WorldWideScience

Sample records for exhaust systems

  1. Automotive Fuel and Exhaust Systems.

    Science.gov (United States)

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  2. 49 CFR 325.91 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...

  3. 46 CFR 169.609 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Exhaust systems. 169.609 Section 169.609 Shipping COAST... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... Yacht Council, Inc. Standard P-1, “Safe Installation of Exhaust Systems for Propulsion and Auxiliary...

  4. 49 CFR 393.83 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 393.83 Section 393.83... NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.83 Exhaust systems. (a) Every motor... shall have a system to direct the discharge of such fumes. No part shall be located where its location...

  5. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  6. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Ozgur, D.

    1991-01-01

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  7. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  8. Soundproofed exhaust system; Gegen stoerenden Abgasschall. Akustik

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Faerber, M.

    2008-03-15

    Acoustic emissions of heating systems are a nuisance, especially the humming noise of big heating boilers and cogeneration units. Noise reduction measures, e.g. with exhaust sound absorbers, should be considered already in the projecting stage. (orig.)

  9. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  10. PUREX exhaust ventilation system installation test report

    International Nuclear Information System (INIS)

    Blackaby, W.B.

    1997-01-01

    This Acceptance Test Report validates the testing performed, the exceptions logged and resolved and certifies this portion of the SAMCONS has met all design and test criteria to perform as an operational system. The proper installation of the PUREX exhaust ventilation system components and wiring was systematically evaluated by performance of this procedure. Proper operation of PUREX exhaust fan inlet, outlet, and vortex damper actuators and limit switches were verified, using special test equipment, to be correct and installed wiring connections were verified by operation of this equipment

  11. System for measuring engine exhaust constituents

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.W.

    1992-01-01

    This patent describes a system for measuring an automotive engine exhaust constituent. It comprises: a meter for determining the mass of air flowing through the engine and for generating an engine airflow signal corresponding to the airflow; sample handling apparatus; diluent adding means; processor means. This patent also describes a method for using an analyzer to determine the amount of lubricating oil consumed by an automotive engine. It comprises: determining the amount of sulfur dioxide within the room air being drawn into the engine; maintaining a constant total flow comprised of a constant fraction of the engine's exhaust gas and a diluent gas through the analyzer, while: determining the amount of sulfur dioxide contained within the engine's exhaust, determining the amount of sulfur dioxide contained within the engine's exhaust, while operating the engine on room air; determining an efficiency factor for the analyzer; and using the efficiency factor and the concentration of sulfur in the engine oil and the amounts of sulfur dioxide determined in steps a and d to determine the amount of lubrication oil leaving the engine through its exhaust

  12. Cooking exhaust systems for low energy dwellings

    NARCIS (Netherlands)

    Jacobs, P.; Borsboom, W.A.

    2017-01-01

    Especially in airtight low energy dwellings exhaust systems are of utmost importance as cooking can be a major source of PM2.5 exposure. Dwellings should be designed including facilities enabling extraction of at least 83 dm3/s (300 m3/h) directly to outside. Residents should be able to select an

  13. Air flow quality analysis of modenas engine exhaust system

    Science.gov (United States)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  14. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  15. 30 CFR 36.25 - Engine exhaust system.

    Science.gov (United States)

    2010-07-01

    ... (see § 36.23(b)(2)). (3) In lieu of a space-place flame arrester, an exhaust-gas cooling box or... exhaust system for convenient, temporary attachment of a pressure gage at a point suitable for measuring the total back pressure in the system. The connection also shall be suitable for temporary attachment...

  16. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211-94 Section 86.211-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...

  17. Dedicated exhaust gas recirculation control systems and methods

    Science.gov (United States)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    2018-05-01

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.

  18. Exhaust gas purifying system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H; Saito, Z

    1976-10-07

    The exhaust gas purification system is a so-called three-way catalytic converter. It consists of an oxidation converter, a reduction converter, or a thermal converter. An exhaust sensor made up of an oxygen sensor, a carbon sensor, a carbon monoxide sensor, hydrocarbon sensor, or a nitrogen peroxide sensor, tests the composition of the exhaust and controls the air-fuel feed system in dependence of the exhaust mixture in such a manner that in the intake system an air-fuel mixture is taken in which the stoichiometric air-fuel relation is produced. Moreover, a thermostatically controlled air intake device is built into the fuel injection system which supplies the air of the fuel injection system with a relatively consistent temperature.

  19. A system recovering heat from exhaust gases. Abgasenergie-Rueckgewinnungseinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    John, E; Hultsch, H; Brendorp, W

    1990-08-16

    The proposed exhaust gas heat recovery system is provided with a hydraulic clutch (8) which is located between a gas tubine (2) to be driven by the exhaust gases of an internal combustion engine (20) and a drive unit (18) of the internal combustion engine (20). A mechanical blocking device (6) prevents the turbine from running at explosion speed when the hydraulic clutch (8) is emptied or when the oil pressure of the hydraulic clutch drops below a certain minimum.

  20. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  1. System for exposing animals to radiolabeled diesel exhaust

    International Nuclear Information System (INIS)

    Lopez, J.A.; Wolf, I.; Wolff, R.K.; Sun, J.D.; Mokler, B.V.

    1981-01-01

    One approach to determining the deposition and fate of inhaled diesel particles is the conduct of inhalation exposure studies with radiolabeled diesel fuel. A system was designed, constructed and tested for the simultaneous exposure of animals to radiolabeled diesel exhaust and collection of large quantities of radiolabeled diesel exhaust particles from a single cylinder diesel engine. The system performance was characterized and evaluated over a range of operating conditions: 0 to 1800 watts of engine load, 1000 to 2500 rpm and dilution air rates of 1:2 and 1:10. The exposure system met required design and operating criteria for safety, portability, space and flexibility

  2. Vacuum exhaustion system for thermonuclear reactor and cryopump thereof

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada.

    1992-01-01

    An impurity removing device is connected to a gas exhaust side of a plasma vacuum vessel by way of a gate valve, a cryopump is connected to the exit side of the device by way of an exit valve, a fuel transfer line is disposed for transferring fuels to a fuel purification system and a vacuum pump line is disposed to an exhaust gas line. Further, a tritium monitor is disposed to an exhaustion line and the line on the side of the exit of the monitor is branched into two ways, in which a tritium transfer pipe is disposed to one of them and an atmosphere release pipe is disposed on the other of them by way of an atmosphere releasing valve. Further, a condensation shebron is disposed for flowing in and out fuel isotope gases discharged from the plasma vacuum vessel, and a funnel discharge pipe is disposed for discharging a liquefied and condensed fluid. Since the gases to be exhausted are liquefied and condensed without coagulation or coagulation products are removed while operating the pump, the exhaust gases are processed continuously to reduce tritium inventory and make the regeneration step unnecessary and remarkably improve the heat efficiency. (N.H.)

  3. Fast exhaustive search for polynomial systems in F2

    NARCIS (Netherlands)

    Bouillaguet, C.; Chen, H.-C.; Cheng, C.M.; Chou, T.; Niederhagen, R.F.; Shamir, A.; Yang, B.Y.

    2010-01-01

    Abstract. We analyze how fast we can solve general systems of multivariate equations of various low degrees over F2; this is a well known hard problem which is important both in itself and as part of many types of algebraic cryptanalysis. Compared to the standard exhaustive-search technique, our

  4. Fast exhaustive search for polynomial systems in F2

    NARCIS (Netherlands)

    Bouillaguet, C.; Chen, H.-C.; Cheng, C.M.; Chou, T.; Niederhagen, R.F.; Shamir, A.; Yang, B.Y.; Mangard, S.; Standaert, F.X.

    2010-01-01

    Abstract: We analyze how fast we can solve general systems of multivariate equations of various low degrees over $F_2$; this is a well known hard problem which is important both in itself and as part of many types of algebraic cryptanalysis. Compared to the standard exhaustive search technique, our

  5. REVIEW ARTICLE: MODELLING AND ANALYSIS OF A GASOLINE ENGINE EXHAUST GAS SYSTEMS

    OpenAIRE

    Barhm Mohamad

    2018-01-01

    The engine exhaust gas behaviour is strongly influencing the engine performance. This paper presents the modelling and analysis of four stroke - gasoline engine exhaust gas systems. An automotive example is considered whereby the pulsating exhausts gas flow through an exhaust pipe and silencer are considered over a wide range of speeds. Analytical procedures are outlined enabling the general analysis and modelling of vehicle engine exhaust gas systems also in this paper present...

  6. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Science.gov (United States)

    2010-07-01

    ... exhaust duct excludes the length of pipe representative of the vehicle exhaust pipe) shall be minimized... exhaust manifold, immediately after exhaust aftertreatment systems, or after a length of pipe representative of the vehicle exhaust pipe; or (iv) Partial dilution of the exhaust gas prior to entering the...

  7. 40 CFR 205.171-2 - Test exhaust system sample selection and preparation.

    Science.gov (United States)

    2010-07-01

    ... Systems § 205.171-2 Test exhaust system sample selection and preparation. (a)(1) Exhaust systems... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test exhaust system sample selection and preparation. 205.171-2 Section 205.171-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  8. Basement depressurization using dwelling mechanical exhaust ventilation system

    International Nuclear Information System (INIS)

    Collignan, B.; O'Kelly, P.; Pilch, E.

    2004-01-01

    The mechanical ventilation exhaust system is commonly used in France to generate air renewal into building and especially into dwelling. It consists of a permanent mechanical air extraction from technical rooms (kitchen, bathrooms and toilets) using a unique fan connected to exhaust ducts. Natural air inlets in living room and bed rooms ensure an air flow from living spaces towards technical rooms. To fight against radon into building, the most recognised efficient technique is the Soil Depressurization System (S.D.S.) consisting in depressurizing the house basement. The aim of this study is to test the ability of the dwelling mechanical ventilation system to depressurize the basement in conjunction with air renewal of a house. For that purpose, a S.D.S. has been installed in an experimental house at CSTB during its construction. At first, tests undertaken with a variable velocity fan connected to the S.D.S. have characterised the permeability of the basement. It is shown that basement can be depressurized adequately with a relatively low air flow rate. At a second stage, S.D.S. has been connected to the exhaust ventilation fan used for the mechanical ventilation of the house. Results obtained show the ability of such ventilation system to generate sufficient depressurization in the basement and to ensure simultaneously adequate air change rate in the dwelling. (author)

  9. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    . Challenges with this technology include dosing the appropriate amount of urea to reach sufficient NOx conversion, while at the same time keeping NH3- slip from the exhaust system below the legislation. This requires efficient control algorithms. The focus of this thesis is modelling and control of the SCR...... parameters were estimated using bench-scale monolith isothermal data. Validation was done by simulating the out-put from a full-scale SCR monolith that was treating real engine gases from the European Transient Cycle (ETC). Results showed that the models were successfully calibrated, and that some......, and simulating the system....

  10. TASKA-M exhaust system and its main components

    International Nuclear Information System (INIS)

    Kleefeldt, K.W.; Mueller, R.A.; Schramm, K.

    1985-01-01

    TASKA-M is a study for a mirror based D-T plasma device for fusion technology tests. Mature technology was applied whereever possible. The axial confinement time is relatively short, resulting in a large gas throughput compared to the fusion power level of 6.8 MW. The technological requirements of the exhaust system will not cause undue development problems in either of the two major areas: highly loaded dumps for the conversion of the escaping particle and plasma streams to thermal gas; vacuum pumping facilities. (orig.)

  11. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be... the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to the HC... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...

  12. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The... sample transport system from the engine exhaust pipe to the HC analyzer and the NOX analyzer must be... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...

  13. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... shall not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe shall be as... internally to the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...

  14. Fault tree analysis of Project S-4404, Upgrade Canyon Exhaust System

    International Nuclear Information System (INIS)

    Browne, E.V.; Low, J.M.; Lux, C.R.

    1992-01-01

    Project S-4404, Upgrade Canyon Exhaust Systems, is a $177 million project with the purpose of upgrading the Exhaust Systems for both F and H Canyon Facilities. This upgrade will replace major portions of the F and H-Canyon exhaust systems, downstream of their respective sand filters with higher capacity and more reliable systems. Because of the high cost, DOE requested Program Control ampersand Integration (PC ampersand I) to examine specific deletions to the project. PC ampersand I requested Nuclear Processes Safety Research (NPSR) to perform an analysis to compare failure rates for the existing F ampersand H Canyon exhaust systems with the proposed exhaust system and specific proposed exhaust system alternatives. The objective of this work was to perform an analysis and compare failure rates for the existing F ampersand H Canyon exhaust systems with the proposed project exhaust system and proposed project alternatives. Based on fault tree analysis, two conclusions are made. First, D ampersand D activities can be eliminated from the project with no significant decrease to exhaust system safety. Deletion of D ampersand D activities would result in a cost savings of $29 million. Second, deletion of DOE Order 6430.1A requirements regarding DBAs would decrease exhaust system safety by a factor of 12

  15. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    Science.gov (United States)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  16. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    Science.gov (United States)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  17. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    Science.gov (United States)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  18. Software configuration plan for the 1,000 CFM portable exhauster's small logic control system

    International Nuclear Information System (INIS)

    Kaiser, T.D.

    1998-01-01

    This document describes the formal documentation for maintaining the control system associated with the 1,000 CFM portable exhauster's. The objective of the software configuration control plan is to provide assurances that the portable exhauster's control system will be operable for the duration of 241-C-106 and 241-AY-102 operations (project 320). The design was based upon the criteria documented in the portable exhauster functional design criteria (HNF-SD-WM-DB-035) and procurement specification (HNF-S-0490) for the exhauster interlock systems

  19. Exhaust, Dust Collection and Ventilation Systems. Module SH-44. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on exhaust, dust collection, and ventilation systems is one of 50 modules concerned with job safety and health. This module discusses the types of contaminants that can be controlled by ventilation, the types of ventilation systems, and the component parts of local exhaust systems. Following the introduction, 10 objectives…

  20. A Hybrid approach for aeroacoustic analysis of the engine exhaust system

    OpenAIRE

    Sathyanarayana, Y; Munjal, ML

    2000-01-01

    This paper presents a new hybrid approach for prediction of noise radiation from engine exhaust systems. It couples the time domain analysis of the engine and the frequency domain analysis of the muffler, and has the advantages of both. In this approach, cylinder/cavity is analyzed in the time domain to calculate the exhaust mass flux history at the exhaust valve by means of the method of characteristics, avoiding the tedious procedure of interpolation at every mesh point and solving a number...

  1. Prediction of dynamics of bellows in exhaust system of vehicle using equivalent beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Kim, Yong Dae; Lee, Nam Young; Lee, Sang Woo [Noise and vibration CAE Team, Hyundai Motor Company, Ulsan (Korea, Republic of)

    2015-11-15

    The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.

  2. Method of controlling temperature of a thermoelectric generator in an exhaust system

    Science.gov (United States)

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  3. Design and Experimental Study of an Over-Under TBCC Exhaust System.

    Science.gov (United States)

    Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan

    2014-01-01

    Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.

  4. Study on the design of inlet and exhaust system of a stationary internal combustion engine

    International Nuclear Information System (INIS)

    Kesgin, Ugur

    2005-01-01

    The design and operational variables of inlet and exhaust systems are decisive to determine overall engine performance. The best engine overall performance can be obtained by proper design of the engine inlet and exhaust systems and by matching the correct turbocharger to the engine. This paper presents the results of investigations to design the inlet and exhaust systems of a stationary natural gas engine family. To do this, a computational model is verified in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust systems are used. Using this engine model, the effects of the parameters of the inlet and exhaust systems on the engine performance are obtained. In particular, the following parameters are chosen: valve timing, valve diameter, valve lift profiles, diameter of the exhaust manifold, inlet and exhaust pipe lengths, and geometry of pipe junctions. Proper sizing of the inlet and exhaust pipe systems is achieved very precisely by these investigations. Also, valve timing is tuned by using the results obtained in this study. In general, a very high improvement potential for the engines studied here is presented

  5. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Science.gov (United States)

    2010-07-01

    ... transport sample to analyzers. (I) Temperature sensor. A temperature sensor (T1) to measure the NO2 to NO... feet (1.22 m) from the exhaust duct. (iii) The sample transport system from the engine exhaust duct to.... (A) For diesel fueled and biodiesel fueled locomotives and engines, the wall temperature of the HC...

  6. Systems for eliminating pathogens from exhaust air of animal houses

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Landman, W.J.M.; Melse, R.W.; Huynh Thi Thanh Thuy,

    2005-01-01

    Recent outbreaks of highly infectious viral diseases like swine fever and avian influenza in The Netherlands have shown that despite extensive bio-security measures aiming at minimizing physical contacts between farms, disease spread could not be halted. Dust in exhaust air from swine and chicken

  7. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  8. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  9. Functional requirements for portable exhauster system to be used during saltwell pumping

    International Nuclear Information System (INIS)

    Nelson, O.D.

    1998-01-01

    This document defines functional requirements for portable exhausters used to ventilate primary tanks during saltwell pumping, and provide back-up to primary and annulus ventilation systems at C-106 and AY-102

  10. Operability test procedure for the Rotary Mode Core Sampling System Exhausters 3 and 4

    International Nuclear Information System (INIS)

    WSaldo, E.J.

    1995-01-01

    This document provides a procedure for performing operability testing of the Rotary Mode Core Sampling System Exhausters 3 ampersand 4. Upon completion of testing activities an operability testing report will be issued

  11. Evaluation of exhaust system for gaseous waste from the source production laboratory for radiotherapy - IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.C.B. de; Costa, O.L.; Feher, A.; Geraldo, B.; Carvalho, V.S.; Barbosa, N.K.O.; Vicente, R.; Zeituni, C.A.; Rostelato, M.E.C.M., E-mail: dcsouza@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Exhaust systems in fume hood for chemicals and hazardous materials as radioactive substances are of great importance for the protection of the Occupationally Exposed Individual and the environment. They protect against external contaminations by particulate matter, volatile and against inhalation of radioactive gases. This work intends to evaluate the exhaustion system of the Laboratory of Production of Radioactive Sources at the Nuclear and Energy Research Institute (IPEN). (author)

  12. Heat transfer modeling in exhaust systems of high-performance two-stroke engines

    OpenAIRE

    Lujan Martinez, José Manuel; Climent Puchades, Héctor; Olmeda González, Pablo Cesar; JIMENEZ MACEDO, VICTOR DANIEL

    2014-01-01

    Heat transfer from the hot gases to the wall in exhaust systems of high-performance two-stroke engines is underestimated using steady state with fully developed flow empirical correlations. This fact is detected when comparing measured and modeled pressure pulses in different positions in the exhaust system. This can be explained taking into account that classical expressions have been validated for fully developed flows, a situation that is far from the flow behavior in reciprocating interna...

  13. Prenatal exposure to diesel exhaust particles and effect on the male reproductive system in mice

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Hougaard, Karin Sørig; Talsness, Chris

    2009-01-01

    In utero exposure to diesel exhaust particles may reduce sperm production in adulthood. We investigated the effect of prenatal exposure to diesel exhaust particles on the male reproductive system and assessed endocrine disruption and regulation of aquaporin expression as possible mechanisms...... of action. Dams inhaled 20 mg/m(3) of diesel exhaust particle standard reference material 2975 (SRM2975) or clean air for 1h/day on day 7-19 during pregnancy. Male offspring were killed on day 170 after birth. The dams that had inhaled SRM2975 delivered offspring, which in adulthood had reduced daily sperm...

  14. Liberalization by Exhaustion : Transformative Change in the German Welfare State and Vocational Training System

    OpenAIRE

    Busemeyer, Marius R.; Trampusch, Christine

    2013-01-01

    This article argues that two core domains of the German coordinated market economy have undergone transformative institutional change: the welfare state and the vocational training system. We argue that this process is best described as a process of liberalization resulting from the exhaustion of traditional institutions. Exhaustion describes a mechanism of institutional change in which endogenous negative feedback effects, caused by the overextension of resources, lead to a transformation of...

  15. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    Science.gov (United States)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  16. The Application of the Exhaustive Polling Theory in Intelligent Traffic System

    Directory of Open Access Journals (Sweden)

    Wang Meng Yao

    2016-01-01

    Full Text Available This paper presents a new use of exhaustive service polling system in the intelligent traffic light control system.Vehicles arrival rate is measured in the system. Through the relationship between arrival rate and mean waiting time ,mean queue length in exhaustive service polling system, achieved an technology that intelligent adjust the length of traffic light time according to the arrive rate.The more arrive rate the longer green light time. With the intelligent control, the road capacity is more.

  17. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    Science.gov (United States)

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  18. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  19. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... gas mixture temperature, measured at a point immediately ahead of the critical flow venturi, must be... analytical system description. (a) General. The exhaust gas sampling system described in this section is... requirements are as follows: (1) This sampling system requires the use of a Positive Displacement Pump—Constant...

  20. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  1. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  2. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  3. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine

    International Nuclear Information System (INIS)

    Niu, Zhiqiang; Diao, Hai; Yu, Shuhai; Jiao, Kui; Du, Qing; Shu, Gequn

    2014-01-01

    Highlights: • A 3-D model for exhaust-based thermoelectric waste heat recovery is developed. • Various heat, mass and electric transfer characteristics are elucidated. • Channel size needs to be moderate to balance heat transfer and pressure drop. • Bafflers need to be placed at all locations near all TEG modules. • Baffler angle needs to be sufficiently large, especially for downstream locations. - Abstract: Thermoelectric generator (TEG) has attracted considerable attention for the waste heat recovery of internal combustion engine. In this study, a 3-D numerical model for engine exhaust-based thermoelectric generator (ETEG) system is developed. By considering the detailed geometry of thermoelectric generator (TEG) and exhaust channel, the various transport phenomena are investigated, and design optimization suggestions are given. It is found that the exhaust channel size needs to be moderate to balance the heat transfer to TEG modules and pressure drop along channel. Increasing the number of exhaust channels may improve the performance, however, since more space and TEG modules are needed, the system size and cost need to be considered as well. Although only placing bafflers at the channel inlet could increase the heat transfer coefficient for the whole channel, the near wall temperature downstream might decrease significantly, leading to performance degradation of the TEG modules downstream. To ensure effective utilization of hot exhaust gas, the baffler angle needs to be sufficiently large, especially for the downstream locations. Since larger baffler angles increase the pressure drop significantly, it is suggested that variable baffler angles, with the angle increasing along the flow direction, might be a middle course for balancing the heat transfer and pressure drop. A single ETEG design may not be suitable to all the engine operating conditions, and making the number of exhaust channels and baffler angle adjustable according to different engine

  4. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...

  5. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi... gas mixture temperature, measured at a point immediately ahead of the critical flow venturi, must be.... (a) General. The exhaust gas sampling system described in this section is designed to measure the...

  6. HEAT TRANSFER IN EXHAUST SYSTEM OF A COLD START ENGINE AT LOW ENVIRONMENTAL TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Snežana D Petković

    2010-01-01

    Full Text Available During the engine cold start, there is a significantly increased emission of harmful engine exhaust gases, particularly at very low environmental temperatures. Therefore, reducing of emission during that period is of great importance for the reduction of entire engine emission. This study was conducted to test the activating speed of the catalyst at low environmental temperatures. The research was conducted by use of mathematical model and developed computer programme for calculation of non-stationary heat transfer in engine exhaust system. During the research, some of constructional parameters of exhaust system were adopted and optimized at environmental temperature of 22 C. The combination of design parameters giving best results at low environmental temperatures was observed. The results showed that the temperature in the environment did not have any significant influence on pre-catalyst light-off time.

  7. Applying Systems Engineering to Improve the Main Gas Turbine Exhaust System Maintenance Strategy for the CG-47 Ticonderoga Class Cruiser

    Science.gov (United States)

    2015-09-01

    national security and prosperity (U.S. Navy 2014). In perspective, oceans are the lifeblood of the planet and its entire population . The National...maintenance strategy, reliability-centered maintenance, cost, schedule, performance, growth -work, new-work, optimal fleet response plan, time-directed...76 5. Main Gas Turbine Exhaust System Growth -Work ..................77 E. RECOMMENDATIONS TO IMPROVE THE MAIN GAS TURBINE EXHAUST SYSTEM

  8. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  9. Temperature monitoring of vehicle engine exhaust gases under vibration condition using optical fibre temperature sensor systems

    International Nuclear Information System (INIS)

    Zhao, W Z; Suna, T; Grattana, K T V; Shen, Y H; Wei, C L; Al-Shamma'a, A I

    2006-01-01

    Two optical approaches, comprising and contracting both the fluorescence decay lifetime and the fibre Bragg grating (FBG) methods, were developed and evaluated for temperature monitoring of exhaust gases for use on a vehicle engine. The FBGs used in the system were written into specially designed Bi-Ge co-doped photosensitive fibres, to enable them to sustain high temperatures to over 800 0 C, which is far beyond that of FBGs written into most commercial photosensitive fibres. The sensors were subjected to a range of vibration tests, as a part of an optical exhaust monitoring network under development, and results from the test carried out are reported

  10. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  11. Biological regeneration of humic acid-loaded partially exhausted activated carbon (down flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Martin, R.J.; Khaliq, F.

    1995-01-01

    This paper represents the report on the biological regeneration of partially exhausted (down flow) activated carbon following the experimental studies carried out at the university of Birmingham, UK. The Research investigated the extent of bio regeneration of humic acid of concentration 100 mg/l. Bio regeneration in the partial exhaustion system (down flow) was evaluated in terms of substrate removal. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. The regeneration performance of the bio regeneration, partially exhausted (with humic acid) carbon increased during initial cycles, later on, it deteriorated significantly with each successive regeneration cycle. Microbial fouling of the carbon, especially at the bottom of the carbon bed was found to produce a substantial deterioration of the bio regeneration performance. (author)

  12. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD

    International Nuclear Information System (INIS)

    Huang, K. David; Quang, Khong Vu; Tseng, K.-T.

    2009-01-01

    A hybrid pneumatic power system (HPPS) is integrated by an internal combustion engine (ICE), a high efficiency turbine, an air compressor and an energy merger pipe, which can not only recycle and store exhaust gas energy but also convert it into useful mechanical energy. Moreover, it can make the ICE operate in its optimal state of maximum efficiency; and thus, it can be considered an effective solution to improve greatly the exhaust emissions and increase the overall energy efficiency of the HPPS. However, in this system, the flow energy merger of both high pressure compressed air flow and high temperature exhaust gas flow of the ICE greatly depends on the merging capability of the energy merger pipe. If the compressed air pressure (P air ) at the air inlet is too high, smooth transmission and mixture of the exhaust gas flow are prevented, which will interfere with the operation condition of the ICE. This shortcoming is mostly omitted in the previous studies. The purpose of this paper is to study the effect of the level of P air and the contraction of cross-section area (CSA) at the merging position on the flow energy merger and determine their optimum adjustments for a better merging process by using computation fluid dynamics (CFD). In addition, the CFD model was validated on the basis of the experimental data, including the temperature and static pressure of the merger flow at the outlet of the energy merger pipe. It was found that the simulation results were in good agreement with the experimental data. The simulation results show that exhaust gas recycling efficiency and merger flow energy are significantly dependent on the optimum adjustment of the CSA for changes in P air . Under these optimum adjustments, the exhaust gas recycling efficiency can reach about 83%. These results will be valuable bases to research and design the energy merger pipe of the HPPS.

  13. 75 FR 57191 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Science.gov (United States)

    2010-09-20

    ... 28, 1975, the Federal Highway Administration (FHWA)'s Bureau of Motor Carrier Safety published in the... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration 49 CFR Part 325 [Docket...: Exhaust Systems AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Direct final rule...

  14. Measuring Airflow in Local Exhaust Ventilation Systems. Module 23. Vocational Education Training in Environmental Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on measuring airflow in local exhaust ventilation systems. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each…

  15. Limiter/vacuum system for plasma impurity control and exhaust in tokamaks

    International Nuclear Information System (INIS)

    Abdou, M.; Brooks, J.; Mattas, R.

    1980-01-01

    A detailed design of a limiter/vacuum system for plasma impurity control and exhaust has been developed for the STARFIRE tokamak power plant. It is shown that the limiter/vacuum concept is a very attractive option for power reactors. It is relatively simple and inexpensive and deserves serious experimental verification

  16. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    Science.gov (United States)

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  17. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  18. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    Science.gov (United States)

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  19. DeNO{sub x} systems detox plant exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, R.; Ellison, B.

    2001-10-01

    Spurred by the USA EPA's State Implementation Plan (SIP) Call and other regulatory mandates, NOx-control systems are being installed in US gas- and coal-fired plants in record numbers. The article reviews the various proven systems and pioneering technologies being applied that continue to give the already dramatic improvements in US air quality. It reports on many retrofit projects discussed at two recent conferences: the 'Conference on selective catalytic and non-catalytic reduction for NOx control' and the 'Conference on unburned carbon in utility flyash'. 2 figs., 2 tabs.

  20. Setting the global thermostat with an exhaustible tradeable permit system

    International Nuclear Information System (INIS)

    Kosobud, R.G.; Quinn, K.G.; Illinois Univ., Chicago, IL; South, D.W.; Daly, T.A.

    1993-01-01

    The global warming policy debate has centered largely on near-term objectives such as freezing 1990 CO 2 emissions without regard to long-run implications. A policy of freezing CO 2 emissions is shown to slow but not halt global warming, while requiring expensive near-term adjustments. If the long-run temperature change outcome of the freeze policy is set as the goal of a more graduated control policy, one which allows the market to determine annual emissions, a more cost-effective solution is obtained that reduces the negative adjustment effects on the energy and other affected industries. The most cost-effective emissions time path of a graduated control policy could be achieved by an evaporative marketable CO 2 emissions permit system. This paper provides a preliminary examination of an evaporative permit system used to achieve long-run stabilization of greenhouse-induced temperature change

  1. System study application to the safety analysis of the exhaust and the tritium systems of a fusion reactor

    International Nuclear Information System (INIS)

    Djerassi, H.; Rouillard, J.; Leger, D.; Zappellini, G.; Gambi, G.

    1988-01-01

    An applicative example of the general methodology system study to the safety analysis of the exhaust and tritium systems, in a tokamak device, is shown. The framework of the study is split into the following tasks: initial information collection, functional analysis, failure scenarios identification and description, reliability data assessment, accident sequence quantification, consequence seriousness evaluation, risk assessment. Results concerning risk contribution from direct failures show that, in the exhaust system and in the tritium system, the risk contribution to public is rather smaller than the safety design targets. Nevertheless, if the reactor building is not taken into account, the risk contribution from the exhaust system can be significant. Risk contribution to the workers seems to be not to heavy

  2. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  3. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  4. The outline design of FEB-E particle exhaust and pumping system

    International Nuclear Information System (INIS)

    Zhu Yukun; Huang Jinhua; Feng Kaiming; Deng Peizhi; Li Yiqiang

    1999-01-01

    The particle exhaust of Fusion Experimental Breeder FEB-E is carried out with divertor. The FEB-E divertor consists of 48 wedge shaped cassette modules connected with primary pumping system and cooling system. The FEB-E pumping system consists of two major subsystems, the torus rough pumping system and the torus high vacuum pumping system. The torus high vacuum pumping system consists of a series of internal cryopumps located in most of the lower ports (up to 20) and additional turbomolecular pumps located outside of the bio-shield. These cryopumps are capable of providing a nominal gross pumping speed of 576 m 3 ·s -1 , regulated with inlet valves for throttle control of the exhaust particle flow in the case of high neutral pressure (>1 Pa) in the divertor. However, limited conductance through the divertor pumping slot and through the clearance between the underside of the divertor and the vacuum vessel results in the effective net pumping speed of 160 m 3 ·s -1 in the divertor private region. This pumping speed implies that a neutral pressure operation range of 0.5 - 1.0 Pa is required in the divertor private region to achieve an exhausting throughput range of 80 - 160 Pa·m 3 ·s -1 . The regeneration of cryopump is activated at the end of the 1000 s of the breeder burning

  5. Effectiveness of interim stage filter in the exhaust system of glove boxes

    International Nuclear Information System (INIS)

    Patre, D.K.; Vangara, H.; Thanamani, S.; Gopalakrishnan, R.K.; Mhatre, Amol M.

    2018-01-01

    All operations in radiochemical laboratories are carried out in containment systems like Glove boxes and Fume hoods. For controlling air contamination two separate air cleaning systems are incorporated. Laboratory has general ventilation system and glove boxes are provided with a negative pressure system (NPS). Glove box exhaust air is passed through three stage filtration systems: in situ, interim and final before discharging to the atmosphere. In addition to the individual HEPA filters of each glove box, there is an interim HEPA filter bank introduced at the laboratory end. This was introduced to reduce a load on main exhaust filter system. Finally the exhaust air is discharged through the final stage HEPA filter located in the filter house through the Stack. The interim HEPA filter bank provides additional protection for the release of particulate activity and reduces load on the final stage filters. In the present work efforts have been put to validate the interim stage filter, which has been introduced, to limit the environmental release

  6. Portable Exhauster Position Paper

    International Nuclear Information System (INIS)

    KRISKOVICH, J.R.

    1999-01-01

    This document identifies the tasks that are involved in preparing the ''standby'' portable exhauster to support Interim Stabilization's schedule for saltwell pumping. A standby portable exhaust system will be assigned to any facility scheduled to be saltwell pumped with the exception of 241-S farm, 241-SX farm or 241-T farm. The standby portable exhauster shall be prepared for use and placed in storage. The standby portable exhaust system shall be removed from storage and installed to ventilate tanks being pumped that reach 25% LFL. There are three tasks that are evaluated in this document. Each task shall be completed to support portable exhaust system installation and operation. They are: Pre Installation Task; Portable Exhaust System Storage Task; and Portable Exhaust System Installation and Operation Task

  7. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  8. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems.

    Science.gov (United States)

    Geertsema, Roger S; Lindsell, Claire E

    2015-09-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO₂ concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems.

  9. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnyanskiy, M., E-mail: mikhail.turnyanskiy@euro-fusion.org [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Neu, R. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Technische Universität München, Fachgebiet Plasma-Wand-Wechselwirkung, D-85748 Garching (Germany); Albanese, R.; Ambrosino, R. [Assoc. EURATOM/ENEA/CREATE/DIETI – Univ. Napoli Federico II, Via Claudio 21, I-80125 (Italy); Bachmann, C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Brezinsek, S. [Association EURATOM/Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Donne, T. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Eich, T. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Falchetto, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Reimerdes, H. [EPFL, CRPP, CH-1015 Lausanne (Switzerland); Romanelli, F.; Wenninger, R. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); You, J.-H. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany)

    2015-10-15

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  10. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Science.gov (United States)

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    International Nuclear Information System (INIS)

    Turnyanskiy, M.; Neu, R.; Albanese, R.; Ambrosino, R.; Bachmann, C.; Brezinsek, S.; Donne, T.; Eich, T.; Falchetto, G.; Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C.; Reimerdes, H.; Romanelli, F.; Wenninger, R.; You, J.-H.

    2015-01-01

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  12. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)

    2011-07-28

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  13. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Mostofa Kamal Nasir

    2014-01-01

    Full Text Available Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO, hydrocarbons (HC, carbon dioxide (CO2, particulate matter (PM, and oxides of nitrogen (NOx. Intelligent transport system (ITS technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  14. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  15. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  16. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  17. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  18. Performance evaluation of a novel personalized ventilation-personalized exhaust system for airborne infection control.

    Science.gov (United States)

    Yang, J; Sekhar, S C; Cheong, K W D; Raphael, B

    2015-04-01

    In the context of airborne infection control, it is critical that the ventilation system is able to extract the contaminated exhaled air within the shortest possible time. To minimize the spread of contaminated air exhaled by occupants efficiently, a novel personalized ventilation (PV)-personalized exhaust (PE) system has been developed, which aims to exhaust the exhaled air as much as possible from around the infected person (IP). The PV-PE system was studied experimentally for a particular healthcare setting based on a typical consultation room geometry and four different medical consultation positions of an IP and a healthy person (HP). Experiments using two types of tracer gases were conducted to evaluate two types of PE: Top-PE and Shoulder-PE under two different background ventilation systems: Mixing Ventilation and Displacement Ventilation. Personalized exposure effectiveness, intake fraction (iF) and exposure reduction (ε) were used as indices to evaluate the PV-PE system. The results show that the combined PV-PE system for the HP achieves the lowest intake fraction; and the use of PE system for the IP alone shows much better performance than using PV system for the HP alone. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  20. Monitoring of diesel engine combustions based on the acoustic source characterisation of the exhaust system

    Science.gov (United States)

    Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.

    2008-08-01

    Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.

  1. Exploring the relationships between high involvement work system practices, work demands and emotional exhaustion : A multi-level study.

    NARCIS (Netherlands)

    Oppenauer, V.; van de Voorde, F.C.

    2018-01-01

    This study explores the impact of enacted high involvement work systems (HIWS) practices on employee emotional exhaustion. This study hypothesized that work overload and job responsibility mediate the relationship between HIWS practices (ability, motivation, opportunity and work design HIWS

  2. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  3. Designing, Constructing and Installing a Local Exhaust Ventilation System to Minimize Welders\\' Exposure to Welding Fumes

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2017-10-01

    Full Text Available Background & Aims of the Study: Welder’s exposure to welding fumes can cause occupational diseases. The current study sought to examine exposure to welding fumes among welders who work in the repair shop of Sarcheshmeh Copper Complex and design a local exhaust ventilation system to control exposure to welding fumes. Materials & Methods: This applied analytical study was conducted in the summer of 2016 among welders working in the repair shop of Sarcheshmeh Copper Complex. The study comprised three phases; in the first one, welders’ exposure to welding fumes was assessed at the beginning of the study. After that, a local exhaust ventilation system was designed and installed in the aforementioned repair shop. In the final stage, welders’ exposure to welding fumes was assessed again after installation of the ventilation system. The procedure recommended by NIOSH (method number 7300 was used for individual sampling of welders. Results: Based on the obtained findings, before installing the ventilation system, welding technicians were exposed to 0.3 mg/m3 of copper fumes and 0.04 mg/m3 of chromium fumes. Journeyman welders were also exposed to 2.16 mg/m3 of manganese fumes, while stellar welders were exposed to 6.9 mg/m3 of iron fumes. In the light of these measurements, a local exhaust ventilation system was designed and installed. Subsequently, measurement of exposure to welding fumes showed a significant reduction. That is, welding technicians were exposed to 0.17 mg/m3 and 0.015 mg/m3 of copper and chromium fumes respectively. Additionally, journeyman welders were exposed to 0.86 mg/m3 of manganese fumes, whereas stellar welders were exposed to 4.3 mg/m3 of iron fumes. Conclusions: A comparison of standard limits of exposure to welding fumes and the results obtained from measurements in sampling stations before and after the installation of the local exhaust ventilation system reveals that this controlling measure was very effective in the

  4. Developing Computational Fluid Dynamics (CFD Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Fernández-Yáñez

    2017-06-01

    Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.

  5. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  6. HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    DEFF Research Database (Denmark)

    Gao, Xin

    This thesis presents two case studies on improving the efficiency and the loadfollowing capability of a high temperature polymer electrolyte membrane (HTPEM) fuel cell system by the application of thermoelectric (TE) devices. TE generators (TEGs) are harnessed to recover the system exhaust gas...... developed three-dimensional numerical model in ANSYS Fluent®. This thesis introduces the progress of this project in a cognitive order. The first chapter initially prepares the theory and characteristics of the fuel cell system and TE devices. Project motivations are conceived. Then similar studies existing...... power output on the subsystem design and performance were also systematically analyzed. The TEG subsystem configuration is optimized. The usefulness and convenience of the model are proved. TE coolers (TECs) are integrated into the methanol evaporator of the HT-PEM system for improving the whole system...

  7. Optical system for CO and NO gas detection in the exhaust manifold of combustion engines

    International Nuclear Information System (INIS)

    Mello, M.; De Vittorio, M.; Passaseo, A.; Lomascolo, M.; De Risi, A.

    2007-01-01

    The experimental characterization of an innovative optical system for detection of carbon monoxide (CO) and nitride oxide (NO) in the exhaust manifold of otto and diesel engines is reported. A photodetector based on gallium nitride (GaN) and an UV light source are integrated in a chamber of analysis and form the detection system. The UV light source, consisting of a spark produced by an arc discharge, induces electronic transitions in the gas molecules flowing between the light source and the GaN photodetector. The transitions modify the fraction of light in the UV spectral region which is detected by the GaN photodetector, as a function of the species concentration. By means of its structural properties, gallium nitride (GaN) allows to operate at high temperature and high speed and to work in situ in the exhaust manifold of combustion engines at temperatures as high as 600 o C, at which the deposited organic residuals on the detector can be oxidized. This assures a clear surface necessary for a real time optical measurement of the species concentration to be used for a closed loop control of the fuel injection process. The system was applied to the detection of CO and NO with concentration between 0% and 2% in a buffer of pure nitrogen gas, showing an increase in the measured photocurrent as a function of the above gases

  8. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2016-04-15

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  9. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    International Nuclear Information System (INIS)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum

    2016-01-01

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  10. Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Madsen, Ulla; Breum, N. O.; Nielsen, Peter V.

    Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation of the capt......Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation...

  11. A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES

    Directory of Open Access Journals (Sweden)

    K. M. Vasyliv

    2017-06-01

    Full Text Available Purpose. Development of a model-software complex (MSC for computer analysis of modes of the system of induction motors (IM of smoke exhausters of thermal power plant (TPP, the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN. Methodology. Mathematical model serves as a system of differential equations of electrical and mechanical condition. The equation of electric state is written in phase coordinates based on Kirchhoff's laws, and mechanical condition described by the d'Alembert equation. Mathematical model focuses on explicit numerical integration methods. Scientific novelty. The equation of state of electrical connections takes into account the mutual electromagnetic circuits for transformer of own needs (TON and induction motors and interdependence (in all possible combinations between: TON (from which motors powered and each of the two IM and blood pressure between themselves. The complex allows to simulate electromagnetic and electromechanical processes in transitional and steady, symmetric and asymmetric modes including modes of self-induction motors. Results. Complex is used for computer analysis of electromagnetic and electromechanical processes and established the basic laws of motion modes of starting, stopping and self-start of IM of smoke exhausters of the TPP unit. Practical value. The complex is suitable for computer analysis of modes of other similar units of own needs of thermal power plants.

  12. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    Science.gov (United States)

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  13. Evaluation of an exhaust gas evacuation system during propane-fueled lift truck maintenance

    International Nuclear Information System (INIS)

    Roberge, B.; Beaudet, Y.; Lazure, L.; Menard, L.; Turcotte, A.

    2006-01-01

    Exposure to carbon monoxide (CO) gas in the workplace can cause health problem. CO gas is colourless and odourless, and exposure to it can cause intoxication, particularly for mechanics working on internal combustion engines fed by propane-fueled lift trucks. Regular procedures for evacuating the gases emitted during routine mechanical repairs involve the use of rigid evacuating pipes attached to the building and hooked to a flexible pipe at the end of the exhaust pipe. With lift trucks, this procedure is limited because of the configuration of these vehicles, and also because this type of work is often done in places without access to permanent mechanical ventilation. The object of this study was to propose a new evacuation method for CO gas fumes that would lower the exposures of fumes for mechanics and for workstations. It identified the criteria that should be considered, such as the configuration of the existing exhaust system of lift trucks, and feasibility of using this system at a variety of on-site locations. The design of the device was described and evaluated. 7 refs., 6 tabs., 8 figs., 3 appendices

  14. Design, Implementation & Assessment of Local Exhaust Ventilation System and dust collectors for crushing unit

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani shahna

    2015-09-01

    Full Text Available Background & objective: Industrial ventilation systems and dust collectors are effective solutions to reduce particulate emissions in the workplace and environmental in mineral processes. In this study, Local Exhaust Ventilation System and dust collectors for control of emitted silica, coke, silicon carbide dusts from crushing unit was designed and evaluated. Methods: : Local Exhaust ventilation system based on standards and guides was designed and implemented after field study of the processes and sources of air pollutants. A set comprised of the four parallel cyclones (Stairmand model and a new design of the scrubber had been used for dust control. After set-up of systems, its effectiveness in reducing the exposure of workers in the workshops and dust collecting were assessed. Results: Test results were significant differences between the concentration of particles in both on and off the ventilation system revealed (P <0.05. The system has been implemented as means of personal exposure to pollutants and environmental emissions were reduced 93.01% and 64.64%, respectively. Also, alone and integrated collection efficiency of cyclone and scrubber, were 94.2%, 59.05% and 97.4%, respectively. The results show good agreement with the values of the parameters ventilation system was designed. Conclusion: Implementation of integrated dust collectors is a good option in industries that have the financial and technical constraints to improve change processes and devices. This method with attainment to health and environmental standards not only can be resolve of the pollution problems, but also will be economically justified of such projects with reduction of depreciation expense and dust recycling.

  15. Physiological, biochemical and defense system responses of parthenium hysterophorus to vehicular exhaust pollution

    International Nuclear Information System (INIS)

    Khalid, N.; Hussain, M.; Hameed, M.; Ahmad, R.

    2017-01-01

    Pollution caused by vehicular exhaust emissions detrimentally affect plants and other living beings. This investigation was carried out to evaluate the effects of vehicular exhaust pollutants on Parthenium hysterophorus at various sites along two major roads [Pindi Bhattian to Lillah (M-2) and Faisalabad to Sargodha (FSR)]in the Punjab, Pakistan. Control samples of P. hysterophorus were also collected from 100m away from the roads. Chlorophyll contents, photosynthetic rate, transpiration rate, stomatal conductance, substomatal CO/sub 2/ concentration, water use efficiency, total free amino acids and total antioxidant activity of P. hysterophorus were measured. The results depicted significant reductions in chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents of P. hysterophorus. Likewise, reduction in stomatal conductance was also recorded which resulted in lowered photosynthetic and transpiration rates. The overall reduction in photosynthetic rate of P. hysterophorus was 30.92% and 35.38% along M-2 and FSR roads, respectively. The limited photosynthesis resulted in increased levels of sub stomatal /sub 2/ concentration and water use efficiency. The elevated levels of free amino acids and total antioxidant activity were noted and could be attributed to activation of plant's defense system to cope with the deleterious effects of vehicular air pollutants. The significant correlations between various attributes of P. hysterophorus with traffic density signifies the stress caused by vehicular emissions. (author)

  16. Laboratory study of subjective perceptions to low temperature heating systems with exhaust ventilation in Nordic countries

    DEFF Research Database (Denmark)

    Jin, Quan; Simone, Angela; Olesen, Bjarne W.

    2017-01-01

    Given the global trends of rising energy demand and the increasing utilization of low-grade renewable energy, low-temperature heating systems can play key roles in improving building energy efficiency while providing a comfortable indoor environment. To meet the need to retrofit existing buildings...... in Nordic countries for greater energy efficiency, this study focused on human subjects’ thermal sensation, thermal comfort, thermal acceptability, draft acceptability, and perceived air quality when three low-temperature heating systems were used: conventional radiator, ventilation radiator, or floor...... heating with exhaust ventilation. Human subject tests were carried out in the climate chamber at the Technical University of Denmark. In total, 24 human subjects, 12 females and 12 males, participated in the tests during the winter season. The results show that no significant differences in thermal...

  17. Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NO x concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O 2 ↔ NO + O and N + OH ↔ NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased. - Highlights: • Premixed combustion system with EGR is studied for a high efficiency and low NO x . • All research is performed with various EGR and equivalence ratios. • It verified that efficiency increases and the NO x emission decreases with EGR method. • NO production rates are remarkably changed by N + O 2 ↔ NO + O and N + OH ↔ NO + H with EGR

  18. TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1996-04-01

    The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User's Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications

  19. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  20. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NO x and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NO x and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NO x concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NO x concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ► The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ► Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ► EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  1. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds.

    Science.gov (United States)

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks' air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection.

  2. In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice

    Directory of Open Access Journals (Sweden)

    Odagiri Takashi

    2010-03-01

    Full Text Available Abstract Background Epidemiological studies have suggested that suspended particulate matter (SPM causes detrimental health effects such as respiratory and cardiovascular diseases, and that diesel exhaust particles from automobiles is a major contributor to SPM. It has been reported that neonatal and adult exposure to diesel exhaust damages the central nervous system (CNS and induces behavioral alteration. Recently, we have focused on the effects of prenatal exposure to diesel exhaust on the CNS. In this study, we examined the effects of prenatal exposure to low concentration of diesel exhaust on behaviour and the monoaminergic neuron system. Spontaneous locomotor activity (SLA and monoamine levels in the CNS were assessed. Methods Mice were exposed prenatally to a low concentration of diesel exhaust (171 μg DEP/m3 for 8 hours/day on gestational days 2-16. SLA was assessed for 3 days in 4-week-old mice by analysis of the release of temperature-associated infrared rays. At 5 weeks of age, the mice were sacrificed and the brains were used for analysis by high-performance liquid chromatography (HPLC. Results and Discussion Mice exposed to a low concentration of diesel exhaust showed decreased SLA in the first 60 minutes of exposure. Over the entire test period, the mice exposed prenatally to diesel exhaust showed decreased daily SLA compared to that in control mice, and the SLA in each 3 hour period was decreased when the lights were turned on. Neurotransmitter levels, including dopamine and noradrenaline, were increased in the prefrontal cortex (PFC in the exposure group compared to the control group. The metabolites of dopamine and noradrenaline also increased in the PFC. Neurotransmitter turnover, an index of neuronal activity, of dopamine and noradrenaline was decreased in various regions of the CNS, including the striatum, in the exposure group. The serum corticosterone level was not different between groups. The data suggest that decreased

  3. Design and analysis on fume exhaust system of blackbody cavity sensor for continuously measuring molten steel temperature

    Directory of Open Access Journals (Sweden)

    Guohui Mei

    2017-03-01

    Full Text Available Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.

  4. The mesolimbic system participates in the naltrexone-induced reversal of sexual exhaustion: opposite effects of intra-VTA naltrexone administration on copulation of sexually experienced and sexually exhausted male rats.

    Science.gov (United States)

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-11-01

    Male rats allowed to copulate until reaching sexual exhaustion exhibit a long-lasting sexual behavior inhibition (around 72 h) that can be reversed by systemic opioid receptor antagonist administration. Copulation activates the mesolimbic dopaminergic system (MLS) and promotes endogenous opioid release. In addition, endogenous opioids, acting at the ventral tegmental area (VTA), modulate the activity of the MLS. We hypothesized that endogenous opioids participate in the sexual exhaustion phenomenon by interacting with VTA opioid receptors and consequently, its reversal by opioid antagonists could be exerted at those receptors. In this study we determined the effects of intra-VTA infusion of different doses of the non-specific opioid receptor antagonist naltrexone (0.1-1.0 μg/rat) on the already established sexual behavior inhibition of sexually exhausted male rats. To elucidate the possible involvement of VTA δ-opioid receptors in the naltrexone-mediated reversal of sexual exhaustion, the effects of different doses of the selective δ-opioid receptor antagonist, naltrindole (0.03-1.0 μg/rat) were also tested. Results showed that intra-VTA injection of 0.3 μg naltrexone reversed the sexual inhibition of sexually exhausted rats, evidenced by an increased percentage of animals capable of showing two successive ejaculations. Intra-VTA infused naltrindole did not reverse sexual exhaustion at any dose. It is concluded that the MLS is involved in the reversal of sexual exhaustion induced by systemic naltrexone, and that μ-, but not δ-opioid receptors participate in this effect. Intra-VTA naltrexone infusion to sexually experienced male rats had an inhibitory effect on sexual activity. The opposite effects of intra-VTA naltrexone on male rat sexual behavior expression of sexually experienced and sexually exhausted rats is discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Simplified fuel cycle tritium inventory model for systems studies -- An illustrative example with an optimized cryopump exhaust system

    International Nuclear Information System (INIS)

    Kuan, W.; Ho, S.K.

    1995-01-01

    It is desirable to incorporate safety constraints due to fuel cycle tritium inventories into tokamak reactor design optimization. An optimal scenario to minimize tritium inventories without much degradation of plasma performance can be defined for each tritium processing component. In this work, the computer code TRUFFLES is used exclusively to obtain numerical data for a simplified model to be used for systems studies. As an illustration, the cryopump plasma exhaust subsystem is examined in detail for optimization purposes. This optimization procedure will then be used to further reduce its window of operation and provide constraints on the data used for the simplified tritium inventory model

  6. Theoretical and Experimental Aspects of Acoustic Modelling of Engine Exhaust Systems with Applications to a Vacuum Pump

    Science.gov (United States)

    Sridhara, Basavapatna Sitaramaiah

    In an internal combustion engine, the engine is the noise source and the exhaust pipe is the main transmitter of noise. Mufflers are often used to reduce engine noise level in the exhaust pipe. To optimize a muffler design, a series of experiments could be conducted using various mufflers installed in the exhaust pipe. For each configuration, the radiated sound pressure could be measured. However, this is not a very efficient method. A second approach would be to develop a scheme involving only a few measurements which can predict the radiated sound pressure at a specified distance from the open end of the exhaust pipe. In this work, the engine exhaust system was modelled as a lumped source-muffler-termination system. An expression for the predicted sound pressure level was derived in terms of the source and termination impedances, and the muffler geometry. The pressure source and monopole radiation models were used for the source and the open end of the exhaust pipe. The four pole parameters were used to relate the acoustic properties at two different cross sections of the muffler and the pipe. The developed formulation was verified through a series of experiments. Two loudspeakers and a reciprocating type vacuum pump were used as sound sources during the tests. The source impedance was measured using the direct, two-load and four-load methods. A simple expansion chamber and a side-branch resonator were used as mufflers. Sound pressure level measurements for the prediction scheme were made for several source-muffler and source-straight pipe combinations. The predicted and measured sound pressure levels were compared for all cases considered. In all cases, correlation of the experimental results and those predicted by the developed expressions was good. Predicted and measured values of the insertion loss of the mufflers were compared. The agreement between the two was good. Also, an error analysis of the four-load method was done.

  7. Exhaust bypass flow control for exhaust heat recovery

    Science.gov (United States)

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  8. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenørn, Thomas; Pedersen, Jannik

    2013-01-01

    microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of sin-gle particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot......This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microiner-tial impactor with transmission electron...

  9. On-board ammonia generation and exhaust after treatment system using same

    Science.gov (United States)

    Driscoll, Josh; Robel, Wade J.; Brown, Cory A.; Urven, Jr., Roger L.

    2010-03-30

    Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.

  10. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    OpenAIRE

    Mahdi Jamshidi Rastani; Farshid Ghorbani Shahna; Abdolrahman Bahrami; Somayeh Hosseini

    2016-01-01

    Introduction: Adherence to the design values and ventilation standards (VS) after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS) and design values. Material...

  11. The Identification of Incentive Effects of Benefit Exhaustion in Unemployment Insurance Systems

    DEFF Research Database (Denmark)

    Pico Geerdsen, Lars

    The paper examines the different assumptions which have been applied in the literature in order to identify the motivation effect of benefits exhaustion. The different assumptions are tested on a common data set.......The paper examines the different assumptions which have been applied in the literature in order to identify the motivation effect of benefits exhaustion. The different assumptions are tested on a common data set....

  12. Improvement of the thermal and mechanical flow characteristics in the exhaust system of piston engine through the use of ejection effect

    Science.gov (United States)

    Plotnikov, L. V.; Zhilkin, B. P.; Brodov, Yu M.

    2017-11-01

    The results of experimental research of gas dynamics and heat transfer in the exhaust process in piston internal combustion engines are presented. Studies were conducted on full-scale models of piston engine in the conditions of unsteady gas-dynamic (pulsating flows). Dependences of the instantaneous flow speed and the local heat transfer coefficient from the crankshaft rotation angle in the exhaust pipe are presented in the article. Also, the flow characteristics of the exhaust gases through the exhaust systems of various configurations are analyzed. It is shown that installation of the ejector in the exhaust system lead to a stabilization of the flow and allows to improve cleaning of the cylinder from exhaust gases and to optimize the thermal state of the exhaust pipes. Experimental studies were complemented by numerical simulation of the working process of the DM-21 diesel engine (production of “Ural diesel-motor plant”). The object of modeling was the eight-cylinder diesel with turbocharger. The simulation was performed taking into account the processes nonstationarity in the intake and exhaust pipes for the various configurations of exhaust systems (with and without ejector). Numerical simulation of the working process of diesel was performed in ACTUS software (ABB Turbo Systems). The simulation results confirmed the stabilization of the flow due to the use of the ejection effect in the exhaust system of a diesel engine. The use of ejection in the exhaust system of the DM-21 diesel leads to improvement of cleaning cylinders up to 10 %, reduces the specific fuel consumption on average by 1 %.

  13. Exhaust gas cleaning system for handling radioactive fission and activation gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.

    1975-01-01

    An exhaust gas cleaning system utilizing the principle of delaying radioactive gases to permit their radioactive decay to a level acceptable for release to the atmosphere, comprising an adsorbent for adsorbing radioactive gas and a container for containing the adsorbent and for constraining gas to flow through the adsorbent, the adsorbent and the container forming simultaneously an adsorptive delay section and a mechanical delay section, by means of a predetermined ratio of volume of voids in the adsorbent to total volume of the container containing the adsorbent, for delaying radioactive gas to permit its radioactive decay to a level acceptable for release to the atmosphere is described. A method of using an adsorbent for cleaning a radioactive gas containing an isotope which is adsorbed by the adsorbent and containing an isotope whose adsorption by the adsorbent is low as compared to the isotope which is adsorbed and which is short-lived as compared to the isotope which is adsorbed, comprising constraining the gas to flow through the adsorbent with the retention time for the isotope which is adsorbed being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere and with the retention time for the isotope of relatively low adsorption and relatively short life being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere is also described. (U.S.)

  14. Detailed and exhaustive study of the authentication of European virgin olive oils by SEXIA expert system

    Directory of Open Access Journals (Sweden)

    Aparicio, R.

    1994-08-01

    Full Text Available The authentication of extra virgin olive oils from different regions of Spain, Italy and Portugal, by means of their fatty acids, alcohols, sterols, methyl sterols and hydrocarbons content, has been investigated. Multivariate statistical methods and Evidence's Theory were applied. The comparative study shows greater predictive ability using this theory than the traditional statistical methods or expert systems that do not implement the possibility theory. A detailed and exhaustive study of Italian (Tuscany and Basilicata, Portuguese and Spanish virgin olive oils has been made. Geographically coloured maps of the studied regions are shown to strengthen the numerical results.

    Se ha estudiado la autentificación de aceites de oliva virgen de diferentes regiones de España, Italia y Portugal, por su contenido en ácidos grasos, alcoholes, esteroles, metil esteroles e hidrocarburos. Se aplicaron métodos estadísticos multivariantes junto a la Teoría de la Evidencia. El estudio mostró una mejora en la capacidad predictiva utilizando esta teoría frente a otros métodos o sistemas expertos que no implementan la teoría de la posibilidad. Se ha realizado un estudio detallado y exhaustivo con aceites de oliva virgen italianos (Toscana y Basilicata, portugueses y españoles. Los resultados numéricos se muestran sobre mapas geográficos de las diferentes regiones estudiadas.

  15. Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle

    Science.gov (United States)

    Kühn, Roland; Koeppen, Olaf; Kitte, Jens

    2014-06-01

    Numerous research projects in automotive engineering focus on the industrialization of the thermoelectric generator (TEG). The development and the implementation of thermoelectric systems into the vehicle environment are commonly supported by virtual design activities. In this paper a customized simulation architecture is presented that includes almost all vehicle parts which are influenced by the TEG (overall system simulation) but is nevertheless capable of real-time use. Moreover, an optimized planar TEG with minimum nominal power output of about 580 W and pressure loss at nominal conditions of 10 mbar, synthesized using the overall system simulation, and the overall system simulation itself are used to answer a generally neglected question: What influence does the position of a TEG have on the back pressure of the subsequent exhaust gas system of the vehicle? It is found that the influence of the TEG on the muffler is low, but the catalytic converter is strongly influenced. It is shown that the TEG can reduce the back pressure of an exhaust gas system so much that its overall back pressure is less than the back pressure of a standard exhaust gas system.

  16. Exhaust systems for combustion products: solutions and innovations; Les systemes d'evacuation des produits de combustion: solutions et innovations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This document summarizes the content of a conference-debate organized by Cegibat, the information service of Gaz de France (GdF) for building engineering professionals, about the exhaust systems for gas boilers: 1 - overview of airtight systems: horizontal suction-grip duct, vertical suction-grip duct, collective ducts for tight boilers, separate ducts; 2 - example of products: separate ducts; reuse of an individual smoke duct; 3 - overview of non-airtight exhaust systems: individual smoke ducts, collective smoke ducts, ventilation-gas systems; 4 - examples of non-airtight systems: diagnosis and rehabilitation of smoke ducts, low pressure mechanical exhaust system; 5 - works in progress and perspectives of evolution. (J.S.)

  17. Marine diesel engines exhaust noise. Pt. VII: Calculation of the acoustical performance of diesel engine exhaust systems / Uitlaatgeluid van scheepsdieselmotoren. Dl. VII: Berekening van de akoestische eigenschappen van uitlaatsystemen van dieselmotoren

    NARCIS (Netherlands)

    Buiten, J.; Gerretsen, E.; Vellekoop, J.C.

    1974-01-01

    A method is given lor the calculation of the transfer damping of diesel engine exhaust systems. Also the complete computer program in FORTRAN IV, based on this calculation method is given. The method includes such system elements as chamber resonators, 1,5-pipes, absorbing siìencers and shunts to

  18. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  19. Coupled simulation of a system for the utilization of exhaust heat and cooling of the interior of commercial vehicles; Gekoppelte Simulation eines Abgaswaermenutzungs- und Fahrzeugkuehlsystems im Nutzfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Ambros, Peter; Fezer, Axel; Kapitel, Julian [TheSys GmbH, Kirchentellinsfurt (Germany)

    2012-11-01

    Based on a simulation software called GT-Suite by Gamma Technology, a one-dimensional model of a waste-heat recovery system with utility vehicle boundary conditions was developed. Using this model, it is possible to simulate stationary operating points of this type WHR. A Clausius-Rankine cycle is used in the power-heat cogeneration. The Clausius-Rankine cycle is linked to the exhaust system by two boilers. The first boiler is installed in the main exhaust steam, the second boiler is implemented in the exhaust gas recirculation. Besides the waste-heat recovery system, the integrated cooling system of the vehicle is also modeled. (orig.)

  20. Analysis of tractor particulate emissions in a modified NRSC test after implementing a particulate filter in the exhaust system

    Directory of Open Access Journals (Sweden)

    Siedlecki Maciej

    2017-01-01

    Full Text Available Retrofitting, which means retrofitting old generation engine systems with modern exhaust after treatment systems, is becoming increasingly popular, which allow vehicles to adhere to the newer and more stringent emission norms. This can save the operators of such vehicles money using older engineered designs without the need to design a new unit or buy an expensive new machine or vehicle. At present, there is a growing interest in emissions from off-road vehicles and the introduction of minimum limits for older vehicles that must be met in order to be able to allow for their operation. For the purposes of this article, the Stage IIIA farm tractor has been fitted with a particulate filter in the exhaust system. The study investigated the impact of the use of exhaust after treatment systems on particle emissions in terms of mass, size distribution and number using PEMS analyzers in the modified NRSC stationary test by engine loading, using a mobile engine dynamometer and comparison of test results.

  1. The new generation of exhaust aftertreatment systems for lean fuel gasoline engines; Die neue Generation von Abgasnachbehandlungssystemen fuer magerlaufende Benzinmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Eckhoff, Stephan; Hoyer, Ruediger; Adam, Frank; Lammarck, Christian; Mueller, Wilfried [Umicore AG und Co. KG, Hanau-Wolfgang (Germany)

    2010-07-01

    Stratified gasoline direct injection engines show a great potential for the reduction of CO{sub 2} emissions and therefore improved fuel economy. The next generation of stratified gasoline engines with turbo charger and more efficient combustion are expected to have even lower exhaust temperatures compared with current series vehicle with stratified combustion. For this reason exhaust gas aftertreatment systems are required which have low light off temperatures for HC and CO during lean combustion and a high NOx-storage efficiency at low temperatures. This study shows the great improvements made over the last years for the development of new TWC and NOx-storage catalysts for the aftertreatment for lean GDI. A precious metal related cost reduction of about 40% was achieved for the new generation of aftertreatment systems. (orig.)

  2. Two stage catalytic converter system to reduce exhaust emissions of HC, CO and NO in a motor vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nagalingam, B; Gopalakrishnan, K V; Murthy, B S

    1978-09-01

    Two-stage catalytic converter system is currently receiving considerable attention as a means to control the primary pollutants, namely, HC, CO and NO in the automobile exhaust. In order to explore the possibility of developing catalysts from indigenous and inexpensive sources of materials, sponge iron for NO reduction and manganese ore pebbles for HC/CO oxidation were tested as candidate-catalysts in an engine dynamometer test bed to study their catalytic activity. The results of these experiments are reported.

  3. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... avoid moisture condensation. A filter pair loading of 1 mg is typically proportional to a 0.1 g/bhp-hr..., the temperatures where condensation of water in the exhaust gases could occur. This may be achieved by... sampling zone in the primary dilution tunnel and as required to prevent condensation at any point in the...

  4. System acceptance and operability test report for the RMCS exhauster C on flammable gas tanks

    International Nuclear Information System (INIS)

    Waldo, E.J.

    1998-01-01

    This test report documents the completion of acceptance and operability testing of the rotary mode core sampling (RMCS) exhauster C, as modified for use as a major stack (as defined by the Washington State Department of Health) on flammable gas tanks

  5. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  6. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  7. Influence of Rack Design and Disease Prevalence on Detection of Rodent Pathogens in Exhaust Debris Samples from Individually Ventilated Caging Systems.

    Science.gov (United States)

    Bauer, Beth A; Besch-Williford, Cynthia; Livingston, Robert S; Crim, Marcus J; Riley, Lela K; Myles, Matthew H

    2016-11-01

    Sampling of bedding debris within the exhaust systems of ventilated racks may be a mechanism for detecting murine pathogens in colony animals. This study examined the effectiveness of detecting pathogens by PCR analysis of exhaust debris samples collected from ventilated racks of 2 different rack designs, one with unfiltered air flow from within the cage to the air-exhaust pathway, and the other had a filter between the cage and the air-exhaust pathway. For 12 wk, racks were populated with either 1 or 5 cages of mice (3 mice per cage) infected with one of the following pathogens: mouse norovirus (MNV), mouse parvovirus (MPV), mouse hepatitis virus (MHV), Helicobacter spp., Pasteurella pneumotropica, pinworms, Entamoeba muris, Tritrichomonas muris, and fur mites. Pathogen shedding by infected mice was monitored throughout the study. In the filter-containing rack, PCR testing of exhaust plenums yielded negative results for all pathogens at all time points of the study. In the rack with open air flow, pathogens detected by PCR analysis of exhaust debris included MHV, Helicobacter spp., P. pneumotropica, pinworms, enteric protozoa, and fur mites; these pathogens were detected in racks housing either 1 or 5 cages of infected mice. Neither MPV nor MNV was detected in exhaust debris, even though prolonged viral shedding was confirmed. These results demonstrate that testing rack exhaust debris from racks with unfiltered air flow detected MHV, enteric bacteria and parasites, and fur mites. However, this method failed to reliably detect MNV or MPV infection of colony animals.

  8. System design description for portable 1,000 CFM exhauster Skids POR-007/Skid E and POR-008/Skid F

    International Nuclear Information System (INIS)

    Nelson, O.D.

    1998-01-01

    The primary purpose of the two 1,000 CFM Exhauster Skids, POR-007-SKID E and POR-008-SKID F, is to provide backup to the waste tank primary ventilation systems for tanks 241-C-106 and 241-AY-102, and the AY-102 annulus in the event of a failure during the sluicing of tank 241-C-106 and subsequent transfer of sluiced waste to 241-AY-102. This redundancy is required since both of the tank ventilation systems have been declared as Safety Class systems

  9. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    Science.gov (United States)

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Development of an exhaust sensor for control of internal combustion engines and exhaust treatment systems - CatSens. Final report; Entwicklung eines Abgassensors zur Regelung von Verbrennungsmotoren und Abgasnachbehandlungssystemen - CatSens. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lepperhoff, G.; Milanovic, I.

    2002-05-01

    A sensor system for controlling combustion processes in small-scale furnaces and internal combustion engines and for on-board diagnosis of exhaust treatment systems, e.g. NO{sub x} adsorber catalytic converters in motor cars, was developed. [German] Im Rahmen des Verbundprojektes soll ein Sensorsystem zur Regelung der Verbrennungsprozesse in Kleinfeuerungsanlagen und Verbrennungsmotoren sowie zur Regelung und Ueberwachung (On-Board Diagnose) von Abgasnachbehandlungseinrichtungen wie z.B. NO{sub x}-Adsorberkatalysatoren in Kraftfahrzeugen, entwickelt werden. (orig.)

  11. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    Science.gov (United States)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  12. Power generation efficiency of an SOFC-PEFC combined system with time shift utilization of SOFC exhaust heat

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Shin' ya [Power Engineering Lab., Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Kouen-cho, Kitami, Hokkaido 0908507 (Japan)

    2010-01-15

    A microgrid, with little environmental impact, is developed by introducing a combined SOFC (solid oxide fuel cell) and PEFC (proton exchange membrane fuel cell) system. Although the SOFC requires a higher operation temperature compared to the PEFC, the power generation efficiency of the SOFC is higher. However, if high temperature exhaust heat may be used effectively, a system with higher total power generation efficiency can be built. Therefore, this paper investigates the operation of a SOFC-PEFC combined system, with time shift operation of reformed gas, into a microgrid with 30 houses in Sapporo, Japan. The SOFC is designed to correspond to base load operation, and the exhaust heat of the SOFC is used for production of reformed gas. This reformed gas is used for the production of electricity for the PEFC, corresponding to fluctuation load of the next day. Accordingly, the reformed gas is used with a time shift operation. In this paper, the relation between operation method, power generation efficiency, and amount of heat storage of the SOFC-PEFC combined system to the difference in power load pattern was investigated. The average power generation efficiency of the system can be maintained at nearly 48% on a representative day in February (winter season) and August (summer season). (author)

  13. Specific emissions analysis for a combustion engine in dynamometer operation in relation to the thermal state of the exhaust gas aftertreatment systems in a modified NRSC test

    Directory of Open Access Journals (Sweden)

    Merkisz Jerzy

    2017-01-01

    Full Text Available Exhaust gas aftertreatment systems have been present in motor vehicles for decades and have contributed to reducing their impact on the environment and people. Most of them for oxidation or reduction of harmful emissions of particulates and fumes require a certain temperature to be reached that changes with the exhaust temperature, i.e. the points of engine operation. The article describes the effect of oxidation reactor and particulate filter temperatures on specific emissions of gaseous compounds and particulate matter during the modified NRSC engine test. Before the first measurement cycle, the engine was idling, before the second measurement cycle, the exhaust system was heated with exhaust gases at full engine load until passive regeneration of the particle filter occurred (noticeable decrease in instantaneous particle concentration.

  14. Implementation of an experimental pilot reproducing the fouling of the exhaust gas recirculation system in diesel engines

    Directory of Open Access Journals (Sweden)

    Crepeau Gérald

    2012-04-01

    Full Text Available The European emission standards EURO 5 and EURO 6 define more stringent acceptable limits for exhaust emissions of new vehicles. The Exhaust Gas Recirculation (EGR system is a partial but essential solution for lowering the emission of nitrogen oxides and soot particulates. Yet, due to a more intensive use than in the past, the fouling of the EGR system is increased. Ensuring the reliability of the EGR system becomes a main challenge. In partnership with PSA Peugeot Citroën, we designed an experimental setup that mimics an operating EGR system. Its distinctive features are (1 its ability to reproduce precisely the operating conditions and (2 its ability to measure the temperature field on the heat exchanger surface with an Infra Red camera for detecting in real time the evolution of the fooling deposit based on its thermal resistance. Numerical codes are used in conjunction with this experimental setup to determine the evolution of the fouling thickness from its thermal resistance.

  15. Test plan for N2 HEPA filters assembly shop stock used on PFP E4 exhaust system

    International Nuclear Information System (INIS)

    DICK, J.D.

    1999-01-01

    At Plutonium Finishing Plant (PFP) and Plutonium Reclamation Facility (PRF) Self-contained HEPA filters, encased in wooden frames and boxes, are installed in the E4 Exhaust Ventilation System to provide confinement of radioactive releases to the environment and confinement of radioactive contamination within designated zones inside the facility. Recently during the routine testing in-leakage was discovered downstream of the Self-contained HEPA filters boxes. This Test Plan describes the approach to conduct investigation of the root causes for the in-leakage of HEPA filters

  16. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  17. Aerodynamic Control of Exhaust

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    In the autumn of 1985 the Unive!Sity of Aalborg was approached by the manufacturer C. P. Aaberg, who had obtained aerodynilmic control of the exhaust by means of injection. The remaining investigations comprising optimizations of the system with regard to effect, consumption, requirements...

  18. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  19. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation

    International Nuclear Information System (INIS)

    Vale, S.; Heber, L.; Coelho, P.J.; Silva, C.M.

    2017-01-01

    Highlights: • 1-D numerical TEG model in diesel freight vehicles exhaust pipe. • Over 800 W of electrical power for the heavy-duty vehicle. • Plain fins provide better performance than offset strip fins. • The height of the thermocouple legs plays a significant role. • 2% maximum efficiency needs further improvements. - Abstract: A parametric study and optimization approaches of a thermoelectric generator (TEG) for the recovery of energy from the exhaust gas in Diesel vehicles used in freight transport is reported. The TEG is installed in the tailpipe of a commercial vehicle (3.5 tonnes) and a heavy-duty vehicle (40 tonnes). The exhaust gas is used as the heat source and the cooling water as the heat sink. Two different heat exchanger configurations are considered: plain fins and offset strip fins. The influence of the height, length and spacing of the fins on the electrical and net power is analysed for the fixed width and length of the TEG. The influence of the length and width of the TEG and of the height of the thermocouple legs is also investigated. According to the criteria used in this study, plain fins are the best choice, yielding a maximum electrical power of 188 W for the commercial vehicle and 886 W for the heavy-duty vehicle. The best recovery efficiency is about 2%, with an average thermoelectric material efficiency of approximately 4.4%, for the light-duty vehicle. Accordingly, there is significant room for further improvement and optimisation based on the thermoelectric modules and the system design.

  20. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  1. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-21). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  2. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    Science.gov (United States)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  3. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust-Induced Lung Function Impairment in a Chinese Occupational Cohort.

    Science.gov (United States)

    Wang, Haitao; Duan, Huawei; Meng, Tao; Yang, Mo; Cui, Lianhua; Bin, Ping; Dai, Yufei; Niu, Yong; Shen, Meili; Zhang, Liping; Zheng, Yuxin; Leng, Shuguang

    2018-04-01

    Diesel exhaust (DE) as the major source of vehicle-emitted particle matter in ambient air impairs lung function. The objectives were to assess the contribution of local (eg, the fraction of exhaled nitric oxide [FeNO] and serum Club cell secretory protein [CC16]) and systemic (eg, serum C-reaction protein [CRP] and interleukin-6 [IL-6]) inflammation to DE-induced lung function impairment using a unique cohort of diesel engine testers (DETs, n = 137) and non-DETs (n = 127), made up of current and noncurrent smokers. Urinary metabolites, FeNO, serum markers, and spirometry were assessed. A 19% reduction in CC16 and a 94% increase in CRP were identified in DETs compared with non-DETs (all p values regulatory risk assessment. Local and systemic inflammation may be key processes that contribute to the subsequent development of obstructive lung disease in DE-exposed populations.

  4. Investigation of the Performance of HEMT-Based NO, NO₂ and NH₃ Exhaust Gas Sensors for Automotive Antipollution Systems.

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-02-23

    We report improved sensitivity to NO, NO₂ and NH₃ gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO₂ and 15 ppm-NH₃ is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  5. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    Krueger, W.A.

    1990-06-01

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  6. Metal foams as gas coolers for exhaust gas recirculation systems subjected to particulate fouling

    International Nuclear Information System (INIS)

    Hooman, K.; Malayeri, M.R.

    2016-01-01

    Highlights: • Fouling of metal foam heat exchangers as EGR gas coolers is tested. • An optimal design was inferred based on the generated data. • A simple cleaning technique was suggested and evaluated. - Abstract: This paper presents experimental results indicating the benefits and challenges associated with the use of metal foams as Exhaust Gas Recirculation (EGR) coolers. Fouling of such heat exchangers is a critical issue and, as such, special attention has been paid to address this very issue in the present study where a soot generator has been employed to simulate the engine running condition. Effects of aluminium foam PPI and height as well as gas velocity are investigated. It has been noted that proper design of the foam can lead to significantly higher heat transfer rate and reasonable pressure drop compared to no-foam cases. More interestingly, it is demonstrated that the foams can be cleaned easily without relying on expensive cleaning techniques. Using simple brush-cleaning, the foams can be reused as EGR gas coolers with a performance penalty of only 17% (compared to a new or clean foam).

  7. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  8. 40 CFR 1065.130 - Engine exhaust.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Engine exhaust. 1065.130 Section 1065... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.130 Engine exhaust. (a) General. Use the exhaust system installed with the engine or one that represents a typical in-use configuration. This...

  9. Effects of diesel exhaust on the microbiota within a tuffaceous tunnel system

    International Nuclear Information System (INIS)

    Haldeman, D.L.; Lagadinos, T.; Amy, P.S.; Hersman, L.; Meike, A.

    1996-08-01

    The abundance and distribution of microbiota that may be impacted by diesel and diesel exhaust were investigated from three depths into the walls and invert (floor) of U12n tunnel at Rainier Mesa, Nevada Test Site, a potential geological analog of Yucca Mountain. Enumerations included total cell counts, and numbers of aerobic heterotrophic, sulfate-reducing, nitrate-reducing, and diesel-degrading bacteria. Additionally, the disappearance of total petroleum hydrocarbons was determined in microcosms containing subsurface materials that were amended with diesel fuel. Results revealed that microbes capable of utilizing diesel and diesel combustion products were present in the subsurface in both the walls and the invert of the tunnel. The abundance of specific bacterial types in the tunnel invert, a perturbed environment, was greater than that observed in the tunnel wall. Few trends of microbial distribution either into the tunnel wall or the invert were noted with the exception of aerobic heterotrophic abundance which increased with depth into the wall and decreased with depth into the invert. No correlation between microbiota and a specific introduced chemical species have yet been determined. The potential for microbial contamination of the tunnel wall during sampling was determined to be negligible by the use of fluorescently labeled latex spheres (1μm in dia.) as tracers. Results indicate that additional investigations might be needed to examine the microbiota and their possible impacts on the geology and geochemistry of the subsurface, both indigenous microbiota and those microorganisms that will likely be introduced by anthropogenic activity associated with the construction of a high-level waste repository

  10. ACCOUNTING FOR NONUNIFORMITY OF WATER CONSUMPTION IN THE EXHAUST AIR HEAT RECLAMATION SYSTEMS FOR HOT WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Samarin Oleg Dmitrievich

    2017-03-01

    Full Text Available This article is devoted to assessment of the influence of variation of daily hot water consumption on the predicted energy effect by using heat recovery of exhaust air in typical exhaust ventilation systems of the most commonly used flat buildings during their switch to the mechanical induction for the pre-heating of water for hot water supply. It outlines the general principle of the organization of this method of energy saving and presents the basic equations of heat transfer in the heat exchanger. The article proposes a simplified method of accounting for changes in the heat transfer coefficient of air-to-water heat exchanger with fluctuations of water demand using existing dependencies for this coefficient from the rate flow of heating and heated fluid through the device. It presents observations to identify the parameters of the real changes of water consumption during the day with the main quantitative characteristics of normally distributed random variables. Calculation of thermal efficiency of the heat exchange equipment using dimensionless parameters through the number of heat transfer under the optimal opposing scheme of fluid motion is completed under conditions of variable water flow rate for the type residential building of the П3-1/16 series using the Monte Carlo method for numerical modeling of stochastic processes. The estimation of the influence of fluctuation of the current water consumption on the instantaneous thermal efficiency factor of the heat exchanger and the total energy consumption of the building is given, and it is shown that the error of said calculation using average daily parameters is within the margin of usual engineering calculation.

  11. Application of the grey system theory for forecasting the content of 238U in soil near a uranium mine exhaust outlet

    International Nuclear Information System (INIS)

    Ye Yongjun; Ding Dexin; Li Xiangyang; Zhou Xinghuo; Liu Dong

    2008-01-01

    In order to forecast the content of 238 U in soil near a uranium mine exhaust outlet, a general GM(1,1) forecasting model was established based on grey system theory, analyzing association degree and residual error distinction. According to the measuring datum of the content of 238 U in soil near a uranium mine exhaust outlet from 2001 to 2006, used the model to forecast the content of 238 U in soil, The results show that the forecasting value agrees with the measuring results and the forecasting precision is higher; at the same time the content of 238 U in soil in 2007 is also forecasted based on the model, the relative error was 4.8%; which shows the GM(1,1) forecasting model has higher practical value, and is a effective method for forecasting the content of 238 U in soil near a uranium mine exhaust outlet. (authors)

  12. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J [Peoria, IL; Driscoll, James Joshua [Dunlap, IL; Coleman, Gerald N [Peterborough, GB

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  13. Off-design dynamic model of a real Organic Rankine Cycle system fuelled by exhaust gases from industrial processes

    International Nuclear Information System (INIS)

    Mazzi, N.; Rech, S.; Lazzaretto, A.

    2015-01-01

    ORCs (Organic Rankine Cycles) represent an effective option to exploit low grade heat fluxes, the characteristics of which not only affect design, but also performance and stability during operation. This paper presents a detailed design and off-design dynamic model of a superheated regenerative ORC system using the exhaust gases of an industrial process. The point of view is that of a designer who has to predict the system behavior both at steady-state and transient operation to get a reliable and efficient operation. Real physical and operating characteristics of all components are considered, with particular attention to the geometries of shell-and-tube commercial heat exchangers to properly simulate mass and thermal inertias. A suitable control system is chosen to govern the off-design operation taking into account all real operating constraints. Results show a slight decrease in gross system efficiency (less than 1% point) either varying the oil mass flow rate (in the range 80–110%) at constant temperature of the cold sink or this temperature (of 10 °C) at constant oil mass flow rate. Simulation of the transient behavior demonstrates the effectiveness of the control system on ORC stability under variation of the hot source mass flow rate and cold sink temperature. - Highlights: • A detailed off-design dynamic model of a regenerative ORC system is presented. • The model includes real geometries of commercial shell-and-tube heat exchangers. • High efficiency of the ORC system is obtained at partial load in the range 80–110%. • Variations of the evaporator volume does not significantly affect system stability.

  14. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    Directory of Open Access Journals (Sweden)

    Mahdi Jamshidi Rastani

    2016-06-01

    Full Text Available Introduction: Adherence to the design values and ventilation standards (VS after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS and design values. Material and Method: The present research is a descriptive and cross-sectional study, conducted in three sections of measuring, monitoring and evaluating the operating parameters on hoods, channels and fan of ventilation system based on the current status of the system, documentation (design, and recommended standards (VS. Static pressure, velocity pressure, surface area, and flow rate were measured based on the recommendations of various sources and ACGIH industrial ventilation manual, and the data were compared with the design and recommended values, using the SPSS software version 16.   Result: The results of paired sample t-test between flow rate and velocities of design and current status, showed significant differences in various parts. Accordingly, the results revealed a reduction of more than 50% in the design duct velocity compared to the current duct velocity, while design duct velocity is 1.3 more than the standard duct velocity of current status, and current duct velocity is about 65% of standard duct velocity. Conclusion: The reduction and nonconformity of the results of measurements of operating parameters (after a minimum of two decades with design and standard values are corroborant and sufficient reason for obstructions, abrasions, leaks, imbalance of system ducts and their inefficiency in some branches. Since there is no base line measurements for system (supposing that the system worked with maximum amounts of setup time, one of the reasons for these

  15. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2015-01-01

    Highlights: • A new parameter is proposed for optimizing economic performance of the ORC system. • Maximal thermodynamic and economic performances of an ORC system are presented. • The corresponding operating pressures in turbine of optimum thermodynamic and economic performances are investigated. • An optimal effectiveness of pre-heater is obtained for the ORC system. - Abstract: The aim of this study is to investigate the thermodynamic and economic performances optimization for an ORC system recovering the waste heat of exhaust gas from a large marine diesel engine of the merchant ship. Parameters of net power output index and thermal efficiency are used to represent the economic and thermodynamic performances, respectively. The maximum net power output index and thermal efficiency are obtained and the corresponding turbine inlet pressure, turbine outlet pressure, and effectiveness of pre-heater of the ORC system are also evaluated using R1234ze, R245fa, R600, and R600a. Furthermore, the analyses of the effects of turbine inlet temperature and cooling water temperature on the optimal economic and thermodynamic performances of the ORC system are carried out. The results show that R245fa performs the most satisfactorily followed by R600, R600a, and R1234ze under optimal economic performance. However, in the optimal thermodynamic performance evaluations, R1234ze has the largest thermal efficiency followed by R600a, R245fa, and R600. The payback periods will decrease from 0.5 year for R245fa to 0.65 year for R1234ze respectively as the system is equipped with a pre-heater. In addition, compared with conventional diesel oil feeding, the proposed ORC system can reduce 76% CO 2 emission per kilowatt-hour

  16. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 1: Design layouts

    Science.gov (United States)

    Nelson, D. P.

    1981-01-01

    The design layouts and detailed design drawings of coannular exhaust nozzle models for a supersonic propulsion system are presented. The layout drawings show the assembly of the component parts for each configuration. A listing of the component parts is also given.

  17. Effect of systemic pH on pHi and lactic acid generation in exhaustive forearm exercise

    International Nuclear Information System (INIS)

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S.

    1988-01-01

    To investigate whether changes in systemic pH affect intracellular pH (pH i ), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH 4 Cl (acidosis; A) or NaHCO 3 (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH i and phosphocreatine (PCr) content were measured with 31 P-nuclear magnetic resonance ( 31 P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH i did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability

  18. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    Science.gov (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions

    International Nuclear Information System (INIS)

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Reig, Alberto

    2015-01-01

    EGR (Exhaust gas recirculation) plays a major role in current Diesel internal combustion engines as a cost-effective solution to reduce NO_x emissions. EGR systems will suffer a significant evolution with the introduction of NO_x after-treatment and the proliferation of more complex EGR architectures such as low pressure EGR or dual EGR. In this paper the combination of HPEGR (high pressure EGR) LPEGR (low pressure EGR) is presented as a method to minimise fuel consumption with reduced NO_x emissions. Particularly, the paper proposes to switch between HPEGR and LPEGR architectures depending on the engine operating conditions in order to exploit the potential of both systems. In this sense, given a driving cycle, in the case at hand the NEDC, the proposed strategy seeks the EGR layout to use at each instant of the cycle to minimise the fuel consumption such that NO_x emissions are kept below a certain limit. The experimental results obtained show that combining both EGR systems sequentially along the NEDC allows to keep NO_x emission below a much lower limit with minimum fuel consumption. - Highlights: • The combination of HP–LPEGR reduces the NO_x with a small impact on consumption. • The switching strategy between HP – LPEGR is derived from Optimal Control Theory. • The proposed strategy is validated experimentally.

  20. Reliability assessment of emergency exhaust system in a pool-type research reactor

    International Nuclear Information System (INIS)

    Khan, S.A.

    1991-01-01

    The reliability of an extract system in a swimming-pool-type research reactor has been assessed. A global fault-tree analysis technique has been utilized. The basic event reliability data is based on both generic and reactor specific informations. The unavailability of the extract system is quantified in terms of the unavailability of the various functional requirements of the system. The unavailability is expressed as the probability of failure on demand. The computer system unavailability is determined from the minimal cutsets of the system. It is found that only three events have a major contribution to the top event, i.e., failures of compressed air supply, electric power supply and solenoid valve. A sensitivity analysis is performed to show the effects of variations in the data values of the dominant cutsets. An uncertainty analysis was also performend on the fault tree. The evaluations show that the reactor extract system lacks diversity and redundance in most of its components. It is tolerant of most minor degradations, as these are taken care of by the operating policies and procedures. However, it can not tolerate common cause failures, e.g. simultaneous compressed air and electric power supply failure. Based upon the results obtained, some recommendations are made. (orig.)

  1. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company.

    Science.gov (United States)

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad

    2012-01-01

    Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies.

  2. Simulation and Design of Vehicle Exhaust Power Generation Systems: The Interaction Between the Heat Exchanger and the Thermoelectric Modules

    Science.gov (United States)

    Tao, Cong; Chen, Gang; Mu, Yu; Liu, Lisheng; Zhai, Pengcheng

    2015-06-01

    Vehicle exhaust power generation systems (VEPGS), mainly consisting of a heat exchanger, cooling system, thermoelectric modules (TEMs), and clamping device, have attracted wide interest and attention for power generation from waste heat. In this work, systematical research was conducted to investigate the thermal performance, power output, and thermal stress of a VEPGS by using the multifield coupling method. Different from previous research, this work simulates a model that integrates the heat exchanger and TEMs, focusing on the effect of the TEMs on the thermal performance of the heat exchanger. It is found that the TEMs have a significant effect on the thermal performance of the heat exchanger. When not considering the effects of the TEMs, the hot-end temperature of the TEMs would be seriously underestimated, which would result in underestimation of the power output of the VEPGS and the level of thermal stress of the TEMs. Meanwhile, when considering the effect of the TEMs, the hot-end temperature distribution exhibits significant changes, and its temperature uniformity is significantly improved. The results suggest that, in VEPGS design and optimization, the interaction between the heat exchanger and TEMs should be considered. This study also contributes to a more accurate assessment method for VEPGS design and simulation.

  3. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Science.gov (United States)

    2010-07-01

    ... water consumption, high-water level when the system sprays excess water, and low-water level when the... Section 36.47 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... cooling water shall be filled with the quantity of water recommended by the applicant. No cooling air...

  4. 40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.

    Science.gov (United States)

    2010-07-01

    ...) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment may not cause malfunctions or changes in the accuracy in the electronics of the analyzer system. The... induction devices normally found in the automotive service environment, including high energy vehicle...

  5. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    OpenAIRE

    Mantas Smolnikovas; Gintas Viselga; Greta Viselgaitė; Algirdas Jasinskas

    2016-01-01

    The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  6. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    Directory of Open Access Journals (Sweden)

    Mantas Smolnikovas

    2016-02-01

    Full Text Available The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  7. Non-exhaust emission measurement system of the mobile laboratory SNIFFER

    Science.gov (United States)

    Pirjola, L.; Kupiainen, K. J.; Perhoniemi, P.; Tervahattu, H.; Vesala, H.

    In this paper we describe and quality assure the sampling system of a mobile research laboratory SNIFFER which was shown to be a useful tool for studying emission levels of respirable dust from street surfaces. The dust plume had bimodal structure; another mode rising to higher altitudes whereas the other mode remained at lower altitudes. The system was tested on a route in Helsinki, Finland, during spring 2005 and 2006. The PM 2.5 and PM 10 were positively correlated and the PM levels increased with the vehicle speed. SNIFFER was able to identify the characteristic emission levels on different streets. A clear downward trend in the concentrations was observed in all street locations between April and June. The composition of the street dust collected by SNIFFER was compared with springtime PM 10 aerosol samples from the air quality monitoring stations in Helsinki. The results showed similarities in the abundance and composition of the mineral fraction but contained significantly more salt particles.

  8. A Study on The Development of Local Exhaust Ventilation System (LEV’s) for Installation of Laser Cutting Machine

    Science.gov (United States)

    Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.

    2017-09-01

    Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.

  9. Plant pollution from lead produced by automobile exhaust system near certain highways of Iran

    International Nuclear Information System (INIS)

    Rahmani, H.R.; Kalbasi, M.; Hajrasuliha, Sh.

    2001-01-01

    Plants polluted with Pb produced by automobiles along the roads and highways have extensively been reported all over the world. It is the most important source of pollution in the environment. This research was carried out to determine the polluting degree of plants along the highways such as: Rasht-Anzaly, Kelachay-Ramsar, Tehran-Karaj, and Isfahan-Tehran. At each arbitrary point, a transect 100 meters long perpendicular to the highway was selected for sampling. Along each transect, plants were sampled at 15 cm above the ground, in different distances from the highway. Samples were transported to the laboratory and analyzed by a standard method. The average concentration of total Pb determined in Anzali, Ramsar, Karaj and Delijan (east and west of the road) areas respectively were 114.5, 58.3, 260.2, 75.1 and microgram per gram dry plant weight. Total Pb content in plants along the roads were high and exponentially decreasing with distance from the roadside. Pb concentration in plants were higher than threshold of Standard, so the risk of entrain g of this poisonous element in nutrition system along the roads is very considerable. The plants were polluted from medium degree up to a very high degree. The rate of pollution in plant samples is very high in Karaj area, high in Anzali area, and medium in Ramsar and Delijan areas. Plant pollution was directly related to the traffic volume in road

  10. Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship

    International Nuclear Information System (INIS)

    Choi, Byung Chul; Kim, Young Min

    2013-01-01

    A dual loop waste heat recovery power generation system that comprises an upper trilateral cycle and a lower organic Rankine cycle, in which discharged exhaust gas heat is recovered and re-used for propulsion power, was theoretically applied to an internal combustion engine for propulsion in a 6800 TEU container ship. The thermodynamic properties of this exhaust gas heat recovery system, which vary depending on the boundary temperature between the upper and lower cycles, were also investigated. The results confirmed that this dual loop exhaust gas heat recovery power generation system exhibited a maximum net output of 2069.8 kW, and a maximum system efficiency of 10.93% according to the first law of thermodynamics and a maximum system exergy efficiency of 58.77% according to the second law of thermodynamics. In this case, the energy and exergy efficiencies of the dual loop system were larger than those of the single loop trilateral cycle. Further, in the upper trilateral cycle, the volumetric expansion ratio of the turbine could be considerably reduced to an adequate level to be employed in the practical system. When this dual loop exhaust gas heat recovery power generation system was applied to the main engine of the container ship, which was actually in operation, a 2.824% improvement in propulsion efficiency was confirmed in comparison to the case of a base engine. This improvement in propulsion efficiency resulted in about 6.06% reduction in the specific fuel oil consumption and specific CO 2 emissions of the main engine during actual operation. - Highlights: • WHRS was theoretically applied to exhaust gas of a main engine for ship propulsion. • A dual loop EG-WHRS using water and R1234yf as working fluids has been suggested. • Limitation of single loop trilateral cycle was improved by the dual loop system. • The propulsion efficiency of 2.824% was improved by the dual loop EG-WHRS. • This resulted in about 6.06% reduction in the SFOC and specific CO

  11. PILCs for trapping phosphorus in a heavy duty engine exhaust system : An experimental evaluation of the phosphorus sorption capability of different clay materials

    OpenAIRE

    Kvarned, Anders

    2016-01-01

    In order to fulfil the requirements in the EURO VI standard, regulating emissions from heavy duty vehicles, the exhaust aftertreatment system needs to maintain its efficiency for at least seven years or 700 000 km. In diesel applications the diesel oxidation catalyst (DOC) is located closest to the engine and is thus the most vulnerable to poisoning contaminants, such as phosphorus originating from fuel and oil additives, which deactivates the catalyst. An idea to reduce the impact from phosp...

  12. Design Review Report for formal review of safety class features of exhauster system for rotary mode core sampling

    International Nuclear Information System (INIS)

    JANICEK, G.P.

    2000-01-01

    Report documenting Formal Design Review conducted on portable exhausters used to support rotary mode core sampling of Hanford underground radioactive waste tanks with focus on Safety Class design features and control requirements for flammable gas environment operation and air discharge permitting compliance

  13. Design Review Report for formal review of safety class features of exhauster system for rotary mode core sampling

    Energy Technology Data Exchange (ETDEWEB)

    JANICEK, G.P.

    2000-06-08

    Report documenting Formal Design Review conducted on portable exhausters used to support rotary mode core sampling of Hanford underground radioactive waste tanks with focus on Safety Class design features and control requirements for flammable gas environment operation and air discharge permitting compliance.

  14. Diffuser Optimation at Exhaust System with Catalytic Converter for 110 cc Mopet with Fluid Flow CFD Simulation

    Directory of Open Access Journals (Sweden)

    Tresna Soemardi

    2010-10-01

    Full Text Available CFD simulation used to get behavior of exhaust gas through catalyst, this result will be used to optimize geometry form to perform uniform stream distribution to catalyst, and CFD Simulation will used to analyze backpressure that happened at the model.

  15. Study on the Optimizing Operation of Exhaust Air Heat Recovery and Solar Energy Combined Thermal Compensation System for Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available This study proposed an exhaust air heat recovery and solar energy combined thermal compensation system (ESTC for ground-coupled heat pumps. Based on the prediction of the next day’s exhaust air temperature and solar irradiance, an optimized thermal compensation (OTC method was developed in this study as well, in which the exhaust air heat recovery compensator and solar energy compensator in the ESTC system run at high efficiency throughout various times of day. Moreover, a modified solar term similar days group (STSDG method was proposed to improve the accuracy of solar irradiance prediction in hazy weather. This modified STSDG method was based on air quality forecast and AQI (air quality index correction factors. Through analyzing the operating parameters and the simulation results of a case study, the ESTC system proved to have good performance and high efficiency in eliminating the heat imbalance by using the OTC method. The thermal compensation quantity per unit energy consumption (TEC of ESTC under the proposed method was 1.25 times as high as that under the traditional operation method. The modified STSDG method also exhibited high accuracy. For the accumulated solar irradiance of the four highest daily radiation hours, the monthly mean absolute percentage error (MAPE between the predicted values and the measured values was 6.35%.

  16. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  17. Investigation of Deposit Formation Mechanisms for Engine In-cylinder Combustion and Exhaust Systems Using Quantitative Analysis and Sustainability Study

    Science.gov (United States)

    Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.

    2007-06-01

    The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization

  18. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system: Comprehensive data report

    Science.gov (United States)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

  19. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef

    2013-01-01

    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  20. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Koyama, T; Sasaki, K; Mori, K; Mori, K [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  1. Mechanisms of corrosion, falling short of dew point and formation of corrosion in boilers and exhaust systems. Mechanismen der Korrosionsbildung, der Taupunktunterschreitung und Entstehung von Korrosionen in Kessel- und Abgassystemen

    Energy Technology Data Exchange (ETDEWEB)

    Marx, E.

    1994-09-01

    In order to save energy boilers for heating systems are run on increasingly lower exhaust gas- and boiler temperatures. Combustion as such depends of type of fuel, boiler and burner design, design of exhaust systems and atmospheric disturbance variables. This article looks at the influence which these factors have on corrosion. Falling short of the dew point is an important parameter in this context. Possibilities of avoiding corrosion are explained. (BWI)

  2. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due

    2015-01-01

    This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...

  3. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  4. Method for removing soot from exhaust gases

    Science.gov (United States)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    2018-01-16

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine and collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).

  5. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni

    2017-01-01

    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  6. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    Science.gov (United States)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  7. Diesel exhaust emissions : health effects

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, M. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    Despite modern day ventilation, underground miners are exposed to diesel particulate matter (DPM) composed of elemental carbon, organic carbon, sulphates, metals and ashes. Diesel exhaust contains over 40 air contaminants that have been recognized as toxic, carcinogenic or reproductive and developmental hazards. Nearly all components of diesel exhaust interact with the human body at the bloodstream or tissue level. This presentation discussed the following 4 potential levels of threat posed by the physical and chemical nature of diesel exhaust: (1) cancer of the lungs and bladder, (2) toxins that affect the nervous, endocrine, reproductive and immune system as well as the liver and kidneys, (3) fine particulate matter that can cause premature death and an increase in respiratory illness, and (4) nitrogen oxides that contribute to increased ozone and smog. Non-cancer health effects from short-term exposure include acute irritation and respiratory symptoms. This presentation also referred to cancer risk assessments of diesel exhaust by national, state, and world health organizations. Particulate exposure standards for Canada, Quebec, Ontario and the United States were listed along with the percentage of DPM samples in excess of various exposure limits in 2008 according to Canadian underground mine data. DPM concentration levels in mines are in the range that environmental agencies would consider high for general population exposure. Solutions for underground mines include pollution control at the source; use of modern engines with certification for underground mining; emissions based maintenance; exhaust treatment; use of clean or alternative fuels such as hydrogen; regular sampling and monitoring; ventilation; training and technology transfer; and regulations. tabs., figs.

  8. The effectiveness of various biofiltration substrates in removing bacteria, endotoxins, and dust from ventilation system exhaust from a chicken hatchery.

    Science.gov (United States)

    Tymczyna, L; Chmielowiec-Korzeniowska, A; Drabik, A

    2007-10-01

    The objective of this study was to evaluate the effectiveness of various organic and organic-mineral biofilter media in purifying ventilation exhaust from a chicken hatchery room. Three different substrates were tested. Efficiency levels for the removal of dust, gram-negative bacteria, and bacterial endotoxin were recorded. The microbiological properties of the substrates were also studied. All of the biofilter substrates were highly effective in removing gram-negative bacteria, moderately effective in reducing dust levels, and only slightly effective in removing endotoxin. The substrate that was most efficient in retaining bioaerosols was the organic-mineral medium containing 20% halloysite, 40% compost, and 40% peat, which generally had at least satisfactory efficiency values for removing all of the contaminants tested.

  9. Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Yasushi; Furukawa, Naotsugu; Matsukata, Masahiko; Kikuchi, Eiichi, E-mail: ysekine@waseda.jp [Department of Applied Chemistry, Waseda University, 65-301, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2011-07-13

    Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523 K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C{sub 2} hydrocarbon without coke formation at a ratio of CO{sub 2}/C{sub fuel} = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523 K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

  10. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine

    International Nuclear Information System (INIS)

    Wang, Tianyou; Zhang, Yajun; Zhang, Jie; Peng, Zhijun; Shu, Gequn

    2014-01-01

    Highlights: • Comparisons of exhaust energy recovery are launched between two types of engine. • System performances are analyzed in terms of benefits and thermo-economics. • Diesel engine system presents superior to gasoline type in economic applicability. • Only diesel engine system using water under full load meets the economic demand. - Abstract: Exhaust energy recovery system (EERS) based on Rankine cycle (RC) in internal combustion engines have been studied mainly on heavy-duty diesel engines (D) and light-duty vehicle gasoline engines (G), however, little information available on systematical comparisons and evaluations between the two applications, which is a particularly necessary summary for clarifying the differences. In this paper, the two particular systems are compared quantitatively using water, R141b, R123 and R245fa as working fluids. The influences of evaporating pressure, engine type and load on the system performances are analyzed with multi-objectives, including the thermal efficiency improvement, the reduced CO 2 emission, the total heat transfer area per net power output (APP), the electricity production cost (EPC) and the payback period (PBP). The results reveal that higher pressure and engine load would be attractive for better performances. R141b shows the best performances in system benefits for the D-EERS, while water exhibits the largest contributions in the G-EERS. Besides, water performs the best thermo-economics, and R245fa serves as the most uneconomical fluid. The D-EERS presents superior to the G-EERS in the economic applicability as well as much more CO 2 emission reductions, although with slightly lower thermal efficiency improvement, and only the D-EERS with water under the full load meets the economic demand. Therefore the EERS based on RC serve more applicable on the heavy-duty diesel engine, while it might be feasible for the light-duty vehicle gasoline engine as the state-of-the art technologies are developed in the

  11. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-01-01

    We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO2 and 15 ppm-NH3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  12. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Directory of Open Access Journals (Sweden)

    Yacine Halfaya

    2016-02-01

    Full Text Available We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO 2 and 15 ppm-NH 3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  13. Techno-economic process design of a commercial-scale amine-based CO_2 capture system for natural gas combined cycle power plant with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Ali, Usman; Agbonghae, Elvis O.; Hughes, Kevin J.; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed

    2016-01-01

    Highlights: • EGR is a way to enhance the CO_2 content with reduction in design variables and cost. • Both process and economic analyses are essential to reach the optimum design variables. • Commercial-scale NGCC with and without EGR is presented. • Process design of the amine-based CO_2 capture plant is evaluated for with and without EGR. - Abstract: Post-combustion CO_2 capture systems are gaining more importance as a means of reducing escalating greenhouse gas emissions. Moreover, for natural gas-fired power generation systems, exhaust gas recirculation is a method of enhancing the CO_2 concentration in the lean flue gas. The present study reports the design and scale-up of four different cases of an amine-based CO_2 capture system at 90% capture rate with 30 wt.% aqueous solution of MEA. The design results are reported for a natural gas-fired combined cycle system with a gross power output of 650 MW_e without EGR and with EGR at 20%, 35% and 50% EGR percentage. A combined process and economic analysis is implemented to identify the optimum designs for the different amine-based CO_2 capture plants. For an amine-based CO_2 capture plant with a natural gas-fired combined cycle without EGR, an optimum liquid to gas ratio of 0.96 is estimated. Incorporating EGR at 20%, 35% and 50%, results in optimum liquid to gas ratios of 1.22, 1.46 and 1.90, respectively. These results suggest that a natural gas-fired power plant with exhaust gas recirculation will result in lower penalties in terms of the energy consumption and costs incurred on the amine-based CO_2 capture plant.

  14. Exhaust gas sensors for NO{sub x} storage catalysts and ammonia SCR systems; Abgassensoren fuer NO{sub x}-Speicherkatalysatoren und Ammoniak-SCR-Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Moos, R. [Bayreuth Univ. (DE). Bayreuth Engine Research Center (BERC)

    2008-07-01

    Measuring of the air-to-fuel ratio and/or the exhaust gas oxygen content with the help of an exhaust gas sensor has been established thirty years ago. Whereas the original thimble type lambda probe, which is still shown today in textbooks, is a product of classical ceramic technology, newer sensors are manufactured in planar multilayer technology stemming from electronic technology. This is the basis for additional functionalities like NO{sub x} or ammonia sensitivities. Due to increasing requirements for OBD, the sensor of the future might be a multifunctional device which allows for measuring application specific components as well as lambda in a wide range. From a technical standpoint, it would even today be feasible to manufacture an integrated exhaust gas sensor that can measure ammonia, NO{sub x}, and lambda at the same time. Whether the direct catalyst status diagnosis will become ripe for serial application does not depends only on technical questions and cost considerations but also on the issue whether one is willing to establish a completely novel way of catalyst detection in the exhaust pipe. (orig.)

  15. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  16. Selective gas exhaustion method

    International Nuclear Information System (INIS)

    Hirano, Yoichi

    1998-01-01

    The present invention provides a method capable of evacuating gases at an exhaustion rate which varies depending on the kind of gases. For example, in a thermonuclear experimental device, a hydrogen gas exhaustion rate is determined to 0 and an exhaustion rate for other impure gases is made greater. Namely, a baffle plate is cooled to a temperature to a level at which the vapor pressure of gases to evacuate a baffle plate is required in a pump incorporating a baffle plate, for example, a cryopump or a sorption pump. In this case, the level of the vapor pressure required for evacuating the exhaustion gas ingredients is 1 x 10 -8 Torr or less, preferably, 1 x 10 -9 Torr. In a thermonuclear experimental device, a gas having a lower boiling point next to hydrogen is neon, but neon is scarcely present in natural world. Nitrogen has a lower boiling point next thereto, and if the temperature is lowered to such a level that the vapor pressure for evacuating gases such as nitrogen, and carbon monoxide, oxygen, fluorine, argon or methane having a boiling point at or lower than nitrogen is required. Then, evacuation rate sufficient for gases other than hydrogen gas can be obtained. (I.S.)

  17. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  18. Distributed co-simulation of embedded control software with exhaust gas recirculation water handling system using INTO-CPS

    DEFF Research Database (Denmark)

    Pedersen, Nicolai; Lausdahl, Kenneth; Sanchez, Enrique Vidal

    2017-01-01

    to reduce the overall costs of validation. This paper demonstrates how this can be achieved for a commercial system developed by MAN Diesel & Turbo using a newly developed tool chain based on the Functional Mock-up Interface standard for co-simulation supporting different operating systems. The generality...

  19. Extending Lean and Exhaust Gas Recirculation-Dilute Operating Limits of a Modern Gasoline Direct-Injection Engine Using a Low-Energy Transient Plasma Ignition System

    Energy Technology Data Exchange (ETDEWEB)

    Sevik, James; Wallner, Thomas; Pamminger, Michael; Scarcelli, Riccardo; Singleton, Dan; Sanders, Jason

    2016-05-24

    The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coil ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.

  20. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Science.gov (United States)

    2010-04-01

    ...(a)(1) through (5). (c) Provisions for future installation of electric clothes dryers. When wiring is... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All...

  1. Distributed co-simulation of embedded control software with exhaust gas recirculation water handling system using INTO-CPS

    DEFF Research Database (Denmark)

    Pedersen, Nicolai; Lausdahl, Kenneth; Sanchez, Enrique Vidal

    2017-01-01

    properties is often desirable. However, it is non-trivial to be able to combine such different models of different constituent elements. In order to reduce the need for expensive tests on the real system it is advantageous to be able to combine such heterogeneous models in a joint co-simulation in order...

  2. A constant-volume rapid exhaust dilution system for motor vehicle particulate matter number and mass measurements.

    Science.gov (United States)

    Maricq, M Matti; Chase, Richard E; Xu, Ning; Podsiadlik, Diane H

    2003-10-01

    An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.

  3. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  4. Generating usable and safe CO{sub 2} for enrichment of greenhouses from the exhaust gas of a biomass heating system

    Energy Technology Data Exchange (ETDEWEB)

    Dion, L.M.; Lefsrud, M. [McGill Univ., Macdonald Campus, Ste-Anne-deBellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    This study demonstrated the use of biomass as a renewable fuel to enrich a greenhouse with carbon dioxide (CO{sub 2}). CO{sub 2} enrichment of greenhouses has been shown to improve crop production whether it occurs from liquid CO{sub 2} or combustion of fossil fuels. Biomass, in the form of wood chips or pellets, has received much interest as a sustainable and economically viable alternative to heat greenhouses. As such, the opportunity exists to convert exhaust gases from a greenhouse wood heating system into a useful resource. CO{sub 2} can be extracted from flue gas via membrane separation instead of electrostatic precipitators. This technique has shown potential for large industries trying to reduce and isolate CO{sub 2} emissions for sequestration and may be applicable to the greenhouse industry. Some research has also been done with wet scrubbers using catalysts to obtain plant fertilizers. Sulphur dioxide (SO{sub 2}) and nitrogen (NO) emissions can be stripped from flue gas to form ammonium sulphate as a valuable byproduct for fertilizer markets. This study will review the potential of these techniques in the summer of 2010 when experiments will be conducted at the Macdonald Campus of McGill University.

  5. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    Science.gov (United States)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  6. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aeroynamic data book 1

    Science.gov (United States)

    Nelson, D. P.

    1981-01-01

    Tabulated data from wind tunnel tests conducted to evaluate the aerodynamic performance of an advanced coannular exhaust nozzle for a future supersonic propulsion system are presented. Tests were conducted with two test configurations: (1) a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and (2) an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At takeoff conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less. Data are provided through test run 25.

  7. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    Science.gov (United States)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  8. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems.

    Science.gov (United States)

    Miller, Manuel; Ritter, Brbel; Zorn, Julia; Brielmeier, Markus

    2016-11-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice.

  9. Advanced exhaust nozzle technology

    Energy Technology Data Exchange (ETDEWEB)

    Glidewell, R J; Warburton, R E

    1981-01-01

    Recent developments in turbine engine exhaust nozzle technology include nonaxisymmetric nozzles, thrust reversing, and thrust vectoring. Trade studies have been performed to determine the impact of these developments on the thrust-to-weight ratio and specific fuel consumption of an advanced high performance, augmented turbofan engine. Results are presented in a manner which provides an understanding of the sources and magnitudes of differences in the basic elements of nozzle internal performance and weight as they relate to conventional, axisymmetric nozzle technology. Conclusions are presented and recommendations are made with regard to future directions of advanced development and demonstration. 5 refs.

  10. A practical multi-objective design approach for optimum exhaust heat recovery from hybrid stand-alone PV-diesel power systems

    International Nuclear Information System (INIS)

    Yousefi, Moslem; Kim, Joong Hoon; Hooshyar, Danial; Yousefi, Milad; Sahari, Khairul Salleh Mohamed; Ahmad, Rodina Binti

    2017-01-01

    Highlights: • Heat recovery exchanger is designed based on practical conditions of a hybrid power system. • Off-the-grid electricity system modeling and analysis using micro-grid analysis software HOMER. • NSGA-II is used for the multi-objective design optimization task. • A new local search is proposed to incorporate the engineering knowledge in NSGA-II. • The proposed approach outperforms the existing ones. - Abstract: Integration of solar power and diesel generators (DGs) together with battery storage has proven to be an efficient choice for stand-alone power systems (SAPS). For higher energy efficiency, heat recovery from exhaust gas of the DG can also be employed to supply all or a portion of the thermal energy demand. Although the design of such heat recovery systems (HRSs) has been studied, the effect of solar power integration has not been taken into account. In this paper, a new approach for practical design of these systems based on varying engine loads is presented. Fast and elitist non-dominated sorting genetic algorithm (NSGA-II) equipped with a novel local search was used for the design process, considering conflicting objectives of annual energy recovery and total cost of the system, and six design variables. An integrated power system, designed for a remote SAPS, was used to evaluate the design approach. The optimum power supply system was first designed using the commercial software Hybrid Optimization of Multiple Energy Resources (HOMER), based on power demand and global solar energy in the region. Heat recovery design was based on the outcome of HOMER for DG hourly load, considering different power scenarios. The proposed approach improves the annual heat recovery of the PV/DG/battery system by 4%, PV/battery by 1.7%, and stand-alone DG by 1.8% when compared with a conventional design based on nominal DG load. The results prove that the proposed approach is effective and that load calculations should be taken into account prior to

  11. The experimental study on the wind turbine’s guide-vanes and diffuser of an exhaust air energy recovery system integrated with the cooling tower

    International Nuclear Information System (INIS)

    Chong, W.T.; Hew, W.P.; Yip, S.Y.; Fazlizan, A.; Poh, S.C.; Tan, C.J.; Ong, H.C.

    2014-01-01

    Highlights: • On-site exhaust air energy recovery turbine generator mounted above cooling tower. • Energy from wasted wind resources is re-used for electricity generation. • Optimum angle arrangement of guide-vanes and diffusers help to improve wind-flow. • Enclosure solves conventional wind turbine problems. • 13.3% reduction in CO 2 emission is expected to be achieved from this system. - Abstract: An assembly of two vertical axis wind turbines (VAWTs) and an enclosure is installed above a cooling tower to harness the discharged wind for electricity generation. The enclosure consists of guide-vanes and diffuser-plates, is used to enhance the rotational speed of the turbines for power augmentation. The angle of the guide-vanes is optimized to ensure the oncoming wind stream impinges the rotor blades of the turbine at an optimum angle. The diffuser-plates are tilted at an optimum angle to increase the discharged airflow rate. The performance of the system is tested in the laboratory followed by a field test on an actual size cooling tower. The VAWT performance is increased in the range of 7–8% with the integration of enclosure. There is no significant difference in the current consumption of the fan motor between the bare cooling tower and the one with installed VAWTs. With the presence of this system, approximately 17.5 GW h/year is expected to be recovered from 3000 units of cooling towers at commercial areas, assuming the cooling tower is driven by a 7.5 kW fan motor and operates 16 h/day. This amount of recovered energy can also be translated into 13% reduction in CO 2 emission

  12. Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-18

    Tests were performed to evaluate a sample conditioning unit for stack monitoring at Hanford Tank Waste Treatment and Immobilization Plant (WTP) exhaust stacks with elevated air temperatures. The LV-S2, LV-S3, HV-S3A and HV-S3B exhaust stacks are expected to have elevated air temperature and dew point. At these emission points, exhaust temperatures are too high to deliver the air sample directly to the required stack monitoring equipment. As a result, a sample conditioning system is considered to cool and dry the air prior to its delivery to the stack monitoring system. The method proposed for the sample conditioning is a dilution system that will introduce cooler, dry air to the air sample stream. This method of sample conditioning is meant to reduce the sample temperature while avoiding condensation of moisture in the sample stream. An additional constraint is that the ANSI/HPS N13.1-1999 standard states that at least 50% of the 10 μm aerodynamic diameter (AD) particles present in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. Based on estimates of particle penetration through the LV-S3 sampling system, the diluter should perform with about 80% penetration or better to ensure that the total sampling system passes the 50% or greater penetration criterion.

  13. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    Science.gov (United States)

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  14. Annual cycle solar energy utilization with seasonal storage. Part 7. Examination on design and control of the system partially recovering exhaust heat of heat pump; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 7. Bubuntekina hainetsu kaishu wo koryoshita baai no sekkei seigyoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    The capacity and performance of the existing system that recovers the overall heating and cooling exhaust heat completely into a seasonal storage tank and the system that discharges the exhaust heat slightly to the outside and recovers it partially were compared and investigated. The system uses a central single-duct discharge system as an air-conditioning system. A heat pump and a flat-plate solar collector installed on the roof of a building are used as the heat source. The seasonal storage tank in the ground just under the building is a cylindrical water tank of 5 m deep with the concrete used as body. The upper surface of a storage tank is heat-insulated by a stylo-platform of 200 mm, and the lower side surface by a stylo-platform of 100 mm. Calculation when the difference in temperature used in a seasonal storage tank is set to 35{degree}C and 25{degree}C was performed for the system that has two control methods. The overall exhaust heat recovery system is almost the same in energy performance as the partial exhaust heat recovery system. The partial exhaust heat recovery system is more advantageous on the economic side. 4 refs., 6 figs., 3 tabs.

  15. Thrombosis, systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles, and the effect of nootkatone thereon.

    Science.gov (United States)

    Nemmar, Abderrahim; Al-Salam, Suhail; Beegam, Sumaya; Yuvaraju, Priya; Ali, Badreldin H

    2018-01-05

    Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particles-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1h before intratracheal (i.t.) instillation of DEP (30 μg/mouse). Twenty-four h following the i.t. administration of DEP various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEP in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEP. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6 and lipid peroxidation induced by DEP. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 (Nrf2) expression by cardiac myocytes and endothelial cells following DEP exposure, and these effects were enhanced in mice treated with nootkatone+DEP. Likewise, heme oxygenase-1 (HO-1) was increased in mice treated with nootkatone+DEP compared with those treated with DEP or nootkatone+saline. The DNA damage caused by DEP was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through Nrf2 and HO-1 activation.

  16. Engine with pulse-suppressed dedicated exhaust gas recirculation

    Science.gov (United States)

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  17. Study of a method for reducing fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of passenger cars when using the “climate control” system

    Science.gov (United States)

    Burakova, L. N.; Anisimov, I. A.; Burakova, A. D.; Burakova, O. D.

    2018-05-01

    The article deals with the issue of improving the fuel economy and environmental friendliness of motor vehicles which serve the administrative and management personnel of the oil and gas industry. It is established that fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of cars when using the “climate control” system depend on the effective ambient temperature, the color of the opaque car body elements, the power of the car engine and the interior volume. However, the simplest controlled factor is the color of the opaque car body elements, which is characterized by the coefficient of light reflection. In the course of experimental studies, we established the dependences of a change in fuel consumption and a share of reducing emissions of harmful substances with exhaust gases of passenger cars with the “climate control” system on the coefficient of light reflection. A method has been developed to reduce fuel consumption and the amount of specific emissions of harmful substances with the exhaust gases of passenger cars using the “climate control” system, which involves painting the vehicle roof white and allows reducing fuel consumption by 5.5-10.3%, and the amount of specific emissions of harmful substances by 0.8-2.3%.

  18. Acceptance test procedure for SY Tank Farm replacement exhauster unit

    Energy Technology Data Exchange (ETDEWEB)

    Becken, G.W.

    1994-12-16

    The proper functioning of a new 241-SY Tank Farm replacement exhauster will be acceptance tested, to establish operability and to provide an operational baseline for the equipment. During this test, a verification of all of the alarm and control circuits associated with the exhaust, which provide operating controls and/or signals to local and remote alarm/annunciator panels, shall be performed. Test signals for sensors that provide alarms, warnings, and/or interlocks will be applied to verify that alarm, warning, and interlock setpoints are correct. Alarm and warning lights, controls, and local and remote readouts for the exhauster will be verified to be adequate for proper operation of the exhauster. Testing per this procedure shall be conducted in two phases. The first phase of testing, to verify alarm, warning, and interlock setpoints primarily, will be performed in the MO-566 Fab Shop. The second phase of testing, to verify proper operation and acceptable interface with other tank farm systems, will be conducted after the exhauster and all associated support and monitoring equipment have been installed in the SY Tank Farm. The exhauster, which is mounted on a skid and which will eventually be located in the SY tank farm, receives input signals from a variety of sensors mounted on the skid and associated equipment. These sensors provide information such as: exhauster system inlet vacuum pressure; prefilter and HEPA filter differential pressures; exhaust stack sampler status; exhaust fan status; system status (running/shut down); and radiation monitoring systems status. The output of these sensors is transmitted to the exhauster annunciator panel where the signals are displayed and monitored for out-of-specification conditions.

  19. Infrared thermography application on predictive maintenance for exhaust fan motor

    International Nuclear Information System (INIS)

    I Wayan Widiana; Jakaria; Artadi Heru; Mulyono

    2013-01-01

    To determine the condition of the exhaust fan motor in terms of heat dissipation, predictive maintenance needs to be done. One way is to use infrared thermography. The method used is an infrared thermography with qualitative technique which the analysis focused on the distribution patterns of heat captured by the infrared camera. From measurement results expected to be obtained data of the heat distribution occurs in the motor exhaust fan so it can be given treatment or further improvements recommendations to avoid failure of the operation. Results of measurements on the motor exhaust fan 9 and the motor exhaust fan 10 indicates that there is excessive heat dissipation (over heating). The recommendation given is increasing the motor capacity of 11 kW to 18 kW with a consideration of the addition load on exhaust fan system and age of motor more than 22 years. (author)

  20. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  1. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  2. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  3. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    International Nuclear Information System (INIS)

    Nelson, O.D.; Keller, G.M.

    1997-01-01

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage

  4. Diesel exhaust controls and aftertreatment

    Energy Technology Data Exchange (ETDEWEB)

    Rubeli, B. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    This presentation discussed the safe use of diesel fuels in underground mines, with particular reference to advanced technology engines and system technology options for mines. The use of diesel fuels underground requires well designed diesel engines with an effective preventive maintenance programs utilizing diesel emissions testing. The mines must have a well-engineered ventilation system and an adequate air quality monitoring system. An outline of diesel pollutant formation was included in the presentation. Diesel emission control technologies can address localized air quality problems and control emissions at the source. This presentation summarized the best available diesel emission control technologies for underground mines, namely diesel oxidation catalysts (DOC); diesel particulate filters (DPF); active diesel particulate filters (A-DPF); selective catalytic reduction (SCR); water scrubbers; and fume diluters. An emissions control plan using aftertreatment technology should target the vehicles that are the biggest contributors to diesel exhaust. Low sulphur fuel is a prerequisite for most emission control technologies. The successful control of emissions requires knowledge of the high emitting vehicle groups; an integrated ventilation and emission control technology application plan; ambient and tailpipe emissions testing; and training of operators and mechanics. tabs., figs.

  5. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  6. Effect of diesel generator exhaust pollutants on growth of Vinca ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The effects of exhaust pollutants of generator on root and shoot length, root and shoot weight, number of .... single cylinders with cooling system of air dry. The frequency is 50 .... and reproduction along CO2 gradients. Nonlinear.

  7. Device for purifying exhaust gas

    International Nuclear Information System (INIS)

    Makita, Kiyoshi.

    1973-01-01

    Purpose: To ensure the reliability in collection of krypton even on accident in liquidizing distillation tower. Constitution: Exhaust gas flows through active carbon adsorption tower where short half-life rare gas in exhaust gas is separated by adsorption, then through heat exchanger, then continuous distillation tower where krypton 85 is separated, then through batch distillation tower where krypton 85 is condensed, and then flows into storing cylinder. On accident in liquidizing distillation tower, at the first period exhaust gas flows through series connected active carbon adsorption tower, krypton 85 adsorbed in adsorption tower being transferred to cooling type adsorption tower, at the next period exhaust gas flows through tower, krypton 85 adsorbed in adsorption tower being transferred to tower. (M. K.)

  8. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    , they can migrate far away from their source and they can even spread into the blood circulation and the brain. Transition metals on the surface of particles together with carcinogenic compounds found in the PM have been shown to cause cancer. Diesel ultra-fine particles are mainly elemental carbon, organic carbon and sulphuric acid. Sulphur still exists in diesel fuel in certain regions and if the amount of sulphur in the fuel is reduced, particles are reduced as well. Metallic compounds originate mainly from the lubrication oil, but also from the fuel and engine wear. In urban areas the amounts of particles are usually higher than in rural areas. Regulations for air quality in urban areas have been set to protect people living in the cities. Regulations are also becoming stricter in the field of internal combustion engines and particle numbers along with their mass are regulated in the EURO 6 standard. Diesel PM can be reduced by several means. Reformulating the fuel and lubrication oil directly influences PM emissions while different aftertreatment systems can be used to remove PM from the engine exhaust gases. With a well-optimized injection system, burning is more complete and PM emissions are also reduced. Exposure to particles can be decreased by avoiding busy roads where the level of particles is usually high, having a hobby that involves less exertion and decreasing exercise time. Outdoor activities should be reduced when PM concentration in the air is high. (orig.)

  9. On Gas Dynamics of Exhaust Valves

    OpenAIRE

    Winroth, Marcus

    2017-01-01

    With increasing effects of global warming, efforts are made to make transportation in general more fuel efficient. When it comes to internal combustion engines, the most common way to improve fuel efficiency is through ‘downsizing’. Downsizing means that a smaller engine (with lower losses and less weight) performs the task of a larger engine. This is accomplished by fitting the smaller engine with a turbocharger, to recover some of the energy in the hot exhaust gases. Such engine systems nee...

  10. Diesel engine exhaust particulate filter with intake throttling incineration control

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, O.; Rosebrock, T.

    1980-07-08

    A description is given of a diesel engine exhaust filter and particulate incineration system in combination with a diesel engine having a normally unthrottled air induction system for admitting combustion air to the engine and an exhaust system for carrying off spent combustion products exhausted from the engine, said filter and incineration system comprising: a combustion resistant filter disposed in the exhaust system and operative to collect and retain portions of the largely carbonaceous particulate matter contained in the engine exhaust products, said fiber being capable of withstanding without substantial damage internal temperatures sufficient to burn the collected particulate matter, a throttle in the indication system and operable to restrict air flow into the engine to reduce the admittance of excess combustion air and thereby increase engine exhaust gas temperature, and means to actuate said throttle periodically during engine operation to an air flow restricting burn mode capable of raising the particulates in said filter to their combustion temperature under certain engine operating conditions and to maintain said throttle mode for an interval adequate to burn retained particulates in the filter.

  11. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  12. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  13. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  14. Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck

    Directory of Open Access Journals (Sweden)

    Nicolas Stanzel

    2016-11-01

    Full Text Available A complex simulation model of a heavy duty truck, including an Organic Rankine Cycle (ORC based waste heat recovery system and a vehicle cooling system, was applied to determine the system fuel economy potential in a typical drive cycle. Measures to increase the system performance were investigated and a comparison between two different cooling system designs was derived. The base design, which was realized on a Mercedes-Benz Actros vehicle revealed a fuel efficiency benefit of 2.6%, while a more complicated design would generate 3.1%. Furthermore, fully transient simulation results were performed and are compared to steady state simulation results. It is shown that steady state simulation can produce comparable results if averaged road data are used as boundary conditions.

  15. Development of automatic air intake door control system for exhaust gas. Prevention of contaminated air by controlling A/C air intake door; Haiki gas taio auto naigaiki system no kaihatsu. Eakon suikomiguchi seigyo ni yoru haiki gas no shashitsunai eno shinnyu boshi

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Y; Samukawa, K [Denso Corp., Aichi (Japan)

    1997-10-01

    Thermal comfort in the cabin of vehicle is upgraded by developing the climate control system Passengers must control the intake door of air conditioner to reduce entering Exhaust Gas into the cabin. This paper is concerned with development the automatic intake door control system to acquire high comfort performance of passengers. 8 figs., 1 tab.

  16. Simulation of exhaust gas heat recovery from a spray dryer

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    This study explored various alternatives in improving the energy utilization of spray drying process through the exhaust gas heat recovery. Extensible and user-friendly simulation code was written in Visual Basic for Applications within Microsoft Excel for this purpose. The effects of process parameters were analyzed on the energy efficiency and energy saving in the industrial-scale spray drying system with exhaust gas heat recovery in an air-to-air heat exchanger and in the system with partial recirculation of exhaust air. The spray dryer is equipped with an indirect heater for heating the drying air. The maximum gains of 16% in energy efficiency and 50% in energy saving were obtained for spray drying system equipped with heat exchanger for exhaust air heat recovery. In addition, 34% in energy efficiency and 61% in energy saving for system with recirculation of exhaust air in the present range of process parameters. The high energy efficiency was obtained during drying of large amount of dilute slurry. The energy saving was increased using the large amount of hot drying air. - Highlights: • We model industrial-scale spray drying process with the exhaust gas heat recovery. • We develop an Excel VBA computer program to simulate spray dryer with heat recovery. • We examine effects of process parameters on energy efficiency and energy saving. • High energy efficiency is obtained during drying of large amount of dilute slurry. • Energy saving is increased using the large amount of hot drying air

  17. Concept of Heat Recovery from Exhaust Gases

    Science.gov (United States)

    Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir

    2017-10-01

    The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.

  18. Chemical laser exhaust pipe design research

    Science.gov (United States)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  19. Work plan for new SY tank farm exhauster, on-site fabrication activities

    International Nuclear Information System (INIS)

    McClees, J.

    1994-01-01

    The replacement SY tank farm exhauster unit is a new piece of equipment, designed to replace the existing SY tank farm K1 Ventilation System exhauster unit. This work plan describes the shop fabrication activities associated with the receiving, assembly, repair, modification, and testing of the new SY tank farm primary exhauster. A general list of these activities include, but are not limited to: repair all shipping damages, including procurement of replacement parts; fabricate hardware needed to install exhauster in the field (e.g., Vent duct tie-in, duct concrete footings/hangers, stack concrete footings, etc.); incorporate equipment modification as provided by WHC Engineering (e.g., Rewire the Alarm Annunciator Cabinet as fail-safe, connections between the exhauster and stack sample cabinet, etc.); test the entire exhauster unit, to the extent possible, prior to field installation; and prepare exhauster unit for transfer to and installation at SY tank farm

  20. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  1. Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-pipe Shrouds

    Science.gov (United States)

    Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.

    1947-01-01

    Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.

  2. Opportunity to reduce the exhaust gases with engine adjust

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2002-01-01

    According to statistics in the Republic of Macedonia, the number of old vehicles is about 90%. These are vehicles produced between 1975 and 1990 with classical systems for forming and burning the fuel mixture. The most of them do not have system for processing exhaust gases (catalytic converter) and are serious air pollutants of carbon monoxide (CO). In this article we try to make an attempt to reduce exhaust gases in some kinds of these vehicles with adjusting to the system for burning fuel mixture and with adjusting to the system for forming fuel mixture (carburetor). At the same time the changes on the rotate bending moment and engine power are followed. It is noticed that with a proper adjustment the emission of exhaust gases can be reduced without a serious depreciation of the rotate bending moment and the engine power. (Author)

  3. Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

    OpenAIRE

    H. Hazar; S. Sap

    2017-01-01

    In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating th...

  4. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling

    Science.gov (United States)

    2015-08-01

    backpressure can decrease engine power by ~1% per inch Hg.27 A specific exhaust heat exchanger design would need to take this effect into account...Materials. 2009;39:2142–2148. 4. Sprouse III C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery...Adams TG. Effect of exhaust system design on engine performance. 1980. SAE Technical Paper No. 800319. 16 1 DEFENSE TECHNICAL

  5. ATP for the portable 500 CFM exhauster POR-004 skid B

    International Nuclear Information System (INIS)

    Keller, C.M.

    1997-01-01

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-004 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results

  6. ATP for the portable 500 CFM exhauster POR-006 skid D

    International Nuclear Information System (INIS)

    Keller, C.M.

    1997-01-01

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-006 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results

  7. ATP for the portable 500 CFM exhauster POR-005 skid C

    International Nuclear Information System (INIS)

    Keller, C.M.

    1997-01-01

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-005 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results

  8. Acceptance test report for portable exhauster POR-008/Skid F

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Portable Exhauster POR-008 was procured via HNF-0490, Specification for a Portable Exhausted System for Waste Tank Ventilation. Prior to taking ownership, acceptance testing was performed at the vendors. However at the conclusion of testing a number of issues remained that required resolution before the exhausters could be used by Project W-320. The purpose of acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-O49O, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuum exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document

  9. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  10. Design basis and requirements for 241-SY modular exhauster mechanical installation

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1994-01-01

    A new ventilation system is being installed to serve as the K-1 primary exhauster. The existing K-1 primary exhauster will then become the backup. This ventilation system services waste tanks 241-SY-101, 102 and 103. The nominal flow rate through the ventilation system is 1,000 cfm. The new ventilation system will contain a moisture eliminator, a heater, a prefilter, two stages of HEPA filtration, an exhaust fan, a stack and stack sampling system. The purpose of this document is to serve as the design and functional requirements for the mechanical installation of the new 241-SY modular exhauster. The mechanical installation will include modifying the existing ductwork (i.e., installing a ''T'' to connect the new exhauster to the existing system), modifying the existing condensate drain lines to accommodate the new lines associated with the new exhauster, a maintenance platform near the stack of the new exhauster, guy wires and guy wire footings to support the stack of the new exhauster, as well as other miscellaneous tasks associated with the mechanical installation design effort

  11. Exhaust gas clean up process

    Science.gov (United States)

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  12. Getting older can be exhausting.

    Science.gov (United States)

    Mittal, Rohit; Ford, Mandy L; Coopersmith, Craig M

    2014-07-29

    Sepsis is a disease that affects primarily the aged. Although mortality is higher in both older septic patients and aged septic mice, the mechanisms underlying decreased survival in older hosts are incompletely understood. New work by Inoue and colleagues demonstrates persistent inflammation and T-cell exhaustion in older septic patients and aged septic mice. The clinical significance of these findings is manifested not only in increased mortality but also in a marked difference in secondary infections in older patients as long as a month following ICU admission.

  13. Design and experimental study on desulphurization process of ship exhaust

    Science.gov (United States)

    Han, Mingyang; Hao, Shan; Zhou, Junbo; Gao, Liping

    2018-02-01

    This desulfurization process involves removing sulfur oxides with seawater or alkaline aqueous solutions and then treating the effluent by aeration and pH adjustment before discharging it into the ocean. In the desulfurization system, the spray tower is the key equipment and the venturi tubes are the pretreatment device. The two stages of plates are designed to fully absorb sulfur oxides in exhaust gases. The spiral nozzles atomize and evenly spray the desulfurizers into the tower. This study experimentally investigated the effectiveness of this desulfurization process and the factors influencing it under laboratory conditions, with a diesel engine exhaust used to represent ship exhaust. The experimental results show that this process can effectively absorb the SO2 in the exhaust. When the exhaust flow rate was 25 m3/h and the desulfurizer flow rate was 4 L/min, the sulfur removal efficiency (SRE) reached 99.7%. The flow rate, alkalinity, and temperature of seawater were found to have significant effects on the SRE. Adjusting seawater flow rate (SWR) and alkalinity within certain ranges can substantially improve the SRE.

  14. The Effect of Unemployment Insurance Exhaustion

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie; Weatherall, Cecilie Dohlmann

    In this article we investigate how the long-term unemployed react to the threat of running out of unemployment insurance (UI) in a system in which other social benefits are available. The empirical analysis is based on very precise administrative records of unemployment spells in Denmark...... risk model to estimate the conditional probability of leaving unemployment to enter employment or receive other social benefits. We restrict our analysis to men aged 25-44 in 1998. Our results show that even for men having an initial UI entitlement for 4 years the threat of running out of UI indeed....... To identify the effect of UI exhaustion, we exploit the 1999 legislative change in the duration of benefit that progressively reduced regular UI entitlement from five to four years. According to time of entry into the UI system, all UI recipients had their potential UI period shortened. We use a competing...

  15. Acceptance test report for portable exhauster POR-007/Skid E

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    This document describes Acceptance Testing performed on Portable Exhauster POR-007/Skid E. It includes measurements of bearing vibration levels, pressure decay testing, programmable logic controller interlocks, high vacuum, flow and pressure control functional testing. The purpose of Acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-0490, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuum exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document

  16. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  17. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  18. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. PIXE analysis of vehicle exhaust particulate

    International Nuclear Information System (INIS)

    Shi Xianfeng; Yao Huiying; Liu Bo; Sun Minde; Xu Huawei; Mi Yong; Shen Hao

    2001-01-01

    PIXE technique on the analysis of vehicle exhaust particulate is introduced. The clement composition and concentration of particulate are obtained. Some elements which are related to environmental pollution such as sulfur lead, silicon and manganese, were analyzed and discussed in detail by PIXE technique Nowadays although unleaded gasoline is widely used, the lead concentration is still very high in exhaust particulate. The concentrations of silicon and manganese in exhaust particulate from different model vehicles are also quite high from measurements. It shows that an evidence for exhaust pollution control could be provided from this work

  20. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    Science.gov (United States)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  1. Heat-pipe assisted thermoelectric generators for exhaust gas applications

    OpenAIRE

    Gonçalves, L. M.; Martins, Jorge; Antunes, Joaquim; Rocha, Romeu; Brito, F. P.

    2012-01-01

    Millions of hybrid cars are already running on our roads with the purpose of reducing fossil fuel dependence. One of their main advantages is the recovery of wasted energy, namely by brake recovery. However, there are other sources of wasted energy in a car powered by an internal combustion engine, such as the heat lost through the cooling system, lubrication system (oil coolers) and in the exhaust system. These energies can be recuperated by the use of thermoelectric generators (TEG) based o...

  2. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  3. Dual-purpose power plants, experiences with exhaust gas purification plants

    International Nuclear Information System (INIS)

    Dietrich, R.

    1993-01-01

    From 1984 to 1988, the research and development project ''pollutant reduction for exhaust gases from heat production systems'' sponsored by the Federal Ministry of Research and Technology (BMFT) has been carried out by TUeV in Bavaria. This project was to show the state of exhaust gas technology for small and medium-sized plants (boilers and motoric heat generators). When publishing the final report, no positive balance could be given. Based on the results, the succession project ''Exhaust gas purification plants in field test'' (ARIF) has been started. This project has the following objectives: -Measuring technical investigation of the exhaust gas purification of motoric driven heat generator systems in field test. - Suitability of hand measuring devices for emissions for a discontinuous control of the exhaust gas purification plat by the operator. - Control of new methods regarding pollutant reduction for motoric and conventional heat generators. (orig.) [de

  4. A Numerical and Experimental Study of Local Exhaust Capture Efficiency

    DEFF Research Database (Denmark)

    Madsen, U.; Breum, N. O.; Nielsen, Peter Vilhelm

    1993-01-01

    Direct capture efficiency of a local exhaust system is defined by introducing an imaginary control box surrounding the contaminant source and the exhaust opening. The imaginary box makes it possible to distinguish between contaminants directly captured and those that escape. Two methods for estim...... location is less important for the case studied. The choice of sampling strategy to obtain a representative background concentration is essential as substantial differences on direct capture efficiency are found. Recommendations are given......Direct capture efficiency of a local exhaust system is defined by introducing an imaginary control box surrounding the contaminant source and the exhaust opening. The imaginary box makes it possible to distinguish between contaminants directly captured and those that escape. Two methods...... for estimation of direct capture efficiency are given: (1) a numerical method based on the time-averaged Navier-Stokes equations for turbulent flows; and (2) a field method based on a representative background concentration. Direct capture efficiency is sensitive to the size of the control box, whereas its...

  5. Vital exhaustion and risk for cancer

    DEFF Research Database (Denmark)

    Bergelt, Corinna; Christensen, Jane Hvarregaard; Prescott, Eva

    2005-01-01

    Vital exhaustion, defined as feelings of depression and fatigue, has previously been investigated mainly as a risk factor for cardiovascular disease. The authors investigated the association between depressive feelings and fatigue as covered by the concept of vital exhaustion and the risk...... for cancer....

  6. Vacuum exhaust duct used for thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo; Kondo, Mitsuaki; Honda, Tsutomu.

    1990-01-01

    The present invention concerns a vacuum exhaust duct used for a thermonuclear device. A cylindrical metal liners is lined with a gap to the inside of a vacuum exhaust duct main body. Bellows are connected to both ends of the metal liners and the end of the bellows is welded to the vacuum exhaust duct main body. Futher, a heater is mounted to the metal liner on the side of the vacuum exhaust duct main body, and the metal liner is heated by the heater to conduct baking for the vacuum exhaust duct main body. Accordingly, since there is no requirement for elevating the temperature of the vacuum exhaust duct upon conducting baking, the vacuum exhaust duct scarcely suffers substantial deformation due to heat expansion. Further, there is also no substantial deformation for the bellows disposed between the outer circumference of the vacuum vessel and a portion of a vacuum exhaust duct, so that the durability of the bellows is greatly improved. (I.S.)

  7. Vital exhaustion and risk for cancer

    DEFF Research Database (Denmark)

    Bergelt, Corinna; Christensen, Jane Hvarregaard; Prescott, Eva

    2005-01-01

    Vital exhaustion, defined as feelings of depression and fatigue, has previously been investigated mainly as a risk factor for cardiovascular disease. The authors investigated the association between depressive feelings and fatigue as covered by the concept of vital exhaustion and the risk...

  8. Development of Exhaust Leak Detector Device for Automotive Service Industry: A Prototype Design

    OpenAIRE

    Eida Nadirah Roslin; Siti Khadijah Ismail; Mohd Zaki Bahrom; Mansor Aluidin

    2016-01-01

    The exhaust system plays a vital role in removing the gaseous emissions that is being produced within the combustion chamber during fuel-air mixture activities. The exhaust system is defined as a series of chambers and pipes that starts at the engine and ends at the back of the car with the tail pipe. However if there are any leaks in the exhaust system, it provide a direct path for the emission gaseous including carbon monoxide to enter can be very dangerous as it provides a direct path for ...

  9. Exhaustion and Emotional Demands in China:A Large-Scale Investigation across Occupations

    Institute of Scientific and Technical Information of China (English)

    Kelly Z.Peng

    2017-01-01

    As the Chinese economy moves toward a market-based model,employees are likely to face more emotional demands and exhaustion at work.However,there are some unique aspects to the emotional demands of work in the Chinese cultural context.We investigate emotional demands and exhaustion in China with a large-scale sample across the six major occupations identified by the Holland classification system.Results show that incumbents of social and enterprising jobs face higher emotional demands.Unexpectedly,exhaustion differs significantly between conventional and other types of jobs.Building on the Job Demand-Resources (JD-R) model,job crafting and the cultural context,we propose that the nonlinear relationship of emotional demands and exhaustion exists only when emotional intelligence is low.Our study may inform practitioners and policy makers in Chinese enterprises about emotional demands and exhaustion for various occupations and the importance of selection and training programs in emotional intelligence.

  10. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  11. Development of alternative ship propulsion in terms of exhaust emissions

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław

    2016-01-01

    Full Text Available The introduction of new emission limits for exhaust emissions of ship engines contributes to the development of new powertrain solutions. New solutions in the simplest approach concern the reduction of the concentration of sulfur in motor fuels. Typically, the aforementioned fuels have a lower value of viscosity which causes a number of supply system problems. It is becoming more and more common to use fuel cells in engine rooms of various types of marine vessels. Unlike conventional systems that use internal combustion engines, these systems have zero exhaust emissions. Hydrogen, methanol, methane and other substances may be used as a fuel in fuel cells. However, so far the best operating parameters are manifested by cells powered by hydrogen, which is associated with difficulties in obtaining and storing this fuel. Therefore, the use of turbine engines allows the obtaining of large operating and environmental advantages. The paper presents a comparison of the ecological parameters of turbine and piston engines.

  12. An Investigation on Exhaustion of SAP ERP Users: Influence of Pace of Change and Technostress

    Directory of Open Access Journals (Sweden)

    Prashanta Kumar Roy

    2017-10-01

    Full Text Available Despite recent growing research interest on ERP research, the understanding on ERP induced exhaustion is still limited. This study examines how the pace of change of ERP functionalities and interface causes exhaustion in workplace. For this purpose, we conducted an investigation on 128 ERP users from two different organizations in Bangladesh. We extended theory of technostress by integrating pace of change of ERP system. Result suggests that pace of change on ERP system significantly affect work-overload, work-life conflict and role ambiguity on ERP users. Result also shows that work-overload and role ambiguity are strong predictors for ERP induced exhaustion.

  13. Design basis and requirements for 241-SY Modular Exhauster concrete pad and retaining wall

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1994-01-01

    The purpose of this document is to serve as the design and functional requirements for a concrete pad for the new 241-SY Modular Exhauster and for a retaining wall to be built near the new ventilation systems

  14. Development and testing of a dedusting filter system for exhaust gases of domestic small firing systems for the combustion of biomass and waste materials; Entwicklung und Erprobung eines Abreinigungsfilters fuer das Abgas haeuslicher Kleinfeuerungsanlagen fuer die Verbrennung von Biomasse und Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Aleysa, Mohammadshayesh

    2012-07-01

    The author describes the development of a dedusting filter system which should be suitable for the dedusting of exhaust gases in domestic small firing installations with a power output of 40 kW. This filter system should undoubtedly enable the necessary capture efficiency. It should be implemented with little technical complexity as well as low maintenance and cost-effectivity. The dedusting filter system is tested in connection with a wood gasification boiler as well as a pellet incinerator. The quantities and parameters of smoke gas, the pressure losses, the precipitation capacity, the economic efficiency and the practical suitability of the dedusting filter system are investigated. Furthermore, the author determines the necessary factors for the design and dimensioning of dedusting filter systems.

  15. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  16. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  17. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  18. Power and particle exhaust in tokamaks

    International Nuclear Information System (INIS)

    Stambaugh, R.D.

    1998-01-01

    The status of power and particle exhaust research in tokamaks is reviewed in the light of ITER requirements. There is a sound basis for ITER's nominal design positions; important directions for further research are identified

  19. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  20. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  1. Exhaust gas purification with sodium bicarbonate. Analysis and evaluation; Abgasreinigung mit Natriumhydrogencarbonat. Analyse und Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Quicker, Peter; Rotheut, Martin; Schulten, Marc [RWTH Aachen Univ. (Germany). Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER); Athmann, Uwe [dezentec ingenieurgesellschaft mbH, Essen (Germany)

    2013-03-01

    The dry exhaust gas cleaning uses sodium bicarbonate in order to absorb acid components of exhaust gases such as sulphur dioxide or hydrochloric acid. Recently, sodium and calcium based adsorbents are compared with respect to their economic and ecologic options. None of the investigations performed considered decidedly practical experiences from the system operation such as differences in the management, availability, personnel expenditure and maintenance expenditure. Under this aspect, the authors of the contribution under consideration report on exhaust gas cleaning systems using sodium carbonate as well as lime adsorbents. The operators of these exhaust gas cleaning systems were questioned on their experiences, and all relevant operational data (consumption of additives, consumption of energy, emissions, standstill, maintenance effort) were recorded and evaluated at a very detailed level.

  2. 46 CFR 182.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 182.430 Section 182... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.430 Engine exhaust pipe... equipment might come in contact with an exhaust pipe. (b) Exhaust gas must not leak from the piping or any...

  3. 46 CFR 119.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... an exhaust pipe. (b) Exhaust gas must not leak from the piping or any connections. The piping must be...

  4. 46 CFR 119.425 - Engine exhaust cooling.

    Science.gov (United States)

    2010-10-01

    ..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (2) Horizontal dry exhaust pipes are...) They are installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (b) The exhaust pipe...

  5. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    Science.gov (United States)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  6. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  7. Particle exhaust studies in Tore Supra with a pump limiter

    International Nuclear Information System (INIS)

    Klepper, C.C.; Haste, G.R.; Horton, L.D.; Mioduszewski, P.K.; Uckan, T.; Bonnel, P.; Bruneau, J.L.; Chatelier, M.; Gil, C.; Grisolia, C.; Loarer, T.; Martin, G.; Pegourie, B.; Rodriguez, L.; Watkins, J.G.

    1990-01-01

    The aim of the Tore Supra pump limiter program is to study particle exhaust with a pump limiter system in long-pulse discharges with continuous pellet fueling and strong auxiliary heating. The pump limiter system consists of six vertical modules, located at the bottom of the machine, and one horizontal module at the outer midplane. The results presented here were obtained with the horizontal module only. This module was equipped with two titanium pumps with a total pumping speed of 100000 L/s. The instrumentation of the limiter included pressure gauges, a residual gas analyzer, Langmuir probes, a spectrometer viewing the neutralizer plate for H α and impurity measurements, and water calorimeters. All diagnostics have been commissioned and are operational. Initial results were obtained in low-density discharges, with no gas puffing during the shot. While only a modest effect on the plasma density was observed, large exhaust fluxes were measured in the pump limiter. The most likely source of this gas was outgassing of the graphite walls. Straightforward particle balance between the plasma efflux and the pump limiter exhaust, as applied in previous pump limiter experiments, did not apply. The core plasma and the edge plasma seemed to be largely decoupled and a multi-layer model is being developed to explain the experimental results. (orig.)

  8. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    Science.gov (United States)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  9. Physical characterization of diesel exhaust nucleation mode particles

    Energy Technology Data Exchange (ETDEWEB)

    Lahde, T.

    2013-11-01

    An increasing concern of the adverse health effects of aerosol particles is forcing the combustion engine industry to develop engines with lower particle emissions. The industry has put most of their efforts into soot control and has achieved a significant reduction in diesel exhaust particle mass. Nevertheless, it is not clear that the large particles, dominating the mass, cause the harmfulness of the exhaust particles in the biological interaction. Nowadays, the harmful potential of diesel exhaust particles often connects with the particle surface area, and the view has turned to particle number below 100 nm size range. Unfortunately, the achieved low exhaust particle mass does not necessarily imply a low particle number. This text focuses on the physical characteristics of diesel exhaust nucleation model particles. The volatility characteristics and the electrical charge state of the particles are studied first. Second, the relation between the nonvolatile nucleation mode emissions and the soot, the nitrogen oxide (NO{sub x}) emissions and the engine parameters are covered. The nucleation mode particles had distinctively different physical characteristics with different after-treatment systems. The nucleation mode was volatile and electrically neutral with a diesel particle filter after-treatment system. Without an after-treatment system or with an after-treatment system with low particle removal efficiency, the nucleation mode was partly nonvolatile and included an electrical charge. The difference suggests different formation routes for the nucleation particles with different after-treatment systems. The existence of the nonvolatile nucleation mode particles also affected the soot mode charge state. The soot charge state was positively biased when the nonvolatile nucleation mode was detected but slightly negatively biased when the nonvolatile nucleation mode was absent. The nonvolatile nucleation mode was always negatively biased. This electrical charge

  10. Adaptive feedforward control of exhaust recirculation in large diesel engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2017-01-01

    is generalized to a class of first order Hammerstein systems with sensor delay and exponentially converging bounds of the control error are proven analytically. It is then shown how to apply the method to the EGR system of a two-stroke crosshead diesel engine. The controller is validated by closed loop......Environmental concern has led the International Maritime Organization to restrict NO푥 emissions from marine diesel engines. Exhaust gas recirculation (EGR) systems have been introduced in order to comply to the new standards. Traditional fixed-gain feedback methods are not able to control the EGR...

  11. A Research on The Exhaust Emission of The Gasoline Engines in Tekirdag

    OpenAIRE

    M.R. Durgut; S. Arin; E.Kilic

    2006-01-01

    The exhaust gases as a result of combustion in internal combustion engines, sump ventilatory systemand vaporization of fuel system are the pollution sources caused by the vehicles. Preventing the pollution inits source is the main method for controlling the pollution: In this study, the exhaust emissions of 1844vehicles with gasoline were examined randomly applied to measuring station. The measured CO, CO2 HC,O2 values were discussed in their suitability to the limits determined by Turkish St...

  12. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    OpenAIRE

    Naeimi Hessamedin; Domiry Ganji Davood; Gorji Mofid; Javadirad Ghasem; Keshavarz Mojtaba

    2011-01-01

    Nowadays, computational fluid dynamics codes (CFD) are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction loss...

  13. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  14. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  15. Performance of Installed Cooking Exhaust Devices

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

    2011-11-01

    The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

  16. Engineering task plan for five portable exhausters

    International Nuclear Information System (INIS)

    Rensink, G.E.

    1997-01-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures

  17. Baking exhaustion device in thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Mitsunori.

    1987-02-02

    Purpose: To rapidly remove tritium and impurity from the vacuum region in the access port of the baking exhaustion device in a thermonuclear device. Constitution: Each of the gaps at the boundary between a fixed shielding member and a blanket module and at the boundary between the blanket and a divertor is made extremely small so as to minimize the neutron streaming from plasmas. Accordingly, in the case of evacuating the vacuum region in the access port, the gap conductance is extremely poor and the exhaustion speed is low. Then, baking pipeways for flowing high temperature fluids are embedded to the surface layer at the position facing to the vacuum region and the plasma evacuation duct and the vacuum region are connected with an evacuation duct of the access port. By flowing high temperature fluids in the pipeways and conducting evacuation, baking exhaustion can be carried out rapidly. (Kamimura, M.).

  18. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  19. Optimization of valve opening process for the suppression of impulse exhaust noise

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun

    2017-02-01

    Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.

  20. Toxicological aspects of fuel and exhaust gas

    International Nuclear Information System (INIS)

    Avella, F.

    1993-01-01

    Some aspects concerning fuels (gasoline) and gas exhaust vehicle emissions toxicology are briefly examined in light of the results reported in recent literature on this argument. Many experimental studies carried out on animals and men turn out incomplete and do not allow thorough evaluations, for every aspect, of the risk to which men and the environment are subjected

  1. Application of plasma techniques for exhaust aftertreatment

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, M.; Viden, I.; Šimek, Milan; Pekárek, S.

    2001-01-01

    Roč. 27, 1-4 (2001), s. 306-314 ISSN 0143-3369 R&D Projects: GA ČR GA202/99/1298 Institutional research plan: CEZ:AV0Z2043910 Keywords : Non-thermal plasma, elctrical discharge, exhaust aftertreatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.190, year: 2001

  2. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  3. Assessing population exposures to motor vehicle exhaust.

    Science.gov (United States)

    Van Atten, Chris; Brauer, Michael; Funk, Tami; Gilbert, Nicolas L; Graham, Lisa; Kaden, Debra; Miller, Paul J; Bracho, Leonora Rojas; Wheeler, Amanda; White, Ronald H

    2005-01-01

    The need is growing for a better assessment of population exposures to motor vehicle exhaust in proximity to major roads and highways. This need is driven in part by emerging scientific evidence of adverse health effects from such exposures and policy requirements for a more targeted assessment of localized public health impacts related to road expansions and increasing commercial transportation. The momentum for improved methods in measuring local exposures is also growing in the scientific community, as well as for discerning which constituents of the vehicle exhaust mixture may exert greater public health risks for those who are exposed to a disproportionate share of roadway pollution. To help elucidate the current state-of-the-science in exposure assessments along major roadways and to help inform decision makers of research needs and trends, we provide an overview of the emerging policy requirements, along with a conceptual framework for assessing exposure to motor-vehicle exhaust that can help inform policy decisions. The framework includes the pathway from the emission of a single vehicle, traffic emissions from multiple vehicles, atmospheric transformation of emissions and interaction with topographic and meteorologic features, and contact with humans resulting in exposure that can result in adverse health impacts. We describe the individual elements within the conceptual framework for exposure assessment and discuss the strengths and weaknesses of various approaches that have been used to assess public exposures to motor vehicle exhaust.

  4. Aircraft Piston Engine Exhaust Emission Symposium

    Science.gov (United States)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  5. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  6. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  7. Small rocket exhaust plume data

    Science.gov (United States)

    Chirivella, J. E.; Moynihan, P. I.; Simon, W.

    1972-01-01

    During recent cryodeposit tests with an 0.18-N thruster, the mass flux in the plume back field was measured for the first time for nitrogen, carbon dioxide, and a mixture of nitrogen, hydrogen, and ammonia at various inlet pressures. This mixture simulated gases that would be generated by a hydrazine plenum attitude propulsion system. The measurements furnish a base upon which to build a mathematical model of plume back flow that will be used in predicting the mass distribution in the boundary region of other plumes. The results are analyzed and compared with existing analytical predictions.

  8. Work stress and emotional exhaustion in nurses: the mediating role of internal locus of control.

    Science.gov (United States)

    Partlak Günüşen, Neslihan; Ustün, Besti; Erdem, Sabri

    2014-01-01

    Burnout is a major problem for nursing. There is a strong relationship between work stress and emotional exhaustion. Although studies report a negative correlation between the internal locus of control and emotional exhaustion and work stress, the number of studies available on the subject is limited. This study intends to examine the extent to which the relationship between work stress and emotional exhaustion is mediated by nurses' internal locus of control. The study adopted a cross-sectional survey design. The data were analyzed using structural equation modeling techniques. The study sample consisted of 347 nurses who worked in a university hospital in Izmir, Turkey and who agreed to participate in the study. The Work-Related Strain Inventory was used to evaluate the nurses' work stress level, Maslach Burnout Inventory was used to evaluate their emotional exhaustion levels, and the Locus of Control Scale was used to evaluate the internal locus of control. The variables of the study were based on the Neuman Systems Model. Work stress was positively related to internal locus of control (β3 = .21, p 0.1). Internal locus of control was negatively related to emotional exhaustion (β = -.14, p Work stress is directly (β = .87, p Work stress is directly (β = .87, p work stress was mediated, the impact of internal locus of control was limited. It is recommended that different variables be included in future studies so that they can mediate the relationship between work stress and emotional exhaustion.

  9. Engineering task plan for rotary mode core sampling exhausters CAM high radiation interlock

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The Rotary Mode Core Sampling (RMCS) system is primarily made up of the Rotary Mode Core Sample Trucks (RMCST) and the RMCS Exhausters. During RMCS operations an Exhauster is connected to a tank riser and withdraws gases from the tank dome vapor space at approximately 200 Standard Cubic Feet per Minute (SCFM). The gases are passed through two High Efficiency Particulate Air (HEPA) filters before passing out the exhaust stack to the atmosphere. A Continuous Air Monitor (CAM) monitors the exhaust gases in the exhaust stack for beta particle and gamma radiation. The CAM has a high radiation alarm output and a detector fail alarm output. The CAM alarms are currently connected to the data logger only. The CAM alarms require operator response per procedure LMHC 1998 but no automatic functions are initiated by the CAM alarms. Currently, there are three events that can cause an automatic shut down of the Exhauster. These are, Low Tank Pressure, Highnow Stack Flow and High HEPA Filter Differential Pressure (DP)

  10. Burn injuries related to motorcycle exhaust pipes: a study in Greece.

    Science.gov (United States)

    Matzavakis, Ioannis; Frangakis, Constantine E; Charalampopoulou, Ava; Petridou, Eleni

    2005-05-01

    To identify measures that should reduce the incidence of burn injuries resulting from motorcycle exhaust pipes through epidemiological analysis of such injuries. During a 5-year period, 251 persons who suffered burn injuries related to motorcycle exhaust pipes have contacted four major hospitals belonging to the Emergency Department Injury Surveillance System (EDISS) operating since 1996 in Greece. These burn injuries were studied in relation to person, environment and vehicle characteristics. The estimated countrywide incidence of burns from motorcycle exhaust pipes was 17 per 100,000 person-years (208 per 100,000 motorcycle-years). The incidence was two times higher for children than for older persons and among the latter it was 60% higher among females than among males. Most of burn injuries (70.5%) concerned motorcycle passengers, mainly when getting on or off motorcycle, with peak incidence during summer. The most frequent location of burn wounds was below the knee and particularly the right leg. It was estimated that the risk of motorcycle exhaust pipe burns when wearing shorts could be reduced by 46% through wearing long pants. Among the victims 65.3% experienced second degree burns. Motorcycle exhaust burns could be substantially reduced by systematically wearing long pants, by incorporating in the design of motorcycles external thermo resistant shields with adequate distance to the exhaust pipe, and by avoiding riding with children on motorcycles.

  11. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.

    2010-11-01

    The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range

  12. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  13. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  14. Decreasing the exhaust outlet temperatures on a class III bus with the lowest impact on the exhaust backpressure and the fuel consumption

    Science.gov (United States)

    Aslan, E.; Ozturk, Y.; Dileroglu, S.

    2017-07-01

    The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.

  15. Analysis of vibration of exhaust valve pipeline in nuclear power plant

    International Nuclear Information System (INIS)

    Tan Ping

    2005-01-01

    Pipeline system for conveying pressurized steam often operates under time-varying conditions due to the valve operations. This may cause vibration problems as a result the pipeline system suffered vibration damage. In this paper, a finite element formulation for the exhaust dynamic equations that include the effect of all pipe supports, and hangers is introduced and applied to the dynamic analysis of the pipeline system used in a nuclear power plant. the vibration response of steam-conveying pipeline induced by valve exhaust has been studied. The model is validated with a fieldwork experimental pipeline system. the mechanical vibrations from steam exhaust valves can be eliminated by careful design of the valve plug and seat. (authors)

  16. Rhodium in car exhaust tips by total automatic activation analysis

    International Nuclear Information System (INIS)

    Grass, F.; Westphal, G.P.; Lemmel, H.; Sterba, J.

    2007-01-01

    Exhaust systems of modern cars contain catalysts for the reduction of CO, NO x and hydrocarbons. These catalysts are made of ceramic materials with a large surface on which platinum metals catalyse the oxidation. The catalysts contain approximately 2 g of platinum and 0.4 g of rhodium. Recently platinum is being replaced by palladium. During driving the platinum-group elements (PGEs) are expelled from the tip in fine particles and are deposited in the environment. For a projected study of emissions from cars driven on streets and highways it is important to know which elements can be measured by short time activation analysis without any chemical procedure. (author)

  17. Children's Exhaustive Readings of Questions

    Science.gov (United States)

    Cremers, Alexandre; Tieu, Lyn; Chemla, Emmanuel

    2017-01-01

    Questions, just like plain declarative sentences, can give rise to multiple interpretations. As discussed by Spector & Egré (2015), among others, questions embedded under know are ambiguous between "weakly exhaustive" (WE), "intermediate exhaustive" (IE), and "strongly exhaustive" (SE) interpretations (for…

  18. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  19. Contextualizing Emotional Exhaustion and Positive Emotional Display : The Signaling Effects of Supervisors' Emotional Exhaustion and Service Climate

    NARCIS (Netherlands)

    Lam, Catherine K.; Huang, Xu; Janssen, Onne; Lam, K.C.

    In this study, we investigated how supervisors' emotional exhaustion and service climate jointly influence the relationship between subordinates' emotional exhaustion and their display of positive emotions at work. Using data from frontline sales employees and their immediate supervisors in a

  20. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  1. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  2. Noise study in laboratories with exhaust fans

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Hashmi, R.; Shareef, A.

    2005-01-01

    Noise study has been carried out in 25 laboratories fitted with exhaust fans. We have studied A- Weighted equivalent sound pressure levels (dB(A) LAeJ and equivalent octave band sound pressure levels (dB L/sub eq/ in each of the laboratories surveyed. The data collected has been analyzed for Preferred Speech Interference Levels (PSIL). The results show that the interior noise levels in these laboratories vary from 59.6 to 72.2 dB(A) L/sub Aeq/, which are very high and much beyond the interior noise limits recommended for laboratories. Some ways and means to limit emission of high-level noise from exhaust fans are also discussed. (author)

  3. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  4. Fronting and exhaustive exclusion in Biblical Hebrew

    African Journals Online (AJOL)

    Kate H

    48, 2017, 219-222 doi: 10.5774/48-0-292. Fronting and exhaustive exclusion in Biblical Hebrew. Christo H. J. van der Merwe. Department of Ancient Studies, University of Stellenbosch, South ... Merwe, Naudé and Kroeze 2017: 491-493). .... “And I will give him to the Lord all the days of his life, and no razor shall touch his.

  5. Validation of Karolinska Exhaustion Scale: psychometric properties of a measure of exhaustion syndrome.

    Science.gov (United States)

    Saboonchi, Fredrik; Perski, Aleksander; Grossi, Giorgio

    2013-12-01

    The syndrome of exhaustion is currently a medical diagnosis in Sweden. The description of the syndrome largely corresponds to the suggested core component of burnout, that is exhaustion. Karolinska Exhaustion Scale (KES) has been constructed to provide specific assessment of exhaustion in clinical and research settings. The purpose of the present study was to examine the psychometric properties of this scale in its original and revised versions by examining the factorial structure and measures of convergent and discriminant validity. Data gathered from two independent samples (n1 = 358 & n2 = 403) consisting of patients diagnosed with 'reaction to severe stress, and adjustment disorder' were subjected to confirmatory factor analysis. The study's instruments were Karolinska Exhaustion Scale and Shirom Melam Burnout Measure. Correlation analyses were employed to follow up the established factorial structure of the scale. The study was ethically approved by Karolinska Institute regional ethic committee. The findings demonstrated adequate fit of the data to the measurement model provided by the revised version of KES Limitations: The main limitation of the present study is the lack of a gold standard of exhaustion for direct comparison with KES. (KES-26) and partially supported convergent validity and discriminant validity of the scale. The demonstrated psychometric properties of KES-26 indicate sound construct validity for this scale encouraging use of this scale in assessment of exhaustion. The factorial structure of KES-26 may also be used to provide information concerning possible different clinical profiles. © 2012 The Authors Scandinavian Journal of Caring Sciences © 2012 Nordic College of Caring Science.

  6. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, E.; Besserer, U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Jacqmin, G. [NUKEM GmbH, Industreistr, Alzenau (Germany)

    1995-02-01

    The Tritium Laboratory Karlsruhe (TLK) accomplished commissioning; tritium involving activities will start this year. The laboratory is destined mainly to investigating processing of fusion reactor fuel and to developing analytic devices for determination of tritium and tritiated species in view of control and accountancy requirements. The area for experimental work in the laboratory is about 800 m{sup 2}. The tritium infrastructure including systems for tritium storage, transfer within the laboratory and processing by cleanup and isotope separation methods has been installed on an additional 400 m{sup 2} area. All tritium processing systems (=primary systems), either of the tritium infrastructure or of the experiments, are enclosed in secondary containments which consist of gloveboxes, each of them connected to the central depressurization system, a part integrated in the central detritiation system. The atmosphere of each glovebox is cleaned in a closed cycle by local detritiation units controlled by two tritium monitors. Additionally, the TLK is equipped with a central detritiation system in which all gases discharged from the primary systems and the secondary systems are processed. All detritiation units consist of a catalyst for oxidizing gaseous tritium or tritiated hydrocarbons to water, a heat exchanger for cooling the catalyst reactor exhaust gas to room temperature, and a molecular sieve bed for adsorbing the water. Experiments with tracer amounts of tritium have shown that decontamination factors >3000 can be achieved with the TLK detritiation units. The central detritiation system was carefully tested and adjusted under normal and abnormal operation conditions. Test results and the behavior of the tritium barrier preventing tritiated exhaust gases from escaping into the atmosphere will be reported.

  7. Particle and Power Exhaust in EAST

    Science.gov (United States)

    Wang, Liang; Ding, Fang; Yu, Yaowei; Gan, Kaifu; Liang, Yunfeng; Xu, Guosheng; Xiao, Bingjia; Sun, Youwen; Luo, Guangnan; Gong, Xianzu; Hu, Jiansheng; Li, Jiangang; Wan, Baonian; Maingi, Rajesh; Guo, Houyang; Garofalo, Andrea; EAST Team

    2017-10-01

    A total power injection up to 0.3GJ has been achieved in EAST long pulse USN operation with ITER-like water-cooling W-monoblock divertor, which has steady-state power exhaust capability of 10 MWm-2. The peak temperature of W target saturated at t = 12 s to the value T 500oC and a heat flux 3MWm-2was maintained. Great efforts to reduce heat flux and accommodate particle exhaust simultaneously have been made towards long pulse of 102s time scale. By exploiting the observation of Pfirsch-Schlüter flow direction in the SOL, the Bt direction with Bx ∇B away from the W divertor (more particles favor outer target in USN) was adopted along with optimizing the strike point location near the pumping slot, to facilitate particle and impurity exhaust with the top cryo-pump. By tailoring the 3D divertor footprint through edge magnetic topology change, the heat load was dispersed widely and thus peak heat flux and W sputtering was well controlled. Active feedback control of total radiative power with neon seeding was achieved within frad = 17-35%, exhibiting further potential for heat flux reduction with divertor and edge radiation. Other heat flux handling techniques, including quasi snowflake configuration, will also be presented.

  8. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  9. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  10. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  11. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  12. Vehicle exhaust treatment using electrical discharge and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, R.G.; Balmer, M.L.; Barlow, S.E.; Orlando, T.M. [Pacific Northwest National Lab., Richland, WA (United States); Goulette, D.; Hoard, J. [Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.

    1997-12-31

    Current 3-way catalytic converters have proven quite effective at removing NO{sub x} from the exhaust of spark ignition vehicles operating near stoichiometric air-to-fuel ratios. However, diesel engines typically operate at very high air-to-fuel ratios. Under such lean burn conditions current catalytic converters are ineffective for NO{sub x} removal. As a result, considerable effort has been made to develop a viable lean NO{sub x} catalyst. Although some materials have been shown to reduce NO{sub x} under lean burn conditions, none exhibit the necessary activity and stability at the high temperatures and humidities found in typical engine exhaust,. As a result, alternative technologies are being explored in an effort to solve the so-called lean NO{sub x} problem. Packed-bed barrier discharge systems are well suited to take advantage of plasma-surface interactions due to the large number of contaminant surface collisions in the bed. The close proximity of the active surface to transient species produced by the plasma may lead to favorable chemistry at considerably lower temperatures than required by thermal catalysts. The authors present data in this paper illustrating that the identity and surface properties of the packing material can alter the discharge-driven chemistry in synthetic leanburn exhaust mixtures. Results using non-porous glass beads as the packing material suggest the limits of NO{sub x} reduction using purely gas phase discharge chemistry. By comparison, encouraging results are reported for several alternative packing materials.

  13. Identification of black-box linear models : the case of thermal periodic contact of exhaust valves in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Shojaeefard, M.H.; Fazelpour, M. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Automotive Engineering; Goudarzi, K. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2009-07-01

    In internal combustion engines, hot exhaust gases that pass through the exhaust valve lead to high temperatures in the exhaust valve and the valve seat. Heat must be transferred from the exhaust valve to valve seat as they come in contact with each other during the opening and closing cycle in order to avoid damaging the exhaust valve. The heat transfer rate from the valve to valve seat is a function of many factors, including the thermal contact conductance (TCC) between the valve and valve seat. The objective of this study was to experimentally calculate the TCC for six different frequencies in the quasi-steady-state condition and also to obtain a transfer function to estimate the exhaust valve temperature by using black-box models of system identification. Periodic contact was taken into consideration in the study. The paper presented the experimental setup including the loading system, heat and cooling system, temperature measurement system, specimens properties, and data acquisition system. The paper also described the test procedure and experimental results. System identification was also described. It was concluded that the TCC decreased as the frequency of contact increased. The temperature transfer function was calculated by using the system identification method and having the temperatures at both sides of the contact surface. By knowing the temperature of one rod, the temperature of the other rod was estimated with high accuracy. 16 refs., 4 tabs., 7 figs.

  14. Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells

    Directory of Open Access Journals (Sweden)

    A. Mastrofrancesco

    2014-01-01

    Full Text Available Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc, in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5 and older (Euro 4 diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1α, IL-6, IL-8, and TNF-α and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF. DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems.

  15. Investigation of exhaust gases at blends of fuels/biofuels at the Helmholtz Virtual Institute for Complex Molecular Systems in Environmental Health; Abgasuntersuchungen an Kraftstoffen/Biokraftstoff-Blends im Rahmen des Helmholtz Virtual Institute for Complex Molecular Systems in Environmental Health

    Energy Technology Data Exchange (ETDEWEB)

    Streibel, Thorsten [Rostock Univ. (Germany). Inst. fuer Chemie, Analytische Chemie; Adam, Thomas; Grabowsky, Jana; Sklorz, Martin; Zimmermann, Ralf

    2012-07-01

    The objective of the ''Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health'' (HICE) is the establishment of a long-term scientific research initiative for the investigation of the causes and mechanisms of environmentally influenced diseases. In the initial phase (INF funding period) the HICE focuses on a deeper understanding of the impact of anthropogenic aerosols on human health. Based on current hypotheses, reactive organic compounds in particle as well as in gas phase of aerosols are particularly relevant. Innovative in-vitro human lung tissue models and selected susceptible animal models are exposed to aerosols, and separated gas and particle phases from relevant sources. The response of the biological systems is investigated by state-of-the-art analytical techniques on different biological levels (transcriptome, proteome, metabolome, toxicological parameters). The second central topic is the real-time characterization of emissions (gas- and particulate phase) from internal combustion engines with a special focus on the influence of the biodiesel content. For this, mass spectrometry with photo ionization will be applied for the detection of organic compounds. Preliminary studies dealt with the online investigation of the gas phase of truck diesel exhaust as well as the offline particulate phase characterization after thermal desorption. Both studies detected primarily (poly)aromatic hydrocarbons. (orig.)

  16. EGNAS: an exhaustive DNA sequence design algorithm

    Directory of Open Access Journals (Sweden)

    Kick Alfred

    2012-06-01

    Full Text Available Abstract Background The molecular recognition based on the complementary base pairing of deoxyribonucleic acid (DNA is the fundamental principle in the fields of genetics, DNA nanotechnology and DNA computing. We present an exhaustive DNA sequence design algorithm that allows to generate sets containing a maximum number of sequences with defined properties. EGNAS (Exhaustive Generation of Nucleic Acid Sequences offers the possibility of controlling both interstrand and intrastrand properties. The guanine-cytosine content can be adjusted. Sequences can be forced to start and end with guanine or cytosine. This option reduces the risk of “fraying” of DNA strands. It is possible to limit cross hybridizations of a defined length, and to adjust the uniqueness of sequences. Self-complementarity and hairpin structures of certain length can be avoided. Sequences and subsequences can optionally be forbidden. Furthermore, sequences can be designed to have minimum interactions with predefined strands and neighboring sequences. Results The algorithm is realized in a C++ program. TAG sequences can be generated and combined with primers for single-base extension reactions, which were described for multiplexed genotyping of single nucleotide polymorphisms. Thereby, possible foldback through intrastrand interaction of TAG-primer pairs can be limited. The design of sequences for specific attachment of molecular constructs to DNA origami is presented. Conclusions We developed a new software tool called EGNAS for the design of unique nucleic acid sequences. The presented exhaustive algorithm allows to generate greater sets of sequences than with previous software and equal constraints. EGNAS is freely available for noncommercial use at http://www.chm.tu-dresden.de/pc6/EGNAS.

  17. A study of automobile exhaust noise preferences

    Science.gov (United States)

    Haire, Jay B.; Carney, Melinda J.; Cheenne, Dominique J.

    2005-04-01

    A study was conducted to investigate the relationship between preferences in automobile exhaust noise and the demographic factors of a listening jury. Noise samples of four different vehicles were recorded at idle as well as at 3000 RPM, and 1/3 octave sound spectra were acquired simultaneously. The recordings were presented to the jury using headphones and a preference survey was administered. Zwicker loudness was computed for all samples. Demographic factors such as gender, age, current and future vehicle ownership, were correlated to listening preferences, and unforeseen results were found, especially in regards to sport utility vehicles (SUV).

  18. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    Science.gov (United States)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  19. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    Science.gov (United States)

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  20. Characterization of metallic micro sieves for gas purification on the example of fine dedusting of exhaust gases of wood burning firing systems; Charakterisierung metallischer Mikrosiebe zur Gasreinigung am Beispiel der Feinentstaubung von Holzfeuerungsabgasen

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Esther

    2011-07-15

    Metallic micro sieves are a promising filter media for fine particulate-removal from gas streams due to their flexible and precisely adaptable pore geometry and their material properties. A current field of application is the particle removal from exhaust gas from biomass heating appliances. The generated aerosol particles are considerably smaller than 1 {mu}m. As a consequence they pose a significant health risk. In order to promote new developments in the field of gas cleaning, this study explores the filtration characteristics of metallic micro sieves theoretically and practically. For the purpose of the design layout of micro sieve filters, the fundamental process of the filtration kinetics, that is the time-dependent development of filtration efficiency and pressure drop, were displayed in a physically based and algebraically solvable calculation model. The filtration kinetics is subdivided in three parts: The flow and the capture of particles in micro sieves (instant of time 0), the dynamic accrue of the pores due to captured particles (phase 1) and the build-up of a filter cake (phase 2). Each section was covered by the formulation of separate mathematic solutions or by further development respectively adaption of existing models. Both the section models and the total model were in good compliance with experimental results. The model as well as the experimental results were used to assess possible applications in the field of the removal of fine particulate matter from exhaust gases of wood fired heating appliances. Exemplary for a wood fired heating appliance with a heating capacity of 100 kW, the required filter surface and achievable filtration efficiencies were calculated. Due to present high particle concentrations, relatively big pore diameters between 15 and 20 {mu}m are sufficient to obtain significant filtration efficiencies above 99 % after a short operation time. Adequate micro sieve porosities of more than 5 % are available. Thus, the realization

  1. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  2. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...... modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed....... exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel...

  3. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla

    2009-01-01

    Full Text Available Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’ exhaust pipes. This work also considers how the simulation must be made, based on the previous exploration. The results (presented as e- quations in this first paper show the great influence exerted by pressure wave movement on flow through the engine and there- fore on its final performance.

  4. SNM holdup assessment of Los Alamos exhaust ducts

    International Nuclear Information System (INIS)

    Marshall, R.S.

    1994-02-01

    Fissile material holdup in glovebox and fume hood exhaust ducting has been quantified for all Los Alamos duct systems. Gamma-based, nondestructive measurements were used to quantify holdup. The measurements were performed during three measurement campaigns. The first campaign, Phase I, provided foot-by-foot, semiquantitative measurement data on all ducting. These data were used to identify ducting that required more accurate (quantitative) measurement. Of the 280 duct systems receiving Phase I measurements, 262 indicated less than 50 g of fissile holdup and 19 indicated fissile holdup of 50 or more grams. Seven duct systems were measured in a second campaign, called Series 1, Phase II. Holdup estimates on these ducts ranged from 421 g of 235 U in a duct servicing a shut-down uranium-machining facility to 39 g of 239 Pu in a duct servicing an active plutonium-processing facility. Measurements performed in the second campaign proved excessively laborious, so a third campaign was initiated that used more efficient instrumentation at some sacrifice in measurement quality. Holdup estimates for the 12 duct systems measured during this third campaign ranged from 70 g of 235 U in a duct servicing analytical laboratories to 1 g of 235 U and 1 g of 239 Pu in a duct carrying exhaust air to a remote filter building. These quantitative holdup estimates support the conclusion made at the completion of the Phase I measurements that only ducts servicing shut-down uranium operations contain about 400 g of fissile holdup. No ventilation ducts at Los Alamos contain sufficient fissile material holdup to present a criticality safety concern

  5. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of ...

  6. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  7. Local Pain Dynamics during Constant Exhaustive Exercise.

    Directory of Open Access Journals (Sweden)

    Agne Slapsinskaite

    Full Text Available The purpose of this study was to delineate the topological dynamics of pain and discomfort during constant exercise performed until volitional exhaustion. Eleven physical education students were tested while cycling and running at a "hard" intensity level (e.g., corresponding to Borg's RPE (6-20 = 15. During the tests, participants reported their discomfort and pain on a body map every 15s. "Time on task" for each participant was divided into five equal non-overlapping temporal windows within which their ratings were considered for analysis. The analyses revealed that the number of body locations with perceived pain and discomfort increased throughout the five temporal windows until reaching the mean (± SE values of 4.2 ± 0.7 and 4.1 ± 0.6 in cycling and running, respectively. The dominant locations included the quadriceps and hamstrings during cycling and quadriceps and chest during running. In conclusion, pain seemed to spread throughout the body during constant cycling and running performed up to volitional exhaustion with differences between cycling and running in the upper body but not in the lower body dynamics.

  8. On the exhaust of electromagnetic drive

    Directory of Open Access Journals (Sweden)

    Patrick Grahn

    2016-06-01

    Full Text Available Recent reports about propulsion without reaction mass have been met on one hand with enthusiasm and on the other hand with some doubts. Namely, closed metal cavities, when fueled with microwaves, have delivered thrust that could eventually maintain satellites on orbits using solar power. However, the measured thrust appears to be without any apparent exhaust. Thus the Law of Action-Reaction seems to have been violated. We consider the possibility that the exhaust is in a form that has so far escaped both experimental detection and theoretical attention. In the thruster’s cavity microwaves interfere with each other and invariably some photons will also end up co-propagating with opposite phases. At the destructive interference electromagnetic fields cancel. However, the photons themselves do not vanish for nothing but continue in propagation. These photon pairs without net electromagnetic field do not reflect back from the metal walls but escape from the resonator. By this action momentum is lost from the cavity which, according to the conservation of momentum, gives rise to an equal and opposite reaction. We examine theoretical corollaries and practical concerns that follow from the paired-photon conclusion.

  9. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  10. Analysis of motorcycle exhaust regular testing data--a case study of Taipei City.

    Science.gov (United States)

    Chen, Yi-Chi; Chen, Lu-Yen; Jeng, Fu-Tien

    2009-06-01

    In Taiwan, a continuous increase in the number of motorcycles has made exhaust pollution one of the major emission sources of air pollutants. The regular testing program carried out by the Republic of China Environmental Protection Agency was designed to reduce air pollutant emissions by enhancing maintenance and repair. During the execution period, abundant testing results were accumulated to discuss pollutant emissions from motorcycles. Exhaust testing data of motorcycles in Taipei City from 1996 to 2005 were chosen as the basic data to survey changes in motorcycle exhaust. Effects of motorcycle age and mileage on exhaust pollution were studied. The introduction of advanced emission standards enhances the elimination of high-emitting motorcycles. The testing data indicate that the testing rate rose from approximately 50 to 70% and the failure rate changed from approximately 15 to 10%. The operation cycles of two-stroke motorcycles make them high-emitting vehicles. Concentrations of carbon monoxide and hydrocarbons are higher in two-stroke motorcycle exhaust than that in four-stroke motorcycles. In contrast, the concentration of carbon dioxide produced from complete oxidation processes is lower in exhaust from two-stroke motorcycles. Therefore, failure rates of two-stroke motorcycles are higher than those of four-stroke motorcycles and were also observed to deactivate more easily. On the basis of analytical results of testing data, we found that failure rates show a gradually increasing trend for motorcycles older than 3 yr or used for mileages greater than 10,000 km, and failure rates are highly correlated to the age/mileage of motorcycles. We reason that the accumulation of age or mileage means accumulating usage time of engines and emission control systems. Concentrations of pollutant emissions would increase because of engine wear and emission control system deactivation. After discussing changes of failure rates and pollutant emissions, some suggestions are

  11. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)

    2014-01-15

    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  12. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  13. Mixed gated/exhaustive service in a polling model with priorities

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.

    2008-01-01

    In this paper we consider a single-server polling system with switch-over times. We introduce a new service discipline, mixed gated/exhaustive service, that can be used for queues with two types of customers: high and low priority customers. At the beginning of a visit of the server to such a queue,

  14. Formation of methyl nitrite and methyl nitrate during plasma treatment of diesel exhaust

    DEFF Research Database (Denmark)

    Wallington, TJ; Hoard, JW; Andersen, Mads Peter Sulbæk

    2003-01-01

    FIR spectroscopy was used to identify CH3ONO and CH3ONO2 as products of the nonthermal plasma treatment of simulated diesel exhaust. This is the first observation of CH3ONO formation in such systems. The yield of CH3ONO relative to CH3ONO2 scaled linearly with the average [NO]/ [NO2] ratio in the...

  15. A Teaching Approach from the Exhaustive Search Method to the Needleman-Wunsch Algorithm

    Science.gov (United States)

    Xu, Zhongneng; Yang, Yayun; Huang, Beibei

    2017-01-01

    The Needleman-Wunsch algorithm has become one of the core algorithms in bioinformatics; however, this programming requires more suitable explanations for students with different major backgrounds. In supposing sample sequences and using a simple store system, the connection between the exhaustive search method and the Needleman-Wunsch algorithm…

  16. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Science.gov (United States)

    2010-07-01

    ... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak...) Exhaust Emission Measurement Activities. The following activities are performed, when applicable, in order...

  17. Presentation of different possibilities for the cleaning of exhaust gases from waste incinerators; Darstellung verschiedener Moeglichkeiten zur Reinigung von Abgasen aus Abfallverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Christian [LAB GmbH, Stuttgart (Germany)

    2013-03-01

    This contribution describes different methods of purification of exhaust gases from waste incinerators. The following technical procedures are considered: dry sorption procedure, quasi-dry procedure, wet scrubbing procedure, hybrid procedure. Subsequently, the author of this contribution reports on criteria for the selection of exhaust gas cleaning systems.

  18. Three-dimensional approach to exhaust gas energy analysis

    Science.gov (United States)

    Sekavčnik, M.; Ogorevc, T.; Katrašnik, T.; Rodman-Oprešnik, S.

    2012-06-01

    Presented work is based on an extensive CFD simulation of the exhaust stroke of a single-cylinder four-stroke internal combustion engine with the exhaust manifold attached. Since the dynamics of the exhaust flow are extremely 3D, an innovative approach to calculate the local entropy generation is developed and implemented in the discussed 3D numerical model. It allows temporal and spatial determination of critical regions and periods of entropy generation in the process with objective to reduce it.

  19. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    Cheng-xiong, Pan; Jing-zhou, Zhang; Yong, Shan

    2013-01-01

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  20. Removing method for radon gas exhausted from nuclear fuel material

    International Nuclear Information System (INIS)

    Kato, Kenji.

    1993-01-01

    A centrifugal separator is disposed in the midway of an exhaustion pipe of a nuclear fuel handling facility, and exhausted gases are sent into a rotational cylinder of the separator. Radon gases in the midway of exhaustion are separated from the exhaustion gases by the centrifugal force of the separator and caused to stagnate at the periphery of the circumferential wall of the rotational cylinder. At the same time, the exhaustion gases having the radon gases separated therefrom are exhausted from the periphery of a rotational shaft of the rotational cylinder. Then, the radon gases stagnated in the rotational cylinder are decayed depending on the half-decay time. With such procedures, the radon gases can be removed continuously without discharging them to the outside. Further, it is preferred that an exhaustion blower or the like for putting the inside of the nuclear fuel handing facility to a negative pressure is disposed as in a conventional case. Further, a plurality of centrifugal separators may be disposed to exhaustion pipes, to remove radon gases in the exhaust gases by a multi stage way. Radon gases can be removed in a saved space with no requirement for exchange of adsorbents or temperature control. (T.M.)

  1. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  2. A multilayer model to simulate rocket exhaust clouds

    Directory of Open Access Journals (Sweden)

    Davidson Martins Moreira

    2011-01-01

    Full Text Available This paper presents the MSDEF (Modelo Simulador da Dispersão de Efluentes de Foguetes, in Portuguese model, which represents the solution for time-dependent advection-diffusion equation applying the Laplace transform considering the Atmospheric Boundary Layer as a multilayer system. This solution allows a time evolution description of the concentration field emitted from a source during a release lasting time tr , and it takes into account deposition velocity, first-order chemical reaction, gravitational settling, precipitation scavenging, and plume rise effect. This solution is suitable for describing critical events relative to accidental release of toxic, flammable, or explosive substances. A qualitative evaluation of the model to simulate rocket exhaust clouds is showed.

  3. The effect of exhaust plume/afterbody interaction on installed Scramjet performance

    Science.gov (United States)

    Edwards, Thomas Alan

    1988-01-01

    Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has

  4. Vital Exhaustion and Coronary Heart Disease Risk

    DEFF Research Database (Denmark)

    Frestad, Daria; Prescott, Eva

    2017-01-01

    INFO (1980 to July 2015; articles in English and published articles only), and bibliographies. Information on aim, study design, sample size, inclusion and exclusion criteria, assessment methods of psychological risk factors, and results of crude and adjusted regression analyses were abstracted independently......OBJECTIVES: The construct of vital exhaustion has been identified as a potential independent psychological risk factor for incident and recurrent coronary heart disease (CHD). Despite several decades of research, no systematic review or meta-analysis has previously attempted to collate.......22-1.85) for prospective studies, and 2.61 (95% CI = 1.66-4.10) for case-control studies using hospital controls. Risk of recurrent events in patients with CHD was 2.03 (95% CI = 1.54-2.68). The pooled adjusted risk of chronic heart failure in healthy populations was 1.37 (95% CI = 1.21-1.56), but this was based...

  5. Research on the Efficiency of Side Exhausters

    Directory of Open Access Journals (Sweden)

    Ina Tetsman

    2011-02-01

    Full Text Available The article focuses on the relevant technology of environmental protection which includes an effective collection, disposal and control of aerosol and gases contaminants removed from the evaporating surfaces of electroplating tanks. The task of the paper is to help with finding the new ways of collecting and disposing aerosol pollution and to reduce the quantity of equipment and service costs. The article also discusses pollution formation and sorts and performance of side draft and slot hoods for vapour capture. Besides, the paper deals with the formation of vapour over the tank and the features of benefit that depend on absorber‘s shape. Exhaust velocity and its dependencies are analyzed.Article in Lithuanian

  6. Reduction method of exhaust gas quantity

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y.; Morishita, K.

    1975-02-08

    A cleaning method for automobile exhaust through contact with sintered oxide semiconductors consisting of tin, antimony, manganese, and palladium oxides is discussed. This device has a much higher efficiency and lasts longer than any similar device developed previously consisting of oxides of iron, manganese cobalt, nickel, aluminum, and other rare earth metals. This sintered oxide semiconductor device is composed of: tin oxide: 30 wt ratio, tin hydrogen oxide: 30 wt ratio, antimony oxide: 2 wt ratio, manganese chloride: 2 wt ratio, palladium chloride: 1 wt ratio, carbon powder: 4 wt ratio, and ammonium carbonate: 10 wt ratio, for example. This device converts 100 percent of carbon monoxide into carbon dioxide at 350 C. This compound provides oxygen to CO at higher temperatures and absorbs oxygen from air at normal temperatures. There is no effect on efficiency.

  7. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...... to uphold task performance. Following cognitive training, increased neural activation was observed during 3-back in working memory-related regions, including the striatum, however, low sample size limits any firm conclusions....

  8. Diesel Exhaust Exposure, Wheezing and Sneezing

    Science.gov (United States)

    2012-01-01

    The rising incidence of allergic disorders in developed countries is unexplained. Exposure to traffic related air pollutants may be an important cause of wheezing and asthma in childhood. Experimental evidence from human studies suggests that diesel exhaust particles, constituents of fine particulate matter less than 2.5 microns (PM2.5), may act to enhance IgE mediated aeroallergen sensitization and Th2 directed cytokine responses. To date, epidemiologic investigations indicate that children living in close proximity to heavily travelled roads are more likely to be atopic and wheeze. The Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) birth cohort study was initiated to test the hypothesis that early high exposure to traffic related air pollutants is associated with early aeroallergen sensitization and allergic respiratory phenotypes. Using an exposure cohort design, more than 700 infants born to atopic parents were recruited at age 1 living either less than 400 meters (high traffic pollutant exposure) or greater than 1,500 meters (low exposure) from a major road. Children were medically evaluated and underwent skin prick testing with aeroallergen at screening, and re-evaluated sequentially at ages 1, 2, 3, 4, and 7. In this study, both proximity and land use regression (LUR) models of traffic air pollutant exposure have been assessed. Proximity to stop and go traffic with large concentrations of bus and truck traffic predicted persistent wheezing during infancy. The LUR model estimated elemental carbon attributable to traffic (ECAT) as a proxy for diesel exhaust particulate exposure. High ECAT was significantly associated with wheezing at age 1 as well as persistent wheezing at age 3. High mold exposure predicted a well defined asthma phenotype at age 7. PMID:22754710

  9. Argon/UF6 plasma exhaust gas reconstitution experiments using preheated fluorine and on-line diagnostics. [fissioning uranium plasma core reactor design

    Science.gov (United States)

    Roman, W. C.

    1979-01-01

    The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.

  10. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Fu, Jianqin; Deng, Banglin; Liu, Jingping; Wang, Linjun; Xu, Zhengxin; Yang, Jing; Shu, Gequn

    2014-01-01

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  11. The Effect of Condensing Steam Turbine Exhaust Hood Body Geometry on Exhaust Performance Efficiency

    Science.gov (United States)

    Gribin, V. G.; Paramonov, A. N.; Mitrokhova, O. M.

    2018-06-01

    The article presents data from combined numerical and experimental investigations of the effect that the overall dimensions of the exhaust hood of a steam turbine with an underslung condenser has on the aerodynamic losses in the hood. Owing to the properly selected minimum permissible overall dimensions of the exhaust hood, more efficient operation of this turbine component is achieved, better vibration stability of the turbine set shaft line is obtained, and lower costs are required for arranging the steam turbine plant in the turbine building. Experiments have shown that the main overall dimensions of the hood body have a determining effect on the exhaust hood flow path profile and on its aerodynamic performance. Owing to properly selected ratios between the exhaust hood body main sizes without a diffuser, a total loss coefficient equal to approximately unity has been obtained. By using an axial-radial diffuser, the energy loss can be decreased by 30-40% depending on the geometrical parameters and level of velocities in the inlet section of a hood having the optimal overall dimensions. By using the obtained results, it becomes possible to evaluate the overall dimensions necessary for achieving the maximal aerodynamic hood efficiency and, as a consequence, to obtain better technical and economic indicators of the turbine plant as a whole already at the initial stage of its designing. If a need arises to select overall dimensions smaller than their optimal values, the increase of energy loss can be estimated using the presented dependences. The cycle of investigations was carried out on the experimental setups available in the fundamental research laboratory of the Moscow Power Engineering Institute National University's Department of Steam and Gas Turbines with due regard to the operating parameters and similarity criteria.

  12. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  13. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  14. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2017-02-01

    Full Text Available Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF. The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  15. Unemployment Benefit Exhaustion: Incentive Effects on Job-Finding Rates

    Science.gov (United States)

    Filges, Trine; Geerdsen, Lars Pico; Knudsen, Anne-Sofie Due; Jørgensen, Anne-Marie Klint

    2015-01-01

    Purpose: This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12 studies for final analysis and interpretation.…

  16. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a) Construction...

  17. Perceived social support and emotional exhaustion in HIV/AIDS ...

    African Journals Online (AJOL)

    Counsellors have been identified as a group of professionals at elevated risk of burnout in general and emotional exhaustion in particular. Considering the nature of the illness, ... the quality of the services they provide. Key words: Emotional exhaustion, perceived social support, burnout syndrome, demographic variables.

  18. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively. ...

  19. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    Science.gov (United States)

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Experimental studies of impact of exhaust gas recirculation on the ...

    African Journals Online (AJOL)

    This paper considers the problem of reducing the nitrogen oxides emissions in exhaust gases (EG) of diesel engine by exhaust gas recirculation (EGR). Based on the carried out study the influence of EGR on technical-and-economic and environmental performance of a diesel engine was found as well as main directions of ...

  1. 40 CFR 1065.230 - Raw exhaust flow meter.

    Science.gov (United States)

    2010-07-01

    ... the following cases, you may use a raw exhaust flow meter signal that does not give the actual value... dew and pressure, p total at the flow meter inlet. Use these values in emission calculations according... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.230 Raw exhaust...

  2. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... exhaust sample in sampling solution, µg/ml. (vii) VAE = Volume of sampling solution for dilute exhaust... sampling solution, µg/ml. (xiii) VAA = Volume of sampling solution for dilution air formaldehyde sample, ml... paragraph (d)(3) of this section): Wet concentration = Kw × dry concentration. Where: (1)(i) For English...

  3. 30 CFR 36.26 - Composition of exhaust gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Composition of exhaust gas. 36.26 Section 36.26... EQUIPMENT Construction and Design Requirements § 36.26 Composition of exhaust gas. (a) Preliminary engine... methane) is a satisfactory substitute for pure methane in these tests. (c) Coupling or adapter. The...

  4. Effect of diesel generator exhaust pollutants on growth of Vinca ...

    African Journals Online (AJOL)

    The effects of exhaust pollutants of generator on root and shoot length, root and shoot weight, number of leaflets and leaf area, leaf and total plant dry weight of Vinca rosea and Ruellia tuberosa were studied. The treatment of exhaust pollutants produced significant effects on root, shoot growth, number of leaflet and leaf ...

  5. Emotional exhaustion may trigger cut in working hours

    NARCIS (Netherlands)

    Koppes, L.

    2012-01-01

    Researchers in the Netherlands have been examining to what extent workers are modifying their hours to cope with high levels of work-related emotional exhaustion. Findings reveal that most full-time employees would prefer a cut in their hours, with those reporting emotional exhaustion wanting a

  6. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    Science.gov (United States)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  7. Exhaust energy conversion by thermoelectric generator: Two case studies

    International Nuclear Information System (INIS)

    Karri, M.A.; Thacher, E.F.; Helenbrook, B.T.

    2011-01-01

    This study reports predictions of the power and fuel savings produced by thermoelectric generators (TEG) placed in the exhaust stream of a sports utility vehicle (SUV) and a stationary, compressed-natural-gas-fueled engine generator set (CNG). Results are obtained for generators using either commercially-available bismuth telluride (Bi 2 Te 3 ) or quantum-well (QW) thermoelectric material. The simulated tests are at constant speed in the SUV case and at constant AC power load in the CNG case. The simulations make use of the capabilities of ADVISOR 2002, the vehicle modeling system, supplemented with code to describe the thermoelectric generator system. The increase in power between the QW- and Bi 2 Te 3 -based generators was about three times for the SUV and seven times for the CNG generator under the same simulation conditions. The relative fuel savings for the SUV averaged around -0.2% using Bi 2 Te 3 and 1.25% using QW generators. For the CNG case the fuel savings was around 0.4% using Bi 2 Te 3 and around 3% using QW generators. The negative fuel gains in the SUV were caused by parasitic losses. The power to transport the TEG system weight was the dominant parasitic loss for the SUV but was absent in the CNG generator. The lack of space constraint and the absence of parasitic loss from the TEG system weight in the CNG case allowed an increase in the TEG system size to generate more power.

  8. Exhaust catalysis studies using in-situ positron emission

    International Nuclear Information System (INIS)

    Vonkeman, K.A.

    1990-01-01

    In this thesis the kinetics of noble metal catalysts with a formulation related to that of commercial automotive exhaust catalysts, have been examined. The application of a new radioisotope tracer technique in studies of catalyst kinetics is described. Reactant and product molecules were pulsed over a catalyst under conditions such, that the reaction rates were kinetically controlled. Labelling of the reacting molecules enables the in-situ measurement of transient phenomena in a reactor as a function of time and position, if a tomograph is used as detection system. Integral reactor profiles are measured, by which concentration gradients occurring in the reactor can be studied. The large amount of data obtained during each experiment were used to quantify the kinetics. To this end, a refined mathematical model of the kinetics based on the elementary steps of adsorption, desorption and surface reaction was used to simulate the experiments. The experimental conditions in this study were representative for the cold start of a car, when the catalyst is heating up. By applying small catalyst particles and high linear velocities the influence of transport phenomena was excluded so that the experiments were carried out in the kinetically controlled regime. Reaction kinetics of carbon monoxide oxidation by oxygen and nitrogen oxide were studied. Experimental data obtained with surface science techniques were very useful in constructing the kinetic model. By simulating the experiments, the relevant kinetic parameters could be quantified and information on the elementary reaction steps was obtained. Since carbon dioxide adsorbs strongly to the catalyst carrier; 10% carbon dioxide was added to the gas phase (in actual automotive exhaust gas the concentration of carbon dioxide is 10 - 15%). This enabled the determination of the transients due to the interaction of gas components with the catalytically active compounds of the catalyst. (author). 446 refs.; 57 figs.; 21 tabs

  9. Organic Rankine cycle for power recovery of exhaust flue gas

    International Nuclear Information System (INIS)

    Guo, Cong; Du, Xiaoze; Yang, Lijun; Yang, Yongping

    2015-01-01

    To study the effects of different working fluids on the performance of organic Rankine cycle (ORC), three working fluids, a mixture that matches with heat source, a mixture that matches with heat sink and a pure working fluid, are selected in this paper. Thermodynamic models were built in Matlab together with REFPROP, with which, the physical properties of the selected working fluids can be acquired. Heat source of the ORC system is the exhaust flue gas of boiler in a 240 MW pulverized coal-fired power plant. Some indicators such as thermal efficiency, inlet temperature of expander, superheat degree, mass flow, volumetric flow, and exergy destruction distribution, as well as the influence of recuperator are studied. The analytical results show that the mixture that matches with heat sink has the greatest efficiency and the mixture that matches with heat source has the lowest superheat degree. The rate of heat exchanged in recuperator to that in evaporator has a maximum value with evaporating pressure. There exists no optimal working fluid for all indicators (thermal efficiency, heat exchanger area, mass flow and volumetric flow etc.). An appropriate working fluid should be chosen by taking both investment cost and power generating benefits into account. The cost-benefit ratio of the proposed ORC plant was evaluated either. - Highlights: • Three types of working fluids are selected for ORC using exhaust flue gas. • The mixture that matches with heat sink has the greatest efficiency. • The mixture that matches with heat source has the lowest superheat degree. • There does not exist a working fluid that satisfies all the indicators

  10. The Glass Half Empty: How Emotional Exhaustion Affects the State-Trait Discrepancy in Self-Reports of Teaching Emotions.

    Science.gov (United States)

    Goetz, Thomas; Becker, Eva S; Bieg, Madeleine; Keller, Melanie M; Frenzel, Anne C; Hall, Nathan C

    2015-01-01

    Following from previous research on intensity bias and the accessibility model of emotional self-report, the present study examined the role of emotional exhaustion in explaining the discrepancy in teachers' reports of their trait (habitual) versus state (momentary, "real") emotions. Trait reports (habitual emotions, exhaustion) were assessed via trait questionnaires, and state reports (momentary emotions) were assessed in real time via the experience sampling method by using personal digital assistants (N = 69 high school teachers; 1,089 measures within teachers). In line with our assumptions, multi-level analyses showed that, as compared to the state assessment, teachers reported higher levels of habitual teaching-related emotions of anger, anxiety, shame, boredom, enjoyment, and pride. Additionally, the state-trait discrepancy in self-reports of negative emotions was accounted for by teachers' emotional exhaustion, with high exhaustion levels corresponding with a greater state-trait discrepancy. Exhaustion levels did not moderate the state-trait discrepancy in positive emotions indicating that perceived emotional exhaustion may reflect identity-related cognitions specific to the negative belief system. Implications for research and educational practice are discussed.

  11. The Glass Half Empty: How Emotional Exhaustion Affects the State-Trait Discrepancy in Self-Reports of Teaching Emotions

    Science.gov (United States)

    Goetz, Thomas; Becker, Eva S.; Bieg, Madeleine; Keller, Melanie M.; Frenzel, Anne C.; Hall, Nathan C.

    2015-01-01

    Following from previous research on intensity bias and the accessibility model of emotional self-report, the present study examined the role of emotional exhaustion in explaining the discrepancy in teachers’ reports of their trait (habitual) versus state (momentary, “real”) emotions. Trait reports (habitual emotions, exhaustion) were assessed via trait questionnaires, and state reports (momentary emotions) were assessed in real time via the experience sampling method by using personal digital assistants (N = 69 high school teachers; 1,089 measures within teachers). In line with our assumptions, multi-level analyses showed that, as compared to the state assessment, teachers reported higher levels of habitual teaching-related emotions of anger, anxiety, shame, boredom, enjoyment, and pride. Additionally, the state-trait discrepancy in self-reports of negative emotions was accounted for by teachers’ emotional exhaustion, with high exhaustion levels corresponding with a greater state-trait discrepancy. Exhaustion levels did not moderate the state-trait discrepancy in positive emotions indicating that perceived emotional exhaustion may reflect identity-related cognitions specific to the negative belief system. Implications for research and educational practice are discussed. PMID:26368911

  12. An analytical study on the performance of the organic Rankine cycle for turbofan engine exhaust heat recovery

    Science.gov (United States)

    Saadon, S.; Abu Talib, A. R.

    2016-10-01

    Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.

  13. Two studies on the effects of small exhaust fans on indoor air quality: Field study of exhaust fans for mitigating indoor air quality problems; Indoor air quality, exhaust fan mitigation

    International Nuclear Information System (INIS)

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality

  14. Technical Feasibility Evaluation on The Use of A Peltier Thermoelectric Module to Recover Automobile Exhaust Heat

    Science.gov (United States)

    Sugiartha, N.; Sastra Negara, P.

    2018-01-01

    A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.

  15. Preliminary Experimental Study on Pressure Loss Coefficients of Exhaust Manifold Junction

    Directory of Open Access Journals (Sweden)

    Xiao-lu Lu

    2014-01-01

    Full Text Available The flow characteristic of exhaust system has an important impact on inlet boundary of the turbine. In this paper, high speed flow in a diesel exhaust manifold junction was tested and simulated. The pressure loss coefficient of the junction flow was analyzed. The steady experimental results indicated that both of static pressure loss coefficients L13 and L23 first increased and then decreased with the increase of mass flow ratio of lateral branch and public manifold. The total pressure loss coefficient K13 always increased with the increase of mass flow ratio of junctions 1 and 3. The total pressure loss coefficient K23 first increased and then decreased with the increase of mass flow ratio of junctions 2 and 3. These pressure loss coefficients of the exhaust pipe junctions can be used in exhaust flow and turbine inlet boundary conditions analysis. In addition, simulating calculation was conducted to analyze the effect of branch angle on total pressure loss coefficient. According to the calculation results, total pressure loss coefficient was almost the same at low mass flow rate of branch manifold 1 but increased with lateral branch angle at high mass flow rate of branch manifold 1.

  16. Literature review supporting assessment of potential radionuclides in the 291-Z exhaust ventilation

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Ballinger, M.Y.; Jette, S.J.; Thomas, L.M. Glissmeyer, J.A.; Davis, W.E.

    1994-08-01

    This literature review was prepared to support a study conducted by Pacific Northwest Laboratory to assess the potential deposition and resuspension of radionuclides in the 291-Z ventilation exhaust building located in the 200 West Area of the US Department of Energy's Hanford Project near Richland, Washington. The filtered ventilation air from three of the facilities at the Plutonium Finishing Plant (PFP) complex are combined together in the 291-Z building before discharge through a common stack. These three facilities contributing filtered exhaust air to the discharge stream are (1) the PFP, also known as the Z-Plant or 234-5Z, (2) the Plutonium Reclamation Facility (PRF or 236-Z), and (3), the Waste Incinerator Building (WIB or 232-Z). The 291-Z building houses the exhaust fans that pull air from the 291-Z central collection plenum and exhausts the air to the stack. Section 2.0 of this report is a description of the physical characteristic of the ventilation system from the High Efficiency Particulate Air (HEPA) filters to the exhaust stack. A description of the processes performed in the facilities that are vented through 291-Z is given in Section 3.0. The description focuses on the chemical and physical forms of potential aerosols given off from the unit operations. A timeline of the operations and events that may have affected the deposition of material in the ventilation system is shown. Aerosol and radiation measurements taken in previous studies are also discussed. Section 4.0 discusses the factors that influence particle deposition and adhesion. Mechanisms of attachment and resuspension are covered with specific attention to the PFP ducts. Conclusions and recommendations are given in Section 5.0

  17. Role of snow and cold environment in the fate and effects of nanoparticles and select organic pollutants from gasoline engine exhaust.

    Science.gov (United States)

    Nazarenko, Yevgen; Kurien, Uday; Nepotchatykh, Oleg; Rangel-Alvarado, Rodrigo B; Ariya, Parisa A

    2016-02-01

    Exposure to vehicle exhaust can drive up to 70 % of excess lifetime cancer incidences due to air pollution in urban environments. Little is known about how exhaust-derived particles and organic pollutants, implicated in adverse health effects, are affected by freezing ambient temperatures and the presence of snow. Airborne particles and (semi)volatile organic constituents in dilute exhaust were studied in a novel low-temperature environmental chamber system containing natural urban snow under controlled cold environmental conditions. The presence of snow altered the aerosol size distributions of dilute exhaust in the 10 nm to 10 μm range and decreased the number density of the nanoparticulate (snow from 0.218 ± 0.014 to 0.539 ± 0.009 mg L(-1), and over 40 additional (semi)volatile organic compounds and a large number of exhaust-derived carbonaceous and likely organic particles were identified. The concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) increased from near the detection limit to 52.48, 379.5, 242.7, and 238.1 μg kg(-1) (± 10 %), respectively, indicating the absorption of exhaust-derived toxic organic compounds by snow. The alteration of exhaust aerosol size distributions at freezing temperatures and in the presence of snow, accompanied by changes of the organic pollutant content in snow, has potential to alter health effects of human exposure to vehicle exhaust.

  18. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Science.gov (United States)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  19. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2010-09-01

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two ''off the shelf'' units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow

  20. University of Missouri research reactor exhaust ventilation/laboratory fume hood upgrade

    International Nuclear Information System (INIS)

    Edwards, C.B. Jr.; McKibben, J.C.; McCracken, C.B.

    1989-01-01

    The University of Missouri research reactor (MURR) facility is located in Research Park, 1 mile south of the Columbia campus. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-and-graphite-reflected core, serviced by six radial beam tubes for research, and has sample irradiation facilities in both a flux trap and in the graphite region. The reactor operates at full power 150 h/week, 52 week/yr, making it one of the best operating schedules and the most extensively used of any university research reactor. This extensive utilization includes many programs, such as radioisotope applications, neutron activation analysis, etc., that depend heavily on fume hoods, glove boxes, and hot cells that put a tremendous demand on the exhaust system. The exhaust system is required to be operable whenever the reactor is operating and must have the capability of being operated from an emergency electrical generator on loss of site electrical power. The originally installed exhaust ventilation system was below needed capacity and, with increased program requirements and system age, the necessity to upgrade the system was paramount. The challenge was to complete the upgrade construction while continuing to operate the reactor and maintain all the other ongoing programs, rather than take the easy way of an extended shutdown. This paper discusses how MURR met this challenge and solved these problems, problems that are similarly experienced by almost all research reactors to some degree when major work is required on critical systems

  1. Neutron activation analysis of automobile exhaust pollutants

    International Nuclear Information System (INIS)

    Oakes, T.W.; Furr, A.K.; Adair, D.J.; Parkinson, T.F.

    1977-01-01

    An approximation of the distribution of lead particulate from vehicular exhausts is given. Soil and grass (Poa trivialis) samples were collected at five-foot intervals from the roadside out to 300 feet, at ten-foot intervals from 300 to 350 feet, and at 25-foot intervals from 350 to 600 feet. All samples were irradiated twice: once for a brief period of from 10 to 120 seconds and later for periods of from 6 to 8 hours. The short irradiations were at a thermal neutron flux of 1.2x10 12 ncm -2 sec -1 (decay time=1 min, counting time=8 min). The long irradiations were at a thermal neutron flux of 1.3x10 12 ncm -2 sec -1 , and the samples counted twice at decay intervals of two days and twelve days. The counting intervals were one hour. The spectra were stored on magnetic tape for processing by an IBM 370/158 computer. This initial neutron-activation analysis study has shown that there is an extremely detailed pattern of the effluent from vehicular highway traffic which is strongly affected by micrometeorological conditions. In order to detect these patterns it is necessary to use a very compact sample grid with every possible precaution taken to ensure sample homogeneity and cleanliness. A possibility of elevated levels of pollution may exist at considerable distances from the highway, perhaps even greater than at the immediate roadside. (T.G.)

  2. Measurements of ion concentration in gasoline and diesel engine exhaust

    Science.gov (United States)

    Yu, Fangqun; Lanni, Thomas; Frank, Brian P.

    The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.

  3. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    Joa, Sang Beom

    2008-02-01

    The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emissions from diesel vehicles are known to be harmful to human health and environment. An experimental study of the diesel fuel reformation by a plasmatron and diesel engine exhaust cleaning by means of plasma chemical pretreatment of fuel is described. Plasma chemical reformation of fuel was carried by a DC arc plasmatron that was fabricated to increase an ability of the gas activation. Some portion of the fuel was activated in an arc discharge and turned into the hydrogen-rich synthesis gas. The yield of reformation for the diesel fuel showed 80 % ∼ 100 % when the small quantities of fuel (flow rate up to about 6 cc/min) were reformed. The regulation for an emission from the diesel vehicle is getting more stringent, the research in the field of the in-cylinder processing technologies (pretreatment) becomes more important issue as well as the catalyst after-treatment. The used high durability plasmatron has the characteristics of low contamination level, low anode erosion rate, low plasma temperature, and effective activation of the process gas. The developed fuel reformation system with the plasmatron was connected to the air feeding inlet sleeve of the diesel engine Kookje 3T90LT-AC (Korea) in order to study the reduction of NOx content in the engine's emission. Tubular reformation chamber was connected to the engine through the heat exchanger DOVER B10Hx20/1P-SC-S. Its cooling jacket was connected in series with the cooling system of the plasmatron. At the exit of this device gas temperature did not exceed ∼40 .deg. C at plasmatron power up to 1.5 kW which seemed quite acceptable. Gas composition was studied here using RBR-Ecom KD gas analyzer. The design of the DC arc plasmatron applied for the plasma chemical fuel reformation was improved boosting the degree of fuel-air mixture activation that provided the

  4. Exhaust stack monitoring issues at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1987-11-01

    This report outlines the problems of obtaining valid, representative samples of, and continuously monitoring for, radioactive particulates in the discharge air from the underground disposal facilities at WIPP. There appears to be serious problems with the presently installed systems. Chapter 1 of the report provides an overview of current perspective on the major issues. Principal conclusions of the overview are that the present sampling locations are not optimum for the intended purpose; that the chosen probe design is not capable of meeting requirements for delivery of a representative sample to the detectors; and that the proposed test plan for the flow conditioning and monitoring system is seriously flawed. Chapter 2 is a summary of the major findings and recommendations of a peer review. The review suggested that the proposed flow conditioning concepts were likely to be an unworkable substitute for having adequate duct length between major disturbances in flow and the sampling or monitoring locations; that the use of probes of simpler design with large diameter inlet nozzles feeding short transmission lines would provide superior performance; and that conditions for monitoring discharge air would be far better ahead of the collar in the exhaust shaft than any location downstream. Chapter 3 contains the detailed technical basis for a conceptual design, and a proposed sample extraction system for the stack discharge location. 36 refs., 23 figs., 4 tabs

  5. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Nyska, Abraham [Tel Aviv University, Tel Aviv (Israel); Richards, Judy E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Andrews, Debora [Research Core Unit, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC 27711 (United States); Gilmour, M. Ian [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States)

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  6. A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Xu, Zhengxin; Ren, Chengqin; Deng, Banglin

    2013-01-01

    In this paper, a novel approach for exhaust heat recovery was proposed to improve IC (internal combustion) engine fuel efficiency and also to achieve the goal for direct usage of methanol as IC engine fuel. An open organic Rankine cycle system using methanol as working medium is coupled to IC engine exhaust pipe for exhaust heat recovery. In the bottom cycle, the working medium first undergoes dissociation and expansion processes, and is then directed back to IC engine as fuel. As the external bottom cycle and the IC engine main cycle are combined together, this scheme forms a combined thermodynamic cycle. Then, this concept was applied to a turbocharged engine, and the corresponding simulation models were built for both of the external bottom cycle and the IC engine main cycle. On this basis, the energy saving potential of this combined cycle was estimated by parametric analyses. Compared to the methanol vapor engine, IC engine in-cylinder efficiency has an increase of 1.4–2.1 percentage points under full load conditions, while the external bottom cycle can increase the fuel efficiency by 3.9–5.2 percentage points at the working pressure of 30 bar. The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points. - Highlights: • A combined thermodynamic cycle using methanol as working medium for IC engine exhaust heat recovery is proposed. • The external bottom cycle of exhaust heat recovery and IC engine working cycle are combined together. • IC engine fuel efficiency could be improved from both in-cylinder working cycle and external bottom cycle. • The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points at full load

  7. Spatially distributed effects of mental exhaustion on resting-state FMRI networks.

    Science.gov (United States)

    Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer

    2014-01-01

    Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.

  8. Processes for exhaust purification of biomass combustion systems, dust removal, heat recovery, technologies and practical experience; Verfahren zur Abgasreinigung nach Biomasseverbrennung, Abgasentstaubung, Abgasreinigung Moeglichkeiten zur Waermerueckgewinnung; Technologien und Praxiserfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Jirkowsky, C.; Pretzl, R.; Sihorsch, K.

    2003-07-01

    The authors report on air pollution control systems of biomass burners: dedusting, centrifugal filtration, cyclone separators, electric filters (wet and dry), fabric filters, wet scrubbers. Technical specifications and methods of heat recovery are given. (uke)

  9. Considerations over the effects caused by a heat recovery system for exhaust gases, adapted to gas turbines originally designed for the operation in a simple cycle; Consideraciones sobre los efectos causados por un sistema de recuperacion de calor de gases de escape, adaptado a turbinas de gas disenadas originalmente para operar bajo un ciclo simple

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta Escobar, Cesar A [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1994-12-31

    This article sets out the considerations on what a heat recovery system from exhaust gases, to already installed and in operation gas turbines, and that were not originally designed to operate with this system, can cause. The potential effects are set forth on the control systems, on the combustion chambers, and in the gas turbine blades, utilized for natural gas pumping or power generation in land installations or in offshore platforms in trying to adapt to them a regenerative cycle or a heating system. Observed effects, fundamentally in the flame stability loop, flow velocity, thermal intensity coefficient, air/fuel relationships and mass flow. Also are presented the consequences that primary production system would suffer, mainly due to the natural gas pumping reduction, the space availability, the fuel consumption, and the maximum amount of heat susceptible to be recovered, comparing the requirements of this in the system. [Espanol] En este articulo se plantean las consideraciones sobre lo que puede provocar un sistema de recuperacion de calor de gases de escape adaptado a turbinas de gas ya instaladas, operando y que no fueron disenadas originalmente para operar con este sistema. Se plantean los probables efectos en los sistemas de control, en las camaras de combustion y en los empaletados de las turbinas de gas usadas para bombeo de gas natural o generacion electrica en instalaciones de tierra o plataformas marinas, al tratar de adaptarseles un ciclo regenerativo o un sistema para calentamiento. Efectos observados, fundamentalmente, en el LOOP de estabilidad de flama, velocidad del flujo, coeficiente de intensidad termica, relaciones aire-combustible y flujo masico. Tambien se presentan las consecuencias que sufriria el sistema primario de produccion debido, principalmente, a la reduccion del bombeo de gas natural, a la disponibilidad de espacio, al consumo de combustible y a la cantidad maxima de calor susceptible de recuperarse, comparada con los

  10. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  11. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    International Nuclear Information System (INIS)

    FOUST, D.J.

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering

  12. Effect Effects of Auricularia auricula Polysaccharides on Exhaustive ...

    African Journals Online (AJOL)

    Exhaustive Swimming Exercise-Induced Oxidative Stress in Mice. Haitao Hao .... of the College of Life Sciences, China Jiliang. University ..... The delicate physiological balance between oxidative ... This work was supported by funds from.

  13. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  14. Muscle interstitial potassium kinetics during intense exhaustive exercise

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Mohr, Magni; Pedersen, Lasse Dannemann

    2003-01-01

    Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma...... was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 m......M at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P exercise period in AL compared with L (9.2 +/- 0.7 vs. 6.4 +/- 0.9 mM; P

  15. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  16. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    Directory of Open Access Journals (Sweden)

    Naeimi Hessamedin

    2011-01-01

    Full Text Available Nowadays, computational fluid dynamics codes (CFD are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction losses from the total energy losses. The total pressure loss coefficient has been related to the extrapolated Mach number in the common branch and to the mass flow rate ratio between branches at different flow configurations, in both combining and dividing flows. The study indicate that the numerical results were generally in good agreement with those of experimental data from the literature and will be applied as a boundary condition in one-dimensional global simulation models of fluid systems in which these components are present.

  17. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis

    International Nuclear Information System (INIS)

    Doğan, Battal; Erol, Derviş; Yaman, Hayri; Kodanli, Evren

    2017-01-01

    Highlights: • Examining the performance of ethanol-gasoline blend. • Evaluation of the exhaust emissions. • Energy and exergy analysis. • Calculation of irreversibility from cooling system and the exhaust resulting. - Abstract: Ethanol which is considered as an environmentally cleaner alternative to fossil fuels is used on its own or blended with other fuels in different ratios. In this study, ethanol which has high octane rating, low exhaust emission, and which is easily obtained from agricultural products has been used in fuels prepared by blending it with gasoline in various ratios (E0, E10, E20, and E30). Ethanol-gasoline blends have been used in a four-cylinder four-stroke spark ignition engine for performance and emission analysis under full load. In the experimental studies, engine torque, fuel and cooling water flow rates, and exhaust and engine surface temperature have been measured. Engine energy distribution, irreversible processes in the cooling system and the exhaust, and the exergy distribution have been calculated using the experimental data and the formulas for the first and second laws of thermodynamics. Experiments and theoretical calculations showed that ethanol added fuels show reduction in carbon monoxide (CO), carbon dioxide (CO_2) and nitrogen oxide (NO_X) emissions without significant loss of power compared to gasoline. But it was measured that the reduction of the temperature inside the cylinder increases the hydrocarbon (HC) emission.

  18. Exhaustible natural resources, normal prices and intertemporal equilibrium

    OpenAIRE

    Parrinello, Sergio

    2003-01-01

    This paper proposes an extension of the classical theory of normal prices to an n-commodity economy with exhaustible natural resources. The central idea is developed by two analytical steps. Firstly, it is assumed that a given flow of an exhaustible resource in short supply is combined with the coexistence of two methods of production using that resource. Sraffa’s equations are reinterpreted by adopting the concept of effectual supply of natural resources and avoiding the assumption of perfec...

  19. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties which

  20. LOFT diesel generator ''A'' exhaust stack seismic analysis

    International Nuclear Information System (INIS)

    Blandford, R.K.

    1978-01-01

    A stress analysis of the LOFT Diesel Generator ''A'' Exhaust Stack was performed to determine its reaction to Safe-Shutdown Earthquake loads. The exhaust stack silencer and supporting foundation was found to be inadequate for the postulated seismic accelerations. Lateral support is required to prevent overturning of the silencer pedestal and reinforcement of the 4'' x 0.5'' silencer base straps is necessary. Basic requirements for this additional support are discussed

  1. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle

    International Nuclear Information System (INIS)

    Domingues, António; Santos, Helder; Costa, Mário

    2013-01-01

    This study evaluates the vehicle exhaust WHR (waste heat recovery) potential using a RC (Rankine cycle ). To this end, both a RC thermodynamic model and a heat exchanger model have been developed. Both models use as input, experimental data obtained from a vehicle tested on a chassis dynamometer. The thermodynamic analysis was performed for water, R123 and R245fa and revealed the advantage of using water as the working fluid in applications of thermal recovery from exhaust gases of vehicles equipped with a spark-ignition engine. Moreover, the heat exchanger effectiveness for the organic working fluids R123 and R245fa is higher than that for the water and, consequently, they can also be considered appropriate for use in vehicle WHR applications through RCs when the exhaust gas temperatures are relatively low. For an ideal heat exchanger, the simulations revealed increases in the internal combustion engine thermal and vehicle mechanical efficiencies of 1.4%–3.52% and 10.16%–15.95%, respectively, while for a shell and tube heat exchanger, the simulations showed an increase of 0.85%–1.2% in the thermal efficiency and an increase of 2.64%–6.96% in the mechanical efficiency for an evaporating pressure of 2 MPa. The results confirm the advantages of using the thermal energy contained in the vehicle exhaust gases through RCs. Furthermore, the present analysis demonstrates that improved evaporator designs and appropriate expander devices allowing for higher evaporating pressures are required to obtain the maximum WHR potential from vehicle RC systems. -- Highlights: ► This study evaluates the vehicle exhaust waste heat recovery potential using Rankine cycle systems. ► A thermodynamic model and a heat exchanger model were developed. ► Experimental data obtained in a vehicle tested on a chassis dynamometer was used as models input. ► Thermodynamic analysis was performed for water, R123 and R245fa. ► Results confirm advantages of using the thermal energy

  2. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    Science.gov (United States)

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  3. [Negligent homicide caused by exhaust gas escaping from a manipulated chimney].

    Science.gov (United States)

    Wirth, Ingo; Varchmin-schultheiss, Karin; Schmeling, Andreas

    2011-01-01

    A chimney built and operated according to the instructions is supposed to ensure that the combustion gases coming from the fireplace can escape safely. If the operational reliability is impaired, this presents a risk of acute poisoning. The report deals with a negligently caused carbon monoxide poisoning of a married couple as a consequence of improper installation of a cover of the chimney opening. Various causes of fatal poisoning due to defective exhaust systems are discussed in connection with the presented case report.

  4. Exhaust energy conversion by thermoelectric generator: Two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Karri, M.A.; Thacher, E.F.; Helenbrook, B.T. [Department of Mechanical and Aeronautical Engineering, PO Box 5725, Clarkson University, Potsdam, NY 13699 (United States)

    2011-03-15

    This study reports predictions of the power and fuel savings produced by thermoelectric generators (TEG) placed in the exhaust stream of a sports utility vehicle (SUV) and a stationary, compressed-natural-gas-fueled engine generator set (CNG). Results are obtained for generators using either commercially-available bismuth telluride (Bi{sub 2}Te{sub 3}) or quantum-well (QW) thermoelectric material. The simulated tests are at constant speed in the SUV case and at constant AC power load in the CNG case. The simulations make use of the capabilities of ADVISOR 2002, the vehicle modeling system, supplemented with code to describe the thermoelectric generator system. The increase in power between the QW- and Bi{sub 2}Te{sub 3}-based generators was about three times for the SUV and seven times for the CNG generator under the same simulation conditions. The relative fuel savings for the SUV averaged around -0.2% using Bi{sub 2}Te{sub 3} and 1.25% using QW generators. For the CNG case the fuel savings was around 0.4% using Bi{sub 2}Te{sub 3} and around 3% using QW generators. The negative fuel gains in the SUV were caused by parasitic losses. The power to transport the TEG system weight was the dominant parasitic loss for the SUV but was absent in the CNG generator. The lack of space constraint and the absence of parasitic loss from the TEG system weight in the CNG case allowed an increase in the TEG system size to generate more power. (author)

  5. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  6. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    Science.gov (United States)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  7. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge ADJIBADE

    2017-09-01

    Full Text Available This work presents an experimental study of H20-NH3-H2 diffusion absorption refrigeration under two types of energy sources, i.e. the conventional electric energy from grid (electric and exhaust gas from internal combustion engine. Dynamic method is used to evaluate the behavior of the components of the system for both energy sources. Results obtained show that the performance of each component under different types of energy sources is almost coherent. For the generator, the electrical heater system requires more time to warm up, around three minutes, compared to the 40 s for system running with exhaust gas. For the evaporator, the decreasing rate is higher for the exhaust gas source and it took only about two hours to reach steady-state while for the electrical heat, the steady-state is reached after about seven hours of operation. For both energy sources, the evaporation temperature stabilizes to 3 °C and the minimum temperature to boil off ammonia is around 140 °C.

  8. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  9. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  10. Advanced engine management of individual cylinders for control of exhaust species

    Science.gov (United States)

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  11. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    International Nuclear Information System (INIS)

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  12. Comparison of exhaust emission on the basis of Real Driving Emissions measurements and simulations

    Directory of Open Access Journals (Sweden)

    Nowak Mateusz

    2017-01-01

    Full Text Available Designing of modern transport systems involves the need to meet a large number of requirements. The influence of designed road infrastructure on the environment is very wide and important. The most valid aspect in this case is the reduction of emissions of harmful compounds by increasing the fluency of vehicles flow and building collision free road intersections. But it should be started from establishing the initial emission level of harmful compounds. This paper presents a methodology for determining exhaust emissions from vehicles moving on the national road no. 50 in area of Zyrardow. Modern measuring tools such as the PEMS and the microscopic road simulation software, using the application to determine exhaust emissions, were used for this purpose.

  13. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.

  14. Analysis of heat recovery from a spray dryer by recirculation of exhaust air

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    Highlights: • We study a spray dryer with heat recovery by partial recirculation of exhaust air. • We examine effects of process parameters on energy efficiency and energy savings. • Decreasing drying air temperature and flow rate will increase energy efficiency. • Increasing recirculation ratio and slurry feed rate will increase energy efficiency. - Abstract: Model simulations were employed to investigate the influences of process parameters on the energy recovery in spray drying process that partially recycle the exhaust drying gas. The energy efficiency and energy saving were studied for various values of recirculation ratios with respect to the temperature and flow rate of the drying air, slurry feed rate and concentration of slurry in spray drying of advanced ceramic materials. As a result, significant gains in energy efficiency and energy saving were obtained for a spray drying system with high recirculation ratio of exhaust air. The high slurry feed rate and the low slurry concentration, inlet drying air temperature and drying air flow rate enhanced the energy efficiency of spray drying system. However, the high energy saving was obtained in spray dryers operating at low slurry feed rate and high slurry concentration

  15. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Sprouse, Charles; Depcik, Christopher

    2013-01-01

    Escalating fuel prices and future carbon dioxide emission limits are creating a renewed interest in methods to increase the thermal efficiency of engines beyond the limit of in-cylinder techniques. One promising mechanism that accomplishes both objectives is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. This paper reviews the history of internal combustion engine exhaust waste heat recovery focusing on Organic Rankine Cycles since this thermodynamic cycle works well with the medium-grade energy of the exhaust. Selection of the cycle expander and working fluid are the primary focus of the review, since they are regarded as having the largest impact on system performance. Results demonstrate a potential fuel economy improvement around 10% with modern refrigerants and advancements in expander technology. -- Highlights: ► This review article focuses on engine exhaust waste heat recovery works. ► The organic Rankine cycle is superior for low to medium exergy heat sources. ► Working fluid and expander selection strongly influence efficiency. ► Several authors demonstrate viable systems for vehicle installation

  16. Aero-acoustic design and test of a multiple splitter exhaust noise suppressor for a 0.914m diameter lift fan

    Science.gov (United States)

    Stimpert, D. L.

    1973-01-01

    A lift fan exhaust suppression system to meet future VTOL aircraft noise goals was designed and tested. The test vehicle was a 1.3 pressure ratio, 36 inch (91.44 cm) diameter lift fan with two chord rotor to stator spacing. A two splitter fan exhaust suppression system thirty inches (76.2 cm) long achieved 10 PNdB exhaust suppression in the aft quadrant compared to a design value of 20 PNdB. It was found that a broadband noise floor limited the realizable suppression. An analytical investigation of broadband noise generated by flow over the treatment surfaces provided very good agreement with the measured suppression levels and noise floor sound power levels. A fan thrust decrement of 22% was measured for the fully suppressed configuration of which 11.1% was attributed to the exhaust suppression hardware.

  17. Reduced-scale experimental investigation on ventilation performance of a local exhaust hood in an industrial plant

    DEFF Research Database (Denmark)

    Huang, Yanqiu; Wang, Yi; Liu, Li

    2015-01-01

    stratification in the working areas of industrial plants. Investigated factors were confined airflow boundaries, flow rates of the exhaust hoods, source strengths, airflow obstacles and distances between sources and exhaust hoods. Reduced-scale experiments were conducted with a geometric scale of 1...... efficiency. Hood performance was also evaluated by thermal stratification heights in the plants. This study could help improve the capture efficiency of local ventilation systems used in industrial plants. Safe operation heights are recommended in the upper space of industrial plants based on the thermal...

  18. Towards long pulse high performance discharges in Tore Supra: experimental knowledge and technological developments for heat exhaust

    International Nuclear Information System (INIS)

    1995-08-01

    This document deals with fusion heat exhaust experiments in Tore Supra tokamak. The purpose of the Tore Supra tokamak is to achieve and control long pulse powerful discharges. High input power is required to generate the non inductive current, approximately 25 MW . The conception and realisation of a Plasma Facing Component (PFC) scheme able to deal with this large amount of power is the main issue. A description of the water loop used for power removal and of the calorimetric system to determine the overall heat exhaust balance is provided. The infra-red measurements used during plasma operation are also described, together with several heat exhaust devices. The behaviour of ion cyclotron and lower hybrid wave launchers is addressed. Eventually, some information is provided on technological developments of PFC in Tore Supra. (TEC). 61 refs., 34 figs

  19. Analysis of the Impact of Early Exhaust Valve Opening and Cylinder Deactivation on Aftertreatment Thermal Management and Efficiency for Compression Ignition Engines

    OpenAIRE

    Roberts, Leighton Edward

    2014-01-01

    In order to meet strict emissions regulations, engine manufacturers have implemented aftertreatment technologies which reduce the tailpipe emissions from diesel engines. The effectiveness of most of these systems is limited when exhaust temperatures are low (usually below 200°C to 250°C). This is a problem for extended low load operation, such as idling and during cold start. Use of variable valve actuation, including early exhaust valve opening (EEVO) and cylinder deactivation (CDA), has bee...

  20. Trace elements in particles of motor vehicle exhaust in Shanghai

    International Nuclear Information System (INIS)

    Jiang Da; Qiu Zhijun; Lu Rongrong; Qiu Huiyuan; Zhu Jieqing; Li Xiaolin

    2002-01-01

    A nuclear microprobe with high spatial resolution and high analytical sensitivity was applied to analyze trace elements, especially lead, in vehicle exhaust of Shanghai city. The result shows that the chemical composition and its corresponding x-ray relative intensity are different among different vehicle exhausts. There are many kinds of metal elements in particles of vehicle exhaust, most are harmful to people, such as Ti, Cr, Mn, Pb, etc. The authors found that the lead concentration was 6820 μg/g and the bromine concentration was 5300 μg/g in the exhaust from Santana using leaded gasoline (SULG), which is higher than any other kinds of vehicle exhausts. The authors have also detected the minimum lead in the particles of unleaded gasoline and its content varies from one to another. Its mean concentration was 450 μg/g and the highest reached 6210 μg/g. The unleaded gasoline's Pb existed in the whole particle while the leaded gasoline's enriched in the surface of the particle and was more harmful to the human beings

  1. Variation of particle exhaust with changes in divertor magnetic balance

    International Nuclear Information System (INIS)

    Petrie, T.W.; Allen, S.L.; Brooks, N.H.

    2006-01-01

    Recent experiments on DIII-D point to the importance of two factors in determining how effectively the deuterium particle inventory in a tokamak plasma can be controlled through pumping at the divertor target(s): (1) the divertor magnetic balance, i.e. the degree to which the divertor topology is single-null or double-null (DN) and (2) the direction of the of B x ∇B ion drift with respect to the X-point(s). Changes in divertor magnetic balance near the DN shape have a much stronger effect on the particle exhaust rate at the inner divertor target(s) than on the particle exhaust rate at the outer divertor target(s). The particle exhaust rate for the DN shape is strongest at the outer strike point opposite the B x ∇B ion particle drift direction. Our data suggests that the presence of B x ∇B and E x B ion particle drifts in the scrape-off layer and divertor(s) play an important role in the particle exhaust rates of DN and near-DN plasmas. Particle exhaust rates are shown to depend strongly on the edge (pedestal) density. These results have implications for particle control in ITER and other future tokamaks

  2. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  3. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  4. Exposure assessment in studies on health effects of traffic exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Setaelae, S [Association for the Pulmonary Disabled, Helsinki (Finland); Jaakkola, J J.K. [Helsinki Univ. (Finland). Dept. of Public Health

    1996-12-31

    A main source of outdoor air pollution is road traffic, which produces a complex mixture of nitrogen oxides, carbon monoxide, volatile hydrocarbons, airborne particles and some other compounds. Traffic exhaust affects also the concentrations of ozone and other photo chemical oxidants. In earlier studies those components have had remarkable health effects. Several studies on occupational exposure to automobile exhaust have been published and several studies have been observed an association between both outdoor and indoor pollutant levels and health outcomes. However, there are only a few epidemiological studies in which traffic exhaust, a complex mixture, has been studied in its entirety. During recent years, interesting epidemiological studies of the health effects of this complex mixture have been published. Human exposure assessment for traffic exhaust can be categorized according to the environment of exposure (indoors, outdoors, in-traffic) or to the method of exposure assessment (direct or indirect methods). In this presentation the methods are further categorized into (1) traffic activity, (2) air concentration measurements, and (3) dispersion models, in order to better understand the advantages and disadvantages of different approaches. The objective of this presentation is to make a critical review of exposure assessments in the epidemiological studies on health effects of traffic exhaust. (author)

  5. Exposure assessment in studies on health effects of traffic exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Setaelae, S. [Association for the Pulmonary Disabled, Helsinki (Finland); Jaakkola, J.J.K. [Helsinki Univ. (Finland). Dept. of Public Health

    1995-12-31

    A main source of outdoor air pollution is road traffic, which produces a complex mixture of nitrogen oxides, carbon monoxide, volatile hydrocarbons, airborne particles and some other compounds. Traffic exhaust affects also the concentrations of ozone and other photo chemical oxidants. In earlier studies those components have had remarkable health effects. Several studies on occupational exposure to automobile exhaust have been published and several studies have been observed an association between both outdoor and indoor pollutant levels and health outcomes. However, there are only a few epidemiological studies in which traffic exhaust, a complex mixture, has been studied in its entirety. During recent years, interesting epidemiological studies of the health effects of this complex mixture have been published. Human exposure assessment for traffic exhaust can be categorized according to the environment of exposure (indoors, outdoors, in-traffic) or to the method of exposure assessment (direct or indirect methods). In this presentation the methods are further categorized into (1) traffic activity, (2) air concentration measurements, and (3) dispersion models, in order to better understand the advantages and disadvantages of different approaches. The objective of this presentation is to make a critical review of exposure assessments in the epidemiological studies on health effects of traffic exhaust. (author)

  6. The Lund University Checklist for Incipient Exhaustion-a cross-sectional comparison of a new instrument with similar contemporary tools.

    Science.gov (United States)

    Persson, Roger; Österberg, Kai; Viborg, Njördur; Jönsson, Peter; Tenenbaum, Artur

    2016-04-21

    Stress-related health problems (e.g., work-related exhaustion) are a societal concern in many postindustrial countries. Experience suggests that early detection and intervention are crucial in preventing long-term negative consequences. In the present study, we benchmark a new tool for early identification of work-related exhaustion-the Lund University Checklist for Incipient Exhaustion (LUCIE)-against other contextually relevant inventories and two contemporary Swedish screening scales. A cross-sectional population sample (n = 1355) completed: LUCIE, Karolinska Exhaustion Disorder Scale (KEDS), Self-reported Exhaustion Disorder Scale (s-ED), Shirom-Melamed Burnout Questionnaire (SMBQ), Utrecht Work Engagement Scale (UWES-9), Job Content Questionnaire (JCQ), Big Five Inventory (BFI), and items concerning work-family interference and stress in private life. Increasing signs of exhaustion on LUCIE were positively associated with signs of exhaustion on KEDS and s-ED. The prevalence rates were 13.4, 13.8 and 7.8 %, respectively (3.8 % were identified by all three instruments). Increasing signs of exhaustion on LUCIE were also positively associated with reports of burnout, job demands, stress in private life, family-to-work interference and neuroticism as well as negatively associated with reports of job control, job support and work engagement. LUCIE, which is intended to detect pre-stages of ED, exhibits logical and coherent positive relations with KEDS and s-ED as well as other conceptually similar inventories. The results suggest that LUCIE has the potential to detect mild states of exhaustion (possibly representing pre-stages to ED) that if not brought to the attention of the healthcare system and treated, may develop in to ED. The prospective validity remains to be evaluated.

  7. Economic analysis of gradual "social exhaustion" of waste management capacity.

    Science.gov (United States)

    Koide, Hideo; Nakayama, Hirofumi

    2013-12-01

    This article proposes to analyze the quantitative effects of a gradual physical and "social" exhaustion of a landfill site on an equilibrium waste management service. A gradual social exhaustion of a landfill is defined here as an upward shift of a "subjective factor" associated with the amount of waste, based on the plausible hypothesis that an individual will not accept excessive presence of landfilled waste. Physical exhaustion occurs when the absolute capacity of a landfill site decreases. The paper shows some numerical examples using specific functions and parameters, and proposes appropriate directions for three policy objectives: to decrease the equilibrium waste disposal, to increase the economic surplus of the individual and/or the waste management firm, and to lower the equilibrium collection fee. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    Science.gov (United States)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  9. Emotional exhaustion and defense mechanisms in intensive therapy unit nurses.

    Science.gov (United States)

    Regan, Anna; Howard, Ruth A; Oyebode, Jan R

    2009-05-01

    Contrary to its original conceptualization, research has found that emotional demands do not lead to burnout in nurses. According to psychoanalytic theory, unconscious defense mechanisms may protect nurses from conscious awareness of work-related anxiety. This prevents self-report and may explain research findings. The maturity of defense style influences how anxiety is managed. Immature defenses prevent the conscious processing necessary for resolution of anxiety. Therefore, it is hypothesized that the use of immature defenses will lead to emotional exhaustion. This cross-sectional study used questionnaires to explore the defense mechanisms of 87 Intensive Therapy Unit nurses. Although the sample endorsed a predominantly mature defense style, the use of immature defenses predicted emotional exhaustion. Also, lower levels of reported stress associated with emotional demands predicted emotional exhaustion. Although this strongly implies the mediating role of immature defense mechanisms, the results were not statistically significant.

  10. Emissions of exhaust gases and health of the person

    Science.gov (United States)

    Germanova, Tatiana; Kernozhitskaya, Anna

    2017-10-01

    The auto-road complex brings the considerable contribution to pollution and adverse change of environment. Influence of exhaust gases of cars is at the bottom of occurrence and developments of various forms of diseases. Every townsman feels the negative influence rendered by motor transport on himself. The modern city dweller is so accustomed to the smell of exhaust gases that he does not even notice it at all, continues to breathe a poisonous mixture, while neither the car nor the road can be isolated from the habitats of people. The higher the population density, the higher the need for motor transport. The health effects of emissions of exhaust gases and vapors, including regulated and unregulated pollutants, are discussed in this article.

  11. Device for the elimination of noxious components of exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, A

    1975-04-24

    A device for the removal of noxious components from the exhaust gases of an internal combustion engine is described. It consists of a chemical reactor installed in the tail-pipe. Behind the reactor, in the flow direction of the exhaust gases, there is a catalytic temperature sensor whose electrical output is transmitted to an analyzer which provides a signal if the reactor fails. The temperature sensor is situated directly in the waste gas duct or in a branch of the tail-pipe which is supplied with air. There is also another, catalytically inactive, temperature sensor. A failure is signalled (a) if the chemical reactor has failed, and (b) if there is not enough oxygen in the exhaust gas to keep up a chemical reaction.

  12. Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.

    Science.gov (United States)

    Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele

    2017-02-07

    Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NO x ), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NO x concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NO x conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NO x conditions) was 34.1%. The reduced SOA yield under high-NO x conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.

  13. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  14. Helium transport and exhaust studies in enhanced confinement regimes in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Burrell, K.H.; Finkenthal, D.F.; Gohil, P.; Groebner, R.J.

    1995-02-01

    A better understanding of helium transport in the plasma core and edge in enhanced confinement regimes is now emerging from recent experimental studies on DIII-D. Overall, the results are encouraging. Significant helium exhaust (τ* He /τ E ∼ 11) has been obtained in a diverted, ELMing H-mode plasma simultaneous with a central source of helium. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium transport properties of the plasma. Perturbative helium transport studies using gas puffing have shown that D He /X eff ∼1 in all confinement regimes studied to date (including H-mode and VH-mode). Furthermore, there is no evidence of preferential accumulation of helium in any of these regimes. However, measurements in the core and pumping plenum show a significant dilution of helium as it flows from the plasma core to the pumping plenum. Such dilution could be the limiting factor in the overall removal rate of helium in a reactor system

  15. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  16. Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [United Arab Emirates Univ., Dept. of Mechanical Engineering, Al-Ain (United Arab Emirates)

    2003-03-01

    Combustion pressure rise rate and thermal efficiency data are measured and presented for a dual fuel engine running on a dual fuel of Diesel and compressed natural gas and utilizing exhaust gas recirculation (EGR). The maximum pressure rise rate during combustion is presented as a measure of combustion noise. The experimental investigation on the dual fuel engine revealed the noise generated from combustion and the thermal efficiency at different EGR ratios. A Ricardo E6 Diesel version engine is converted to run on a dual fuel of Diesel and compressed natural gas and having an exhaust gas recycling system is used throughout the work. The engine is fully computerized, and the cylinder pressure data and crank angle data are stored in a PC for offline analysis. The effects of EGR ratio, engine speeds, loads, temperature of recycled exhaust gases, intake charge pressure and engine compression ratio on combustion noise and thermal efficiency are examined for the dual fuel engine. The combustion noise and thermal efficiency of the dual fuel engine are found to be affected when EGR is used in the dual fuel engine. (Author)

  17. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  18. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  19. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-06-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  20. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection

    Directory of Open Access Journals (Sweden)

    Marcia Bellon

    2017-10-01

    Full Text Available The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein–Barr virus (EBV, Hepatitis B/C/D virus (HBV/HCV/HDV, human herpesvirus 8 (HHV-8, human immunodeficiency virus (HIV, human T-cell leukemia virus type I (HTLV-I, human papillomavirus (HPV, herpes simplex virus-1/2(HSV-1/2, and Varicella–Zoster virus (VZV. Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.

  1. Modified pressure loss model for T-junctions of engine exhaust manifold

    Science.gov (United States)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  2. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  3. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust

    International Nuclear Information System (INIS)

    Huang Yong; Shi Jiaming; Yuan Zhongcai

    2011-01-01

    In terms of the diffusive process of the gases injected from rocket exhaust into the ionosphere and the relevant chemical reactions between the gases and the composition of ionosphere, the modifications in ionosphere caused by the injected hydrogen and carbon dioxide gas from the rocket exhaust are investigated. The results show that the diffusive process of the injected gases at the ionospheric height is very fast, and the injected gases can lead to a local depletion of electron concentration in the F-region. Furthermore, the plasma 'hole' caused by carbon dioxide is larger, deeper and more durable than that by the hydrogen. (astrophysics and space plasma)

  4. ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA

    DEFF Research Database (Denmark)

    Toledo Lazaro, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt

    2013-01-01

    origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing...... induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells...

  5. Acceptance test report MICON software exhaust fan control

    International Nuclear Information System (INIS)

    Keck, R.D.

    1998-01-01

    This test procedure specifies instructions for acceptance testing of software for exhaust fan control under Project ESPT (Energy Savings Performance Contract). The software controls the operation of two emergency exhaust fans when there is a power failure. This report details the results of acceptance testing for the MICON software upgrades. One of the modifications is that only one of the emergency fans will operate at all times. If the operating fan shuts off or fails, the other fan will start and the operating fan will be stopped

  6. Low pressure EGR system having full range capability

    Science.gov (United States)

    Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir

    2009-09-22

    An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.

  7. 251 - 258_Hajara_Mobile exhaust

    African Journals Online (AJOL)

    pc

    Furthermore, there was no significant difference based on the type ... environmental stress which could be recommended in high traffic den ... may exert control over their gas exchange rate .... into the plants' system through the openings.

  8. Description of broadband structure-borne and airborne noise transmission from the powertrain (engine-gear combination including engine intake and exhaust system) in modern combustion process as well as new systems for variable control of gas exchange. Binaural transfer path analysis and synthesis. Interim report; Beschreibung der breitbandigen Koerper- und Luftschallausbreitung aus dem Powertrain (Motor-Getriebe-Verband inklusive Ansaug- und Abgasanlage) bei modernen Verbrennungsverfahren sowie neuer Systeme zur variablen Ladungswechselsteuerung. Binaurale Transferpfadanalyse und -synthese. Zwischenbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sottek, R. [HEAD acoustics GmbH, Herzogenrath (Germany); Behler, G.; Kellert, T. [RWTH Aachen (DE). Inst. fuer Technische Akustik (ITA); Bernhard, U.

    2004-07-01

    The modern combustion procedures and new valve train generations lead to a different temporal and spectral behaviour of the vibrations between the interfaces of a powertrain and the adjoining structures and at the same time to a different airborne sound radiation via the engine compartment and the orifices and component surfaces at the intake and exhaust system into the passenger compartment. The influence of the high-frequency components on the vehicle interior noise becomes more and more important. Coupling and mass effects have to be taken into consideration now, because otherwise results might increasingly be misinterpreted. Previous methods including the binaural transfer path analysis and synthesis do not take account of these effects. This research project shall fill this gap. Regarding the airborne sound component the engine compartment can at best be considered as a pressure chamber for low frequencies only. However, for higher frequencies the positions of the partial sound sources, the corresponding transfer functions, near-field effects and modal structures in the engine compartment become increasingly relevant. In this project these influencing parameters shall be classified with regard to quality and quantity. This knowledge is also of fundamental interest for the determination of the primary sound sources on the test bench and the transferability of the results to the vehicle. The most important aim of this project is to develop simplified models for the structure-borne and airborne noise transmission from a precise and complex database and to reduce them to the essential by means of parameter studies. In the final stage of the project, the complicated fine structures of the transfer functions will be reduced to a few model functions, similar to the procedure of the modal analysis. From this simple model a ''black box'' will be derived which is the basis for simulating driving conditions, applying modifications and judging them

  9. 40 CFR 86.509-90 - Exhaust gas sampling system.

    Science.gov (United States)

    2010-07-01

    ... have an accuracy and precision of ±1 °C (1.8 °F). (3) The pressure gauges shall have an accuracy and... of the test by more than ±5 percent. (The volumetric sample flow rate shall be varied inversely with...

  10. Method and apparatus for thermal management of vehicle exhaust systems

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-12-26

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

  11. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ... Using Gas Chromatography,” December 1991, 1994 SAE Handbook—SAE International Cooperative Engineering... liquid chromatography (HPLC) of 2,4-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV.... The analysis for formaldehyde is performed using high-pressure liquid chromatography (HPLC) of 2,4...

  12. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    costs for the operation of the ship. The types of boilers used in this process are specially built to have water flowing around thousands of tubes ...uneven heating of the water and metal heat exchanger, leading to damage or possible failure of the boiler . Since the merchant vessels operate at near...one of the central boiler tubes . Each of the sensors was individually adjusted to ensure that the readings were as accurate as possible to allow for

  13. Omega-3 polyunsaturated fatty acid docosahexaenoic acid and its role in exhaustive-exercise-induced changes in female rat ovulatory cycle.

    Science.gov (United States)

    Mostafa, Abeer F; Samir, Shereen M; Nagib, R M

    2018-04-01

    Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.

  14. A review on idling reduction strategies to improve fuel economy and reduce exhaust emissions of transport vehicles

    International Nuclear Information System (INIS)

    Shancita, I.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Rashed, M.M.; Rashedul, H.K.

    2014-01-01

    Highlights: • Introduce various idling reduction technologies for transport vehicles. • Exhibit their energy use, advantages, disadvantages to understand their capability. • Conduct critical review to improve fuel economy and exhaust emissions. • Suggest better technology according to their performance ability. - Abstract: To achieve reductions in vehicle idling, strategies and actions must be taken to minimize the time spent by drivers idling their engines. A number of benefits can be obtained in limiting the idling time. These benefits include savings in fuel use and maintenance costs, vehicle life extension, and reduction in exhaust emissions. The main objective of idling reduction (IR) devices is to reduce the amount of energy wasted by idling trucks, rail locomotives, and automobiles. During idling, gasoline vehicles emit a minimum amount of nitrogen oxides (NO x ) and negligible particulate matter (PM). However, generally a large amount of carbon monoxide (CO) and hydrocarbons (HC) are produced from these vehicles. Gasoline vehicles consume far more fuel at an hourly rate than their diesel counterparts during idling. Higher NOx and comparatively larger PM are produced by diesel vehicles than gasoline vehicles on the average during idling. Auxiliary power unit (APU), direct-fired heaters, fuel cells, thermal storage system, truck stop electrification, battery-based systems, engine idle management (shutdown) systems, electrical (shore power) solutions, cab comfort system, and hybridization are some of the available IR technologies whose performances for reducing fuel consumption and exhaust emissions have been compared. This paper analyzes the availability and capability of most efficient technologies to reduce fuel consumption and exhaust emissions from diesel and gasoline vehicles by comparing the findings of previous studies. The analysis reveals that among all the options direct fired heaters, APUs and electrified parking spaces exhibit better

  15. Radioactive air emissions notice of construction use of a portable exhauster at 244-AR vault. Revision 2

    International Nuclear Information System (INIS)

    Carrell, D.J.

    1997-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, a portable exhauster at the 244-AR Vault. The exhauster would be used during air jetting of accumulated liquids from the cell sumps into the tanks and to make transfers among the tanks within the vault when needed. The 244-AR Vault is considered to be a double-contained receiver tank (OCRT) based on its functional characteristics, although it is not listed as one of the five designated DCRTs in the 200 Area Tank Farm systems. Process operations at the vault have been inactive since 1978 and the vault's two stacks have not operated since 1993. Since cessation of vault operations an extremely large amount of rain water and snow melt have accumulated in the cell sumps. The water level in the sumps is substantially above their respective operating levels and there is concern for leakage to the environment through containment failure due to corrosion from backed-up sump liquid. Active ventilation is required to provide contamination control during air jetting operations within the vault. It has been determined that it would not be cost effective to repair the existing exhaust systems to an operational condition; thus, a portable exhauster will be used to support the intermittent operations

  16. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  17. 7 CFR 400.56 - Administrative appeal exhaustion.

    Science.gov (United States)

    2010-01-01

    ... contained in 7 CFR part 400, subpart J. Administrative remedies through the appeal process must be exhausted prior to any action for judicial review. The approved APH yield determined as a result of the appeal process will be the yield applicable to the crop year. ...

  18. Exhaustive Weakly Wandering Sequences and Alpha-type Transformations

    Directory of Open Access Journals (Sweden)

    Stanley Eigen

    2015-12-01

    Full Text Available An increasing sequence of integers, $\\mathbb{B}$, is given for which there exists a family of ergodic, infinite measure preserving transformations $T_\\alpha$, $0 \\leq \\alpha \\leq 1$ so that (1 $T_\\alpha$ is of $\\alpha$-type and (2 $\\mathbb{B}$ is an exhaustive weakly wandering sequence for each $T_\\alpha$.

  19. Optimal Design of an Automotive Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fagehi, Hassan; Attar, Alaa; Lee, Hosung

    2018-07-01

    The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

  20. Herpes viruses, cytokines, and altered hemostasis in vital exhaustion.

    NARCIS (Netherlands)

    Ven, A.J.A.M. van der; Diest, R. van; Hamulyak, K.; Maes, M.; Bruggeman, C.A.; Appels, A.

    2003-01-01

    OBJECTIVE: Infections with herpes viruses have been implicated in the pathogenesis of atherosclerosis. We tested the hypothesis that vital exhaustion (VE) is associated with multiple herpesvirus infections, such as herpes simplex virus, varicella-zoster virus, Epstein-Barr virus, and