-21

    Epidemiological and intervention studies show that milk consumption in childhood and during adolescence is related to higher bone mineral density. Milk and milk products prevent the bone loss in pre- and postmenopausal women. Apart from calcium, there are other biologically active compounds in milk such as bioactive peptides which may play a role in promoting bone health. Casein is the major protein in milk which has also been reported to have numerous biological active peptides within it. The hypothesis of the present study was to identify the key peptides behind osteoanabolic nature of the milk protein, which further can be used to prepare functional foods to alleviate bone diseases like osteoporosis. Hence, this study was carried out to investigate osteogenic nature of four novel bioactive peptides [PEP1 (EDVPSER), PEP2 (NAVPITPTL), PEP3 (VLPVPQK) and PEP4 (HPHPHLSF)] derived from buffalo casein by in vitro osteoblast differentiation model. Calvaria cells were isolated from 3-day-old rat pups, cultured under in vitro conditions till confluence and further used for experiments. Calvarial osteoblast cells were cultured in the presence or absence of peptides including positive controls up to 21 days. Effect of peptides was checked at regular intervals by quantifying osteoblast differentiation marker genes (ALP, OCN and COL-1) expression, alkaline phosphatase activity, osteocalcin level in culture supernatants, mineral deposition by alizarin red staining and caspase-3 and 9 assays. The osteoblast differentiation marker genes (ALP, OCN and COL-1) expression was significantly [(p peptides. The peptides also significantly induced alkaline phosphatase activity, osteocalcin level and mineral deposition in comparison with the control. It was also observed that all the four peptides did not show any cytotoxic effect during 21-day treatment period. All peptides enhanced osteoblast differentiation along with the positive controls. These results hold an immense scope to use

  16. Water extract of Rumex crispus prevents bone loss by inhibiting osteoclastogenesis and inducing osteoblast mineralization.

    Science.gov (United States)

    Shim, Ki-Shuk; Lee, Bohyoung; Ma, Jin Yeul

    2017-10-26

    Rumex crispus root has traditionally been used in Asian medicine for the treatment of hemorrhage and dermatolosis. The aim of this study was to explore the pharmaceutical effects of water extract of Rumex crispus (WERC) on osteoblast and osteoclast differentiation. We also studied the effect of WERC on the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced trabecular bone destruction mice model. High performance liquid chromatography analysis was used to identify three compounds (emodin, chrysophanol, and physcion) of WERC. The in vivo effect of WERC was examined using an administration of WERC or vehicle on the ICR mice with bone loss induced by intraperitoneal RANKL injection on day 0 and 1. All mice were sacrificed by cervical dislocation at day 7 and the femurs of mice were isolated for soft X-ray and Micro-CT analysis. The in vitro effect of WERC on osteoblast mineralization or osteoclast differentiation was examined by alizarin red S staining or by tartrate-resistant acid phosphatase staining and assay. To determine the transcription level of osteoblast or osteoclast-specific genes, real-time quantitative polymerase chain reaction was used. Western blot analysis was performed to study the effect of WERC on mitogen-activated protein kinases (MAPK) or nuclear factor-κB (NF-κB) signaling molecules. The presence of three compounds in WERC was determined. WERC significantly suppressed RANKL-induced trabecular bone loss by preventing microstructural deterioration. In vitro, WERC increased osteoblast mineralization by enhancing the transcription of runt-related transcription factor 2 and its transcriptional coactivators, and by stimulating extracellular signal-regulated kinase phosphorylation. Furthermore, WERC significantly inhibited osteoclast differentiation by suppressing the activation of the RANKL signalings (MAPK and NF-κB) and the increasing inhibitory factors of nuclear factor of activated T cells cytoplasmic 1. This study showed that

  17. Evolution of the osteoblast: skeletogenesis in gar and zebrafish

    Directory of Open Access Journals (Sweden)

    Eames B Frank

    2012-03-01

    Full Text Available Abstract Background Although the vertebrate skeleton arose in the sea 500 million years ago, our understanding of the molecular fingerprints of chondrocytes and osteoblasts may be biased because it is informed mainly by research on land animals. In fact, the molecular fingerprint of teleost osteoblasts differs in key ways from that of tetrapods, but we do not know the origin of these novel gene functions. They either arose as neofunctionalization events after the teleost genome duplication (TGD, or they represent preserved ancestral functions that pre-date the TGD. Here, we provide evolutionary perspective to the molecular fingerprints of skeletal cells and assess the role of genome duplication in generating novel gene functions. We compared the molecular fingerprints of skeletogenic cells in two ray-finned fish: zebrafish (Danio rerio--a teleost--and the spotted gar (Lepisosteus oculatus--a "living fossil" representative of a lineage that diverged from the teleost lineage prior to the TGD (i.e., the teleost sister group. We analyzed developing embryos for expression of the structural collagen genes col1a2, col2a1, col10a1, and col11a2 in well-formed cartilage and bone, and studied expression of skeletal regulators, including the transcription factor genes sox9 and runx2, during mesenchymal condensation. Results Results provided no evidence for the evolution of novel functions among gene duplicates in zebrafish compared to the gar outgroup, but our findings shed light on the evolution of the osteoblast. Zebrafish and gar chondrocytes both expressed col10a1 as they matured, but both species' osteoblasts also expressed col10a1, which tetrapod osteoblasts do not express. This novel finding, along with sox9 and col2a1 expression in developing osteoblasts of both zebrafish and gar, demonstrates that osteoblasts of both a teleost and a basally diverging ray-fin fish express components of the supposed chondrocyte molecular fingerprint. Conclusions Our

  18. Exhibition in Sight

    Science.gov (United States)

    Wasserman, Burton

    1978-01-01

    Ludwig Mies van der Rohe is known primarily as an architect. However, he also designed chairs and tables. Discusses an exhibit held in New York City a few months ago which showed how well the famous architect achieved his goals in the area of furniture design. (Author/RK)

  19. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  20. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  1. Development of poly(3-octylthiophene) thin films for regulating osteoblast growth

    Science.gov (United States)

    Rincon-Rosenbaum, Charlene

    The investigation of electrically conducting polymers (CPs) for use in biomedical applications has expanded greatly since the discovery in the 1980s that these materials are compatible with many biological molecules. CPs are able, via electrical stimulation, to modulate the behavior of certain electrically responsive cells (i.e., nerve, muscle, bone, and cardiac cells). CPs such as polypyrrole, polyaniline, and polythiophene have a conjugated structure that upon doping allows interchain hopping of electrons. In addition, most CPs have numerous attractive properties for biomedical applications, including the ability to transfer charges, to entrap and release biological molecules, and the potential to vary their chemical, electrical, and physical properties. Even though there has been significant progress, many biomedical issues remain unexplored, especially the interaction between different cell types (e.g., neurons, fibroblasts, and osteoblasts) and substituted polythiophenes (PTs) in both the undoped and doped states. PTs are one of the most widely studied CPs, therefore ample knowledge exists on their chemical, electrical, and physical properties. They also have great potential for biomedical applications as they have been used as biosensors, molecular actuators, and cell support substrates. The overall objective of this work is to assess the suitability of poly(3-octylthiophene) (P3OT) to sustain MC3T3-E1 osteoblast attachment and growth. The central hypothesis is that specific P3OT film properties (e.g., thickness, film preparation conditions, and level of doping) are able to regulate osteoblast functions (e.g., attachment and proliferation). Discrete and combinatorial techniques were utilized in this work to prepare and characterize thin films of P3OT, a semiconductor in its undoped state, and to study its interaction with MC3T3-E1 osteoblasts. The MC3T3-E1 cell line was chosen because it is well understood, is known to exhibit a developmental sequence

  2. Red yeast rice stimulates osteoblast proliferation and increases alkaline phosphatase activity in MC3T3-E1 cells.

    Science.gov (United States)

    Cho, Young-Eun; Alcantara, Ethel; Kumaran, Santhy; Son, Kun-Ho; Sohn, Ho-Yong; Lee, Jong-Hwa; Choi, Chung-Sig; Ha, Tae-Youl; Kwun, In-Sook

    2010-07-01

    Red yeast (Monascus purpureus) is used as a traditional hypocholesterolemic dietary food component in Asia due to its bioactive component, lovastatin. Recently, new evidence suggesting that the statins in red yeast enhance bone formation has been reported, but more research is still needed in order to support these claims of osteogenic effects. Therefore, in this study, we hypothesized that red yeast rice (in which red yeast is fermented) can improve osteogenic function through osteoblast cell proliferation and differentiation. We studied the effect of methanol extract of red yeast rice powder (RYRP) on osteoblast proliferation and differentiation by measuring mitochondrial enzyme activity and bone marker alkaline phosphatase (ALP) activity, respectively. Osteoblast-like MC3T3-E1 cells were cultured in various concentrations of RYRP methanol extract (0.001-1 mg/mL) during the osteoblast differentiation period (1, 5, 10, and 15 days). As measured by 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay, RYRP extracts stimulated cell proliferation during a 24-hour period, compared to cooked white rice powder extract. The most pronounced effect was observed at the concentration range between 0.075 and 0.1 mg/mL. This RYRP stimulatory effect for cell proliferation was observed during the whole osteogenic period. Cellular (synthesized) ALP activity was increased at a RYRP extract concentration of 0.075 mg/mL during 15 days of culture, but the medium (secreted) ALP activity did not show any significant change. This cellular ALP activity stimulation by RYRP extract was confirmed by the staining of ALP activity on cell matrix layers for matrix calcification. The results imply that RYRP extract may increase osteogenic effect by stimulating cell proliferation and ALP activity in osteoblastic cells. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats.

    Science.gov (United States)

    Wu, Cheng-Tien; Lu, Tung-Ying; Chan, Ding-Cheng; Tsai, Keh-Sung; Yang, Rong-Sen; Liu, Shing-Hwa

    2014-06-01

    Arsenic is a ubiquitous toxic element and is known to contaminate drinking water in many countries. Several epidemiological studies have shown that arsenic exposure augments the risk of bone disorders. However, the detailed effect and mechanism of inorganic arsenic on osteoblast differentiation of bone marrow stromal cells and bone loss still remain unclear. We investigated the effects and mechanism of arsenic on osteoblast differentiation in vitro and evaluated bone mineral density (BMD) and bone microstructure in rats at doses relevant to human exposure from drinking water. We used a cell model of rat primary bone marrow stromal cells (BMSCs) and a rat model of long-term exposure with arsenic-contaminated drinking water, and determined bone microstructure and BMD in rats by microcomputed tomography (μCT). We observed significant attenuation of osteoblast differentiation after exposure of BMSCs to arsenic trioxide (0.5 or 1 μM). After arsenic treatment during differentiation, expression of runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), and osteocalcin in BMSCs was inhibited and phosphorylation of enhanced extracellular signal-regulated kinase (ERK) was increased. These altered differentiation-related molecules could be reversed by the ERK inhibitor PD98059. Exposure of rats to arsenic trioxide (0.05 or 0.5 ppm) in drinking water for 12 weeks altered BMD and microstructure, decreased Runx2 expression, and increased ERK phosphorylation in bones. In BMSCs isolated from arsenic-treated rats, osteoblast differentiation was inhibited. Our results suggest that arsenic is capable of inhibiting osteoblast differentiation of BMSCs via an ERK-dependent signaling pathway and thus increasing bone loss.

  4. Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruíz, Rafael Arcesio; Gomez Moreno, Gerardo; Aguilar-Salvatierra, Antonio; Markovic, Aleksa; Mate-Sánchez, Jose Eduardo; Calvo-Guirado, José Luis

    2016-11-01

    To measure the lateral surface area of microgrooved zirconia implants, to evaluate the cell geometry and cell density of human fetal osteoblasts seeded on zirconia microgrooved implants, to describe the surface roughness and chemistry, and to evaluate the activity of human fetal osteoblasts seeded on zirconia microgrooved disks. This experimental in vitro study used 62 zirconia implants and 130 zirconia disks. Two experimental groups were created for the implants: 31 non-microgrooved implants (Control) and 31 microgrooved implants (Test); two experimental groups were created for the disks: 65 non-microgrooved disks (Control) and 65 microgrooved disks (Test). The following evaluations of the implants were made: lateral surface area (LSA), cell morphology, and density of human fetal osteoblasts seeded on implant surfaces. On the disks, surface parameters (roughness and chemistry) and cell activity (alkaline phosphatase - ALP and alizarin red - ALZ) were evaluated at 7 and 15 days. LSA was lower for control implants (62.8 mm) compared with test implants (128.74 mm) (P implants presented cells rich in lamellipodia prolongations, attached to the inner walls or to the borders of the microgrooves and in the flat areas between the microgrooves. Cell density was higher in the test group compared with controls (P implants with microgrooves. (ii) The LSA of microgrooved zirconia implants is greater and provides more available surface compared with implants of the same dimensions without microgrooves. (iii) Microgrooves on zirconia implants modify the morphology and guide the size and alignment of human fetal osteoblasts. (iv) Zirconia surfaces with microgrooves of 30 μm width and 70 μm separation between grooves enhance ALP and ALZ expression by human fetal osteoblasts. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effects of Cyclosporine, Tacrolimus, and Rapamycin on Osteoblasts.

    Science.gov (United States)

    Martín-Fernández, M; Rubert, M; Montero, M; de la Piedra, C

    2017-11-01

    One factor that can contribute to severe bone loss after transplantation is the direct action of immunosuppressants on bone cells. The aim of this work was to study the effects of cyclosporine (CsA), tacrolimus (FK-506), and rapamycin (RAPA) on the release of three local factors directly implicated in bone-remodeling regulation and apoptosis of human osteoblasts: interleukin (IL)-6, osteoprotegerin, and receptor activator of nuclear factor κβ (RANKL). Human osteoblasts were obtained from five different patients who underwent orthopedic surgery. These cells were treated with what are considered to be a clinically high dose and an acceptable dose of each immunosuppressant-RAPA 50 ng/mL and 12 ng/mL, FK-506 20 ng/mL and 5 ng/mL, CsA 1000 ng/mL and 250 ng/mL-or vehicle. Apoptotic cell death was quantified using flow cytometry of DNA content in permeabilized, propidium iodide-stained cells. IL-6 was measured using enzyme-linked immunosorbent assay (ELISA; Quantikine Human IL6, R&D Systems, Minneapolis, Minn, United States). Messenger RNA (mRNA) expression of osteoprotegerin, RANKL, and IL-6 was measured using quantitative RT-PCR. A significant increase in IL-6 (mRNA and released protein) was observed in the presence of FK-506 and RAPA. Addition of RAPA to the cultures of osteoblasts produced a significant increase in the OPG/RANKL ratio. A significant increase in osteoblast apoptosis was observed in the cells treated with FK-506 and RAPA 24 hours after the addition of immunosuppressants. CsA did not produce any significant changes in osteoblasts. These results suggest that an increase in osteoblast apoptosis by osteoblasts may be one of the mechanisms by which bone loss occurs after RAPA and FK-506 treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dexmedetomidine attenuates H2O2-induced cell death in human osteoblasts.

    Science.gov (United States)

    Yoon, Ji-Young; Park, Jeong-Hoon; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Shin, Sang-Wook; Kim, Do-Wan

    2016-12-01

    Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α2-adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H2O2-induced oxidative stress and the mechanism of H2O2-induced cell death in normal human fetal osteoblast (hFOB) cells. Cells were divided into three groups: control group-cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H2O2) group-cells were exposed to H2O2 (200 µM) for 2 h, and Dex/H2O2 group-cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H2O2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Cell viability was significantly decreased in the H2O2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H2O2-induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H2O2 group. In western blot analysis, bone-related protein was increased in the Dex/H2O2 group. We demonstrated the potential therapeutic value of dexmedetomidine in H2O2-induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.

  7. (-)-Epigallocatechin gallate synergistically potentiates prostaglandin E2-stimulated osteoprotegerin synthesis in osteoblasts.

    Science.gov (United States)

    Kuroyanagi, Gen; Tokuda, Haruhiko; Yamamoto, Naohiro; Kainuma, Shingo; Fujita, Kazuhiko; Ohguchi, Reou; Kawabata, Tetsu; Sakai, Go; Matsushima-Nishiwaki, Rie; Harada, Atsushi; Kozawa, Osamu; Otsuka, Takanobu

    2017-01-01

    (-)-Epigallocatechin gallate (EGCG), the most abundant flavonoid in green tea, and chlorogenic acid, the main polyphenol found in coffee, attract significant attention owing to health benefits. We have previously demonstrated that prostaglandin E 2 (PGE 2 ) stimulates osteoprotegerin synthesis through the activation of p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of EGCG or chlorogenic acid on the PGE 2 -stimulated osteoprotegerin synthesis in MC3T3-E1 cells. EGCG significantly amplified the PGE 2 -induced release. EGCG markedly enhanced the expression levels of osteoprotegerin mRNA induced by PGE 2 . On the contrary, chlorogenic acid had no effect on the PGE 2 -stimulated release of osteoprotegerin. EGCG significantly strengthened the PGE 2 -induced phosphorylation of p38 MAP kinase and SAPK/JNK, whereas chlorogenic acid failed to affect them. BIRB0796 and SP600125, a p38 MAP kinase inhibitor and a SAPK/JNK inhibitor, respectively, markedly reduced the amplification by EGCG of the PGE 2 -stimulated osteoprotegerin release. These results strongly suggest that EGCG synergistically enhances the PGE 2 -stimulated osteoprotegerin synthesis via potentiation of p38 MAP kinase and SAPK/JNK in osteoblasts. Our present findings could present a new significant aspect in the favorable effect of EGCG on the prevention of osteoporotic bone loss and fracture especially in elderly people since osteoprotegerin secreted from osteoblasts is well-recognized to act as a suppressor of osteoclastic bone resorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. CERN permanent exhibitions

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  9. Upcycling CERN Exhibitions

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Summer is coming - and with it, a new Microcosm exhibition showcasing CERN (see here). But while the new exhibit is preparing to enchant visitors, many have been asking about the site's former content. Will it simply be out with the old and in with the new? Not as such!   The plasma ball from Microcosm is now on display at the LHCb site. As Microcosm's new content is moving in, its old content is moving up. From LHCb to IdeaSquare, former Microcosm displays and objects are being installed across the CERN site. "Microcosm featured many elements that were well suited to life outside of the exhibition," says Emma Sanders, Microcosm project leader in the EDU group. "We didn't want this popular content to go to waste, and so set out to find them new homes across CERN." The LHCb experiment has received a number of Microcosm favourites, including the Rutherford experiment, the cosmic ray display and the Thomson experiment. "We&...

  10. Online Exhibits & Concept Maps

    Science.gov (United States)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors

  11. Rhizopus stolonifer exhibits dimorphism

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... This organism is also characterized by the ... microorganism enhanced yeast induction by more than. 63%. ... pH meter model APX 175 E/C in the 2000 ml beaker before dispensing 80 .... bud; (b) mature bud near detachment.

  12. [Microarc oxidation of titanium surfaces on osteoblast morphology and cytoskeleton].

    Science.gov (United States)

    Qiao, Lei; Ding, Zhongjuan; Zhang, Liya; Niu, Tao

    2013-10-01

    This study aimed to evaluate the effects of the microarc oxidation surface on cell morphology and cytoskeleton. Pure titanium with a diameter of 15 mm and a thickness of 1 mm was divided into four groups: grooved surfaces (group G); sandblasted surfaces (group SB); grooved microarc oxidation surfaces (group GMAO); and sandblasted microarc oxidation surfaces (group SBMAO). Osteoblast cells were cultured in each group. The morphology and proliferation of the cells on the titanium surface were observed by scanning electron microscope (SEM). The cytoskeleton was evaluated by laser scanning confocal microscope (LSCM). The osteoblasts were inoculated after 12 h; these osteoblasts then spread along the surface of the titanium plate. In GMAO and SBMAO groups, the osteoblasts converged in the hole. The actin fibers in each group were clearly visible. In particular, the actin fibers in GMAO and SBMAO groups were arranged in parallel and formed bundles that extended into the holes. After microarc oxidation, the titanium surface significantly affected the morphology and cytoskeleton of osteoblasts.

  13. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  14. Establishment of a novel in vitro test setup for electric and magnetic stimulation of human osteoblasts.

    Science.gov (United States)

    Grunert, P C; Jonitz-Heincke, A; Su, Y; Souffrant, R; Hansmann, D; Ewald, H; Krüger, A; Mittelmeier, W; Bader, R

    2014-11-01

    When large defects occur, bone regeneration can be supported by bone grafting and biophysical stimuli like electric and magnetic stimulation (EMS). Clinically established EMS modes are external coils and surgical implants like an electroinductive screw system, which combines a magnetic and electric field, e.g., for the treatment of avascular bone necrosis or pseudarthrosis. For optimization of this implant system, an in vitro test setup was designed to investigate effects of EMS on human osteoblasts on different 3D scaffolds (based on calcium phosphate and collagen). Prior to the cell experiments, numerical simulations of the setup, as well as experimental validation, via measurements of the electric parameters induced by EMS were conducted. Human osteoblasts (3 × 10(5) cells) were seeded onto the scaffolds and cultivated. After 24 h, screw implants (Stryker ASNIS III s-series) were centered in the scaffolds, and EMS was applied (3 × 45 min per day at 20 Hz) for 3 days. Cell viability and collagen type 1 (Col1) synthesis were determined subsequently. Numerical simulation and validation showed an adequate distribution of the electric field within the scaffolds. Experimental measurements of the electric potential revealed only minimal deviation from the simulation. Cell response to stimulation varied with scaffold material and mode of stimulation. EMS-stimulated cells exhibited a significant decrease of metabolic activity in particular on collagen scaffolds. In contrast, the Col1/metabolic activity ratio was significantly increased on collagen and non-sintered calcium phosphate scaffolds after 3 days. Exclusive magnetic stimulation showed similar but nonsignificant tendencies in metabolic activity and Col1 synthesis. The cell tests demonstrate that the new test setup is a valuable tool for in vitro testing and parameter optimization of the clinically used electroinductive screw system. It combines magnetic and electric stimulation, allowing in vitro investigations

  15. Smithsonian climate change exhibits

    Science.gov (United States)

    Kumar, Mohi

    2006-05-01

    Two new museum exhibits, ``Arctic: A Friend Acting Strangely'' and ``Atmosphere: Change is in the Air'' opened 15 April at the Smithsonian Institution's National Museum of Natural History in Washington, D.C., in partnership with the U.S. National Oceanic and Atmospheric Administration, NASA, and the U.S. National Science Foundation. In ``Arctic: A Friend Acting Strangely,'' anecdotes from indigenous polar people reveal how climate changes have affected life within the last 50 years. For example, as permafrost melts and sea ice shrinks, plant distributions and animal migration patterns are changing, severely affecting culture.

  16. Behavior of primary human osteoblasts on trimmed and sandblasted Ti6Al4V surfaces functionalized with integrin αvβ3-selective cyclic RGD peptides.

    Science.gov (United States)

    Mas-Moruno, Carlos; Dorfner, Petra M; Manzenrieder, Florian; Neubauer, Stefanie; Reuning, Ute; Burgkart, Rainer; Kessler, Horst

    2013-01-01

    It is well known that functionalization of surfaces with cell adhesive peptides mimicking the integrin binding motif of extracellular matrix proteins is a feasible approach to improve osseointegration of implant materials. Also, modification of the surface properties of the material (e.g., roughness) strongly influences cell behavior. However, these two approaches are rarely studied together. This study addressed the hypothesis that the combination of peptide functionalization and surface roughness will have an enhancing effect on the adhesion process of osteoblasts. To test this hypothesis, a series of αvβ3-selective cyclic RGD peptides were prepared and immobilized on trimmed (S(a) = 0.74 μm, smooth) and sandblasted (S(a) = 3.24 μm, rough) Ti6Al4V disks. Effects of these surface modifications were evaluated with respect to integrin αvβ3-mediated adhesive capacity, cell morphology, and spreading of primary human osteoblasts. After 3 h of incubation, osteoblasts adhered more strongly on sandblasted than on trimmed noncoated Ti6Al4V surfaces. Their attachment efficiency was further enhanced in the presence of RGD peptides. However, peptide functionalization had a relatively stronger impact on osteoblast attachment on trimmed surfaces compared with sandblasted surfaces. Cell morphology after 3 h of culture was exclusively altered by surface topography. RGD coating was critical for osteoblast spreading on both trimmed and sandblasted materials after 1 h of incubation but it showed almost negligible effects after 3 h. The results of this study provide evidence that the alliance of RGD coating and surface topography on Ti6Al4V positively influences osteoblast adhesion and spreading, especially at very early adhesion times. Copyright © 2012 Wiley Periodicals, Inc.

  17. Proteomic Analysis of Human Osteoblastic Cells: Relevant Proteins and Functional Categories for Differentiation

    NARCIS (Netherlands)

    R.D.A.M. Alves (Rodrigo); H.J.M. Eijken (Marco); S.M.A. Swagemakers (Sigrid); H. Chiba (Hideki); M.K. Titulaer (Mark); P.C. Burgers (Peter); T.M. Luider (Theo); J.P.T.M. van Leeuwen (Hans)

    2010-01-01

    textabstractAbstract Osteoblasts are the bone forming cells, capable of secreting an extracellular matrix with mineralization potential. The exact mechanism by which osteoblasts differentiate and form a mineralized extracellular matrix is presently not fully understood. To increase our knowledge

  18. Ascorbate-induced osteoblast differentiation recruits distinct MMP-inhibitors : RECK and TIMP-2

    NARCIS (Netherlands)

    Zambuzzi, Willian F.; Yano, Claudia L.; Cavagis, Alexandre D. M.; Peppelenbosch, Maikel P.; Granjeiro, Jose Mauro; Ferreira, Carmen V.

    The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the

  19. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Brot, C

    2000-01-01

    Effective bone remodeling requires the coordination of bone matrix deposition by osteoblastic cells, which may occur via soluble mediators or via direct intercellular communication. We have previously identified two mechanisms by which rat osteoblastic cell lines coordinate calcium signaling amon...

  20. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneuji, Takeshi [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Takahashi, Tetsu [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan)

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  1. Anniversary Exhibition. Nechvolodov.

    Directory of Open Access Journals (Sweden)

    - -

    2006-03-01

    Full Text Available On the 10th of August, 2005 in Tartu (the second biggest educational and cultural city in Estonia Stanislav Nechvolodov's exhibition was opened to show the 5-year cycle of his work, traditional for the author and his admirers. At the opening ceremony Nechvolodov said that the exhibition was the last one and appointed on his 70th anniversary.The architectural and building society in Irkutsk remembers Stanislav Nechvolodov as an architect working on dwelling and civil buildings in 1960-70s. Below are some extracts from the Estonian press.«Postimees» newspaper, December 1993. The interview «Expressionistic naturalist, conservative Nechvolodov» by journalist Eric Linnumyagi. He asks about all the details and describes the troubles experienced by Nechvolodov during the perestroika period in Estonia, for example: the Tartu University refused to install the sculpture of Socrat, the art school refused to engage him as an instructor, the sculpture of Socrat moved to Vrotzlav, Poland, and Nechvolodov moved to Poland to read lectures there.«Tartu» newspaper, November 2000. Mats Oun, artist, says in the article «Nechvolodov: a man of Renaissance»: «Nechvolodov works in Estonia, his works are placed in many local and foreign museums. Regardless some insignificant faults, he deserves a high estimation, and his manysided open exhibition can be an example for other artists. He is a man of Renaissance».

  2. Vitamin a is a negative regulator of osteoblast mineralization.

    Directory of Open Access Journals (Sweden)

    Thomas Lind

    Full Text Available An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1 with the active metabolite of vitamin A; retinoic acid (RA, a retinoic acid receptor (RAR antagonist (AGN194310, and a Cyp26 inhibitor (R115866 which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.

  3. Identification and proteomic analysis of osteoblast-derived exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng, E-mail: cranio@vip.163.com

    2015-11-06

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. - Highlights: • We for the first time identified exosomes from mouse osteoblast. • Osteoblasts-derived exosomes contain osteoblast peculiar proteins. • Proteins from osteoblasts-derived exosomes are intently involved in EIF2 pathway. • EIF2α from the EIF2 pathway plays an important role in osteogenesis.

  4. Enterococcus faecalis affects the proliferation and differentiation of ovine osteoblast-like cells.

    Science.gov (United States)

    Karygianni, Lamprini; Wiedmann-Al-Ahmad, Margit; Finkenzeller, Günter; Sauerbier, Sebastian; Wolkewitz, Martin; Hellwig, Elmar; Al-Ahmad, Ali

    2012-06-01

    Enterococcus faecalis (E. faecalis) is a Gram-positive bacterium, mostly recovered from root-filled teeth with persistent periapical lesions. Bacterial contamination of root canals inevitably results in interaction between E. faecalis and periapical tissues during the dynamic process of periapical inflammation. This study investigated the impact of heat-inactivated endodontic E. faecalis on the proliferation and the differentiation of ovine osteoblast-like cells, in an attempt to elucidate its putative enhanced pathogenicity mechanisms. Therefore, two different concentrations of a heat-inactivated endodontic E. faecalis isolate (2 × 10(6) or 2 × 10(8) CFU/ml) were incubated with ovine osteoblast-like cells for 7 and 14 days, respectively. Cells without antigen served as control. The effects of antigen on cell growth were evaluated by a proliferation assay (EZ4U). Furthermore, the assessment of alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin (OCN) gene expression through quantitative real-time PCR determined the degree of osteogenic cell differentiation. Scanning electron microscopy (SEM) was also performed to detect alterations in cell morphology. Interestingly, although highly concentrated E. faecalis increased cellular reproduction after 14 days, ALP activity and OCN gene expression decreased in an antigen concentration-dependent and incubation time-independent way. SEM images revealed E. faecalis adhesion on cells, a fact that might contribute to its virulence. These results suggest that E. faecalis stimulated cell multiplication, whereas it likely restrained cell differentiation of ovine osteoblast-like cells. In conclusion, the presence of E. faecalis in root canals may negatively affect periapical new bone formation, and thus, the healing of periapical lesions.

  5. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Catherine M. [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Wu, Benjamin [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Ting, Kang [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Soo, Chia, E-mail: bsoo@ucla.edu [UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic, Hospital Research Center, University of California, Los Angeles, 2641 Charles E. Young Dr. South, Los Angeles, CA 90095 (United States)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  6. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.

    Science.gov (United States)

    Huang, Yao; Yao, Mengyu; Zheng, Xing; Liang, Xichao; Su, Xiaojuan; Zhang, Yu; Lu, Ang; Zhang, Lina

    2015-11-09

    Novel nanocomposite hydrogels composed of polyelectrolytes alginate and chitin whiskers with biocompatibility were successfully fabricated based on the pH-induced charge shifting behavior of chitin whiskers. The chitin whiskers with mean length and width of 300 and 20 nm were uniformly dispersed in negatively charged sodium alginate aqueous solution, leading to the formation of the homogeneous nanocomposite hydrogels. The experimental results indicated that their mechanical properties were significantly improved compared to alginate hydrogel and the swelling trends were inhibited as a result of the strong electrostatic interactions between the chitin whiskers and alginate. The nanocomposite hydrogels exhibited certain crystallinity and hierarchical structure with nanoscale chitin whiskers, similar to the structure of the native extracellular matrix. Moreover, the nanocomposite hydrogels were successfully applied as bone scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs and scanning electronic microscope (SEM) images revealed that the addition of chitin whiskers into the nanocomposite hydrogels markedly promoted the cell adhesion and proliferation of the osteoblast cells. The biocompatible nanocomposite hydrogels have potential application in bone tissue engineering.

  7. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    Science.gov (United States)

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  8. Superposition of nanostructures on microrough titanium–aluminum–vanadium alloy surfaces results in an altered integrin expression profile in osteoblasts

    Science.gov (United States)

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Hyzy, Sharon L.; Sandhage, Kenneth H.; Schwartz, Zvi; Boyan, Barbara D.

    2014-01-01

    Recent studies of new surface modifications that superimpose well-defined nanostructures on microrough implants, thereby mimicking the hierarchical complexity of native bone, report synergistically enhanced osteoblast maturation and local factor production at the protein level compared to growth on surfaces that are smooth, nanorough, or microrough. Whether the complex micro/nanorough surfaces enhance the osteogenic response by triggering similar patterns of integrin receptors and their associated signaling pathways as with well-established microrough surfaces, is not well understood. Human osteoblasts (hOBs) were cultured until confluent for gene expression studies on tissue culture polystyrene (TCPS) or on titanium alloy (Ti6Al4V) disks with different surface topographies: smooth, nanorough, microrough, and micro/nanorough surfaces. mRNA expression of osteogenesis-related markers such as osteocalcin (BGLAP) and bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2), BMP4, noggin (NOG) and gremlin 1 (GREM1) were all higher on microrough and micro/nanorough surfaces, with few differences between them, compared to smooth and nanorough groups. Interestingly, expression of integrins α1 and β2, which interact primarily with collagens and laminin and have been commonly associated with osteoblast differentiation on microrough Ti and Ti6Al4V, were expressed at lower levels on micro/nanorough surfaces compared to microrough ones. Conversely, the av subunit, which binds ligands such as vitronectin, osteopontin, and bone sialoprotein among others, had higher expression on micro/nanorough surfaces concomitantly with regulation of the β3 mRNA levels on nanomodified surfaces. These results suggest that the maturation of osteoblasts on micro/nanorough surfaces may be occurring through different integrin engagement than those established for microrough-only surfaces. PMID:25158204

  9. Matrix metalloproteinase 13 (MMP13 is a direct target of osteoblast-specific transcription factor osterix (Osx in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available Osterix (Osx is an osteoblast-specific transcription factor required for bone formation and osteoblast differentiation from mesenchymal stem cells. In Osx-null mice, no bone formation occurs. Matrix metalloproteinase 13 (MMP13 is a member of the matrix metalloproteinase family and plays an important role in endochondral ossification and bone remodeling. Transcriptional regulation of MMP13 expression in osteoblasts is not well understood. Here, we provide several lines of evidence which show that MMP13 is a direct target of Osx in osteoblasts. Calvaria obtained from Osx-null embryos displayed dramatic reductions in MMP13 expression compared to wild-type calvaria. Stable overexpression of Osx stimulated MMP13 expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of MMP13 expression. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the MMP13 promoter in a dose-dependent manner. To define the region of the MMP13 promoter that was responsive to Osx, a series of MMP13 promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 80 bp of the MMP13 promoter. Additional point mutant analysis was used to identify one GC-rich region that was responsible for MMP13 promoter activation by Osx. Gel Shift Assay showed that Osx bound to MMP13 promoter sequence directly. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native MMP13 promoter in primary osteoblasts in vivo. Taken together, these data strongly support a direct regulatory role for Osx in MMP13 gene expression in osteoblasts. They further provide new insight into potential mechanisms and pathways that Osx controls bone formation.

  10. Bisphosphonates modulate vital functions of human osteoblasts and affect their interactions with breast cancer cells.

    Science.gov (United States)

    Kaiser, Tatjana; Teufel, Ingrid; Geiger, Konstanze; Vater, Yvonne; Aicher, Wilhelm K; Klein, Gerd; Fehm, Tanja

    2013-07-01

    Bisphosphonates (BPs) are in clinical use for the treatment of breast cancer patients with bone metastases. Their anti-resorptive effect is mainly explained by inhibition of osteoclast activity, but recent evidence also points to a direct action of BPs on bone-forming osteoblasts. However, the mechanisms how BPs influence osteoblasts and their interactions with breast cancer cells are still poorly characterized. Human osteoblasts isolated from bone specimens were characterized in depth by their expression of osteogenic marker genes. The influence of the nitrogen-containing BPs zoledronate (Zol), ibandronate (Iban), and pamidronate (Pam) on molecular and cellular functions of osteoblasts was assessed focusing on cell proliferation and viability, apoptosis, cytokine secretion, and osteogenic-associated genes. Furthermore, effects of BPs on osteoblast-breast tumor cell interactions were examined in an established in vitro model system. The BPs Zol and Pam inhibited cell viability of osteoblasts. This effect was mediated by an induction of caspase-dependent apoptosis in osteoblasts. By interfering with the mevalonate pathway, Zol also reduces the proliferation of osteoblasts. The expression of phenotypic markers of osteogenic differentiation was altered by Zol and Pam. In addition, both BPs strongly influenced the secretion of the chemokine CCL2 by osteoblasts. Breast cancer cells also responded to Zol and Pam with a reduced cell adhesion to osteoblast-derived extracellular matrix molecules and with a decreased migration in response to osteoblast-secreted factors. BPs revealed prominent effects on human osteoblasts. Zol and Pam as the most potent BPs affected not only the expression of osteogenic markers, osteoblast viability, and proliferation but also important osteoblast-tumor cell interactions. Changing the osteoblast metabolism by BPs modulates migration and adhesion of breast cancer cells as well.

  11. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure — Clinical implication possible

    Directory of Open Access Journals (Sweden)

    Sabrina Ehnert

    2015-12-01

    Full Text Available For many years electromagnetic fields (EMFs have been used clinically with various settings as an exogenous stimulation method to promote fracture healing. However, underlying mechanisms of action and EMF parameters responsible for certain effects remain unclear. Our aim was to investigate the influence of defined EMFs on human osteoblasts' and osteoclasts' viability and function. Primary human osteoblasts and osteoclasts were treated 3 times weekly for 21 days during their maturation process using the Somagen® device (Sachtleben GmbH, Hamburg, Germany, generating defined extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs. Certain ELF-PEMF treatment significantly increased the total protein content (up to 66%, mitochondrial activity (up to 91.1% and alkaline phosphatase (AP activity (up to 129.9% of human osteoblasts during the entire differentiation process. Furthermore, ELF-PEMF treatment enhanced formation of mineralized matrix (up to 276%. Interestingly, ELF-PEMF dependent induction of AP activity and matrix mineralization was strongly donor dependent — only osteoblasts with a poor initial osteoblast function responded to the ELF-PEMF treatment. As a possible regulatory mechanism, activation of the ERK1/2 signaling pathway was identified. Maturation of osteoclasts from human monocytes was not affected by the ELF-PEMF treatment. In summary the results indicate that a specific ELF-PEMF treatment with the Somagen® device improves viability and maturation of osteoblasts, while osteoclast viability and maturation was not affected. Hence, ELF-PEMF might represent an interesting adjunct to conventional therapy supporting bone formation during fracture healing or even for the treatment of osteoporosis.

  12. Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration

    Directory of Open Access Journals (Sweden)

    Anne-Marie Galow

    2017-07-01

    Full Text Available We investigated the effects of alkaline pH on developing osteoblasts. Cells of the osteoblast-like cell line MC3T3-E1 were initially cultured for six days in HEPES-buffered media with pH ranging from 7.2 to 9.0. Cell count, cellular WST-1 metabolism, and ATP content were analyzed. The three parameters showed a pH optimum around pH 8.4, exceeding the recommended buffer range of HEPES at the alkaline flank. Therefore, only pH 7.2, 7.4, 7.8, and 8.4 media were used in more elaborate, daily investigations to reduce the effects of pH change within the pH control intervals of 24 h. All parameters exhibited similar pH behaviors, roughly showing increases to 130% and 230% at pH 7.8 and 8.4, as well as decreases to 70% at pH 7.2 when using the pH 7.4 data for reference. To characterize cell differentiation and osteoblastic cell function, cells were cultured at pH 7.4 and under alkaline conditions at pH 7.8 and 8.4 for 14 days. Gene expression and mineralization were evaluated using microarray technology and Alizarin staining. Under alkaline conditions, ATF4, a regulator for terminal differentiation and function as well as DMP1, a potential marker for the transition of osteoblasts into osteocytes, were significantly upregulated, hinting at an accelerated differentiation process. After 21 days, significant mineralization was only detected at alkaline pH. We conclude that elevated pH is beneficial for the cultivation of bone cells and may also provide therapeutic value in bone regeneration therapies.

  13. Measurement of oxygen consumption rate of osteoblasts from ...

    African Journals Online (AJOL)

    Jane

    2011-05-10

    May 10, 2011 ... expanding long term hematopoietic stem cells (LT-HSCs) in the bone marrow hematopoietic niche (Calvi et al.,. 2003; Zhang et al., 2003). In respect to their described functions in vitro and in vivo, we believe that the in vitro oxygen consumption rate of osteoblasts in different cultures could be an important ...

  14. Effect of Eucommia ulmoides extract on osteoblast proliferation ...

    African Journals Online (AJOL)

    Thereafter, mRNA and protein expression of ALP, collagen I, osteocalcin, transforming growth factor-β1 (TGF-β1) were measured using real-time quantitative PCR (qPCR) and western blot, respectively. Results: EUE significantly (p < 0.01) promoted osteoblast proliferation at three treatment doses (180, 360, and 540 μg/mL) ...

  15. Cinnamon Extract Effect on Osteoblast Activity in Diabetic Wistar Rats

    Directory of Open Access Journals (Sweden)

    Fahrin Ramadan Andiwijaya

    2016-05-01

    Full Text Available Background: Diabetes is clinically known to cause prolongation to bone fracture healing. This research aims to find the effect of cinnamon in the process of bone remodeling, and changes in the activity of osteoblast cells in diabetic bone after giving cinnamon as a supplement in diabetic rats. Method: The design employed was experimental with randomized post-test group design research. A total of 24 Wistar Rats was randomly divided into four groups, which consist of normal without treatment, normal with treatment, diabetic without treatment and diabetic with treatment. Treatment of 300 mg/kg cinnamon extract was given per-orally. Upon euthanizing the samples, femur samples were taken and processed to histopathological slides. All slides were analyzed under light microscopes to find the osteoblast cells. The Kruskal-Wallis method was used to test the results; due to the population of sample was not normally distributed. Results: The osteoblast cells found were scored in mean ranks. The normal group mean rank 12.25, normal with treatment group 12.17, diabetic without treatment group 8.58, and diabetic with treatment group 17.00. Asymptotic significance was 0.195. Conclusion: This research concludes that there is no significant increase in osteoblast activity in diabetic Wistar rats after the administration of 300 mg/kg cinnamon extract. 

  16. Cellular response of Murine Osteoblasts to Cryopreservation: the ...

    African Journals Online (AJOL)

    This paper presents data relevant to the rational design of cryopreservation processes for tissueengineered bone. The effects of cell-scaffold interactions and cell-cell interactions on osteoblast viability and attachment to hydroxyapatite (HA) scaffolds following cryopreservation processing are defined experimentally.

  17. Effect of Eucommia ulmoides extract on osteoblast proliferation

    African Journals Online (AJOL)

    MS, Oh J. Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation. J Bone Miner Res 2014; 29: 1541–1553. 9. Redlich K, Hayer S, Maier A. Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 2002;.

  18. ent-Kaurane diterpenoids from Croton tonkinensis stimulate osteoblast differentiation

    DEFF Research Database (Denmark)

    Dao, Trong-Tuan; Lee, Kwang-Youl; Jeong, Hyung-Min

    2011-01-01

    Four new ent-kaurane diterpenoids (1-4) were isolated from the leaves of Croton tonkinensis by bioactivity-guided fractionation using an in vitro osteoblast differentiation assay. Their structures were identified as ent-11β-acetoxykaur-16-en-18-ol (1), ent-11α-hydroxy-18-acetoxykaur-16-ene (2), ent...

  19. Jagged1 is essential for osteoblast development during maxillary ossification

    Science.gov (United States)

    Hill, Cynthia R.; Yuasa, Masato; Schoenecker, Jonathan; Goudy, Steven L.

    2015-01-01

    Maxillary hypoplasia occurs due to insufficient maxillary intramembranous ossification, leading to poor dental occlusion, respiratory obstruction and cosmetic deformities. Conditional deletion of Jagged1 (Jag1) in cranial neural crest (CNC) cells using Wnt1-cre; Jagged1f/f (Jag1CKO) led to maxillary hypoplasia characterized by intrinsic differences in bone morphology and density using μCT evaluation. Jag1CKO maxillas had altered collagen deposition, delayed ossification, and reduced expression of early and late determinants of osteoblast development during maxillary ossification. In vitro bone cultures on Jag1CKO mouse embryonic maxillary mesenchymal (MEMM) cells demonstrated decreased mineralization that was also associated with diminished induction of osteoblast determinants. BMP receptor expression was dysregulated in the Jag1CKO MEMM cells suggesting that these cells were unable to respond to BMP-induced differentiation. JAG1-Fc rescued in vitro mineralization and osteoblast gene expression changes. These data suggest that JAG1 signaling in CNC-derived MEMM cells is required for osteoblast development and differentiation during maxillary ossification. PMID:24491691

  20. Jagged1 is essential for osteoblast development during maxillary ossification.

    Science.gov (United States)

    Hill, Cynthia R; Yuasa, Masato; Schoenecker, Jonathan; Goudy, Steven L

    2014-05-01

    Maxillary hypoplasia occurs due to insufficient maxillary intramembranous ossification, leading to poor dental occlusion, respiratory obstruction and cosmetic deformities. Conditional deletion of Jagged1 (Jag1) in cranial neural crest (CNC) cells using Wnt1-cre; Jagged1(f/f) (Jag1CKO) led to maxillary hypoplasia characterized by intrinsic differences in bone morphology and density using μCT evaluation. Jag1CKO maxillas revealed altered collagen deposition, delayed ossification, and reduced expression of early and late determinants of osteoblast development during maxillary ossification. In vitro bone cultures on Jag1CKO mouse embryonic maxillary mesenchymal (MEMM) cells demonstrated decreased mineralization that was also associated with diminished induction of osteoblast determinants. BMP receptor expression was dysregulated in the Jag1CKO MEMM cells suggesting that these cells were unable to respond to BMP-induced differentiation. JAG1-Fc rescued in vitro mineralization and osteoblast gene expression changes. These data suggest that JAG1 signaling in CNC-derived MEMM cells is required for osteoblast development and differentiation during maxillary ossification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Bone Talk: Activated Osteoblasts Promote Lung Cancer Growth.

    Science.gov (United States)

    Bružas, Emilis; Egeblad, Mikala

    2018-02-02

    Cancer cells can directly stimulate the generation and recruitment of tumor-supportive bone marrow-derived cells (BMDCs), including neutrophils, via secreted factors. A new study demonstrates that lung tumors also remotely activate bone-residing osteoblasts, which in turn promote neutrophil production. This is a multistep mechanism of establishing a supportive tumor microenvironment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cellular response of Murine Osteoblasts to Cryopreservation: the ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-11-02

    Nov 2, 2006 ... This paper presents data relevant to the rational design of cryopreservation processes for tissue- engineered bone. The effects of cell-scaffold interactions and cell-cell interactions on osteoblast viability and attachment to hydroxyapatite (HA) scaffolds following cryopreservation processing are.

  3. Galectin-3 Inhibits Osteoblast Differentiation through Notch Signaling12

    Science.gov (United States)

    Nakajima, Kosei; Kho, Dhong Hyo; Yanagawa, Takashi; Harazono, Yosuke; Gao, Xiaoge; Hogan, Victor; Raz, Avraham

    2014-01-01

    Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone remodeling. This is caused by tumor cells that disturb the bone microenvironment. Here, we have investigated the role of tumor-secreted sugar-binding protein, i.e., galectin-3, on osteoblast differentiation and report that it downregulates the expression of osteoblast differentiation markers, e.g., RUNX2, SP7, ALPL, COL1A1, IBSP, and BGLAP, of treated human fetal osteoblast (hFOB) cells. Co-culturing of hFOB cells with human breast cancer BT-549 and prostate cancer LNCaP cells harboring galectin-3 has resulted in inhibition of osteoblast differentiation by the secreted galectin-3 into culture medium. The inhibitory effect of galectin-3 was found to be through its binding to Notch1 in a sugar-dependent manner that has led to accelerated Notch1 cleavage and activation of Notch signaling. Taken together, our findings show that soluble galectin-3 in the bone microenvironment niche regulates bone remodeling through Notch signaling, suggesting a novel bone metastasis therapeutic target. PMID:25425968

  4. Emdogain-gel stimulates proliferation of odontoblasts and osteoblasts.

    Science.gov (United States)

    Jiang, Jin; Goodarzi, Golnaz; He, Jianing; Li, Haitao; Safavi, Kamran E; Spångberg, Larz S W; Zhu, Qiang

    2006-11-01

    The purpose of this study was to determine whether a premixed form of enamel matrix derivative (EMD), Emdogain-gel, has the same property as the original formula of EMD in stimulating the proliferation of osteoblasts and odontoblasts. Osteoblast cell line (MC3T3) and odontoblast cell line (MDPC) were cultured in the 6-well culture plates and treated in 4 different groups: (1) culture medium control, (2) 100 microg/mL Emdogain-gel directly added to the culture medium, (3) culture medium with a culture plate insert, and (4) 100 microg/mL Emdogain-gel added onto a culture plate insert. The culture plate insert prevented direct contact between Emdogain-gel and the cells. After 3-day incubation, cell morphology was examined and the total cell number per well was counted. Data were analyzed using 1-way ANOVA. Emdogain-gel significantly increased cell number of both osteoblasts and odontoblasts regardless the presence of the culture plate insert. Emdogain-gel stimulates cell proliferation of odontoblasts and osteoblasts. The direct contact between Emdogain-gel and cells is not required. Heat treatment of EMD and premix with propylene glycol alginate did not change its property of releasing bioactive molecules for promoting cell proliferation.

  5. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  6. Osteoblast-targeted overexpression of TAZ increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Jae-Yeon Yang

    Full Text Available Osteoblasts are derived from mesenchymal progenitors. Differentiation to osteoblasts and adipocytes is reciprocally regulated. Transcriptional coactivator with a PDZ-binding motif (TAZ is a transcriptional coactivator that induces differentiation of mesenchymal cells into osteoblasts while blocking differentiation into adipocytes. To investigate the role of TAZ on bone metabolism in vivo, we generated transgenic mice that overexpress TAZ under the control of the procollagen type 1 promoter (Col1-TAZ. Whole body bone mineral density (BMD of 6- to 19-week-old Col-TAZ mice was 4% to 7% higher than that of their wild-type (WT littermates, whereas no difference was noticed in Col.1-TAZ female mice. Microcomputed tomography analyses of proximal tibiae at 16 weeks of age demonstrated a significant increase in trabecular bone volume (26.7% and trabecular number (26.6% with a reciprocal decrease in trabecular spacing (14.2% in Col1-TAZ mice compared with their WT littermates. In addition, dynamic histomorphometric analysis of the lumbar spine revealed increased mineral apposition rate (42.8% and the serum P1NP level was also significantly increased (53% in Col.1-TAZ mice. When primary calvaria cells were cultured in osteogenic medium, alkaline phosphatase (ALP activity was significantly increased and adipogenesis was significantly suppressed in Col1-TAZ mice compared with their WT littermates. Quantitative real-time polymerase chain reaction analyses showed that expression of collagen type 1, bone sialoprotein, osteocalcin, ALP, osterix, and Runx2 was significantly increased in calvaria cells from Col1-TAZ mice compared to their WT littermates. In vitro, TAZ enhanced Runx2-mediated transcriptional activity while suppressing the peroxisome proliferator-activated receptor gamma signaling pathway. TAZ also enhanced transcriptional activity from 3TP-Lux, which reflects transforming growth factor-beta (TGF-β-mediated signaling. In addition, TAZ enhanced TGF

  7. Hydrothermal Sterilization Improves Initial Osteoblast Responses on Sandpaper-Polished Titanium.

    Science.gov (United States)

    Shi, Xingling; Xu, Lingli; Wang, Qingliang; Xu, Lin

    2017-07-17

    Hydrocarbon contamination accumulated on titanium (Ti) implant surfaces during storage and sterilization is unavoidable and difficult to remove. It impairs the bioactivity of implants, restricts initial interactions between implants and the surrounding biological environment, and has become a common challenge for Ti implants. To overcome this problem, sterilization was considered as the final surface modification and a novel method, hydrothermal sterilization (HS), was proposed. Briefly, stored sandpaper-polished Ti specimens were sterilized in a glass container with pure water at 121 °C for 20 min and kept in the same water until utilization. As a control, another group of specimens was sterilized with conventional autoclaving (AC) at 121 °C for 20 min and stored in sterilization pouches after being dried at 60 °C. Compared with AC, HS deposited numerous nano-sized particles on the substrates, reduced the atomic percentage of the surface carbon, and transformed the Ti surface to a super hydrophilic status. HS also increased the attachment rate, spread, proliferation, and the mineralized nodule areas of rat bone marrow-derived osteoblasts. These results suggest that HS enhances the bioactivity of Ti implants for osteoblasts, and that this biofunctionalization was attributed to nanostructure construction, hydrophilic conversion, and the effective removal of hydrocarbons. Hydrothermal sterilization is proposed to be used as a universal sterilization method for all kinds of titanium implants without apatite coating.

  8. Hydrothermal Sterilization Improves Initial Osteoblast Responses on Sandpaper-Polished Titanium

    Directory of Open Access Journals (Sweden)

    Xingling Shi

    2017-07-01

    Full Text Available Hydrocarbon contamination accumulated on titanium (Ti implant surfaces during storage and sterilization is unavoidable and difficult to remove. It impairs the bioactivity of implants, restricts initial interactions between implants and the surrounding biological environment, and has become a common challenge for Ti implants. To overcome this problem, sterilization was considered as the final surface modification and a novel method, hydrothermal sterilization (HS, was proposed. Briefly, stored sandpaper-polished Ti specimens were sterilized in a glass container with pure water at 121 °C for 20 min and kept in the same water until utilization. As a control, another group of specimens was sterilized with conventional autoclaving (AC at 121 °C for 20 min and stored in sterilization pouches after being dried at 60 °C. Compared with AC, HS deposited numerous nano-sized particles on the substrates, reduced the atomic percentage of the surface carbon, and transformed the Ti surface to a super hydrophilic status. HS also increased the attachment rate, spread, proliferation, and the mineralized nodule areas of rat bone marrow-derived osteoblasts. These results suggest that HS enhances the bioactivity of Ti implants for osteoblasts, and that this biofunctionalization was attributed to nanostructure construction, hydrophilic conversion, and the effective removal of hydrocarbons. Hydrothermal sterilization is proposed to be used as a universal sterilization method for all kinds of titanium implants without apatite coating.

  9. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    Science.gov (United States)

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  10. The effects of zinc oxide nanoparticles on differentiation of human mesenchymal stem cells to osteoblast

    Directory of Open Access Journals (Sweden)

    Tahereh Foroutan

    2014-10-01

    Full Text Available Objective(s: The mesenchymal stem cells (MSCs have been introduced as appropriate cells for tissue engineering and medical applications. Some studies have shown that topography of materials especially physical surface characteristics and particles size could enhance adhesion and proliferation of osteoblasts. In the present research, we studied the distinction effect of 30 and 60 μg/ml of zinc oxide (ZnO on differentiation of human mesenchymal stem cells to osteoblast. Materials and Methods: After the third passage, human bone marrow mesenchymal stem cells were exposed to 30 and 60 μg/ml of ZnO nanoparticles having a size of 30 nm. The control group has received no ZnO nanoparticles. On day 15 of incubation for monitoring the cellular differentiation, alizarin red staining and RT-PCR assays were performed to evaluate the level of osteopontin, osteocalsin and alkaline phosphatase genes expression. Results:In the group receiving 30 μg/ml of ZnO nanoparticles, the expression of osteogenic markers such as alkaline phosphatase, osteocalcin and osteopontin genes were significantly higher than both control and the group receiving 60 μg/ml ZnO nanoparticle. These data also confirmed by alizarin red staining. Conclusion: It seems the process of differentiation of MSCs affected by ZnO nanoparticles is dependent on dose as well as on the size of ZnO.

  11. Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A2AR signaling.

    Science.gov (United States)

    Xiong, Lei; Jung, Ji-Ung; Guo, Hao-Han; Pan, Jin-Xiu; Sun, Xiang-Dong; Mei, Lin; Xiong, Wen-Cheng

    2017-03-06

    Bone homeostasis depends on the functional balance of osteoblasts (OBs) and osteoclasts (OCs). Lrp4 is a transmembrane protein that is mutated in patients with high bone mass. Loss of Lrp4 in OB-lineage cells increases bone mass by elevating bone formation by OBs and reducing bone resorption by OCs. However, it is unclear how Lrp4 deficiency in OBs impairs osteoclastogenesis. Here, we provide evidence that loss of Lrp4 in the OB lineage stabilizes the prorenin receptor (PRR) and increases PRR/V-ATPase-driven ATP release, thereby enhancing the production of the ATP derivative adenosine. Both pharmacological and genetic inhibition of adenosine- 2A receptor (A 2A R) in culture and Lrp4 mutant mice diminishes the osteoclastogenic deficit and reduces trabecular bone mass. Furthermore, elevated adenosine-A 2A R signaling reduces receptor activator of nuclear factor κB (RANK)-mediated osteoclastogenesis. Collectively, these results identify a mechanism by which osteoblastic Lrp4 controls osteoclastogenesis, reveal a cross talk between A 2A R and RANK signaling in osteoclastogenesis, and uncover an unrecognized pathophysiological mechanism of high-bone-mass disorders. © 2017 Xiong et al.

  12. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.

    Science.gov (United States)

    Wu, Chengtie; Miron, Richard; Sculean, Anton; Kaskel, Stefan; Doert, Thomas; Schulze, Renate; Zhang, Yufeng

    2011-10-01

    Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds

  13. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation.

    Science.gov (United States)

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell-cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression.

  14. Artificial Extracellular Matrices with Oversulfated Glycosaminoglycan Derivatives Promote the Differentiation of Osteoblast-Precursor Cells and Premature Osteoblasts

    Directory of Open Access Journals (Sweden)

    Ute Hempel

    2014-01-01

    Full Text Available Sulfated glycosaminoglycans (GAG are components of the bone marrow stem cell niche and to a minor extent of mature bone tissue with important functions in regulating stem cell lineage commitment and differentiation. We anticipated that artificial extracellular matrices (aECM composed of collagen I and synthetically oversulfated GAG derivatives affect preferentially the differentiation of osteoblast-precursor cells and early osteoblasts. A set of gradually sulfated chondroitin sulfate and hyaluronan derivatives was used for the preparation of aECM. All these matrices were analysed with human bone marrow stromal cells to identify the most potent aECM and to determine the influence of the degree and position of sulfate groups and the kind of disaccharide units on the osteogenic differentiation. Oversulfated GAG derivatives with a sulfate group at the C-6 position of the N-acetylglycosamine revealed the most pronounced proosteogenic effect as determined by tissue nonspecific alkaline phosphatase activity and calcium deposition. A subset of the aECM was further analysed with different primary osteoblasts and cell lines reflecting different maturation stages to test whether the effect of sulfated GAG derivatives depends on the maturation status of the cells. It was shown that the proosteogenic effect of aECM was most prominent in early osteoblasts.

  15. Artificial Extracellular Matrices with Oversulfated Glycosaminoglycan Derivatives Promote the Differentiation of Osteoblast-Precursor Cells and Premature Osteoblasts

    Science.gov (United States)

    Hempel, Ute; Preissler, Carolin; Möller, Stephanie; Becher, Jana; Rauner, Martina; Hofbauer, Lorenz C.; Dieter, Peter

    2014-01-01

    Sulfated glycosaminoglycans (GAG) are components of the bone marrow stem cell niche and to a minor extent of mature bone tissue with important functions in regulating stem cell lineage commitment and differentiation. We anticipated that artificial extracellular matrices (aECM) composed of collagen I and synthetically oversulfated GAG derivatives affect preferentially the differentiation of osteoblast-precursor cells and early osteoblasts. A set of gradually sulfated chondroitin sulfate and hyaluronan derivatives was used for the preparation of aECM. All these matrices were analysed with human bone marrow stromal cells to identify the most potent aECM and to determine the influence of the degree and position of sulfate groups and the kind of disaccharide units on the osteogenic differentiation. Oversulfated GAG derivatives with a sulfate group at the C-6 position of the N-acetylglycosamine revealed the most pronounced proosteogenic effect as determined by tissue nonspecific alkaline phosphatase activity and calcium deposition. A subset of the aECM was further analysed with different primary osteoblasts and cell lines reflecting different maturation stages to test whether the effect of sulfated GAG derivatives depends on the maturation status of the cells. It was shown that the proosteogenic effect of aECM was most prominent in early osteoblasts. PMID:24864267

  16. Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance

    Energy Technology Data Exchange (ETDEWEB)

    Havlikova, Jana, E-mail: havlikova@biomed.cas.cz [Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4 (Czech Republic); Strasky, Josef, E-mail: josef.strasky@gmail.com [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Vandrovcova, Marta, E-mail: vandrovcova@biomed.cas.cz [Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4 (Czech Republic); Harcuba, Petr, E-mail: harcuba.p@seznam.cz [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Mhaede, Mansour, E-mail: mansour.mhaede@tu-clausthal.de [Institute of Materials Science and Engineering, Clausthal University of Technology, Agricolastraße 2/6, 38678 Clausthal-Zellerfeld (Germany); Faculty of Engineering, Zagazig University, Zagazig (Egypt); Janecek, Milos, E-mail: janecek@met.mff.cuni.cz [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Bacakova, Lucie, E-mail: lucy@biomed.cas.cz [Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4 (Czech Republic)

    2014-06-01

    A novel approach of surface treatment of orthopaedic implants combining electric discharge machining (EDM), chemical milling (etching) and shot peening is presented in this study. Each of the three techniques have been used or proposed to be used as a favourable surface treatment of biomedical titanium alloys. But to our knowledge, the three techniques have not yet been used in combination. Surface morphology and chemistry were studied by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Fatigue life of the material was determined and finally several in-vitro biocompatibility tests have been performed. EDM and subsequent chemical milling leads to a significant improvement of osteoblast proliferation and viability thanks to favourable surface morphology and increased oxygen content on the surface. Subsequent shot-peening significantly improves the fatigue endurance of the material. Material after proposed combined surface treatment possesses favourable mechanical properties and enhanced osteoblast proliferation. EDM treatment and EDM with shot peening also supported early osteogenic cell differentiation, manifested by a higher expression of collagen type I. The combined surface treatment is therefore promising for a range of applications in orthopaedics. - Highlights: • Surface modification combining EDM, chemical milling and shot-peening was developed. • Fatigue endurance was improved when high Almen intensity and small shots were used. • Chemical milling creates favourable surface morphology and increases oxygen content. • The three-step surface modification has a positive effect on the osteoblast growth. • EDM and EDM with shot peening supported early osteogenic cell differentiation.

  17. Tantalum coating on TiO{sub 2} nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Christine J.; Brammer, Karla S. [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Noh, Kunbae [Corporate Research Institute, Cheil Industries, Inc., Gocheon-Dong, Uiwang-Si, Gyeonggi-Do, 437-711 (Korea, Republic of); Johnston, Gary [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Jin, Sungho, E-mail: jin@ucsd.edu [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093 (United States)

    2014-04-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO{sub 2}) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO{sub 2} nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO{sub 2} nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO{sub 2} nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface.

  18. Osteoblast-seeded bioglass/gelatin nanocomposite: a promising bone substitute in critical-size calvarial defect repair in rat.

    Science.gov (United States)

    Johari, Behrooz; Kadivar, Mehdi; Lak, Shirin; Gholipourmalekabadi, Mazaher; Urbanska, Aleksandra M; Mozafari, Masoud; Ahmadzadehzarajabad, Maryam; Azarnezhad, Asaad; Afshari, Samane; Zargan, Jamil; Kargozar, Saeid

    2016-11-29

    Amid the plethora of methods to repair critical bone defects, there is no one perfect approach. In this study, we sought to evaluate a potent 3-dimensional (3D) bioactive SiO2-CaO-P2O5 glasses (bioglass)/gelatin (gel) scaffold for its biocompatibility by seeding cells as well as for its regenerative properties by animal implantation. Osteoblast cells were seeded onto nanocomposite scaffolds to investigate the process of critical-size calvarial defect via new bone formation. Scanning electron microscopy (SEM) was used to validate topography of the scaffolds, its homogeneity and ideal cellular attachment. Proliferation assay and confocal microscopy were used to evaluate its biocompatibility. To validate osteogenesis of the bioactive nanocomposite scaffolds, they were first implanted into rats and later removed and analyzed at different time points post mortem using histological, immunohistochemical and histomorphometric methods. Based on in vitro results, we showed that our nanocomposite is highly cell-compatible material and allows for osteoblasts to adhere, spread and proliferate. In vivo results indicate that our nanocomposite provides a significant contribution to bone regeneration and is highly biodegradable and biocompatible. So, seeded scaffolds with osteoblasts enhanced repair of critical bone defects via osteogenesis. We demonstrate the feasibility of engineering a nanocomposite scaffold with an architecture resembling the human bone, and provide proof-of-concept validation for our scaffold using a rat animal model.

  19. Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells.

    Science.gov (United States)

    Komaki, Motohiro; Iwasaki, Kengo; Arzate, Higinio; Narayanan, A Sampath; Izumi, Yuichi; Morita, Ikuo

    2012-02-01

    Cementum is a calcified tissue covering the tooth root surface, which functions as rigid tooth-anchoring structure. Periodontal ligament is a unique non-mineralized connective tissue, and is a source of mineralized tissue forming cells such as cementoblasts and osteoblasts. The CEMP1 is a novel cementum component the presence of which appears to be limited to cementoblasts and their progenitors. In order to understand the function of CEMP1, we investigated CEMP1 expression during the differentiation of human periodontal ligament cells. Immunomagnetically enriched alkaline phosphatase (ALP)-positive periodontal ligament cells preferentially expressed CEMP1. CEMP1 expression was reduced when periodontal ligament cells differentiated to osteoblasts in vitro. Over-expression of CEMP1 in periodontal ligament cells enhanced cementoblast differentiation and attenuated periodontal and osteoblastic phenotypes. Our data demonstrate for the first time that the CEMP1 is not only a marker protein for cementoblast-related cells, but it also regulates cementoblast commitment in periodontal ligament cells. Copyright © 2011 Wiley Periodicals, Inc.

  20. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    Science.gov (United States)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  1. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M; Gil, Francisco J; Rodriguez, Daniel

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria-cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  3. Microstructured Titanium Regulates Interleukin Production by Osteoblasts, an Effect Modulated by Exogenous BMP-2

    Science.gov (United States)

    Hyzy, Sharon; Olivares-Navarrete, Rene; Hutton, Daphne L.; Tan, Christian; Boyan, Barbara D.; Schwartz, Zvi

    2013-01-01

    Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2μm), sandblasted/acid-etched (SLA, Ra=3.2μm), or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blocking Smad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol), or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration. PMID:23123301

  4. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wu, Zhong [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wang, Jianguang, E-mail: jianguangwang@163.com [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Jianguo, E-mail: gehujianguo68@163.com [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China)

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  5. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    Science.gov (United States)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  6. In vitro investigation of orthopedic titanium-coated and brushite-coated surfaces using human osteoblasts in the presence of gentamycin.

    Science.gov (United States)

    Ince, Akif; Schütze, Norbert; Hendrich, Christian; Thull, Roger; Eulert, Jochen; Löhr, Jochen F

    2008-08-01

    Anti-infective coatings have been developed to protect the surfaces of cementless implants from bacterial colonization that is known to be a prerequisite for device-related infection. The aim of this study is to investigate the effect of brushite-coated arthroplasty surfaces on human osteoblasts and to evaluate the impact of concomitant exposure to gentamycin. We cultured human osteoblasts (hFOB 1.19) on brushite-coated and uncoated titanium alloy in the presence of gentamycin and analyzed cell function and vitality. Our results show that brushite-coated titanium alloy surfaces supported the function of osteoblasts and the expression of extracellular matrix even in the presence of highly dosed gentamycin. Brushite-coated titanium alloy surfaces supported osteogenic function, indicating that this coating could enhance implant osteointegration in vivo. Concomitant exposure to gentamycin slightly decreased osteoblastic activity in vitro, suggesting that there might also be negative effects in vivo. However, in vivo studies are necessary to validate these in vitro findings.

  7. Against the Odds Exhibition Opens

    Science.gov (United States)

    ... Issue Past Issues Special Section Against the Odds Exhibition Opens Past Issues / Spring 2008 Table of Contents / ... April 17, Dr. Donald Lindberg officially opened the exhibition, "Against the Odds: Making a Difference in Global ...

  8. Apelin attenuates the osteoblastic differentiation of vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Peng-Fei Shan

    Full Text Available Vascular calcification, which results from a process osteoblastic differentiation of vascular smooth muscle cells (VSMCs, is a major risk factor for cardiovascular morbidity and mortality. Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor, APJ. Several studies have identified the protective effects of apelin on the cardiovascular system. However, the effects and mechanisms of apelin on the osteoblastic differentiation of VSMCs have not been elucidated. Using a culture of calcifying vascular smooth muscle cells (CVMSCs as a model for the study of vascular calcification, the relationship between apelin and the osteoblastic differentiation of VSMCs and the signal pathway involved were investigated. Alkaline phosphatase (ALP activity and osteocalcin secretion were examined in CVSMCs. The involved signal pathway was studied using the extracellular signal-regulated kinase (ERK inhibitor, PD98059, the phosphatidylinositol 3-kinase (PI3-K inhibitor, LY294002, and APJ siRNA. The results showed that apelin inhibited ALP activity, osteocalcin secretion, and the formation of mineralized nodules. APJ protein was detected in CVSMCs, and apelin activated ERK and AKT (a downstream effector of PI3-K. Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. Furthermore, inhibition of APJ expression, and the activation of ERK or PI3-K, reversed the effects of apelin on ALP activity. These results showed that apelin inhibited the osteoblastic differentiation of CVSMCs through the APJ/ERK and APJ/PI3-K/AKT signaling pathway. Apelin appears to play a protective role against arterial calcification.

  9. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

    Energie sombre, matière noire J.-J. Dalmais - J. Maréchal Du 11 au 27 novembre 2014, CERN Meyrin, Bâtiment principal A l’image des particules atomiques qui ont tissé des liens pour créer la matière, deux artistes haut bugistes croisent leurs regards et conjuguent leurs expressions singulières pour faire naître une vision commune de l’univers, produit des forces primordiales. Les sculptures de Jean-Jacques Dalmais et les peintures de Jacki Maréchal se rencontrent pour la première fois et se racontent par un enrichissement mutuel la belle histoire de la Vie. Dialogue magique des œuvres en mouvement qui questionnent en écho l’énergie sombre et la matière noire. Cette harmonieuse confluence de jeux de miroir et de résonnance illumine de poésie et de sobriété l’espace expos&...

  10. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    The Elementary Particles of Painting Alfonso Fratteggiani Bianchi and Ermanno Imbergamo From September 26 to October 7, 2016 CERN Meyrin, Main Building With intentions similar to those of CERN physicists, the artist Alfonso Fratteggiani Bianchi investigates the color pigment, studying its interaction with light and with the support on which it is deposited. He creates monochrome paintings by spreading the color pigment in the pure state on stones, without using glue or any other type of adhesive. With intentions similar to artists, the physicist Ermanno Imbergamo investigates the use of luminescent wavelength shifters, materials commonly used in Particle Physics, for art. He creates other monochrome artworks, which disclose further aspects of interaction among light, color pigments and support. For more information: staff.association@cern.ch | Tel: 022 767 28 19

  11. Exhibition

    CERN Document Server

    Staff Association

    2018-01-01

    Cosmos KOLI Du 15 au 26 janvier 2018 CERN Meyrin, Main Building (Nébuleuse d'Orion- KOLI) KOLI, Artiste confirmé, diplômé de l’Académie de Beaux Arts de Tirana, depuis 26 ans en Suisse, où il a participé à maintes expositions collectives et organisé 10 expositions privées avec  beaucoup de succès, s’exprime actuellement dans un bonheur de couleur et de matières qui côtoient des hautes sphères… le cosmos ! Gagnant d’un premier prix lors d’une exposition collective organisée par le consulat Italien, il s’est installé au bord du lac dans le canton de Vaud où il vit depuis maintenant déjà 13 ans. www.kolicreation.com Pour plus d’informations et demandes d’accès : staff.association@cern.ch | T&eacut...

  12. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    La couleur des jours oriSio Du 2 au 12 mai 2017 CERN Meyrin, Bâtiment principal oriSio - Motus Suite à un fort intérêt pour la Chine et une curiosité pour un médium très ancien, la laque ! Je réinterprète cet art à travers un style abstrait. Je présente ici des laques sur aluminium, travaillés au plasma et ensuite colorés à l’aide de pigments pour l’essentiel. Mes œuvres je les veux brutes, déchirées, évanescentes, gondolées, voire trouées mais avec une belle approche de profondeur de la couleur.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  13. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Still Life Jérémy Bajulaz Du 25 septembre au 6 octobre 2017 CERN Meyrin, Main Building (Aubergine - Jérémy Bajulaz) Né en 1991 en Haute-Savoie, France. Diplômé de l'Ecole Emile Cohl à Lyon, Jérémy Bajulaz intègre en 2014 le programme d'artiste en résidence au Centre Genevois de Gravure Contemporaine. C'est là que son travail prendra corps, autour de la lumière et de ses vibrations aux travers de sujets comme le portrait et la nature morte, dans le souci de l'observation; le regard prenant une place importante dans le processus créatif. Lauréat 2017 du VII Premio AAAC, son travail a été présenté dans de nombreuses expositions collectives, en 2015 au Bâtiment d’Art Contemporain de Genève, en 2016 au 89e Salon de Lyon et du ...

  14. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    La mosaïque ou quand détruire permet de construire Lauren Decamps Du 28 novembre au 9 décembre 2016 CERN Meyrin, Bâtiment principal Paysage d'Amsterdam - Lauren Decamps On ne doit jamais rien détruire qu'on ne soit sûr de pouvoir remplacer aussi avantageusement " écrivait Plutarque dans ses Œuvres morales du 1er siècle après JC. L'artiste mosaïste Lauren Decamps adhère à cette idée et tente à sa manière de donner une nouvelle vie à ses matériaux en les taillant puis les réassemblant, créant ainsi des œuvres abstraites et figuratives.

  15. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Firmament des toiles Joëlle Lalagüe Du 6 au 16 juin 2017 CERN Meyrin, Bâtiment principal Phylaë Voyage - Joëlle Lalagüe. Each picture is an invitation for a cosmic trip. This is a whispering of soul, which comes from origins. A symphony of the world, some notes of love, a harmony for us to fly to infinity. Pour plus d’informations et demandes d'accès : staff.association@cern.ch | Tél: 022 766 37 38

  16. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    COLORATION Sandra Duchêne From September 5 to 16, 2016 CERN Meyrin, Main Building La recherche de l’Universel. Après tout ! C’est de l’Amour ! What else to say ? …La couleur, l’ENERGIE de la vie…

  17. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Le Point Isabelle Gailland Du 20 février au 3 mars 2017 CERN Meyrin, Bâtiment principal La Diagonale - Isabelle Gailland. Au départ, un toujours même point minuscule posé au centre de ce que la toile est un espace. Une réplique d'autres points, condensés, alignés, isolés, disséminés construiront dans leur extension, la ligne. Ces lignes, croisées, courbées, déviées, prolongées, seront la structure contenant et séparant la matière des couleurs. La rotation de chaque toile en cours d'exécution va offrir un accès illimité à la non-forme et à la forme. Le point final sera l'ouverture sur différents points de vue de ce que le point et la ligne sont devenus une représentation pour l'œil et l'im...

  18. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Harmonie Nathalie Lenoir Du 4 au 15 septembre 2017 CERN Meyrin, Bâtiment principal Peindre est un langage. Le tracé du pinceau sur le lin en est l'expression. A qui appartient un tableau en définitive ? A celui qui l'a peint ? A celui qui le regarde ? A celui qui l'emporte ? La peinture est une émotion partagée... Laissez-vous projeter de l'autre côté de la toile, prenez un moment pour rêver, en harmonie avec les éléments, parce-que la peinture parle à votre âme… Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél : 022 766 37 38

  19. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Œuvres recentes Fabienne Wyler Du 6 au 17 février 2017 CERN Meyrin, Bâtiment principal L'escalier du diable B - aquarelle, encre de Chine XLV - Fabienne Wyler. En relation avec certains procédés d’écriture contemporaine (par ex. Webern ou certaines musiques conçues par ordinateur), les compositions picturales de Fabienne Wyler s’élaborent à partir de « modules » (groupes de quadrangles) qu’elle reproduit en leur faisant subir toutes sortes de transformations et de déplacements : étirements, renversements, rotations, effet miroir, transpositions, déphasages, superpositions, etc., et ceci à toutes les échelles. Au fil des œuvres sont apparues des séries intitulées, Bifurcations, Intermittences, Attracteurs étranges, Polyrythmies. Ces titres ont un lien &e...

  20. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Gaïa Manuella Cany Du 10 au 28 avril 2017 CERN Meyrin, Bâtiment principal Oiseau - Manuella Cany. Tableaux abstraits inspirés de vues satellites ou photos prises du ciel. Certains sont à la frontière du figuratif alors que d'autres permettent de laisser libre cours à son imagination. Aux détails infinis, ces tableaux sont faits pour être vus de loin et de près grâce à une attention toute particulière apportée aux effets de matières et aux couleurs le long de volutes tantôt nuancées tantôt contrastées.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  1. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

      Parallels vision Astronomical subjects which evoke extrasensory kinetic visions Alberto Di Fabio From 8 to 10 October, CERN Meyrin, Main Building In the framework of Italy@cern, the Staff Association presents Alberto Di Fabio. Di Fabio’s work is inspired by the fundamental laws of the physical world, as well as organic elements and their interrelation. His paintings and works on paper merge the worlds of art and science, depicting natural forms and biological structures in vivid colour and imaginative detail. For all additional information: staff.association@cern.ch | Tel: 022 767 28 19

  2. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Les vibrantes Patrick Robbe-Grillet Du 30 octobre au 10 novembre 2017 CERN Meyrin, Main Building Patrick Robbe-Grillet - Feux d'artifices Qui est Patrick Robbe-Grillet ? Artiste Franco-Suisse, né en 1968 à Genève. En recherche du sentiment de paix, autodidacte, après un séjour en Chine en 2000, puis au Japon en 2002, suivi d’un long questionnement, il trouve sa voie dans la peinture, élément libérateur de sa créativité et expression de sa sensibilité à fleur de peau. « La Chine m’a enseigné les courbes, les nuances. Le Japon, la ligne droite, la rigueur. » Vous avez su rendre visible l'invisible ! - commentaire de Monsieur Fawaz Gruosi Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél : 022 766 37 38

  3. Exhibition

    CERN Multimedia

    Staff Association

    2011-01-01

    Jan Hladky, physicien de l'Institut de Physique de l'Académie des Sciences de la République tchèque, et membre de la collaboration Alice, expose ses œuvres au Bâtiment principal du 20 avril au 6 mai. Son exposition est dédiée aux victimes du séisme de Sendai. Des copies de ses œuvres seront mises en vente et les sommes récoltées seront versées au profit des victimes.

  4. Effects of HA released calcium ion on osteoblast differentiation.

    Science.gov (United States)

    Jung, Gil-Yong; Park, Yoon-Jeong; Han, Jung-Suk

    2010-05-01

    Hydroxyapatite (HA) is a widely used calcium phosphate implant substitute and has dissolution property. Although HA has been shown a beneficial effect on osteoblast differentiation, the exact mechanism is still unclear. In the present study, we proposed that Ca(2+) released from HA activated the expression bone associated proteins, OPN and BSP, mediated by L-type calcium channel and calcium/calmodulin-dependent protein kinase (CaMK) 2 which resulted into improved osteoblast differentiation. Results showed that HA elevated ALP expression as well as OPN and BSP expression in MC3T3-E1 cells. The result from western blot of CaMK2alpha indicated that HA released Ca(2+) activated CaMK2 through L-type calcium channel. Furthermore, upregulation of OPN and BSP mRNA expression was significantly inhibited when blocking both the L-type calcium channel and CaMK2. These findings suggested that HA accelerated the osteoblast differentiation by releasing Ca(2+).

  5. The Macrophage Polarization Regulates MSC Osteoblast Differentiation in vitro.

    Science.gov (United States)

    Gong, Lei; Zhao, Yan; Zhang, Yi; Ruan, Zhi

    2016-01-01

    Bone repair is a complex yet highly organized process involving interactions between various cell types and the extracellular environment. Macrophages are not only activated in inflammation during early phases of repair processes, but they are also present in bone throughout the whole bone repair process. Bone marrow derived mesenchymal stem cells (MSCs) represent an attractive therapeutic for bone fracture with their expansion potential, osteogenic capability, and potential for injury. However, less is known about the interaction between macrophage and MSC during bone repair and regeneration. This study was aimed to investigate whether macrophages in different statuses can regulate MSC osteoblast differentiation in vitro. Using in vitro cell coculture of macrophage and MSC, it was shown that macrophage polarization can regulate MSC osteoblast differentiation. This was evidenced by increased alkaline phosphatase (ALP), osteogenic markers, and bone mineralization in M2 macrophage cocultured MSC but decreased in M1 counterpart. These results might be mediated by pro-regenerative cytokines, such as TGF-β, VEGF, and IFG-1, produced by M2 macrophages and detrimental inflammation cytokines, such as IL-6, IL-12, and TNF-α, produced by M1 macrophages. Taken together, this shows that macrophage polarization could be crucial for maintaining bone homeostasis and promoting bone repair by regulating the MSC osteoblast differentiation. © 2016 by the Association of Clinical Scientists, Inc.

  6. BiodentineTM is cytocompatible with human primary osteoblasts

    Directory of Open Access Journals (Sweden)

    Miriam Zaccaro SCELZA

    2017-10-01

    Full Text Available Abstract Calcium silicate-based materials have been widely studied due to their resemblance to, and similar applicability of, mineral trioxide aggregate (MTA. Among these, Biodentine™ (BD was specifically designed as a “dentin replacement” material for applications such as root perforations, apexification, treatment of resorptive lesions, and as a retrograde filling material. The present study aimed to assess the in vitro response of human primary osteoblasts to BD using MTA AngelusTM as a reference material, by simultaneously analyzing three different cell viability parameters, namely mitochondrial activity, membrane integrity, and cell density. BD and MTA extracts were prepared by incubation on culture media for 24 h or 42 days after mixing. Primary human osteoblasts were exposed to extracts for 24 h, at 37oC with 5% CO2, and cell viability was evaluated by the XTT, NRU, and CVDE assays. Both materials induced cell viability levels higher than 70% when extracted for 24 h. However, when cells were exposed to extracts with increased conditioning times, MTA presented significant cytotoxic effects (p < 0.05 in comparison to the control and MTA at 24 h. After 42 days, the XTT assay identified a significant reduction in cell viability by BD when compared to the control (p<0.05, despite the fact that levels above the 70% viability cutoff were attained for biocompatible materials. It can be concluded that BD is cytocompatible with human primary osteoblasts, indicating its adequacy in direct contact with bone tissues.

  7. [Effect of alendronate-loaded bone cement on osteoblast].

    Science.gov (United States)

    Song, Deye; Ni, Jiangdong; Mao, Xinzhan; Ding, Muliang

    2014-03-01

    To determine the effect of bone cement, with different amounts of alendronate on osteoblast, and determine the cytotoxicity of alendronate-integrated bone cement from the viewpoint of cell biology. According to different additions (0, 10, 50, 100, 500, 1 000 mg) of alendronate in 50 g Cemex®XL bone cement powder, the experiments were divided into 6 groups, namely G0-G5 groups. In all groups, the adhesive capacity of osteoblast-like cells MG-63 was evaluated by electron microscope, the optical density (OD) value of cells by MTT colorimetry method, the alkaline phosphatase activity (AKP) by AKP assay kit, the apoptosis rates by Annexin-V-FITC apoptosis detection kit, and the bone mineralization potentiality by phase contrast microscope. The adhesive capacity of MG-63 was good in all groups. Compared with the G0 group, the cell apoptosis was inhibited in G1-G4 groups while in G5 group the cell apoptosis was promoted and cell proliferation was inhibited (P0.05). Less than 500 mg alendronate added in Cemex®XL 50 g bone cement powder has no cytotoxicity on osteoblasts.

  8. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Ehnert, Sabrina, E-mail: sabrina.ehnert@gmail.com [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Freude, Thomas, E-mail: tfreude@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Ihle, Christoph, E-mail: cihle@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Mayer, Larissa, E-mail: lara.nk@gmail.com [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Braun, Bianca, E-mail: bianca.braun@med.uni-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Graeser, Jessica, E-mail: jessica.graeser@student.reutlingen-university.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); Flesch, Ingo, E-mail: iflesch@bgu-tuebingen.de [BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen (Germany); and others

    2015-03-15

    Type 2 diabetes mellitus (T2DM) is one of the most frequent metabolic disorders in industrialized countries. Among other complications, T2DM patients have an increased fracture risk and delayed fracture healing. We have demonstrated that supraphysiological glucose and insulin levels inhibit primary human osteoblasts' maturation. We aimed at developing a more physiologically relevant in vitro model to analyze T2DM-mediated osteoblast changes. Therefore, SCP-1-immortalized pre-osteoblasts were differentiated with T2DM or control (non-obese and obese) sera. Between both control groups, no significant changes were observed. Proliferation was significantly increased (1.69-fold), while AP activity and matrix mineralization was significantly reduced in the T2DM group. Expression levels of osteogenic marker genes and transcription factors were altered, e.g. down-regulation of RUNX2 and SP-7 or up-regulation of STAT1, in the T2DM group. Active TGF-β levels were significantly increased (1.46-fold) in T2DM patients' sera. SCP-1 cells treated with these sera showed significantly increased TGF-β signaling (2.47-fold). Signaling inhibition effectively restored osteoblast maturation in the T2DM group. Summarizing our data, SCP-1 cells differentiated in the presence of T2DM patients' serum exhibit reduced osteoblast function. Thus, this model has a high physiological impact, as it can identify circulating factors in T2DM patients' blood that may affect bone function, e.g. TGF-β. - Highlights: • We present here a physiologically relevant in vitro model for diabetic osteopathy. • Blood of T2DM patients contains factors that affect osteoblasts' function. • The model developed here can be used to identify these factors, e.g. TGF-β. • Blocking TGF-β signaling partly rescues the osteoblasts' function in the T2DM group. • The model is useful to demonstrate the role of single factors in diabetic osteopathy.

  9. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization

    DEFF Research Database (Denmark)

    Elsafadi, E; Manikandan, M; Dawud, R. A.

    2016-01-01

    bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro......MSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application....... transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes...

  10. The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-12-1-0271 TITLE: The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development PRINCIPAL...31Aug 2015 4. TITLE AND SUBTITLE The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development 5a. CONTRACT NUMBER...initiate prostate cancer (PCa), promote PCa progression, and facilitate the development of mixed osteoblastic/osteolytic bone lesions . However, the

  11. Effect of ternary phosphate-based glass compositions on osteoblast and osteoblast-like proliferation, differentiation and death in vitro.

    Science.gov (United States)

    Skelton, K L; Glenn, J V; Clarke, S A; Georgiou, G; Valappil, S P; Knowles, J C; Nazhat, S N; Jordan, G R

    2007-07-01

    There is currently a need to expand the range of graft materials available to orthopaedic surgeons. This study investigated the effect of ternary phosphate-based glass (PBG) compositions on the behaviour of osteoblast and osteoblast-like cells. PBGs of the formula (in mol.%) P(2)O(5)(50)-CaO(50-X)-Na(2)O(X), where X is either 2, 4, 6, 8 or 10, were produced and their influence on the proliferation, differentiation and death in vitro of adult human bone marrow stromal cells (hBMSCs) and human fetal osteoblast 1.19 (HFOB 1.19) cells were assessed. Tissue culture plastic (TCP) and hydroxyapatite (HA) were used as controls. Exposure to PBGs in culture inhibited cell adhesion and proliferation and increased cell death in both cell types studied. There was no significant difference in percentage cell death between the PBGs, which was significantly greater than the controls. However, compared with other PBGs, a greater number of cells were found on the 48mol.% CaO which may have been due to either increased adherence or proliferation, or both. This composition was capable of supporting osteogenic proliferation and early differentiation, and supports the notion that chemical modification of the glass could lead to a more biologically compatible substrate with the potential to support osteogenic grafting. Realisation of this potential should lead to the development of novel grafting strategies for the treatment of problematic bone defects.

  12. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  13. Fkbp10 Deletion in Osteoblasts Leads to Qualitative Defects in Bone.

    Science.gov (United States)

    Lietman, Caressa D; Lim, Joohyun; Grafe, Ingo; Chen, Yuqing; Ding, Hao; Bi, Xiaohong; Ambrose, Catherine G; Fratzl-Zelman, Nadja; Roschger, Paul; Klaushofer, Klaus; Wagermaier, Wolfgang; Schmidt, Ingo; Fratzl, Peter; Rai, Jyoti; Weis, MaryAnn; Eyre, David; Keene, Douglas R; Krakow, Deborah; Lee, Brendan H

    2017-06-01

    Osteogenesis imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures, and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65-kDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon, and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10 fl/fl mice (Mus musculus; C57BL/6) using the osteoblast-specific Col1a1 2.3-kb Cre recombinase. Using μCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy (MS) of bone collagen demonstrated a decrease in mature, hydroxylysine-aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral-to-matrix ratio and in crystal size as shown by Raman spectroscopy and small-angle X-ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild-type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  14. Osteoblast-like cell attachment and proliferation on turned, blasted, and anodized titanium surfaces.

    Science.gov (United States)

    Pae, Ahran; Kim, Si-Seok; Kim, Hyeong-Seob; Woo, Yi-Hyung

    2011-01-01

    The purpose of this study was to investigate the cellular activities of MG63 osteoblast-like cells on modified titanium surfaces. MG63 osteoblast-like cells were cultured on titanium disks (n = 20 in each group) with turned, resorbable blast media (RBM)-treated, or anodized surfaces. The surfaces of commercially available implants of Osstem (Osstem Implant) were reproduced for the titanium disks. The morphology of cells cultured on these disks was examined using scanning electron microscopy. X-ray photoelectron spectroscopy (XPS) was employed for the analysis of surface chemistry. Specimens were also evaluated with an initial cell adhesion assay to compare initial adhesion, with a methyl tetrazol sulfate (MTS) assay to compare the proliferation ability, and with an alkaline phosphatase (ALP) assay to compare the differentiation ability. Statistical significance of the differences was determined using the Kruskal-Wallis test for the cell adhesion assay and analysis of variance for the MTS and ALP assays. Attached cells with more defined lamellopodia and flattened morphology were observed on the anodized and RBM surfaces than on the turned surfaces. The titanium surfaces were all oxidized as titanium oxide and polluted by carbon determinants, as determined by XPS. Anodized titanium surfaces exhibited calcium and phosphorus peaks. Initial cell attachment activity, cell proliferation activity, and ALP activity were higher on the anodized surfaces than on the other surfaces. Cell differentiation on the anodized surfaces at culture day 10 was significantly higher (P < .05) than on the other surfaces. Surface treatment by anodization may improve initial attachment of cells, proliferation ability, and differentiation activity, which play important roles in providing better osseointegration of implants. More rapid and stronger osseointegration of implants may make it possible to offer the best anchorage and shorten the healing time required prior to functional loading.

  15. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R

    2007-01-01

    The uPAR and its ligand uPA are expressed by both osteoblasts and osteoclasts. Their function in bone remodeling is unknown. We report that uPAR-lacking mice display increased BMD, increased osteogenic potential of osteoblasts, decreased osteoclasts formation, and altered cytoskeletal reorganizat......The uPAR and its ligand uPA are expressed by both osteoblasts and osteoclasts. Their function in bone remodeling is unknown. We report that uPAR-lacking mice display increased BMD, increased osteogenic potential of osteoblasts, decreased osteoclasts formation, and altered cytoskeletal...

  16. Museum Exhibitions: Optimizing Development Using Evaluation

    Science.gov (United States)

    Dusenbery, P. B.

    2002-12-01

    The Space Science Institute (SSI) of Boulder, Colorado, has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop a third exhibit called InterActive Earth. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The development of these exhibitions included a comprehensive evaluation plan. I will report on the important role evaluation plays in exhibit design and development using MarsQuest and InterActive Earth as models. The centerpiece of SSI's Mars Education Program is the 5,000-square-foot traveling exhibition, MarsQuest: Exploring the Red Planet, which was developed with support from the National Science Foundation (NSF), NASA, and several corporate donors. The MarsQuest exhibit is nearing the end of a highly successful, fully-booked three-year tour. The Institute plans to send an enhanced and updated MarsQuest on a second three-year tour and is also developing Destination: Mars, a mini-version of MarsQuest designed for smaller venues. They are designed to inspire and empower participants to extend the excitement and science content of the exhibitions into classrooms and museum-based education programs in an ongoing fashion. The centerpiece of the InterActive Earth project is a traveling exhibit that will cover about 4,000 square feet. The major goal of the proposed exhibit is to introduce students and the public to the complexity of the interconnections in the Earth system, and thereby, to inspire them to better understand planet Earth. Evaluation must be an integral part of the exhibition development process. For MarsQuest, a 3-phase evaluation (front end, formative and summative) was conducted by Randi Korn and Associates in close association with the development team. Sampling procedures for all three evaluation phases ensured the participation of all audiences, including family groups, students, and adults. Each phase of

  17. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO{sub 3} composites with aligned lamellar porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beilei [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Chen, Liangjian, E-mail: jian007040@sina.com [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Shao, Chunsheng [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Fuqiang; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Cao, Jun [Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013 (China); Zhang, Dou, E-mail: dzhang@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2016-04-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO{sub 3} piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO{sub 3} composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p < 0.05), so did the alkaline phosphate (ALP) and bone gla protein (BGP) activities. Porosity of 50% group exhibited higher ALP activity and BGP activity than those of the 40% and 60% groups. Scanning electron microscopy (SEM) observations revealed that osteoblasts adhered and stretched better on porous HA/BaTiO{sub 3} than on the dense one, especially HA/BaTiO{sub 3} with porosity of 50% and 60%. However, there was no significant difference in the cell morphology, cell densities, ALP and BGP activities between the polarized group and the non-polarized group (p > 0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO{sub 3} played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. - Graphical abstract: Aligned porous structure of HA/BaTiO{sub 3} piezoelectric composites prepared by ice-templating method was similar to the lamellar Haversian system in bone tissue. When co-cultured with human osteosarcoma cells (MG63), porous HA/BaTiO{sub 3} composites exhibited remarkable biological activity in promoting proliferation, differentiation and adhesion of MG63 cells. - Highlights: • The aligned porous structure of HA/BaTiO{sub 3} composite was similar to the lamellar Haversian system in bone tissue. • The piezoelectric d{sub 33} coefficient of HA/BaTiO{sub 3} with porosity

  18. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  19. The World of Virtual Exhibitions

    Directory of Open Access Journals (Sweden)

    Irena Eiselt

    2013-09-01

    Full Text Available EXTENDED ABSTRACTSpecial collections of the National and University Library (NUK hide a lot of items of precious value. The Slovenian cultural heritage is stored on paper or on other media as a part of the library’s Manuscripts, Incunabula and Rare Books Collection, Old Prints Collection, Maps and Pictorial Collection, Music Collection, Ephemera Collection, Serials Collection, and Slovenian Diaspora Publications Collection. Only a small part of the treasures is temporary revealed to the public on special exhibitions. The idea of virtual exhibitions of library treasures was born in 2005. The library aimed to exhibit precious items of special collections of high historical or artistic value. In 2008 the first two virtual exhibitions were created in-house offering access to the rich collections of old postcards of Ljubljana at the beginning of 20th century kept in the Maps and Pictorial Collection of NUK. They were soon followed by other virtual exhibitions. At the beginning they were organised in the same way as physical exhibitions, afterwards different programs were used for creation of special effects (for ex. 3D wall. About two years ago it was decided that the creation of virtual exhibitions will be simplified. Files of digitised and borndigital library materials in jpg format are imported to MS PowerPoint 2010. Each jpg file is now formatted by adding a frame, a description … to the slides which are saved as jpg files. The last step is the import of jpg files into Cooliris application used for NUK web exhibitions. In the paper the virtual exhibition design and creation, the technical point of view and criteria for the selection of exhibition content are explained following the example of the virtual exhibitions the Old Postcards of Ljubljana, Photo Ateliers in Slovenia, a collection of photographs Four Seasons by Fran Krašovec and photos of Post-Earthquake Ljubljana in 1895.

  20. Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses.

    Science.gov (United States)

    Kim, Hae-Won; Li, Long-Hao; Lee, Eun-Jung; Lee, Su-Hee; Kim, Hyoun-Ee

    2005-12-01

    Collagen, as a major constituent of human connective tissues, has been regarded as one of the most important biomaterials. As a coating moiety on Ti hard-tissue implants, the collagen has recently attracted a great deal of attention. This article reports the effects of fibrillar assembly and crosslinking of collagen on its chemical stability and the subsequent osteoblastic responses. The fibrillar self-assembly of collagen was carried out by incubating acid-dissolved collagen in an ionic-buffered medium at 37 degrees C. The degree of assembly was varied with the incubation time and monitored by the turbidity change. The differently assembled collagen was coated on the Ti and crosslinked with a carbodiimide derivative. The partially assembled collagen contained fibrils with varying diameters as well as nonfibrillar aggregates. On the other hand, the fully assembled collagen showed the complete formation of fibrils with uniform diameters of approximately 100-200 nm with periodic stain patterns within the fibrils, which are typical of native collagen fibers. Through this fibrillar assembly, the collagen coating had significantly improved chemical stability in both the saline and collagenase media. The subsequent crosslinking step also improved the stability of the collagen coating, particularly in the unassembled collagen. The fibrillar assembly and the crosslinking of collagen significantly influenced the osteoblastic cell responses. Without the assembly, the collagen layer on Ti adversely affected the cell attachment and proliferation. However, those cellular responses were improved significantly when the collagen was assembled to fibrils and the assembly degree was increased. After crosslinking the collagen coating, these cellular responses were significantly enhanced in the case of the unassembled collagen but were not altered much in the assembled collagen. Based on these observations, it is suggested that the fibrillar assembly and the crosslinking of collagen

  1. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystryene Films

    Energy Technology Data Exchange (ETDEWEB)

    X Ba; M Hadjiargyrou; E DiMasi; Y Meng; M Simon; Z Tan; M Rafailovich

    2011-12-31

    We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

  2. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2014-12-01

    Full Text Available One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone

  3. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function

    Science.gov (United States)

    Subramani, K.; Birch, M. A.

    2006-09-01

    The aims of this study were to fabricate poly(ethylene glycol) (PEG) hydrogel micropatterns on a biomaterial surface to guide osteoblast behaviour and to study how incorporating vascular endothelial growth factor (VEGF) within the adhered hydrogel influenced cell morphology. Standard photolithographic procedures or photopolymerization through a poly(dimethyl siloxane) (PDMS) mould were used to fabricate patterned PEG hydrogels on the surface of silanized silicon wafers. Hydrogel patterns were evaluated by light microscopy and surface profilometry. Rat osteoblasts were cultured on these surfaces and cell morphology investigated by fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Release of protein trapped in the polymerized PEG was evaluated and VEGF-PEG surfaces were characterized for their ability to support cell growth. These studies show that photopolymerized PEG can be used to create anti-adhesive structures on the surface of silicon that completely control where cell interaction with the substrate takes place. Using conventional lithography, structures down to 50 µm were routinely fabricated with the boundaries exhibiting sloping sides. Using the PDMS mould approach, structures were fabricated as small as 10 µm and boundaries were very sharp and vertical. Osteoblasts exhibiting typical morphology only grew on the silicon wafer surface that was not coated with PEG. Adding BSA to the monomer solution showed that protein could be released from the hydrogel for up to 7 days in vitro. Incorporating VEGF in the hydrogel produced micropatterns that dramatically altered osteoblast behaviour. At boundaries with the VEGF-PEG hydrogel, there was striking formation of cellular processes and membrane ruffling indicative of a change in cell morphology. This study has explored the morphogenetic properties of VEGF and the applications of nano/microfabrication techniques for guided tissue (bone) regeneration in dental and

  4. Exhibitions: Facing Outward, Pointing Inward

    Science.gov (United States)

    McDonald, Joseph P.

    2007-01-01

    The Coalition of Essential Schools (CES) Exhibitions Project of the early 1990s produced a range of work that continues to inform the practice of using exhibitions as a "360 degree" method of transforming teaching and learning, community connections, school design, and assessment. Among that work was this paper coupling the origins of exhibitions…

  5. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Zhu, G.; Morris, G. E.; Meszlenyi, R. K.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.

  6. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Chung, Chong-Pyoung [Department of Periodontology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  7. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  8. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy.

    Science.gov (United States)

    Zhao, Tingting; Li, Yan; Zhao, Xinqing; Chen, Hong; Zhang, Tao

    2012-04-01

    Hafnium ion implantation was applied to NiTi alloy to suppress Ni ion release and enhance osteoblast-material interactions and hemocompatibility. The auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscope results showed that a composite TiO(2)/HfO(2) nanofilm with increased surface roughness was formed on the surface of NiTi, and Ni concentration was reduced in the superficial surface layer. Potentiodynamic polarization tests displayed that 4 mA NiTi sample possessed the highest E(br) - E(corr), 470 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Inductively coupled plasma mass spectrometry tests during 60 days immersion demonstrated that Ni ion release rate was remarkably decreased, for example, a reduction of 67% in the first day. The water contact angle increased and surface energy decreased after Hf implantation. Cell culture and methyl-thiazol-tetrazolium indicated that Hf-implanted NiTi expressed enhanced osteoblasts adhesion and proliferation, especially after 7 days culture. Hf implantation decreased fibrinogen adsorption, but had almost no effect on albumin adsorption. Platelets adhesion and activation were suppressed significantly (97% for 4 mA NiTi) and hemolysis rate was decreased by at least 57% after Hf implantation. Modified surface composition and morphology and decreased surface energy should be responsible for the improvement of cytocompatibility and hemocompatibility. Copyright © 2011 Wiley Periodicals, Inc.

  9. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  10. NFAT Signaling in Osteoblasts Regulates the Hematopoietic Niche in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Cheryl L. Sesler

    2013-01-01

    Full Text Available Osteoblasts support hematopoietic cell development, including B lymphopoiesis. We have previously shown that the nuclear factor of activated T cells (NFAT negatively regulates osteoblast differentiation and bone formation. Interestingly, in smooth muscle, NFAT has been shown to regulate the expression of vascular cellular adhesion molecule-1 (VCAM-1, a mediator of cell adhesion and signaling during leukocyte development. To examine whether NFAT signaling in osteoblasts regulates hematopoietic development in vivo, we generated a mouse model expressing dominant-negative NFAT driven by the 2.3 kb fragment of the collagen-αI promoter to disrupt NFAT activity in osteoblasts (dnNFATOB. Bone histomorphometry showed that dnNFATOB mice have significant increases in bone volume (44% and mineral apposition rate (131% and decreased trabecular thickness (18%. In the bone microenvironment, dnNFATOB mice displayed a significant increase (87% in Lineage−cKit+Sca-1+ (LSK cells and significant decreases in B220+CD19−IgM− pre-pro-B cells (41% and B220+CD19+IgM+ immature B cells (40%. Concurrent with these findings, LSK cell differentiation into B220+ cells was inhibited when cocultured on differentiated primary osteoblasts harvested from dnNFATOB mice. Gene expression and protein levels of VCAM-1 in osteoblasts decreased in dnNFATOB mice compared to controls. These data suggest that osteoblast-specific NFAT activity mediates early B lymphopoiesis, possibly by regulating VCAM-1 expression on osteoblasts.

  11. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts

    NARCIS (Netherlands)

    A. Kode (Aruna); J.S. Manavalan (John); I. Mosialou (Ioanna); G. Bhagat (Govind); C.V. Rathinam (Chozha); N. Luo (Nan); H. Khiabanian (Hossein); A. Lee (Albert); V. Murty (Vundavalli); R. Friedman (Richard); A. Brum (Andrea); D. Park (David); N. Galili (Naomi); S. mukherjee (Siddhartha); J. Teruya-Feldstein (Julie); A. Raza (Azra); R. Rabadan (Raul); E. Berman (Ellin); S. Kousteni (Stavroula)

    2014-01-01

    textabstractCells of the osteoblast lineage affect the homing and the number of long-term repopulating haematopoietic stem cells, haematopoietic stem cell mobilization and lineage determination and B cell lymphopoiesis. Osteoblasts were recently implicated in pre-leukaemic conditions in mice.

  12. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull

    NARCIS (Netherlands)

    Geurtzen, Karina; Knopf, Franziska; Wehner, Daniel; Huitema, Leonie F A; Schulte-Merker, Stefan; Weidinger, Gilbert

    Zebrafish have an unlimited capacity to regenerate bone after fin amputation. In this process, mature osteoblasts dedifferentiate to osteogenic precursor cells and thus represent an important source of newly forming bone. By contrast, differentiated osteoblasts do not appear to contribute to repair

  13. In Vitro Osteoblast Model for Bone Wound Infections and Antimicrobial Therapy (Addendum)

    Science.gov (United States)

    2012-01-01

    recent study indicated that infection of Chlamydia pneumonia induced that maximum expression of proinflammatory IL8 (among other cytokines) at 72 hours...2011. Induction of proinflammatory cytokines in human osteoblastic cells by Chlamydia pneumoniae . Cytokine. Nov;56(2):450-7. APPENDIXES: None ...of multidrug resistant Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Infection of osteoblasts revealed that all 3 species

  14. Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts

    DEFF Research Database (Denmark)

    Bi, Yanming; Nielsen, Karina L; Kilts, Tina M

    2006-01-01

    Bone mass is maintained by a fine balance between bone formation by osteoblasts and bone resorption by osteoclasts. Although osteoblasts and osteoclasts have different developmental origins, it is generally believed that the differentiation, function, and survival of osteoclasts are regulated by ...

  15. Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts

    NARCIS (Netherlands)

    Vaes, B.L.T.; Dechering, K.J.; Someren, van P.; Hendriks, J.M.A.; Ven, van de C.J.J.M.; Feijen, A.; Mummery, C.L.; Reinders, M.J.T.; Olijve, W.; Zoelen, van E.J.J.; Steegenga, W.T.

    2005-01-01

    Wnt signaling has been implicated in regulating bone formation by controlling osteoblast proliferation and function. Although stabilization of ß-catenin by Wnt has been shown to increase alkaline phosphatase expression and osteoblast differentiation, the precise role of Wnt signaling during the

  16. c-Jun N-Terminal Kinases (JNKs) Are Critical Mediators of Osteoblast Activity In Vivo.

    Science.gov (United States)

    Xu, Ren; Zhang, Chao; Shin, Dong Yeon; Kim, Jung-Min; Lalani, Sarfaraz; Li, Na; Yang, Yeon-Suk; Liu, Yifang; Eiseman, Mark; Davis, Roger J; Shim, Jae-Hyuck; Greenblatt, Matthew B

    2017-09-01

    The c-Jun N-terminal kinases (JNKs) are ancient and evolutionarily conserved regulators of proliferation, differentiation, and cell death responses. Currently, in vitro studies offer conflicting data about whether the JNK pathway augments or represses osteoblast differentiation, and the contribution of the JNK pathway to regulation of bone mass in vivo remains unclear. Here we show that Jnk1-/- mice display severe osteopenia due to impaired bone formation, whereas Jnk2-/- mice display a mild osteopenia only evident in long bones. In order to both confirm that these effects were osteoblast intrinsic and assess whether redundancy with JNK1 masks a potential contribution of JNK2, mice with a conditional deletion of both JNK1 and JNK2 floxed conditional alleles in osteoblasts (Jnk1-2osx ) were bred. These mice displayed a similar degree of osteopenia to Jnk1-/- mice due to decreased bone formation. In vitro, Jnk1-/- osteoblasts display a selective defect in the late stages of osteoblast differentiation with impaired mineralization activity. Downstream of JNK1, phosphorylation of JUN is impaired in Jnk1-/- osteoblasts. Transcriptome analysis showed that JNK1 is required for upregulation of several osteoblast-derived proangiogenic factors such as IGF2 and VEGFa. Accordingly, JNK1 deletion results in a significant reduction skeletal vasculature in mice. Taken together, this study establishes that JNK1 is a key mediator of osteoblast function in vivo and in vitro. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  17. Staphylococcus aureus Biofilms Decrease Osteoblast Viability, Inhibits Osteogenic Differentiation, and Increases Bone Resorption in vitro

    Science.gov (United States)

    2013-06-01

    osteogenic differentiation Human osteoblasts (PromoCell, Heidelberg, Germany) were maintained in DMEM supplemented with 10% fetal bovine serum (FBS...with calf intestinal ALP. Osteocalcin staining Osteoblasts were grown and differentiated for 14 and 21 days in 24-well plates in the presence or

  18. Mechanoregulation of osteoblast-like MG-63 cell activities by cyclic stretching

    Directory of Open Access Journals (Sweden)

    Yi-Jane Chen

    2014-07-01

    Conclusion: High-level mechanical stretching induced S-phase cell cycle arrest and apoptotic cell death in osteoblastic cells. The results suggest that heavy tensional force is a negative regulator of osteoblastic activities and should, therefore, be minimized if bone formation is attempted during orthodontic/orthopedic treatment.

  19. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts.

    Science.gov (United States)

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis.

  20. Fluoride increases tyrosine kinase activity in osteoblast-like cells: regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane.

    Science.gov (United States)

    Burgener, D; Bonjour, J P; Caverzasio, J

    1995-01-01

    Fluoride is one of the most effective agents for the treatment of vertebral osteoporosis because of its ability to increase osteoblast proliferation. The present study further investigates the role of protein tyrosine phosphorylation previously suggested to mediate the mitogenic effect of fluoride on bone-forming cells. The activity of the plasma membrane Na-coupled Pi transport system was monitored to assess the relationship between alterations in tyrosine phosphorylation and osteoblast activity induced by fluoride. The results indicate that vanadate, a selective inhibitor of tyrosine phosphatase, mimicked the stimulatory effect of fluoride on Pi transport. The change in Pi transport induced by fluoride was dose dependently inhibited by genistein, a potent inhibitor of tyrosine kinase. Genistein also inhibited the change in cell proliferation induced by fluoride. Associated with these observations, tyrosine phosphorylation activity was significantly increased in subcellular fractions isolated from UMR-106 cells treated with fluoride as compared with those isolated from vehicle-treated cells. This change in tyrosine phosphorylation activity was markedly blunted when genistein was added to the kinase assay buffer. It was not associated with any alteration in specific tyrosine phosphatase activity. There was also no evidence of a direct effect of fluoride on tyrosine phosphatase activity in isolated plasma membrane of UMR-106 cells. In conclusion, the results of the present study suggest that fluoride enhances protein tyrosine phosphorylation in osteoblast-like cells by enhancing tyrosine kinase activity. The results further support the hypothesis that this signal transduction mechanism is involved in the osteogenic effects of fluoride.

  1. Osteoblastogenesis and Role of Osteoblasts in Calcıum Homeostasis and Remodeling of Bone

    Directory of Open Access Journals (Sweden)

    Neslihan Başcıl Tütüncü

    2008-05-01

    Full Text Available Bone remodeling is very important for repair of microfractures and fatigue damage and prevention of excessive aging and its consequences. Bone remodeling lasts for about 6-9 months. During this period osteoclasts resorb damaged bone and osteoblasts synthesize new bone. The lifespan of mature osteoclasts is about 15 days and for osteoblasts 3 months. Therefore, the time required for the remodeling of a given segement of bone is much longer than the lifespan of its cells which perform remodeling. A supply of new osteoblasts and osteoclasts are therefore needed for succesful remodeling by the basic multicellular unit. The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone differentiating osteoblast cells. Osteoblast commitment and differentation are controlled by complex activities. Many factors are involved in the regulation of osteoblastogenesis. Bone morphogenetic proteins and the Wnt glycoproteins play crucial roles in signaling osteoblast commitment and differentiation, and are the only known factors capable of initiating osteoblastogenesis from uncommitted progenitors. They can initiate commitment of mesenchymal cells to osteoblastic lineage. The initial cell division is asymmetric, giving rise to another stem cell and a committed osteoprogenitor. After commitment to the osteoblastic lineage, a osteoprogenitor cell gives rise to the transit-amplifying compartment. At this stage osteoprogenitor cells proliferate intensively. After this stage, the cells are more differentiated and give rise to preosteoblasts which express both STRO1, alkaline phosphatase, pyrophosphate, and type 1 collagen. Preosteoblasts are committed to the osteoblast lineage with extensive replicative capacity, but have no self-renewal capacity. Preosteoblasts form the intermediate stage of osteoblastogenesis. The mature osteoblasts express osteopontin, alkaline phosphatase, bone sialoprotein, and osteocalcin. This stage is

  2. Photowalk Exhibition opens at Microcosm

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    The winning photographs from the 2010 Global Particle Physics Photowalk competition will go on display at Microcosm from 11 February to 2 April. The exhibition is part of a global photography event taking place over three continents, with Photowalk exhibitions opening simultaneously at Fermilab in the US, KEK in Japan and here at CERN.   DESY wire chamber - First place people's choice; second place global jury competition. Photographer: Hans-Peter Hildebrandt  If you were one of the 1,300 photography lovers who voted in last year’s Photowalk competition, this exhibition is your chance to see the winning entries in print. The exhibition will take place in the downstairs gallery of Microcosm, overlooking the garden. 15 photographs will be on display, with each of the laboratories that participated in Photowalk represented by their 3 winning entries. Among them will be the “people’s choice” sunburst photo of a particle detector at DESY (Photo 1), and...

  3. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  4. Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling?

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Søe, Kent; Andersen, Thomas Levin

    2014-01-01

    Osteoblast recruitment during bone remodeling is obligatory to re-construct the bone resorbed by the osteoclast. This recruitment is believed to be triggered by osteoclast products and is therefore likely to start early during the remodeling cycle. Several osteoclast products with osteoblast...... recruitment potential are already known. Here we draw the attention on the osteoblast recruitment potential of the collagen that is freshly demineralized by the osteoclast. Our evidence is based on observations on adult human cancellous bone, combined with in vitro assays. First, freshly eroded surfaces where...... osteoblasts have to be recruited show the presence of non-degraded demineralized collagen and close cell-collagen interactions, as revealed by electron microscopy, while surface-bound collagen strongly attracts osteoblast lineage cells in a transmembrane migration assay. Compared with other extracellular...

  5. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L

    2004-01-01

    Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes......, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...... apoptosis when transdifferentiating into osteocytes. By examination of osteoblasts and osteocytes embedded in calvarial bone in the MT1-MMP deficient mice, we found that MT1-MMP deficient mice had 10-fold higher levels of apoptotic osteocytes than wild-type controls. We have previously shown that MT1-MMP...

  6. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    Science.gov (United States)

    Mathews, Smitha; Bhonde, Ramesh; Gupta, Pawan Kumar; Totey, Satish

    2012-09-01

    The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications. Copyright © 2012 International

  7. Expression and regulation of Na-dependent P(i) transport in matrix vesicles produced by osteoblast-like cells.

    Science.gov (United States)

    Montessuit, C; Bonjour, J P; Caverzasio, J

    1995-04-01

    Extracellular matrix vesicles (MV) are the loci of initial mineralization in several calcifying tissues. We recently reported that MV isolated from chicken epiphyseal cartilage are equipped with a Na-dependent P(i) transport (NaPiT) system. The activity of the NaPiT system appeared to be crucial for the development of MV-mediated calcification. In the present study we investigated the expression of NaPiT activity in MV produced by the osteoblast-like cells MC3T3-E1. The relationship between changes in NaPiT activity in the intact cells and in the released MV was also examined. NaPiT activity in MV harvested from cultured MC3T3-E1 cells was transiently expressed. It was markedly increased between Days 8 and 10 (5- to 6-fold), and then gradually decreased. NaPiT activity was enriched in MV as compared with the parent osteoblast-like cells, while the Na-dependent transport system for alanine (NaAlaT) was not. When NaPiT activity was enhanced in osteoblast-like cells by fetal calf serum (FCS) or P(i) depletion, P(i) transport stimulation was observed in the derived MV as well. Alkaline phosphatase (AP) was differentially expressed and regulated in MV from MC3T3-E1 cell cultures, as compared with NaPiT. In contrast to the transient expression of NaPiT, AP activity in MV increased continuously with time in culture. It was stimulated by FCS treatment of the parent cells, but decreased in MV obtained from P(i)-depleted cultures. These results suggest that the presence in osteogenic cells of selective regulatory mechanisms for the insertion and enrichment of P(i) transport activity in released MV.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Globe exhibit wins international acclaim

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    The Globe’s “Universe of Particles” exhibition has recently received four prestigious awards for its avant-garde design. This external praise is great encouragement for the CERN exhibitions currently on the drawing board.   The Universe of Particles exhibition has won 4 awards for its avant-garde design. Back in 2008, the design company Atelier Brückner was presented with a challenge: to design the layout of a new permanent exhibition for CERN, one that would epitomize both the Organization and its research. The brief was concise but complex: the exhibit had to be symbolic of the Organization, use modern technology, engage and immerse visitors, and, preferably, use touch-screen technology. With the help of IArt, an interactive technology firm, and based on the content provided by CERN’s Education Group, Atelier Brückner developed the “Universe of Particles” exhibit as it is today. Its principal concept centred on the s...

  9. Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts.

    Science.gov (United States)

    Axente, Emanuel; Sima, Felix; Elena Sima, Livia; Erginer, Merve; Eroglu, Mehmet S; Serban, Natalia; Ristoscu, Carmen; Petrescu, Stefana M; Toksoy Oner, Ebru; Mihailescu, Ion N

    2014-09-01

    There is increased interest in smart bioactive materials to control tissue regeneration for the engineering of cell instructive scaffolds. We introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as a new method for the fabrication of organic thin films with a compositional gradient. Synchronized C-MAPLE of levan and oxidized levan was employed to assemble a two-compound biopolymer film structure. The gradient of the film composition was validated by fluorescence microscopy. In this study, we investigated the cell response induced by the compositional gradient using imaging of early osteoblast attachment and analysis of signalling phosphoprotein expression. Cells attached along the gradient in direct proportion to oxidized levan concentration. During this process distinct areas of the binary gradient have been shown to modulate the osteoblasts' extracellular signal-regulated kinase signalling with different propensity. The proposed fabrication method results in the preparation of a new bioactive material, which could control the cell signalling response. This approach can be extended to screen new bioactive interfaces for tissue regeneration.

  10. Optical diagnostics of osteoblast cells and osteogenic drug screening

    Science.gov (United States)

    Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.

    2016-02-01

    Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.

  11. Inactivation of the integrin-linked kinase (ILK) in osteoblasts increases mineralization.

    Science.gov (United States)

    El-Hoss, Jad; Arabian, Alice; Dedhar, Shoukat; St-Arnaud, René

    2014-01-01

    In osteoblasts, Integrin-Linked Kinase (ILK)-dependent phosphorylation of the cJUN transcriptional coactivator, αNAC, induces the nuclear accumulation of the coactivator and potentiates cJUN-dependent transcription. Mutation of the ILK phosphoacceptor site within the αNAC protein leads to cytoplasmic retention of the coactivator and cell-autonomous increases in osteoblastic activity. In order to gain further insight into the ILK-αNAC signaling cascade, we inactivated ILK using RNA knockdown in osteoblastic cells and engineered mice with specific ablation of ILK in osteoblasts. ILK knockdown in MC3T3-E1 osteoblast-like cells reduced phosphorylation of its downstream target glycogen synthase kinase 3β (GSK3β), which led to cytoplasmic retention of αNAC and increased mineralization with augmented expression of the osteoblastic differentiation markers, pro-α1(I) collagen (col1A1), Bone Sialoprotein (Bsp) and Osteocalcin (Ocn). Cultured ILK-deficient primary osteoblasts also showed increased cytoplasmic αNAC levels, and augmented mineralization with higher Runx2, Col1a1 and Bsp expression. Histomorphometric analysis of bones from mutant mice with ILK-deficient osteoblasts (Col1-Cre;Ilk(-/fl)) revealed transient changes, with increased bone volume in newborn animals that was corrected by two weeks of age. Our data suggest that the ILK-αNAC cascade acts to reduce the pace of osteoblast maturation. We propose that in vivo, functional redundancy is able to compensate for the loss of ILK activity, leading to the absence of an obvious phenotype when osteoblast-specific Ilk-deficient mice reach puberty. © 2013 Elsevier B.V. All rights reserved.

  12. Bone vs. fat: embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts.

    Science.gov (United States)

    Wiren, Kristine M; Hashimoto, Joel G; Semirale, Anthony A; Zhang, Xiao-Wei

    2011-10-01

    Although androgen is considered an anabolic hormone, the consequences of androgen receptor (AR) overexpression in skeletally-targeted AR-transgenic lines highlight the detrimental effect of enhanced androgen sensitivity on cortical bone quality. A compartment-specific anabolic response is observed only in male and not in female AR3.6-transgenic (tg) mice, with increased periosteal bone formation and calvarial thickening. To identify anabolic signaling cascades that have the potential to increase bone formation, qPCR array analysis was employed to define expression differences between AR3.6-tg and wild-type (WT) periosteal tissue. Notably, categories that were significantly different between the two genotypes included axonal guidance, CNS development and negative regulation of Wnt signaling with a node centered on stem cell pathways. Further, fine mapping of AR3.6-tg calvaria revealed that anabolic thickening in vivo is not uniform across the calvaria, occurring only in frontal and in not parietal bones. Multipotent fraction 1 progenitor populations from both genotypes were cultured separately as frontal bone neural crest stem-like cells (fNCSC) and parietal bone mesenchymal stem-like cells (pMSC). Both osteoblastic and adipogenic differentiation in these progenitor populations was influenced by embryonic lineage and by genotype. Adipogenesis was enhanced in WT fNCSC compared to pMSC, but transgenic cultures showed strong suppression of lipid accumulation only in fNCSC cells. Osteoblastogenesis was significantly increased in transgenic fNCSC cultures compared to WT, with elevated alkaline phosphatase (ALP) activity and induction of mineralization and nodule formation assessed by alizarin red and von Kossa staining. Osteocalcin (OC) and ALP mRNA levels were also increased in fNCSC cultures from AR3.6-tg vs. WT, but in pMSC cultures ALP mRNA levels, mineralization and nodule formation were decreased in AR3.6-tg cells. Expression differences identified by array in long

  13. Effect of soybean extract after tooth extraction on osteoblast numbers

    Directory of Open Access Journals (Sweden)

    Rosa Sharon Suhono

    2011-06-01

    Full Text Available Background: Many researches were done to find natural materials that may increase and promote bone healing processes after trauma and surgery. One of natural material that had been studied was soybean extract which contains phytoestrogen, a non-steroidal compounds found in plants that may binds to estrogen receptors and have estrogen-like activity. Purpose: The aim of this study was to investigate the effect of soybean extract feeding on the number of osteoblast cells in alveolar bone socket after mandibular tooth extraction. Methods: This study was studied on male Rattus norvegicus strain Wistar. Seventeen rats divided into three groups were used in this study. Group 1 fed with carboxy methyl cellulose (CMC solution 0,2% for seven days, and the left mandibular central incisivus was extracted; group 2 fed with soybean extract for seven days and the left mandibular central incisives was extracted; group 3 received the left mandibular central incisives extraction followed by soybean extract feeding for seven days after the extraction. All groups were sacrificed on the seventh day post-extraction, and the alveolar bone sockets were taken for histopathological observation. The tissues were processed and stained using hematoxylin and eosin to identify the amount of osteoblast cells. The number of osteoblast cells was counted using an Image Tool program. The data was analyzed statistically using the One-Way ANOVA test. Results: Significant differences were found on the number of osteoblast cells in alveolar bone after tooth extraction between groups. Group 2 (fed with soybean extract is higher than group 1 (fed with CMC and group 3 (fed with soybean extract after extraction. Conclusion: Soybean extract feeding that given for seven days pre-tooth extraction can increase the number of osteoblast cells compared with the group that were not given soybean extract feeding and also with the group that were given soybean extract feeding for seven days post

  14. The long-term effects of red light-emitting diode irradiation on the proliferation and differentiation of osteoblast-like MC3T3-E1 cells.

    Science.gov (United States)

    Asai, Tomoko; Suzuki, Hiroaki; Kitayama, Midori; Matsumoto, Kousuke; Kimoto, Akira; Shigeoka, Manabu; Komori, Takahide

    2014-06-18

    Low level laser therapy (LLLT) affects various biological processes, and it is said that the non-coherent light of the light-emitting diode (LED) has a similar action. The purpose of this study was to examine the effects of LED light on the proliferation and differentiation of osteoblasts-like MC3T3-E1 cells cultured in osteogenic differentiation medium (ODM) over the long term. Cells were irradiated with red LED light of 630 nm at three doses; 0.5J/cm², 1.5J/cm² or 3.0J/cm² for the cell proliferation activity assay, and at 0.5J/cm² for the osteogenic differentiation activity assay. The former activity was checked by counting the number of viable cells using Trypan blue dye. The latter activity was evaluated by alkaline phosphatase (ALP) staining and examining the mRNA expression of the osteopontin (OPN) gene using real-time quantitative PCR. The number of viable MC3T3-E1 cells showed a tendency to increase after the irradiation at all three energy densities in comparison with a non-irradiation group (control group). In particular, there was a remarkable 3.34-fold increase in the group irradiated with 3.0J/cm² on day 7 after starting the culture. On culture day 15, there was a tendency for the red LED irradiation group (0.5 J/cm²) to exhibit more staining for ALP than the control group, and the expression of OPN was significantly higher in the irradiation group on culture day 16. In conclusion, low level red LED light can enhance MC3T3-E1 cell proliferation and osteogenic differentiation when the cells are cultured for a relatively long time.

  15. Vitamin A deficient mice exhibit increased viral antigens and enhanced cytokine/chemokine production in nasal tissues following respiratory virus infection despite the presence of FoxP3+ T cells.

    Science.gov (United States)

    Penkert, Rhiannon R; Surman, Sherri L; Jones, Bart G; Sealy, Robert E; Vogel, Peter; Neale, Geoffrey; Hurwitz, Julia L

    2016-03-01

    The World Health Organization (WHO) estimates that 250 million children under the age of five suffer from vitamin A deficiencies (VAD). Individuals with VAD experience higher rates of mortality and increased morbidity during enteric and respiratory infections compared with those who are vitamin A sufficient. Previously, our laboratory has demonstrated that VAD mice have significantly impaired virus-specific IgA and CD8(+) T-cell responses in the airways. Here, we demonstrate that VAD mice experience enhanced cytokine/chemokine gene expression and release in the respiratory tract 10 days following virus infection compared with control vitamin A sufficient animals. Cytokines/chemokines that are reproducibly up-regulated at the gene expression and protein levels include IFNγ and IL-6. Despite previous indications that cytokine dysregulation in VAD animals might reflect low forkhead box P3 (FoxP3)-positive regulatory T-cell frequencies, we found no reduction in FoxP3(+) T cells in VAD respiratory tissues. As an alternative explanation for the high cytokine levels, we found that the extent of virus infection and the persistence of viral antigens were increased on day 10 post-infection in VAD animals compared with controls, and consequently that respiratory tract tissues had an increased potential to activate virus-specific T cells. Results encourage cautious management of viral infections in patients with VAD, as efforts to enhance FoxP3(+) T cell frequencies and quell immune effectors could potentially exacerbate disease if the virus has not been cleared. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Neuropeptide Substance P Improves Osteoblastic and Angiogenic Differentiation Capacity of Bone Marrow Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Su Fu

    2014-01-01

    Full Text Available Our previous work showed that implanting a sensory nerve or vascular bundle when constructing vascularized and neurotized bone could promote bone osteogenesis in tissue engineering. This phenomenon could be explained by the regulatory function of neuropeptides. Neuropeptide substance P (SP has been demonstrated to contribute to bone growth by stimulating the proliferation and differentiation of bone marrow stem cells (BMSCs. However, there have been no prior studies on the association between Wnt signaling and the mechanism of SP in the context of BMSC differentiation. Our results have shown that SP could enhance the differentiation of BMSCs by activating gene and protein expression via the Wnt pathway and by translocating β-catenin, which can be inhibited by Wnt signaling blocker treatment or by the NK-1 antagonist. SP could also increase the growth factor level of bone morphogenetic protein-2 (BMP-2. Additionally, SP could enhance the migration ability of BMSCs, and the promotion of vascular endothelial growth factor (VEGF expression by SP has been studied. In conclusion, SP could induce osteoblastic differentiation via the Wnt pathway and promote the angiogenic ability of BMSCs. These results indicate that a vascularized and neurotized tissue-engineered construct could be feasible for use in bone tissue engineering strategies.

  17. Exhibition - Mathematics, A Beautiful Elsewhere

    CERN Multimedia

    2011-01-01

    From 21 October 2011 to 18 March 2012, the Fondation Cartier pour l’art contemporain will present the exhibition Mathematics: A Beautiful Elsewhere, an exhibition developed in association with the Institut des Hautes Études Scientifiques (IHÉS) and under the patronage of UNESCO. For this unprecedented event, the foundation invited mathematicians to work with artists with whom it has previously worked to create an exhibition that allows visitors to see, hear, do, interpret and think about mathematics. By bringing mathematics into its premises, the Fondation Cartier is itself undergoing the “sudden change of scenery” described by mathematician Alexandre Grothendieck. More information is available here. Fondation Cartier pour l’art contemporain 261, boulevard Raspail 75014 Paris http://fondation.cartier.com Private Visit For professors, researchers and all the staff of Mathematics departments...

  18. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Briolay, A. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lencel, P. [Physiopathology of Inflammatory Bone Diseases, EA4490, ULCO. Quai Masset, Bassin Napoléon BP120, 62327 Boulogne/Mer (France); Bessueille, L. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Caverzasio, J. [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Buchet, R. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Magne, D., E-mail: david.magne@univ-lyon1.fr [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-01-18

    Highlights: ► Ankylosing spondylitis (AS) leads to bone fusions and ankylosis. ► TNF-α stimulates osteoblasts through growth factors in AS. ► We compare the involvement of canonical vs non-canonical Wnt signaling. ► Canonical Wnt signaling is not involved in TNF-α effects in differentiating hMSCs. ► TNF-α stimulates osteoblasts through Wnt5a autocrine secretion in hMSCs. -- Abstract: Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased

  19. Bioactivity studies and adhesion of human osteoblast (hFOB) on silicon-biphasic calcium phosphate material.

    Science.gov (United States)

    Ibrahim, S; Sabudin, S; Sahid, S; Marzuke, M A; Hussin, Z H; Kader Bashah, N S; Jamuna-Thevi, K

    2016-01-01

    -BCP's surface roughness (164 nm) was significantly higher than BCP (88 nm), thus enhancing the adhesion and proliferation of the osteoblast.