WorldWideScience

Sample records for exhaust sulfur emissions

  1. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  2. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  3. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  4. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  5. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    Science.gov (United States)

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  6. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  7. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  8. Effects of sulfur and aromatic contents in gasoline on motorcycle emissions

    Science.gov (United States)

    Yao, Yung-Chen; Tsai, Jiun-Horng; Chang, An-Lin; Jeng, Fu-Tien

    By investigating the effect of sulfur and aromatic contents in gasoline on the criteria pollutant emissions [CO, total hydrocarbons (THCs), and NO x] and on air toxics in the exhaust from a non-catalyst four-stroke motorcycle engine, inferences can be made concerning the effect of fuel composition on motorcycle emissions. The fuels were blended with different contents of sulfur (40 and 150 ppmw) and aromatics (20 and 30 vol%). The data indicate that the sulfur content does not correlate with the emissions of the criteria pollutants from the catalyst free engine. Instead, lowering aromatic content in gasoline reduced the THC emission by over 30%, especially in the cruising test. The NO x emission, however, showed an inverse correlation with the aromatic content in gasoline. While a reduction of aromatic content in gasoline may decrease emissions of benzene and toluene, it will increase the emission of aldehyde. Since the percentage changes of emission factor of THC and air toxics in the motorcycle were larger than those in passenger cars, the benefit of emission reduction due to fuel composition changes in motorcycles may have significant impacts in health risk analysis.

  9. Development of alternative ship propulsion in terms of exhaust emissions

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław

    2016-01-01

    Full Text Available The introduction of new emission limits for exhaust emissions of ship engines contributes to the development of new powertrain solutions. New solutions in the simplest approach concern the reduction of the concentration of sulfur in motor fuels. Typically, the aforementioned fuels have a lower value of viscosity which causes a number of supply system problems. It is becoming more and more common to use fuel cells in engine rooms of various types of marine vessels. Unlike conventional systems that use internal combustion engines, these systems have zero exhaust emissions. Hydrogen, methanol, methane and other substances may be used as a fuel in fuel cells. However, so far the best operating parameters are manifested by cells powered by hydrogen, which is associated with difficulties in obtaining and storing this fuel. Therefore, the use of turbine engines allows the obtaining of large operating and environmental advantages. The paper presents a comparison of the ecological parameters of turbine and piston engines.

  10. Evolution of on-road vehicle exhaust emissions in Delhi

    Science.gov (United States)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  11. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    Science.gov (United States)

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  12. Retention of sulfur and nitrogen oxides from the exhaust gases by radiolysis, a modern method of environmental protection

    International Nuclear Information System (INIS)

    Macarie, Rodica; Zissulescu, Ecaterina; Martin, Diana; Radoiu, Marilena

    2000-01-01

    Industry, especially the power industry, is a great generator of gaseous pollutants (SO x , NO x , CO 2 , CO). The oxides are responsible for the 'acid rains' which have a great negative impact on the environment, human beings and animals, while CO 2 emissions contribute to the increase of the greenhouse effect. Retention of the sulfur and nitrogen oxides from the exhaust gases can be carried out either by conventional methods (using chemical adsorbents) or by non-conventional ones (radiolysis). Recently, non-conventional methods have bee given priority, including exhaust gas irradiation with an accelerated electron beam as a more efficient alternative to the gas desulfurization. In order to increase the efficiency of the accelerated electron beam injected into the exhaust gas, the effect of microwave utilization has been investigated. The company S.C. ICPET S.A.-Bucuresti, in cooperation with INFLPR-Bucuresti, investigated the retention by radiolysis of the sulfur and nitrogen oxides from a synthetic mixture of exhaust gases in an installation developed in the laboratory by means of accelerated electron beams, microwaves and by the accelerated electron beams and microwave combined. The paper presents the results obtained in the laboratory experiments and the advantages of radiolysis in comparison with the chemical conventional methods, namely: simultaneous removal of SO 2 and NO x , solid by-products that can be used as fertilizers in agriculture, simple technologies that do not imply catalysts or adsorbents, no waste waters. (authors)

  13. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  14. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  15. Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan.

    Science.gov (United States)

    Su, Jung-Jeng; Chen, Yen-Jung

    2015-01-01

    The objective of this work tends to promote methane content in biogas and evaluate sulfur dioxide emission from direct biogas combustion without desulfurization. Analytical results of biogas combustion showed that combustion of un-desulfurized biogas exhausted more than 92% of SO₂ (P hydrogen sulfide was removed during the combustion process using un-desulfurized biogas (P hydrogen sulfide may deposit on the surfaces of power generator's engines or burner heads of boilers. Some of them (4.6-9.1% of H₂S) were converted to SO₂ in exhaust gas. Considering the impacts to human health and living environment, it is better to desulfurize biogas before any applications.

  16. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination...

  17. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  18. Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia

    Science.gov (United States)

    Arndt, Richard L.; Carmichael, Gregory R.; Streets, David G.; Bhatti, Neeloo

    Anthropogenic and volcanic emissions of SO 2 in Asia for 1987-1988 are estimated on a 1° × 1° grid. Anthropogenic sources are estimated to be 31.6 Tg of SO 2 with the regions' volcanoes emitting an additional 3.8 Tg. For Southeast Asia and the Indian sub-continent, the emissions are further partitioned into biomass, industrial, utilities, and non-specific sources. In these regions emissions from biomass, utilities and industrial sources account for 16.7, 21.7, and 12.2%, respectively. In Bangladesh, ˜ 90% of the SO 2 emissions result from biomass burning and nearly 20% of India's 5 Tg of SO 2 emissions are due to biomass burning. Malaysia and Singapore's emissions are dominated by the utilities with 42 and 62% of their respective emissions coming from that sector. The spatial distribution of sulfur deposition resulting from these emissions is calculated using an atmospheric transport and deposition model. Sulfur deposition in excess of 2 g m -2 yr -1 is predicted in vast regions of east Asia, India, Thailand, Malaysia, Taiwan, and Indonesia with deposition in excess of 5 g m -2 yr -1 predicted in southern China. For the Indian sub-continent and Southeast Asia the contribution of biomass burning, industrial activities, and utilities to total sulfur emissions and deposition patterns are evaluated. Biomass burning is found to be a major source of sulfur deposition throughout southeast Asia. Deposition in Bangladesh and northern India is dominated by this emissions sector. Deposition in Thailand, the Malay Peninsula and the island of Sumatra is heavily influenced by emissions from utilities. The ecological impact of the deposition, in 1988 and in the year 2020, is also estimated using critical loads data developed in the RAINS-ASIA projects. Much of eastern China, the Korean Peninsula, Japan, Thailand, and large regions of India, Nepal, Bangladesh, Taiwan, the Philippines, Malaysia, Indonesia, and sections of Vietnam are at risk due to deposition in excess of their

  19. Estimating national exhaust emissions from railway vehicles in Turkey

    International Nuclear Information System (INIS)

    Dincer, Faruk; Elbir, Tolga

    2007-01-01

    The estimated exhaust emissions from railway vehicles in Turkey were presented. The emissions of nitrogen oxides (NO x ), hydrocarbon compounds (HC), carbon monoxide (CO), particulate matter (PM), sulfur dioxide (SO 2 ) and carbon dioxide (CO 2 ) from the diesel locomotives and railcars were calculated using the railway traffic data recorded by Turkish State Railways (TSR) for the period of 2000-2005. EPA emission factors were used for different vehicle types and operation modes such as shunting and line-hauling. Total emissions from railway vehicles in Turkey were estimated as 384 t y - 1 for HC, 1016 t y - 1 for CO, 6799 t y - 1 for NO X , 256 t y - 1 for PM, 357 t y - 1 for SO 2 and 383 537 t y - 1 for CO 2 for the year 2005. The distribution of emissions with respect to type of railway vehicles shows that the mainline locomotives contribute ∝ 91% to the total emissions. The increases of 22%, 39% and 49% in the current numbers of mainline locomotives, shunting locomotives and diesel railcars, respectively corresponding to the full capacity of railway network in Turkey will increase the annual emissions to 431 t y - 1 for HC, 1121 t y - 1 for CO, 7399 t y - 1 for NO X , 342 t y - 1 for PM, 552 t y - 1 for SO 2 and 420 256 t y - 1 for CO 2 . Total railway emissions constitute 0.15%, 0.08% and 4.21% of total Turkish traffic emissions for HC, CO and NO X , respectively. (author)

  20. Exhaust emissions evaluation of Colombian commercial diesel fuels

    International Nuclear Information System (INIS)

    Torres, Jaime; Bello, Arcesio; Sarmiento, Jose; Rostkowski, Jacek; Brady, Jeremy

    2003-01-01

    Ecopetrol, based on the results obtained in the study, The effect of diesel properties on the emissions of particulate matter (Bello et al 2000), reformulated the diesel fuel distributed in Bogota, becoming it lighter and with lower sulfur content. In order to evaluate the environmental benefits that the reformulation of diesel fuel generate in Bogota, Instituto Colombiano del Petroleo (ICP), with the assistance of emissions research and measurement division (ERMD) from environment Canada, arranged a research project to determine the changes in CO, THC, NO x , CO 2 and particulate matter emissions. The research program was developed in two steps. First one, developed in Bogota, involved a fleet test with 15 public service buses that normally operate in Bogota's savannah, using a portable emissions sampling technology developed for ERMD (DOES2) and following a representative transient driving cycle. Second step, carried out in ERMD's Heavy-Duty engine emissions laboratory in Ottawa, tested a 1995 caterpillar 3406E 324/5 KW (435 HP) diesel truck engine on the same samples of Colombian diesel fuels used in the fleet tests performed in Bogota, baselining the tests with a Canadian commercial low sulfur diesel fuel. The two commercial Colombian diesel fuels used had the following properties: High Sulfur Diesel (HSD), with 3000 ppm (0,3 wt %) of sulfur and a final boiling point (FBP) of 633 K and the new reformulated diesel fuel, with 1000 ppm (0,1 wt %) of sulfur and FBP of 613 K, which is currently been distributed in Bogota. Fleet test show small reduction on CO, THC and TPM, and small increments on CO 2 and NO x but with not statistically significant results, while engine testing shows a strong reduction of 40/8% in TPM when you use the new reformulated diesel fuel (0,1 wt % of sulfur) instead of high sulfur diesel

  1. Assessing historical global sulfur emission patterns for the period 1850--1990

    Energy Technology Data Exchange (ETDEWEB)

    Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  2. A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions

    Science.gov (United States)

    Schoeberl, M. R.; Morris, G. A.

    1999-01-01

    To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.

  3. Gasoline reformulation to reduce exhaust emissions in Finnish conditions. Influence of sulphur and benzene contents of gasoline on exhaust emissions

    International Nuclear Information System (INIS)

    Kytoe, M.; Aakko, P.; Lappi, M.

    1994-01-01

    At earlier stages of the study it was found that the exhaust emissions from cars are reduced when using fuels with no more than 4 wt% of oxygen. At this stage of the study the work focused on impacts of the sulphur and benzene content of gasoline on exhaust emissions in Finland. Sulphur in gasoline retards the operation of the catalyst, and consequently the exhaust emissions of catalyst cars increase if the sulphur content of the fuel increases. In the present study, evaporation during refuelling were measured for fuels with varying vapour pressures and benzene contents of gasoline. The total hydrocarbon evaporation was reduced by 22 % (10 g) when the vapour pressure of gasoline was reduced from 85 kPa to 65 kPa. Correspondingly, benzene evaporation during refuelling was reduced to a third when the benzene content of the fuel was reduced from the level of 3 wt% to 1 wt%. The reduction of the sulphur content of gasoline from 500 ppm to 100 ppm affected regulated exhaust emissions from the catalyst car at +22 deg C as follows: CO emission was reduced on average by 14 % (0.175 g/km), CH emission by 7 % (0.010 g/km) and NO x emission by 9 % (0.011 g/km). At-7 deg C the percentual changes were smaller. When the benzene content of the fuel was reduced from 3 wt% to 1 wt%, the benzene emission from the catalyst cars was reduced by 20-30 % and from the non-catalyst cars on average by 30 % both at +22 deg C and -7 deg C. The benzene emission ranged 3-22 mg/km for the catalyst cars and 40-90 mg/km for the non-catalyst cars at +22 deg C in the FTP test

  4. Aircraft Piston Engine Exhaust Emission Symposium

    Science.gov (United States)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  5. Emissions of biogenic sulfur gases from Alaskan tundra

    Science.gov (United States)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  6. Quantification of vehicle fleet PM_1_0 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques

    International Nuclear Information System (INIS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-01-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM_1_0 and PM_2_._5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM_2_._5 fraction contributes 66% of PM_1_0 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM_1_0 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM_1_0 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM_1_0 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations. - Highlights: • Calculations of exhaust/non-exhaust particulate emission factors using tunnel sampling and source apportionment techniques. • Non-exhaust emission dominates in the fine particle fraction, considered responsible for adverse human health impacts. • Emission factors for non-exhaust sources (e.g. tyre and brake) were calculated. • Fleet source PM_1_0 emission factor were also calculated, which can be used in dispersion modelling and health risk assessment. • Tukey mean

  7. Validated analytical modeling of diesel engine regulated exhaust CO emission rate

    Directory of Open Access Journals (Sweden)

    Waleed F Faris

    2016-06-01

    Full Text Available Albeit vehicle analytical models are often favorable for explainable mathematical trends, no analytical model has been developed of the regulated diesel exhaust CO emission rate for trucks yet. This research unprecedentedly develops and validates for trucks a model of the steady speed regulated diesel exhaust CO emission rate analytically. It has been found that the steady speed–based CO exhaust emission rate is based on (1 CO2 dissociation, (2 the water–gas shift reaction, and (3 the incomplete combustion of hydrocarbon. It has been found as well that the steady speed–based CO exhaust emission rate based on CO2 dissociation is considerably less than the rate that is based on the water–gas shift reaction. It has also been found that the steady speed–based CO exhaust emission rate based on the water–gas shift reaction is the dominant source of CO exhaust emission. The study shows that the average percentage of deviation of the steady speed–based simulated results from the corresponding field data is 1.7% for all freeway cycles with 99% coefficient of determination at the confidence level of 95%. This deviation of the simulated results from field data outperforms its counterpart of widely recognized models such as the comprehensive modal emissions model and VT-Micro for all freeway cycles.

  8. Global sulfur emissions from 1850 to 2000.

    Science.gov (United States)

    Stern, David I

    2005-01-01

    The ASL database provides continuous time-series of sulfur emissions for most countries in the World from 1850 to 1990, but academic and official estimates for the 1990s either do not cover all years or countries. This paper develops continuous time series of sulfur emissions by country for the period 1850-2000 with a particular focus on developments in the 1990s. Global estimates for 1996-2000 are the first that are based on actual observed data. Raw estimates are obtained in two ways. For countries and years with existing published data I compile and integrate that data. Previously published data covers the majority of emissions and almost all countries have published emissions for at least 1995. For the remaining countries and for missing years for countries with some published data, I interpolate or extrapolate estimates using either an econometric emissions frontier model, an environmental Kuznets curve model, or a simple extrapolation, depending on the availability of data. Finally, I discuss the main movements in global and regional emissions in the 1990s and earlier decades and compare the results to other studies. Global emissions peaked in 1989 and declined rapidly thereafter. The locus of emissions shifted towards East and South Asia, but even this region peaked in 1996. My estimates for the 1990s show a much more rapid decline than other global studies, reflecting the view that technological progress in reducing sulfur based pollution has been rapid and is beginning to diffuse worldwide.

  9. Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions

    Science.gov (United States)

    Li, Lan; Ge, Yunshan; Wang, Mingda; Li, Jiaqiang; Peng, Zihang; Song, Yanan; Zhang, Liwei

    2015-02-01

    The emission characteristics of motorcycles using gasoline and M15 (consisting of 85% gasoline and 15% methanol by volume) were investigated in this article. Exhaust and evaporative emissions, including regulated and unregulated emissions, of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED), respectively. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions, including carbonyls, volatile organic compounds (VOCs) and methanol, were sampled through battery-operated air pumps using tubes coated with 2,4-dintrophenylhydrazine (DNPH), Tenax TA and silica gel, respectively. The experimental results showed that, for exhaust emission, compared with those from gasoline fueled motorcycles, the concentration of total hydrocarbons (THC) and CO from motorcycles fueled with M15 decreased by 11%-34.5% and 63%-84% respectively, while the concentration of NOx increased by 76.9%-107.7%. Compared with those from gasoline fueled motorcycles, BTEX from motorcycles fueled with M15 decreased by 16%-60% while formaldehyde increased by 16.4%-52.5%. For evaporative emission, diurnal losses were more than hot soak losses and turned out to be dominated in evaporative emissions. In addition, compared with gasoline fueling motorcycles, the evaporative emissions of THC, carbonyls and VOCs from motorcycles fueled with M15 increased by 11.7%-37%, 38%-45% and 16%-42%, respectively. It should be noted that the growth rate of methanol was as high as 297%-1429%. It is important to reduce the evaporative emissions of methanol fueling motorcycles.

  10. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  11. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)

    2014-01-15

    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  12. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  13. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling.

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  14. EVALUATION OF EMISSION OF CO, NO AND NOX IN EXHAUST OF DIESEL ENGINE FUELED WITH FUEL ADDITIVED

    Directory of Open Access Journals (Sweden)

    Gilson Rodrigo de Miranda

    2011-01-01

    Full Text Available Air pollution has emerged as major global problems. In the last decade, the development of new engines, the use of different forms of treatment of exhaust gases and the increase in fuel quality were used to reduce pollutants (regulated or not. Among the various developments to reduce emissions, the use of oxygenated additives to diesel and paraffin is a quick and effective measure to reduce pollutants. In this work we studied the influence of oxygenated compounds (diethyl ether (DEE, 1-dodecanol (DOD, 2-methoxy-acetate (MEA and terc-butanol (TERC and paraffin (heptane (HEPT and n- hexadecane (CET added to diesel in order to improve the quality of CO, NO and NOx in the exhaust of diesel engine, single cylinder. The fuels used in the studies are formulations of diesel reference, here named S10, which contains low sulfur (

  15. Buildup of aerosol precursor gases and sulfur-induced activation of soot in nascent jet aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Hirschberg, M.M.; Fabian, P. [Muenchen Univ. (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Gerz, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Research issues concerning the chemical transformation of exhaust trace gases are summarized. The photochemical evolution of NO{sub x} early in the plume is strongly coupled to plume mixing. Substantial amounts of HNO{sub 3} are generated in nascent plumes even if no NO{sub 2} is emitted. The production of H{sub 2}SO{sub 4} becomes very efficient if part of the fuel sulfur is emitted as SO{sub 3}. Each emitted soot particle can acquire 1-10% by mass fully oxidized sulfur molecules prior to binary homogeneous nucleation, if a few percent of the exhaust SO{sub x} are emitted as SO{sub 3}, indicating an important activation pathway for soot, and leading to a marked enhancement of new aerosol formation and growth rates. (author) 11 refs.

  16. Buildup of aerosol precursor gases and sulfur-induced activation of soot in nascent jet aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B; Hirschberg, M M; Fabian, P [Muenchen Univ. (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Gerz, T [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    Research issues concerning the chemical transformation of exhaust trace gases are summarized. The photochemical evolution of NO{sub x} early in the plume is strongly coupled to plume mixing. Substantial amounts of HNO{sub 3} are generated in nascent plumes even if no NO{sub 2} is emitted. The production of H{sub 2}SO{sub 4} becomes very efficient if part of the fuel sulfur is emitted as SO{sub 3}. Each emitted soot particle can acquire 1-10% by mass fully oxidized sulfur molecules prior to binary homogeneous nucleation, if a few percent of the exhaust SO{sub x} are emitted as SO{sub 3}, indicating an important activation pathway for soot, and leading to a marked enhancement of new aerosol formation and growth rates. (author) 11 refs.

  17. New technology on Otto engines for reducing the exhaust emission toxicity

    International Nuclear Information System (INIS)

    Mikarovska, Vesna; Stojanovski, Vasko

    2003-01-01

    The exhaust emission from the Otto engines with internal combustion contains a lot of toxicant components for human being as well as for the surrounding. There are a lot of possibilities to realize the engine work with minimum emission of toxicant components. However, all solutions could not be racial, especially if the engine should work with minimum fuel consumption. The engineers look for the solutions where the reducing of the exhaust emission toxicity could be done with the total fuel utilization in the engine's cylinder, without additionally combustion in catalytic or thermal reactors. The paper describes the new technologies for detail investigation of the combustion processes and optimization of all influence parameters on exhaust gases emission. (Original)

  18. Performance and exhaust emissions of a biodiesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, Mustafa [Kocaeli University, Technical Education Faculty, 41380 Kocaeli (Turkey); Erdil, Ahmet [Kocaeli University, Engineering Faculty, 41040 Kocaeli (Turkey); Arcaklioglu, Erol [Kirikkale University, Engineering Faculty, 71450 Kirikkale (Turkey)

    2006-06-15

    In this study, the applicabilities of Artificial Neural Networks (ANNs) have been investigated for the performance and exhaust-emission values of a diesel engine fueled with biodiesels from different feedstocks and petroleum diesel fuels. The engine performance and emissions characteristics of two different petroleum diesel-fuels (No. 1 and No. 2), biodiesels (from soybean oil and yellow grease), and their 20% blends with No. 2 diesel fuel were used as experimental results. The fuels were tested at full load (100%) at 1400-rpm engine speed, where the engine torque was 257.6Nm. To train the network, the average molecular weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio and cetane number of each fuel are used as the input layer, while outputs are the brake specific fuel-consumption, exhaust temperature, and exhaust emissions. The back-propagation learning algorithm with three different variants, single layer, and logistic sigmoid transfer function were used in the network. By using weights in the network, formulations have been given for each output. The network has yielded R{sup 2} values of 0.99 and the mean % errors are smaller than 4.2 for the training data, while the R{sup 2} values are about 0.99 and the mean % errors are smaller than 5.5 for the test data. The performance and exhaust emissions from a diesel engine, using biodiesel blends with No. 2 diesel fuel up to 20%, have been predicted using the ANN model. sing the ANN model. (author)

  19. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  20. Analysis of emission charges as a method of reducing sulfur pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.G.; Chen, P.W.

    1976-06-01

    Requiring sulfur polluters to make payments which are functions of the emissions discharged (the ''polluter-pay-principle'') is a method of regulation which is an alternative but not an equivalent to the setting of sulfur-emission standards and the punishing of those who permit the emission of the facilities under their control to exceed these standards. It is shown that this approach gives greater incentives toward the rapid reduction of sulfur emissions than does the setting of standards, particularly when the charges are adjusted to represent estimates of the health and property damage resulting from the emissions. Some variations of an extension of the polluter-pay-principle are also examined.

  1. Sulfur dioxide emissions from la soufriere volcano, st. Vincent, west indies.

    Science.gov (United States)

    Hoff, R M; Gallant, A J

    1980-08-22

    During the steady-state period of activity of La Soufriere Volcano in 1979, the mass emissions of sulfur dioxide into the troposphere amounted to a mean value of 339 +/- 126 metric tons per day. This value is similar to the sulfur dioxide emissions of other Central American volcanoes but less than those measured at Mount Etna, an exceptionally strong volcanic source of sulfur dioxide.

  2. An experimental investigation of exhaust emission from agricultural tractors

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Rashid; Rabbani, Hekmat; Lorestani, Ali Nejat; Javadikia, Payam; Jaliliantabar, Farzad [Mechanics of Agricultural Machinery Department, Razi University of Kermanshah (Iran, Islamic Republic of)

    2013-07-01

    Agricultural machinery is an important source of emission of air pollutant in rural locations. Emissions of a specific tractor engine mainly depend on engine speed. Various driving methods and use of implements with different work capacities can affect the engine load. This study deals with the effects of types of tractors and operation conditions on engine emission. In this study two types of agricultural tractors (MF285 and U650) and some tillage implements such as centrifugal type spreader, boom type sprayer and rotary tiller were employed. Some of the exhausted gases from both tractors in each condition were measured such as, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2) and nitrogen oxide (NO). Engine oil temperature was measured at every step for both types of tractors. Difference between steady-state condition and operation conditions was evaluated. The results showed all exhaust gases that measured and engine oil temperature at every operation conditions are higher than steady-state condition. A general conclusion of the work was that, using various implements and employing different types of tractors effect on engine emissions. The results of variance analysis showed all exhausted gases had a significant relationship with types of implements used at 1%. Also, all exhausted gases except CO had a significant relationship with types of tractors. A further conclusion was that NO emission increased as engine oil temperature increased. The final conclusion was about the difference between MF285 and U650; using U650 at operation conditions is better than MF285 in terms of pollution.

  3. Effects of Low Sulfur Fuel and a Catalyzed Particle Trap on the Composition and Toxicity of Diesel Emissions

    Science.gov (United States)

    McDonald, Jacob D.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2004-01-01

    In this study we compared a “baseline” condition of uncontrolled diesel engine exhaust (DEE) emissions generated with current (circa 2003) certification fuel to an emissions-reduction (ER) case with low sulfur fuel and a catalyzed particle trap. Lung toxicity assessments (resistance to respiratory viral infection, lung inflammation, and oxidative stress) were performed on mice (C57Bl/6) exposed by inhalation (6 hr/day for 7 days). The engine was operated identically (same engine load) in both cases, and the inhalation exposures were conducted at the same exhaust dilution rate. For baseline DEE, this dilution resulted in a particle mass (PM) concentration of approximately 200 μg/m3 PM, whereas the ER reduced the PM and almost every other measured constituent [except nitrogen oxides (NOx)] to near background levels in the exposure atmospheres. These measurements included PM, PM size distribution, PM composition (carbon, ions, elements), NOx, carbon monoxide, speciated/total volatile hydrocarbons, and several classes of semi-volatile organic compounds. After exposure concluded, one group of mice was immediately sacrificed and assessed for inflammation and oxidative stress in lung homogenate. Another group of mice were intratracheally instilled with respiratory syncytial virus (RSV), and RSV lung clearance and inflammation was assessed 4 days later. Baseline DEE produced statistically significant biological effects for all measured parameters. The use of low sulfur fuel and a catalyzed trap either completely or nearly eliminated the effects. PMID:15345344

  4. System for measuring engine exhaust constituents

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.W.

    1992-01-01

    This patent describes a system for measuring an automotive engine exhaust constituent. It comprises: a meter for determining the mass of air flowing through the engine and for generating an engine airflow signal corresponding to the airflow; sample handling apparatus; diluent adding means; processor means. This patent also describes a method for using an analyzer to determine the amount of lubricating oil consumed by an automotive engine. It comprises: determining the amount of sulfur dioxide within the room air being drawn into the engine; maintaining a constant total flow comprised of a constant fraction of the engine's exhaust gas and a diluent gas through the analyzer, while: determining the amount of sulfur dioxide contained within the engine's exhaust, determining the amount of sulfur dioxide contained within the engine's exhaust, while operating the engine on room air; determining an efficiency factor for the analyzer; and using the efficiency factor and the concentration of sulfur in the engine oil and the amounts of sulfur dioxide determined in steps a and d to determine the amount of lubrication oil leaving the engine through its exhaust

  5. Diesel exhaust emissions : health effects

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, M. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    Despite modern day ventilation, underground miners are exposed to diesel particulate matter (DPM) composed of elemental carbon, organic carbon, sulphates, metals and ashes. Diesel exhaust contains over 40 air contaminants that have been recognized as toxic, carcinogenic or reproductive and developmental hazards. Nearly all components of diesel exhaust interact with the human body at the bloodstream or tissue level. This presentation discussed the following 4 potential levels of threat posed by the physical and chemical nature of diesel exhaust: (1) cancer of the lungs and bladder, (2) toxins that affect the nervous, endocrine, reproductive and immune system as well as the liver and kidneys, (3) fine particulate matter that can cause premature death and an increase in respiratory illness, and (4) nitrogen oxides that contribute to increased ozone and smog. Non-cancer health effects from short-term exposure include acute irritation and respiratory symptoms. This presentation also referred to cancer risk assessments of diesel exhaust by national, state, and world health organizations. Particulate exposure standards for Canada, Quebec, Ontario and the United States were listed along with the percentage of DPM samples in excess of various exposure limits in 2008 according to Canadian underground mine data. DPM concentration levels in mines are in the range that environmental agencies would consider high for general population exposure. Solutions for underground mines include pollution control at the source; use of modern engines with certification for underground mining; emissions based maintenance; exhaust treatment; use of clean or alternative fuels such as hydrogen; regular sampling and monitoring; ventilation; training and technology transfer; and regulations. tabs., figs.

  6. Comparison of exhaust emission on the basis of Real Driving Emissions measurements and simulations

    Directory of Open Access Journals (Sweden)

    Nowak Mateusz

    2017-01-01

    Full Text Available Designing of modern transport systems involves the need to meet a large number of requirements. The influence of designed road infrastructure on the environment is very wide and important. The most valid aspect in this case is the reduction of emissions of harmful compounds by increasing the fluency of vehicles flow and building collision free road intersections. But it should be started from establishing the initial emission level of harmful compounds. This paper presents a methodology for determining exhaust emissions from vehicles moving on the national road no. 50 in area of Zyrardow. Modern measuring tools such as the PEMS and the microscopic road simulation software, using the application to determine exhaust emissions, were used for this purpose.

  7. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions

    Science.gov (United States)

    Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng

    The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.

  8. The Role of Hydrogen Bonds Of The Azeotropic Hydrous Ethanol Fuel Composition To The Exhaust Emissions

    Science.gov (United States)

    Made Suarta, I.; Nyoman Gede Baliarta, I.; Sopan Rahtika, I. P. G.; Wijaya Sunu, Putu

    2018-01-01

    In this study observed the role of hydrogen bonding to the composition of exhaust emissions which is produced hydrous ethanol fuel (95.5% v). Testing is done by using single cylinder four stroke motor engine. The composition of exhaust gas emissions is tested using exhaust gas analyzer on lean and stoichiometry mixer. The exhaust emissions produced by anhydrous ethanol were also tested. The composition of emissions produced by that two fuels is compared. The results showed CO emissions levels produced by hydrous ethanol are slightly higher than anhydrous ethanol in stoichiometric mixtures. But the composition of CO hydrous ethanol emissions is lower in the lean mix. If lean the mixer the different in the composition of emissions is increasing. On hydrous ethanol emission CO2 content little bit lower on the stoichiometric mixer and higher on the lean mixture. Exhaust emissions of ethanol fuel also produce O2. O2 hydrous ethanol emissions is higher than anhydrous ethanol fuel.

  9. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF... Transportation. (iv) [Reserved] (2) Average carbon-related exhaust emissions will be calculated to the nearest...

  10. Oceanic emissions of sulfur: Application of new techniques

    Science.gov (United States)

    Jodwalis, Clara Mary

    Sulfur gases and aerosols are important in the atmosphere because they play major roles in acid rain, arctic haze, air pollution, and climate. Globally, man-made and natural sulfur emissions are comparable in magnitude. The major natural source is dimethyl sulfide (DMS) from the oceans, where it originates from the degradation of dimethysulfonioproprionate (DMSP), a compound produced by marine phytoplankton. Global budgets of natural sulfur emissions are uncertain because of (1) the uncertainty in the traditional method used to estimate DMS sea-to-air flux, and (2) the spatial and temporal variability of DMS sea-to-air flux. We have worked to lessen the uncertainty on both fronts. The commonly used method for estimating DMS sea-to-air flux is certain to a factor of two, at best. We used a novel instrumental technique to measure, for the first time, sulfur gas concentration fluctuations in the marine boundary layer. The measured concentration fluctuations were then used with two established micrometeorological techniques to estimate sea-to-air flux of sulfur. Both methods appear to be more accurate than the commonly used one. The analytical instrument we used in our studies shows potential as a direct flux measurement device. High primary productivity in high-latitude oceans suggests a potentially large DMS source from northern oceans. To begin to investigate this hypothesis, we have measured DMS in the air over northern oceans around Alaska. For integrating and extrapolating field measurements over larger areas and longer time periods, we have developed a model of DMS ocean mixing, biological production, and sea-to-air flux of DMS. The model's main utility is in gaining intuition on which parameters are most important to DMS sea-to-air flux. This information, along with a direct flux measurement capability, are crucial steps toward the long-term goal of remotely sensing DMS flux. A remote sensing approach will mitigate the problems of spatial and temporal

  11. Influence of physical and chemical characteristics of diesel fuels and exhaust emissions on biological effects of particle extracts: a multivariate statistical analysis of ten diesel fuels.

    Science.gov (United States)

    Sjögren, M; Li, H; Banner, C; Rafter, J; Westerholm, R; Rannug, U

    1996-01-01

    The emission of diesel exhaust particulates is associated with potentially severe biological effects, e.g., cancer. The aim of the present study was to apply multivariate statistical methods to identify factors that affect the biological potency of these exhausts. Ten diesel fuels were analyzed regarding physical and chemical characteristics. Particulate exhaust emissions were sampled after combustion of these fuels on two makes of heavy duty diesel engines. Particle extracts were chemically analyzed and tested for mutagenicity in the Ames test. Also, the potency of the extracts to competitively inhibit the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to the Ah receptor was assessed. Relationships between fuel characteristics and biological effects of the extracts were studied, using partial least squares regression (PLS). The most influential chemical fuel parameters included the contents of sulfur, certain polycyclic aromatic compounds (PAC), and naphthenes. Density and flash point were positively correlated with genotoxic potency. Cetane number and upper distillation curve points were negatively correlated with both mutagenicity and Ah receptor affinity. Between 61% and 70% of the biological response data could be explained by the measured chemical and physical factors of the fuels. By PLS modeling of extract data versus the biological response data, 66% of the genotoxicity could be explained, by 41% of the chemical variation. The most important variables, associated with both mutagenicity and Ah receptor affinity, included 1-nitropyrene, particle bound nitrate, indeno[1,2,3-cd]pyrene, and emitted mass of particles. S9-requiring mutagenicity was highly correlated with certain PAC, whereas S9-independent mutagenicity was better correlated with nitrates and 1-nitropyrene. The emission of sulfates also showed a correlation both with the emission of particles and with the biological effects. The results indicate that fuels with biologically less hazardous

  12. Exhaust circulation into dry gas desulfurization process to prevent carbon deposition in an Oxy-fuel IGCC power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Nakao, Yoshinobu; Oki, Yuso

    2014-01-01

    Highlights: • Power plant with semi-closed gas turbine and O 2 –CO 2 coal gasifier was studied. • We adopt dry gas sulfur removal process to establish the system. • The exhaust gas circulation remarkably prevented carbon deposition. • Efficiency loss for exhaust gas circulation is quite small. • Appropriate operating condition of sulfur removal process is revealed. - Abstract: Semi-closed cycle operation of gas turbine fueled by oxygen–CO 2 blown coal gasification provides efficient power generation with CO 2 separation feature by excluding pre-combustion type CO 2 capture that usually brings large efficiency loss. The plant efficiency at transmission end is estimated as 44% at lower heating value (LHV) providing compressed CO 2 with concentration of 93 vol%. This power generation system will solve the contradiction between economical resource utilization and reduction of CO 2 emission from coal-fired power plant. The system requires appropriate sulfur reduction process to protect gas turbine from corrosion and environment from sulfur emission. We adopt dry gas sulfur removal process to establish the system where apprehension about the detrimental carbon deposition from coal gas. The effect of circulation of a portion of exhaust gas to the process on the retardation of carbon deposition was examined at various gas compositions. The circulation remarkably prevented carbon deposition in the sulfur removal sorbent. The impact of the circulation on the thermal efficiency is smaller than the other auxiliary power consumption. Thus, the circulation is appropriate operation for the power generation

  13. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  14. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil

    International Nuclear Information System (INIS)

    Al-lwayzy, Saddam H; Yusaf, Talal; Jensen, Troy

    2012-01-01

    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  15. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A; Northrop, William F; Bohac, Stanislav V; Assanis, Dennis N

    2012-11-15

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NO x ), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM 2.5 , EC, formaldehyde, and most VOCs; however, NO x brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM 2.5 , EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM 2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM 2.5 . The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for

  16. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  17. Regional sulfur dioxide emissions: shall we achieve the goal?

    Science.gov (United States)

    Tan, X.; Shi, L.; Wang, M.; Wang, JY

    2017-01-01

    Although economic growth is slowing down in the new normal period, air pollution is still a very serious problem in China. The 15% binding goal of sulfur dioxide emission reduction from 2016 to 2020, as stipulated in the 13th Five-Year Plan, has been an ambitious target for the Chinese government. This paper studies the synthetic evaluation and forecasting analysis of sulfur dioxide in China by means of a “grey model” approach combined with the grey relational analysis methods, with the panel data of 31 provinces from 2005 to 2015. Grey analysis used to analyse a system with imperfect information, such that a variety of available solutions is reviewed, and the optimal solution is identified. Some encouraging results show that national emissions and a majority of provinces will achieve the target. Over time, the gap of regional differences is rapidly closing. According to the results of grey relational analysis, we find industrial structure and energy consumption have a more significant impact on sulfur dioxide emissions than GDP. Atmospheric treatment investment and environmental protection manpower play a more important role in emissions variation. Based on the findings, we should distinguish different factors and take different measures to protect the environment.

  18. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.

    2003-01-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO x ), carbon dioxide (CO 2 ) and carbon monoxide (CO). In addition, O 2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO x ) and carbon dioxide (CO 2 ) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O 2 ) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO x gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO x but increased the particulate matter concentrations in the exhaust gases

  19. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdeh, Nidal H. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    2003-11-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO{sub x}), carbon dioxide (CO{sub 2}) and carbon monoxide (CO). In addition, O{sub 2} concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO{sub x}) and carbon dioxide (CO{sub 2}) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O{sub 2}) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO{sub x} gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO{sub x} but increased the particulate matter concentrations in the exhaust gases. (Author)

  20. A Study on the Model of Traffic Flow and Vehicle Exhaust Emission

    Directory of Open Access Journals (Sweden)

    Han Xue

    2013-01-01

    Full Text Available The increase of traffic flow in cities causes traffic congestion and accidents as well as air pollution. Traffic problems have attracted the interest of many researchers from the perspective of theory and engineering. In order to provide a simple and practical method for measuring the exhaust emission and assessing the effect of pollution control, a model is based on the relationship between traffic flow and vehicle exhaust emission under a certain level of road capacity constraints. In the proposed model, the hydrocarbons (HC, carbon monoxide (CO, and nitrogen oxides (NOx are considered as the indexes of total exhaust emission, and the speed is used as an intermediate variable. To verify the rationality and practicality of the model, a case study for Beijing, China, is provided in which the effects of taxi fare regulation and the specific vehicle emission reduction policy are analyzed.

  1. Impact of freeway weaving segment design on light-duty vehicle exhaust emissions.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Chen, Shuyan; Li, Tiezhu

    2018-06-01

    In the United States, 26% of greenhouse gas emissions is emitted from the transportation sector; these emisssions meanwhile are accompanied by enormous toxic emissions to humans, such as carbon monoxide (CO), nitrogen oxides (NO x ), and hydrocarbon (HC), approximately 2.5% and 2.44% of a total exhaust emissions for a petrol and a diesel engine, respectively. These exhaust emissions are typically subject to vehicles' intermittent operations, such as hard acceleration and hard braking. In practice, drivers are inclined to operate intermittently while driving through a weaving segment, due to complex vehicle maneuvering for weaving. As a result, the exhaust emissions within a weaving segment ought to vary from those on a basic segment. However, existing emission models usually rely on vehicle operation information, and compute a generalized emission result, regardless of road configuration. This research proposes to explore the impacts of weaving segment configuration on vehicle emissions, identify important predictors for emission estimations, and develop a nonlinear normalized emission factor (NEF) model for weaving segments. An on-board emission test was conducted on 12 subjects on State Highway 288 in Houston, Texas. Vehicles' activity information, road conditions, and real-time exhaust emissions were collected by on-board diagnosis (OBD), a smartphone-based roughness app, and a portable emission measurement system (PEMS), respectively. Five feature selection algorithms were used to identify the important predictors for the response of NEF and the modeling algorithm. The predictive power of four algorithm-based emission models was tested by 10-fold cross-validation. Results showed that emissions are also susceptible to the type and length of a weaving segment. Bagged decision tree algorithm was chosen to develop a 50-grown-tree NEF model, which provided a validation error of 0.0051. The estimated NEFs are highly correlated with the observed NEFs in the training

  2. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  3. Exhaust emissions from an indirect injection dual-fuel engine

    International Nuclear Information System (INIS)

    Abd Alla, G.H.; Badr, O.A.; Soliman, H.A.; Abd Rabbo, M.F.

    2000-01-01

    Diesel engines operating on gaseous fuels are commonly known as dual-fuel engines. In the present work, a single-cylinder, compression ignition, indirect injection research (Ricardo E6) engine has been installed at United Arab Emirates University for investigation of the exhaust emissions when the engine is operating as a dual-fuel engine. The influence of changes in major operating and design parameters, such as the concentration of gaseous fuel in the cylinder charge, pilot fuel quantity, injection timing and intake temperature, on the production of exhaust emissions was investigated. Diesel fuel was used as the pilot fuel, while methane or propane was used as the main fuel which was inducted in the intake manifold and mixed with the intake air. The experimental investigations showed that the poor emissions at light loads can be improved significantly by increasing the concentration of gaseous fuel (total equivalence ratio), employing a large pilot fuel quantity, advancing the injection timing of the pilot fuel and increasing the intake temperature. It is demonstrated that, in general, any measure that tends to increase the size of the combustion regions within the overly lean cylinder charge will reduce markedly the concentrations of unburned hydrocarbons and carbon monoxide in the exhaust gases. (Author)

  4. Exhaust emissions from an indirect injection dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd Alla, G.H.; Badr, O.A.; Soliman, H.A.; Abd Rabbo, M.F. [Zagazig Univ., Dept. of Mechanical Engineering, Cairo (Egypt)

    2000-04-01

    Diesel engines operating on gaseous fuels are commonly known as dual-fuel engines. In the present work, a single-cylinder, compression ignition, indirect injection research (Ricardo E6) engine has been installed at United Arab Emirates University for investigation of the exhaust emissions when the engine is operating as a dual-fuel engine. The influence of changes in major operating and design parameters, such as the concentration of gaseous fuel in the cylinder charge, pilot fuel quantity, injection timing and intake temperature, on the production of exhaust emissions was investigated. Diesel fuel was used as the pilot fuel, while methane or propane was used as the main fuel which was inducted in the intake manifold and mixed with the intake air. The experimental investigations showed that the poor emissions at light loads can be improved significantly by increasing the concentration of gaseous fuel (total equivalence ratio), employing a large pilot fuel quantity, advancing the injection timing of the pilot fuel and increasing the intake temperature. It is demonstrated that, in general, any measure that tends to increase the size of the combustion regions within the overly lean cylinder charge will reduce markedly the concentrations of unburned hydrocarbons and carbon monoxide in the exhaust gases. (Author)

  5. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control

    Directory of Open Access Journals (Sweden)

    Magdalena Penkała

    2018-01-01

    Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.

  6. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Yuichi, E-mail: furuyama@maritime.kobe-u.ac.jp [Graduate School of Maritime Sciences, Kobe University, Fukae-Minami-Machi, Higashinada-Ku, Kobe 658-0022 (Japan); Fujita, Hirotsugu; Taniike, Akira; Kitamura, Akira [Graduate School of Maritime Sciences, Kobe University, Fukae-Minami-Machi, Higashinada-Ku, Kobe 658-0022 (Japan)

    2011-12-15

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.01-0.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  7. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-08-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim data report summarizes results as of August, 1999, on the status of the test programs being conducted on three technologies: lean-NO{sub x} catalysts, diesel particulate filters and diesel oxidation catalysts.

  8. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  9. Trees in urban street canyons and their impact on the dispersion of automobile exhausts

    OpenAIRE

    Gromke, Christof; Ruck, Bodo

    2007-01-01

    The aim of the present study is to clarify the influence of trees on the dispersion of automobile exhausts in urban street canyons. For this purpose, measurements have been performed with a small scale wind tunnel model of an idealized, isolated street canyon with model trees placed along the canyon center axis. Sulfur hexafluoride (SF6) was released from a line source embedded in the street surface, simulating vehicle exhaust emissions. The influence of various tree planting arrangements on ...

  10. Panorama 2018 - Reducing sulfur emissions in shipping: an economic and technological challenge

    International Nuclear Information System (INIS)

    Dumas, Cecile; Marion, Pierre; Saint Antonin, Valerie; Weiss, Wilfried

    2018-01-01

    Sulfur oxides emissions from maritime traffic are constantly rising, unlike those generated by all land-based sources, which are subject to numerous regulations on both fuels and emission caps on equipment that uses them. Accordingly, the International Maritime Organization (IMO) adopted a resolution to reduce the sulfur content of marine fuels, but its implementation, set for 2020, could prove complicated. (authors)

  11. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    Science.gov (United States)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  12. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  13. Sulfur Deactivation of NOx Storage Catalysts: A Multiscale Modeling Approach

    Directory of Open Access Journals (Sweden)

    Rankovic N.

    2013-09-01

    Full Text Available Lean NOx Trap (LNT catalysts, a promising solution for reducing the noxious nitrogen oxide emissions from the lean burn and Diesel engines, are technologically limited by the presence of sulfur in the exhaust gas stream. Sulfur stemming from both fuels and lubricating oils is oxidized during the combustion event and mainly exists as SOx (SO2 and SO3 in the exhaust. Sulfur oxides interact strongly with the NOx trapping material of a LNT to form thermodynamically favored sulfate species, consequently leading to the blockage of NOx sorption sites and altering the catalyst operation. Molecular and kinetic modeling represent a valuable tool for predicting system behavior and evaluating catalytic performances. The present paper demonstrates how fundamental ab initio calculations can be used as a valuable source for designing kinetic models developed in the IFP Exhaust library, intended for vehicle simulations. The concrete example we chose to illustrate our approach was SO3 adsorption on the model NOx storage material, BaO. SO3 adsorption was described for various sites (terraces, surface steps and kinks and bulk for a closer description of a real storage material. Additional rate and sensitivity analyses provided a deeper understanding of the poisoning phenomena.

  14. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What are my requirements for HAP emissions from sulfur recovery units? 63.1568 Section 63.1568 Protection of Environment ENVIRONMENTAL... requirements for HAP emissions from sulfur recovery units? (a) What emission limitations and work practice...

  15. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  16. A fuel-based approach to estimating motor vehicle exhaust emissions

    Science.gov (United States)

    Singer, Brett Craig

    Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories

  17. Emissions of exhaust gases and health of the person

    Science.gov (United States)

    Germanova, Tatiana; Kernozhitskaya, Anna

    2017-10-01

    The auto-road complex brings the considerable contribution to pollution and adverse change of environment. Influence of exhaust gases of cars is at the bottom of occurrence and developments of various forms of diseases. Every townsman feels the negative influence rendered by motor transport on himself. The modern city dweller is so accustomed to the smell of exhaust gases that he does not even notice it at all, continues to breathe a poisonous mixture, while neither the car nor the road can be isolated from the habitats of people. The higher the population density, the higher the need for motor transport. The health effects of emissions of exhaust gases and vapors, including regulated and unregulated pollutants, are discussed in this article.

  18. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  19. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  20. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  1. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  2. The growing contribution of sulfur emissions from ships in Asian waters, 1988-1995

    Science.gov (United States)

    Streets, David G.; Guttikunda, Sarath K.; Carmichael, Gregory R.

    International shipping is a major source of sulfur emissions in Asia. Because the fuel oil used by ships is high in sulfur, the resulting emissions of SO 2 are large and contribute as much as 20% to the atmospheric loading in the vicinity of ports and heavily traveled waterways. Because of the rapid growth of Asian economies in the 1980s and early 1990s, it is estimated that shipping trade grew by an average of 5.4% per year between 1988 and 1995; in particular, crude oil shipments to Asian countries other than Japan grew by an average of 11.4% per year. The emissions of SO 2 from shipping are estimated to have grown by 5.9% per year between 1988 and 1995, rising from 545 Gg in 1988 to 817 Gg in 1995. This study uses the ATMOS atmospheric transport and deposition model to study the effects of these emissions, both in absolute terms and relative to land-based emissions , on wet and dry deposition of sulfur. Southeast Asia is most heavily affected by emissions from ships, particularly Sumatra, peninsular Malaysia, and Singapore, which routinely receive in excess of 10% of their deposition from ships. A strong seasonal component is also observed, with large areas of Southeast Asia and coastal Japan receiving sulfur deposition that exceeds 10 mg S m -2 season -1. Deposition is at least 25% higher in summer and fall than in winter and spring. Peak values of 25-50 mg S m -2 season -1 are calculated for winter in the Strait of Malacca. This work suggests a need to introduce policies to reduce the sulfur content of marine fuels or otherwise reduce emissions of SO 2 from ships in Asian waters.

  3. The Natural Gas Vehicle Challenge 1992: Exhaust emissions testing and results

    Science.gov (United States)

    Rimkus, W. A.; Larsen, R. P.; Zammit, M. G.; Davies, J. G.; Salmon, G. S.; Bruetsch, R. I.

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the U.S. Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the U.S. Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  4. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  5. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  6. Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M.; Zhang, G.L.; Zhang, Y.X.; Li, Y.; Lin, J.; Liu, W.; Cao, Q.C.; Zhao, Y.D.; Ma, C.Y.; Han, Y. [Chinese Academy of Sciences, Shanghai (China). Shanghai Institute of Applied Physics

    2009-11-15

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO{sub 4}2{sup -}. It can monitor the sulfur pollution in atmosphere.

  7. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    Heiderscheit, J.

    1992-01-01

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO 2 ) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  8. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Science.gov (United States)

    2010-07-01

    ... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak...) Exhaust Emission Measurement Activities. The following activities are performed, when applicable, in order...

  9. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Science.gov (United States)

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  10. Impact of reformulated fuels on motor vehicle emissions

    Science.gov (United States)

    Kirchstetter, Thomas

    Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate

  11. Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends.

    Science.gov (United States)

    Li, Lan; Ge, Yunshan; Wang, Mingda; Peng, Zihang; Song, Yanan; Zhang, Liwei; Yuan, Wanli

    2015-01-01

    The emission characteristics of motorcycles using gasoline and E10 (90% gasoline and 10% ethanol by volume) were investigated in this article. Exhaust and evaporative emissions of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED) including regulated and unregulated emissions. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions including carbonyls and volatile organic compounds (VOCs) were sampled through battery-operated air pumps using tubes coated with 2,4-dinitrophenylhydrazine (DNPH) and Tenax TA, respectively. The experimental results showed that the emission factors of total hydrocarbons (THC) and carbon monoxide (CO) from E10 fueling motorcycles decreased by 26%-45% and 63%-73%, while the emission factor of NOx increased by 36%-54% compared with those from gasoline fueling motorcycles. For unregulated emissions, the emission amount of VOCs from motorcycles fueled with E10 decreased by 18%-31% while total carbonyls were 2.6-4.5 times higher than those for gasoline. For evaporative emissions of THC and VOCs, for gasoline or E10, the diurnal breathing loss (DBL) was higher than hot soak loss (HSL). Using E10 as a fuel does not make much difference in the amount of evaporative THC, while resulted in a slightly growth of 14%-17% for evaporative BETX (benzene, toluene, ethylbenzene, xylene). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Payback Period for Emissions Abatement Alternatives: Role of Regulation and Fuel Prices

    DEFF Research Database (Denmark)

    Zis, Thalis; Angeloudis, Panagiotis; Bell, Michael G. H.

    2016-01-01

    As of January 2015, the new maximum limit of fuel sulfur content for ships sailing within emission control areas has been reduced to 0.1%. A critical decision for ship owners in advance of the new limits was the selection of an abatement method that complies with the regulations. Two main options...... exist: investing in scrubber systems that remove sulfur dioxide emissions from the exhaust and switching to low-sulfur fuel when sailing in regulated waters. The first option would involve significant capital costs, while the latter would lead to operating cost increases because of the higher price...

  13. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Science.gov (United States)

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. (a) Fuel...

  14. Anthropogenic emissions of oxidized sulfur and nitrogen into the atmosphere of the former Soviet Union in 1985 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Ryaboshapko, A.G.; Brukhanov, P.A.; Gromov, S.A.; Proshina, Yu.V; Afinogenova, O.G. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    1996-09-01

    Anthropogenic emissions of oxidized sulfur and nitrogen over the former Soviet Union for 1985 and 1990 were calculated on the basis of a combination of `bottom-up` and `top-down` approaches. Sulfur dioxide emissions from combustion of hard coal, brown coal, oil products, natural gas, shale oil, peat, wood as well as from metallurgy, sulfuric acid production, and cement production were estimated. Nitrogen oxides emissions were considered separately for large power plants, small power plants, industrial boilers, residential combustion units, and for transport. The sulfur and nitrogen emissions were spatially distributed over the former Soviet Union with 1 x 1 degree resolution. Data on 721 point sources of sulfur dioxide emissions and on the 242 largest power stations as nitrogen oxides sources were used. The area sources of both sulfur dioxide and nitrogen oxides were distributed according to the population density separately for about 150 administrative units of the former Soviet Union. 63 refs., 19 tabs.

  15. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    Science.gov (United States)

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  16. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines

    Science.gov (United States)

    Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially

  17. 40 CFR Table 29 to Subpart Uuu of... - HAP Emission Limits for Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true HAP Emission Limits for Sulfur Recovery Units 29 Table 29 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... to Subpart UUU of Part 63—HAP Emission Limits for Sulfur Recovery Units As stated in § 63.1568(a)(1...

  18. Correction of Measured Taxicab Exhaust Emission Data Based on Cmem Modle

    Science.gov (United States)

    Li, Q.; Jia, T.

    2017-09-01

    Carbon dioxide emissions from urban road traffic mainly come from automobile exhaust. However, the carbon dioxide emissions obtained by the instruments are unreliable due to time delay error. In order to improve the reliability of data, we propose a method to correct the measured vehicles' carbon dioxide emissions from instrument based on the CMEM model. Firstly, the synthetic time series of carbon dioxide emissions are simulated by CMEM model and GPS velocity data. Then, taking the simulation data as the control group, the time delay error of the measured carbon dioxide emissions can be estimated by the asynchronous correlation analysis, and the outliers can be automatically identified and corrected using the principle of DTW algorithm. Taking the taxi trajectory data of Wuhan as an example, the results show that (1) the correlation coefficient between the measured data and the control group data can be improved from 0.52 to 0.59 by mitigating the systematic time delay error. Furthermore, by adjusting the outliers which account for 4.73 % of the total data, the correlation coefficient can raise to 0.63, which suggests strong correlation. The construction of low carbon traffic has become the focus of the local government. In order to respond to the slogan of energy saving and emission reduction, the distribution of carbon emissions from motor vehicle exhaust emission was studied. So our corrected data can be used to make further air quality analysis.

  19. Experimental investigation on the influences of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance

    International Nuclear Information System (INIS)

    Fu, Jianqin; Zhu, Guohui; Zhou, Feng; Liu, Jingping; Xia, Yan; Wang, Shuqian

    2016-01-01

    Highlights: • In-cylinder residual gas fraction almost increases linearly with exhaust gas recirculation rate. • Heat transfer loss and exhaust gas energy loss decrease with exhaust gas recirculation rate. • Engine indicated thermal efficiency can be increased by 4.29% at 1600 r/min and 2.94 bar. • The effective range of exhaust gas recirculation rate can be extended by intake tumble. - Abstract: To improve the economy and emission performance of gasoline engine under part load, the approach of exhaust gas recirculation coupling with intake tumble was investigated by bench testing. Based on a naturally aspirated gasoline engine, the sweeping test of exhaust gas recirculation rate was conducted in two intake modes (with/without intake tumble), and the parameters related to engine heat-work conversion process and emission performance were measured. Through comparing and analyzing the measured data, the effects of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance were revealed. The results show that pumping loss decreases gradually while in-cylinder residual gas fraction increases linearly with the exhaust gas recirculation rate increasing; the high-pressure cycle efficiency ascends with exhaust gas recirculation rate increasing due to the decrease of heat transfer loss and exhaust gas energy loss. Thus, the improvement of indicated thermal efficiency is the superposition of double benefits of low-pressure cycle and high-pressure cycle. At 1600 r/min and 2.94 bar, the indicated thermal efficiency can be increased by 4.29%. With the increase of exhaust gas recirculation rate, nitrogen oxide emissions almost fall linearly, but hydrocarbon and carbonic oxide emissions have no obvious change in the effective range of exhaust gas recirculation rate. The biggest advantage of intake tumble is that it can extend the effective range of exhaust gas recirculation rate. As a result, the potential of energy

  20. Sulfur dioxide emissions and market effects under the Clean Air Act Acid Rain Program

    International Nuclear Information System (INIS)

    Zipper, C.E.; Gilroy, L.

    1998-01-01

    The Clean Air Act Amendments of 1990 (CAAA90) established a national program to control sulfur dioxide (SO 2 ) emissions from electricity generation. CAAA90's market-based approach includes trading and banking of SO 2 -emissions allowances. The paper presents an analysis of data describing electric utility SO 2 emissions in 1995, the first year of the program's Phase I, and market effects over the 1990-95 period. Fuel switching and flue-gas desulfurization were the dominant means used in 1995 by targeted generators to reduce emissions to 51% of 1990 levels. Flue-gas desulfurization costs, emissions allowance prices, low-sulfur coal prices, and average sulfur contents of coals shipped to electric utilities declined over the 1990-95 period. Projections indicate that 13-15 million allowances will have been banked during the programs' Phase I, which ends in 1999, a quantity expected to last through the first decade of the program's stricter Phase II controls. In 1995, both allowance prices and SO 2 emissions were below pre-CAAA90 expectations. The reduction of SO 2 emissions beyond pre-CAAA90 expectations, combined with lower-than-expected allowance prices and declining compliance costs, can be viewed as a success for market-based environmental controls. 21 refs., 6 figs., 3 tabs

  1. Chemical and biological characterization of exhaust emissions from ethanol and ethanol blended diesel fuels in comparison with neat diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R.; Christensen, Anders [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Toernqvist, M. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Ehrenberg, L. [Stockholm Univ. (Sweden). Dept. of Radiobiology; Haupt, D. [Luleaa Univ. of Technology (Sweden)

    1997-12-01

    This report presents results from a project with the aim of investigating the potential environmental and health impact of emissions from ethanol, ethanol blended diesel fuels and to compare these with neat diesel fuels. The exhaust emissions were characterized regarding regulated exhaust components, particulate and semivolatile Polycyclic Aromatic Compounds (PAC) and with bioassays. The bioassays were mutagenicity and TCDD receptor affinity tests. Results: Neat ethanol fuels are `low emission` fuels, while European diesel fuel quality (EDF) and an ethanol blended EDF are `high emission` fuels. Other fuels, such as Swedish Environmental Class one (MK1) and an ethanol blended MK1, are `intermediate` fuels regarding emissions. When using an oxidizing catalyst exhaust after-treatment device a reduction of harmful substances in the exhaust emissions with respect to determined exhaust parameters was found. The relatively low emission of PAH from ethanol fuelled engines would indicate a lower cancer risk from ethanol than from diesel fuels due to this class of compounds. However, the data presented emphasize the importance of considering the PAH profile 27 refs, 3 figs, 19 tabs

  2. Dramatic reduction of sulfur dioxide emission in Northeastern China in the last decade

    Science.gov (United States)

    Yuan, J.

    2017-12-01

    Analysis of spatial and temporal variations of sulfur dioxide concentration in planetary boundary layer were conducted. The data were generated by NASA satellite daily from October of 2004 and were obtained through NASA Giovanni. The global monthly mean spatial distribution of sulfur dioxide showed several hot spots including: several spots on some islands in the Pacific Ocean, several spots in central America, and central Africa. Most of these hot spots of sulfur dioxide are related to known active volcanos. The biggest hot spot of sulfur dioxide were observed in Northeastern China. While high concentration sulfur dioxide was still observed in Northeastern China in 2017. The area averaged concentration of sulfur dioxide declined dramatically since its peak in 2008. This temporal trend indicates that sulfur reduction effort has been effective in the last decade or post 2008 financial crisis recovery lead an industry less sulfur dioxide emission.

  3. Global Sulfur Emissions in the 1990s

    OpenAIRE

    David I. Stern

    2003-01-01

    This paper provides global and individual country estimates of sulfur emissions from 1991-2000. Raw estimates are obtained in two ways. For countries and years with published data I compile that data from the available sources. For the remaining countries and for missing years for countries with some published data, I use either the decomposition model estimated by Stern (2002), the first differences environmental Kuznets curve model estimated by Stern and Common (2001), or a simple extrapola...

  4. Sulfur-Kβ /sub emission studies on sulfur-bearing heterocycles

    International Nuclear Information System (INIS)

    Phillips, D.R.; Andermann, G.G.; Fujiwara, F.

    1986-01-01

    Sulfur-K/β /sub x-ray fluorescence spectroscopy (XFS) has been used to study the electronic structure and bonding in sulfur-bearing heterocycles. XFS not only has the capability of experimentally measuring valence electron energies in molecular species, but can also provide intensity data which can help define the nature of the molecular orbitals defined by the electrons. This report discusses the feasibility of using XFS as an analytical tool for the determination of total and specific sulfur heterocycle content in samples. A variety of compounds were studied. These include thiophene, thiophene derivatives, tetranydrothiophene, several more complex saturated and unsaturated sulfur heterocycles, and heterocycles containing both sulfur and nitrogen. The sulfur-K/β /sub spectra were obtained using a double crystal spectrometer which provided an instrumental resolution of about 0.7 eV

  5. Ion-ion Recombination and Chemiion Concentrations In Aircraft Exhaust

    Science.gov (United States)

    Turco, R. P.; Yu, F.

    Jet aircraft emit large quantities of ultrafine volatile aerosols, as well as soot parti- cles, into the environment. To determine the long-term effects of these emissions, a better understanding of the mechanisms that control particle formation and evolution is needed, including the number and size dispersion. A recent explanation for aerosol nucleation in a jet wake involves the condensation of sulfuric acid vapor, and cer- tain organic compounds, onto charged molecular clusters (chemiions) generated in the engine combustors (Yu and Turco, 1997). Massive charged aggregates, along with sulfuric acid and organic precursor vapors, have been detected in jet plumes under cruise conditions. In developing the chemiion nucleation theory, Yu and Turco noted that ion-ion recombination in the engine train and jet core should limit the chemiion emission index to 1017/kg-fuel. This value is consistent with ion-ion recombination coefficients of 1×10-7 cm3/s over time scales of 10-2 s. However, the evolution of the ions through the engine has not been adequately studied. The conditions at the combustor exit are extreme-temperatures approach 1500 K, and pressures can reach 30 atmospheres. In this presentation, we show that as the combustion gases expand and cool, two- and three-body ion-ion recombination processes control the chemiion concentration. The concepts of mutual neutralization and Thomson recombination are first summarized, and appropriate temperature and pressure dependent recombination rate coefficients are derived for the aircraft problem. A model for ion losses in jet exhaust is then formulated using an "invariance" principle discussed by Turco and Yu (1997) in the context of a coagulating aerosol in an expanding plume. This recombina- tion model is applied to estimate chemiion emission indices for a range of operational engine conditions. The predicted ion emission rates are found to be consistent with observations. We discuss the sources of variance in chemiion

  6. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Luo, Guang-Qian; Hu, Hong-Yun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Qiang; Yang, Jia-Kuan [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Hong, E-mail: hyao@hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer NH{sub 3}, SO{sub 2}, H{sub 2}S and COS are emitted during different sludge conditioning processes. Black-Right-Pointing-Pointer H{sub 2}S and SO{sub 2} generation increase in the acidic environment created by H{sub 2}SO{sub 4}. Black-Right-Pointing-Pointer Fenton peroxidation facilitates the formation of COS. Black-Right-Pointing-Pointer CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. Black-Right-Pointing-Pointer CaO leads to the conversion of free ammonia or protonated amine to volatile NH{sub 3}. - Abstract: Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH{sub 3}), sulfur dioxide (SO{sub 2}), hydrogen sulfide (H{sub 2}S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO{sub 2} and H{sub 2}S emissions in the H{sub 2}SO{sub 4} conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant

  7. 78 FR 5303 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Science.gov (United States)

    2013-01-25

    ... stringency of the SIP. Missouri's revision adds 10 CSR 10- 5.570 Control of Sulfur Emissions from Stationary... approving the State's request to add 10 CSR 10-5.570 Control of Sulfur Emissions from Stationary Boilers to... Management and Budget under Executive Order 12866 (58 FR 51735, October 4, 1993); Does not impose an...

  8. In-situ studies on volatile jet exhaust particle emissions - impacts of fuel sulfur content and environmental conditions on nuclei-mode aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Brock, C.A. [Denver Univ., CO (United States). Dept. of Engineering

    2000-02-01

    In-situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the DLR ATTAS research jet (RR M45H M501 engines) and a B737-300 aircraft (CFM56-3B1 engines). Measurements were made 0.15-20 seconds after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56 or 118 mg kg{sup -1}. Particle size distributions of from 3 to 60 nm diameter were determined using CN-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60 mg kg{sup -1}, reaching minimum values of about 2 x 10{sup 17} kg{sup -1} and 2 x 10{sup 16} kg{sup -1} for particles >3 nm and >5 nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60 mg kg{sup -1}. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4 x 10{sup 14} kg{sup -1}) than from the older RR M45H M501 engines (1.8 x 10{sup 15} kg{sup -1}). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors 2-10 depending on particle size.

  9. Development of the methodology of exhaust emissions measurement under RDE (Real Driving Emissions) conditions for non-road mobile machinery (NRMM) vehicles

    Science.gov (United States)

    Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Ziolkowski, A.

    2016-09-01

    The paper analyzes the exhaust emissions from farm vehicles based on research performed under field conditions (RDE) according to the NTE procedure. This analysis has shown that it is hard to meet the NTE requirements under field conditions (engine operation in the NTE zone for at least 30 seconds). Due to a very high variability of the engine conditions, the share of a valid number of NTE windows in the field test is small throughout the entire test. For this reason, a modification of the measurement and exhaust emissions calculation methodology has been proposed for farm vehicles of the NRMM group. A test has been developed composed of the following phases: trip to the operation site (paved roads) and field operations (including u-turns and maneuvering). The range of the operation time share in individual test phases has been determined. A change in the method of calculating the real exhaust emissions has also been implemented in relation to the NTE procedure.

  10. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    Science.gov (United States)

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  11. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000

    Directory of Open Access Journals (Sweden)

    Z. Lu

    2010-07-01

    Full Text Available With the rapid development of the economy, the sulfur dioxide (SO2 emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO2 emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO2 emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO2 in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of flue-gas desulfurization (FGD devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO2 emission in China is consistent with the trends of SO2 concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO2 and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO2 concentration in Japan is found during 2000–2007, indicating that the decrease of urban SO2 is lower in areas close to the Asian continent. This implies that the transport of increasing SO2 from the Asian continent partially counteracts the local reduction of SO2 emission downwind. The aerosol optical depth (AOD products of Moderate Resolution Imaging Spectroradiometer (MODIS are found to be highly correlated with the surface solar radiation (SSR measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO2 emission in

  12. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, E.; Kawahara, N. [Okayama Univ., Okayama (Japan); Roy, M.M. [Rajshahi Univ. of Engineering and Technology, Rajshahi (Bangladesh)

    2009-07-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N{sub 2} dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  14. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    International Nuclear Information System (INIS)

    Tomita, E.; Kawahara, N.; Roy, M.M.

    2009-01-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N 2 dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  15. A Research on The Exhaust Emission of The Gasoline Engines in Tekirdag

    OpenAIRE

    M.R. Durgut; S. Arin; E.Kilic

    2006-01-01

    The exhaust gases as a result of combustion in internal combustion engines, sump ventilatory systemand vaporization of fuel system are the pollution sources caused by the vehicles. Preventing the pollution inits source is the main method for controlling the pollution: In this study, the exhaust emissions of 1844vehicles with gasoline were examined randomly applied to measuring station. The measured CO, CO2 HC,O2 values were discussed in their suitability to the limits determined by Turkish St...

  16. Design and experimental study on desulphurization process of ship exhaust

    Science.gov (United States)

    Han, Mingyang; Hao, Shan; Zhou, Junbo; Gao, Liping

    2018-02-01

    This desulfurization process involves removing sulfur oxides with seawater or alkaline aqueous solutions and then treating the effluent by aeration and pH adjustment before discharging it into the ocean. In the desulfurization system, the spray tower is the key equipment and the venturi tubes are the pretreatment device. The two stages of plates are designed to fully absorb sulfur oxides in exhaust gases. The spiral nozzles atomize and evenly spray the desulfurizers into the tower. This study experimentally investigated the effectiveness of this desulfurization process and the factors influencing it under laboratory conditions, with a diesel engine exhaust used to represent ship exhaust. The experimental results show that this process can effectively absorb the SO2 in the exhaust. When the exhaust flow rate was 25 m3/h and the desulfurizer flow rate was 4 L/min, the sulfur removal efficiency (SRE) reached 99.7%. The flow rate, alkalinity, and temperature of seawater were found to have significant effects on the SRE. Adjusting seawater flow rate (SWR) and alkalinity within certain ranges can substantially improve the SRE.

  17. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    Science.gov (United States)

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  18. Gaseous ion-composition measurements in the young exhaust plume of jet aircraft at cruising altitudes. Implications for aerosols and gaseous sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.; Wohlfrom, K.H.; Klemm, M.; Schneider, J.; Gollinger, K. [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Schumann, U.; Busen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Mass spectrometric measurements were made in the young exhaust plume of an Airbus (A310) at cruising altitudes at distances between 400 and 800 m behind the Airbus (averaged plume age: 3.4 sec). The measurements indicate that gaseous sulfuric acid (GSA) number densities were less than 1.3 x 10{sup 8} cm{sup -3} which is smaller than the expected total sulfuric acid. Hence the missing sulfuric acid must have been in the aerosol phase. These measurements also indicate a total aerosol surface area density A{sub T} {<=} 5.4 x 10{sup -5} cm{sup 2} per cm{sup 3} which is consistent with simultaneously measured soot and water contrail particles. However, homogeneous nucleation leading to (H{sub 2}SO{sub 4}){sub x}(H{sub 2}O){sub y}-clusters can not be ruled out. (author) 16 refs.

  19. Gaseous ion-composition measurements in the young exhaust plume of jet aircraft at cruising altitudes. Implications for aerosols and gaseous sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F; Wohlfrom, K H; Klemm, M; Schneider, J; Gollinger, K [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Schumann, U; Busen, R [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    Mass spectrometric measurements were made in the young exhaust plume of an Airbus (A310) at cruising altitudes at distances between 400 and 800 m behind the Airbus (averaged plume age: 3.4 sec). The measurements indicate that gaseous sulfuric acid (GSA) number densities were less than 1.3 x 10{sup 8} cm{sup -3} which is smaller than the expected total sulfuric acid. Hence the missing sulfuric acid must have been in the aerosol phase. These measurements also indicate a total aerosol surface area density A{sub T} {<=} 5.4 x 10{sup -5} cm{sup 2} per cm{sup 3} which is consistent with simultaneously measured soot and water contrail particles. However, homogeneous nucleation leading to (H{sub 2}SO{sub 4}){sub x}(H{sub 2}O){sub y}-clusters can not be ruled out. (author) 16 refs.

  20. 40 CFR Table 30 to Subpart Uuu of... - Operating Limits for HAP Emissions From Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for HAP Emissions From Sulfur Recovery Units 30 Table 30 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Table 30 Table 30 to Subpart UUU of Part 63—Operating Limits for HAP Emissions From Sulfur Recovery...

  1. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting.

    Science.gov (United States)

    Zang, Bing; Li, Shuyan; Michel, Frederick; Li, Guoxue; Luo, Yuan; Zhang, Difang; Li, Yangyang

    2016-10-01

    Sulfur compounds in swine manure can cause odor emissions during composting if conditions are not conducive to their rapid oxidation and degradation. In this study, the effects of controllable composting process variables on sulfur odor emissions were investigated. These included pig manure to corn stalk mix ratio (0.7:1, 1.5:1 and 2.2:1dw basis), initial moisture content (60%, 65%, 70% and 75%) and aeration rate (1.0, 2.0, 3.0 and 4.0m(3)m(-3)h(-1)). The compounds measured were carbonyl sulfide, carbon disulfide, hydrogen sulfide, methyl mercaptan, ethyl mercaptan, diethyl sulfide, dimethyl sulfide (Me2S) and dimethyl disulfide (Me2SS). The results showed that total sulfur losses ranged from 3.9% to 18.3% after 26days of composting. Me2S and Me2SS were the primary (>59.61%) sulfur compounds released during this period. After turning, emission rates of both Me2S and Me2SS increased. Emissions of the other six sulfur compounds were low and inconsistent during composting. Within the compost, feedstock mix ratio significantly influenced the concentration of Me2SS, while aeration rate significantly affected Me2S concentration (pMoisture content did not have a significant effect on the concentrations of either of these two compounds. Concentrations of sulfur odor compounds were the lowest at the highest aeration rate. Therefore, high aeration rates during the thermophilic phase, especially after turning, are recommended to minimize sulfur odors produced during swine manure composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. PIXE analysis of vehicle exhaust particulate

    International Nuclear Information System (INIS)

    Shi Xianfeng; Yao Huiying; Liu Bo; Sun Minde; Xu Huawei; Mi Yong; Shen Hao

    2001-01-01

    PIXE technique on the analysis of vehicle exhaust particulate is introduced. The clement composition and concentration of particulate are obtained. Some elements which are related to environmental pollution such as sulfur lead, silicon and manganese, were analyzed and discussed in detail by PIXE technique Nowadays although unleaded gasoline is widely used, the lead concentration is still very high in exhaust particulate. The concentrations of silicon and manganese in exhaust particulate from different model vehicles are also quite high from measurements. It shows that an evidence for exhaust pollution control could be provided from this work

  3. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust

    Science.gov (United States)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin

    2017-04-01

    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.

  4. Hazard assessment of exhaust emissions - The next generation of fast and reliable tools for in vitro screening

    Science.gov (United States)

    Rothen-Rutishauser, B.

    2017-12-01

    Hazard assessment of exhaust emissions - The next generation of fast and reliable tools for in vitro screening Barbara Rothen-Rutishauser Adolphe Merkle Institute, University of Fribourg, Switzerland; barbara.rothen@unifr.ch Pollution by vehicles is a major problem for the environment due to the various components in the exhaust gasses that are emitted into the atmosphere. A large number of epidemiological studies demonstrate the profound impact of vehicle emissions upon human health [1-3]. Such studies however, are unable to attribute a given subset of emissions to a certain adverse effect, which renders decision making difficult. Standardized protocols for exhaust toxicity assessment are lacking and it relies in many aspects on epidemiological and in vivo studies (animals), which are very time and cost-intensive and suffer from considerable ethical issues. An overview about the current state of research and clinical aspects in the field, as well as about the development of sophisticated in vitro approaches mimicking the inhalation of airborne particles / exhaust for the toxicological testing of engine emissions will be provided. Data will be presented that show that the combination of an air-liquid exposure system and 3D lung-cell culture model offers an adequate tool for fast and reliable investigations of complete exhaust toxicity as well as the effects of particulate fraction [4,5]. This approach yields important results for novel and improved emission technologies in the early stages of product development. [1] Donaldson et al. Part Fibre Toxicol 2005, 2: 10. [2] Ghio et al. J Toxicol Environ Health B Crit Rev 2012, 15: 1-21. [3] Peters et al. Res Rep Health Eff Inst 2009, 5-77. [4] Bisig et al. Emiss Control Sci Technol 2015, 1: 237-246. [5] Steiner et al. Atmos Environ 2013, 81: 380-388.

  5. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument

    NARCIS (Netherlands)

    Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, Kai; Levelt, P.F.

    2007-01-01

    We report the first daily observations of sulfur dioxide (SO2) emissions from copper smelters by a satellite-borne sensor - the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura spacecraft. Emissions from two Peruvian smelters (La Oroya and Ilo) were detected in up to 80% of OMI overpasses

  6. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis

    International Nuclear Information System (INIS)

    Doğan, Battal; Erol, Derviş; Yaman, Hayri; Kodanli, Evren

    2017-01-01

    Highlights: • Examining the performance of ethanol-gasoline blend. • Evaluation of the exhaust emissions. • Energy and exergy analysis. • Calculation of irreversibility from cooling system and the exhaust resulting. - Abstract: Ethanol which is considered as an environmentally cleaner alternative to fossil fuels is used on its own or blended with other fuels in different ratios. In this study, ethanol which has high octane rating, low exhaust emission, and which is easily obtained from agricultural products has been used in fuels prepared by blending it with gasoline in various ratios (E0, E10, E20, and E30). Ethanol-gasoline blends have been used in a four-cylinder four-stroke spark ignition engine for performance and emission analysis under full load. In the experimental studies, engine torque, fuel and cooling water flow rates, and exhaust and engine surface temperature have been measured. Engine energy distribution, irreversible processes in the cooling system and the exhaust, and the exergy distribution have been calculated using the experimental data and the formulas for the first and second laws of thermodynamics. Experiments and theoretical calculations showed that ethanol added fuels show reduction in carbon monoxide (CO), carbon dioxide (CO_2) and nitrogen oxide (NO_X) emissions without significant loss of power compared to gasoline. But it was measured that the reduction of the temperature inside the cylinder increases the hydrocarbon (HC) emission.

  7. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  8. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  9. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  10. Atmospheric/climatic effects of aircraft emissions

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1996-01-01

    Exhaust emissions from aircraft include oxides of nitrogen (NO x ), water vapor (H 2 O), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and particles (soot and sulfates). These emissions are small compared to industrial/urban surface emissions. However, because (1) atmospheric residence times of exhaust constituents are longer at altitude, particularly in the stratosphere, than they are in the boundary layer, (2) their background concentrations at altitude are lower than those near the surface, (3) the radiation balance is the more sensitive to atmospheric trace constituents the colder the temperature aloft and (4) inter-hemispheric mixing of aircraft effluents is inhibited, aircraft emissions near and above the tropopause and polewards of 40 degrees latitude can be environmentally critical. That's why atmospheric/climatic effects of aircraft emissions have again received scientific, economic and political scrutiny in the last few years, motivated by growth of subsonic traffic at about 5% per year over the past two decades and the advent of a technologically feasible operation of a supersonic high speed commercial transport (HSCT) fleet

  11. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2016-04-15

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  12. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    International Nuclear Information System (INIS)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum

    2016-01-01

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  13. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)

    2011-07-28

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  14. A review on idling reduction strategies to improve fuel economy and reduce exhaust emissions of transport vehicles

    International Nuclear Information System (INIS)

    Shancita, I.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Rashed, M.M.; Rashedul, H.K.

    2014-01-01

    Highlights: • Introduce various idling reduction technologies for transport vehicles. • Exhibit their energy use, advantages, disadvantages to understand their capability. • Conduct critical review to improve fuel economy and exhaust emissions. • Suggest better technology according to their performance ability. - Abstract: To achieve reductions in vehicle idling, strategies and actions must be taken to minimize the time spent by drivers idling their engines. A number of benefits can be obtained in limiting the idling time. These benefits include savings in fuel use and maintenance costs, vehicle life extension, and reduction in exhaust emissions. The main objective of idling reduction (IR) devices is to reduce the amount of energy wasted by idling trucks, rail locomotives, and automobiles. During idling, gasoline vehicles emit a minimum amount of nitrogen oxides (NO x ) and negligible particulate matter (PM). However, generally a large amount of carbon monoxide (CO) and hydrocarbons (HC) are produced from these vehicles. Gasoline vehicles consume far more fuel at an hourly rate than their diesel counterparts during idling. Higher NOx and comparatively larger PM are produced by diesel vehicles than gasoline vehicles on the average during idling. Auxiliary power unit (APU), direct-fired heaters, fuel cells, thermal storage system, truck stop electrification, battery-based systems, engine idle management (shutdown) systems, electrical (shore power) solutions, cab comfort system, and hybridization are some of the available IR technologies whose performances for reducing fuel consumption and exhaust emissions have been compared. This paper analyzes the availability and capability of most efficient technologies to reduce fuel consumption and exhaust emissions from diesel and gasoline vehicles by comparing the findings of previous studies. The analysis reveals that among all the options direct fired heaters, APUs and electrified parking spaces exhibit better

  15. Sulfur Emissions, Abatement Technologies and Related Costs for Europe in the RAINS Model Database

    OpenAIRE

    Cofala, J.; Syri, S.

    1998-01-01

    This paper describes the part of the Regional Pollution Information and Simulation (RAINS) model dealing with the potential and costs controlling emissions of sulfur dioxide. The paper describes the selected aggregation level of the emission generating activities and reviews the major options for controlling SO2 emissions. An algorithm for estimating emission control costs is presented. The cost calculation distinguishes 'general'(i.e., valid for all countries) and 'country-specific' paramete...

  16. Impact of sulfur content regulations of shipping fuel on coastal air quality

    Science.gov (United States)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Weigelt, Andreas; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2016-04-01

    Shipping traffic is a sector that faces an enormous growth rate and contributes substantially to the emissions from the transportation sector, but lacks regulations and controls. Shipping is not enclosed in the Kyoto Protocol. However, the International Maritime Organization (IMO) introduced sufhur limits for marine heavy fuels, nitrogen oxide limits for newly-built ship engines and established Emission Control Areas (ECA) in the North and Baltic Sea as well as around North America with the International Convention for the Prevention of Pollution from Ships (MARPOL 73/78 Annex VI). Recently, on the 1st of January 2015, the allowed sulfur content of marine fuels inside Sulfur Emission Control Areas has been significantly decreased from 1.0% to 0.1%. However, measurements of reactive trace gases and the chemical composition of the marine troposphere along shipping routes are sparse and up to now there is no regular monitoring system available. The project MeSmarT (measurements of shipping emissions in the marine troposphere) is a cooperation between the University of Bremen, the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz-Zentrum Geesthacht. This study aims to analyse the influence of shipping emissions on the coastal air quality by evaluating ground-based remote sensing measurements using the MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) technique. Measurements of the atmospheric trace gases nitrogen dioxide (NO2) and sulfur dioxide (SO2) have been carried out in the marine troposphere at the MeSmarT measurement sites in Wedel and on Neuwerk and on-board several ship cruises on the North and Baltic Sea. The capability of two-channel MAX-DOAS systems to do simultaneous measurements in the UV and visible spectral range has been used in the so called "onion-peeling" approach to derive spatial distributions of ship emissions and to analyse the movement of the exhausted

  17. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  18. Political economy of low sulfurization and air pollution control policy in Japan : SOx emission reduction by fuel conversion

    OpenAIRE

    Terao, Tadayoshi

    2013-01-01

    In the early stages of the development of Japan’s environmental policy, sulfur oxide (SOx) emissions, which seriously damage health, was the most important air pollution problem. In the second half of the 1960s and the first half of the 1970s, the measures against SOx emissions progressed quickly, and these emissions were reduced drastically. The most important factor of the reduction was the conversion to a low-sulfur fuel for large-scale fuel users, such as the electric power industry. Howe...

  19. Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions.

    Science.gov (United States)

    Jaworski, Artur; Kuszewski, Hubert; Ustrzycki, Adam; Balawender, Krzysztof; Lejda, Kazimierz; Woś, Paweł

    2018-04-20

    Measurement of car engines exhaust pollutants emissions is very important because of their harmful effects on the environment. This article presents the assessment of repeatability of the passenger car engine exhaust pollutants emission research results obtained in the conditions of a chassis dynamometer. The research was conducted in a climate chamber, enabling the temperature conditions to be determined from - 20 to + 30 °C. The emission of CO, CH 4 , CO 2 , NO X , THC, and NMHC was subjected to the analysis. The aim of the research is to draw attention to the accuracy of the pollutant emission research results in driving cycles, and the comparison of pollutant emission results and their repeatability obtained in successive NEDC cycles under cold and hot start conditions. The results of the analysis show that, in the case of a small number of measurements, the results repeatability analysis is necessary for a proper interpretation of the pollutant emission results on the basis of the mean value. According to the authors' judgment, it is beneficial to determine the coefficient of variation for a more complete assessment of exhaust emission result repeatability obtained from a small number of measurements. This parameter is rarely presented by the authors of papers on exhaust components emission research.

  20. An overview of exhaust emissions regulatory requirements and control technology for stationary natural gas engines

    International Nuclear Information System (INIS)

    Ballard, H.N.; Hay, S.C.; Shade, W.N. Jr.

    1992-01-01

    In this paper a practical overview of stationary natural gas engine exhaust emissions control technology and trends in emissions regulatory requirements is presented. Selective and non-selective catalytic reduction and lean burn technologies are compared. Particular emphasis is focussed on implications of the Clean Air Act of 1990. Recent emissions reduction conversion kit developments and a practical approach to continuous monitoring are discussed

  1. 75 FR 7426 - Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline Sulfur Control...

    Science.gov (United States)

    2010-02-19

    ... 2060-AI23; 2060-AQ12 Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline.... The rulemaking also required oil refiners to limit the sulfur content of the gasoline they produce. Sulfur in gasoline has a detrimental impact on catalyst performance and the sulfur requirements have...

  2. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    Science.gov (United States)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  3. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... for Light-Duty Vehicles and Light-Duty Trucks § 86.1708-99 Exhaust emission standards for 1999 and... are incorporated by reference (see § 86.1). (v) Hybrid electric vehicle requirements. Deterioration factors for hybrid electric vehicles shall be based on the emissions and mileage accumulation of the...

  4. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    Science.gov (United States)

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.

  5. Exhaust gas emission from ships in Norwegian coastal waters

    International Nuclear Information System (INIS)

    Meltzer, F.; Fiskaa, G.

    1991-02-01

    For the following vessel categories bunker consumption and emission of greenhouse gases and SO 2 has been calculated: Norwegian coastal trade, domestic ferries, fishing vessels (Norwegian), Norwegian military vessels, inter-coastal ferries, import and export, ships iron-ore from Narvik and Soviet vessels in transit. The carbon emission (CO 2 as carbon) within 12 nautical miles has been calculated to 0.621 MtC (Mega ton carbon) and to 1.0 MtC within the economic zone for these vessel categories. The calculated ''inland waterways'' bunker consumption in this study deviates from the Central Bureau of Statistics of Norway and OECD/IEA figures by up to 25%. This large deviation supports the need for a uniform method to calculate ''inland waterways'' bunker consumption. Scenarios for the emission outlook for the years 1995, 2000 and 2005 are discussed and calculated. With 1988 as present level it is possible, according to these scenarios, to reduce the emission of NO x by close to 40% and SO 2 by 85%. Reduction of greenhouse- and SO 2 components in the exhaust gases from ships is today technically possible, but the demand for further research and development is significant. Compared with land-based low-emission technologies, the offshore technologies are years behind. 21 refs., 9 figs., 9 tabs

  6. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  7. The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine

    Science.gov (United States)

    Warju; Harto, S. P.; Soenarto

    2018-01-01

    One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.

  8. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Kakaras, E.C.; Giakoumis, E.G.

    2008-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  9. Effects of Specific Fuel Consumption and Exhaust Emissions of Four Stroke Diesel Engine with CuO/Water Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Senthilraja S.

    2017-03-01

    Full Text Available This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2% of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx, exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.

  10. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  11. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T F; Wennberg, P O; Cohen, R C; Anderson, J G [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D W; Keim, E R; Gao, R S; Wamsley, R C; Donnelly, S G; Del Negro, L A [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; others, and

    1998-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  12. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T.F.; Wennberg, P.O.; Cohen, R.C.; Anderson, J.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D.W.; Keim, E.R.; Gao, R.S.; Wamsley, R.C.; Donnelly, S.G.; Del Negro, L.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; and others

    1997-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  13. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  14. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  15. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    Science.gov (United States)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  16. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  17. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J; Schaefer, K [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1998-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  18. A study of diesel-hydrogen fuel exhaust emissions in a compression ignition engine/generator assembly

    International Nuclear Information System (INIS)

    Karri, V.; Hafez, H.A.; Kirkegaard, J.F.

    2006-01-01

    A compression engine and duel-fuel supply system was studied in order to determine the influence of hydrogen gas on a diesel engine's exhaust system. Commercially available solenoid valves and pulse actuators were used in a customized mechatronic control unit (MICU) to inject the hydrogen gas into the cylinders during the experiments. The MICU was designed as a generic external attachment. Diesel fuel was used to ignite the hydrogen gas-air mixture after compression. Various different electrical loads were then applied using an alternator in order to stimulate the engine governor and control diesel flow. Results of the study showed that measured carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO x ) loads of exhaust emissions increased, while emissions of carbon dioxide (CO 2 ) decreased. Results also showed that higher temperatures and levels of NO x occurred when hydrogen was mixed with the induced air. It was concluded that higher levels of hydrogen may be needed to reduce emissions. 17 refs., 5 tabs., 2 figs

  19. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  20. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Emissions of carbon, nitrogen, and sulfur from biomass burning in Nigeria

    International Nuclear Information System (INIS)

    Akeredolu, F.; Isichei, A.O.

    1991-01-01

    The atmospheric implications of the effects of burning of vegetation in Nigeria are discussed. The following topics are explored: the extent of biomass burning by geographical area; estimates of emission rates of carbon, nitrogen and sulfur; and the impact on biogeochemical cycling of elements. The results suggest that biomass burning generates a measurable impact on the cycling of carbon and nitrogen

  2. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    Energy Technology Data Exchange (ETDEWEB)

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus

  3. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  4. Effect of nocturnal exhaustion exercise on the metabolism of selected elements

    Directory of Open Access Journals (Sweden)

    Patlar Suleyman

    2014-01-01

    Full Text Available The present study aims to examine how exercise performed until fatigue at night affects element distribution in the serum. The study examined 10 healthy sedentary males who were not actively engaged in any particular sport and whose mean age was 23.00±0.25 years, mean height 177.79±2.25 cm, and mean weight 70.70±1.63 kg. Blood samples were collected from the subjects at midnight twice: during rest before exercise and after exercise. Serum phosphorus, sodium, potassium, sulfur (mmol/L, cobalt, boron, cadmium, chrome, nickel, manganese, molybdenum, copper, iron, zinc and calcium levels (mg/L were measured using atomic emission spectroscopy (ICP-AES. Exhaustion exercise performed at night brought about a decrease in copper levels only (p<0.05, while elevating levels of potassium, sodium, magnesium, calcium, iron, zinc, manganese, nickel, selenium, molybdenum, chrome, cobalt, lead and cadmium (p<0.05. The results of the study demonstrate that nighttime exercise until exhaustion significantly alters element metabolism.

  5. Analysis of tractor particulate emissions in a modified NRSC test after implementing a particulate filter in the exhaust system

    Directory of Open Access Journals (Sweden)

    Siedlecki Maciej

    2017-01-01

    Full Text Available Retrofitting, which means retrofitting old generation engine systems with modern exhaust after treatment systems, is becoming increasingly popular, which allow vehicles to adhere to the newer and more stringent emission norms. This can save the operators of such vehicles money using older engineered designs without the need to design a new unit or buy an expensive new machine or vehicle. At present, there is a growing interest in emissions from off-road vehicles and the introduction of minimum limits for older vehicles that must be met in order to be able to allow for their operation. For the purposes of this article, the Stage IIIA farm tractor has been fitted with a particulate filter in the exhaust system. The study investigated the impact of the use of exhaust after treatment systems on particle emissions in terms of mass, size distribution and number using PEMS analyzers in the modified NRSC stationary test by engine loading, using a mobile engine dynamometer and comparison of test results.

  6. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010

    Directory of Open Access Journals (Sweden)

    Z. Lu

    2011-09-01

    Full Text Available China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2 and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC emissions from these two countries for the period 1996–2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %–17 % due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs of SO2, BC, and OC emissions are estimated to be −16 %–17 %, −43 %–93 %, and −43 %–80 % for China, and −15 %–16 %, −41 %–87 %, and −44 %–92

  7. Changes in Atmospheric Sulfur Dioxide (SO2) over the English Channel - 1.5 Years of Measurements from the Penlee Point Atmospheric Observatory

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas; Hopkins, Frances; Smyth, Timothy

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near near the Plymouth Sound. International Maritime Organization regulation came into force in January 2015 to reduce sulfur emissions tenfold in Sulfur Emission Control Areas such as the English Channel. We observed a three-fold reduction from 2014 to 2015 in the estimated ship-emitted SO2 during southeasterly winds. Dimethylsulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from ~1/3 in 2014 to ~1/2 in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  8. Prediction of emissions and exhaust temperature for direct injection diesel engine with emulsified fuel using ANN

    OpenAIRE

    KÖKKÜLÜNK, Görkem; AKDOĞAN, Erhan; AYHAN, Vezir

    2014-01-01

    Exhaust gases have many effects on human beings and the environment. Therefore, they must be kept under control. The International Convention for the Prevention of Pollution from Ships (MARPOL), which is concerned with the prevention of marine pollution, limits the emissions according to the regulations. In Emission Control Area (ECA) regions, which are determined by MARPOL as ECAs, the emission rates should be controlled. Direct injection (DI) diesel engines are commonly used as a prop...

  9. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    Science.gov (United States)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  10. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  11. VIPEN - Vehicle induced particulate emissions from non-exhaust sources; Katupoelypaeaestoejen ajoneuvomittaukset. VIPEN-projekti

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.; Tervahattu, H. [Nordic Envicon Oy, Helsinki (Finland); Pirjola, L.; Perhoniemi, P. [Stadia Helsinki Polytechnic, Helsinki (Finland); Vesala, H. [VTT Processes, Espoo (Finland)

    2006-10-15

    In the VIPEN-project the measurement set up of the mobile laboratory Sniffer (see project LIPIKA) was extended to include on-line measurements of non-exhaust particles. The test measurements showed that the system is a good tool for studying emissions of respirable particles from street surface. Valuable information about emission levels in different situations has been gathered. So far Sniffer has measured spring-time road dust in Helsinki on a route set in urban environment. PM levels in Helsinki were observed to decline towards beginning of May. Hot spot street sections with higher emission levels could be identified. Also the effect of studded tires and road sanding has been studied in Nokia. Both studs and traction sanding increased emission levels. Emission levels from studs varied with stud design and amount of studs per tire. The direct emission increase from traction sanding was larger than from studded tires but the levels started to decline immediately after dispersion as passing traffic swept the material aside. (orig.)

  12. The effect of oil additives on exhaust emission of internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, M.B.; Kuzmanovski, K.A.

    1999-01-01

    An attempt was conducted to acquire data on connection between motor oil and motor oil additives and exhaust emission of internal combustion engine. The consulted literature did not contain enough data, so experiments were conducted. The results of the experiments are presented on diagrams that have been processed in the computer program EXCEL. Conclusions that were made out of that work show the need of expanding research on the subject. (Author)

  13. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Oh, S.H.; Mitchell, P.J.; Siewert, R.M.

    1992-01-01

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al 2 O 3 > Rh/Al 2 O 3 > Pt/Al 2 O 3 . Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O 2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  14. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-01-01

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H 2 S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS 2 ) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O 2 concentration (p −1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%

  15. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  16. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  17. Fuel consumption and exhaust emissions of urban buses. Performance of newest diesel technology; Kaupunkibussien polttoaineenkulutus ja pakokaasupaeaestoet. Uusimman dieseltekniikan suorituskyky

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Erkkilae, K.; Hartikka, T.

    2007-03-15

    The research was carried out by the Finnish Public Transport Association. Altogether seven vehicles were measured, two two-axle Euro 3 -class vehicles as references (Scania and Volvo), three new Euro 4 -class vehicles (Mercedes-Benz, Scania and Volvo) and two new three-axle vehicles (Euro 4 Scania and Euro 5 Volvo). The measurements were carried out on a chassis dynamometer, using three cycles describing actual driving. In addition to fuel consumption, exhaust emissions were also recorded for these vehicles. The differences in fuel consumption and operating expenses were after all smaller than first anticipated. When it comes to the Euro 3 -class reference vehicles, Volvo consumes 7.10% more fuel than Scania. For new two-axle vehicles the difference in fuel consumption, when simulating urban driving, is only 3.4%. Due to different technical solutions, the results were anticipated to be greater. In suburban driving although, the difference is at its most 11%. The Volvo Euro 4 -bus has in average the lowest fuel consumption. Looking at the three-axle vehicles, Scania consumes 3.5% less fuel than does Volvo. The measurements do not give an unambiguous answer to whether the EGR- or SCR technology is preferable regarding fuel consumption. The contemplation is hindered by two factors. On one hand, the order of superiority depends on the driving cycle, on the other, the actual exhaust emissions do not match with expectations. Scania's Euro 4 -engines produce higher NO{sub x}-emissions than its Euro 3 -engine. The fuel efficient Volvo Euro 4 -engine is not truly Euro 4 -class what comes to NO{sub x}-emissions. The Mercedes- Benz Euro 4- and Volvo Euro 5 -engines produce NO{sub x}-emissions genuinely matching their classes. Both fuel consumption and exhaust emissions have been observed in the study. In case exhaust emissions were completely disregarded, fleet decisions might be directed towards fuel efficient vehicles which after all do not reach the level of emission

  18. Low emission transport systems. Reduction of emissions with low-pollutant lubricants; Emissionsarmer Verkehr. Emissionsminderung durch schadstoffarme Schmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D; Boehncke, A; Mangelsdorf, I

    2001-07-01

    Due to the lower EURO 4 emission limits, exhaust aftertreatment systems for heavy- and light-duty vehicles will be necessary which are more efficient than the today 3-way- or oxidation-type catalysts. Practicable exhaust aftertreatment systems are, for example, particle traps, SCR or NOx- adsorber catalysts, and combinations of these systems. Most of these exhaust control devices require fuels with sulphur contents below 10 ppm. Then the sulphate emissions from lubricants containing about 0.5% sulphur is in the same order of magnitude as sulphate emissions from low sulfur fuels. Measured data on the influence of sulphur from lubricating oils on future exhaust treatment systems are very limited. Conclusions have mostly been drawn from experimental results with low sulphur fuels. It cannot be ruled out, especially for NOx- adsorbers, that sulphur will adversely affect performance, thus making a reduction of sulphur levels in engine oils necessary. As far as diesel exhaust is concerned lubricants contribute approximately 20 - 26% to total particulate matter and more than 50% to the soluble organic fraction (SOF). Ash deposits derived from additives that contain zinc, calcium, sulphur, or phosphorous are likely to block the newly developed particle filter systems. Also for diesel technologies incorporating precious-metal catalysts (e.g. DOC, CDPF, CR-DPF, Urea- SCR) low sulphur levels are advantageous because the mass of sulphate particulate matter formed from fuel or lubricant sulphur is reduced. Conventional three-way catalysts are less sensitive, the light-off temperature being mainly affected. In summary, all available studies suggest that the lower the level of sulphur the lower emissions are. Furthermore phosphorous (associated with the antiwear additive ZDTP) was shown to limit catalyst life and, together with thermal degradation, is responsible for reduced catalyst efficiency over time. Although there is still a lack of quantitative technical information, it

  19. 49 CFR 325.91 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...

  20. On exhaust emissions from petrol-fuelled passenger cars at low ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1998-11-01

    The study at hand deals with regulated and unregulated exhaust emissions from petrol-fuelled cars at low ambient temperatures with present-day or near-future exhaust after treatment systems. The subject has been investigated at VTT over a decade and this report compiles data from various sub-studies carried out between the years 1993 - 1997. Each one of them viewed different aspects of the phenomenon, like determining the low-temperature response of today`s new cars employing three-way catalytic converters or assessing the long-term durability and the influence of vehicle mileage upon the low-temperature emissions performance. Within these studies, together more than 120 cars of model years from 1990 to 1997 have been tested. Most of them were normal, in-service vehicles with total mileages differing between only a few thousand kilometres for new cars up to 80,000 km or even more for the in-use vehicles. Both the US FTP75 and the European test cycle have been employed, and the ambient temperatures ranged from the baseline (+22 deg C) down to +- O deg C, -7 deg C and in some cases even to -20 deg C. The studies attested that new cars having today`s advanced emissions control systems produced fairly low levels of emissions when tested in conditions designated in the regulations that are the basis of the current new-vehicle certification. However, this performance was not necessarily attained at ambient temperatures that were below the normative range. Fairly widespread response was recorded, and cars having almost equal emissions output at baseline could produce largely deviating outcomes in low-temperature conditions. On average, CO and HC emissions increased by a factor of five to 10, depending on the ambient temperature and vehicle type. However, emissions of NO{sub x} were largely unaffected. Apart from these regulated emissions, many unregulated species were also determined, either by using traditional sampling and chromatography methods or on-line, employing

  1. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  2. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  3. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel

    International Nuclear Information System (INIS)

    Pereira, Roberto G.; Oliveira, Jorge L.; Oliveira, Paulo Cesar P.; Oliveira, Cesar D.; Fellows, Carlos E.; Piamba, Oscar E.

    2007-01-01

    The present work describes an experimental investigation concerning the electric energy generation using blends of diesel and soybean biodiesel. The soybean biodiesel was produced by a transesterification process of the soybean oil using methanol in the presence of a catalyst (KOH). The properties (density, flash point, viscosity, pour point, cetane index, copper strip corrosion, conradson carbon residue and ash content) of the diesel and soybean biodiesel were determined. The exhaust emissions of gases (CO, CO 2 ,C x H y ,O 2 , NO, NO x and SO 2 ) were also measured. The results show that for all the mixtures tested, the electric energy generation was assured without problems. It has also been observed that the emissions of CO, C x H y and SO 2 decrease in the case of diesel-soybean biodiesel blends. The temperatures of the exhaust gases and the emissions of NO and NO x are similar to or less than those of diesel. (author)

  4. Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine

    International Nuclear Information System (INIS)

    Yusri, I.M.; Mamat, R.; Azmi, W.H.; Omar, A.I.; Obed, M.A.; Shaiful, A.I.M.

    2017-01-01

    Highlights: • Adding 2-butanol in gasoline fuel can improve engine performance. • 2-Butanol addition reduced NO x , CO, and HC but produced higher CO 2 . • RSM was applied to optimize the engine performance and exhaust emissions. - Abstract: Producing an optimal balance between engine performance and exhaust emissions has always been one of the main challenges in automotive technology. This paper examines the use of RSM (response surface methodology) to optimize the engine performance, and exhaust emissions of a spark-ignition (SI) engine which operates with 2-butanol–gasoline blends of 5%, 10%, and 15% called GBu5, GBu10, and GBu15. In the experiments, the engine ran at various speeds for each test fuel and 13 different conditions were constructed. The optimization of the independent variables was performed by means of a statistical tool known as DoE (design of experiments). The desirability approach by RSM was employed with the aim of minimizing emissions and maximizing of performance parameters. Based on the RSM model, performance characteristics revealed that increments of 2-butanol in the blended fuels lead to increasing trends of brake power, brake mean effective pressure and brake thermal efficiency. Nonetheless, marginal higher brake specific fuel consumption was observed. Furthermore, the RSM model suggests that the presence of 2-butanol exhibits a decreasing trend of nitrogen oxides, carbon monoxides, and unburnt hydrocarbon, however, a higher trend was observed for carbon dioxides exhaust emissions. It was established from the study that the GBu15 blend with an engine speed of 3205 rpm was found to be optimal to provide the best performance and emissions characteristics as compared to the other tested blends.

  5. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu [Beijing Building Materials Academy of Science Research/State Key Laboratory of Solid Waste Reuse for Building Material, Beijing 100041 (China); College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Schuchardt, Frank [Johann Heinrich von Thuenen-Institute, Institute of Agricultural Technology and Biosystems Engineering, Bundesallee 50, 38116 Braunschweig (Germany); Li, Guoxue, E-mail: ligx@cau.edu.cn [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Yang, Jinbing; Yang, Qingyuan [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China)

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  6. The performance of oil-fired boilers: The influence of fuel sulfur on emissions and appliance integrity

    International Nuclear Information System (INIS)

    Lee, S.W.

    1997-01-01

    ASHRAE research project RP-757 examined the impact of distillate fuel sulfur content on the energy and emission performance of oil-fired boilers. The project involved construction of a combustion test rig housed in a constant-temperature test room; installation of a 102.5 kW (350,000 Btu/h) capacity, steel hot water boiler equipped with a special test section to simulate boiler heat exchanger surfaces; introduction of continuous emission analyzers and data-acquisition/control systems; and preparation of specific test fuel oils in the 0.01% to 1.2% sulfur range. The combustion experiments provided comprehensive data including flue gas composition, total deposit weight on test heat exchanger surfaces, pH, sulfite and sulfate in the flue gas condensate and soluble deposits, and iron and sulfur in soluble and insoluble deposits. Controlled combustion experiments using the experimental boiler and fuels have provided the following observations for a systematic increase of boiler fuel sulfur: the flue gas SO 2 increased linearly; the acidity and concentrations of sulfite and sulfate in flue gas condensate and the soluble deposits increased; total surface deposits, which are made up of the soluble and insoluble portions, increased linearly; higher amounts of soluble iron sulfates formed with apparent increased corrosion potential of metal surfaces; and the boiler efficiency remained unchanged during the short-term combustion experiments

  7. Control and treatment of sulfur oxides emissions; Prevention et traitement des emissions d`oxydes de soufre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The conference on the control and treatment of sulfur oxides emissions has held in Le Havre the 4. and 5. december, 1997. The aim of this conference was to promote the information on the different treatment technologies and to contribute on the one hand to the supporting and revival of the environmental protection and on the other hand to the desulfurization programs. It has allowed to recall too the technical and financial support of the Ademe to the manufacturers. (O.M.)

  8. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  9. Exhaust gas emissions evaluation in the flight of a multirole fighter equipped with a F100-PW-229 turbine engine

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław

    2017-01-01

    Full Text Available The issue of exhaust gas emission generated by turbine engines described in ICAO Annex 16 of the International Civil Aviation Convention includes a number of procedures and requirements. Their implementation is aimed at determining the value of the engine’s environmental parameters and comparing them to the values specified in the norms. The turbine engine exhaust gas emission test procedures are defined as stationary and the operating parameters values are set according to the LTO test. The engine load setting values refer to engine operating parameters that occur when the plane is in the vicinity of airports. Such a procedure is dedicated to civilian passenger and transport aircraft. The operating conditions of a multirole fighter aircraft vary considerably from passenger aircraft and the variability of their flight characteristics requires a special approach in assessing its environmental impact. This article attempts to evaluate the exhaust gas emissions generated by the turbine engine in a multirole fighter flight using the parameters recorded by the onboard flight recorder.

  10. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    Science.gov (United States)

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  11. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  12. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN

    Directory of Open Access Journals (Sweden)

    K. Prasada Rao

    2017-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI engine fueled with Rice Bran Methyl Ester (RBME with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN modeling. The study used IDI engine experimental data to evaluate nine engine performance and emission parameters including Exhaust Gas Temperature (E.G.T, Brake Specific Fuel Consumption (BSFC, Brake Thermal Efficiency (B.The and various emissions like Hydrocarbons (HC, Carbon monoxide (CO, Carbon dioxide (CO2, Oxygen (O2, Nitrogen oxides (NOX and smoke. For the ANN modeling standard back propagation algorithm was found to be the optimum choice for training the model. A multi-layer perception (MLP network was used for non-linear mapping between the input and output parameters. It was found that ANN was able to predict the engine performance and exhaust emissions with a correlation coefficient of 0.995, 0.980, 0.999, 0.985, 0.999, 0.999, 0.980, 0.999, and 0.999 for E.G.T, BSFC, B.The, HC, O2, CO2, CO, NOX, smoke respectively.

  13. Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects

    OpenAIRE

    Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; Lichtenstern, M.; Schlager, H.; Fleischer, F.

    2011-01-01

    The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fue...

  14. Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86 provides annual estimates of anthropogenic...

  15. EFFECT OF OXYGENATED HYDROCARBON ADDITIVES ON EXHAUST EMISSIONS OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    C. Sundar Raj

    2010-12-01

    Full Text Available The use of oxygenated fuels seems to be a promising solution for reducing particulate emissions in existing and future diesel motor vehicles. In this work, the influence of the addition of oxygenated hydrocarbons to diesel fuels on performance and emission parameters of a diesel engine is experimentally studied. 3-Pentanone (C5H10O and Methyl anon (C7H12O were used as oxygenated fuel additives. It was found that the addition of oxygenated hydrocarbons reduced the production of soot precursors with respect to the availability of oxygen content in the fuel. On the other hand, a serious increase of NOx emissions is observed. For this reason the use of exhaust gas recirculation (EGR to control NOx emissions is examined. From the analysis of it is examined experimental findings, it is seen that the use of EGR causes a sharp reduction in NOx and smoke simultaneously. On the other hand, EGR results in a slight reduction of engine efficiency and maximum combustion pressure which in any case does not alter the benefits obtained from the oxygenated fuel.

  16. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol

    Science.gov (United States)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than

  17. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  18. Secondary Organic Aerosol Production from Gasoline Vehicle Exhaust: Effects of Engine Technology, Cold Start, and Emission Certification Standard.

    Science.gov (United States)

    Zhao, Yunliang; Lambe, Andrew T; Saleh, Rawad; Saliba, Georges; Robinson, Allen L

    2018-02-06

    Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards. Therefore the ongoing, dramatic shift from PFI to GDI vehicles in the United States should not alter the contribution of gasoline vehicles to ambient SOA and the natural replacement of older vehicles with newer ones certified to stricter emissions standards should reduce atmospheric SOA levels. Compared to hot operations, cold-start exhaust had lower effective SOA yields, but still contributed more SOA overall because of substantially higher organic gas emissions. We demonstrate that the PAM reactor can be used as a screening tool for vehicle SOA production by carefully accounting for the effects of the large variations in emission rates.

  19. Banking behavior under uncertainty: Evidence from the US Sulfur Dioxide Emissions Allowance trading program

    International Nuclear Information System (INIS)

    Rousse, Olivier; Sevi, Benoit

    2006-02-01

    The aim of this paper is to examine portfolio management of emission allowances in the US Sulfur Dioxide Emissions Allowance Trading Program, to determine whether utilities have a real motive to bank when risk increases. We test a theoretical model linking the motivation of the firm to accumulate permits in order to prepare itself to face a risky situation in the future. Empirical estimation using data for years 2001 to 2004 provides evidence of a relationship between banking behavior and uncertainty the utility is facing with. (authors)

  20. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    1994-08-01

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  1. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  2. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Shihnan, A.H.; Nasri, N.S.; Sharer, Z.

    2014-01-01

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  3. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  4. Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • In this paper we reviewed the impact of diesel vehicles idling on fuel consumption and exhaust emission. • Fuel consumption and emissions during idling are very high compared to driving cycle. • The effects of various operating on fuel consumption and exhaust emission were discussed. • Available idle-reduction technologies impact on idling fuel consumption and emissions were discussed. • Idling reduction technologies reduce fuel consumption and emissions significantly. - Abstract: In order to maintain cab comfort truck drivers have to idle their engine to obtain the required power for accessories, such as the air conditioner, heater, television, refrigerator, and lights. This idling of the engine has a major impact on its fuel consumption and exhaust emission. Idling emissions can be as high as 86.4 g/h, 16,500 g/h, 5130 g/h, 4 g/h, and 375 g/h for HC, CO 2 , CO, PM, and NOx, respectively. Idling fuel consumption rate can be as high as 1.85 gal/h. The accessory loading, truck model, fuel-injection system, ambient temperature, idling speed, etc., also affect significantly the emission levels and fuel consumption rate. An increase in accessory loading and ambient temperature increases the emissions and fuel consumption. During idling, electronic fuel-injection systems reduce HC, PM, and CO emission, but increase NOx emissions compared with a mechanical fuel-injection system. An increase of idling speed increases fuel consumption rate. There are many systems available on the market to reduce engine idling and improve air quality and fuel consumption rate, such as an auxiliary power unit (APU), truck stop electrification, thermal storage systems, fuel cells, and direct fire heaters. A direct fire heater reduces fuel consumption by 94–96% and an APU reduces consumption by 60–87%. Furthermore, these technologies increase air quality significantly by reducing idling emissions, which is the reason why they are considered as key alternatives to

  5. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  6. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    Directory of Open Access Journals (Sweden)

    Lance M Hallberg

    2017-06-01

    Full Text Available Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES, in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay, blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay, and hippocampus (lipid peroxidation assay, across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective.

  7. Sulfur dioxide emissions in Asia in the period 1985-1997

    Science.gov (United States)

    Streets, David G.; Tsai, Nancy Y.; Akimoto, Hajime; Oka, Kaoru

    A consistent set of SO 2 emission trends has been developed for Asian countries for the time period 1985-1997. The trend is based on extrapolation of a detailed 1990 inventory, which was constructed as part of the World Bank's RAINS-ASIA project, using IEA energy-use data. The trend shows Asian SO 2 emissions growing from 33.7 Tg in 1990 to 39.2 Tg in 1997. Estimates interpolated from the RAINS-ASIA computer model suggest a value for 1997 of 46.4 Tg, assuming no major changes in emission abatement policies after 1990. The reduction in the 1997 value, by some 16%, is primarily due to regulatory requirements and other trends toward lower sulfur content of oil products and coal. A slowdown in the growth of emissions in China - due to a reduction in economic growth, the mining of higher-quality coals, enhanced environmental awareness, and a reduction in industrial coal use - has been instrumental in arresting the growth of Asian emissions. Most of the positive developments have occurred in East Asia, and high-emission growth rates persist in Southeast Asia and the Indian subcontinent. The outlook for the future is that Asian SO 2 emissions may well peak in the region of 40-45 Tg by the year 2020 or earlier, in contrast to previous predictions of 2020 emissions as high as 80-110 Tg. The trends developed in this paper are good news for the local and regional environment, particularly in East Asia. However, they also signify lower-than-anticipated concentrations of sulfate aerosol over the Asian continent, with the resulting possibility of greater-than-anticipated regional and global warming.

  8. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  9. 40 CFR Table 31 to Subpart Uuu of... - Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units 31 Table 31 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 31 Table 31 to Subpart UUU of Part 63—Continuous Monitoring Systems for HAP Emissions...

  10. 40 CFR Table 34 to Subpart Uuu of... - Continuous Compliance With HAP Emission Limits for Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With HAP Emission Limits for Sulfur Recovery Units 34 Table 34 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 34 Table 34 to Subpart UUU of Part 63—Continuous Compliance With HAP Emission Limits...

  11. 40 CFR Table 33 to Subpart Uuu of... - Initial Compliance With HAP Emission Limits for Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With HAP Emission Limits for Sulfur Recovery Units 33 Table 33 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 33 Table 33 to Subpart UUU of Part 63—Initial Compliance With HAP Emission Limits for...

  12. Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin, E-mail: mguru@gazi.edu.t [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2011-01-15

    In this experimental study, influence of the metallic-based additives on fuel consumption and exhaust emissions of diesel engine were investigated. The metallic-based additives were produced by synthesizing of resin acid (abietic acid) with MnO{sub 2} or MgO. These additives were doped into diesel fuel at the rate of 8 {mu}mol/l and 16 {mu}mol/l for preparing test fuels. Both additives improved the properties of diesel fuel such as viscosity, flash point, cloud point and pour point. The fuels with and without additives were tested in a direct injection diesel engine at full load condition. Maximum reduction of specific fuel consumption was recorded as 4.16%. CO emission and smoke opacity decreased by 16.35% and by 29.82%, respectively. NO{sub x} emission was measured higher and CO{sub 2} emission was not changed considerably with the metallic-based additives.

  13. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  14. Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony.

    Science.gov (United States)

    Hinneburg, Detlef; Renner, Eberhard; Wolke, Ralf

    2009-01-01

    The fraction of ambient PM10 that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO2, NO, NO2, and SO2, the directly emitted primary particles, and additionally, an excess of 'free' sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO2 and SO2 are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles. The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium-sulfate-nitrate-water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols. Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM10

  15. Effect of exhaust emissions on carbon monoxide levels in employees working at indoor car wash facilities.

    Science.gov (United States)

    Topacoglu, H; Katsakoglou, S; Ipekci, A

    2014-01-01

    Exhaust emissions from motor vehicles threaten the environment and human health. Carbon monoxide (CO) poisoning, especially the use of exhaust gas CO in suicidal attempts is well known in the literature. Recently, indoor car wash facilities established in large shopping malls with closed parking, lots is a new risk area that exposes car wash employees to prolonged periods of high level CO emissions from cars. The aim of this study was to investigate how carboxyhemoglobin (COHb) blood levels of employees get affected in confined areas with relatively poor air circulation. Twenty male volunteers working in indoor parking car wash facilities were included in the study. Participants were informed about the aim of this study and their consent was obtained. Their pulse COHb levels were measured twice, at the beginning and at the end of the working day using Rad-57 pulse CO-oximeter device, allowing non-invasive measurement of COHb blood levels to compare the changes in their COHb levels before and after work. The mean age of the male volunteers was 29.8 ± 11.9 (range 18-55). While the mean COHb levels measured at the start of the working day was 2.1 ± 2.0 (range 0-9), it was increased to 5.2 ± 3.3 (range 1-15) at the end of work shift (Wilcoxon test, p car wash facility employees is directly impacted and gets elevated by motor vechile exhaust emissions. For the health of the employees at indoor parking car wash facilities, stricter precautions are needed and the government should not give permit to such operations.

  16. Challenges for injection systems and combustion processes of large diesel engines for keeping the emission limits IMO TIER3 in 2016; Herausforderungen bei Einspritzsystemen und Brennverfahren von Grossdieselmotoren zur Einhaltung der Emissionsgrenzwerte IMO TIER3 in 2016

    Energy Technology Data Exchange (ETDEWEB)

    Harndorf, Horst; Rabe, Jean Rom; Wichmann, Volker; Fink, Christian [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Buchholz, Bert [Forschungszentrum Thermodynamik und Verbrennungsmotoren Rostock GmbH, Rostock (Germany)

    2011-07-01

    More stringent emission limits for large engines are dominating research and development activities of engine and component manufacturers during the next years. This is especially the case with respect to the introduction of the IMO-TIER 3 limits in the emission control areas in 2016. Then a reduction of nitrogen oxides emissions of roughly 80% compared to today is required. In particular in combination with new regulations on the fuel sulfur content or on the sulfur oxide emissions respectively totally new technological approaches have to be applied to marine diesel engines and their periphery. Technical solutions based on exhaust gas treatment like SCR-catalysts or sulfur scrubbers as well as exhaust gas recirculation concepts are discussed in this paper. Depending on the specific method there is a need to handle different operating materials such as heavy fuel oil, distillate fuels, urea solution, caustic soda lye or lime. Furthermore specific challenges for the development and application of advanced fuel injection systems and injection strategies are mentioned. It is to be assumed that several emission reduction concepts will be available in 2016. Depending on the skip type and the characteristic deployment an optimum concept has to be selected. Because of the complexity of the different technologies strong repercussions are implied on the ship layout and marine engine operation. (orig.)

  17. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses

    Energy Technology Data Exchange (ETDEWEB)

    M.C.H. Lim; G.A. Ayoko; L. Morawska; Z.D. Ristovski; E.R. Jayaratne [Queensland University of Technology, Brisbane, Qld. (Australia). International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences

    2007-08-15

    The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels - low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO{sub 2} and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles. 39 refs., 1 fig., 4 tabs.

  18. Motor vehicle nanoparticle emissions: Numerical simulations and comparisons with recent observations

    Science.gov (United States)

    Yu, F.

    2002-05-01

    Epidemiological studies have linked urban fine particles (FPs, diameter standards on the mass concentration of ambient FPs. Recently it has been pointed out that it is not sufficient to study only the mass of FPs. The main concern is that, while nanoparticles (NPs, diameter control measures to reduce FP mass emissions may paradoxically increase the number emissions of NPs. Future standards might be imposed on NP emissions and NP emissions from gasoline engines might also become a concern. Effective and least costly means of NP emission reduction must be based on a firm physical understanding of the formation mechanisms of NPs in the exhaust of motor vehicles. Measurements of NPs in motor engine exhaust have been made both in the laboratory and in the atmosphere under various conditions. In this study, we investigate the key processes and parameters controlling formation and evolution of NPs in vehicle exhaust through model simulations and comparisons with field measurements. The detailed aerosol dynamics are simulated with an advanced multi-type, multi-component, size-resolved microphysics model. The classical binary homogeneous nucleation of H2SO4-H2O fails to explain the observed NP properties. We find that chemiions generated in engine combustor may play an important role in the formation of NPs in vehicle exhaust. The predicted NP properties based on our ion-mediated nucleation of H2SO4-H2O consistently explain the measurements in terms of total NP concentrations, and their sensitivity to fuel sulfur contents, on-road vehicle speeds, soot concentrations, and dilution conditions. Our study indicates that total number of NPs formed is very sensitive to chemiion concentrations, and we propose a potentially effective technique to control vehicle NP emissions by imposing an electrical field (voltage < ~ 100 volts) on a section of the tailpipe to remove small ions.

  19. Investigation on the Effects of Internal EGR by Variable Exhaust Valve Actuation with Post Injection on Auto-ignited Combustion and Emission Performance

    Directory of Open Access Journals (Sweden)

    Insu Cho

    2018-04-01

    Full Text Available Variable valve mechanisms are usually applied to a gasoline combustion engine to improve its power performance by controlling the amount of intake air according to the operating load. These mechanisms offer one possibility of resolving the conflict of objectives between a further reduction of raw emissions and an improvement in fuel efficiency. In recent years, variable valve control systems have become extremely important in the diesel combustion engine. Importantly, it has been shown that there are several potential benefits of applying variable valve timing (VVT to a compression ignition engine. Valve train variability could offer one option to achieve the reduction goals of engine-out emissions and fuel consumption. The aim of this study was to investigate the effects on part load combustion and emission performance of internal exhaust gas recirculation (EGR by variable exhaust valve lift actuation using a cam-in-cam system, which is an electronically variable valve device with a variable inside cam retarded to about 30 degrees. Numerical simulation based on GT-POWER has been performed to predict the NOx reduction strategy at the part load operating point of 1200 rpm in a four-valve diesel engine. A GT-POWER model of a common-rail direct injection engine with internal EGR was built and verified with experimental data. As a result, large potential for reducing NOx emissions through the use of exhaust valve control has been identified. Namely, it is possible to utilize heat efficiently as recompression of retarded post injection with downscaled specification of the exhaust valve rather than the intake valve, even if the CIC V1 condition with a reduction of the exhaust valve has a higher internal EGR rate of about 2% compared to that of the CIC V2 condition.

  20. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS

    International Nuclear Information System (INIS)

    Dutouquet, C.; Le Bihan, O.; Dermigny, A.; Frejafon, E.; Gallou, G.; Sirven, J.B.; Torralba, B.

    2014-01-01

    Heavy metals have long been known to be detrimental to human health and the environment.Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. (authors)

  1. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  2. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    Science.gov (United States)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  3. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    Science.gov (United States)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  4. Study of exhaust emissions of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on diesel engine emission characteristics and smoke opacity of the exhausts. The biggest NO x emissions, 1954 and 2078 ppm, at 2000 min -1 speed generate blends PRO10 (9.72%) and EPRO5 (11.13%) against, 1731 and 1411 ppm, produced from ERO5 (12%) and ERO10 (13.2% oxygen) blends. The carbon monoxide, CO, emissions emitted from a fully loaded engine fuelled with three agent blends EPRO5-7.5 at maximum torque and rated speed are higher by 39.5-18.8% and 27.5-16.1% and smoke opacity lower by 3.3-9.0% and 24.1-17.6% comparing with RO case. When operating at rated 2200 min -1 mode, the carbon dioxide, CO 2 , emissions are lower, 6.9-6.3 vol%, from blends EPRO5-7.5 relative to that from RO, 7.8 vol%, accompanied by a slightly higher emission of unburned hydrocarbons HC, 16 ppm, and residual oxygen contents O 2 , 10.4-12.0 vol%, in the exhausts

  5. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... exhaust sample in sampling solution, µg/ml. (vii) VAE = Volume of sampling solution for dilute exhaust... sampling solution, µg/ml. (xiii) VAA = Volume of sampling solution for dilution air formaldehyde sample, ml... paragraph (d)(3) of this section): Wet concentration = Kw × dry concentration. Where: (1)(i) For English...

  6. Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok.

    Science.gov (United States)

    Nutramon, Tamsanya; Supachart, Chungpaibulpatana

    2009-01-01

    The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.

  7. Measurement of particle emission in automobil exhaust - application of continuous radiometric aerosol measurement to the emission of diesel engines

    International Nuclear Information System (INIS)

    Krasenbrink, A.; Georgi, B.

    1989-01-01

    The well-known method of measuring continuously dust by β-absorption is transferred to the problem of particle emission in automobile exhaust. With two similar dust-monitors FH62 having different sampling air flow rates and two low-pressure impactors the reliability of radiometric mass determination was verified. First static experiments with diesel soot showed the necessity of a dilution system, a new mass calibration with regard to the changed β-absorptivity and a quicker calculation of concentration for realtime measurements. (orig.) [de

  8. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    Science.gov (United States)

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NO x emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.

    2015-01-01

    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.

  10. Injury to fruit and forest trees from sulfur dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Berge, H

    1959-01-01

    Observations and the results of examinations on the control of emissions in the northeastern part of the industrial area of Nordrhein-Westfalen led to the conclusions that under certain conditions plant analysis is an important tool in diagnosing smoke injuries. Schedules for the sensitivity of plants are only of local and temporary value. The applicability of comparative plant analyses to smoke injuries is demonstrated by examples. A number of examples show that parasitic attack or illness magnify the effects of SO/sub 2/. For several tree species the seasonal total content of sulfur (given as SO/sub 2/) in the foliage is shown by curves, which are similar to those obtained in Leicester. 17 references, 6 figures, 2 tables.

  11. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.

    Science.gov (United States)

    Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E

    2014-09-01

    Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Influence of injection timing on the exhaust emissions of a dual-fuel CI engine

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Uslu, Kadir [Department of Automotive Education, Fatih Vocational High School, 54100 Sakarya (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2008-06-15

    Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. As an alternative, biodegradable, and renewable fuel, ethanol is receiving increasing attention. Therefore, in this study, influence of injection timing on the exhaust emission of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine has an original injection timing 27 CA BTDC. The tests were performed at five different injection timings (21 , 24 , 27 , 30 , and 33 CA BTDC) by changing the thickness of advance shim. The experimental test results showed that NO{sub x} and CO{sub 2} emissions increased as CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing, at the retarded injection timings (21 and 24 CA BTDC), NO{sub x} and CO{sub 2} emissions increased, and unburned HC and CO emissions decreased for all test conditions. On the other hand, with the advanced injection timings (30 and 33 CA BTDC), HC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted for all test conditions. (author)

  13. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  14. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadian, B.; Rahimi, H.; Nikbakht, A.M.; Najafi, G. [Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran); Yusaf, T.F. [University of Southern Queensland, Toowoomba 4350 QLD (Australia)

    2009-04-15

    This study deals with artificial neural network (ANN) modeling of a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of the engine. To acquire data for training and testing the proposed ANN, a two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results revealed that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model was developed based on standard Back-Propagation algorithm for the engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values were obtained as 0.0004 by the model. (author)

  15. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995

    International Nuclear Information System (INIS)

    Watson, J.G.; Chow, J.C.; Houck, J.E.

    2001-01-01

    PM 2.5 (particles with aerodynamic diameters less than 2.5 μm) chemical source profiles applicable to speciated emissions inventories and receptor model source apportionment are reported for geological material, motor vehicle exhaust, residential coal (RCC) and wood combustion (RWC), forest fires, geothermal hot springs; and coal-fired power generation units from northwestern Colorado during 1995. Fuels and combustion conditions are similar to those of other communities of the inland western US. Coal-fired power station profiles differed substantially between different units using similar coals, with the major difference being lack of selenium in emissions from the only unit that was equipped with a dry limestone sulfur dioxide (SO 2 ) scrubber. SO 2 abundances relative to fine particle mass emissions in power plant emissions were seven to nine times higher than hydrogen sulfide (H 2 S) abundances from geothermal springs, and one to two orders of magnitude higher than SO 2 abundances in RCC emissions, implying that the SO 2 abundance is an important marker for primary particle contributions of non-aged coal-fired power station contributions. The sum of organic and elemental carbon ranged from 1% to 10% of fine particle mass in coal-fired power plant emissions, from 5% to 10% in geological material, >50% in forest fire emissions, >60% in RWC emissions, and >95% in RCC and vehicle exhaust emissions. Water-soluble potassium (K + ) was most abundant in vegetative burning profiles. K + /K ratios ranged from 0.1 in geological material profiles to 0.9 in vegetative burning emissions, confirming previous observations that soluble potassium is a good marker for vegetative burning. (Author)

  16. Ultra Low Sulfur Home Heating Oil Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, John E. [Energy Research Center, Inc., Easton, CT (United States); McDonald, Roger [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  17. Specific emissions analysis for a combustion engine in dynamometer operation in relation to the thermal state of the exhaust gas aftertreatment systems in a modified NRSC test

    Directory of Open Access Journals (Sweden)

    Merkisz Jerzy

    2017-01-01

    Full Text Available Exhaust gas aftertreatment systems have been present in motor vehicles for decades and have contributed to reducing their impact on the environment and people. Most of them for oxidation or reduction of harmful emissions of particulates and fumes require a certain temperature to be reached that changes with the exhaust temperature, i.e. the points of engine operation. The article describes the effect of oxidation reactor and particulate filter temperatures on specific emissions of gaseous compounds and particulate matter during the modified NRSC engine test. Before the first measurement cycle, the engine was idling, before the second measurement cycle, the exhaust system was heated with exhaust gases at full engine load until passive regeneration of the particle filter occurred (noticeable decrease in instantaneous particle concentration.

  18. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car.

    Science.gov (United States)

    Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi

    2015-03-17

    Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%.

  19. Concentration measurement in a road tunnel as a method to assess "real-world" vehicles exhaust emissions

    Science.gov (United States)

    Zanini, G.; Berico, M.; Monforti, F.; Vitali, L.; Zambonelli, S.; Chiavarini, S.; Georgiadis, T.; Nardino, M.

    An experiment aimed at comparing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) concentrations produced in a road tunnel by buses is described. The experiment took place in 2001 in Bologna when a couple of buses belonging to the public transport fleet where driven backwards and forwards in a road tunnel closed to all other vehicles. Buses run in the tunnel for 8 h a day for 4 experiment days, each day using a different fuel: biodiesel, diesel-water emulsion, diesel-water emulsion with low sulphur content and commercial diesel. Average daily concentrations of PM of different sizes and of 12 PHAs were measured and comparison between different fuels was attempted in order to assess "real-world" exhaust emissions of different fuels. Due to heterogeneity of experimental conditions in different days and the relatively large measurement uncertainties, the effort was only partially successful, and it was not possible to state any firm conclusion on fuels reliability even if some indications in agreement with literature were found. Nevertheless, the experiment and the data analysis method developed could be of interest as a methodological approach for future experiments aimed at evaluating "real-world" exhaust emissions of single vehicles.

  20. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    Science.gov (United States)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  1. Effect of the synthetic zeolite modification on its physicochemical and catalytic properties in the preparation of the catalysts effectively removing sulphur dioxide from exhaust gases

    Directory of Open Access Journals (Sweden)

    Marcewicz-Kuba Agnieszka

    2016-06-01

    Full Text Available This work presents the research results of the influence of modification deSONOx type catalyst of the sulfur dioxide emissions in the process of the hard coal combustion. The addition of zeolite catalysts modified by transition metal ions: V, Mg, activated by zinc sorbent with or without graphite addition caused the deeper burning of coal grains. The addition of the deSOx catalysts to the coal resulted in lowered sulphur dioxide emission. The addition of unmodified zeolite to coal during combustion reduced sulphur dioxide emission at about 5%. The modification of the support by both V and Mg reduced the amount of sulphur dioxide significantly. The obtained results of SO2 removal from exhaust gases were from 34.5% for Sip/Mg to 68.3% for Sip/V.

  2. Effects of a biodiesel blend on energy distribution and exhaust emissions of a small CI engine

    International Nuclear Information System (INIS)

    Magno, Agnese; Mancaruso, Ezio; Vaglieco, Bianca Maria

    2015-01-01

    Highlights: • B20 does not affect the brake thermal efficiency and the engine energetic flows with respect to diesel fuel. • B20 is characterized by lower combustion noise than diesel fuel. • B20 emits lower CO, HC and PM in the most of the operating conditions. • A definite trend of NO x emissions for B20 with respect to diesel fuel was not found. • B20 emits more nuclei particles than diesel fuel. - Abstract: This paper investigates the energy distribution and the waste heat energy characteristics of a compression ignition engine for micro-cogeneration applications, at different engine speeds and loads. The experimental activity was carried out on a three-cylinder, 1028 cc, common-rail engine. Tests were performed with diesel fuel and a 20% v/v biodiesel blend (B20). The quantity and the quality of the waste heat energy were studied through energy and exergy analyses, respectively. Combustion characteristics were investigated by means of indicating data. Gaseous emissions were measured and particles were characterized in terms of number and size at exhaust. It was found out that the addition of 20% v/v of RME to diesel fuel does not affect significantly the brake fuel conversion efficiency and the energetic flows. On the other hand, biodiesel blend allows to reduce the combustion noise and the pollutants emissions in most of the operating conditions. A proper phasing of the injection strategy for the biodiesel blend could further reduce the exhaust emissions, mainly at high engine speeds. The results presented in this paper could be useful for the development of diesel engine based micro-cogeneration systems working at different engine speeds and loads

  3. Influence of biofuels on exhaust gas and noise emissions of small industrial diesel engines; Einfluss von Biokraftstoffen auf die Abgas- und Geraeuschemission kleiner Industriedieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Spessert, B.M. [Fachhochschule Jena (Germany). Fachgebiet Kraft- und Arbeitsmaschinen; Schleicher, A. [Fachhochschule Jena (Germany). Fachgebiet Umweltmesstechnik

    2007-03-15

    At small industrial diesel engines, as they were brought in oftentimes on building sites, in the farming and forest industry and on boats, biofuels are increasingly used. In a research project of the University of Applied Sciences Jena, Germany, thus the changes of the exhaust gas pollutant and noise emissions of these diesel engines were investigated. Test fuels were diesel fuel, and also biofuels as biodiesel (RME), rape seed oil and sun flower oil. Depending on the operating point these biofuels increased or reduced the emissions of exhaust gas and noise of the investigated engines clearly. (orig.)

  4. Catalytic Converter Developed By Washcoat Of γ-Alumina On Nickel Oxide (Nio Catalyst In FeCrAl Substrate For Exhaust Emission Control : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Automobile exhaust emission control is one of the trending issues in automobile research field. The existing catalytic converter using the noble metals of platinum (Pt, palladium (Pd and rhodium (Rd recently were in limited supply and higher in cost. There is a need for the automotive industry to produce ultra-low emitting vehicles at a reasonable cost. The objective of this study is to investigate the effectiveness of methods of fabrication of modified catalytic converter by approaching FeCrAl as a substrate which treated using ultrasonic bath technique to improve the exhaust emission control. The modified catalytic converter preparation will involve the ultrasonic bath process of FeCrAl foil which has fabricated as metallic monolith coated by γ-Al2O3 powder. Nickel as catalyst material will be prepared using electroplating process. The oxidation test will be conducted using a tube and automatic furnace in temperature of 1100°C for 100 hours. Mitsubishi 4G93 1800cc Petrol E.F.I with a multi -gas analyzer equipped with a hydraulic dynamometer will be used for emission measurements of HC, CO, and NOx in varying speed and load for both conditions with and without catalytic converter. The result will expect the γ-Al2O3 as the washcoat material that fully embedded to FeCrAl substrate with the combination of ultrasonic and electroplating technique will effectively convert the CO, NOx and HC to CO2, NO2 and H2O which means that catalytic converter is effective to improve exhaust emission control of diesel engine. The FeCrAl substrate as a metallic catalytic converter which coated by γ-Al2O3 using ultrasonic and nickelelectroplating technique may improve the exhaust emission control.

  5. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  6. Effects of premixed diethyl ether (DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine

    International Nuclear Information System (INIS)

    Cinar, Can; Can, Ozer; Sahin, Fatih; Yucesu, H. Serdar

    2010-01-01

    In this study, the effects of premixed ratio of diethyl ether (DEE) on the combustion and exhaust emissions of a single-cylinder, HCCI-DI engine were investigated. The experiments were performed at the engine speed of 2200 rpm and 19 N m operating conditions. The amount of the premixed DEE was controlled by a programmable electronic control unit (ECU) and the DEE injection was conducted into the intake air charge using low pressure injector. The premixed fuel ratio (PFR) of DEE was changed from 0% to 40% and results were compared to neat diesel operation. The percentages of premixed fuel were calculated from the energy ratio of premixed DEE fuel to total energy rate of the fuels. The experimental results show that single stage ignition was found with the addition of premixed DEE fuel. Increasing and phasing in-cylinder pressure and heat release were observed in the premixed stage of the combustion. Lower diffusion combustion was also occurred. Cycle-to cycle variations were very small with diesel fuel and 10% DEE premixed fuel ratio. Audible knocking occurred with 40% DEE premixed fuel ratio. NO x -soot trade-off characteristics were changed and improvements were found simultaneously. NO x and soot emissions decreased up to 19.4% and 76.1%, respectively, while exhaust gas temperature decreased by 23.8%. On the other hand, CO and HC emissions increased.

  7. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    Science.gov (United States)

    Lack, D. A.; Corbett, J. J.

    2012-05-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on a) the impact of fuel quality on EFBC using robust measurement methods and b) the efficacy of scrubbers for the removal of particulate matter by size and composition.

  8. A New Perspective at the Ship-Air-Sea-Interface: The Environmental Impacts of Exhaust Gas Scrubber Discharge

    Directory of Open Access Journals (Sweden)

    Sonja Endres

    2018-04-01

    Full Text Available Shipping emissions are likely to increase significantly in the coming decades, alongside increasing emphasis on the sustainability and environmental impacts of the maritime transport sector. Exhaust gas cleaning systems (“scrubbers”, using seawater or fresh water as cleaning media for sulfur dioxide, are progressively used by shipping companies to comply with emissions regulations. Little is known about the chemical composition of the scrubber effluent and its ecological consequences for marine life and biogeochemical processes. If scrubbers become a central tool for atmospheric pollution reduction from shipping, modeling, and experimental studies will be necessary to determine the ecological and biogeochemical effects of scrubber wash water discharge on the marine environment. Furthermore, attention must be paid to the regulation and enforcement of environmental protection standards concerning scrubber use. Close collaboration between natural scientists and social scientists is crucial for progress toward sustainable shipping and protection of the marine environment.

  9. Investigation of PCDD/F emissions from mobile source diesel engines: impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations.

    Science.gov (United States)

    Liu, Z Gerald; Wall, John C; Barge, Patrick; Dettmann, Melissa E; Ottinger, Nathan A

    2011-04-01

    This study investigated the impact of copper zeolite selective catalytic reduction (SCR) catalysts and exhaust aftertreatment configurations on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from mobile source diesel engines. Emissions of PCDD/Fs, reported as the weighted sum of 17 congeners called the toxic equivalency quotient (TEQ), were measured using a modified EPA Method 0023A in the absence and presence of exhaust aftertreatment. Engine-out emissions were measured as a reference, while aftertreatment configurations included various combinations of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), Cu-zeolite SCR, Fe-zeolite SCR, ammonia oxidation catalyst (AMOX), and aqueous urea dosing. In addition, different chlorine concentrations were evaluated. Results showed that all aftertreatment configurations reduced PCDD/F emissions in comparison to the engine-out reference, consistent with reduction mechanisms such as thermal decomposition or combined trapping and hydrogenolysis reported in the literature. Similarly low PCDD/F emissions from the DOC-DPF and the DOC-DPF-SCR configurations indicated that PCDD/F reduction primarily occurred in the DOC-DPF with no noticeable contribution from either the Cu- or Fe-zeolite SCR systems. Furthermore, experiments performed with high chlorine concentration provided no evidence that chlorine content has an impact on the catalytic synthesis of PCDD/Fs for the chlorine levels investigated in this study.

  10. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    Science.gov (United States)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-02-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  11. Diesel upgrading into a low emissions fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tailleur, Roberto Galiasso [Department of Thermodynamics, Simon Bolivar University, Sartenejas, Baruta, Caracas (Venezuela)

    2006-09-15

    The revamp of existing diesel hydrotreating units using SHP technology was studied to improve the emission of the diesel engine. Gas and liquid-phase reactors were sequentially added to the actual trickle bed reactor. A special catalyst was employed. Micro-plant kinetic studies were performed and the results compared with those obtained with conventional trickle bed reactor operation. It was shown that using the gas and liquid-phase reactor, the hydrogenation, hydrogenolysis, and ring-opening reactions can be enhanced, so can be the sulfur and cetane number properties. The new scheme decreased the mono-aromatic content in the lighter part of the diesel that improve the NO{sub x} and particulate emissions in exhaust gases of a diesel engine. A simplified kinetic model for gas and liquid-phase reactors was developed to optimize SHP reactors and to minimize investment. (author)

  12. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2014-01-01

    Full Text Available An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  13. The economic impact of strengthening fuel quality regulation-reducing sulfur content in diesel fuel

    International Nuclear Information System (INIS)

    Chang, H.J.; Cho, G.L.; Kim, Y.D.

    2006-01-01

    This paper investigates the impact of strengthening vehicle emission regulation on economic activities. The government attempts to use three regulation measures to protect air quality from transportation emission. The measures include the aggregate limit (bubbles), the vehicle emission standard, and the fuel quality standard. Especially, we focus on the economic impact of reducing sulfur content in diesel fuel quality standard. Sulfur content in diesel fuel is one of the main factors in worsening local air quality. The emission from diesel vehicle accounts for 51.8% of total vehicle emission in Korea. If sulfur content reduction regulation is implemented, then the petroleum industry should build more facility to produce low sulfur content diesel, leading to additional production costs and increasing prices and decreasing outputs. We use computable general equilibrium model to analyze how the sulfur reduction regulation affects economic activities and trace out local emission reduction cost and GDP loss. And we suggest the tax-recycling mechanism to mitigate the negative economic costs due to the sulfur reduction regulation

  14. Influence Of Aircraft Engine Exhaust Emissions At A Global Level And Preventive Measures

    Directory of Open Access Journals (Sweden)

    Jasna Golubić

    2004-07-01

    Full Text Available The work considers the differences in the aircraft engine exhaustemissions, as well as the impact of the emissions on theenvironment depending on several factors. These include theage of the engine, i. e. technical refinement, engine operating regimesat different thrusts during time periods: takeoff, climb,approach, etc. Also, the exhaust emissions do not have thesame influence on different atmospheric layers. The pollutantsemitted at higher altitudes during cruising have become agreater problem, although the volume of pollutants is smaller,due to the chemical complexity and sensitivity of these layers ascompared to the lower layers of atmosphere. One of the reasonswhy these problems have long remained outside the focus of interestof the environmentalists is that the air transport of goodsand people is performed at high altitudes, so that the pollutionof atmosphere does not present a direct threat to anyone, sincethe environment is being polluted at a global level and thereforeis more difficult to notice at the local level.

  15. Analyze Experiment For Vigas and Pertamax to Performance and Exhaust Gas Emission for Gasoline Motor 2000cc

    Science.gov (United States)

    As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta

    2018-02-01

    The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2

  16. Observations and model calculations of B747 engine exhaust products at cruise altitude and inferred initial OH emissions

    Energy Technology Data Exchange (ETDEWEB)

    Tremmel, H.G.; Schlager, H.; Konopka, P.; Schulte, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F.; Klemm, M.; Droste-Franke, B. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1997-06-01

    NO{sub y} (NO, HNO{sub 2} and HNO{sub 3}) exhaust emissions in the near-field plume of two B747 jet airliners cruising in the upper troposphere were measured in situ using the DLR Falcon research aircraft. In addition CO{sub 2} was measured providing exhaust plume dilution rates for the species. The observations were used to estimate the initial OH concentration and NO{sub 2}/NO{sub x} ratio at the engine exit and the combustor exit by back calculations using a chemistry box model. From the two different plume events, and using two different model simulation modes in each case, we inferred OH emission indices EI(OH) = 0.32-0.39 g/kg fuel (OH{sub 0} = 9-14.4 ppmv) and (NO{sub 2}/NO{sub x}){sub 0} = 0.12-0.17. Furthermore, our results indicate that the chemistry of the exhaust species during the short period between the combustion chamber exit and the engine exit must be considered, because OH is already consumed to a great extent in this engine section, due to conversion to HNO{sub 2} and HNO{sub 3}. For the engines discussed here, the modeled OH concentration between combustor exit und engine exit decreases by a factor of about 350, leading to OH concentrations of 1-2.10{sup 12} molec/cm{sup 3} at the engine exit. (orig.) 45 refs.

  17. Designing a heat pipe to improve the exhaust emissions from petrol engines

    International Nuclear Information System (INIS)

    Elmabrouk, A.M.

    2010-01-01

    The national engineering Laboratory and the Shell research laboratory have co-operated in applying the heat pipe to the problem of exhaust emission from petrol engine. It is known that the carbon monoxide CO, un-burnt hydrocarbons (H x C y ) and oxides of Nitrogen (NO x ) content of the exhaust will vary with air to fuel ratio as shown in figure (1), in a conventional car engine the maximum efficiency is achieved at 15:1 and maximum power is obtained at 12:1. It's known that as the air fuel ratio increases, the CO content decreases and H x C y , NO x go through a minimum and maximum respectively. A considerable important in both CO and NO x content could be chivied by selecting a very weak mixture, but this not possible in a standard engine carburetor system due to the ignition difficulty, because the fuel is not fully vaporized, and because the fuel is not distributed equally between the cylinders and the vapor content is not as high as it should be due to the pressure of liquid fuel. This problem could be solved by designing a heat pipe that can transferring a certain quantities of heat from the exhaust to the induction manifold at the carburetor outlet as shown in figure (2). Under this condition a mixture as lean as 22:1 will ignite with out difficulty. In this paper, a complete design of heat pipe is carried out, taking into account the necessary criteria to decide various geometrical parameters. The design has been carried out using basic formulas in thermodynamics, heat transfer and physics. The result of this design have been checked for various practical limits. (author)

  18. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    Science.gov (United States)

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of ...

  20. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  1. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    International Nuclear Information System (INIS)

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks

  2. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

  3. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    Science.gov (United States)

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  4. Potential hazards of particulate noble metal emissions from car exhaust catalysts. Gefaehrdungspotential von partikulaeren Edelmetallemissionen aus Automobilabgas-Katalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Stoeber, W.

    1985-01-01

    The aim of the present bibliographical study is to investigate into the possibility of health impairment by emissions of eroded and particulate precious metals of catalytic converters for motor-car exhaust gas. Connected therewith is a survey of environmental pollution so far caused by platinum metals and of their biological impact. The risk estimation relates solely to the data on emission obtained during normal operation; research work is still needed with respect to the chemical composition, the size distribution and the particle forms of the precious metals emitted. Besides, only limited data are available as to the environmental behaviour of the precious metals.

  5. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    Science.gov (United States)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  6. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Morihisa, H; Tamanouchi, M; Araki, H; Yamada, S [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  7. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  8. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  9. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission.

    Science.gov (United States)

    Jung, Hyunsook; Kah, Dongha; Chan Lim, Kyoung; Lee, Jin Young

    2017-01-01

    After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and 13 C nuclear magnetic resonance ( 13 C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume. Moreover, drops of neat HD, ranging in size from 1 to 6 μL, applied to soil, evaporated at different rates, with the smaller drops evaporating relatively quicker. HD absorbed into soil remained for a month, degrading eventually to nontoxic thiodiglycol via hydrolysis through the formation of sulfonium ions. Finally, a vapor emission test was performed for HD contaminant after a decontamination process, the results of which suggest potential risk from the release of trace chemical quantities of HD into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Combined particle emission reduction and heat recovery from combustion exhaust-A novel approach for small wood-fired appliances

    International Nuclear Information System (INIS)

    Messerer, A.; Schmatloch, V.; Poeschl, U.; Niessner, R.

    2007-01-01

    Replacing fossil fuels by renewable sources of energy is one approach to address the problem of global warming due to anthropogenic emissions of greenhouse gases. Wood combustion can help to replace fuel oil or gas. It is advisable, however, to use modern technology for combustion and exhaust gas after-treatment in order to achieve best efficiency and avoid air quality problems due to high emission levels often related to small scale wood combustion. In this study, simultaneous combustion particle deposition and heat recovery from the exhaust of two commercially available wood-fired appliances has been investigated. The experiments were performed with a miniature pipe bundle heat exchanger operating in the exhaust gas lines of a fully automated pellet burner or a closed fireplace. The system has been characterised for a wide range of aerosol inlet temperatures (135-295 deg. C) and flow velocities (0.13-1.0ms -1 ), and particle deposition efficiencies up to 95% have been achieved. Deposition was dominated by thermophoresis and diffusion and increased with the average temperature difference and retention time in the heat exchanger. The aerosols from the two different appliances exhibited different deposition characteristics, which can be attributed to enhanced deposition of the nucleation mode particles generated in the closed fire place. The measured deposition efficiencies can be described by simple linear parameterisations derived from laboratory studies. The results of this study demonstrate the feasibility of thermophoretic particle removal from biomass burning flue gas and support the development of modified heat exchanger systems with enhanced capability for simultaneous heat recovery and particle deposition

  11. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    International Nuclear Information System (INIS)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment

  12. Reduction of sulphur dioxide emissions by pyrolysis reduction of the burning sulfur of coal, applied in the power station 'Maritsa-East 3'

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1999-01-01

    A study for applying of the new method for reduction of the sulfur content in solid fuel reported at the Energy Forum '98 has been carried out. The calculations for using this method at the power station 'Maritsa-East 3' were made. The advantages compared to the conventional methods for removing of SO 2 from flue gases are reported. The application of this method reduces the emissions of SO 2 with 83-85%. The heat saved is equal to the heat from 13.8% of the coal. The tar obtained after removing of sulfur can be used as fuel. The expenses for transport and treatment of limestone and of obtained gypsum (needed at the conventional methods for removing the sulfur) are eliminated. The capital investments needed are smaller because of the 25-30 times smaller volume of the equipment for sulfur reduction

  13. The Effect of Exhaust Gas Recirculation (EGR on the Emission of a Single Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Limyaa Mahdi Asaad

    2016-07-01

    Full Text Available A single cylinder variable compression ratio spark ignition engine type PRODIT was used in this study. The  experiments  were  conducted  with  gasoline  fuel  (80  octane  No.at  equivalence  ratio  (Ø  =1.  This study examined the effects of exhaust gas recirculation on emission. It was conducted at engine speeds (1500, 1900, 2300 and 2700 r.p.m..The  exhaust  gases  were  added  in  volumetric  ratios  of  10%,  20%  and  30%  of  the  entering  air/fuel charge. The results showed that the EGR addition decreases the CO2 concentrations, in the same time CO and HC concentrations increase remarkably.  NOx concentration decreased highly with the increase of EGR percentage at variable engine speeds and constant torque. Also, it decreased when the engine run  at  constant  speed  and  variable  engine  torque.  The  exhaust  gas  temperature  decreased  with increasing EGR ratio.

  14. Exhaust gas clean up process

    Science.gov (United States)

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  15. Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea

    Science.gov (United States)

    Claremar, Björn; Haglund, Karin; Rutgersson, Anna

    2017-10-01

    The shipping sector is a significant contributor to emissions of air pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic Sea and the North Sea, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km × 50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown

  16. Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    B. Claremar

    2017-10-01

    Full Text Available The shipping sector is a significant contributor to emissions of air pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic Sea and the North Sea, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km  ×  50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the air quality criteria but their consequences for

  17. Evaluation of thermal optical analysis method of elemental carbon for marine fuel exhaust.

    Science.gov (United States)

    Lappi, Maija K; Ristimäki, Jyrki M

    2017-12-01

    The awareness of black carbon (BC) as the second largest anthropogenic contributor in global warming and an ice melting enhancer has increased. Due to prospected increase in shipping especially in the Arctic reliability of BC emissions and their invented amounts from ships is gaining more attention. The International Maritime Organization (IMO) is actively working toward estimation of quantities and effects of BC especially in the Arctic. IMO has launched work toward constituting a definition for BC and agreeing appropriate methods for its determination from shipping emission sources. In our study we evaluated the suitability of elemental carbon (EC) analysis by a thermal-optical transmittance (TOT) method to marine exhausts and possible measures to overcome the analysis interferences related to the chemically complex emissions. The measures included drying with CaSO 4, evaporation at 40-180ºC, H 2 O treatment, and variation of the sampling method (in-stack and diluted) and its parameters (e.g., dilution ratio, Dr). A reevaluation of the nominal organic carbon (OC)/EC split point was made. Measurement of residual carbon after solvent extraction (TC-C SOF ) was used as a reference, and later also filter smoke number (FSN) measurement, which is dealt with in a forthcoming paper by the authors. Exhaust sources used for collecting the particle sample were mainly four-stroke marine engines operated with variable loads and marine fuels ranging from light to heavy fuel oils (LFO and HFO) with a sulfur content range of carbon (PyC) from OC, affecting the accuracy of EC determination. Thus, uncertainty remained regarding the EC results from HFO fuels. The work supports one part of the decision making in black carbon (BC) determination methodology. If regulations regarding BC emissions from marine engines will be implemented in the future, a well-defined and at best unequivocal method of BC determination is required for coherent and comparable emission inventories and

  18. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    Science.gov (United States)

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  19. 40 CFR 1065.230 - Raw exhaust flow meter.

    Science.gov (United States)

    2010-07-01

    ... the following cases, you may use a raw exhaust flow meter signal that does not give the actual value... dew and pressure, p total at the flow meter inlet. Use these values in emission calculations according... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.230 Raw exhaust...

  20. Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, G.; Ghobadian, B.; Tavakoli, T.; Faizollahnejad, M. [Tarbiat Modares University, Jalale-E-Aleahmad Highway, Tehran, P.O. Box: 14115-111 (Iran); Buttsworth, D.R.; Yusaf, T.F. [University of Southern Queensland, Toowoomba, 4350 QLD (Australia)

    2009-05-15

    The purpose of this study is to experimentally analyse the performance and the pollutant emissions of a four-stroke SI engine operating on ethanol-gasoline blends of 0%, 5%, 10%, 15% and 20% with the aid of artificial neural network (ANN). The properties of bioethanol were measured based on American Society for Testing and Materials (ASTM) standards. The experimental results revealed that using ethanol-gasoline blended fuels increased the power and torque output of the engine marginally. For ethanol blends it was found that the brake specific fuel consumption (bsfc) was decreased while the brake thermal efficiency ({eta}{sub b.th.}) and the volumetric efficiency ({eta}{sub v}) were increased. The concentration of CO and HC emissions in the exhaust pipe were measured and found to be decreased when ethanol blends were introduced. This was due to the high oxygen percentage in the ethanol. In contrast, the concentration of CO{sub 2} and NO{sub x} was found to be increased when ethanol is introduced. An ANN model was developed to predict a correlation between brake power, torque, brake specific fuel consumption, brake thermal efficiency, volumetric efficiency and emission components using different gasoline-ethanol blends and speeds as inputs data. About 70% of the total experimental data were used for training purposes, while the 30% were used for testing. A standard Back-Propagation algorithm for the engine was used in this model. A multi layer perception network (MLP) was used for nonlinear mapping between the input and the output parameters. It was observed that the ANN model can predict engine performance and exhaust emissions with correlation coefficient (R) in the range of 0.97-1. Mean relative errors (MRE) values were in the range of 0.46-5.57%, while root mean square errors (RMSE) were found to be very low. This study demonstrates that ANN approach can be used to accurately predict the SI engine performance and emissions. (author)

  1. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  2. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R; Usui, K; Moriya, A; Sato, M; Nomura, T; Sue, H [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  3. Sulfur Dioxide Emission Rates of Kilauea Volcano, Hawaii, 1979-1997

    Science.gov (United States)

    Elias, Tamar; Sutton, A.J.; Stokes, J.B.; Casadevall, T.J.

    1998-01-01

    INTRODUCTION Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Casadevall and others, 1987; Greenland and others, 1985; Elias and others, 1993; Elias and Sutton, 1996). The purpose of this report is to present a compilation of Kilauea SO2 emission rate data from 1979 through 1997 with ancillary meteorological data (wind speed and wind direction). We have included measurements previously reported by Casadevall and others (1987) for completeness and to improve the usefulness of this current database compilation. Kilauea releases SO2 gas predominantly from its summit caldera and rift zones (fig. 1). From 1979 through 1982, vehicle-based COSPEC measurements made within the summit caldera were adequate to quantify most of the SO2 emitted from the volcano. Beginning in 1983. the focus of SO2 release shifted from the summit to the east rift zone (ERZ) eruption site at Pu'u 'O'o and, later, Kupaianaha. Since 1984, the Kilauea gas measurement effort has been augmented with intermittent airborne and tripod-based surveys made near the ERZ eruption site. In addition, beginning in 1992 vehicle-based measurements have been made along a section of Chain of Craters Road approximately 9 km downwind of the eruption site. These several types of COSPEC measurements continue to the present.

  4. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    Science.gov (United States)

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  5. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    Directory of Open Access Journals (Sweden)

    J.-P. Jalkanen

    2012-03-01

    Full Text Available A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS, which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres. The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM and carbon monoxide (CO. The presented Ship Traffic Emissions Assessment Model (STEAM2 allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  6. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  7. Emissions of biogenic sulfur gases from northern bogs and fens

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  8. Assessing population exposures to motor vehicle exhaust.

    Science.gov (United States)

    Van Atten, Chris; Brauer, Michael; Funk, Tami; Gilbert, Nicolas L; Graham, Lisa; Kaden, Debra; Miller, Paul J; Bracho, Leonora Rojas; Wheeler, Amanda; White, Ronald H

    2005-01-01

    The need is growing for a better assessment of population exposures to motor vehicle exhaust in proximity to major roads and highways. This need is driven in part by emerging scientific evidence of adverse health effects from such exposures and policy requirements for a more targeted assessment of localized public health impacts related to road expansions and increasing commercial transportation. The momentum for improved methods in measuring local exposures is also growing in the scientific community, as well as for discerning which constituents of the vehicle exhaust mixture may exert greater public health risks for those who are exposed to a disproportionate share of roadway pollution. To help elucidate the current state-of-the-science in exposure assessments along major roadways and to help inform decision makers of research needs and trends, we provide an overview of the emerging policy requirements, along with a conceptual framework for assessing exposure to motor-vehicle exhaust that can help inform policy decisions. The framework includes the pathway from the emission of a single vehicle, traffic emissions from multiple vehicles, atmospheric transformation of emissions and interaction with topographic and meteorologic features, and contact with humans resulting in exposure that can result in adverse health impacts. We describe the individual elements within the conceptual framework for exposure assessment and discuss the strengths and weaknesses of various approaches that have been used to assess public exposures to motor vehicle exhaust.

  9. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  10. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd-Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2001-05-01

    The operation of Diesel engines on gaseous fuels, commonly known as dual fuel engines, uses Diesel fuel as the pilot fuel and gaseous fuel (methane and sometimes propane in the present work) as the main fuel. The gaseous fuel was inducted in the intake manifold to mix with the intake air. The investigation was conducted on a high speed indirect injection (Ricardo-E6) dual fuel engine and was concerned with the effects of exhaust gas recirculation (EGR) on the dual fuel engine combustion and emissions, in particular, the effects of intake air temperature and diluent admissions (N{sub 2} and CO{sub 2}) on combustion and emissions. The use of diluents to displace oxygen (O{sub 2}) in the intake air resulted in a reduction in the O{sub 2} supplied to the engine, increased the inlet charge thermal capacity (thermal effect) and, potentially, CO{sub 2} and N{sub 2} participated in the combustion process (chemical effect). In a separate series of tests, the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with the engine inlet gaseous fuel air mixture. It was found that the admission of diluents resulted in reductions in the exhaust oxides of nitrogen (NO{sub x}). Higher inlet charge temperature increases the exhaust NO{sub x} but reduces the unburned hydrocarbon emissions. Finally, when carbon dioxide was added to the inlet gaseous fuel air charge, large reductions in NO{sub x} were observed. (author)

  11. Observations of primary and secondary emissions in a B747 exhaust plume in the upper troposphere and inferred engine exit plane OH concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H; Schulte, P; Tremmel, H G; Ziereis, H [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F; Droste-Franke, B; Klemm, M; Schneider, J [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    1998-12-31

    The speciation of NO{sub y} exhaust emissions in the near-field plume of a B747 cruising at 9.2 km was measured in situ using the DLR Falcon research aircraft instrumented with a chemical ionisation mass spectrometer of MPI-K and a chemiluminescence NO detector of DLR. In addition, CO{sub 2} was measured providing a dilution factor for the exhaust species. Observed maximum peak concentrations above background in the plume 60 s after emission were 25.4 ppmv (CO{sub 2}), 184 ppbv (NO), 2.6 ppbv (HNO{sub 2}), and 1.3 ppbv (HNO{sub 3}). The observations were used to infer the initial OH concentration (15.4 ppmv) and NO{sub 2}/NO{sub x} ratio (0.08) at the engine exit by back calculations using a chemistry box model. (author) 20 refs.

  12. Observations of primary and secondary emissions in a B747 exhaust plume in the upper troposphere and inferred engine exit plane OH concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H.; Schulte, P.; Tremmel, H.G.; Ziereis, H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F.; Droste-Franke, B.; Klemm, M.; Schneider, J. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    1997-12-31

    The speciation of NO{sub y} exhaust emissions in the near-field plume of a B747 cruising at 9.2 km was measured in situ using the DLR Falcon research aircraft instrumented with a chemical ionisation mass spectrometer of MPI-K and a chemiluminescence NO detector of DLR. In addition, CO{sub 2} was measured providing a dilution factor for the exhaust species. Observed maximum peak concentrations above background in the plume 60 s after emission were 25.4 ppmv (CO{sub 2}), 184 ppbv (NO), 2.6 ppbv (HNO{sub 2}), and 1.3 ppbv (HNO{sub 3}). The observations were used to infer the initial OH concentration (15.4 ppmv) and NO{sub 2}/NO{sub x} ratio (0.08) at the engine exit by back calculations using a chemistry box model. (author) 20 refs.

  13. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    International Nuclear Information System (INIS)

    Sluder, C.S.

    2001-01-01

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO(sub 2)-to-sulfate conversion during these light-duty drive cycles

  14. Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Gumus, Metin [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Ilhan, Murat [Raytheon Training International GmbH, GM Academy, 34843 Istanbul (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)]|[Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2009-05-15

    Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15 , 20 and 25 CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NO{sub x} and CO{sub 2} emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NO{sub x} and CO{sub 2} emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 CA BTDC). On the other hand, with the advanced injection timing (25 CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads. (author)

  15. Analysis of motorcycle exhaust regular testing data--a case study of Taipei City.

    Science.gov (United States)

    Chen, Yi-Chi; Chen, Lu-Yen; Jeng, Fu-Tien

    2009-06-01

    In Taiwan, a continuous increase in the number of motorcycles has made exhaust pollution one of the major emission sources of air pollutants. The regular testing program carried out by the Republic of China Environmental Protection Agency was designed to reduce air pollutant emissions by enhancing maintenance and repair. During the execution period, abundant testing results were accumulated to discuss pollutant emissions from motorcycles. Exhaust testing data of motorcycles in Taipei City from 1996 to 2005 were chosen as the basic data to survey changes in motorcycle exhaust. Effects of motorcycle age and mileage on exhaust pollution were studied. The introduction of advanced emission standards enhances the elimination of high-emitting motorcycles. The testing data indicate that the testing rate rose from approximately 50 to 70% and the failure rate changed from approximately 15 to 10%. The operation cycles of two-stroke motorcycles make them high-emitting vehicles. Concentrations of carbon monoxide and hydrocarbons are higher in two-stroke motorcycle exhaust than that in four-stroke motorcycles. In contrast, the concentration of carbon dioxide produced from complete oxidation processes is lower in exhaust from two-stroke motorcycles. Therefore, failure rates of two-stroke motorcycles are higher than those of four-stroke motorcycles and were also observed to deactivate more easily. On the basis of analytical results of testing data, we found that failure rates show a gradually increasing trend for motorcycles older than 3 yr or used for mileages greater than 10,000 km, and failure rates are highly correlated to the age/mileage of motorcycles. We reason that the accumulation of age or mileage means accumulating usage time of engines and emission control systems. Concentrations of pollutant emissions would increase because of engine wear and emission control system deactivation. After discussing changes of failure rates and pollutant emissions, some suggestions are

  16. Effect of first and second generation biodiesel blends on engine performance and emission

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A. K., E-mail: azad.cqu@gmail.com, E-mail: a.k.azad@cqu.edu.au; Rasul, M. G., E-mail: m.rasul@cqu.edu.au; Bhuiya, M. M. K., E-mail: m.bhuiya@cqu.edu.au [School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702 (Australia); Islam, Rubayat, E-mail: rubayat12@yahoo.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2016-07-12

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  17. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  18. Management of industrial sulfur dioxide and nitrogen oxides emissions in Alberta - description of the existing system

    International Nuclear Information System (INIS)

    Macdonald, W.S.; Bietz, B.F.

    1999-01-01

    In addition to being key primary air contaminants, sulfur dioxide and nitrogen oxides are also major contributors to acidic deposition. The current management system for controlling industrial sources of SO(2) and NO(x) emissions in Alberta was developed in the late 1960s/early 1970s. The focus is on control of point source emissions through the use of appropriate technology. The approach taken for managing SO(2) and NO(x) emissions is similar to the approach taken to other industrial air and wastewater pollutants in Alberta. It is a command and control regulatory system. There are three main industry categories in Alberta which emit SO(2): sour gas processing, oil sand plants and thermal power plants. For NO(x) emissions, the two main categories with emissions: are natural gas production and thermal power plants. The two main goals of the existing industrial air quality management systems are to ensire that: (1) emissions from industrial facilities are minimized through the use of best available demonstrated technology, and (2) ambient levels of air contaminants in the vicinity of industrial facilities do not exceed Alberta guidelines. The four main policies which support these two goals of the existing management system are described. There are a number of key components of the existing management system including: ambient guideline levels, source emission standards, plume dispersion modelling, ambient air and source emission monitoring, environmental reporting, emission inventories, and approvals. 32 refs., 13 figs

  19. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    Science.gov (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  20. Exhaust particles of modern gasoline vehicles: A laboratory and an on-road study

    Science.gov (United States)

    Karjalainen, Panu; Pirjola, Liisa; Heikkilä, Juha; Lähde, Tero; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Keskinen, Jorma; Rönkkö, Topi

    2014-11-01

    Vehicle technology development and upcoming particle emission limits have increased the need for detailed analyses of particle emissions of vehicles using gasoline direct injection (GDI) techniques. In this paper the particle emission characteristics of modern GDI passenger cars were studied in a laboratory and on the road, with the focus on exhaust particle number emissions, size distributions, volatility and morphology. Both during acceleration and steady conditions the number size distribution of nonvolatile exhaust particles consisted of two modes, one with mean particle size below 30 nm and the other with mean particle size approximately 70 nm. Results indicate that both of these particles modes consisted of soot but with different morphologies. Both in laboratory and on the road, significant emissions of exhaust particles were observed also during decelerations conducted by engine braking. These particles are most likely originating from lubricant oil ash components. The semivolatile nucleation particles were observed in the laboratory experiments at high engine load conditions. Thus, in general, the study indicates that a modern gasoline vehicle can emit four distinctive types of exhaust particles. The differences in particle characteristics and formation should be taken into account in the development of emission control strategies and technologies and, on the other hand, in the assessment of the impact of particle emissions on environment and human health.

  1. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    International Nuclear Information System (INIS)

    Sayin, Cenk; Canakci, Mustafa

    2009-01-01

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 deg., 24 deg., 27 deg., 30 deg. and 33 deg. CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO x and CO 2 increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 deg. CA BTDC), NO x and CO 2 emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 deg. and 24 deg. CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 deg. and 33 deg. CA BTDC), decreasing HC and CO emissions diminished, and NO x and CO 2 emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads

  2. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2009-01-15

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 , 24 , 27 , 30 and 33 CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO{sub x} and CO{sub 2} increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 CA BTDC), NO{sub x} and CO{sub 2} emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 and 24 CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 and 33 CA BTDC), decreasing HC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads. (author)

  3. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    Science.gov (United States)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  4. Long-range transport and deposition of sulfur in Asia

    International Nuclear Information System (INIS)

    Arndt, R.L.; Carmichael, G.R.

    1995-01-01

    The long range transport of sulfur in Asia is analyzed through the use of a multi-dimensional acid deposition model. The air quality of this region is heavily influenced by the combination of Asia's growing population, its expanding economy, and the associated systems of energy consumption and production. These factors combined with a shift to using indigenous coal as the primary fuel source for the region, will result in increased emissions of pollutants into the environment. By the year 2020 sulfur emissions from Asia are projected to exceed the combined emissions from Europe and North America. The authors have estimated sulfur deposition in Asia on a one-by-one degree spatial resolution in the region from Pakistan to Japan and from Indonesia to Mongolia using a 3-layer Lagrangian model. Deposition in excess of 10 g S/m 2 is predicted in south-central China. The relationship between emission source and receptor has been developed into a deposition matrix and examples of the source-receptor relationship are presented. 11 refs., 2 figs., 2 tabs

  5. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: Assessment of pollutant dispersion and health risk

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Yara S.; Borillo, Guilherme C.; Godoi, Ana Flávia L.; Cichon, Amanda; Silva, Thiago O.B.; Valebona, Fábio B.; Errera, Marcelo R. [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Penteado Neto, Renato A.; Rempel, Dennis; Martin, Lucas [Institute of Technology for Development, Lactec–Leme Division, 01 LothárioMeissner Ave., Curitiba, PR, 80210-170 (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil)

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NO{sub x}, NO, NO{sub 2}, NH{sub 3} and N{sub 2}O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NO{sub x} and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH{sub 3} and N{sub 2}O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH{sub 3}, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NO{sub x} and NO emissions were the lowest when SCR was used; however, it yielded the highest NH{sub 3} concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. - Highlights: • Emission, dispersion and risk assessment

  6. Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping

    International Nuclear Information System (INIS)

    Dedes, Eleftherios K.; Hudson, Dominic A.; Turnock, Stephen R.

    2012-01-01

    The combination of a prime mover and an energy storage device for reduction of fuel consumption has successfully been used in automotive industry. The shipping industry has utilised this for conventional submarines. The potential of a load levelling strategy through use of a hybrid battery–diesel–electric propulsion system is investigated. The goal is to reduce exhaust gas emissions by reducing fuel oil consumption through consideration of a re-engineered ship propulsion system. This work is based on operational data for a shipping fleet containing all types of bulk carriers. The engine loading and the energy requirements are calculated, and sizing of suitable propulsion and the battery storage system are proposed. The changes in overall emissions are estimated and the potential for fuel savings identified. The efficiency of the system depends on the storage medium type, the availability of energy and the displacement characteristics of the examined vessels. These results for the global fleet indicate that savings depending on storage system, vessel condition and vessel type could be up to 0.32 million tonnes in NO x , 0.07 million tonnes in SO x and 4.1 million tonnes in CO 2 . These represent a maximum 14% of reduction in dry bulk sector and 1.8% of world's fleet emissions. - Highlights: ► Global shipping makes a significant contribution to CO 2 , SO x and NO x emissions. ► We examine noon reports from a fleet of bulk carriers to identify the amount engine is operating off design. ► A hybrid propulsion system is proposed that uses multiple diesel–electric generators and battery storage. ► Analysis indicates hybrid may give an attractive rate of return as well as emissions savings in emissions. ► Implementation will require review of class society regulations.

  7. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends

    International Nuclear Information System (INIS)

    Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, Hwai Chyuan; Chong, W.T.

    2013-01-01

    Highlights: • Ceiba pentandra biodiesel was prepared by two-step transesterification. • The main FAC of C. pentandra is 18.54% of malvalic acid. • Engine performance and emission are conducted for CPME and its blends. • The CPB10 gives the best engine performance at 1900 rpm. • The CO, HC and smoke opacity were lower for all biodiesel blends. - Abstract: Nowadays, production of biodiesel from non-edible feedstock is gaining more attention than edible oil to replace diesel fuel. Thus, Ceiba pentandra is chosen as a potential biodiesel feedstock for the present investigations based on the availability in Indonesia and Malaysia. C. pentandra methyl ester was prepared by two-step acid esterification (H 2 SO 4 ) and base transesterification (NaOH) process. The purpose of this study is to examine the engine performance and emission characteristic of C. pentandra biodiesel diesel blends in internal combustion. Besides, the detailed properties of C. pentandra biodiesel, biodiesel diesel blends and diesel were measured and evaluated. After that, the biodiesel diesel blends (10%, 20%, 30% and 50%) were used to conduct engine performance and exhaust emission characteristic at different engine speeds. The experimental results showed that CPB10 blend give the best results on engine performance such as engine torque and power at 1900 rpm with full throttle condition. Besides, the brake specific fuel consumption at maximum torque (161 g/kW h) for CPB10 is higher about 22.98% relative to diesel fuel (198 g/kW h). This is shown that the lower biodiesel diesel blends ratio will increase the performance and reduce the fuel consumption. Moreover, the exhaust emissions showed that CO, HC and smoke opacity were reduced for all biodiesel diesel blends. However, NO x and CO 2 were increased compared to petrol diesel. Overall, the results proved that C. pentandra biodiesel is a suitable alternative and substitute fuel to diesel

  8. Emissions from street vendor cooking devices (charcoal grilling). Final report, January 1998--March 1999

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1999-06-01

    The report discusses a joint US/Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in the streets of Mexicali, Mexico, were investigated experimentally by measuring levels of particulate matter, particle size distributions, volatile and semivolatile organic compounds, aldehydes, and oxides of nitrogen and sulfur, emitted when meat is cooked on a grill over a charcoal fire. To investigate the emission rate, both beef and chicken were tested. Furthermore, both meats were marinated with a mixture similar to that used by the street vendors. Some tests were conducted with non-marinated beef for comparison. Two blank runs were performed sampling charcoal fires without meat. Finally, a simple control device, normally used in an exhaust fan to trap grease over a kitchen stove, was evaluated for its effectiveness in reducing emissions

  9. The viewpoints of chemical air pollution caused by traffic subsystems and presented by the example of emission measurements of trucks' exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Kolaric, D. [Vocational College of Traffic and Transport Maribor (Slovenia)

    2011-07-01

    For a long time, experts have been emphasizing that we are in an era in which dangerous climatic changes are getting more and more notable. We have been witnessing large climatic changes caused by greenhouse gases for several years. The use of different ways of transport has a bad influence on the environment in which we daily live and work, and on human health and nature, too. For that reason, we cannot treat the safety of the transportation means only through the technical impeccability of the devices which make possible direct execution of particular technological phases in different traffic subsystems. Ecological impacts of particular traffic subsystems are very complex, and have a long-term impact on our everyday existence. Despite this we still do not devote enough attention to this. We have been aware that traffic, especially road and air traffic, is one of the largest sources of emissions of harmful exhaust gases of combustion engines and particles into the environment. The environmental impact of traffic is especially large due to greenhouse gases, which are part of exhaust gases being produced by internal combustion engines. In addition to that, there are many more toxic components in exhausted gases. For effective reduction of harmful emissions in transport, a wide spectrum of analysis and measurements must be carried out. In 2007, the first realistic freight vehicle measurements in the Republic of Slovenia were published. The TRAENVIA project precisely evaluated some types of transportation emissions, especially on long freight distances and reached some comprehensive goals: measure and compare real emissions caused by different transport means in real terms of traffic flow, to evaluate the influence of those emissions on the environment and air quality, to evaluate the contribution of the transport sector in urban areas to air pollution, to evaluate the influence on the air quality for several means of transport, to evaluate potential possibilities and

  10. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Science.gov (United States)

    2010-07-01

    ... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for... vehicle under § 600.113(a) and (b) and as approved in § 600.008-08(c), are used to determine FTP-based... value exists for an electric vehicle configuration, that value, rounded to the nearest tenth of a mile...

  11. Algal biodiesel production from power plant exhaust and its potential to replace petrodiesel and reduce greenhouse gas emissions

    OpenAIRE

    K. Hundt; B.V. Reddy

    2011-01-01

    The production of biofuels and other products from algae is a technology that is rapidly developing. This paper presents an overview of algae, its benefits over other biofuel sources and the technology involved in producing algal biofuel. The case study in this report looks at the potential of algal biodiesel, produced using power plant exhaust, to replace our current petrodiesel supply and consequently reduce greenhouse gas emissions. The results suggest that using 60% of all coal and gas po...

  12. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks (SSTs) during salt well pumping and other activities

    International Nuclear Information System (INIS)

    GRANDO, C.J.

    1999-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping

  13. Development of Exhaust Leak Detector Device for Automotive Service Industry: A Prototype Design

    OpenAIRE

    Eida Nadirah Roslin; Siti Khadijah Ismail; Mohd Zaki Bahrom; Mansor Aluidin

    2016-01-01

    The exhaust system plays a vital role in removing the gaseous emissions that is being produced within the combustion chamber during fuel-air mixture activities. The exhaust system is defined as a series of chambers and pipes that starts at the engine and ends at the back of the car with the tail pipe. However if there are any leaks in the exhaust system, it provide a direct path for the emission gaseous including carbon monoxide to enter can be very dangerous as it provides a direct path for ...

  14. 40 CFR 60.31d - Emissions guidelines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emissions guidelines. 60.31d Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Sulfuric Acid Production Units § 60.31d Emissions guidelines. Sulfuric acid production units. The emission...

  15. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    International Nuclear Information System (INIS)

    Federal Energy Technology Center

    1999-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO(sub x)) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of$23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH(sub 3)) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO(sub x) and NH(sub 3) react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  16. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    Science.gov (United States)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  17. Climate and air quality trade-offs in altering ship fuel sulfur content

    Science.gov (United States)

    Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-08-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold ship fuel sulfur content compared to current global average of 2.7% elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced radiative flux perturbation (RFP) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the RFP to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. A small difference in radiative effect (global mean of 0.04 W m-2) in the coastal regions between Scenario 1 and the present-day scenario imply that shipping emission regulation in the existing emission control areas should not be removed in hope of climate cooling. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing

  18. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  19. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  20. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2012-05-01

    Full Text Available The International Maritime Organization (IMO has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping.

    Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load, fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85–100% load; absolute BC emissions (per nautical mile of travel also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions.

    Ships operating in the Arctic are likely running at highly variable engine loads (25–100% depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC.

    Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers.

    Uncertainties among current observations demonstrate there is a need for more information on a the impact of fuel quality

  1. Kiln emissions and potters' exposures.

    Science.gov (United States)

    Hirtle, B; Teschke, K; van Netten, C; Brauer, M

    1998-10-01

    Some ten thousand British Columbia potters work in small private studios, cooperative facilities, educational institutions, or recreation centers. There has been considerable concern that this diffuse, largely unregulated activity may involve exposures to unacceptable levels of kiln emissions. Pottery kiln emissions were measured at 50 sites--10 from each of 5 categories: professional studios, recreation centers, elementary schools, secondary schools, and colleges. Area monitoring was done 76 cm from firing kilns and 1.6 m above the floor to assess breathing zone concentrations of nitrogen dioxide, carbon monoxide, sulfur dioxide, fluorides, aldehydes, aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, gold, iron, lead, lithium, magnesium, manganese, mercury, nickel, selenium, silver, vanadium, and zinc. Personal exposures to the same metals were measured at 24 sites. Almost all measured values were well below permissible concentrations for British Columbia work sites and American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs) with the following two exceptions. A single firing duration (495 minute) acrolein measurement adjacent to an electric kiln (0.109 ppm) exceeded these guidelines. One 15-minute sulfur dioxide measurement collected adjacent to a gas kiln (5.7 ppm) exceeded the ACGIH short-term exposure limit. The fact that concentrations in small, ventilated kiln rooms ranked among the highest measured gives rise to concern that unacceptable levels of contamination may exist where small kiln rooms remain unventilated. Custom designed exhaust hoods and industrial heating, ventilating, and air-conditioning systems were the most effective ventilation strategies. Passive diffusion and wall/window fans were least effective.

  2. Emission inventory; Inventaire des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  4. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  5. Study of a method for reducing fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of passenger cars when using the “climate control” system

    Science.gov (United States)

    Burakova, L. N.; Anisimov, I. A.; Burakova, A. D.; Burakova, O. D.

    2018-05-01

    The article deals with the issue of improving the fuel economy and environmental friendliness of motor vehicles which serve the administrative and management personnel of the oil and gas industry. It is established that fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of cars when using the “climate control” system depend on the effective ambient temperature, the color of the opaque car body elements, the power of the car engine and the interior volume. However, the simplest controlled factor is the color of the opaque car body elements, which is characterized by the coefficient of light reflection. In the course of experimental studies, we established the dependences of a change in fuel consumption and a share of reducing emissions of harmful substances with exhaust gases of passenger cars with the “climate control” system on the coefficient of light reflection. A method has been developed to reduce fuel consumption and the amount of specific emissions of harmful substances with the exhaust gases of passenger cars using the “climate control” system, which involves painting the vehicle roof white and allows reducing fuel consumption by 5.5-10.3%, and the amount of specific emissions of harmful substances by 0.8-2.3%.

  6. The 4D-var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere

    Science.gov (United States)

    Ssessanga, Nicholas; Kim, Yong Ha; Choi, Byungyu; Chung, Jong-Kyun

    2018-03-01

    We have developed a four-dimensional variation data assimilation technique (4D-var) and utilized it to reconstruct three-dimensional images of the ionospheric hole created during Kwangmyongsong-4 rocket launch. Kwangmyongsong-4 was launched southward from North Korea Sohae space center (124.7°E, 39.6°N) at 00:30 UT on 7 February 2016. The data assimilated were Global Positioning System total electron content from the South Korean Global Positioning System-receiver network. Due to lack of publicized information about Kwangmyongsong-4, the rocket was assumed to inherit its technology from previous launches (Taepodong-2). The created ionospheric hole was assumed to be made by neutral molecules, water (H2O) and hydrogen (H2), deposited in exhaust plumes. The dispersion model was developed based on advection and diffusion equation, and a simple asymmetric diffusion model assumed. From the analysis, using the adjoint technique, we estimated an ionospheric hole with the largest depletion existing around 6-7 min after launch and gradually recovering within 30 min. These results are in agreement with temporal total electron content analyses of the same event from previous studies. Furthermore, Kwangmyongsong-4 second stage exhaust emissions were estimated as 1.9 × 1026 s-1 of which 40% was H2 and the rest H2O.

  7. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  8. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Koyama, T; Sasaki, K; Mori, K; Mori, K [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  9. The Economic Cost of China's New De-sulfur Policy During Her Gradual Accession to WTO: The Case of Industrial SO2 Emission

    OpenAIRE

    Jie He

    2004-01-01

    To understand the potential impacts of China's accession to WTO in her new de-sulfur policy (gradual reduction of 10% of annual SO2 emission by 2005 with respect to that of 2000), we construct a CGE model in which SO2 emission is directly linked to energy input consumption in production. The model equally considers the substitution possibility between energies of different SO2 effluent ratio by including energy as traditional production factor as labor and capital in the constant elasticity o...

  10. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  11. Experimental studies of impact of exhaust gas recirculation on the ...

    African Journals Online (AJOL)

    This paper considers the problem of reducing the nitrogen oxides emissions in exhaust gases (EG) of diesel engine by exhaust gas recirculation (EGR). Based on the carried out study the influence of EGR on technical-and-economic and environmental performance of a diesel engine was found as well as main directions of ...

  12. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    Science.gov (United States)

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2016-01-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. © 2014 Wiley Periodicals, Inc.

  13. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Tobacco seeds are a by product of tobacco leaves production. To the author's best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO 2 emissions while causing slightly higher NO x emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester. (Author)

  14. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  15. 40 CFR 1033.101 - Exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ... locomotives in the engine family are designed to operate. (1) You must meet the numerical emission standards... CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.101... following is true: (i) The same emission controls are applied during the test conditions causing the...

  16. Soundproofed exhaust system; Gegen stoerenden Abgasschall. Akustik

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Faerber, M.

    2008-03-15

    Acoustic emissions of heating systems are a nuisance, especially the humming noise of big heating boilers and cogeneration units. Noise reduction measures, e.g. with exhaust sound absorbers, should be considered already in the projecting stage. (orig.)

  17. Literature review of acid forming emissions in livestock

    International Nuclear Information System (INIS)

    Prior, M.G.; Lopez, A.

    1992-01-01

    A review is presented of the effects of acid forming emissions such as sulfur and nitrogen oxides in livestock. Topics discussed include uptake of airborne pollutants, types of acid-forming pollutants, sources of sulfur-containing emissions, sour gas, and farm animal toxicity caused by carbon disulfide, carbonyl sulfide, ethyl sulfide, methyl sulfide, hydrogen sulfide, methylmercaptan, ethylmercaptan, propylmercaptan, nitrogen oxides, ozone, sulfur, and sulfur dioxide. A review is presented of field data including effects of emissions from gas plants, gas well blowouts, animal nutrition in west central Alberta, and experimental studies on goats and cows. 96 refs., 10 tabs

  18. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  19. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust

    Science.gov (United States)

    Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun

    2018-02-01

    The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.

  20. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  1. Cumulative impact of 40 years of industrial sulfur emissions on a forest soil in west-central Alberta (Canada)

    International Nuclear Information System (INIS)

    Prietzel, Joerg; Mayer, Bernhard; Legge, Allan H.

    2004-01-01

    The impact of 40 years of sulfur (S) emissions from a sour gas processing plant in Alberta (Canada) on soil development, soil S pools, soil acidification, and stand nutrition at a pine (Pinus contorta x Pinus banksiana) ecosystem was assessed by comparing ecologically analogous areas subjected to different S deposition levels. Sulfur isotope ratios showed that most deposited S was derived from the sour gas processing plant. The soil subjected to the highest S deposition contained 25.9 kmol S ha -1 (uppermost 60 cm) compared to 12.5 kmol S ha -1 or less at the analogues receiving low S deposition. The increase in soil S pools was caused by accumulation of organic S in the forest floor and accumulation of inorganic sulfate in the mineral soil. High S inputs resulted in topsoil acidification, depletion of exchangeable soil Ca 2+ and Mg 2+ pools by 50%, podzolization, and deterioration of N nutrition of the pine trees

  2. An Improved Metabolism Grey Model for Predicting Small Samples with a Singular Datum and Its Application to Sulfur Dioxide Emissions in China

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-01-01

    Full Text Available This study proposes an improved metabolism grey model [IMGM(1,1] to predict small samples with a singular datum, which is a common phenomenon in daily economic data. This new model combines the fitting advantage of the conventional GM(1,1 in small samples and the additional advantages of the MGM(1,1 in new real-time data, while overcoming the limitations of both the conventional GM(1,1 and MGM(1,1 when the predicted results are vulnerable at any singular datum. Thus, this model can be classified as an improved grey prediction model. Its improvements are illustrated through a case study of sulfur dioxide emissions in China from 2007 to 2013 with a singular datum in 2011. Some features of this model are presented based on the error analysis in the case study. Results suggest that if action is not taken immediately, sulfur dioxide emissions in 2016 will surpass the standard level required by the Twelfth Five-Year Plan proposed by the China State Council.

  3. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... the dilute wet-basis CO to dilute dry-basis values. An assumption that the percent of water by volume in the sample bag is 2 percent is acceptable. For example: Dilute dry CO=(dilute wet CO)/(1.00-0.02) (6) Calculate the raw dry-basis CO values by: Raw dry CO=(DF) (dilute dry CO) (c) If the raw exhaust...

  4. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.

    2014-05-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  5. Characterization of sulfur deposition over the period of industrialization in Japan using sulfur isotope ratio in Japanese cedar tree rings taken from stumps.

    Science.gov (United States)

    Ishida, Takuya; Tayasu, Ichiro; Takenaka, Chisato

    2015-07-01

    We characterized the sulfur deposition history over the period of industrialization in Japan based on the sulfur isotope ratio (δ(34)S) in tree rings of Japanese cedar (Cryptomeria japonica D. Don) stumps. We analyzed and compared δ(34)S values in the rings from two types of disk samples from 170-year-old stumps that had been cut 5 years earlier (older forest stand) and from 40-year-old living trees (younger forest stand) in order to confirm the validity of using stump disks for δ(34)S analysis. No differences in δ(34)S values by age were found between the sample types, indicating that stump disks can be used for δ(34)S analysis. The δ(34)S profile in tree rings was significantly correlated with anthropogenic SO2 emissions in Japan (r = -0.76, p tree rings serve as a record of anthropogenic sulfur emissions. In addition, the values did not change largely from pre-industrialization to the 1940s (+4.2 to +6.1‰). The values before the 1940s are expected to reflect the background sulfur conditions in Japan and, thus, disks containing rings formed before the 1940s contain information about the natural environmental sulfur, which is useful for biogeochemical studies.

  6. Biodiesel exhaust: the need for a systematic approach to health effects research.

    Science.gov (United States)

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure. © 2015 Asian Pacific Society of Respirology.

  7. Coulometric titration of niobium in 1F sulfuric acid

    International Nuclear Information System (INIS)

    Pannu, S.S.

    1975-01-01

    A coulometric titration at constant current has been devised for Nb in 1F sulfuric acid. The titration was based on the oxidation of Nb(III) to Nb(V) by Fe(III) electrogenerated at a graphite anode. Both potentiometric and amperometric end points were used. The Nb(V) was prior reduced at a mercury cathode by exhaustive electrolysis at a current density of 15 ma/mc 2 for at least 10 hr. Ta,V,Ti and a working platinum anode interfered, but the separation of the potentials of Nb(V)/Nb(III) and Ti(IV)/Ti(III) permitted the titration of first Nb and then Ti. The average error for the titration of 0.30 to 13.00 mg of niobium in 100 ml of 1F sulfuric acid was + 0.57%. (author)

  8. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  9. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S; Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  10. Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation

    Science.gov (United States)

    Hiraki, Takehito; Kobayashi, Junichi; Urushibata, Satomi; Matsubae, Kazuyo; Nagasaka, Tetsuya

    2012-08-01

    The oxidation behavior of sulfur in desulfurization slag generated from the secondary steelmaking process with air has been investigated in the temperature range of 973 K to 1373 K (700 °C to 1100 °C). Although a high removal rate of sulfur is not achieved at temperatures lower than 1273 K (1000 °C) because of the formation of CaSO4, most of the sulfur is rapidly removed from slag as SO2 gas in the 1273 K to 1373 K (700 °C to 1100 °C) range. This finding indicates that the desulfurization slag generated from the secondary steelmaking process can be reused as a desulfurized flux through air oxidation, making it possible to reduce significantly the amount of desulfurization slag for disposal.

  11. Possibilities for the emissions reduction of smoke particles in the flue emissions of diesel motors

    International Nuclear Information System (INIS)

    Mikarovska Vesna; Stojanovski, Vasko

    2000-01-01

    Taking into consideration the fact that the traffic needs have been increased, the international committee through its associations make efforts in order to find more effective measures for the environmental protection. In this contest the international regulations are very rigorous towards the quality and quantity of the exhaust gases emission from the engines with internal combustion. In this paper the normative and limitations of the exhaust emission of compression ignition engines are presented. Also, the results from experimental investigations of transport vehicles with different time of exploitation and passed kilometers are given, as well as the factors that influent to the smoke component reduction in exhaust emission. (Authors)

  12. Thermal Behavior and Heat Generation Modeling of Lithium Sulfur Batteries

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence of the tempe......Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence...... of the temperature on the performance parameters of a 3.4 Ah Lithium-Sulfur battery cell. Furthermore, the values of the internal resistance and entropic heat coefficient, which are necessary for the parametrization of a heat generation model, are determined experimentally....

  13. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    Cheng-xiong, Pan; Jing-zhou, Zhang; Yong, Shan

    2013-01-01

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  14. Diesel emission reduction using internal exhaust gas recirculation

    Science.gov (United States)

    He, Xin [Denver, CO; Durrett, Russell P [Bloomfield Hills, MI

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  15. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    OpenAIRE

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; M?ller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this...

  16. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  17. Ultrasound-Assisted Oxidative Desulfurization of Diesel

    OpenAIRE

    Niran K. Ibrahim; Walla A. Noori; Jaffar M. Khasbag

    2016-01-01

    Due to the dramatic environmental impact of sulfur emissions associated with the exhaust of diesel engines, last environmental regulations for ultra-low-sulfur diesel require a very deep desulfurization (up to 15 ppm), which cannot be met by the conventional hydrodesulfurization units alone. The proposed method involves a batch ultrasound-assisted oxidative desulfurization (UAODS) of a previously hydrotreated diesel (containing 480 ppm sulfur) so as to convert the residual sulfur-bearing comp...

  18. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  19. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  20. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  1. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  2. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2017-02-01

    Full Text Available Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF. The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  3. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  4. HEAT TRANSFER IN EXHAUST SYSTEM OF A COLD START ENGINE AT LOW ENVIRONMENTAL TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Snežana D Petković

    2010-01-01

    Full Text Available During the engine cold start, there is a significantly increased emission of harmful engine exhaust gases, particularly at very low environmental temperatures. Therefore, reducing of emission during that period is of great importance for the reduction of entire engine emission. This study was conducted to test the activating speed of the catalyst at low environmental temperatures. The research was conducted by use of mathematical model and developed computer programme for calculation of non-stationary heat transfer in engine exhaust system. During the research, some of constructional parameters of exhaust system were adopted and optimized at environmental temperature of 22 C. The combination of design parameters giving best results at low environmental temperatures was observed. The results showed that the temperature in the environment did not have any significant influence on pre-catalyst light-off time.

  5. Exhaust gas aftertreatment with online burner; Abgasnachbehandlung mit Online-Brenner

    Energy Technology Data Exchange (ETDEWEB)

    Rembor, Hans-Joerg; Bischler, Thomas [Huss Technologies GmbH, Nuernberg (Germany)

    2010-09-15

    In order to fulfil continuously tightened emission standards, modern Diesel engines for on and off road have to meet demands of catalytic exhaust gas aftertreatment with their thermomanagement. With an online burner from Huss Technologies, even with low load duty cycles, catalytic exhaust gas aftertreatment is possible. Diesel engine development can therefore be redirected again more on efficiency enhancement and other direct customer demands. (orig.)

  6. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  7. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    Science.gov (United States)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  8. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R., E-mail: cbern@usgs.gov [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Chadwick, Oliver A. [Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Kendall, Carol [U.S. Geological Survey, Menlo Park, CA (United States); Pribil, Michael J. [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ{sup 34}S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ{sup 34}S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ{sup 34}S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  9. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    International Nuclear Information System (INIS)

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ 34 S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ 34 S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ 34 S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over

  10. 40 CFR 60.84 - Emission monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring. 60.84 Section 60....84 Emission monitoring. (a) A continuous monitoring system for the measurement of sulfur dioxide... under § 60.13(d), shall be sulfur dioxide (SO2). Method 8 shall be used for conducting monitoring system...

  11. Power plant emissions reduction

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  12. Diesel exhaust controls and aftertreatment

    Energy Technology Data Exchange (ETDEWEB)

    Rubeli, B. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    This presentation discussed the safe use of diesel fuels in underground mines, with particular reference to advanced technology engines and system technology options for mines. The use of diesel fuels underground requires well designed diesel engines with an effective preventive maintenance programs utilizing diesel emissions testing. The mines must have a well-engineered ventilation system and an adequate air quality monitoring system. An outline of diesel pollutant formation was included in the presentation. Diesel emission control technologies can address localized air quality problems and control emissions at the source. This presentation summarized the best available diesel emission control technologies for underground mines, namely diesel oxidation catalysts (DOC); diesel particulate filters (DPF); active diesel particulate filters (A-DPF); selective catalytic reduction (SCR); water scrubbers; and fume diluters. An emissions control plan using aftertreatment technology should target the vehicles that are the biggest contributors to diesel exhaust. Low sulphur fuel is a prerequisite for most emission control technologies. The successful control of emissions requires knowledge of the high emitting vehicle groups; an integrated ventilation and emission control technology application plan; ambient and tailpipe emissions testing; and training of operators and mechanics. tabs., figs.

  13. Long-term trends of sulfur deposition in East Asia during 1981-2005

    Science.gov (United States)

    Kuribayashi, Masatoshi; Ohara, Toshimasa; Morino, Yu; Uno, Itsushi; Kurokawa, Jun-ichi; Hara, Hiroshi

    2012-11-01

    We used a chemical transport model to investigate the long-term trends of sulfur deposition in East Asia during 1981-2005. The model reproduced the observed spatial distributions in East Asia of the rate of wet deposition of non-seasalt sulfate (nss-SO42-), volume-weighted mean concentrations of nss-SO42- in precipitation, precipitation, and concentrations in air of gaseous sulfur dioxide and particulate nss-SO42-. The model also reproduced well observed seasonal variations and long-term trends of wet deposition of nss-SO42- in Japan from 1988 to 2005. The increasing rate of wet deposition of nss-SO42- in Japan during 1991-2005 was demonstrated with 99.9% significance for both observed and modeled data. The annual rate of total (wet + dry) sulfur deposition in Japan increased from 15.6 Gmol S y-1 in 1981-1985 to 23.9 Gmol S y-1 in 2001-2005 in response to both increasing contributions from Chinese emissions and the eruption of Miyakejima volcano in 2000. During that 25-year period, approximately 2.1% of the sulfur from Chinese emissions was deposited in Japan. Over the same period, the rate of deposition of sulfur in East Asia increased gradually from 14.2 mmol S m-2 y-1 to 24.0 mmol S m-2 y-1, and the contribution of emissions from China to total sulfur deposition in East Asia increased from 65% to 77%. The contribution of Miyakejima volcano was 3% during 2001-2005. The increase in the sulfur deposition rate was remarkably high on the North China Plain, around Guangzhou, and south of Chongqing. The rate of increase in East Asia was greatest in winter, although the rate of sulfur deposition was highest in summer. Sulfur flux from China to Japan increased by a factor of 2.5 at altitudes of 0-3000 m from 1981 to 2005.

  14. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    Science.gov (United States)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  15. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  16. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia.

    Science.gov (United States)

    Broome, Richard A; Cope, Martin E; Goldsworthy, Brett; Goldsworthy, Laurie; Emmerson, Kathryn; Jegasothy, Edward; Morgan, Geoffrey G

    2016-02-01

    This study investigates the mortality effect of primary and secondary PM2.5 related to ship exhaust in the Sydney greater metropolitan region of Australia. A detailed inventory of ship exhaust emissions was used to model a) the 2010/11 concentration of ship-related PM2.5 across the region, and b) the reduction in PM2.5 concentration that would occur if ships used distillate fuel with a 0.1% sulfur content at berth or within 300 km of Sydney. The annual loss of life attributable to 2010/11 levels of ship-related PM2.5 and the improvement in survival associated with use of low-sulfur fuel were estimated from the modelled concentrations. In 2010/11, approximately 1.9% of the region-wide annual average population weighted-mean concentration of all natural and human-made PM2.5 was attributable to ship exhaust, and up to 9.4% at suburbs close to ports. An estimated 220 years of life were lost by people who died in 2010/11 as a result of ship exhaust-related exposure (95% CIβ: 140-290, where CIβ is the uncertainty in the concentration-response coefficient only). Use of 0.1% sulfur fuel at berth would reduce the population weighted-mean concentration of PM2.5 related to ship exhaust by 25% and result in a gain of 390 life-years over a twenty year period (95% CIβ: 260-520). Use of 0.1% sulfur fuel within 300 km of Sydney would reduce the concentration by 56% and result in a gain of 920 life-years over twenty years (95% CIβ: 600-1200). Ship exhaust is an important source of human exposure to PM2.5 in the Sydney greater metropolitan region. This assessment supports intervention to reduce ship emissions in the GMR. Local strategies to limit the sulfur content of fuel would reduce exposure and will become increasingly beneficial as the shipping industry expands. A requirement for use of 0.1% sulfur fuel by ships within 300 km of Sydney would provide more than twice the mortality benefit of a requirement for ships to use 0.1% sulfur fuel at berth. Copyright © 2015 Elsevier

  17. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  18. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    Science.gov (United States)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  19. Exhaust bypass flow control for exhaust heat recovery

    Science.gov (United States)

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  20. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1997-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  1. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E W; Kelder, H; Velthoven, P F.J. van; Wauben, W M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J P; Velders, G J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J; Scheeren, B A [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1998-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  2. Investigation of nanoparticle additives to biodiesel for improvement of the performance of the exhaust emissions in a compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Tayfun; Ozcanli, Mustafa; Aydin, Kadir [Cukurova University Engineering Architecture Faculty Mechanical Engineering Department (Turkey)], E-mail: tozgur@cu.edu.tr, email: ozcanli@cu.edu.tr, email: kdraydin@cu.edu.tr

    2011-07-01

    Reformulated diesel fuels have been studied recently to achieve substantial reductions in harmful emissions by varying the physicochemical properties and combustion characteristics of the hydrocarbon fuel. This article investigates the effects of the addition of oxygen containing nanoparticle additives to biodiesel on fuel properties, engine performance and exhaust emission characteristics. Due to the addition of magnesium oxide (MgO) and silicon oxide (SiO2) nanoparticles at different dosing levels (25 and 50 ppm), it was observed that the density of biodiesel fuel does not show significant variation but the viscosity of biodiesel fuel was found to decrease. As a result of this study, optimum additive and addition dosage was determined as 25 ppm MgO and 25 ppm SiO2, engine emission values namely nitrogen oxides (NOx) and carbon monoxide (CO) were decreased and engine performance values slightly increased with the addition of nanoparticle additives at low extra cost of the biodiesel.

  3. An experimental study on the effects of different opening ranges of waste-gate on the exhaust soot emission of a turbo-charged DI diesel engine

    International Nuclear Information System (INIS)

    Ghazikhani, M.; Davarpanah, M.; Shaegh, S.A. Mousavi

    2008-01-01

    This experimental study was conducted to investigate the effects of different opening ranges of waste-gate of a turbo-charged DI diesel engine on improving the exhaust soot emission. Different opening ranges of waste-gate were supplied using an adjustable spring to load the actuating rod of the waste-gate in which, increasing the opening range of the waste-gate decreases the inlet manifold pressure. In this study, the maximum inlet manifold pressures which were supplied by changing the opening range of waste-gate were 0.1 bar, 0.23 bar, 0.26 bar and 0.52 bar over atmosphere and experiments were conducted under the ECE-R49, 13 mode standard test. At each mode of the test, soot emission was recorded and then brake specific soot emission was calculated. Results indicate that, soot emission decreases with increasing the maximum inlet manifold pressure from 0.1 bar to 0.23 bar. This reduction may be due to increasing the intake-air temperature which results in reduction of ignition delay that prolongs the late combustion phase. This improves the soot burnout process because enough time and sufficient in-cylinder temperature are available at the late combustion phase prior to exhaust valve opening. While for the higher maximum inlet manifold pressures from 0.23 bar to 0.52 bar, although there are enough time at the late combustion phase, but the soot emission increases which could be due to more reduction of the in-cylinder gas temperature at the end of combustion before EVO

  4. To Reduce of HC and SO2 Emission from Engine’s Exhaust with Local of TiO2 to Inserted in Active Carbon

    International Nuclear Information System (INIS)

    Kris Tri Basuki

    2007-01-01

    The Active carbon can be use to adsorb of emission HC and SO 2 gas from Engine’s exhaust. The result of this research, to make active carbon with 5 cm, 10 cm and 15 cm length in Engine’s exhaust can be reduce of HC are 78.480 %, 81.500 % and 86.320 %. The inserted of 5, 10, 15 % TiO 2 in active carbon with 15 cm length can be reduce of HC are 88.290 %, 91.550 % and 94.920 %. With 5 cm, 10 cm and 15 cm length of variation in Engine’s exhaust can be reduce of SO 2 are 48.630 %, 60.517 % and 60.517 %. The inserted of 5, 10, 15 % TiO 2 in active carbon to make 15 cm length can be reduce of SO 2 are 80.223 %, 82.594 % and 87.696 %. The result of this research to known that the make of 15 % of TiO 2 inserted in active carbon is more effective with 5 % and 10 % of TiO 2 . (author)

  5. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  6. Danish emission inventory for particular matter (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Winther, M; Illerup, J B; Hjort Mikkelsen, M

    2003-11-01

    The first Danish emission inventory that was reported in 2002 was a provisional-estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM,, and PM, The report covers emission inventories for transport and stationary combustion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included. (au)

  7. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks during salt well pumping; FINAL

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    1999-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on singleshell tanks (SSTs) during salt well pumping. Table 1-1 lists SSTs covered by this NOC. This GOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping. The primary objective of providing active ventilation to these SSTs during salt well pumping is to reduce the risk of postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Hanford Site waste tanks must comply with the Tank Farms authorization basis (DESH 1997) that requires that the flammable gas concentration be less than 25 percent of the lower flammability limit

  8. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    Science.gov (United States)

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  9. Dual-purpose power plants, experiences with exhaust gas purification plants

    International Nuclear Information System (INIS)

    Dietrich, R.

    1993-01-01

    From 1984 to 1988, the research and development project ''pollutant reduction for exhaust gases from heat production systems'' sponsored by the Federal Ministry of Research and Technology (BMFT) has been carried out by TUeV in Bavaria. This project was to show the state of exhaust gas technology for small and medium-sized plants (boilers and motoric heat generators). When publishing the final report, no positive balance could be given. Based on the results, the succession project ''Exhaust gas purification plants in field test'' (ARIF) has been started. This project has the following objectives: -Measuring technical investigation of the exhaust gas purification of motoric driven heat generator systems in field test. - Suitability of hand measuring devices for emissions for a discontinuous control of the exhaust gas purification plat by the operator. - Control of new methods regarding pollutant reduction for motoric and conventional heat generators. (orig.) [de

  10. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by 99m technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    International Nuclear Information System (INIS)

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian

    2014-01-01

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a 99m technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of 99m technetium sulfur colloid SPECT/CT imaging in this rare condition.

  11. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  12. Decreasing the exhaust outlet temperatures on a class III bus with the lowest impact on the exhaust backpressure and the fuel consumption

    Science.gov (United States)

    Aslan, E.; Ozturk, Y.; Dileroglu, S.

    2017-07-01

    The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.

  13. Methane oxidation in presence of sulfur dioxide

    International Nuclear Information System (INIS)

    Mantashyan, A.A.; Avetisyan, A.M.; Makaryan, E.M.; Wang, H.

    2006-01-01

    The emission of sulfurous gases including SO 2 from stationary power generation remains to be a serious environmental and ecological problem. Sulfurous gases are almost entirely produced from the combustion of sulfur-containing fuels. While fuel desulfurization and flue gas scrubbing is a viable solution, in the developing countries it remains to be an economical challenge to implement these SO x reduction technologies. The oxidation of methane in presence of sulfurous gas (SO 2 ) addition was studied experimentally. Te experiments were conducted in a static reactor at temperature of 728-786 K, and for mixture of C 4 /O 2 ≡ 1/2 at a pressure of 117 Torr with varying amount of SO 2 addition. It was observed that SO 2 addition accelerated the oxidation process, reduced the induction period and increased the extent of methane consumption. At the relatively short resident time (less than 50 sec) SO 3 was detected, but at longer residence time SO 3 was reduced spontaneously to SO 2

  14. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    Science.gov (United States)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  15. The Influence of Fuel Sulfur on the Operation of Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov

    The present work focusses on SO3/H2SO4 formation and sulfuric acid (H2SO4) condensation in a large low speed 2-stroke marine diesel engine. SO3 formation is treated theoretically from a formulated multizone engine model described in this work that includes a detailed and validated sulfur reaction...... mechanism. Model results show that for a large marine engine generally about 3 % - 6 % of the fuel sulfur converts to SO3 while the remainder leaves the engine as SO2 from which the SO3 is formed during the expansion stroke. SO3 formation scales with the cylinder pressure and inversely with the engine speed...... as also demonstrated by a number of SO3 experiments described in this work. The experiments are carried out with a heavy duty medium speed 4 stroke diesel engine operating on heavy fuel oil including ≈ 2 wt. % sulfur. SO3 was measured successfully in the exhaust gas with the PENTOL SO3 analyzer...

  16. Special emission measurements on Riley Stoker's advanced CFB pilot facility co-firing non-recyclable de-inking paper fiber and high sulfur eastern bituminous coal

    International Nuclear Information System (INIS)

    Dixit, V.B.; Mongeon, R.K.; Reicker, E.L.

    1993-01-01

    Riley Stoker has developed advanced industrial CFB designs that utilize eastern bituminous coals as fuel, and have the potential to use coal in combination with other fuels. Various fiber waste streams in paper recycling processes have sufficient carbonaceous content to be considered as possible sources of such fuels that could fire FBC combustors. The American Paper Institute estimates that by the mid-1990's more than 40% of the waste paper will be recycled, reaching much higher numbers by the year 2000. To evaluate the effectiveness of co-firing such fuels, a test program was conducted on Riley's pilot-scale circulating fluidized bed test facility. A de-inked newsprint derived fiber waste was successfully co-fired with high sulfur coal. The waste fiber material containing approximately 50% moisture had a heating value of 3500 Btu/lb. The coal was strip-mined and contained a lot of clay and excessive quantities of fines making it difficult to burn in conventional boilers. Tests were also conducted with a combination fuel consisting of coal, fiber waste and a high carbon fly ash. In addition to obtaining performance data on combustion efficiency, sulfur capture, and NO x emissions, special emission measurements were also made to quantify the organics, trace metals and hydrochloric acid levels in the flue gas. The co-firing tests achieved a maximum combustion efficiency of 98% and sulfur capture of 90%. The effect of Ca/S mole ratio and temperature is discussed. Although there are no formal regulations in place for FBC systems regarding special emissions, the levels measured were far below the allowable limits for waste incinerators. Materials handling experience on the pilot facility relating to co-firing is also discussed. This is done to identify special considerations for designing commercial facilities. A brief overview of the de-inking waste fiber combustion market is also presented

  17. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  18. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    Science.gov (United States)

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  19. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  20. Dynamics of a Sonoluminescing Bubble in Sulfuric Acid

    Science.gov (United States)

    Hopkins, Stephen D.; Putterman, Seth J.; Kappus, Brian A.; Suslick, Kenneth S.; Camara, Carlos G.

    2005-12-01

    The spectral shape and observed sonoluminescence emission from Xe bubbles in concentrated sulfuric acid is consistent only with blackbody emission from a spherical surface that fills the bubble. The interior of the observed 7000 K blackbody must be at least 4 times hotter than the emitting surface in order that the equilibrium light-matter interaction length be smaller than the radius. Bright emission is correlated with long emission times (˜10ns), sharp thresholds, unstable translational motion, and implosions that are sufficiently weak that contributions from the van der Waals hard core are small.

  1. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  2. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Science.gov (United States)

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  3. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • Biodiesel produced from palm and Calophyllum oil using trans-esterification process. • Produced biodiesels properties were compared with ASTM D6751 standards. • Engine performance and exhaust emissions were evaluated at high idling conditions. • Idling CO and HC emission was reduced using biodiesel–diesel blends. • For low percentages of biodiesel–diesel blends NO X emission increased negligibly. - Abstract: Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in many countries of the world production and use of biodiesel has gained popularity. In this research, biodiesel from palm and Calophyllum inophyllum oil has been produced using the trans-esterification process. Properties of the produced biodiesels were compared with the ASTM D6751 standard: biodiesel standard and testing methods. Density, kinematic viscosity, flash point, cloud point, pour point and calorific value, these are the six main physicochemical properties that were investigated. Both palm biodiesel and Calophyllum biodiesel were within the standard limits, so they both can be used as the alternative of diesel fuel. Furthermore, engine performance and emission parameters of a diesel engine run by both palm biodiesel–diesel and Calophyllum biodiesel–diesel blends were evaluated at high idling conditions. Brake specific fuel consumption increased for both the biodiesel–diesel blends compared to pure diesel fuel; however, at highest idling condition, this increase was almost negligible. Exhaust gas temperatures decreased as blend percentages increased for both the biodiesel–diesel blends. For low blend percentages increase in NO

  4. Biodiesel from lemon and lemon grass oil and its effect on engine performance and exhaust emission

    Science.gov (United States)

    Dhivagar, R.; Sundararaj, S.; Vignesh, V. R.

    2018-03-01

    In the present scenario many developing countries are depending on oil producing nations for their fuel resources. Due to demand and scarcity of the fuel, there has been a huge increase in fuel prices. The vehicular population is also continuously increasing and becoming a great menace to peoples. This paper aims to provide an alternate solution for petroleum based fuels. It suggests that biodiesel produced from lemon and lemon grass oil can be used as an alternative fuel. This work investigates the thermal performance of four stroke diesel engine using blends of biodiesel and diesel as a fuel. Performance parameters like brake thermal efficiency, mechanical efficiency and specific fuel consumption were measured at different loads for diesel and various combination of biofuel (L10, L20, and L30). The maximum brake thermal efficiency obtained is about 26.12%for L20 which is slightly higher than that of diesel (24.91%). Engine experimental results showed that exhaust emissions including CO2 and HC were reduced by 6% and 5% for L20 mixture of biodiesel whereas CO emission was as same as diesel. However, there was increase in NOxby 26% to the diesel fuel.

  5. Diurnal Variation and Spatial Distribution Effects on Sulfur Speciation in Aerosol Samples as Assessed by X-Ray Absorption Near-Edge Structure (XANES

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper focuses on providing new results relating to the impacts of Diurnal variation, Vertical distribution, and Emission source on sulfur K-edge XANES spectrum of aerosol samples. All aerosol samples used in the diurnal variation experiment were preserved using anoxic preservation stainless cylinders (APSCs and pressure-controlled glove boxes (PCGBs, which were specially designed to prevent oxidation of the sulfur states in PM10. Further investigation of sulfur K-edge XANES spectra revealed that PM10 samples were dominated by S(VI, even when preserved in anoxic conditions. The “Emission source effect” on the sulfur oxidation state of PM10 was examined by comparing sulfur K-edge XANES spectra collected from various emission sources in southern Thailand, while “Vertical distribution effects” on the sulfur oxidation state of PM10 were made with samples collected from three different altitudes from rooftops of the highest buildings in three major cities in Thailand. The analytical results have demonstrated that neither “Emission source” nor “Vertical distribution” appreciably contribute to the characteristic fingerprint of sulfur K-edge XANES spectrum in PM10.

  6. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

    International Nuclear Information System (INIS)

    Struis, Rudolf P.W.J.; Ludwig, Christian; Barrelet, Timothee; Kraehenbuehl, Urs; Rennenberg, Heinz

    2008-01-01

    Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (< 100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry

  7. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  8. Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions.

    Science.gov (United States)

    Oduro, Harry; Van Alstyne, Kathryn L; Farquhar, James

    2012-06-05

    Oceanic dimethylsulfoniopropionate (DMSP) is the precursor to dimethylsulfide (DMS), which plays a role in climate regulation through transformation to methanesulfonic acid (MSA) and non-seasalt sulfate (NSS-SO(4)(2-)) aerosols. Here, we report measurements of the abundance and sulfur isotope compositions of DMSP from one phytoplankton species (Prorocentrum minimum) and five intertidal macroalgal species (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, and Polysiphonia hendryi) in marine waters. We show that the sulfur isotope compositions (δ(34)S) of DMSP are depleted in (34)S relative to the source seawater sulfate by ∼1-3‰ and are correlated with the observed intracellular content of methionine, suggesting a link to metabolic pathways of methionine production. We suggest that this variability of δ(34)S is transferred to atmospheric geochemical products of DMSP degradation (DMS, MSA, and NSS-SO(4)(2-)), carrying implications for the interpretation of variability in δ(34)S of MSA and NSS-SO(4)(2-) that links them to changes in growth conditions and populations of DMSP producers rather than to the contributions of DMS and non-DMS sources.

  9. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    Science.gov (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  10. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by {sup 99m} technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian [Dept. of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore (Singapore)

    2014-06-15

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a {sup 99m}technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of {sup 99m} technetium sulfur colloid SPECT/CT imaging in this rare condition.

  11. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  12. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  13. Sulfur dioxide concentration measurements in the vicinity of the Albert Funk mining and metallurgical plant complex

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M

    1976-01-01

    This article discusses the ambient air concentration of sulfur dioxide in the area of Freiberg, GDR. The emission of sulfur dioxide results for the most part from brown coal combustion in heat and power plants and in metallurgical plants. Sulfur dioxide emission from neighboring industrial centers such as Dresden and North Bohemian towns affects the Freiburg area to some extent. The use of brown coal in household heating contributes an average of 50 kg of sulfur dioxide emission per coal burning household annually. A total of 1260 measurements at 28 points in the vicinity of Freiberg were made in the year 1972 in evaluating the concentration of sulfur dioxide present in the air. In 75% of the measurements the concentrations were below 0.15 mg/mat3, in 12% between 0.15 and 0.2 mg/mat3, in 7% between 0.2 and 0.3 mg/mat3 and in 6% between 0.3 and 0.5 mg/mat3. The results are described as average industrial pollution. The influence of air temperature, wind velocity, fog, season and time of day are also discussed. (4 refs.) (In German)

  14. Emission and performance analysis on the effect of exhaust gas recirculation in alcohol-biodiesel aspirated research diesel engine.

    Science.gov (United States)

    Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Devarajan, Yuvarajan; Radhakrishnan, Santhanakrishnan

    2018-05-01

    In this study, the effect of blending pentanol to biodiesel derived from mahua oil on emissions and performance pattern of a diesel engine under exhaust gas recirculation (EGR) mode was examined and compared with diesel. The purpose of this study is to improve the feasibility of employing biofuels as a potential alternative in an unmodified diesel engine. Two pentanol-biodiesel blends denoted as MOBD90P10 and MOBD80P20 which matches to 10 and 20 vol% of pentanol in biodiesel, respectively, were used as fuel in research engine at 10 and 20% EGR rates. Pentanol is chosen as a higher alcohol owing to its improved in-built properties than the other first-generation alcohols such as ethanol or methanol. Experimental results show that the pentanol and biodiesel blends (MOBD90P10 and MOBD80P20) have slightly higher brake thermal efficiency (0.2-0.4%) and lower brake-specific fuel consumption (0.6 to 1.1%) than that of neat biodiesel (MOBD100) at all engine loads. Nitrogen oxide (NOx) emission and smoke emission are reduced by 3.3-3.9 and 5.1-6.4% for pentanol and biodiesel blends compared to neat biodiesel. Introduction of pentanol to biodiesel reduces the unburned hydrocarbon (2.1-3.6%) and carbon monoxide emissions (3.1-4.2%) considerably. In addition, at 20% EGR rate, smoke, NO X emissions, and BTE drop by 7.8, 5.1, and 4.4% respectively. However, CO, HC emissions, and BSFC increased by 2.1, 2.8, and 3.8%, respectively, when compared to 0% EGR rate.

  15. Fate of SO(sub 2) During Plasma Treatment of Diesel Engine Exhaust

    International Nuclear Information System (INIS)

    Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E.

    1999-01-01

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO(sub 2) to achieve efficient reduction of NO(sub x) and particulates in diesel engine exhaust. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO(sub 2) is also active in converting SO(sub 2) to SO(sub 3). A non-thermal plasma can be used for the selective partial oxidation of NO to NO(sub 2) in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO(sub 2) without oxidizing SO(sub 2) to SO(sub 3). It is shown that the presence of hydrocarbons in the plasma is essential for enhancing the selective partial oxidation of NO and suppressing the oxidation of SO(sub 2)

  16. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    Science.gov (United States)

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An experimental study on the effects of exhaust gas on spruce (Picea abies L. Karst.)

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E.L.; Holopainen, J.; Kaerenlampi, L. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J.; Ruuskanen, J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences

    1995-12-31

    Motor vehicle exhausts are significant contributors to air pollution. Besides fine particles and inorganic gases, like CO, SO{sub 2} and NO{sub x}, exhaust gas contains a large group of aromatic hydrocarbon compounds, many of which are phytotoxic. In field studies, exhausts are found to have both direct and indirect harmful effects on roadside plants. However, only few experimental studies have been made about the effects of exhaust gas emissions on coniferous trees. The aim of this study was to survey the effects of exhausts on spruce (Picea abies L. Karst.) in standardized conditions. The concentrations of major exhaust gas components in the chamber atmosphere were detected simultaneously. The effects of exhaust on epistomatal waxes of first-year spruce needles are described. (author)

  18. An experimental study on the effects of exhaust gas on spruce (Picea abies L. Karst.)

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E L; Holopainen, J; Kaerenlampi, L [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J; Ruuskanen, J [Kuopio Univ. (Finland). Dept. of Environmental Sciences

    1996-12-31

    Motor vehicle exhausts are significant contributors to air pollution. Besides fine particles and inorganic gases, like CO, SO{sub 2} and NO{sub x}, exhaust gas contains a large group of aromatic hydrocarbon compounds, many of which are phytotoxic. In field studies, exhausts are found to have both direct and indirect harmful effects on roadside plants. However, only few experimental studies have been made about the effects of exhaust gas emissions on coniferous trees. The aim of this study was to survey the effects of exhausts on spruce (Picea abies L. Karst.) in standardized conditions. The concentrations of major exhaust gas components in the chamber atmosphere were detected simultaneously. The effects of exhaust on epistomatal waxes of first-year spruce needles are described. (author)

  19. Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions

    International Nuclear Information System (INIS)

    Santelli, Ricardo Erthal; Padua Oliveira, Eliane; Batista de Carvalho, Maria de Fatima; Almeida Bezerra, Marcos; Soares Freire, Aline

    2008-01-01

    Herein, we present the development of a procedure for the determination of total sulfur in petroleum-derived products (gasoline, kerosene and diesel fuel) employing inductively coupled plasma optical emission spectrometry (ICP OES). For this procedure, samples were prepared as emulsions that were made using concentrated nitric acid, Triton X-100, sample, and ultra pure water in proportions of 5/10/7/78% (v/v), respectively. Sample volumes were weighed because of the density differences, and oxygen was added to the sheat gas entrance of the ICP OES in order to decrease carbon deposition in the torch and to minimize background effects. A Doehlert design was applied as an experimental matrix to investigate the flow ratios of argon (sheat and plasma gas) and oxygen in relation to the signal-to-background ratio. A comparative study among the slopes of the analytical curves built in aqueous media, surfactant/HNO 3 , and by spike addition for several sample emulsions indicates that a unique solution of surfactant in acidic media can be employed to perform the external calibration for analysis of the emulsions. The developed procedure allows for the determination of the total sulfur content in petroleum derivatives with a limit of detection (LOD) and limit of quantification (LOQ) of 0.72 and 2.4 μg g -1 , respectively. Precision values, expressed as the relative standard deviations (% RSD, n = 10) for 12 and 400 μg g -1 , were 2.2% and 1.3%, respectively. The proposed procedure was applied toward the determination of total sulfur in samples of gasoline, kerosene, and diesel fuel commercialized in the city of Niteroi/RJ, Brazil. The accuracy of the proposed method was evaluated by the determination of the total sulfur in three different standard reference materials (SRM): NIST 2723a (sulfur in diesel fuel oil), NIST 1616b (sulfur in kerosene), and NIST 2298 (sulfur in gasoline). The data indicate that the methodology can be successfully applied to these types of samples

  20. RSM based optimization of chemical and enzymatic transesterification of palm oil: biodiesel production and assessment of exhaust emission levels.

    Science.gov (United States)

    Mumtaz, Muhammad Waseem; Mukhtar, Hamid; Anwar, Farooq; Saari, Nazamid

    2014-01-01

    Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.

  1. Performance and exhaust emissions in a natural-gas fueled dual-fuel engine; Tennen gas dual fuel kikan no seino oyobi haiki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M.; Ishiyama, T.; Shibata, H. [Kyoto Univ., Kyoto (Japan). Inst. of Atomic Energy; Ikegami, M. [Fukui Institute of Technology, Fukui (Japan). Faculty of Engineering

    2000-07-25

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, tests were made for some operational parameters and their combination on the engine performances and the exhaust emissions. The results show that the gas oil quantity should be increased and gas oil injection timing should be advanced to suppress unburned hydrocarbon emission at middle and low output range, while the quantity should be reduced and the timing should be retarded to avoid onset of knock at high loads. The unburned hydrocarbon emission and the thermal efficiency are improved at the same load avoiding too lean natural gas premixture by restriction of intake charge air. However the improvement is limited because the ignition and initial combustion of pilot diesel fuel is deteriorated when the cylinder pressure is excessively lowered by throttling. The increase in pilot gas oil amount is effective for low-load operation and the adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation. (author)

  2. Reducing information asymmetry in the power industry: Mandatory and voluntary information disclosure regulations of sulfur dioxide emission

    International Nuclear Information System (INIS)

    Zhu Xufeng; Zhang Chao

    2012-01-01

    This paper focuses on the institutional framework for sulfur dioxide emission information disclosure (SDEID) in power industries. The authors argue that mandatory and voluntary SDEID are two complementary regulatory instruments for emission reduction in the power industry. An analytical framework of SDEID with six facets is suggested in this paper to demonstrate relevant legal provisions and regulatory policies of mandatory and voluntary SDEID of power industries in the US. Empirical research shows that mandatory and voluntary SDEID of the power industry have been regulated simultaneously in the US. The foundation of power companies' willingness to disclose emission information voluntarily is the combination of mandatory scientific monitoring with market regulation in the current SDEID system in the US. In comparison, the SDEID of power industries has yet to be widely implemented in developing countries. Finally, the paper provides some implications to developing countries that plan to learn institutional arrangements from developed countries. - Highlights: ► Mandatory and voluntary SDEID are two complementary regulatory instruments. ► An analytical framework is suggested to demonstrate SDEID of power industry in the US. ► Voluntary disclosure can be attributed to scientific monitoring and market regulation. ► We provide implications to developing countries learning from developed countries.

  3. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    Science.gov (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  4. Laboratory measurement of the millimeter wave properties of liquid sulfuric acid (H2SO4). [study of microwave emission from Venus

    Science.gov (United States)

    Fahd, Antoine K.; Steffes, Paul G.

    1991-01-01

    The methodology and the results of laboratory measurements of the millimeter wave properties of liquid sulfuric acid are presented. Measurements conducted at 30-40 and 90-100 GHz are reported, using different concentrations of liquid H2SO4. The measured data are used to compute the expected opacity of H2SO4 condensates and their effects on the millimeter wave emission from Venus. The cloud condensate is found to have an effect on the emission from Venus. The calculated decrease in brightness temperature is well below the observed decrease in brightness temperature found by de Pater et al. (1991). It is suggested that other constituents such as gaseous H2SO4 also affect the observed variation in the brightness temperature.

  5. Noise study in laboratories with exhaust fans

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Hashmi, R.; Shareef, A.

    2005-01-01

    Noise study has been carried out in 25 laboratories fitted with exhaust fans. We have studied A- Weighted equivalent sound pressure levels (dB(A) LAeJ and equivalent octave band sound pressure levels (dB L/sub eq/ in each of the laboratories surveyed. The data collected has been analyzed for Preferred Speech Interference Levels (PSIL). The results show that the interior noise levels in these laboratories vary from 59.6 to 72.2 dB(A) L/sub Aeq/, which are very high and much beyond the interior noise limits recommended for laboratories. Some ways and means to limit emission of high-level noise from exhaust fans are also discussed. (author)

  6. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes

    International Nuclear Information System (INIS)

    Castebrunet, H.

    2007-09-01

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  7. The potential of synthetic fuels to meet future emission regulations; Potenzial synthetischer Kraftstoffe zur Einhaltung zukuenftiger Emissionsgrenzwerte

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.O.; Keppeler, S.; Friess, W. [DaimlerChrysler AG, Stuttgart (Germany); Botha, J.J. [Sasol Technology (Pty) Ltd., Rosebank (South Africa); Schaberg, P. [Sasol Advanced Fuel Lab., Univ. of Cape Town (South Africa); Schnell, P. [Sasol Chevron Consulting Ltd., London (United Kingdom)

    2006-07-01

    The potential of GTL diesel fuel for further improving engine performance and reducing exhaust emissions beyond euro 4 was investigated in a Mercedes-Benz E320 CDI passenger car. Starting with the outlook on the production and properties of GTL fuel against the anticipated future diesel demand, the paper addresses the impacts of GTL diesel fuel on heavy-duty and light-duty engines. Based on preceding work on un-adapted engines, published in an earlier paper in 2004 at the 25{sup th} International Vienna Motor Symposium, the hardware configuration and software calibration of the E320 engine were now modified to better utilize the advantageous properties of the Sasol Chevron GTL diesel fuel. In order to keep engine changes at a minimum, hardware modifications were limited to lowering the compression ratio and optimizing the injection equipment. These hardware modifications required the adaptation of the engine software calibration, such as injection system parameters, boost pressure adjustment, and EGR rates. It has been shown that, by detailed bench work and chassis dynamometer testing, the vehicle, which is equipped with a DPF and has a euro 4 calibration in its original form, can comply with the very stringent nitrogen oxides emission limits of 0.08 g/km (NEDC) when moderately modified and operated on GTL diesel fuel. This was achieved without any active nitrogen oxides exhaust gas aftertreatment. This establishes a very promising outlook for a cost-efficient means for reducing exhaust emissions, and again highlights the benefits that may be obtained with cleaner fuels (GTL diesel fuel is free of sulfur and aromatics and has a cetane number > 70). The paper presents details of the fuel, the engine modifications and the test results obtained so far. (orig.)

  8. Collaborative Lubricating Oil Study on Emissions: November 28, 2006 - March 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J. N.; Khalek, I. A.; Smith, L. R.; Fujita, E.; Zielinska, B.

    2011-10-01

    The Collaborative Lubricating Oil Study on Emissions (CLOSE) project was a pilot investigation of how fuels and crankcase lubricants contribute to the formation of particulate matter (PM) and semi-volatile organic compounds (SVOC) in vehicle exhaust. As limited vehicles were tested, results are not representative of the whole on-road fleet. Long-term effects were not investigated. Pairs of vehicles (one normal PM emitting, one high-PM emitting) from four categories were selected: light-duty (LD) gasoline cars, medium-duty (MD) diesel trucks, heavy-duty (HD) natural-gas-fueled buses, and HD diesel buses. HD vehicles procured did not exhibit higher PM emissions, and thus were labeled high mileage (HM). Fuels evaluated were non-ethanol gasoline (E0), 10 percent ethanol (E10), conventional low-sulfur TxLED diesel, 20% biodiesel (B20), and natural gas. Temperature effects (20 degrees F, 72 degrees F) were evaluated on LD and MD vehicles. Lubricating oil vintage effects (fresh and aged) were evaluated on all vehicles. LD and MD vehicles were operated on a dynamometer over the California Unified Driving Cycle, while HD vehicles followed the Heavy Duty Urban Dynamometer Driving Schedule. Regulated and unregulated emissions were measured. Chemical markers from the unregulated emissions measurements and a tracer were utilized to estimate the lubricant contribution to PM.

  9. Compact high-speed MWIR spectrometer applied to monitor CO2 exhaust dynamics from a turbojet engine

    Science.gov (United States)

    Linares-Herrero, R.; Vergara, G.; Gutiérrez Álvarez, R.; Fernández Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano Ramírez, A.; Montojo, M. T.; Archilla, V.; Jiménez, A.; Mercader, D.; González, A.; Entero, A.

    2013-05-01

    Dfgfdg Due to international environmental regulations, aircraft turbojet manufacturers are required to analyze the gases exhausted during engine operation (CO, CO2, NOx, particles, unburned hydrocarbons (aka UHC), among others).Standard procedures, which involve sampling the gases from the exhaust plume and the analysis of the emissions, are usually complex and expensive, making a real need for techniques that allow a more frequent and reliable emissions measurements, and a desire to move from the traditional gas sampling-based methods to real time and non-intrusive gas exhaust analysis, usually spectroscopic. It is expected that the development of more precise and faster optical methods will provide better solutions in terms of performance/cost ratio. In this work the analysis of high-speed infrared emission spectroscopy measurements of plume exhaust are presented. The data was collected during the test trials of commercial engines carried out at Turbojet Testing Center-INTA. The results demonstrate the reliability of the technique for studying and monitoring the dynamics of the exhausted CO2 by the observation of the infrared emission of hot gases. A compact (no moving parts), high-speed, uncooled MWIR spectrometer was used for the data collection. This device is capable to register more than 5000 spectra per second in the infrared band ranging between 3.0 and 4.6 microns. Each spectrum is comprised by 128 spectral subbands with aband width of 60 nm. The spectrometer operated in a passive stand-off mode and the results from the measurements provided information of both the dynamics and the concentration of the CO2 during engine operation.

  10. Toxicological aspects of fuel and exhaust gas

    International Nuclear Information System (INIS)

    Avella, F.

    1993-01-01

    Some aspects concerning fuels (gasoline) and gas exhaust vehicle emissions toxicology are briefly examined in light of the results reported in recent literature on this argument. Many experimental studies carried out on animals and men turn out incomplete and do not allow thorough evaluations, for every aspect, of the risk to which men and the environment are subjected

  11. Refractories for exhaust gas scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Primary metal smelters are recovering a greater percentage of their stack emissions because of increased global environmental pressures. Copper and nickel producers processing sulfide ore are under particular scrutiny for sulfur dioxide emissions. The use of various acid plant designs and associated scrubbers to capture the gas is commonplace. Failure of acid plant or sulfur dioxide control devices can be very expensive, both in terms of repair costs and lost production. Close attention should be paid to ensure smooth, long term and proper operation of these vessels. With INCO flash furnace shops smelter gases are treated immediately upon leaving the furnace in a particulate scrubber where the gases are cooled and de-dusted in a water spray chamber. The amount of chlorine and fluorine in the waste gas can vary widely, ranging from non-existent to being a major source of concern for refractory wear. Developed specifically for use in hazardous waste incinerators burning fluorine-containing materials, spall-resistant, high-purity alimina bricks were installed in various gas cleaning units in copper smelting plants. Because of the materials's combination of abrasion resistance, thermal cycling resistance, and chemical durability under conditions of variable SO(3) and fluorine attack, the material has proven to be more than adequate for the challenges of gas cleaning equipment. 2 refs.

  12. Physical characterization of diesel exhaust nucleation mode particles

    Energy Technology Data Exchange (ETDEWEB)

    Lahde, T.

    2013-11-01

    An increasing concern of the adverse health effects of aerosol particles is forcing the combustion engine industry to develop engines with lower particle emissions. The industry has put most of their efforts into soot control and has achieved a significant reduction in diesel exhaust particle mass. Nevertheless, it is not clear that the large particles, dominating the mass, cause the harmfulness of the exhaust particles in the biological interaction. Nowadays, the harmful potential of diesel exhaust particles often connects with the particle surface area, and the view has turned to particle number below 100 nm size range. Unfortunately, the achieved low exhaust particle mass does not necessarily imply a low particle number. This text focuses on the physical characteristics of diesel exhaust nucleation model particles. The volatility characteristics and the electrical charge state of the particles are studied first. Second, the relation between the nonvolatile nucleation mode emissions and the soot, the nitrogen oxide (NO{sub x}) emissions and the engine parameters are covered. The nucleation mode particles had distinctively different physical characteristics with different after-treatment systems. The nucleation mode was volatile and electrically neutral with a diesel particle filter after-treatment system. Without an after-treatment system or with an after-treatment system with low particle removal efficiency, the nucleation mode was partly nonvolatile and included an electrical charge. The difference suggests different formation routes for the nucleation particles with different after-treatment systems. The existence of the nonvolatile nucleation mode particles also affected the soot mode charge state. The soot charge state was positively biased when the nonvolatile nucleation mode was detected but slightly negatively biased when the nonvolatile nucleation mode was absent. The nonvolatile nucleation mode was always negatively biased. This electrical charge

  13. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.

  14. Direct night-time ejection of particle-phase reduced biogenic sulfur compounds from the ocean to the atmosphere.

    Science.gov (United States)

    Gaston, Cassandra J; Furutani, Hiroshi; Guazzotti, Sergio A; Coffee, Keith R; Jung, Jinyoung; Uematsu, Mitsuo; Prather, Kimberly A

    2015-04-21

    The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ∼67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden.

  15. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Mostofa Kamal Nasir

    2014-01-01

    Full Text Available Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO, hydrocarbons (HC, carbon dioxide (CO2, particulate matter (PM, and oxides of nitrogen (NOx. Intelligent transport system (ITS technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  16. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  17. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  18. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.G.; Chow, J.C. [Desert Research Institute, 2215 Raggio Pkwy., 89512 Reno, NV (United States)

    2001-08-10

    Chemical profiles for particle emissions are needed for source apportionment studies using the chemical mass balance (CMB) receptor model. Source measurements of geological sources, motor vehicle exhaust, vegetative burning (e.g. asparagus, field burning, charbroil cooking), and industrial sources (e.g. oil-fueled glass plant, manure-fueled power plants) were acquired as part of the Imperial/Mexicali Valley Cross Border PM{sub 10} Transport Study in 1992. Six different source sampling techniques (i.e. hot- and diluted-exhaust sampling, ground-based source sampling, particle sweeping/grab sampling, vacuum sampling, and laboratory resuspension sampling) were applied to acquire filter samples of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters <2.5 and 10 {mu}m, respectively). Filter samples were analyzed for mass by gravimetry, elements (Na to U) by X-ray fluorescence, anions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup =}) by ion chromatography, ammonium (NH{sub 4}{sup +}) by automated colorimetry, soluble sodium (Na{sup +}) and potassium (K{sup +}) by atomic absorption spectrophotometry, and organic and elemental carbon (OC, EC) by thermal/optical reflectance. Concentration data were acquired for a total of 50 chemical species. Elevated abundances of crustal components (Al, Si, K, Ca, Fe) from geological material, carbon (OC, EC) and trace elements (Br, Pb) from vehicle exhausts, carbon (OC, EC) and ions (K{sup +}, Cl{sup -}) from vegetative burning, ions (SO{sub 4}{sup =}, NH{sub 4}{sup +}, Na{sup +}, K{sup +}, Cl{sup -}) and elements (Cl, Se) from a manure-fueled power plants, and sulfur and trace elements (Na{sup +}, Pb, Se, Ni, V) from an oil-fueled glass plant were found in the resulting source profiles. Abundances of crustal species (e.g. Al, Si, Ca) in the Imperial/Mexicali Valley geological profiles are more than twice those found in central and southern California. Abundances of lead in motor vehicle exhausts indicate different

  19. The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2006-01-01

    This article presents the comparative bench testing results of a four stroke, four cylinder, direct injection, unmodified, naturally aspirated Diesel engine when operating on neat RME and its 5%, 10%, 20% and 35% blends with Diesel fuel. The purpose of this research is to examine the effects of RME inclusion in Diesel fuel on the brake specific fuel consumption (bsfc) of a high speed Diesel engine, its brake thermal efficiency, emission composition changes and smoke opacity of the exhausts. The brake specific fuel consumption at maximum torque (273.5 g/kW h) and rated power (281 g/kW h) for RME is higher by 18.7% and 23.2% relative to Diesel fuel. It is difficult to determine the RME concentration in Diesel fuel that could be recognised as equally good for all loads and speeds. The maximum brake thermal efficiency varies from 0.356 to 0.398 for RME and from 0.373 to 0.383 for Diesel fuel. The highest fuel energy content based economy (9.36-9.61 MJ/kW h) is achieved during operation on blend B10, whereas the lowest ones belong to B35 and neat RME. The maximum NO x emissions increase proportionally with the mass percent of oxygen in the biofuel and engine speed, reaching the highest values at the speed of 2000 min -1 , the highest being 2132 ppm value for the B35 blend and 2107 ppm for RME. The carbon monoxide, CO, emissions and visible smoke emerging from the biodiesel over all load and speed ranges are lower by up to 51.6% and 13.5% to 60.3%, respectively. The carbon dioxide, CO 2 , emissions along with the fuel consumption and gas temperature, are slightly higher for the B20 and B35 blends and neat RME. The emissions of unburned hydrocarbons, HC, for all biofuels are low, ranging at 5-21 ppm levels

  20. New processes for the reduction and capture of mercury emissions in the exhaust gas treatment; Neue Verfahren zur Minderung und Erfassung von Quecksilber-Emissionen in der Abgasbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Boness, Michael [Sick Maihak GmbH, Meersburg (Germany); Kanefke, Rico [Currenta GmbH und Co. OHG, Leverkusen (Germany). Sonderabfallverbrennung Leverkusen; Vosteen, Bernhard W. [Vosteen Consulting GmbH, Koeln (Germany)

    2013-03-01

    The highly volatile heavy metal mercury is deemed to be very toxic. There exist a lot of natural as well as anthropogenic sources for the pollution of the environment with mercury such as the coal-fired power generation, the electrolytic production of chlorine, the cement burning including the release of mercury from the cement raw meal, the waste incineration and the artisanal production of gold by amalgamation with liquid mercury. The authors of the contribution under consideration report on new procedures for the reduction and capture of mercury emissions in the exhaust gas treatment. The bromine supported precipitation of mercury in the exhaust gas treatment is an efficient and economic process which takes account of the future requirements of lower limit values for mercury. Simultaneously, a new measurement technique for a continuous capture of mercury with new standards on detection sensitivity, accuracy and reliability in connection with a more simple and cost-effective maintenance is developed. The bromine supported precipitation as well as the continuous capture of mercury are trendsetters and are actually the best available technologies for the reduction of mercury emissions.

  1. Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.

    Science.gov (United States)

    Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele

    2017-02-07

    Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NO x ), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NO x concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NO x conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NO x conditions) was 34.1%. The reduced SOA yield under high-NO x conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.

  2. SESAM: a model for the calculation of radiation exposure by emission of pollutants with the exhaust air in the case of a multi-source situation

    International Nuclear Information System (INIS)

    Ehrlich, H.G.; Vogt, K.J.; Brunen, E.

    The report deals with the calculation of the individual radiation exposure in the catchment area of several nuclear emitters. A model and computer program, SESAM - Calculation of the Radiation Exposure by Emission of Pollutants with the Exhaust air in the Case of a Multi-Source Situation -, was developed which makes possible all the evaluations of long-time exposure which are relevant for the licensing process - such as the determination of the maximum individual radiation exposure to the various organs at the worst receiving point - together with the exposure of the environment by several nuclear emission sources - such as, for example, several units of a power plant facility, the various emitters of a waste management center, or even consideration of the previous exposure of a site by nuclear emission sources

  3. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  4. Opportunity to reduce the exhaust gases with engine adjust

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2002-01-01

    According to statistics in the Republic of Macedonia, the number of old vehicles is about 90%. These are vehicles produced between 1975 and 1990 with classical systems for forming and burning the fuel mixture. The most of them do not have system for processing exhaust gases (catalytic converter) and are serious air pollutants of carbon monoxide (CO). In this article we try to make an attempt to reduce exhaust gases in some kinds of these vehicles with adjusting to the system for burning fuel mixture and with adjusting to the system for forming fuel mixture (carburetor). At the same time the changes on the rotate bending moment and engine power are followed. It is noticed that with a proper adjustment the emission of exhaust gases can be reduced without a serious depreciation of the rotate bending moment and the engine power. (Author)

  5. Distillers by-product cattle diets enhance reduced sulfur gas fluxes from feedlot soils and manures

    Science.gov (United States)

    Total reduced sulfur (TRS) emissions from animal feeding operations are a concern with increased feeding of high-sulfur distillers by-products. Three feeding trials were conducted to evaluate feeding wet distillers grain plus solubles (WDGS) on TRS fluxes. Fresh manure was collected three times duri...

  6. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ Model–I: building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. F. Mueller

    2010-05-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  7. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  8. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    Science.gov (United States)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  9. Simulated effects of sulfur deposition on nutrient cycling in class I wilderness areas

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Dale W. Johnson; William T. Swank; William Jackson

    2008-01-01

    As a consequence of human land use, population growth, and industrialization, wilderness and other natural areas can be threatened by air pollution, climate change, and exotic diseases or pests. Air pollution in the form of acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from emissions of sulfur dioxide, nitrogen oxides, and ammonia....

  10. An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Canakci [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2008-07-15

    As an alternative combustion mode, the HCCI combustion has some benefits compared to conventional SI and CI engines, such as low NOx emission and high thermal efficiency. However, this combustion mode can produce higher UHC and CO emissions than those of conventional engines. In the naturally aspirated HCCI engines, the low engine output power limits its use in the current engine technologies. Intake air pressure boosting is a common way to improve the engine output power which is widely used in high performance SI and CI engine applications. Therefore, in this study, the effect of inlet air pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine has been investigated after converting a heavy-duty diesel engine to a HCCI direct-injection gasoline engine. The experiments were performed at three different inlet air pressures while operating the engine at the same equivalence ratio and intake air temperature as in normally aspirated HCCI engine condition at different engine speeds. The SOI timing was set dependently to achieve the maximum engine torque at each test condition. The effects of inlet air pressure both on the emissions such as CO, UHC and NOx and on the performance parameters such as BSFC, torque, thermal and combustion efficiencies have been discussed. The relationships between the emissions are also provided. 34 refs., 19 figs., 4 tabs.

  11. Use of probabilistic safety analysis for design of emergency mitigation systems in hydrogen producer plant with sulfur-iodine technology, Section II: sulfuric acid decomposition

    International Nuclear Information System (INIS)

    Mendoza A, A.; Nelson E, P. F.; Francois L, J. L.

    2009-10-01

    Over the last decades, the need to reduce emissions of greenhouse gases has prompted the development of technologies for the production of clean fuels through the use of primary energy resources of zero emissions, as the heat of nuclear reactors of high temperature. Within these technologies, one of the most promising is the hydrogen production by sulfur-iodine cycle coupled to a high temperature reactor initially proposed by General Atomics. By their nature and because it will be large-scale plants, the development of these technologies from its present phase to its procurement and construction, will have to incorporate emergency mitigation systems in all its parts and interconnections to prevent undesired events that could put threaten the plant integrity and the nearby area. For the particular case of sulfur-iodine thermochemical cycle, most analysis have focused on hydrogen explosions and failures in the primary cooling systems. While these events are the most catastrophic, is that there are also many other events that even taking less direct consequences, could jeopardize the plant operation, the people safety of nearby communities and carry the same economic consequences. In this study we analyzed one of these events, which is the formation of a toxic cloud prompted by uncontrolled leakage of concentrated sulfuric acid in the second section of sulfur-iodine process of General Atomics. In this section, the sulfuric acid concentration is near to 90% in conditions of high temperature and positive pressure. Under these conditions the sulfuric acid and sulfur oxides from the reactor will form a toxic cloud that the have contact with the plant personnel could cause fatalities, or to reach a town would cause suffocation, respiratory problems and eye irritation. The methodology used for this study is the supported design in probabilistic safety analysis. Mitigation systems were postulated based on the isolation of a possible leak, the neutralization of a pond of

  12. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  13. Session 4: On-board exhaust gas reforming for improved performance of natural gas HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Amieiro, A.; Golunski, S.; James, D. [Johnson Matthey Technology Centre, Sonning Common, Reading (United Kingdom); Miroslaw, Wyszynski; Athanasios, Megaritis; Peucheret, S. [Birmingham Univ., School of Engineering, Future Power Systems Research Group (United Kingdom); Hongming, Xu [Jaguar Cars Ltd, W/2/021 Engineering Centre, Whitley, Coventry (United Kingdom)

    2004-07-01

    Although natural gas (NG) is a non-renewable energy source, it is still a very attractive alternative fuel for transportation - it is inexpensive, abundant, and easier to refine than petroleum. Unfortunately the minimum spark energy required for NG ignition is higher than for liquid fuels, and engine performance is reduced since the higher volume of NG limits the air breathing capacity of the cylinders. On the other hand, the flammability range of NG is wider than for other hydrocarbons, so the engine can operate under leaner conditions. Environmentally, the use of NG is particularly attractive since it has a low flame temperature (resulting in reduced NO{sub x} emissions) and a low carbon content compared to diesel or gasoline (resulting in less CO, CO{sub 2} and particulate). In addition, NG is easily made sulphur-free, and has a high octane rating (RON = 110-130) which makes it suitable for high compression engine applications. Exhaust gas recirculation (EGR) into an engine is known to reduce both flame temperature and speed, and therefore produce lower NO{sub x} emissions. In general, a given volume of exhaust gas has a greater effect on flame speed and NO{sub x} emissions than the same quantity of excess air, although there is a limit to the amount of exhaust gas recirculation that can be used without inhibiting combustion. However, hydrogen addition to exhaust gas recirculation has been proved to reduce emissions while increasing flame speed, so improving both the emissions and the thermal efficiency of the engine. On-board reforming of some of the fuel, by reaction with exhaust gas during EGR, is a novel way of adding hydrogen to an engine. We have carried out reforming tests on mixtures of natural gas and exhaust gas at relatively low temperatures (400-600 C), to mimic the low availability of external heat within the integrated system. The reforming catalyst is a nickel-free formulation, containing precious metals promoted by metal oxides. The roles of

  14. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    OpenAIRE

    Leman A.M.; Jajuli Afiqah; Feriyanto Dafit; Rahman Fakhrurrazi; Zakaria Supaat

    2017-01-01

    Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to i...

  15. Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions

    International Nuclear Information System (INIS)

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Reig, Alberto

    2015-01-01

    EGR (Exhaust gas recirculation) plays a major role in current Diesel internal combustion engines as a cost-effective solution to reduce NO_x emissions. EGR systems will suffer a significant evolution with the introduction of NO_x after-treatment and the proliferation of more complex EGR architectures such as low pressure EGR or dual EGR. In this paper the combination of HPEGR (high pressure EGR) LPEGR (low pressure EGR) is presented as a method to minimise fuel consumption with reduced NO_x emissions. Particularly, the paper proposes to switch between HPEGR and LPEGR architectures depending on the engine operating conditions in order to exploit the potential of both systems. In this sense, given a driving cycle, in the case at hand the NEDC, the proposed strategy seeks the EGR layout to use at each instant of the cycle to minimise the fuel consumption such that NO_x emissions are kept below a certain limit. The experimental results obtained show that combining both EGR systems sequentially along the NEDC allows to keep NO_x emission below a much lower limit with minimum fuel consumption. - Highlights: • The combination of HP–LPEGR reduces the NO_x with a small impact on consumption. • The switching strategy between HP – LPEGR is derived from Optimal Control Theory. • The proposed strategy is validated experimentally.

  16. Exhaust catalysis studies using in-situ positron emission

    International Nuclear Information System (INIS)

    Vonkeman, K.A.

    1990-01-01

    In this thesis the kinetics of noble metal catalysts with a formulation related to that of commercial automotive exhaust catalysts, have been examined. The application of a new radioisotope tracer technique in studies of catalyst kinetics is described. Reactant and product molecules were pulsed over a catalyst under conditions such, that the reaction rates were kinetically controlled. Labelling of the reacting molecules enables the in-situ measurement of transient phenomena in a reactor as a function of time and position, if a tomograph is used as detection system. Integral reactor profiles are measured, by which concentration gradients occurring in the reactor can be studied. The large amount of data obtained during each experiment were used to quantify the kinetics. To this end, a refined mathematical model of the kinetics based on the elementary steps of adsorption, desorption and surface reaction was used to simulate the experiments. The experimental conditions in this study were representative for the cold start of a car, when the catalyst is heating up. By applying small catalyst particles and high linear velocities the influence of transport phenomena was excluded so that the experiments were carried out in the kinetically controlled regime. Reaction kinetics of carbon monoxide oxidation by oxygen and nitrogen oxide were studied. Experimental data obtained with surface science techniques were very useful in constructing the kinetic model. By simulating the experiments, the relevant kinetic parameters could be quantified and information on the elementary reaction steps was obtained. Since carbon dioxide adsorbs strongly to the catalyst carrier; 10% carbon dioxide was added to the gas phase (in actual automotive exhaust gas the concentration of carbon dioxide is 10 - 15%). This enabled the determination of the transients due to the interaction of gas components with the catalytically active compounds of the catalyst. (author). 446 refs.; 57 figs.; 21 tabs

  17. Fuel characterisation, engine performance, combustion and exhaust emissions with a new renewable Licella biofuel

    International Nuclear Information System (INIS)

    Nabi, Md Nurun; Rahman, Md Mostafizur; Islam, Muhammad Aminul; Hossain, Farhad M.; Brooks, Peter; Rowlands, William N.; Tulloch, John; Ristovski, Zoran D.; Brown, Richard J.

    2015-01-01

    Highlights: • A new biofuel produced by hydrothermal liquefaction is investigated. • Licella biofuel blends showed no significant changes in engine performance. • Licella blends showed higher THC and NO emissions. • PM and PN emissions were observed to be lower for all Licella blends. • Hydrothermal liquefaction Licella biofuel is suitable for use in diesel engine. - Abstract: The current study investigates the opportunity of using Licella biofuel as a partly renewable fuel provided by Licella P/L. Hereafter this fuel will be referred to as Licella biofuel. The renewable component of the Licella biofuel was made from the hydrothermal conversion of Australian pinus radiata wood flour using Licella’s proprietary Cat-HTR™ technology. The diesel-soluble component of the hydrothermal product was extracted into road diesel to give a blended fuel containing approximately 30% renewable material with the balance from diesel. This was further blended with a regular diesel fuel (designated R0) to give fuels for testing containing 5%, 10% and 20% renewable fuel (designated R5, R10 and R20). Some of the key fuel properties were measured for R30 and compared with those of regular diesel fuel. The engine experiment was conducted on a four-cylinder turbocharged common rail direct injection diesel engine. All experiments were performed with a constant speed and five different engine loads. Exhaust emissions including particulate matter (PM) mass and numbers, nitric oxide (NO), total unburnt hydrocarbon (THC), carbon dioxide (CO 2 ) and performance parameters including brake power (BP), indicated power (IP), brake mean effective pressure (BMEP), indicated mean effective pressure (IMEP), mechanical efficiency (ME), brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) were investigated for all four blends (R0, R5, R10 and R20). Among other engine parameters, in-cylinder pressure, heat release rate (HRR) and pressure (P) versus volume (V) diagrams

  18. 40 CFR 60.105 - Monitoring of emissions and operations.

    Science.gov (United States)

    2010-07-01

    ... units that are intolerant to sulfur contamination, such as fuel gas streams produced in the hydrogen... measurement) following the “Gas Processors Association Standard 2377-86, Test for Hydrogen Sulfide and Carbon... catalyst regenerator under § 60.102 that uses an incinerator-waste heat boiler to combust the exhaust gases...

  19. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  20. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    Science.gov (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during

  1. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  2. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    Science.gov (United States)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  3. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  4. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  5. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs)

  6. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  7. Catalytic removal of methane and NO{sub x} in lean-burn natural-gas engine exhaust; Elimination par catalyse du methane et des NO{sub x} dans les echappements de moteur au gaz naturel a basse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Satokawa, S.; Yahagi, M.; Yamaseki, K.; Hoshi, F.; Uchida, H.; Yokota, H. [Tokyo Gas Co., Ltd. (Japan)

    2000-07-01

    We have developed a new catalytic system to reduce the emissions of hydrocarbons, carbon monoxide (CO), and nitrogen oxides (NO{sub x}) contained in the exhaust gases from a lean-burn natural-gas engine. Catalytic oxidation of unburned hydrocarbons and CO in the exhaust has been studied for noble metals supported on alumina. (1) A low-loading catalyst comprising platinum supported on alumina (Pt/alumina) was efficient for the oxidation of CO and hydrocarbons without methane. The CO conversions were maintained at more than 98 % for 20,000 hours over the Pt/alumina. (2) A catalyst comprising platinum and palladium supported on alumina (Pt-Pd/alumina) exhibited higher levels of oxidation of hydrocarbons (including methane) than a catalyst comprising only palladium supported on alumina (Pd/alumina). Its oxidation also lasted longer. The combined effects of the platinum and palladium metals achieved high sulfur dioxide resistance. Increasing the palladium content in the Pt-Pd/alumina catalyst increased the level of oxidation and extended the lifetime of the catalyst. (3) A catalyst comprising silver supported on alumina (Ag/alumina) was effective at reducing the amount of NO{sub X} by using the unburned hydrocarbons in the exhaust gas. The NO{sub x} conversions over Ag/alumina were maintained at more than 30 % for 3,500 hours. We describe a total clean-up system consisting of a Ag/alumina catalyst and a Pt-Pd/alumina catalyst in series on the exhaust gas stream. (authors)

  8. Evaluation of Partial Oxidation Reformer Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Unnasch, Stefan; Fable, Scott; Waterland, Larry

    2006-01-06

    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  9. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2017-01-01

    Full Text Available Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to investigate the alternatives for producing a better replacement for the material used in catalytic converter. This paper aims at reviewing the present development and improvement on the catalytic converter used on the reduction of exhaust emission in order to meet the regulations and market demand. The use of new catalyst such as to replace the noble metal material of Platinum (Pt, Palladium (Pd and Rhodium (Rh has been reviewed. Material such as zeolite, nickel oxide and metal oxide has been found to effectively reduce the emission than the commercial converter. The preparation method of the catalyst has also evolved through the years as it is to ensure a good characteristic of a good monolith catalyst. Ultrasonic treatment with combination of electroplating technique, citrate method and Plasma Electrolytic Oxidation (PEO has been found as the latest novel preparation method on producing an effective catalyst in reducing the exhaust emission.

  10. New trends in emission control in the European Union

    CERN Document Server

    Merkisz, Jerzy; Radzimirski, Stanislaw

    2014-01-01

    This book discusses recent changes in the European legislation for exhaust emissions from motor vehicles. It starts with a comprehensive explanation of both the structure and range of applicability of new regulations, such as Euro 5 and Euro 6 for light-duty vehicles and Euro VI for heavy-duty vehicles. Then it introduces the most important issues in in-service conformity and conformity of production for vehicles, describing the latest procedures for performing exhaust emissions tests under both bench and operating conditions. Subsequently, it reports on portable emission measurement systems (PEMS) and their application for assessing the emissions of gaseous and particulate matter alike, under actual operating conditions and in all transport modes. Lastly, the book presents selected findings from exhaust emissions research on engines for a variety of transport vehicles, such as light-duty and heavy-duty vehicles, as well as non-road vehicles, which include farm tractors, groundwork and forest machinery, diese...

  11. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  12. Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea.

    Science.gov (United States)

    Murphy, Shane M; Agrawal, Harshit; Sorooshian, Armin; Padró, Luz T; Gates, Harmony; Hersey, Scott; Welch, W A; Lung, H; Miller, J W; Cocker, David R; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2009-07-01

    We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time analyzers to characterize the plume aerosol, aged from a few seconds to over an hour. The mass ratio of particulate organic carbon to sulfate at the base of the ship stack was 0.23 +/- 0.03, and increased to 0.30 +/- 0.01 in the airborne exhaust plume, with the additional organic mass in the airborne plume being concentrated largely in particles below 100 nm in diameter. The organic to sulfate mass ratio in the exhaust aerosol remained constant during the first hour of plume dilution into the marine boundary layer. The mass spectrum of the organic fraction of the exhaust aerosol strongly resembles that of emissions from other diesel sources and appears to be predominantly hydrocarbon-like organic (HOA) material. Background aerosol which, based on air mass back trajectories, probably consisted of aged ship emissions and marine aerosol, contained a lower organic mass fraction than the fresh plume and had a much more oxidized organic component. A volume-weighted mixing rule is able to accurately predict hygroscopic growth factors in the background aerosol but measured and calculated growth factors do not agree for aerosols in the ship exhaust plume. Calculated CCN concentrations, at supersaturations ranging from 0.1 to 0.33%, agree well with measurements in the ship-exhaust plume. Using size-resolved chemical composition instead of bulk submicrometer composition has little effect on the predicted CCN concentrations because the cutoff diameter for CCN activation is larger than the

  13. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    Science.gov (United States)

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions

  14. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  15. MTU series 1600 HCCI engine with extremely low exhaust emissions over the entire engine map; HCCI-Motor der MTU Baureihe 1600 mit extrem niedrigen Abgasemissionen im gesamten Motorkennfeld

    Energy Technology Data Exchange (ETDEWEB)

    Teetz, Christoph; Bergmann, Dirk; Sauer, Christina; Schneemann, Arne [MTU, Friedrichshafen (Germany); Eichmeier, Johannes; Spicher, Ulrich [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). IFKM

    2012-11-01

    The main challenge when developing off-highway engines is to keep emissions within the limits to apply in the future while maintaining low fuel consumption and low CO{sub 2} output. In the USA in particular, diesel engines in the 130 - 560 kW power range are to be subject from 2014 to EPA Tier 4 legislation, which imposes limits of 0.4 g/kWh for NO{sub x} and 0.02 g/kWh for particulate matter. Diesel units can only satisfy those requirements using a combination of in-engine measures and exhaust aftertreatment systems (SCR, particulate filters), which makes them a good deal more complex and expensive. In the face of CO{sub 2} emissions regulations and the growing demand for diesel fuel, greater emphasis is now being placed on alternative fuels. Homogeneous Charge Compression Ignition or 'HCCI' provides an alternative to complex exhaust aftertreatment systems which generates virtually no soot or nitrous oxide emissions. It does, however, present new challenges with respect to combustion control and engine load. Up to the present, it has not been possible to exploit the full potential of this combustion process over the entire engine map, since the high ignition performance of diesel fuel at high loads results in excessively early combustion and inadmissible pressure gradients. The pre-development department of MTU Friedrichshafen worked with the Institute of Internal Combustion Engines at the Karlsruhe Institute of Technology (KIT) to devise a research prototype for an industrial application which would allow semi-homogenous combustion with controlled self-ignition over the full engine map. The engine is based on a 6-cylinder version of the MTU Series 1600 unit and has a rated output of 300 kW. The fuels - gasoline or ethanol and diesel - are mixed in such a way as to avoid the disadvantages associated with most HCCI processes. Since the use of ethanol also enhances combustion efficiency, it has a two-fold positive effect on the CO{sub 2} situation. With

  16. Impact of fuels on diesel exhaust emissions

    International Nuclear Information System (INIS)

    Westerholm, R.

    1991-09-01

    This report presents an investigation of the emissions from eight diesel fuels with different sulphur and aromatic content. A bus and a truck were used in the investigation. Chemical analysis and biological testing have been performed. The aim of this project was to find a 'good' diesel fuel which can be used in urban areas. Seven of the fuels were meant to be such fuels. It has been confirmed in this study that there exists a quantifiable relationship between the variables of the diesel fuel blends and the variables of the chemical emissions and their biological effects. 119 figs., 12 tabs., approx. 100 refs

  17. Effects of a flexible utilization of biogas on the electrical efficiency and the exhaust gas emissions from cogeneration plants; Auswirkungen einer flexiblen Biogasverwertung auf den elektrischen Wirkungsgrad und die Abgasemissionen von Blockheizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Tappen, Simon Juan; Effenberger, Mathias [Bayerische Landesanstalt fuer Landwirtschaft (LfL), Freising (Germany). Arbeitsgruppe Technikfolgenabschaetzung

    2016-08-01

    The German Renewable Energy Act of 2014 implements improved conditions to support market and grid integration of renewable energies, which resulted in the generated electricity to be sold directly to the market. In supporting the application of start-stop procedure and part load condition (e.g. during operating reserve), new requirements need to be set for biogas driven eo-generation units (CGU). Seven CGUs were analyzed during on-field measurements in Bavaria. The following article shows how results of part load adjustments affect the electrical efficiency and emissions, such as carbon monoxide (CO), nitrous oxide (NO{sub x}) and unburned hydrocarbons (C{sub n}H{sub m}). Under part load condition, the CGU showed a decrease in electrical efficiency and NO{sub x}-concentration. No significant changes have been identified in the exhaust treated emissions. In general, part load response leads to higher environmental impact. However, the environmental impact is expected to be low, since the application and extent of using flexible driving behavior is still limited. In contrast, stricter emission limit values set by TA Luft 2017 could impact the electrical efficiency and lead to higher costs for monitoring and exhaust treatment.

  18. Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions: a new educational antismoking instrument.

    Science.gov (United States)

    De Marco, Cinzia; Ruprecht, Ario Alberto; Pozzi, Paolo; Munarini, Elena; Ogliari, Anna Chiara; Mazza, Roberto; Boffi, Roberto

    2015-01-01

    Indoor smoking in public places and workplaces is forbidden in Italy since 2003, but some health concerns are arising from outdoor secondhand smoke (SHS) exposure for non-smokers. One of the biggest Italian Steel Manufacturer, with several factories in Italy and abroad, the Marcegaglia Group, recently introduced the outdoor smoking ban within the perimeter of all their factories. In order to encourage their smoker employees to quit, the Marcegaglia management decided to set up an educational framework by measuring the PM1, PM2.5 and PM10 emissions from heavy duty trucks and to compare them with the emissions of cigarettes in an indoor controlled environment under the same conditions. The exhaust pipe of two trucks powered by a diesel engine of about 13.000/14.000 cc(3) were connected with a flexible hose to a hole in the window of a container of 36 m(3) volume used as field office. The trucks operated idling for 8 min and then, after adequate office ventilation, a smoker smoked a cigarette. Particulate matter emission was thereafter analyzed. Cigarette pollution was much higher than the heavy duty truck one. Mean of the two tests was: PM1 truck 125.0(47.0), cigarettes 231.7(90.9) p = 0.002; PM2.5 truck 250.8(98.7), cigarettes 591.8(306.1) p = 0.006; PM10 truck 255.8(52.4), cigarettes 624.0(321.6) p = 0.002. Our findings may be important for policies that aim reducing outdoor SHS exposure. They may also help smokers to quit tobacco dependence by giving them an educational perspective that rebuts the common alibi that traffic pollution is more dangerous than cigarettes pollution.

  19. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards.

    Science.gov (United States)

    Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara

    2011-04-01

    As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was

  20. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers where emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.

  2. Manipulating ship fuel sulfur content and modeling the effects on air quality and climate

    Science.gov (United States)

    Partanen, Antti-Ilari; Laakso, Anton; Schmidt, Anja; Kokkola, Harri; Kuokkanen, Tuomas; Kerminen, Veli-Matti; Lehtinen, Kari E. J.; Laakso, Lauri; Korhonen, Hannele

    2013-04-01

    Aerosol emissions from international shipping are known to cause detrimental health effects on people mainly via increased lung cancer and cardiopulmonary diseases. On the other hand, the aerosol particles from the ship emissions modify the properties of clouds and are believed to have a significant cooling effect on the global climate. In recent years, aerosol emissions from shipping have been more strictly regulated in order to improve air quality and thus decrease the mortality due to ship emissions. Decreasing the aerosol emissions from shipping is projected to decrease their cooling effect, which would intensify the global warming even further. In this study, we use a global aerosol-climate model ECHAM5.5-HAM2 to test if continental air quality can be improved while still retaining the cooling effect from shipping. The model explicitly resolves emissions of aerosols and their pre-cursor gases. The model also calculates the interaction between aerosol particles and clouds, and can thus predict the changes in cloud properties due to aerosol emissions. We design and simulate a scenario where ship fuel sulfur content is strictly limited to 0.1% near all coastal regions, but doubled in the open oceans from the current global mean value of 2.7% (geo-ships). This scenario is compared to three other simulations: 1) No shipping emissions at all (no-ships), 2) present-day shipping emissions (std-ships) and 3) a future scenario where sulfur content is limited to 0.1% in the coastal zones and to 0.5% in the open ocean (future-ships). Global mean radiative flux perturbation (RFP) in std-ships compared to no-ships is calculated to be -0.4 W m-2, which is in the range of previous estimates for present-day shipping emissions. In the geo-ships simulation the corresponding global mean RFP is roughly equal, but RFP is spatially distributed more on the open oceans, as expected. In future-ships the decreased aerosol emissions provide weaker cooling effect of only -0.1 W m-2. In

  3. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  4. Health effects of subchronic inhalation exposure to gasoline engine exhaust.

    Science.gov (United States)

    Reed, M D; Barrett, E G; Campen, M J; Divine, K K; Gigliotti, A P; McDonald, J D; Seagrave, J C; Mauderly, J L; Seilkop, S K; Swenberg, J A

    2008-10-01

    Gasoline engine emissions are a ubiquitous source of exposure to complex mixtures of particulate matter (PM) and non-PM pollutants; yet their health hazards have received little study in comparison with those of diesel emissions. As a component of the National Environmental Respiratory Center (NERC) multipollutant research program, F344 and SHR rats and A/J, C57BL/6, and BALBc mice were exposed 6 h/day, 7 days/week for 1 week to 6 months to exhaust from 1996 General Motors 4.3-L engines burning national average fuel on a simulated urban operating cycle. Exposure groups included whole exhaust diluted 1:10, 1:15, or 1:90, filtered exhaust at the 1:10 dilution, or clean air controls. Evaluations included organ weight, histopathology, hematology, serum chemistry, bronchoalveolar lavage, cardiac electrophysiology, micronuclei in circulating cells, DNA methylation and oxidative injury, clearance of Pseudomonas aeruginosa from the lung, and development of respiratory allergic responses to ovalbumin. Among the 120 outcome variables, only 20 demonstrated significant exposure effects. Several statistically significant effects appeared isolated and were not supported by related variables. The most coherent and consistent effects were those related to increased red blood cells, interpreted as likely to have resulted from exposure to 13-107 ppm carbon monoxide. Other effects supported by multiple variables included mild lung irritation and depression of oxidant production by alveolar macrophages. The lowest exposure level caused no significant effects. Because only 6 of the 20 significant effects appeared to be substantially reversed by PM filtration, the majority of effects were apparently caused by non-PM components of exhaust.

  5. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  6. Prehistory and state of catalytic exhaust gas detoxification of vehicle engines

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, F

    1985-01-01

    The application of catalyst techniques to exhaust gas detoxification of car engines has a prehistory of about 60 years. There were important attempts at further development in the 1940's and 1950's in connection with efforts to comply with the legal measures in California caused by the smog problem in Los Angeles. The technical difficulties had been overcome by the mid-1970's, so that catalytic converters could be introduced into mass production of cars in the USA. Their function was first mainly limited to oxidation of noxious substances in the exhaust gas. Catalysts were first used to reduce nitrogen oxide emission in 1977. The 3 way catalyst now used in mass production in the USA permits the simultaneous reduction of all three important types of noxious substances emitted from petrol engines. In order to ensure the most favourable composition of the exhaust gas for this purpose, the 3 way catalyst is combined with electronic control of the formation of the mixture. The catalytic converter for cars represents by far the most economically important industrial application of catalyst techniques today. There is not other alternative for achieving the low emission of noxious substances which can be reached by this technique. (HW).

  7. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    Science.gov (United States)

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  8. Biological effects data: Fluoride and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McMechan, K.J. (ed.); Holton, R.L.; Ulbricht, R.J.; Morgan , J.B.

    1975-04-01

    The Alumax Pacific Aluminum Corporation has proposed construction of an aluminum reduction facility near Youngs Bay at Warrenton, Oregon. This report comprises one part of the final report to Alumax on a research project entitled, Physical, Chemical and Biological Studies of Youngs Bay.'' It presents data pertaining to the potential biological effects of fluoride and sulfur dioxide, two potentially hazardous plant-stack emissions, on selected aquatic species of the area. Companion volumes provide a description of the physical characteristics the geochemistry, and the aquatic animals present in Youngs Bay and adjacent ecosystems. An introductory volume provides general information and maps of the area, and summarizes the conclusions of all four studies. The data from the two phases of the experimental program are included in this report: lethal studies on the effects of selected levels of fluoride and sulfur dioxide on the survival rate of eleven Youngs Bay faunal species from four phyla, and sublethal studies on the effects of fluoride and sulfur dioxide on the rate of primary production of phytoplankton. 44 refs., 18 figs., 38 tabs.

  9. Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model.

    Science.gov (United States)

    Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max

    2013-01-15

    Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.

  10. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    Science.gov (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  11. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    Science.gov (United States)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-08-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  12. Technologies for the treatment of the sulfur dioxide and nitrogen oxides generated by the combustion in open chamber; Tecnologias para el tratamiento de dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Villalpando, Maria Dolores [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1993-12-31

    In general terms, there are only three ways of avoiding the sulfur dioxide and the nitrogen oxides, generated by the combustion in open chamber, from contaminating the air; the first one is utilizing low sulfur and nitrogen content fuels, the second one is by controlling the parameters that affect the combustion and the third one to treat and/or clean the gases before exhausting them to the air. In this document, some of the treatments for diminishing the pollutant emissions generated by the combustion in open chamber, are presented. [Espanol] En terminos generales, solo existen 3 maneras de evitar que el dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta sigan contaminando el aire, la primera es utilizar un combustible de bajo contenido de azufre y nitrogeno, la segunda es controlar los parametros que afectan la combustion, y la tercera es tratar y/o limpiar los gases antes de emitirlos a la atmosfera. En este documento se presentan algunos tratamientos para disminuir las emisiones de contaminantes generados por la combustion en camara abierta.

  13. Technologies for the treatment of the sulfur dioxide and nitrogen oxides generated by the combustion in open chamber; Tecnologias para el tratamiento de dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Villalpando, Maria Dolores [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1992-12-31

    In general terms, there are only three ways of avoiding the sulfur dioxide and the nitrogen oxides, generated by the combustion in open chamber, from contaminating the air; the first one is utilizing low sulfur and nitrogen content fuels, the second one is by controlling the parameters that affect the combustion and the third one to treat and/or clean the gases before exhausting them to the air. In this document, some of the treatments for diminishing the pollutant emissions generated by the combustion in open chamber, are presented. [Espanol] En terminos generales, solo existen 3 maneras de evitar que el dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta sigan contaminando el aire, la primera es utilizar un combustible de bajo contenido de azufre y nitrogeno, la segunda es controlar los parametros que afectan la combustion, y la tercera es tratar y/o limpiar los gases antes de emitirlos a la atmosfera. En este documento se presentan algunos tratamientos para disminuir las emisiones de contaminantes generados por la combustion en camara abierta.

  14. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Science.gov (United States)

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... gases which contain SO2 in excess of 110 nanograms per Joule (ng/J) (0.90 pounds per megawatt-hour (lb...

  15. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  16. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture

    International Nuclear Information System (INIS)

    Can, Özer

    2014-01-01

    Highlights: • High quality biodiesel fuels can be produced by using different waste cooking oils. • Biodiesel fuel blends (in 5 and 10% vol) can be used without any negative effects. • Effects of biodiesel addition on the combustion and exhaust emissions were investigated. - Abstract: In this study, a mixture of biodiesel fuels produced from two different kinds of waste cooking oils was blended in 5% and 10% with No. 2 diesel fuel. The biodiesel/No. 2 diesel fuel blends were tested in a single-cylinder, direct injection, four-stroke, natural aspirated diesel engine under four different engine loads (BMEP 0.48–0.36–0.24–0.12 MPa) and 2200 rpm engine speed. Despite of the earlier start of injection, the detailed combustion and engine performance results showed that the ignition delay with the biodiesel addition was decreased for the all engine loads with the earlier combustion timings due to higher cetane number of biodiesel fuel. Meanwhile the maximum heat release rate and the in-cylinder pressure rise rate were slightly decreased and the combustion duration was generally increased with the biodiesel addition. However, significant changings were not observed on the maximum in-cylinder pressures. In addition, it was observed that the indicated mean effective pressure values were slightly varied depending on the start of combustion timing and the center of heat release location. It was found that 5% and 10% biodiesel fuel addition resulted in slightly increment on break specific fuel consumption (up to 4%) and reduction on break thermal efficiency (up to 2.8%). The biodiesel additions also increased NO x emissions up to 8.7% and decreased smoke and total hydrocarbon emissions for the all engine loads. Although there were no significant changes on CO emissions at the low and medium engine loads, some reductions were observed at the full engine load. Also, CO 2 emissions were slightly increased for the all engine loads

  17. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  18. Exhaust gas purification with sodium bicarbonate. Analysis and evaluation; Abgasreinigung mit Natriumhydrogencarbonat. Analyse und Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Quicker, Peter; Rotheut, Martin; Schulten, Marc [RWTH Aachen Univ. (Germany). Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER); Athmann, Uwe [dezentec ingenieurgesellschaft mbH, Essen (Germany)

    2013-03-01

    The dry exhaust gas cleaning uses sodium bicarbonate in order to absorb acid components of exhaust gases such as sulphur dioxide or hydrochloric acid. Recently, sodium and calcium based adsorbents are compared with respect to their economic and ecologic options. None of the investigations performed considered decidedly practical experiences from the system operation such as differences in the management, availability, personnel expenditure and maintenance expenditure. Under this aspect, the authors of the contribution under consideration report on exhaust gas cleaning systems using sodium carbonate as well as lime adsorbents. The operators of these exhaust gas cleaning systems were questioned on their experiences, and all relevant operational data (consumption of additives, consumption of energy, emissions, standstill, maintenance effort) were recorded and evaluated at a very detailed level.

  19. Equipment to reduce the emission of noxious components in the exhaust gas of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Tatsutomi, Y; Inoue, H

    1976-10-21

    The invention concerns an arrangement for the reduction of emission of noxious components in exhaust gas of an internal combustion engine with automatic drive. According to the invention, there is a further switch in parallel with the usual kickdown switch, which is actuated by a temperature sensor and/or choke. If the operating temperature of the engine is below a certain value, or if the choke is pulled out, then the switch is closed. This has the effect that the downstream valve is brought into the same position as that in which the closed kickdown switch would place it. The automatic drive therefore takes up that position, independently of the position of the accelerator pedal, which it would normally occupy only with the accelerator pedal fully pressed down. This guarantees that the engine is always kept at high speed during the hot running phase, which reduces the portion of the noxious gas components emitted.

  20. Anthropogenic mercury emissions from 1980 to 2012 in China.

    Science.gov (United States)

    Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli

    2017-07-01

    China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.